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Abstract

Let us assume that we have a class of sets. Now, if we have a machine that, fed information
on one of these sets, tells us which set the information belonged to, then the machine
underwent some sort of learning. This act of learning can happen in various forms. The
aim of this thesis is to motivate, introduce and investigate some possible ways of learning.
Firstly, we will motivate the basic ideas of computability theory and algorithmic learning
theory. Concerning the latter theory, we will get to know some widely used learning
types, the most prominent being the explanatory and behaviourally correct learning.
The main aim, however, is to investigate a new type of learning, the confident iterative
learning. The idea here is to merge two known concepts, namely that of the confident and
iterative learner. Additionally to learning the sets of the class correctly, the first learner
is required to make some, not necessarily true, guess on any other set, too. Instead of
having all the information of the set at hand at every time, the second learner may only
use its last hypothesis as memory on the previous calculations and information. So, we
restrict its memory.

Observing it, we will provide some negative as well as positive examples. We will also
prove some properties the confident iterative learner possesses. This will peak at the
classification theorem, where we provide a classification for certain types of classes.

As last act, we will consider an even more advanced idea, namely that of the very and
strongly confident learner. Here, we will focus on the behaviour on sets not belonging to
the class. We will try to detect them, in one form or another.

Lastly, we will focus on the possible hypotheses. We will investigate the behaviour of the
confident iterative learning when choosing special kinds of hypothesis spaces.
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1 Overview

1.1 Motivation

Most living creatures have experienced some form of learning at one point or another.
With the computer revolution at the last midcentury, and the improvements ever since,
it only seems natural to test whether one can teach a computer to learn and, if so, ask
to what extend this is possible.

Given a class and a set in it, learning is considered the process of identifying the set while
getting more and more information, i.e. elements, of that set. Since the initialization[]
of this idea, learning has been very intensively studied. With time, more and more ideas
emerged. Most of them rely on some natural process of learning, i.e. the process of
learning a language.

For example, adding memory bounds, which can be considered as a pretty natural bound,
or learning, even if confronted with some unrelated information, lead to the implementa-
tion of the iterative and confident learner, respectively.

In this thesis, we will contribute to the efforts done so far, by investigating the combina-
tion of the two mentioned learning paradigms, leading to the confident iterative learner.

1.2 Preview

In order to do so, in the second chapter we will fix some notations as well as swipe
through the basic concepts of computability theory and recapitulate the, for our purpose,
relevant results.

In the third chapter we will introduce the basic concepts of algorithmic learning theory.
To get to know the materia, we will investigate two prominent concepts of learning types,
namely the explanatory and behaviourally correct one. Also, to get a better feeling for
the materia, we will consider some alteration of these. Comparing those will provide
us a better understanding. Altogether, this chapter will serve as an introduction into
algorithmic learning theory.

In the fourth chapter we will introduce the object of desire, the confident iterative
learner. After introducing the idea, we will investigate what kind of classes can or cannot
be learnt using a confident iterative learner. While doing so, we will also provide some
properties. This will culminate in the classification theorem of special types of classes.

LOne of the first, see [I], [6] or [16], formalizations can be found in [7].
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Chapter 1. Overview

As an excursion into some further topics, in the fifth chapter we will refine the idea
of the confident learner. We will try to detect sets not belonging to the class. In order
to do so, we will introduce two, rather powerful, ways, and then combine these with the
iterative learner. This will lead us to some notable results.

Lastly, we will focus our attention on the hypotheses themselves. We will restrict the
possible hypotheses, thus receive a hypothesis space. Learning classes with respect to
some hypothesis space, obviously, depends on the chosen hypothesis space. Considering
the confident iterative learner once again, we will see three different types of learning
here.

At the very end, we will also propose some rough ideas on what the future research
concerning this topic may consist of.
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2 Introduction

Based on the course notes [5], but also locatable in [4], in this chapter we are going to
fix some notations and recapitulate some important results. Most of them will remain
without proof here, as we assume them to be well known. For some more details, readers
are forwarded to the mentioned sources.

2.1 Notations

The start marks an enhanced notation of quantifiers.

Notation 2.1.1: Let A(z) be a statement.

Then, by writing Vi°x : A(z) we mean 3y Vo >y : A(x). If we do not need to emphasize
y, we will write V¥z : A(x).

Also, if we write 3%z : A(z), we mean that Vy 3z >y : A(z).

As we will be handling functions, let us fix some notations for them, too.

Notation 2.1.2: Consider a function f: I C w™ — w. Here, ny is the arity of f, and if
it is clear from the context, we will use n.

Given a tuple T = (z1,...,%,), we write f(Z) = y if f is defined on T and equal to y.
We write f(Z) 1 if it is not defined on 7.

Also, the equality of functions will be of some importance.

Notation 2.1.3: Let f, g be two functions, then we write f(z1,...,2,,) = 9(y1,- -, ¥n,)
iff either both values are simultaneously defined and equal, or both are not defined.

Later on, we will need an extension of the natural numbers. So, let us enlarge them with
a biggest element.

Notation 2.1.4: We denote N, := NU {x}. The ordering (N,, <y,) is defined as
Va,b e N:a <y, b a<yb,
Va € N, 1 a <y, *.

As we are speaking of a rather natural extension here, we will write < = <y, .

Basically, the * will stand for "finitely many". With this at our hands, we can introduce
the term "almost equal".

Notation 2.1.5: Let a € N. Two functions f and g are said to be equivalent on all but

3
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Chapter 2. Introduction

a many arguments, written f = g, if

Ely17~--ya \V/J},SC g—f {yla---ya} : f(l’) :g(x>

Two functions f and g are said to be equivalent on all but finitely many arguments,
written f =" g, if

dneN: f(x) =" g(z).
Remark 2.1.6: For any function f(z) and any a € N, we have f =* f.
Also, we would like to remind the reader of the following ordering on sequences.
Notation 2.1.7: Let 0,7 be sequences, where |o| < |7|. We write o < 7 if

Vn < |o|:o(n) =7(n).

We call 7 an eztension of o, and o an initial segment of 7.

2.2 Computable Functions

We will formalize the idea of a function being computable, or effective. One possible
approach is the algebraic one. Alongside the basic functions, i.e. 0,0(z) =0, s(x) = z+1
and I (z1,...,2,) = Ty, 1 < m < n,n € N, we have the following operations at our
disposal.

e f is the composition of gq,..., gm, h if
f(@) = hgi(@), ..., gm(T)).

e f is the result of primitive recursion of g and h if

_ . )e@), if y =0,
@ y) = {h(f,y -1, f(z,y—1)), else.

e f is the result of minimization of g, written f(T) = uylg(T,y) = 0], if

not defined, else.

£(@) = {y, 9(z,0),...,9(F,y— 1) l# 0 and g(T,y) =0,

Remark 2.2.1: Since we are formalizing computer programs here, it makes sense to com-
pare the operations to their computer counterpart. Composition equals the composition
of programs, primitive recursion serves as loop. Lastly, minimization formalizes the idea
of an effective search.

With these ideas, we are able to define partial recursive functions.

4
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2.3. S and Recursion Theorem

Definition 2.2.2: A function f is a partial recursive function if there is a sequence
fi,- -y fm, such that f,, = f and each f; is either one of the basic functions, or it is
obtained by applying composition, primitive recursion or minimization to some of the
previous functions, i.e. functions with index k < i.

Remark 2.2.3: An everywhere defined, partial recursive function will be called just
recursive function. If we want to emphasize this property, we will use the term total
recursive function.

We provide some examples, as we will need them later on.

Example 2.2.4: The following functions are recursive.

1. fi(z) = sgu(s) = {é ;8

2. falz,y) = | —yl,

3. fs(z,y) = exp(z,y) = z, where z is the exponent of the z-th prime number in the
prime decomposition of y. We start the effective enumeration of the prime numbers
with pg = 2.
This approach is equivalent to others, like the approach via Turing machines, see [4] or
[5]. Altogether, we will believe the following thesis.

Thesis 2.2.5 (Church-Turing Thesis): The class of all intuitively computable functions
coincides with the class of all partial recursive functions.

In the shine of the Church-Turing Thesis, we will use the term partial computable function
from now on.

Notation 2.2.6: We will denote by REC the set of all total, i.e. everywhere defined,
computable functions, and PREC all partial computable functions.

Remark 2.2.7: Later, we will consider sets. A set A C w is called computable iff its
characteristic function ya is computable. A set A is called computably enumerable, or
c.e., iff it is the range or the domain of some partial computable function.

2.3 S and Recursion Theorem

Here we will provide several classical theorems of computability theory that will be useful
for our further considerations. First, we will introduce the following notation.

Notation 2.3.1: With ¢, 1, ... we will denote an acceptable numbering of all partial
computable functions. With W, = dom(p,) we will number the c.e. sets. We will refer
to such an index e as Kleene indez.

Notation 2.3.2: Additionally, we introduce the truncated computation ¢, s(z) = vy, also
written (p.(z))s = y. This means that for input = the program e outputs y in no more
than s computational steps. Again, we will write W, , = dom(ip, ).
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Chapter 2. Introduction

Example 2.3.3: One example using this numbering is the halting set K = {x : p.(x) |}.
Recall that it is c.e., but not computable.

Now, we will provide some useful facts concerning that numbering.

Theorem 2.3.4 (Normal Form Theorem): For every k-ary partial computable f exists
e € w such that f(T) = p.(T).

In order to deal with those indices, we will need the following two theorems. The first
one allows us to "reinterpret" programs and inputs.

Theorem 2.3.5 (S Theorem): For every m,n > 1 there exists a computable function
s such that for all x,yy,...,Yym, and all inputs 21, ..., 2,

(px(yla ey Ymsy Ry e ey Zn) = st(z,yl,...,ym)(zla ) Zn)
Next comes the Fixed Point Theorem alias Recursion Theorem.

Theorem 2.3.6 (Recursion Theorem): Let f be a computable function. Then there
exists n € w such that v, (r) = @pm)(z).

Additionally, we will need the following corollaries, the latter of them will also be proven.

k+1

Corollary 2.3.7: For every computable f : W — w exists some e such that

f(eaf) = @e(f)‘

Corollary 2.3.8: For every e € N exists a computable g: N — N such that

909(6) (g) = @e(g(e)vg)'

Corollary 2.3.9: Let f and g be partial computable functions with Kleene indices ey
and eq, respectively. Then, h = go f is partial computable and we can effectively compute
its index using ey and ey, i.e. there exists some computable s such that Ps(egies) = h.

