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Abstract 

The origin of the project comes from the need of classifying any city traffic network, in order 

to regulate it in smart ways later. Knowing this previous city classification is a fast way to 

have a first impression of the city, with some parameters that clearly describe its structure 

and its connections with other cities. These steps can save time to the researchers or, in 

terms of business, they can save money. 

The main objective is to do an analysis of typical traffic networks. What this means is to 

classify any city by its traffic network topology. The development of the project will be done 

by using the MATLAB programming language and observing the results.  

The first step, in order to carry out this project and achieve the objectives, is to do a deep 

literature research of the main topics. This literature investigation has been divided in five 

parts, considered as the main fields of study: map data (using reliable information is crucial to 

do a good study of different cities and compare them), graph theory (the basis of 

mathematics in this project), social network analysis (a strategy for looking into social 

networks and structures, by using mathematical formulations extracted from graph theory), 

traffic network topologies (many studies propose measures to characterize networks) and 

intersections (the classification of streets unions). 

Then, an experimental process is proposed, by using MATLAB and parameters chosen from 

other studies observations and the project limits (time of realization and difficulty to program). 

The main parameters here used, plotted in graphs, are: distance between two intersections 

which are connected by a street, the angle between the streets that arrive to an intersection, 

the degree of a node (number of streets that arrive and leave an intersection) and the 

significant orientation of the streets of a node (respect to 0˚). Then, other parameters are also 

displayed, as number of nodes, number of nodes, alpha index, beta index, etc.  

The process holds all the MATLAB functions and is divided in four parts. At first, the part 

which converts the OpenStreetMap (source of map data) file to MATLAB useful language. 

Then, to fix the matrices and to fix the map (two different steps) obtained in the first step is 

necessary. Finally, the functions to obtain results and characteristics are programmed. 

Once explained the functions, the results are summarized in graphs and tables, and then are 

analysed. This analysis gives a global idea of the maps, by comparing 7 maps at the same 

time. The grids are totally recognised by their unmistakable characteristics, but the other 

types of maps are classified by the values obtained. In conclusion, this project studies a set 

of parameters but it is not a closed project, it can be extended and improved by whoever 

wants to.   
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1. Preface 

This project is a Master Thesis of an exchange student (from ETSEIB – Escola Tècnica 

Superior d’Enginyeria Industrial de Barcelona) at the TU Wien (Technische Universität 

Wien), carried out at ANDATA.  

ANDATA is an independent technology venture specialized in the development and 

application of methods from the fields of Data Mining and Artificial Intelligence in combination 

with an extensive use of numerical simulation in technical development. 

1.1. Origin of the project 

The origin of the project comes from the necessity of classifying any city traffic network, in 

order to regulate it in smart ways later. From here, it is possible to compare two cities by their 

topology or compare two intersections by their characteristics.  

Moreover, knowing this previous city classification is a fast way to have a first impression of 

the city, with some parameters that clearly describe its structure and its connections with 

other cities. These steps can save time to the researchers or, in terms of business, they can 

save money. 

1.2. Motivation 

ANDATA researchers are looking for having a traffic classification in order to facilitate others 

projects and studies. The analysis of typical traffic networks will be carried out in parallel with 

similar projects and it will be really helpful in future projects. 

The field of study is selected, in agreement with the advisor, by the author for the interest in 

Traffic networks, due to previous works in Transportations (subject done during the Master in 

Industrial Engineering).  

The motivation comes from the want of increase the knowledge in Transportations and 

having the opportunity of working with traffic networks specialists in this venture.  

In addition, this project is a chance to learn about traffic of all types of cities, with real 

database obtained from safe and official sources, also a chance to work with specialists in 

this field and, by last, to improve in computing language this project requires to work with. 
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1.3. Previous requirements 

The field of study Traffic networks is a field which is growing by the development of new 

technologies and transportation increase, so this Master Thesis requires having some 

previous knowledge on the topic. Other fields that involve this project are widespread and the 

information about them is abundant and, sometimes difficult to understand if the reader is not 

used to the topics. For these other topics this project has relation with, it is desirable that the 

author is willing to learn about them, such as graph theory, social network analysis, etc. 

Some engineering mathematics can become difficult to resolve or to program. These 

boundaries could hinder or slow down the development of the programming. Having good 

engineering and mathematics skills is the basis to be able to set the problem and try to solve 

it. The problem is expected to be solved in programming language, so having familiarity with 

programming is necessary, such as MATLAB or Python/Numpy. 

Finally, in order to achieve the project goals, it is necessary, from the author, to have 

commitment and joy with new technologies. 
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2. Introduction 

Humanity is surrounded by different ways of moving between two points (origin – 

destination). We normally have many types of transportation to choose (by bicycle, car, bus, 

train, plane and ship, among others), depending on lots of parameters, such as available 

time, system availability, traffic, distance, money… Sometimes, for one transportation 

system, we also have the chance to choose among different paths in the same network. 

Transportation systems are the basis of human connectivity. These systems can be 

roadways, railways, sea links, airspace or intermodal combinations, which every of them 

define a network topology. All these systems are being increasingly developed and studied 

with the technological advances, such as new technologies in transportation systems (e.g. 

autonomous vehicles), developed technologies in networks (e.g. sensors and cameras to 

control traffic) and powerful programming for complex mathematical problems. 

The study of traffic networks is becoming increasingly necessary in order to regulate traffic in 

an intelligent way and ensure quality of service. Then, appropriate traffic models must be 

developed beforehand. The quality of the models is ensured by means of simulation and 

subsequent validation using real data. 

 

Figure 2.1. Traffic network intersection [Source: https://www.adgeco.com/uae-launched-

advanced-traffic-systems-gadgets-avert-road-collisions/ ] 

In order for a traffic model to be universally applicable, it has to be able to deal with very 

different types of road networks. For example, the road network of a typical American big city 

with a regular square grid (an intersection of this network is visible in the Figure 2.1) is in 

stark contrast to a European old town. It is therefore necessary to detect and quantify these 

differences mathematically. 

https://www.adgeco.com/uae-launched-advanced-traffic-systems-gadgets-avert-road-collisions/
https://www.adgeco.com/uae-launched-advanced-traffic-systems-gadgets-avert-road-collisions/
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2.1. Project objectives 

The main objective, as the project tittle indicates, is to do an analysis of typical traffic 

networks. What this tittle means is to classify any city by its traffic network topology. The 

development of the project will be done by using programming languages and observing the 

results.  

In order to achieve the main goal, it is necessary to carry out previous tasks, like to do a wide 

literature research about some fields that involve the project: graph theory, social networks 

analysis, Map Data, etc. 