Proof. We will prove the unary case, only. Obviously, h is partial computable.

Define F'(z,y,2) = .(¢y(2)). As composition of partial computable functions, F' is
partial computable itself. Thus, there exists some ep such that F(x,y, z) = p..(z,y, 2).
By S; Theorem there also exists some computable 5 such that @, 24)(2) =
Yep(T,y, 2). Let s(z,y) = §(ep, z,y). Then, s is computable, too, and

S05(334!)<z) = (pg(evavy)(z) = Pep (l‘, Y, Z) = F(SL’, Y, z)-

Letting x = ¢4 and y = ey, we get

SOS(eg,ef)(Z) = F(em €fs Z) = Pe, (906f<2)) = g(f(z)) = h(Z)
So, we can compute the index of h by s(egy, ey). O

So, when given two partial computable functions, we can also compute the index of their
composition.

6
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2.4. m-Reducibility and Arithmetical Hierarchy

2.4 m-Reducibility and Arithmetical Hierarchy
In this section, we will introduce a way of comparing the complexity of sets, namely
m-reducibility.
Definition 2.4.1: A set A is m-reducible to B, written A <,,, B, if there exists a com-
putable f such that for all z € w

re€A& f(r) €B.

Notice, that <,, is reflexive and transitive.

Next, in order to define the jump, we will enhance the idea of computable functions. We
will provide them with some oracle, or black box, which provides them some information.
For more detail, consider the following definition.

Definition 2.4.2: A partial function f is partial computable relative an oracle B, or par-
tial B-computable, if f can be computed as in Definition [2.2.2] where the basic functions
are extended by the characteristic function of B.

Similar as in previous sections, we can get some enumeration of all partial computable
functions or sets relative to some oracle A, i.e. ¢ and W, respectively.

Let (.,.): N2 1;; N be some computable pairing function with computable inverse func-
onto

tions. Let A" := {(z,y) : x € W'}, and A" = (A™) for n € N, be the n-th jump of
A C w. We can compare jumps using m-reducibility.

Lemma 2.4.3: Let n € N and A Cw. Then A™ <, A®D gnd AHD £ A,

One smooth way to compare the complexity of certain sets to jumps of the halting set is
via the arithmetical hierarchy.

Definition 2.4.4 (Arithmetical Hierarchy): Recursively define for n > 0,
1. X9 =TIJ is the set of all computable sets or relations.
2. 39, is the set of all relations of the form IFR(T,7), where R € II).
3. IIY; is the set of all relations of the form VyR(Z,7), where R € X0.
We obtain the following theorem.

Theorem 2.4.5: For any A Cw

AeX e A<, K.
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3 Learning

In this chapter we will introduce some types of learning. In order to get familiar with
the materia, we will take a closer look on explanatory and behaviourally correct learning.
This chapter will mainly follow [16], where the reader also can find more results.

3.1 Basic Concept

Basically, learning a function f, or a set, in our terms of speaking will consist of the
following steps.

e Receive a datum of the function, i.e. f(n).
e Carry out a computation with the new datum and the data and hypotheses so far.
e Suggest a hypothesis which function could be the sought one.

So, we will receive more and more data, and then hopefully generate a hypothesis that
fits the function in some way.

3.2 EX Learning

One type of learning most of us already dealt with is the interpolation of polynomials.

Example 3.2.1: Imagine, over the time you get points, which you try to interpolate with
a polynomial. So, with each point (zo, o), - . ., (Zn, Yn) you estimate which polynomial p,
could be the right one, i.e. for which Vi < n : p,(z;) = y;.

If we fix a maximal degree for those polynomials, then this search will actually come
to an end. However, if that is not the case, we can learn the polynomial in the limit.
The meaning of the latter is that we do not really know when we have found our right
polynomial, but from some point onwards, we will not change our mind on which is the
right one anymore. With this idea in mind we get the following criterion. Just before
that, we will make an important remark.

Remark 3.2.2: In what follows, also throughout this whole chapter, we will only consider
total computable functions as input. If, in some cases, we allow other functions, too, we
will stress that explicitly.

One could consider an analogous attempt with partial computable functions, as it is
described in [2].
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Chapter 3. Learning

Definition 3.2.3 (EX): A class S of total computable functions is explanatorily learn-
able if there exists a computable machine M such that, for every f € S, M(f(0)f(1)... f(n))
converges to a fixed e, which then is the code for a program of f, i.e.

Jtotal comp. M Vf €S Je Vn :M(f(0)...f(n)) =eAp. = f.

Notation 3.2.4: For any learning criterion, let LC be the respective abbreviation. If S
is learnable using that learning criterion, i.e. if § is LC-learnable, we will write S € LC
or §is LC.

Remark 3.2.5: In EX the learner provides a code in the limit for a program which
explains the function.

Example 3.2.6: To conclude Example let S = {p: pisa polynomial}. A process
of learning could look like this

Data | Hypotheses

(0,0) | p(z) =

(L1) | p(z) ==

(274) p(CL’) = 2

(3,9) | plz) = 2?

(47 4) p(I) _ Iz o :r(xfl)(:r272)(173)

We see that we change the hypothesis when needed. Once we have the right polynomial,
and the right degree, the sequence will converge to a certain p(x).

In order to give some other examples let us prove the following.
Lemma 3.2.7: The class So .= {f : f = @)} is not empty.

Proof. Consider the function g(z,y, 2) = @, (2)(2).
Using the Normal Form Theorem [2.3.4] () and the S™ Theorem [2.3.5] (%) we get

(*)

(%)
g(.ﬁlﬁ,y,Z) = QDE(ZI?,y’Z) =

(%)
= %pm(x,y)(z) = (3'1)

() )
= Posmay @ (2) = Po, ) (7). (3.2)

Sps(e,ac,y) (Z)

So, we have g(z,y,z2) = 9%%(@(@1)(2)- Evaluating g on x = k, y = 0 we get

g(k,0, 2) = @y, x)(2) by definition,
g(k,0,2) = <p%k(k)(0)(z) with the equation from (3.1)) and (3.2).

Letting f(y) := @u, ) (y), we get

f(2) = ¢50)(2)-
Thus, &y is not empty. O
10
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3.2. EX Learning

Remark 3.2.8: Choosing y = n we get that {f | f = @)} is not empty either.

Example 3.2.9: The classes Sy := {f | f = ¢y} and S; = {f | V*°z : f(x) = 0} are
EX.

Both Sy, due to the previous lemma, and Sy, since o(z) is a class member, are non-empty
classes.

The machine which would learn the first class would be the constant M(f(0)... f(n)) =
f(0) machine. So, M outputs the first datum, which then is the program for the function.
For f € &y, let F := {(z, f(z)) : f(x) > 0} and F,, := {(z, f(x)) | = < n, f(x) > 0}.
Also, let N be such that f(0)... f(N)0*®. Then F' = Fj, for k > N. One can easily see

that
fla) = {y, (x.y) € F,

0, else.

We can choose its Kleene index to be dependent on F' only. So, for some computable
s, we get f(x) = pgr)(2). Then, the machine M(f(0)... f(n)) = s(F,) actually outputs
the right code s(F'). Notice, that the fixed F' is quite important, as the index does not
depend on n anymore. So it cannot produce any semantically equivalent but syntactically
different code.

However, the union of those two is not EX, see also [2] or [3].

Theorem 3.2.10 (Blum and Blum’s Non-Union Theorem): There exists C1,Cy € EX
such that C; UCy ¢ EX.

Proof. We will show that Sy and S; from Example [3.2.9] are the sought classes. Assume
M learns S;. We will define a function

flr,y) =2nm2...7y

where 7; is a finite sequence such that M(z7y ... 7;_1) # M(z7 ... 7i217;),1 € w.

The search for 7; terminates as M learns all finite sequences, i.e. oy0>, and almost all
of them have different codes. Also notice that no 7; is the empty string. Since M is
computable, we can computably find 7;. So, f is computable and total. By Corollary
there exists n such that f(n,y) = ¢.(y), thus f looks like

f(n,0) =n, f(n,1) =nm, f(n,2) = nnine, ..., f(n,y) =nnm...7,

If we define f(y) = f(n7y> = gpn(y)7 then f(y> = @f(o)(y); as f(()) = f(nu()) = n. SOJ
f € Sy. However, M does not halt when trying to learn f. O

With that theorem in mind, the next result follows easily.
Corollary 3.2.11: REC ¢ EX.

Proof. As Sy US; € REC, no machine can learn REC in EX as it would have to learn
Sy U &y, too. O

11
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Chapter 3. Learning

We can try to expand this mechanism of learning. For example, in EX we have allowed
finitely many "wrong" hypotheses. Now, we could try to restrict this, say we allow only
one guess and no guess until then.

Definition 3.2.12 (FIN): A class S is finitely learnable if there exists a computable
machine M which either outputs "?" or exactly one correct hypothesis, i.e.

deomp. M Vf e S JeVIn:M(f(0)...f(n)) = {Z’ Zijj:[/’ Af = e

Remark 3.2.13: The symbol "7" is used to signal that there is no guess, i.e. the infor-
mation so far is not enough to make that one right guess.

Remark 3.2.14: The machines in FIN are in some sense total. They may not output a
hypothesis, however, they have to output the information that they are not sure which
hypothesis to output yet.

Considering EX and FIN, we could also request that all the hypotheses made are pro-
grams of total functions. Additionally to that, we will request that even if we input some
non-computable, total function which is not in the class, we still get some possibly wrong
hypothesis. These ideas applied to the learning criteria we have so far, are gathered in
PEX and PFIN[] For what follows, let 7 be the class of all total functions.

Definition 3.2.15 (PEX): A class S is Popperianly ezplanatorily learnable if there
exists a computable machine M such that, for every f € S, M(f(0)f(1)... f(n)) converges
to a fixed e, which then is the code for a program of f and on its way there it only
outputs hypotheses for total functions. We also request M to output total hypotheses for
feT\S. Le.

Jtotal comp. M [[Vf €S Je Von  M(F(0)... f(n) = e Ap. = f]A
AV eT Vn3e, :M(f(0)...f(n)) =en A, is total]].

Definition 3.2.16 (PFIN): A class S is Popperianly finitely learnable if there exists a
computable machine M which either outputs "7" or exactly one correct hypothesis, which
is total. We also request M to output total hypotheses for f € T\ S. Le.

Jecomp. M [[Vf €S e V¥n :M(f(0)...f(n) = {Z’ :i]]\\;’ A=A

A[Vf e T Vn e, : M(f(0)... f(n)) = {?’ " i ]]:[/f A Qe 18 totalﬂ.

In order to better compare these learning criteria, let us sum up their main features in
the following table.

'Here, the "P" stands for "Popperian", named after the philosopher Popper.

12
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3.2. EX Learning

Name | Criterion Additional condition | Additional functions
EX Finitely many hypotheses, None. None.
and last one is correct.
FIN One correct hypothesis, None. None.
and "?" for no hypothesis yet.
PEX | Finitely many hypotheses, All hypotheses are T
and last one is correct. total functions.
PFIN | One correct hypothesis, All hypotheses are T
and "?" for no hypothesis yet. | total functions.

Remark 3.2.17: The slot "additional functions"” states which types of functions may be
also input, and for which we also request some output. However, the output for the latter
ones does not have to be correct in any way.

Our aim will be to compare these criteria. Before we do that, we will prove that PEX-
learning is actually the same as being able to predict the next value of a function of the
class, for example see [3] or [16].

Theorem 3.2.18 (van Leeuwen and Barzdin): A class S is PEX iff there exists a total
computable machine M which for every f € S predicts the next value of f almost always,
i.€.

Jtotal comp. M Vf e SVYn: f(n+1)=M(f(0)...f(n)).
Proof. We will prove each direction separately.

=: Assume that S is PEX. Let N learn S, and let f € §. Define

M(f(0)... f(n)) == Onr©)..pmy(n +1).

First of all note that N always outputs a hypothesis for a total function. Thus, Mis to-
tal too. Secondly, as N learns f, there exists e € w such that Vo°n : N(f(0)... f(n)) =
e and f = ¢.. So,

Vo s M(f0) .. f(n) = ns)...pmp(n +1) = @e(n +1) = f(n+1).

<: Let now M be a total computable machine which predicts the functions in S, i.e.
VieSVen: f(n+1)=M(f(0)...f(n)).
Let f € S. For a finite sequence o define

Fo(n) = {a(n), n € dom(o),
7 M(f(0)...f(n—1)), else.

As o is finite and M is total and computable, F, is total and computable.
As M predicts f for almost all n, we get Fyrq).. ) (2) = f(x) for almost all n and
for all x.

13
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Chapter 3. Learning

Now we will explain N, the machine to learn S. Given the input f(0)... f(n) our
machine N searches for the least m < n such that

VE <n: Ff(o) f(m)(k) = f(/{)

Basically, we search for the shortest starting sequence such that together with the
predicting machine M we already know the whole function f, i.e. we search for the
point, where we can start predicting the function. Now, if we have such a point, N
outputs some indexﬂ s(f(0)...f(m)) of Fyo)..r(m)- Notice, how this index is only
depending on m and the fixed first few values f(0)... f(m). Also, notice how m is
actually important, as otherwise the computation for the code may not stop.

As F is total, all indices which N outputs must be indices of total functions. And as
for the found m the equation Fy().. m)(n) = f(n) holds, the index s(f(0) ... f(m))
is an index of f. O

As promised, we will compare the learning criteria discussed so far.

Theorem 3.2.19: The following inclusions hold

FIN
_ g// - g\
PFIN ---------- C -mmmee- EX
e o
CPEX

Proof. All the inclusions follow directly from the definitions. So, we will only prove that
FIN and PEX are incomparable. In order to do so, remember So = {f | f = )} and
S ={f|V®z: f(x) =0} from Example

First, we will show that Sy € FIN \ PEX.

As the machine to learn Sy only outputs one hypothesis f(0), which then is the correct
one, it follows that Sy € FIN.

Assume now that S; € PEX. Then by Theorem there exists a machine M such
that Vf € So V°n : f(n+ 1) =M(f(0)... f(n)). Now define

~ x, 77,:0,
fam) = {1+M(f(0)...f(n—1)), n > 0.

Now, by Corollary there exists e € w such that ¢.(n) = f(e,n). So, if we define
f(n) = f(e,n), then f(n) = @seo)(n). Thus, f € Sy. However, M(f(0)... f(n)) =
f(n+1)=1+M(f(0)...f(n)), soM does not predict f. A contradiction.

[t remains to prove §; € PEX \ FIN.

*We get this by the S;* Theorem Let F(o,n) := Fy(n). As F is computable, F is, too. So there
exists e such that F'(o,n) = p.(o,n). By S Theorem F,(n) = F(0,n) = 0c(0,1) = @s(c,0)(n). SO
we get an index of F' by computing s(e, o).

14
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3.3. BC Learning

Remember that all hypotheses were total in Example [3.2.9 Thus, §; € PEX.

Now assume S; € FIN via a machine M. For some finite input ¢ the machine M has to
make its choice for a code, i.e. M(o) # ?. But then for 010 and ¢20*°, which both are
in &1, M cannot change its mind anymore, thus outputs the same code for both. So, one
of them cannot be learned by M. We have a contradiction again. O]

To close this section, we will consider another example of a class which can be learnt by
one of the criteria considered this far.

Example 3.2.20: Let S be a finite class of recursive functions. We will show that
S € FIN. To see that, let S = {fo,..., fm}. As the elements of S are recursive, all of
them have Kleene indices, s0 S = {@ey, - - s e, }- The functions are different, so there
exist points where they differ from each other, i.e.

Vi, j, 1 <i,j <m,i# j 3min. n,;;: @, (n;;) # cpej(ni,j).

Let ng = maxi<;j<m,izj{ni;}, i.e. all the functions differ on at least one point n < ny.
The machine then is

7, n < ng,
M(f(())f(n)):{€“ n>ng AVr <ng: f(x) = fi(r) = ¢, ().

Note that M is computable as finitely many computable case distinctions are computable.
For given f the machine makes no choice until it hits ng. Then it compares all the data
so far, i.e. for all e; it checks Vo < ng : f(z) = fi(z) = ¢.,(z). Since the functions are
sure to differ on at least one point x < ng, exactly one e; can have that property.

Thus, M learns S.

3.3 BC Learning

Recall the EX learning criterion from the previous section. When given a class and a
function out of it, we tried to find one code for the function and then stack to it. We can
change this approach and allow the codes themselves to be different but still codes for
the function. We introduce the behaviourally correct learning.

Definition 3.3.1 (BC): A class S is behaviourally correctly learnable if there exists a
computable machine such that for almost every initial input o of f there exists some code
e such that M(o) = e, i.e.

decomp. M Vf e SV <X fde:Mo) =eAp. = f.

Remark 3.3.2: Notice the difference to EX. While we search for one fixed code for the
function in explanatory learning, we do not do so in behaviourally correct learning. In
the latter one we search for codes that are semantically equivalent, but we do not require
them to be syntactically equivalent.

We can easily compare EX and BC.
15
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Chapter 3. Learning

Corollary 3.3.3: If S € EX then § € BC, i.e. EX C BC.

However, we will try to refine this inclusion. Consider the class

Sop={f | Ve #y: ()= f(2)},

i.e. the class of all functions f that disagree with the program f(0) on no more than one
argument. This class is not EX as shows the following example, following the idea in [3].

Example 3.3.4: For any given machine M we will find a fitting f € Sp; which spoils M
as an EX-learner of Sy ;.

We will execute an algorithm in order to compute a function . step by step. This
function will serve as a guidance later on. For this purpose, let

e: program, which can be chosen like in previous proofs to output itself first,
x: input,
a: marker, keeping track of the position of the possible anomaly,
«’: position of the marker « at the beginning of stage s,
©3: the finite part of ¢, defined at the beginning of stage s,
2*: the minimum of w \ ({&*} U dom(¢?)),
: largest initial segment of ¢?.
For the initial stage s = 0, let
o o’ =1,
e ©°(0) = e and undefined elsewhere.

At stage s > 0 execute the following.
Calculate 2° = min{w \ ({a*} Udom(y))} first.

(i) If
Jo:0® <0 =< (el U{(a®,0)}) AM(c®) # M(o), (3.3)
then
o o= U{(e0)},
o ot = g%,
(i) If
not and (o) () |, (3.4)
then
16
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3.3. BC Learning

* ‘Pzﬂ = Spcsa U {(asasg_n(gpl"l(os),s(as))> }7

o ol =g

(iii) If not (3.3) and not (3.4), then

d SOZ—H =g U {(xsu O)}7

o ol = s,
In the algorithm above all steps are computable. The only case where this is not obvious
is finding o in (3.3). In order to reason why this is computable, too, let us execute the

algorithm for the first few steps and thereby argue, why we only search over finitely
many o.

eoly --- =52
=3
e 050:1 ent ,,,94,?,2,,,,
0 0o 0Y1 1
2=3
600102****2* ******
/ v
1:1 2_3
eo_10; —= €0y10g -~ —~-------

We will explain the upper diagram.

x,: means that the y-th position of ¢, is defined as x. We write x = _ if we know that
it is undefined,

y: is an abbreviation for the term Sgn(pus)s(a®)),

lines: the information over and under the middle line are the current values of o® and x*,
respectively, and the dashed lines just mean that it goes on like that.

(x): We will take a closer look on the situation of o and ¢® U {(a®,0)} here. We have
s =2, and 0% = ¢y. Also, as a? = 1, we get ©> U {(1,0)} = €50,0503. So, for o
there are only three possibilities, namely e01, e90105 and e30,0505.

As we are convinced that the algorithm above is computable, we will try to find the
spoiling f. We have to distinguish two cases.

17
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Chapter 3. Learning

1.C.:

2.C.:

lim, ., o = oo.

In this case, f := ¢, is a total computable function. As f(0) = ¢.(0) = e and
Vo :pe(x) = f(x), f € Soa. Now, assume that M learns f and that the program is
some p. Then, M stops changing its mind, i.e.

dsVo:0° <o < f=M(o*)=M(o)=p.