After the deep literature review, a study of suitable features to describe street networks has 

to be done. Many studies investigate the way to classify a network, with lots of traffic 

parameters. These traffic parameters change depending on the field of study and the author. 

Furthermore, once studied the features, MATLAB functions will be developed to compute 

them, as well as a development of generic standards configurations. MATLAB is the main 

working tool to carry out the aim of this thesis. 

After the proposed study and once obtained the results, by comparing networks, one must 

be able to classify the network. 
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3. Literature research 

In order to carry out this project and achieve the objectives, a deep literature research of the 

main topics has to be done. This research has been divided in five parts, considered as the 

five main fields of study. 

First of all, to do a research of Map Data is considered advisable, as data analysis is the 

basis of this project. For that reason, using reliable information is crucial to do a good study 

of different cities and compare them. A review of the history of Map Data, a study of the 

problematics in this field (lack of information) and the web map service are going to be 

studied. 

Related to graph theory, there are lots of studies, papers, investigations and theories. Graph 

theory is widespread, so in this section, a selection of useful information is trying to be done 

and summarized.  

Finally, to do a review of social networks analysis and a traffic network analysis is necessary 

to discuss different points of view depending on the author and to extract the parameters that 

are considered useful for this project. A chapter about intersections is also added to take a 

look at a classification. 
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3.1. Map Data 

3.1.1. Introduction 

“On a planet of finite resources faced with mounting population pressures, geographic 

information systems already have become indispensable for resource management, policy 

assessments and strategic decisions.”  

George E. Brown in 1992 

During the past decade, a revolution has drastically altered the world of cartography [20]. 

The changes started trying to automate the standard map products with various computer 

technologies, a new industry known as geographic information systems (GIS).  

Now the effort is on varied uses of geographic information in digital forms. Thus, maps are 

frequently viewed as one of a wide variety of potential products.  

GIS treats data as different layers. Every type of data can be customized to meet specific 

criteria and then the various layers can combine to form a single map. One of the key 

features of GIS is that any type of information with a geographic component can be mapped. 

In this way, thematic maps can be constructed from layers of data that represent traditional 

cartographic information and from data sets that the user supplies from other sources. 

A Web map service (WMS) is a standard protocol that describes how to serve any 

georeferenced map images over the Internet, which is usually generated by a map server 

that uses data from s geographic information system database [22].  

3.1.2. Lack of data focused on traffic 

The main trouble at the time of searching reliable data about traffic is the lack of this. Many 

resources are private for governments or researchers, so for this thesis public data from free 

sources is going to be used. 

There are many web map services where to find satellite images, street maps, panoramic 

street views, traffic in real-time and route planning for travelling by foot, car, bicycle or public 

transportation. Some of the most important web map services and their more relevant 

features for the Master Thesis are summarized in the following table [21]: 
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Feature Google Maps Bing Maps MapQuest OpenStreetMap Here Apple Maps 

Full Extra 

Functionality 

Australia, Canada, China, 

France, Germany, Israel, 

Italy, Netherlands, Spain, 

UK, United States. 

Andorra, Australia, Austria, Bahrain, 

Belgium, Canada, Croatia, Czech 

Republic, Denmark, Finland, 

France, Germany, Gibraltar, 

Guernsey, Hong Kong SAR, 

Hungary, Iceland, Ireland, Isle of 

Man, Italy, Japan, Jersey, Jordan, 

Kuwait, Liechtenstein, Luxembourg, 

Malaysia, Monaco, Netherlands, 

New Zealand, Norway, Oman, 

Portugal, Puerto Rico, Qatar, 

Romania, San Marino, Saudi 

Arabia, Singapore, South Africa, 

Spain, Sweden, Switzerland, 

Taiwan, United Arab Emirates, 

United Kingdom, United States, 

Vatican City 

United States All 
More than 180 

navigable countries 

Austria, Belgium, 

Canada, 

Denmark, France, 

Germany, Ireland, 

Italy, Netherlands, 

Norway, Spain, 

Sweden, 

Switzerland, UK, 

USA 

Degrees of 

motion 

Vertical, Horizontal, 

Depth, Rotation(beta), 

360 Panoramic (Street 

View), 3D Mode (Google 

Earth JavaScript) 

Vertical, Horizontal, Depth, 360 

Panoramic (Streetside), 3D 

Mode(Tilt, Pan, Rotate) 

Vertical, Horizontal, 

Depth 

 

Vertical, Horizontal, 

Depth 

Vertical, Horizontal, 

Depth (zoom), Tilt (3D), 

Rotate 360 degrees 

Vertical, 

Horizontal, Depth, 

Rotate 360 

degrees, 3D 

Map Zoom 
22 (more levels available 

through parameter) 

19-22 (Depending on which map 

control is used)  
17 19 18 

 

Unknown (vector-

based) 
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Feature Google Maps Bing Maps MapQuest OpenStreetMap Here Apple Maps 

Map Types 

6: Map with traffic data 

(separate transit and 

bicycle view), Satellite 

with Traffic Data (3D 

LiDar for certain places), 

Hybrid 

9: Road, Satellite, Hybrid, Bird's 

Eye, Traffic, 3D, London Street 

Map, Ordnance Survey Map, Venue 

Maps 

3: Road, Satellite, 

Traffic 

5: Standard Map, 

Transport Map, Cycle 

Map, Humanitarian 

7: Map View, Satellite, 

Terrain, 3D, Traffic, 

Public Transportation, 

Heat Map, Map 

Creator, Explore 

Places, Community  

3: Standard, 

Hybrid, Satellite. 

All include a traffic 

data layer 

3D Mode 
Yes (with plugin) Limited 

to certain areas 
Yes (Windows 8/10) No Yes, third-party  

Yes limited to certain 

areas 

Yes limited to 

certain areas 

Age of Map 

Imagery 
Updated Daily Updated Monthly  Updated Live  1–2 years 

Map Data 

Providers 

MAPIT, Tele Atlas, 

DigitalGlobe, MDA 

Federal, user 

contributions 

NAVTEQ, Intermap, Pictometry 

International, NASA, Blom,  

Ordnance Survey, SK  

TomTom, OpenStree

tMap, and others 

User contributions, open 

data and data donations 

Navteq 

 

TomTom,  

and others 

 

Directions Yes Yes Yes Yes 
Yes – by car, foot, 

public transport 
Yes 

Live Traffic 

Information 
Yes Yes (35 Countries)   Yes 

Yes, partial in a third-

party  
Yes Yes 

Historic Traffic Yes No No No Yes No 

Table 3.1. Comparison of web map services

https://en.wikipedia.org/wiki/Tele_Atlas
https://en.wikipedia.org/wiki/DigitalGlobe
https://en.wikipedia.org/wiki/NAVTEQ
https://en.wikipedia.org/wiki/Intermap
https://en.wikipedia.org/wiki/Pictometry_International
https://en.wikipedia.org/wiki/Pictometry_International
https://en.wikipedia.org/wiki/NASA
https://en.wikipedia.org/wiki/Blom
https://en.wikipedia.org/wiki/Ordnance_Survey
https://en.wikipedia.org/wiki/TomTom
https://en.wikipedia.org/wiki/OpenStreetMap
https://en.wikipedia.org/wiki/OpenStreetMap
http://hello.mapquest.com/attributions
https://en.wikipedia.org/wiki/Navteq
https://en.wikipedia.org/wiki/TomTom
https://en.wikipedia.org/wiki/TomTom
http://gspa21.ls.apple.com/html/attribution.html
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3.1.3. Map Data used: OpenStreetMap 

Among the available sources to choose to use, one that accomplishes the features in order 

to achieve the goals of the project is the web map service OpenStreetMap  

(© OpenStreetMap contributors). The data is available under the Open Database License 

and the cartography is licensed as CC BY-SA (see all these information in 

https://www.openstreetmap.org/copyright/en). For a printed copy of this project, the reader 

can consult the following websites: openstreetmap.org, opendatacommons.org and 

creativecommons.org. 

OpenStreetMap (OSM) has map information of all parts of the world, it is updated in live (so it 

is always actualized) and has life traffic information, among others. It is important to underline 

that downloading maps from openstreetmap.org [24] is very easy and fast (Export option), 

but only works for small maps. For bigger maps, to look for alternatives is necessary. The 

same OSM website page gives some alternatives: Overpass API, Planet OSM, 

OpenStreetMap Data Extract and metro extracts, among others. 

OpenStreetMap is a collaborative project to create a free editable map of the world. The 

creation (2004) and growth of OSM has been motivated by limitations on use or availability of 

map information across the world and the advent of inexpensive portable satellite navigation 

devices. It is considered a prominent example of volunteered geographic information [23]. 

OpenStreetMap uses a topological data structure, with four core elements: 

 Nodes: points with a geographic position, stored as coordinates (pairs of latitude and 

longitude). Outside of their usage in ways, they are used to represent map features 

without size, such as points of interest. 

 Ways: ordered lists of nodes, representing a polyline, or possibly a polygon if they 

form a closed loop. They are used for representing linear features such as streets 

and rivers. 

 Relations: ordered lists of nodes, ways and relations (together called “members”). 

They are used for representing the relationship of existing nodes and ways. 

 Tags: key-value pairs (both arbitrary strings). They are used to store metadata about 

the map objects, such as their type, their name and their physical properties). 

OpenStreetMap is going to be used in the experimental part of this project, complemented 

with MATLAB functions that use OSM input data. 

  

https://www.openstreetmap.org/copyright/en
https://www.openstreetmap.org/
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3.2. Graph theory  

3.2.1. Introduction 

Graph theory started with the Königsberg Bridge Problem. This problem was set out by the 

citizens, who used to spend Sunday free time walking though the city. They created a game 

for themselves: to cross the seven bridges of the city of Königsberg over the river Preger just 

once (bridge representation in the Figure 3.1) and, moreover, that the trip ended in the same 

place it began [3].  

 

Figure 3.1. Representation of the Königsberg bridges [Source: in reference [5], 2nd slide] 

None of the citizens was able to find a solution, but they could not prove it was impossible. 

The problem was proposed to the mathematician Leonard Euler, who said: 

“This question is so banal, but seemed to me worthy of attention in that [neither] geometry, 

nor algebra, nor even the art of counting was sufficient to solve it.” 

Euler proposed a solution in 1736 and it represented the beginning of graph theory. The 

complex and interesting solution can be found in the article Leonard Euler’s Solution to the 

Konigsberg Bridge Problem [4]. 

William Rowan Hamilton was also a pioneer in the field of graph 

theory [5]. In 1859, he developed a toy based on finding a path 

through all the cities in a graph exactly once, as seen in the Figure 

3.2. The toy never was a big success, but he left the “Hamiltonian” 

concept, what means to cross by all vertices just once.  

Nowadays, graph theory is widespread and is used in lots of 

fields, such as sociology, biology and physics. Graph size can 

become quite big so that computing programs are required. 

Commonly used applications in our daily lives use graph theory 

and solve complex algorithms, for example to find the shortest 

path home in a GPS or the fastest public transportation. 

Figure 3.2. Hamilton toy 

representation [Source: 

in reference [5], 3rd slide] 



Analysis of typical traffic networks  Page 11 

 

Basic concepts with some examples are explained in the following parts. These parts follow 

the lecture notes and images of graph theory that Keijo Ruohonen did in 2013 [1], with 

additional information from lecture notes of Transportations, a subject of the Master of 

Industrial Engineering in Barcelona, references [10] and [11]. Moreover, these parts are 

complemented with some missing definitions found in the book [7]. 

3.2.2. Definition and fundamental concepts  

Conceptually, a graph is formed by two kinds of elements: vertices (also called nodes or 

points) and edges (also called lines) connecting the vertices. This type of graph may be 

explained as undirected and simple, as the one we see in the Figure 3.3. 

 

Figure 3.3. Example of an undirected graph 

Formally, a graph is a pair of sets (V, E), where V is the set of vertices and E is the set of 

edges, where each edge is formed by pairs of vertices. E is a multiset, in other words, its 

elements can occur more than once so that every element has a multiplicity. Often, the 

vertices are labelled with letters (for example: 𝑎, 𝑏, 𝑐, …  𝑜𝑟 𝑣1, 𝑣2,… ) or numbers 1, 2, … 

Similarly, the edges are labelled with letters (for example: 𝑎, 𝑏, 𝑐, …  𝑜𝑟 𝑒1, 𝑒2,…) or numbers 

1, 2, … for simplicity. 