Past stage s, we come infinitely often to case (ii), as otherwise M would still change its
mind. However, y,(x) converges for infinitely many x. But, due to the construction,

3 - () = uon) () # SE(puior) (0)) = [ (@),

So, f and ¢, are different on infinitely many inputs. Thus, M does not learn some

fe€Soa.

lim, o @° = a < .

Here, dom(p,.) = w \ {a}. Now define

f(z) = {gpe($), x € dom(ip,),

0, else.

f is a total recursive function, which is 0 almost everywhere. Again, f(0) = ¢.(0) =
eand Vr # a: f(x) = pe(x), s0 f € Sp1. Let s be large enough that o® = a. Then,
Vs' > s:0° = 0. Past stage s, we always end up in case (iii). So,

Vo:0° <0< f=Moc’)=Mo)=p,

where p is a program that M outputs when fed f. However, M(c*®) diverges on input
a. So, M(c®) does not compute f.
Again, M does not learn some f € Sy ;.

S0, for any machine M we have found some f € Sp; which cannot be learnt. Thus,
So1 ¢ EX.

We see, if we may have some mistake, we cannot learn explanatory correct. In order to
circumvent this state, we introduce the learning with mistakes.

Definition 3.3.5: Let S be a class, SLC be any suitable learning criterion and a € N,.
Then § € SLC® if there exists a machine M which, for every f € S, outputs a code e
according to SL.C, such that ¢, = f, i.e. the program e computes f on all but ¢ many
positions.

As f(0) is a code for f € Sy, with at most one mistake, we see that Sp; € EX'.
As we did in the previous section, we will provide some inclusions here, too.

Theorem 3.3.6: The following inclusions hold

18
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3.3. BC Learning

Proof. For a < b, the inclusions EX* C EXb,BCa C BC® are rather obvious. What
remains to prove is EX* C BC.
Let S € EX* via M. Consider the following function

o) — o(x), x € dom(o),
9(,) {apM(U)(x), else.

Let f € §. At some point xg, M converges to some program e of f. Let y be the point
of the last mistake ¢, makes when compared to f. Now, for n > max{zg,y} we have

M(f(0)...f(n)) =eand, with o = f(0)... f(n),
o.1) = 0-<$>’ x e dom(a), _ 0-(17>, T e dOIIl(O'),
g(o,z) {@M(g)(x), else. {%(x)’ olse.

By Normal Form Theorem and S Theorem there exists some computable s
such that

= [(x).

Ps(o) (l‘) - g(O’, .I‘)

Let N(o) output s(o), then N learns f for almost all inputs, namely for all f(0)... f(n),
n > max{zo, y}. O

We have witnessed that allowing mistakes leads to more learnable classes. However, if
we replace "at most one mistake" by "exactly one mistake", as it is suggested in [3], the
learnable classes stay the same. We will show this, following the idea in [3].

Lemma 3.3.7: Let S € EX™' if S is learned explanatory, i.e. EX, but with exactly one
mistake. Then, EX~! = EX.

Proof. We will show each inclusion separately.

C: Let S € EX™! via M. We will give an algorithm for M. Let s > 0 be the stage
and oz := f(0)... f(s) be the input at stage s. Also, let i = 0 be some counting
variable. Also, introduce some repair function

9(z,y,7) = f(y)sen(|z — y|) + ¢.(z) sgn(|z — y|).

One can easily see that

fy), ==y,
9(z,y,7) = { W)
v.(x), else.
1. While 7 < s, check whether f(7) = w(q,),s(7)-
i. If so, raise 7, i.e. 7 :=17+ 1.

ii. If not, consider g(M (o), 4, ). As composition of computable functions, it
is computable itself. So, by Normal Form Theorem and 5" Theorem
there exists some computable ¢ such that

9(z,y,2) = ‘PC(Z,y)(x)'

Output ¢(M'(0y),7) and reset i to zero.

19
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Chapter 3. Learning

2. If i = s + 1, then output M'(o) and reset ¢ to zero.

We need to explain why the algorithm works as desired. In we check whether
we have found the anomaly or not, which is computable, as we only check what
©Ow (o) outputs after finitely many, namely s, steps. Now, if they are equal, then we
land at raise ¢ and repeat the question. If this case happens all the time,
i.e. s+ 1 times, we land at . Thus, we have not found any mistake, so we can
output the same as M does, as the mistake is yet to come.

However, once we are in we found an, at least temporary, anomaly. We fix
that by using g. In more detail, we use g(M'(0,),%, ), which is ¢w () on all input
except for i, where we manually tell it to be f(7). In this case, we output ¢(M (), 7).
Since we know that there is some mistake, the case will be hit at some point,
and from some point, we will always hit the mistake. From some stage s, M'(o)
halts, i.e. ¥2°s' : M (0y) = M(05). Thus, M halts, too, and outputs V°s' : ¢(M(0s), 7).

v

: Let § € EX via M. This time, we try to destroy our function at some point.
Therefore, introduce the destroyer function

h(z,y,x) = (f(y) + Dsgn(|z — y|) + ¢=(z) sgn(|z — y]).
One can easily see that

f(y)+1a r=1y,

Mz y, @) = {gp (x) else.

Now, given o, := f(0)... f(s), M simply outputs the code of h(M(cs),0,x) which
is some ¢(M(o5),0), where ¢ is computable. As M halts to some ey, the machine M’
halts to some c(ey, 0) = ew, too, but errs only at 0, as

fO)+1, =z=0, Jf(0)+1, z=0,
@e, (T),  else. ) ), else.

h(eM/,O,x) = {
[

One property we want to show is that we can learn REC in BC*, for example see [3] or
[16].

Theorem 3.3.8 (Leo Harrington): REC € BC™.
Proof. For some input ¢ define the following computable function v,

@e(x), for the smallest e < z such that
Ps(o)(7) = Vo (T) = Yes(y) 1= a(y) for all y € dom(o),

0, else.

Let now f € REC. Then f has an index e which can be chosen to be minimal’] As e
is the minimal index of f, all programs ¢ < e have to be different from f at some point

3Notice, that this is a theoretical attempt here. Finding a minimal index cannot be done effectively.
Attempts in that direction can be found for example in [I7].
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3.3. BC Learning

m. As we are only speaking about finitely many programs, we can take the maximum
of those m. So there is some n such that all p;, where ¢ < e, are different at some point
m < n from f, ie. either both are defined and different, or ¢; is not defined at all.
Now, if 0 = f(0)... f(k),k > n and ¢, .(y) }= o(y) for all y € dom(o), then the index j
has to be greater than e, so 7 > e.

For £ > n and 0 = f(0)... f(k), in order to compute all p..(y),y € dom(c) we only
need finitely many steps, say xy many. So, we have ¢..(y) = o(y) for all y € dom(o)
and all sufficiently big z, namely x > x,.

Summing up, we get, for o = f(0)... f(k),k > n,

(i) if ¢;.(y) 4= o(y) for all y € dom(o), then j > e,

(i1) @ez(y) 4= o(y) for all y € dom(o) and all sufficiently big .

Yet again, let 0 = f(0)... f(k), k > n. Then, for almost all z, we have 1, (x) ¢ we(T) =
f ().

Summing up, we have ¢, (x) = f(z) for almost all ¢ < f and almost all z, i.e.
VX0 2 f YV 3s(0) : ps0)(x) = f(2).
Thus, the machine to learn REC in BC* will output s(o). O

Now we know that we can behaviourally correctly, but with finitely many mistakes, learn

all computable functions.
Remembering Theorem [3.2.18| for the case PEX, we can try to obtain something similar
for BC.

Theorem 3.3.9: Let S C REC.
S is BC if and only if there is a partial computable machine N which predicts every f € S
almost everywhere, i.e.

dpart. comp. N VfeSV<x:N(f(0)...f(xz—1)) = f(z).
Proof. Again, we will prove each direction separately.

=: Let & € BC via a machine M. Define N(0) := ¢ys)(|o]). Once M learns f, we have
that, for almost all o < f, N(o¢) is defined and

N(o) = eue)(|ol) = f(lo])-
Now, if o = f(0)... f(z — 1) is big enough, we get

N(f(0)... flz = 1)) I=N(o) = pu)(|o]) = f(lo]) = f(z).

<: Let N be the predicting machine. Consider the partial computable function

o) — o(x), z € dom(o),
f90,2) {N(ga@y(a)(())...%(a)(x—1)), else.
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Chapter 3. Learning

22

By Normal Form Theorem and S/ Theorem there exists a computable
5 = @, such that

f(y, o,x) = Spe(ya o,1) = P3i(e,y,0) (‘T) = Ps(y,0) ("E) = Spson(y,a)(x)~ (3~5)

Now, by Corollary [2.3.8 there exists some computable g such that ¢y (o) =
vn(g(n),o). Using that and letting y = g(n) in (3.5]), we obtain

(psog(n)(a) (33') = Poyn(g(n),o) ({L’) =

I\L)s x € dom(o),

= (gtn).0,a) = 4 7 (0)
N(gpwf(n)(g)(()) o Posiny (o) (x —1)), else.

Let M(0) = ¢g4(n)(c). Notice that M is computable. Then,

2 — o(x), x € dom(o),
Pu() (@) {N(gpM(g)(O)...goM(g)(x—1)), else.

Let f € S. Now, if this inductive definition is undefined at one point x because
N is undefined there, then ¢, (y) is undefined, too, for all y > x. However, once
o is long enough for N to predict f for all x > |o|, then f(o,z) = g(x) and thus
©so)(x) = g(z). So, s(0) is a program for g.

So, almost all hypotheses are correct and M learns f in BC. O
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4 Confident lterative Learning

By now, we are familiar with some basic learning criteria. In order to advance, we will
investigate a new type of learning, the confident iterative one.

4.1 Main definitions

Opposite to what we have done so far, we will now infer languages, i.e. non-empty
c.e. sets, rather than functions. One natural form of learning languages is receiving the
positive information of the language, i.e. getting to know more and more words which are
in the language. As suggested in [16], we can compare that to some archaeologist coming
across some ruins. There, the archaeologist will find words of the language, rather than
words that are not. This kind of language learning is called text-learning, see [16]. Tt is
obvious that the order of the input in this kind of learning can be arbitrary. Thus, we
need to fix the following notation.