 

Figure 3.4. Same example with labels 

For the example in the Figure 3.4, the notation is the following: 

𝑉 = {𝑣1, … , 𝑣5} (3.1) 

𝐸 =  {𝑒1, … , 𝑒5} = {(𝑣1, 𝑣2), (𝑣2, 𝑣5), (𝑣5, 𝑣5), (𝑣5, 𝑣4), (𝑣5, 𝑣4)} (3.2) 

In this example, the orientation of the edges is not considered, in other words, the edge 

(𝑣1, 𝑣2) is the same as the edge (𝑣2, 𝑣1). In general, the two edges (𝑢, 𝑣) and (𝑣, 𝑢) are the 

same. 
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A list of terminologies can be done from the concepts explained until now: 

1. The two vertices 𝑢 and 𝑣 are end vertices of the edge (𝑢, 𝑣). 

2. Edges that have the same end vertices are parallel. 

3. An edge of the form (𝑣, 𝑣) is a loop. 

4. A graph is simple if it has no parallel edges or loops. 

5. A graph with no edges is empty. 

6. A graph with no vertices is a null graph. 

7. A graph with only one vertex is trivial. 

8. Edges are adjacent if they share a common end vertex. 

9. Two vertices 𝑢 and 𝑣 are adjacent if they are connected by an edge: (𝑢, 𝑣) is an 

edge. 

10. The number of edges with 𝑣 as an end vertex is the degree of the vertex 𝑣 and it is 

written as 𝑑(𝑣). By convention, a loop counted twice and parallel edges contribute 

separately. 

11. A pendant vertex is a vertex whose degree is 1. 

12. An edge that has a pendant vertex as an end vertex is a pendant edge. 

13. An isolated vertex is a vertex whose degree is 0. 

Examples for the graph of the Figure 3.4:  

 𝑣4 𝑎𝑛𝑑 𝑣5 𝑎𝑟𝑒 𝑒𝑛𝑑 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 𝑜𝑓 𝑒5. 

 𝑒4  𝑎𝑛𝑑 𝑒5 𝑎𝑟𝑒 𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙. 

 𝑒3 𝑖𝑠 𝑎 𝑙𝑜𝑜𝑝. 

 𝑇ℎ𝑒 𝑔𝑟𝑎𝑝ℎ 𝑖𝑠 𝑛𝑜𝑡 𝑠𝑖𝑚𝑝𝑙𝑒. 

 𝑒1 𝑎𝑛𝑑 𝑒2 𝑎𝑟𝑒 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡. 

 𝑣1 𝑎𝑛𝑑 𝑣2 𝑎𝑟𝑒 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡. 

 𝑇ℎ𝑒 𝑑𝑒𝑔𝑟𝑒𝑒 𝑜𝑓 𝑣1 𝑖𝑠 1 𝑠𝑜 𝑖𝑡 𝑖𝑠 𝑎 𝑝𝑒𝑛𝑑𝑎𝑛𝑡 𝑣𝑒𝑟𝑡𝑒𝑥. 

 𝑒1 𝑖𝑠 𝑎 𝑝𝑒𝑛𝑑𝑎𝑛𝑡 𝑒𝑑𝑔𝑒. 

 𝑇ℎ𝑒 𝑑𝑒𝑔𝑟𝑒𝑒 𝑜𝑓 𝑣5 𝑖𝑠 5. 

 𝑇ℎ𝑒 𝑑𝑒𝑔𝑟𝑒𝑒 𝑜𝑓 𝑣4 𝑖𝑠 2. 

 𝑇ℎ𝑒 𝑑𝑒𝑔𝑟𝑒𝑒 𝑜𝑓 𝑣3 𝑖𝑠 0, 𝑠𝑜 𝑖𝑡 𝑖𝑠 𝑎𝑛 𝑖𝑠𝑜𝑙𝑎𝑡𝑒𝑑 𝑣𝑒𝑟𝑡𝑒𝑥. 
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Continuing with graph terminology, the minimum degree of the vertices in a graph 𝐺 is 

denoted 𝛿(𝐺). If the minimum degree is 0, it means that there is an isolated vertex in 𝐺. 

The maximum degree of vertices in 𝐺 is 𝛥(𝐺). 

Example for the graph of the Figure 3.4:  𝛿(𝐺) = 0;   𝛥(𝐺) = 5  

Theorem: The graph 𝐺 =  (𝑉, 𝐸), where 𝑉 = {𝑣1, … , 𝑣𝑛} and 𝐸 = {𝑒1, … , 𝑒𝑚}, satisfies  

∑𝑑(𝑣𝑖)

𝑛

𝑖=1

= 2𝑚. (3.3) 

Consequently, every graph has an even number of vertices of odd degree. 

Example for the graph of the Figure 3.4:  

 𝑇ℎ𝑒 𝑠𝑢𝑚 𝑜𝑓 𝑡ℎ𝑒 𝑑𝑒𝑔𝑟𝑒𝑒𝑠 𝑖𝑠 1 + 2 + 0 + 2 + 5 = 10; 𝑡ℎ𝑒 𝑠𝑎𝑚𝑒 𝑎𝑠 2 · 5 = 10. 

A simple graph that has every possible edge between all the vertices is a complete graph. 

A complete graph with 𝑛 vertices is denoted as 𝐾𝑛. The first four complete graphs are the 

following: 

 

Figure 3.5. First four complete graphs 

The graph 𝐺1 = (𝑉1, 𝐸1) is a subgraph of 𝐺2 = (𝑉2, 𝐸2) if: 

1. 𝑉1  ⊆  𝑉2 and 

2. Every edge of 𝐺1 is also an edge of 𝐺2. 

3.2.3. Walks, Trails, Paths, Circuits, Connectivity, Components 

A walk in the graph  G =  (V, E) is a finite sequence of the form 

𝑣𝑖0, 𝑒𝑗1, 𝑣𝑖1, 𝑒𝑗2, … , 𝑒𝑗𝑘 , 𝑣𝑖𝑘 , (3.4) 

which consists of alternating vertices and edges of 𝐺. The walk begins at a vertex. Vertices 

𝑣𝑖𝑡−1 and 𝑣𝑖𝑡 are end vertices of 𝑒𝑗𝑡(𝑡 = 1,… , 𝑘). 𝑣𝑖0 is the initial vertex and 𝑣𝑖𝑘   is the terminal 

vertex. 𝑘 is the length of the walk. A zero length walk is only a single vertex 𝑣𝑖0. It is permitted 

to visit a vertex or go through an edge more than once. A walk is open if  𝑣𝑖0 ≠ 𝑣𝑖𝑘. 

Otherwise it is closed. 
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Figure 3.6. Example of an undirected graph 

Example for the graph of the Figure 3.6: 

𝑇ℎ𝑒 𝑤𝑎𝑙𝑘 𝑣2, 𝑒7, 𝑣5, 𝑒8, 𝑣1, 𝑒8, 𝑣5, 𝑒6, 𝑣4, 𝑒5, 𝑣4, 𝑒5, 𝑣4 𝑖𝑠 𝑜𝑝𝑒𝑛. 

𝑂𝑛 𝑡ℎ𝑒 𝑜𝑡ℎ𝑒𝑟 ℎ𝑎𝑛𝑑, 𝑡ℎ𝑒 𝑤𝑎𝑙𝑘 𝑣4, 𝑒5, 𝑣4, 𝑒3, 𝑣3, 𝑒2, 𝑣2, 𝑒7, 𝑣5, 𝑒6, 𝑣4 𝑖𝑠 𝑐𝑙𝑜𝑠𝑒𝑑. 

A walk is a trail if any edge is traversed at most once.  

Example for the graph of the Figure 3.6: 

𝑇ℎ𝑒 𝑤𝑎𝑙𝑘 𝑖𝑛 𝑡ℎ𝑒 𝑔𝑟𝑎𝑝ℎ 𝑣1, 𝑒8, 𝑣5, 𝑒9, 𝑣1, 𝑒1, 𝑣2, 𝑒7, 𝑣5, 𝑒6, 𝑣4, 𝑒5, 𝑣4, 𝑒4, 𝑣4 𝑖𝑠 𝑎 𝑡𝑟𝑎𝑖𝑙. 

A trail is a path if any vertex is visited at most once except possibly the initial and terminal 

vertices when they are the same. A closed path is a circuit.  

Example for the graph of the Figure 3.6: 

𝑇ℎ𝑒 𝑤𝑎𝑙𝑘 𝑣2, 𝑒7, 𝑣5, 𝑒6, 𝑣4, 𝑒3, 𝑣3 𝑖𝑠 𝑎 𝑝𝑎𝑡ℎ.  

𝐴𝑛𝑑 𝑡ℎ𝑒 𝑤𝑎𝑙𝑘 𝑣2, 𝑒7, 𝑣5, 𝑒6, 𝑣4, 𝑒3, 𝑣3, 𝑒2, 𝑣2 𝑖𝑠 𝑎 𝑐𝑖𝑟𝑐𝑢𝑖𝑡. 

The walk beginning at 𝑢 and ending at 𝑣 is called an 𝑢 − 𝑣 walk. 𝑢 and 𝑣 are connected if 

there is a 𝑢 − 𝑣 walk in the graph (then there is also a 𝑢 − 𝑣 path!). If 𝑢 and 𝑣 are 

connected and 𝑣 and 𝑤 are connected, then 𝑢 and 𝑤 are also connected. A graph is 

connected if all the vertices are connected to each other. 

The subgraph 𝐺1 (not a null graph) of the graph 𝐺 is a component of 𝐺 if 

1. 𝐺1 is connected and 

2. Either 𝐺1 is trivial (one single isolated vertex of 𝐺) or 𝐺1 is not trivial and 𝐺1is the 

subgraph induced by those edges of 𝐺 that have one end vertex in 𝐺1. 

  



Analysis of typical traffic networks  Page 15 

 

3.2.3.1. Trees and forest 

A forest is a circuitless graph. A tree is a connected forest. A subforest is a subgraph of a 

forest. A connected subgraph of a tree is a subtree. A subforest, in general, of a graph is 

its subgraph, which is also a forest. 

 

Figure 3.7. Four trees, which together form a forest 

3.2.4. Directed graphs 

Conceptually, a directed graph or digraph is formed by vertices connected by directed edges, 

arcs or arrows. 

 

Figure 3.8. Example of a directed graph 

Formally, a digraph is a pair (𝑉, 𝐸), where 𝑉 is the vertex set and 𝐸 is the set of vertex pairs 

as in “usual” graphs. The difference is that now the elements of 𝐸 are ordered pairs: the arcs 

(𝑢, 𝑣) and (𝑣, 𝑢) are different, they have the opposite direction. Now we have to take care 

about the definitions exposed before: 

1. Vertex 𝑢 is the initial vertex and vertex 𝑣 is the terminal vertex of the arc (𝑢, 𝑣). The 

arc is incident out of 𝑢 and incident into 𝑣.  

2. The out-degree of the vertex 𝑣 is the number of arcs out of it, denoted as 𝑑+(𝑣), and 

the in-degree of 𝑣 is the number of arcs going into it, denoted as 𝑑−(𝑣). 

3. In the directed walk (trail, path or circuit), the equation is the same as (3.4), where 𝑣𝑖𝑙 

is the initial vertex and 𝑣𝑖𝑙−1 is the terminal vertex of the arc 𝑒𝑗𝑙 . 

4. When we want to use a graph (𝑉, 𝐸) as a usual undirected graph, it is the underlying 

undirected graph of the digraph 𝐺 = (𝑉, 𝐸), denoted as 𝐺𝑢. 
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5. Digraph 𝐺 is connected if 𝐺𝑢 is connected. The components of 𝐺 are the directed 

subgraphs of 𝐺 that correspond to the components of 𝐺𝑢. The vertices of 𝐺 are 

connected if they are connected in 𝐺𝑢.  

6. Vertices 𝑢 and 𝑣 are strongly connected if there is a directed 𝑢 − 𝑣 path and also a 

directed 𝑣 − 𝑢 path in 𝐺. 

7. Digraph 𝐺 is strongly connected if every pair of vertices is strongly connected. By 

convention, the trivial graph is strongly connected. 

8. A strongly connected component 𝐻 of the digraph 𝐺 is a directed subgraph of 𝐺 (not 

null) such that 𝐻 is strongly connected, but if we add any vertices or arcs to it, then it 

is not strongly connected anymore. 

3.2.4.1. Other definitions 

In order to complete this introduction to graph theory, adding some other definitions has been 

considered opportune. These definitions have been extracted from the resource [7]. 

A mixed graph 𝐺 is a graph with some directed edges and some undirected edges. It is 

written as 𝐺 = (𝑉, 𝐸, 𝐴), where 𝑉 is a set of vertices, 𝐸 is a set of edges and 𝐴 is a set of 

arcs. 

A loop is a directed or undirected edge which starts and ends on the same vertex. 

Depending on the application, a loop may be permitted or not. In this context, an edge with 

two different ends is called a link. The term “multigraph” is used to mean that multiple edges 

are allowed. 

A simple graph is an undirected graph without loops and with no more than one edge 

between two vertices. In this type of graphs, the edges form a set and every edge is a pair of 

distinct vertices. A simple graph with 𝑛 vertices has a degree smaller than 𝑛. 

A weighted graph is a graph with a number (weight) assigned to every edge. This weight 

might represent costs, lengths, time, capacities, etc. The weight of the graph is the sum of all 

the weights given. 

A graph where each vertex has the same number of neighbours is a regular graph, what 

means that every vertex has the same degree. 

A finite graph is a graph 𝐺 = (𝑉, 𝐸), where 𝑉 and 𝐸 are finite sets. An infinite graph has an 

infinite set of vertices or edges or both. 