Notation 4.1.1: Let D C N be some set. If dy, dy, ... is some input sequence of D, i.e.
if {doy,dq,...} = D, we will write (d,), € D.

Remark 4.1.2: Sometimes, one allows the use of a pause symbol #. This is done to be
able to represent the empty set, namely by inputting #,#,.... However, since we are
not interested in learning the empty set, and since none of the classes here contain the
empty set, we will omit using the pause symbol.

Now, we need to clarify what it means to learn a set.
Definition 4.1.3: Let D C N be some set. We call e a program of D ifft W, = D.

Remark 4.1.4: Intuitively, a program of a set S should provide us with the information
which elements are in the set. For example, if we know the characteristic function yg,
we can compute the set. However, that is not consistent with our definition of a program
of S. Since xs = . is everywhere defined, W, = N. To circumvent that, we will allow
reinterpretations of programs, i.e. e is a program of S iff W,y = S for some computable
s. We will call such s a translation.

Using that and f(p,m,z) = ¢,(xr + m) if latter is 1, and undefined else, we can prove
that having the shifted characteristic function yg allows us to compute the set. For fixed
m, let e be such that p.(x +m) = xs(x). Then, using S]* Theorem on [ = ¢,, we
obtain

]-7 cpp(x—l—m) - 17

Pstnpm)(T) = @n(p,m, z) = f(p,m,z) = { b else
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Chapter 4. Confident Iterative Learning

Then7 Ws(me?m) =S9.
Using, for example, this shifted version of the characteristic function allows us to use the
first m positions as some memory. A more detailed look on this can be found in [11].

We will omit mentioning the use of the previous remark, however, we will provide the
way of recomputing. Also, to make future algorithms more readable, we will use the
abbreviations discussed in the next remark.

Remark 4.1.5: Later on, the presented algorithms will use the terms "output z" and
"return 0" in their codes.

While the first means that the algorithm outputs = as its current hypothesis and then re-
quests the next input, the second implies that the computation could actually be aborted
here. Technically speaking, the algorithm would start outputting some dummy code, say
0, implying that the computation is over.

So far, the learning machines had full access to all input data. However, we will restrict
that might by quite a bit. In the next type of learning, the machine will get the new datum
as input as well as its own last hypothesis. Thus, any memory on previous computations
can only be stored into the output itself. This type of learning is known as iterative
learning. We will take the definition from [I0] and [I3] and adapt it to fit our needs.

Definition 4.1.6 (IT): A class S is iteratively learnable iff there exists a machine which
converges in the process of mapping the old hypothesis p; and the current datum d; to a
new hypothesis p; .1, i.e.

Jeomp. it(.,.) VD € S VY(d,), € D Ip Vi : it(p;,d;) = pir1i =p AW, = D.
Such a learner it(.,.) is called iterative learner.
Remark 4.1.7: One can choose the first input program py arbitrarily.

Next, we will enhance the idea of the Popperian learner from the last chapter. In addition
to the regular input, i.e. input that belongs to some set in the class, we will allow any
arbitrary input as well. However, the learner has to converge on both types of inputs,
but only has to be correct on the regular one. To be able to capture that idea formally
well, let us widen notation [4.1.1}

Notation 4.1.8: Let S be a class. If we have some input sequence dy, dy, ..., we write
(dn)n € Ds if the input belongs to some set Dgs in S, i.e. if 3Ds € S : (d,,), € Ds. We
will call such an input regular.

Otherwise, or if we allow both cases, we simply write (d,,)y.

Now, we can formalize the idea above, thus introducing the confident learning machine,
as it is explained in [6] or [§].

Definition 4.1.9 (CFD): A class S is confidently learnable iff there exists a machine
which converges on any input sequence and is correct on the regular input, i.e.

Jeomp. cfd ¥(dy), Je : ((\70% . cfd(do, dy, ..., d;) = €) A ((dn)n € Ds = W, = D3)>.
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4.2. First efforts

Such a learner cfd is called confident learner.
Our main focus will lay on the combination of these two, the confident iterative learner.

Definition 4.1.10 (CI): A class S is confidently iteratively learnable iff there is a learner
ci(.,.) learning S confidently and iteratively.
Such a learner ci(.,.) is called confident iterative learner.

4.2 First efforts

Naturally, we will investigate some classes in order to check whether they are CI. The
start marks the class of all finite sets.

Example 4.2.1: Let P := Ppp(w) = {A C w : |A| < oo}, i.e. the class of all finite
subsets of w.

First, we will show that this class is iteratively learnable. Let (d,), € Ap be the input
for the following algorithm. Let py be a program of the zero function. Then

e for inputs p; and d;, where p; is the old hypothesis,
1. if ¢, (d;) = 0, then p;; is the program of f(z) = p,,(x) +5gn(|x — d;|),

2. otherwise, p;11 = p;.

As composition of such, f(zr) is a total computable function. By Corollary we can
compute its index effectively via p;. So, all steps in the algorithm are effective.

To see that the algorithm works properly, let (d,,), € Ap be some input sequence. For
input d; and p;, the algorithm checks whether or not d; is some new datum, i.e. ¢,,(d;) =
0. If so, we change that value to 1, using f. Then, p;,; is the program of the current
characteristic function. Since the sets in the class are finite, there exists some stage [
when all data has occurred in the input sequence at least once, i.e. Vi : {do,...,d;} =
{do,...,d;} = Ap. From this point onwards, the algorithm will not change its mind
anymore. Thus, we have learned the class iteratively.

Next, we will argue that this class is not in CI. For the full technical proof, consider
the proof of Lemma Now, assume the class is in CI. Then it has some confident
iterative learner ci(.,.). Take some infinite ascending chain Ag C A; C --- in the class.
As ci(.,.) learns the class, it has to converge on every of these A;. So, we start inputting
elements from Ay until ci(.,.) converges, and then continue to input elements from A;
until it converges again, just to go on with elements from As, etc. Since all of these sets
have different codes, ci(.,.) will not converge on that input in A := |, A;.

This example already provides some useful facts.
Lemma 4.2.2: Any subclass S of Pyin(w) can be learned iteratively.

Proof. Let S be a subclass of Py, (w) and (dy,), € As the input for the algorithm below.
Let py be the program of the zero function. Then

e for inputs p; and d;, where p; is the old hypothesis,
25
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Chapter 4. Confident Iterative Learning

1. if ¢, (d;) = 0, then p;4; is the program of f(z) = p,,(x) +5gn(|x — d;|),

2. otherwise, p;r1 = p;.
In the light of Corollary and since f(z) is computable, we can get its code effectively
via p;. Thus, the algorithm works effectively.
Let (d,)n, € As be some input sequence. For any input d; the algorithm checks, whether
d; is a new datum, i.e. ¢, (d;) =0, or not. In the first case, it changes the characteristic
function on this argument to 1, leading to f(x). Then it outputs a code of f(xz). Other-
wise, it outputs the last hypothesis.
At some point I, all elements of As have appeared in the input, i.e. Vi : {dy,...,d;} =
{do,....d;} = As. Now, the algorithm will always proceed with case [(2.)] as there are

no yet unmentioned elements anymore.
So, the algorithm will converge, and output a code of the characteristic function of As. [

Lemma 4.2.3: If a class S is CI, then S cannot contain an infinite ascending chain.

Proof. Let S have a Cl-learner ci(.,.). Assume, that S contains an infinite ascending
chain Ay C A; € ---. Then

Ap: for some input dog,dp 1, ... of Ay the Cl-learner will eventually converge, so

Ipo V7,7 : cipo, doj) = Pojr1 = Do

Ay: Starting with the previous input dog,do 1, ..., do,1,, and then continuing with some
di.1o+1, A1 1942, - - - of Ay \ Ap the Cl-learner will eventually converge, so

dp1 ‘v’?fj : ci(pm,d*,j) = Pxj+1 = D1-

AZ'I Starting with the input do,(), d0,17 ceey d07[07 dL[OJrl, Ce ,dL[l R d2711+1, Ce 7d7l71,11'717 and
then continuing with some d; s, ,1,di1,_,4+2,... of A; \ A;—; the Cl-learner will
eventually converge, so

dp; ?OJ : Ci(P*,j>d*,j) = DPxj+1 = Pi-
So, we have an input sequence

d0,0? d0,17 L 7d0,107 dl,]0+17 L 7d1,11 9 d2,]1+17 LI 7di—1,L;_17 di,]¢_1+17 di,]i_1+27 e

where ci(.,.) outputs the codes ... po,...,p1,..., P .... As all of these codes are differ-
ent, ci(.,.) does not converge on this particular input of A :=J, A;, a contradiction. [

One may assume that the infinite ascending chain is the only reason that bugs the exis-
tence of the Cl-learner. However, this is not true, as shows the next example.
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4.2. First efforts

Example 4.2.4: Let N, be the set of all even natural numbers, and let N, be the set of
all odd natural numbers. Consider the class

C={E|3In:2n+1e€ EANIN.NE|=2nA|N,NE| =1}.

The sets of this class contain one odd element 2n + 1 and 2n many even elements.
Since all of the sets of this class are finite, it is iteratively learnable by Lemma [4.2.2]
Next, we will provide a confident learner of C. For any input (d,,),, execute the following
algorithm.

1. If {dy,...,d;} contains no odd elements, output 0.

2. If {dy, . ..,d;} contains one odd element m = 2n + 1 and 2n many even elements,
output a code of the characteristic function of {dy, ..., d;}.

3. Else, output 0.

To see that the algorithm works properly, let (d,), be some input sequence. The idea
of the algorithm is simple, we count the odd elements, leading us into three cases on

{do, ..., d;}.

1. While we have no odd elements, we do not have a set in the class, yet, so we output
any dummy code, i.e. 0.

2. When we have exactly one odd element m = 2n + 1 and 2n many even elements,
we output a code of the characteristic function of {dy,...,d;}, as it is a set in the
class.

3. Else, output 0.

Since the algorithm does only change its mind when changing from case or to
or from to which can only happen finitely many times, we see that the
algorithm works properly.

Lastly, we will prove that C is not CI. Assume there exists a Cl-learner ci(.,.). Consider
the set of all even numbers N, and some input sequence (e,), € N.. The learner ci(.,.)
has to converge on that input at some point, so

dp v?.iﬂ' : Ci<pj7€j) = Pj+1 = D-

Now consider the set L; = {eg,e1,...,er}. Without loss of generality, we can assume
that |L;| = 2k for some k € w.