A bridge (also called cut-edge or cut arc) is an edge whose deletion increases the number of 

connected components. 
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3.2.4.2. Directed trees 

An arborescence is a directed graph in which, for a vertex 𝑢 called the root and any other 

vertex 𝑣, there is only one directed path from 𝑢 to 𝑣. An arborescence is thus the directed-

graph form of a rooted tree (understood here as an undirected graph). 

A digraph is quasi-strongly connected if one of the following states holds for each pair of 

vertices 𝑢 and 𝑣 (reference [1]):  

i. 𝑢 = 𝑣 or 

ii. there is a directed 𝑢 − 𝑣 path in the directed graph or 

iii. there is a directed 𝑣 − 𝑢 path in the directed graph or 

iv. there is a vertex 𝑤 so that is a directed 𝑤 − 𝑢 path and a directed 𝑤 − 𝑣 path. 

 

Figure 3.9. Example of a directed graph 

Example for the graph of the Figure 3.9: 

𝑇ℎ𝑒 𝑑𝑖𝑔𝑟𝑎𝑝ℎ 𝑖𝑠 𝑞𝑢𝑎𝑠𝑖 − 𝑠𝑡𝑟𝑜𝑛𝑔𝑙𝑦 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 𝑎𝑛𝑑 ℎ𝑎𝑠 𝑜𝑛𝑒 𝑟𝑜𝑜𝑡, 𝑣1. 

Theorem: A digraph has at least one root if and only if it is quasi-strongly connected. 

If there is a root in the digraph, it follows from the definition that the digraph is quasi-

strongly connected. 
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3.2.5. Matrices of Graphs 

A graph 𝐺 = (𝑉, 𝐸) is mathematically represented by the adjacency matrix, an 𝑛 ×  𝑛 matrix 

𝐷 = (𝑑𝑖𝑗), where 𝑛 is the number of vertices in 𝐺, 𝑉 is the set of vertices and 𝑑𝑖𝑗 is the 

number of edges between 𝑣𝑖 and 𝑣𝑗. The fact 𝑑𝑖𝑗 = 0 means that there is not the edge 

(𝑣𝑖 , 𝑣𝑗). If the graph is not directed, the matrix 𝐷 is symmetric, so that 𝐷𝑇 = 𝐷. 

Example: 

 

       𝐷 =

(

 
 

0
2
1

2
1
0

1 0 0
0 1 0
3 0 0

0 1 0 0 0
0 0 0 0 0)

 
 

 

  

 

 

In the adjacency matrix of a directed graph  𝐺, each element 𝑑𝑖𝑗 is the number of arcs that 

come out of vertex 𝑣𝑖 and go into vertex 𝑣𝑗.  

Example: 

 

        𝐷 = (

0
1
0

1
0
0

0 0
0 0
0 0

2 1 0 1

) 

 

 

 

 

In this project, a simpler adjacency matrix will be used. This is an 𝑛 ×  𝑛 matrix 𝐷 = (𝑑𝑖𝑗),  

where 𝑛 is the number of vertices in 𝐺, and 

𝑑𝑖𝑗 = {
1 𝑡ℎ𝑒𝑟𝑒 𝑖𝑠 𝑎 𝑙𝑖𝑛𝑘 𝑓𝑟𝑜𝑚 𝑣𝑒𝑟𝑡𝑒𝑥 𝑖 𝑡𝑜 𝑣𝑒𝑟𝑡𝑒𝑥 𝑗
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.                                                          

    

Figure 3.10. Example of a graph 

Figure 3.11. Example of a directed graph 
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In the case of the example of the Figure 3.11, the adjacency matrix would become to: 

𝐷 = (

0
1
0

1
0
0

0 0
0 0
0 0

1 1 0 1

) 

In other words, if two vertices are connected for more than one path, it is considered as if it 

was just one. But if the path can be traversed in the two directions, it is represented by two 

different elements in the matrix. 

 

A graph can also be represented by the incidence matrix 𝐴, of 𝑛 × 𝑚 dimension, where 𝑚 is 

the number of edges in 𝐺. It changes if the graph is undirected or directed. For an undirected 

graph: 

𝑎𝑖𝑗 = {
1 𝑖𝑓 𝑣𝑖𝑖𝑠 𝑎𝑛 𝑒𝑛𝑑 𝑣𝑒𝑟𝑡𝑒𝑥 𝑜𝑓 𝑒𝑗
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.                               

 

Example: 

 

𝐴 =

(

 
 

1 1 1 0
1
0
0
0

1
0
0
0

0
1
0
0

1
0
1
0)

 
 

 

 

 

 

 

 

In case the graph is directed, the element 𝑎𝑖𝑗 can be: 

𝑎𝑖𝑗 = {

1 𝑖𝑓 𝑣𝑖𝑖𝑠 𝑡ℎ𝑒 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑣𝑒𝑟𝑡𝑒𝑥 𝑜𝑓 𝑒𝑗       

−1 𝑖𝑓 𝑣𝑖𝑖𝑠 𝑡ℎ𝑒 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙 𝑣𝑒𝑟𝑡𝑒𝑥 𝑜𝑓 𝑒𝑗
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                               

 

Example: 

 

 

 

𝐴 = (

1
−1
0
0

−1
1
0
0

−1
0
0
1

−1
0
0
1

0
−1
0
1

) 

  

Figure 3.12. Example of a graph 

Figure 3.13. Example of a directed graph 
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3.2.6. Types of graphs 

To sum up the differences between undirected graphs and directed graphs (or digraphs), a 

comparative table has been considered interesting and easier to consult [10]. 

UNDIRECTED GRAPH DIRECTED GRAPH / DIGRAPH 

Vertices 

Edge Directed edge / arc 

Degree 

Out-degree 

In-degree 

Walk Directed walk 

Eulerian concept 

Hamiltonian concept 

Connected Strongly connected 

Tree Arborescence 

Table 3.2. Undirected/Directed graph comparison 

Related to transportation, a graph classification could be [10]: 

 𝑅𝑜𝑎𝑑 𝑔𝑟𝑎𝑝ℎ {
𝑛𝑜𝑑𝑒 → 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛                 
𝑎𝑟𝑐 → 𝑠𝑡𝑟𝑒𝑒𝑡 𝑠𝑒𝑐𝑡𝑖𝑜𝑛                 
𝐷𝑖𝑟𝑒𝑐𝑡𝑒𝑑 𝑔𝑟𝑎𝑝ℎ 𝑏𝑦 𝑑𝑒𝑓𝑖𝑛𝑖𝑡𝑖𝑜𝑛

 

 

 𝑆𝑢𝑝𝑒𝑟𝑓𝑖𝑐𝑖𝑎𝑙 𝑝𝑢𝑏𝑙𝑖𝑐 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑎𝑡𝑖𝑜𝑛 𝑔𝑟𝑎𝑝ℎ {
𝑣𝑒𝑟𝑡𝑒𝑥 → 𝑠𝑡𝑜𝑝                          
𝑎𝑟𝑐 → 𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝑎𝑚𝑜𝑛𝑔 𝑠𝑡𝑜𝑝𝑠 

 

 𝑅𝑎𝑖𝑙 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡 𝑔𝑟𝑎𝑝ℎ {
𝑣𝑒𝑟𝑡𝑒𝑥 → 𝑠𝑡𝑎𝑡𝑖𝑜𝑛                             

𝑎𝑟𝑐 → {
𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝑎𝑚𝑜𝑛𝑔 𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑠
𝑖𝑛𝑡𝑒𝑟𝑐ℎ𝑎𝑛𝑔𝑒                       

 

 

 𝑂𝑛 𝑓𝑜𝑜𝑡 𝑔𝑟𝑎𝑝ℎ {
𝑣𝑒𝑟𝑡𝑒𝑥 → 𝑏𝑖𝑓𝑢𝑟𝑐𝑎𝑡𝑖𝑜𝑛 𝑝𝑜𝑖𝑛𝑡 𝑜𝑓 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑟𝑜𝑢𝑡𝑒𝑠

𝑒𝑑𝑔𝑒𝑠 (𝑛𝑜 𝑎𝑟𝑐𝑠)                                                               
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3.2.7. Algorithms  

Lots of algorithms are the basis of software that solve some transportation problems. Here, a 

summary of four of them as example is considered interesting of study. 

 Shortest path problem → Dijkstra’s algorithm 

Problem: to find a path between any pair of nodes (called initial and final) of a directed or 

undirected graph. A cost magnitude or concept (distance, time, cost, generalized cost…) 

must be associated to each edge or arc. 

Solution: Dijkstra’s algorithm is an iterative algorithm that acts like an “oil stain”. The 

algorithm creates a tree of shortest paths from the starting vertex (the source) to all other 

vertex in the graph, by building a set of nodes that have minimum distance (sometimes 

someone talks about distance meaning cost magnitude) from the source [8]. 

 Transportation problem (factory – warehouse) → Vögel algorithm 

Problem: to determine the transportation policy that minimizes the total cost of transportation. 

Solution: Vögel’s algorithm is a technique for finding a good initial feasible solution. It works 

as the following steps [9]: 

1) Balance the given transportation problem if either (total supply>total demand) or (total 

supply<total demand) 

2) Determine the penalty cost for each row and column by subtracting the lowest cell 

cost in the row or column from the next lowest cell cost in the same row or column. 

3) Select the row or column with the highest penalty cost (breaking ties arbitrarily or 

choosing the lowest-cost cell). 

4) Allocate as much as possible to the feasible cell with the lowest transportation cost in 

the row or column with the highest penalty cost. 

5) Repeat steps 2, 3 and 4 until all requirements have been meet. 

6) Compute total transportation cost for the feasible allocations. 

 

 Travelling salesman problem (TSP) → Maximum savings algorithm 

Problem: Given a set of cities and known the distance of going from any city to any other, it is 

about finding a cycle that goes through all cities just once, so that the distance is minimum 

[10]. 
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Solution: this algorithm is based in the centrality concept (for one vertex, sum of the 

distances of the edges of the vertex). The vertex with the minimum centrality is considered 

the centre 𝐶 of the graph. 

From now on, the saving concept of the edge (𝑖, 𝑗) is defined as the distance reduction that is 

obtained going from the vertex 𝑖 to the vertex 𝑗 going through the edge in question instead of 

going through the centre. 

In consequence, finding the cycle of minimum distance is equal to find the cycle of maximum 

saving. Therefore, the saving of each edge is calculated and that one with the maximum 

value is taken and then the others in descending order, if possible (in other words: not doing 

partial cycles nor pitchforks). 

 Vehicle Routing Problem → Heuristic algorithm of Clarke & Wright 

Problem: given a vehicle or a set of vehicles with a capacity smaller than the demand 

quantity, the problem to solve is to find the different partial cycles, called petals, which the 

vehicles have to complete, so that the sum of the petals distances is minimum [11]. 

Solution: the Clarke & Wright algorithm follows these steps: 

1) All the savings are calculated for each edge, regarding the warehouse. 

2) The savings are ordered in descending order. 

3) For each pair, the following situations are considered: 

a) If 𝑖 or 𝑗 don’t belong to any petal, the corresponding petal is created.  

b) If 𝑖 belongs to the petal 𝑝 and is adjacent to the warehouse and 𝑗 doesn’t belong 

to any petal and the demand is admissible, the client 𝑗 is added to the petal, in 

adjacent position to the warehouse. 

c) If 𝑖 belongs to the petal 𝑝, 𝑗 belongs to the petal 𝑝′ and the sum of the two 

demands is smaller than the transportation capacity and both are adjacent to the 

warehouse, both petals join together in one. 

d) If 𝑖 and 𝑗 already belong to the same petal, the pair is ignored. 

e) If 𝑖 and 𝑗 belong to different petals but one of them o both are not adjacent to the 

warehouse, the pair is ignored. 

4) If all clients are already assigned to a petal, the possibility of fusing together is 

analysed. 
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3.3. Social networks analysis 

3.3.1. Introduction 

Social network analysis, also called structural analysis, is a strategy for looking into social 

networks and structures, by using mathematical formulations extracted from graph theory. 

Data is an input in social network analysis in the form of vertices and edges [13]. 

Real world situations or physical environments can be represented with different types of 

network structures, depending on relations and transitory structures. To confirm this state, a 

social network topology changes into a complex and a scale free network. Road networks 

and their spatial relations generate specific network structures. This fact is visible with the 

considerably different characteristic when comparing road networks with others [12]. 

Complex networks present characteristic topological features which specify their connectivity 

and influence the processes executed on the social network. The analysis, division and 

synthesis of complex networks depend on the use of measurements that are able to express 

the most relevant topological features. The main existing measurements will be presented 

and analysed [6].  

Complex network research has been a focus of attention only recently. This fact is explained 

by the discovery that real networks have characteristics which are no explained by uniformly 

random connectivity. Instead, networks that come from real data might involve other 

structural features, like community structure, power law degree distributions and hubs [6]. 