Now, take four different even numbers that have not appeared in the input, yet, i.e.
ni,...,ng € No\ L;. Then, the two sets Ny := L;yU{ny,na} and Ny := Ly U {ns, ny} still
have the same code p, as the learner ci(.,.) will not change its mind on even numbers
anymore. Furthermore, |[N;| = [No| = 2(k+1). So, if we add the element m = 2(k+1)+1
to the sets N; and N,, the sets appear to be in C. However, these two sets, and in fact
all sets of this form, have the same code ci(p,m) = p’. A contradiction.
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Chapter 4. Confident Iterative Learning

So, we observed two things. As already mentioned, we cannot invert the lemma above.
Secondly, having an iterative and a confident learner does not suffice to have a confident
iterative learner. To see another example, we need the following property of CI classes.

Lemma 4.2.5: Let C € CL. Then, for every finite set F' € C we can compute its code,
i.e. for certain input (d,), € F one can find I effectively such that for some p
Vi >1: Cl(pl,dz) = Pi+1 = D-

Proof. Let C be a CI class, learned by ci(.,.), and F' = {fo,..., fn} € C. Now, we will
feed ci(.,.) the input fo, f1,..., fu, fa, fn, - - -, abbreviated by ([ ).

As the class is CI, ci(.,.) will learn the set on this input, i.e. there exists some p and I
such that ci(p;, f/) = pjy1 = p for all j > I. Without loss of generality, let I > n. Since
the elements of the input sequence do not change anymore, once ci(.,.) repeats its output,
it actually learned the set, since the next calculation is the same as the previous. l.e. at
some point I > n the computation outputs ci(py, f7) = ci(pr, fn) = pr, thus receives the
same input again, namely p; and f,. Thus, Vj > I : ci(p;, f}) = ci(p;, fn) = p;. That [
is the sought index. O

Example 4.2.6: Take the class M ={A | 3z,y: A C M, ,}, where
M, , = {2°,273,...,273Y : x is enumerated into K in exactly y steps}.

Again, by Lemma the class is iteratively learnable.

In order to show that the class is confidently learnable, we will provide an explicit algo-
rithm. To that attempt, recall the computable function exp(z,y) from Example [2.2.4]
Also, let [x € K], output the number of steps < y needed for z to be enumerated into
K. If z is not enumerated into K in y steps, let that function output y + 1.

Now, let (d,), be some input for the algorithm. Upon starting, fix two global variables,
namely b = 0 and s = exp(0, dp).

!

- s; = exp(0,d;)
- ;:}i“;l %» t; = exp(l,d;) —< di = h;? N
i hy = 253t

JY
N
s =s;7 H@rn 0

t t t - tz t < trL
outbu — t=[s; € K|y,
program

=t;+1
o<t

/
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4.2. First efforts

We will prove that the algorithm works as supposed and with that explain it.

Let (d,), be some input. As already mentioned, we have two global variables. First, we
have a counter b which will come to use later. Secondly, we have s = exp(0, dy), which is
the pivot program.

Now, once we receive the next d; as input, we compute h; = 20P(0.di)3exp(Ldi) and check
whether d; is equal to that, i.e. whether d; has the correct form 20*P(0.di)3exp(Ldi) If pot,
we know that the input cannot belong to a set in the class, so we may as well as stop
here and return 0.

If we do have the sought form, we ask whether or not the corresponding program s;
matches the program s. If not, we again are surely outside the class, so we return 0.
Otherwise, we compute t = [s; € K];, and then proceed depending on the outcome.

1. t < t;. In this case, the amount of steps extends the minimal amount, so we do not
have a subset of some M, ,, rather a superset. So, we are surely not in the class
and thus return 0.

2. t = t;. In this case, we have a candidate for a class member. So, we output a
program of the set {dy,dy,...,d;}, i.e. the set of input that we have gathered so
far.

3. t =t;+1. When we get to this case, we may have one of the two following situations.
We may have a candidate, namely a proper subset of some M, ,, or we may have
a program that actually is never enumerated into K. Here, the counter comes to
use. We set the counter b to the maximal value of the counters last value plus one,
i.e. b+ 1, or t. Then we ask, whether or not the program was enumerated into K
in b steps. By doing so, we make sure to check the next, yet unchecked, step, to see
whether or not we enumerate s into K in some later step, namely b. If so, we can
output the program of {dy, ...,d;}, as we may have hit some proper subset of some
M, ,. In the other case, we output 0 and request the next input. By doing so, we
ensure the machine to converge if the input does not belong to a set of the class.

We see that the algorithm works properly. Thus, the class is confidently learnable.
Lastly, we will show that this class is not CI. Assume it has a Cl-learner ci(.,.). For
some x € N, consider the following computation. Let (z € K), be the abbreviation for
the computable question, whether z is enumerated into K in at most y steps.

e Input 2%,...,2% until ci(.,.) computably converges, see Lemma [4.2.5 to some p;.
Then, check if (z € K)y. If so, then z € K. Otherwise, proceed with the next step.

e Continue to input 2%3, .. .,2%3 until ci(.,.) computably converges to some py. Then,
check if p; = pa V (z € K);. In the second case, again z € K. In the first case,
Wy, = W,,. So, if © € K, then the class members {27} and {27,273} would have
the same code. A contradiction. Thus, x ¢ K. Otherwise, proceed with the next
step.

e Continue to input 23° ...,2%3" until ci(.,.) computably converges to some p;,;.
Then, check if p; = p;y1V (x € K);. If not, then again = ¢ K or x € K, respectively.
Otherwise, proceed with the next step.
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Chapter 4. Confident Iterative Learning

This computation has to stop, as otherwise, as p; = p;_1 is one of the requirements,
ci(.,.) would not converge on the input sequence

2T ...,2%,2%3 ..., 2%3,2732 .. 2°31 973t |

Thus, the computation stops for all z, and therefore we can solve the halting problem, a
contradiction.

Remark 4.2.7: In further algorithms, we will reuse the flowchart in Example 4.2.6] and
refer to the box (x) by simply calling it "compute and check the form of d;". Then, for
some input d;, the values s;,t; and h; are defined in the same way, if not stated otherwise.

4.3 Some positive examples

So far, we have only seen classes that are not CI. To get rid of this peculiar situation, we
will provide some examples of CI classes.

Example 4.3.1: For n € N let
Cn:={A:|A|l <n}.

We will show that C, is CI. For some input (d,),, the following algorithm will do the
trick. Let py be the program of the zero function. Then,

1. given d; and p;, check whether ¢, (0) < n and if so, do
a) if ¢, (d; +1) = 0, then p;;, is the program of

f(x) = @y, () +5g0(2) +5gn(|z — (di + 1)),

b) else, pit1 = pi,
2. else, pi1 = pi.

The idea is simple. Position 0 of the program counts the different data that occurred so
far. Once it reaches n, i.e. is not true anymore, the computation will converge, as
either we have met some set in the class correctly, or we expanded it. Otherwise, while
we do not have all the elements, in we check whether the datum is really new, i.e.
©p,(d; + 1) = 0. If so, we add one to the counter, i.e. f(0) = ¢, (0) + 1, and mark the
element as seen, i.e. f(d; + 1) = 1. Then the algorithm outputs a code of this current
characteristic function. Since this case can only occur finitely often, the algorithm will
converge here, too.

In the end, we can rebuild the characteristic function of S¢, via xs. (7) = @p(z +1).

Although we have a restriction on the memory, we still are capable of keeping some in
the first few positions of the code, which we may change only finitely many times.

The last example is of some finite nature, as all the sets do not expand some bound.
However, we can find examples with a set of every size.
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4.3. Some positive examples

Example 4.3.2: Consider the class C := {S | 3z : S C S, } where
Sy :={2%,2"3,...,2"3" 1 y < x}.

Let (d,), be some input sequence. Let py be a program of the function f, where f(0) =
exp(0,dy) and f(z 4+ 1) = 0 for z > 0. So, we book the zeroth position for the pivot
program and book the rest of the function for the characteristic function. Then, execute
the following algorithm.

1. For some p; and d;, calculate and check the form of d;. If it is valid, i.e. d; = 253",
then

2. for s = ¢,,(0), check whether s = s;,

3. if so, check whether ¢, (d; +1) =0,

4. if so, check whether ¢; < s;,

5. if so, let p;11 be a program of f(z) = ¢,,(z) +5gn(|x — (d; + 1)|).

6. In the else case of output p;r1 = p;. In all remaining else cases, return 0.

To check its functionality, let (d,,), be any input. For some input p; and d;, we first check
the form and whether s = s;. Then we check whether the datum is new and whether the
condition t; < s; is met. If all of this is true, then output a code of the corresponding
characteristic function f. Else, one can return 0, as the element cannot belong to some
set in the class. The only exception here is when the element is already seen, i.e. case .
Here the algorithm outputs the last hypothesis. Again, mind changes can only happen
finitely often, thus the algorithm converges.

Again, we can recompute the set S¢ via xs.(z) = p,(z + 1).

The previous example can be considered in a more general setting.

Lemma 4.3.3: Let R(z,y) be a two place computable relation, such that for every x
Sk() = {2"3": R(x,y),y € N}
is finite. Then the class Cp == {S | 3x : S C Sp(x)} is CL

Proof. Let R(x,y) be a two place computable relation, such that all Sg,) are finite.
Then, for some input sequence (d,), the following algorithm will learn the class Cg
confidently iteratively. Let py be a program of the function f, where f(0) = exp(0,do)
and f(x 4+ 1) =0 for > 0. Then, execute the following algorithm.

1. For input d; and p;, calculate and check the form of d;. If it is valid, i.e. d; = 253",
then

2. for s = ¢,,(0), check whether s = s;,
3. if so, check whether ¢, (d; +1) =0,
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Chapter 4. Confident Iterative Learning

4. if so, check whether R(s;,t;),
5. if so, let p;11 be a program of f(z) = ¢,,(x) +5gn(|x — (d; + 1)|).
6. In the else case of [(3.)] output p;41 = p;. In all remaining else cases, return 0.

For some input p; and d;, we first check the form and whether s = s;. Then we check
whether the datum is new and whether the condition R(s;,t;) is met. If all of this is true,
then output a code of the corresponding characteristic function f. Else, one can return 0,
as the input cannot belong to some set in the class. The only exception here is when the
element is already seen, i.e. case , where the algorithm outputs the last hypothesis.
Since every Sg(s) is finite, the algorithm may only come to case finitely many times.
If the input is not regular, at some time the algorithm will return 0. Thus, it works
properly.

Again, one can recompute the set Sg() via Xsp,, (¥) = @p(z + 1). O

As last act in this section, we will "repair" the class from Example to be CIL.

Example 4.3.4: Consider the class M = {M, , : z,y € N}, where
M, , ={2°,273,...,273Y : x is enumerated into K in exactly y steps}.

S0, we do not allow any subsets of M, ,. The following algorithm learns this class confi-
dently iteratively. Let (d,), be some input sequence and let py = 1 be some fixed dummy
code.

1. For p; and d;, calculate and check the form of d;. If it is valid, then
2. if p; = 1, then, check whether s; = exp(0,d;) is enumerated into K in exactly
t; = exp(1,d;) steps,
a) if so, then p; 1 is a program of {2% 2%3 ... 2%3%}
b) else, pi11 = p;.

3. Else, pit1 = pi.

The algorithm simply waits for some input 23, where x is enumerated into K in exactly
y steps. Then it outputs some code of {2%,2%3,...,2%3¥}. The only memory used here,
is whether p;, = 1, meaning that no such occurrence has been witnessed, yet.

To show that the algorithm works properly, let (d,), be an input sequence. Let py = 1.
At stage 1, the algorithm receives p; and d;. If p; = 1, we check the form of d; and
whether s; = exp(0, d;) is enumerated into K in exactly ¢; = exp(1,¢;) steps. If it turns

out to be true, we output a program of the characteristic function of {2% 2%3 ... 253"},
Thus, we change the program and from now on, the algorithm does nothing. Otherwise,
Pi+1 = Di-

In both cases the algorithm converges to some output, being correct on the regular input.
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4.4. Classification Theorem

4.4 Classification Theorem

So far, we have gathered some examples of CI classes and such that are not. Next, we
aim to find a classification of some confident iterative classes. To do so, we need an
effective enumeration of the finite sets.

Definition 4.4.1: For # € N consider the prime decomposition of x : x = 2k3k ... pkn,
If kg < k1 < -+ < ky, then the z-th finite set is D, := {ko,k1,...,k,}. Otherwise,
D, = 0.

Without further ado, we state the following theorem.
Theorem 4.4.2 (Classification Theorem): Let C be a class such that
1. C is a class of finite sets,
2. C is closed under subsets,
3. there exists an effective procedure which tells whether D, is in C or not.
Then, C is CI iff C does not contain an infinite ascending chain.
Proof. We will prove each direction separately.

=: By Lemma if a class has a Cl-learner, it cannot contain an infinite ascending
chain.

<«: Let C have no infinite ascending chain. Also, let (d,), be any input sequence. Then,
the following algorithm will serve as a Cl-learner. Let py be a program of the zero
function. For some input d; and p;, do

a) collect all ¢,,(0) = n elements that appeared so far, ie. O; = {z :
©p,(x+ 1) = 1} with |O;| = n,

b) then check whether O; U {d;} = D,» € C.

i. If so, let p;+1 be a program of
f(@) = op,(x) sgn(z) + (0p,(x) + 1)5g0(x) 4 5g0(|2 — (d; + 1)]).

ii. else, return p;. 1 = 0.
2. Else, pit1 = pi.

The only step that is not obviously computable, is finding O;. Since the algorithm
knows how many elements O; has to contain, one can conduct the search effectively.
Thus, all steps in the algorithm can be done effectively.

For some input (d,),, the algorithm checks whether d; is some new input, i.e.
©p: (di +1) = 0. If so, it collects all the information so far, and then checks whether
the corresponding set D, belongs to the class. If it does, it outputs a program of
its characteristic function, with an additional update on the first argument. Else,
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Chapter 4. Confident Iterative Learning

i.e. if the algorithm witnesses D, not belonging to the class, it returns 0.

So, the only case where the machine could possibly change its mind infinitely many
times, is when confirming D, € C and thus change the program. However, since
the class has no infinite ascending chain, this cannot happen. O
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5 Further Topics

In order to close this thesis off, we will investigate some more concepts connected to the
confident iterative learner.

5.1 Stronger Confidence

In this section we will expand the idea of the confident learner. As discussed, the confident
learner earns its name from confidently outputting some code, even if the input does not
belong to any set in the class. However, we can request it to output some fixed dummy
code, i.e. —1, if the learner detects such a case. With that idea in mind, we introduce
the very confident learner. A similar attempt can be found in [12].

Definition 5.1.1 (vC): A class C is very confidently learnable iff there exists a machine
which converges on any input sequence, is correct on the regular one and outputs some
dummy code if the input does not belong to any set in C, i.e.

Jeomp. ve W(dy)n : ae((vooz' cve(dy, ... di) =€) A ((d)n € De = W, = Dc)>/\
w((vs €C:{do,....d;} #85) = (veldy,... d;) = _1)).
Such a learner is called very confident learner.

Remark 5.1.2: Classes in VC cannot have any infinite sets. Let I/ be a class with an
infinite set U = {ug,us,...}. Notice that confident classes cannot contain any infinite
ascending chain, as otherwise one could conduct a proof similar to that of Lemma |4.2.3]
So, for some n, Vo°m : {ug, ..., un} ¢ U. Then, V% : ve(uy,...,u;) = —1, however, vc
should converge to some code of U.

We can take this even a step further, by not only requesting the learner to output some
dummy code, but rather to actually stop once it detects some irregular input. So, we
introduce the strongly confident learner.

Definition 5.1.3 (sC): A class C is strongly confidently learnable iff there exists a
machine which converges on any input sequence and is correct on the regular input and
halts when it detects some input not belonging to any set in C, i.e.

Jecomp. sc Y(d,), : EIe((VOOi :sc(dy,...,d;i) = 6) A ((dn)n € De =W, = Dc)>/\
w((vs €C:{do,....ds} #S) = (Vi > J:scldy,....d;) = —1)).
Such a learner is called strongly confident learner.
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Chapter 5. Further Topics

The definitions directly imply the following corollary.
Corollary 5.1.4: sC C vC C CFD.
To see that the inclusions are proper, consider the following two examples.

Example 5.1.5: With K” being the second jump of the halting set K, let
C={{z}:zeNAxe K"}

Then, C is obviously in CFD, via the confident learner c£d(dy, ..., d;) which outputs the
code of {dy}.

However, assume C € vC. Then there exists some vc(.) learning this class. For some
x € N, consider the input sequence z,z,x,.... Then,

v ¢ K" = VN :ve(z")=—-1= VYN In: (n> N Avc(z") = —1),
re€K'"=3INVn:(n>N = vc(z") # —1).

Thus, z € K & N Vn : (n > N = vc(z") # —1). As the latter one is in 31,1, by
Theorem we get K” <,, K'. A contradiction.

Example 5.1.6: For two different numbers z,y € N, let C = {{x,y}}. C is obviously in
vC. However, it is not in SC. Assume the opposite, with a learner sc. Then for some
input sequence z,%,y, ... the machine sc will see that {x} is not in the class, thus output
—1 for everything that is to come, i.e. for J =0

{z} # {z.y} = V) sc(z.y) = 1.
This is obviously the wrong behaviour, since {z,y} is in the class.
Altogether, we get a stronger version of Corollary [5.1.4]
Corollary 5.1.7: sC C vC C CFD.

The strongly confident learner may seem awfully weak compared to the very confident
one. However, its weakness in the last example originates from the fact, that the class
was not closed under subsets. When combining those attempts with the iterative learner,
we will see some astonishing facts. Therefore, let us combine those two in the obvious
way.

Definition 5.1.8 (VCI): A class S is very confidently iteratively learnable iff there is a
learner vci(.,.) learning S very confidently and iteratively.
Such a learner vei(.,.) is called very confident iterative learner.

Definition 5.1.9 (sCI): A class S is strongly confidently iteratively learnable iff there is
a learner sci(.,.) learning S strongly confidently and iteratively.
Such a learner sci(.,.) is called strongly confident iterative learner.

Immediately, we get the following counterpart of Corollary [5.1.4]
Corollary 5.1.10: sCI C vCI C CIL.
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5.1. Stronger Confidence

However, these classes do behave slightly different, as we will show next. To do so, we
need some auxiliary corollary.

Corollary 5.1.11: Let C € vCI via some vci(.,.), and (d,), be some input.
If 3i :vci(p;,d;) = —1, then Vj > i : vci(p;,d;) = —1.

Proof. Let C € vCI viavci(.,.), (d,), be some input and let ¢ such that vei(p;, d;) = —1.
Assume that 3j > i : vci(pj,d;) # —1. Then,
S1={do,...,d;} C{do,...,d;} =5

as S1 ¢ C, while S, € C. As C € vCI C CI, it cannot contain any infinite ascending
chain. So, there is some finite S5 2 55 such that S3 ¢ C. Now, consider the following two
input sequences

*

d07“‘7di7di+17“"d]7 GH1r

k
eo,...,em,dﬂ_l,...,dj,dj+1,...,

where dj; € S\ S, such that {d},,,...} = 592\ Sy, and e, € S3, such that {eg,...,en} =

S3 and vei(pm,em) = —1 . Then, as the input is the same after the occurrence of —1,
vci(.,.) converges to the same program on both inputs. But, since the first input belongs
to Sy € C and the second to S3 ¢ C, this is a contradiction. O

In particular, the proof of the last lemma shows that every VCI class has to be closed
under subsets.

Corollary 5.1.12: FEvery class C € VCI is closed under subsets.
Lemma 5.1.13: Let C be a class. Then, C € VCI if and only if C € sCI.

Proof. The right to left direction follows from Corollary [5.1.10]

For the other direction, let C € VCI. Then, for some input sequence (d,,), and the same
starting program po, let sci(p;, d;) = vei(p;, d;).

It only remains to prove that for any J

(VS eC:{dy,....ds} #5) = (Vj > J :sci(p;,d;) = pjy1 = —1).
Via Corollary 5.1.11] for any J € N,
(VS €C:{do,...,d;s} # S) = (VCi(pJadJ) = —1) = (Vj > J :vci(p),dj) = —1).
Since vci = sci, we have the sought learner. [l

This lemma is not too surprising. Since the only information on the previous calculations
and inputs has to be coded into the output in some form, outputting —1 deletes all that
information. Thus, it is the same as stopping.

Theorem 5.1.14: Let C be a class of finite sets. Then C € VCI if and only if C € CI, C
15 closed under subsets, and there is a decision procedure telling whether or not D, € C.
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Chapter 5. Further Topics

Proof. We will prove each direction separately.

= If C € vCI, then by Corollary C € CI, and by Corollary the class has
to be closed under subsets.
For x € N, let D, = {ko,...,k,} # 0. Considering the input ko, ..., ky, kn,...,
we can compute the converging point [ effectively. If we look at the output of
vci(pr, dr) = p, we know that D, € C < p # —1.

<«: For the other direction, let C € CI, via ci(.,.) and the starting program py, as well
as some translation s, see Remark Let C be closed under subsets and have a
decision procedure for D, € C. For a finite set A, let ¢(A) be some coding of finite
sets. Then, for the starting program p, = 2°(?)3v0,

vei(prdy) = {2c<{do7---»di}>3u<m>, if {do,....di} € CApi#—1,
-1, else.

will do the trick, where s(exp(1,p)) is the actual program.

Let (d,), be some input. For input d; and p;, the machine checks whether or not

¢ Hexp(0,p;)) U{d;} = {do,...,di_1,d;} €C. If not, it outputs —1, and after that

never changes its mind again. Otherwise, it will compute the code that ci(p;,d;)

would have, and output 2°(do,dil)3ei(ridi) -~ Ag ci(.,.) learns this class, and as it

cannot contain an infinite ascending chain, see for the Classification Theorem [4.4.2]

the machine may only change its mind finitely often.

Again, as ci(.,.) learns the class correctly, it will converge on any (d,), to some p.

If (d,), € Sc, then the program p has to be correct, i.e. Wz = Se. If we compute

s(exp(1,p)) = s(p), we get the computable s(exp(1,.)) as translation.

Thus, the algorithm will always converge and behave correctly. O]

As we have seen in Example CI classes do not need to be closed under subsets.
Thus, we get the confident iterative counterpart of Corollary [5.1.7

Theorem 5.1.15: sCl = vCI € CI.

5.2 Hypothesis Space

Until now, we did not care too much about the hypotheses, as long as they gave some sort
of computable information on the set learned. However, it did prove to be inconvenient
to code all the information into the hypotheses itself. We also witnessed that for certain
problems, certain hypotheses were more comfortable to use than others. In this section
we will drill down onto that. To do so, we will equip the classes with some hypothesis
spaces. To be capable of that, we need to introduce the notion of uniformly indexed
families, see for example [I] or [9].

Definition 5.2.1 (Uniformly Indexed Family): A class C is given by a uniformly indexed
family if there exists a two-place, {0, 1}-valued, computable function L, such that
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5.2. Hypothesis Space

1, x€ L.,
1. L(e,x) = Le(z) = {0 oy

2. Ve:L.€C,
3.VLeCde:L=L,.

We will call such a class C indezed class for short.

Notation 5.2.2: With C = {L. : e € N}, where L, = {z : L.(z) = 1}, we will denote
indexed classes.

Remark 5.2.3: Since we are only considering classes without the empty set, we addi-
tionally demand that none of the L, is empty.

So, indexed classes provide an effective way of numbering all the sets from the class and
checking whether or not x € L. for some x,e. With this, we can introduce the idea of
the hypothesis space.

Given some indexed class C, we will learn it with respect to some hypothesis space H =
{H; : i € N}, which itself is an indexed class. Learning a set C' € C here means that the
learning machine converges to some ¢, such that C' = H;. This kind of learning can be
done in several ways. In [9], we can find three different ideas, how such learning can be
done. We can learn C with respect to H in the following ways.

e Exactly: C is exactly learnable, if H = C, using the same numbering.
o (Class Preservingly: C is class preservingly learnable, if H = C.
e Class Comprisingly: C is class comprisingly learnable, it H O C.

Contrary to the widely used E, € and C, we will use the prefixes E, CP and CC, respectively.

Remark 5.2.4: Since the hypotheses are restricted now, we will use an "initial state" as
first hypothesis pg, rather than a proper hypothesis, see [I0]. However, the learner may
never output this state. This state signalises that this is the first step of the computation.

In order to investigate learning with respect to some hypothesis space, let us fix one
special hypothesis space.

Definition 5.2.5: Let [i]; be the binary expression of i. Let B = {B; : i > 0}, where

1, if [i]y is 1 at position z,
0, else.

Bi(x) = ([i]2)(2) = {

Remark 5.2.6: Technically, we should define B as B = {B;;; : i € N}. However, they
are the same, but the first version is easier to deal with.

So, B is an indexation of all finite sets, except for the empty set. With that, we can state
the following result.
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Chapter 5. Further Topics

Lemma 5.2.7: Let C = {C; : i € N} be an indexed class of finite sets, which is closed
under subsets, with a decision procedure for D, € C. Then

C € ccCl & C contains no infinite ascending chain < C € CI.

Proof. Since the second equivalence is exactly the Classification Theorem [4.4.2] we only
need to show the first one.

=: Conducting some similar proof as in the proof of Lemma[4.2.3] we can see that this
direction is true.

<: By observing the proof of the Classification Theorem [4.4.2 we can see that we could
change the output to its respective counterpart in B, and still receive the natural
bound on the amount of the elements. Thus, we could conduct the same proof,
here. O

Obviously, ECI C ¢pCI C ccCI. As last act in this thesis, we will provide examples
witnessing that these inclusions are proper.

Example 5.2.8: Consider the class C = {C,, : x,y € N}, where

o - {p}, x ¢ K in y steps,
oY {z}, = € K in y steps.

where p is a program of some always undefined function.

By outputting 2% on the input (d,),, we can see that C € ccCI with respect to B.
Assume it is in CPCI with respect to some H. For z € N consider the input sequence
x,x,.... At some computable stage N, the learner will converge to some p,, thus

Vn > N : cpci(pn, ) = pp = pa-
Then,
re K= H, ={z},
v ¢ K= Hp, ={p} #{z}.

The second property originates from the fact, that there is no set in ‘H representing {x},
since z ¢ K. For any i and z, the question whether H; = {x} is computable, as all
H; have exactly one element. Thus, the canonical search for y such that H;(y) = 1 will
terminate.

Thus, z € K < H,, = {z}, with the latter being computable. A contradiction.

The next example is inspired by an example in [9] and [15].

Example 5.2.9: Consider the class £ = {L,; : i,j € N}, with

{{2%‘3" ne N}, (p(0); 1,

i?j =

{273 :n <k}, (gi(i)); 4 in k steps.

This class is in ¢PCI via the following algorithm. For input (d,), and for some starting
program py = (—1,0)
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5.3. Further Research

e for d; and p;, check the form of d;. If it is valid, i.e. d; = 253", then
e check whether p; = (s;,z) or p; = (—1,0). If x # 0, then output p;1; = p;. Else,

e check whether (¢, (s;)), 4, and
— if not, output (s;,0),
— if so, output (s;,1;).

One can easily see that the algorithm works correctly. Let (d,), be some input, and let
p; and d; be the current input. Then, after checking the form, we check for p; = (s;,x). If
x > 0, then the algorithm already witnessed g, (s;) |, so we output the last hypothesis.
Else, even if p; = (—1,0), we check whether (¢, (s;))s, 4. If so, we output (s;,¢;) to mark
that event as witnessed. If not, we output (s;,0).

The algorithm will output (y,0) as long as it does not witness ¢,(y) to be computable.
Then, it will change its mind. Thus, it converges correctly.

Assume now, that £ € ECI via eci(.,.). Let ¢ € N, and consider some canonical input
(dn)n € Lig, i.e. d; = 2'37. On that input, eci(.,.) will converge to some (3,7), i.e.
Voon : eci(pn,dn) = pn = (4,7). Now, we have to distinguish between the following two
cases.

1.C.: 2'37%1 ¢ L, ;. Then, due to the definition, the set L;; is finite. Thus, ¢;(4) J.

2.C.: 2'3*1 € L, ;. In this case, the set is infinite, due to the definition. Now we have to
make a case distinction, where we compare j to the converging point m.

2.1.C.: j > m. We claim that ¢;(i) 7. Assume the opposite, then there exists some
n such that L;,, is finite. But n > j > m, so the learner converged too early
and to the wrong hypothesis. A contradiction.

2.2.C.: j < m. Now, test whether 2:3™*! € L, ,,. If not, then the set is finite, thus
©;(i) J. Else, the set is infinite again, thus L,,, = L;o. Again, we claim that
©;(i) 1. Assume the opposite, then there exists some n such that L,,, is finite.
Since n > m, the hypothesis would be wrong again. A contradiction.

As all the steps are computable, we can compute the halting problem, a contradiction.
Altogether, we get the following result.
Theorem 5.2.10: CI C cpCI C ccClI.

5.3 Further Research

By now, we have obtained some classification for the confident iterative classes. However,
we considered only a very restricted type of classes. So, obviously, the next step would
be to widen that restriction, and obtain some more general classification. However, this
turns out to be quite a hard problem, see [10]. Also, taking classes with possibly infinite
sets into consideration would be a natural next attempt. One may even try to capture
learning of infinite sets using finite sets only.

41


https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

Chapter 5. Further Topics

Also, since we only considered learning from text, one may be tempted to investigate
the behaviour of the very same learner, when learning from an informant. The necessary
definitions for this can be found in [16], for example.

On the other hand, it may be worth a try to investigate the idea of the very confident
learner further. It does seem like a natural idea to be able to detect unrelated information.
Also, combining the confident iterative learner with some more types of learning, i.e.
monotonic, consistent or conservative learning, as proposed for example in [10], [I3] or
[T4], or investigating the learning with respect to some hypothesis space more may prove
useful. Ideas, what the further investigation of the hypothesis space could look like, can
be found for instance in [9] or [14].
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