The network representations have been commonly used in diverse problem areas. An 

Internet network and a web site link network are among common examples. In Biology and 

chemistry, networks are used to explain, for example, how proteins and atoms interact with 

each other. In sociology, researchers study relationships between actors with 

representations based on social networks. All these representations served as a big tool to 

help researchers to analyse various technological or social phenomena [12]. 

Current analysis tools are expensive, consume a lot of time and require rigorous data in 

order to have reliable results. In consequence, a quick and inexpensive study through 

networks is the best way to preliminarily analyse traffic networks. This means to realise a 

literature review into papers, books, articles, etc. written by researchers and specialists on 

this field in order to contrast different points of view and analyse which parameters are 

considered significant. 
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3.3.2. Research 

According to Park and Yilmaz (2010) in their investigation “A social network analysis 

approach to analyze road networks” [12], there are two main concepts in analysis of road 

network. The first one is the centrality of nodes in a road network, which is used to detect 

important nodes and find nodal characteristics in networks. They compute three types of 

centralities: degree, closeness and betweenness. 

The second concept they introduce to road network analysis is the entropy of distributions 

computed from the network. Entropy explains the uncertainty from a probability distribution 

and is commonly used in information coding theory. In this context, graph entropy is used to 

measure information encoded in the distributions generated from the road networks. 

When describing the methodology they carried out, these four parameters are described 

mathematically: 

 Degree: one of the more widely used measures and counts the number of direct 

connections a node has to other nodes in the network. The large number of degree 

means how many ways are linked at a junction point. It may imply that higher degree 

of nodes could have crowded traffic at those points than lower degree nodes. 

𝑑(𝑖) =∑𝑚𝑖𝑗
𝑗

 (3.5) 

Where 𝑑(𝑖) is the degree centrality of node 𝑖 and 𝑚𝑖𝑗 = 1 if there is a link between 

the 𝑖 and 𝑗 vertices and 𝑚𝑖𝑗 = 0 otherwise. 

 Closeness: in social network, closeness indicates how a node is close to the other 

node. It is computed as the shortest geodetic path between two nodes. Since 

closeness finds the shortest path in the whole network structure, it considers the 

global connectivity of network structure. 

𝐶𝐶𝑙𝑜𝑠𝑒𝑛𝑒𝑠𝑠(𝑁𝑖) =
1

∑ 𝑑𝑖𝑗
𝑛
𝑗=1

 (3.6) 

Where 𝑑𝑖𝑗 is a geodetic distance between 𝑁𝑖 and 𝑁𝑗. 

 Betweenness: number of times a node is crossed by shortest paths in the graph. This 

parameter explains how a node can control the other nodes which have no direct 

connectivity between them. In a road network application, betweenness tells how the 

intersection points are important to reach the destination from the start points. 



Analysis of typical traffic networks  Page 25 

 

𝐵𝐶𝑖 =
𝜎𝑗𝑘(𝑖)

𝜎𝑗𝑘
 (3.7) 

Where: 

𝜎𝑗𝑘 Total number of shortest paths from node 𝑗 to 𝑘 

𝜎𝑗𝑘(𝑖) Number of shortest paths from node 𝑗 to 𝑘 that pass through node 𝑖 

 Entropy: is a quantitative measurement used to explain the probability distributions. If 

the probability has uniform distribution, it is called the uncertainty of the distribution is 

uniform (the states of the system are highly disordered). On the contrary, when the 

probability distribution has not uniform distribution, some of states could be 

predictable. Let 𝑃 be the probability distribution on the node set of 𝑉(𝐺) and 

𝑝𝑖 ∈ [0,1]. Thus, the entropy of the graph G is: 

𝐻(𝐺, 𝑃) =∑𝑝𝑖 log2(𝑝𝑖)

𝑁

𝑖=1

 (3.8) 

The results after analyzing four cases (unweighted and undirected network structures) 

showed that generally the downtown area (in the example they use, the downtown area has 

nearly grid type of network) tends to have more nodal degree than the residential area (a 

more circular/ring area). When degree entropy is computed, it seems that entropy of degree 

distribution does not discriminate different types of road network topologies. Then, after 

studying the closeness and the betweenness with both entropies, the study samples explain 

that the downtown area has more alternative shortest routes than the residential area. 

In conclusion, in a downtown area which has grid-like network topology has higher entropy 

than the residential area having radiant network topology. 

 

The paper “Social Network Analysis Approach for Improved Transportation Planning” 

(reference [13]) uses SNA (Social Network Analysis) to analyze transportation networks and 

corroborate the effectiveness of SNA as a complementary tool for improved transportation 

planning.  

The authors use SNA centrality measures to reach the goals of their investigations. They 

defend that if money were invested to improve an intersection with the highest centrality, not 

only would that intersection improve, but travel time throughout the network would decrease. 

For this reason, a central intersection should be given more focus in order to maintain 

consistent and nonextended travel time. The centrality measures they use are the following: 
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 Degree centrality: explained previously in (3.5). 

 2-step reach centrality value: sums the number of nodes within 2 steps or links of a 

particular node, i.e. it is basically the sum of the degree centralities of the adjacent 

nodes. 

𝑆𝑣 = ∑ 𝑑(𝑖)

𝑖∈𝑀(𝑣)

 (3.9) 

Where 𝑑(𝑖) is the degree of node 𝑖; 𝑆𝑣 is the 2-step centrality value; and 𝑀(𝑣) is the 

set of neighbors of 𝑣. 

 Bonacich power: evaluates the road’s centrality as a function of how many 

connections it has, and how many connections the roads in the neighbourhood have. 

The more connections the neighbourhood roads have, the more central the road is. 

𝐵𝑃𝑖 = 𝑎 (𝐼 − 𝑏 ∗ 𝑅)
−1 𝑅 ∗ 1 (3.10) 

Where: 

𝐵𝑃𝑖 Bonacich power of node 𝑖 

𝑎 Scaling vector (set to normalize the score) 

𝑏 Scope of the weight of the centrality 

𝑅 Adjacency matrix (can be valued) 

𝐼 Identity matrix (1s down the diagonal) 

1 Matrix of all ones 

 Eigenvector centrality: determines nodal centrality based on the closeness centrality 

of adjacent nodes. It is a function of how many intersections lie between any two 

selected intersections. It is another type of weighted centrality measure in which the 

centrality of adjacent nodes contributes to the overall centrality of the studied node. 

For network 𝐺 = (𝑉, 𝐸) and an adjacent matrix 𝐴 consisting of elements 𝑎𝑣,𝑡 , the 

eigenvector centrality score of 𝑣 is obtained as: 

𝑥𝑣 =
1

𝜆
∑ 𝑥𝑡

𝑡∈𝑀(𝑣)

=
1

𝜆
∑𝑎𝑣,𝑡 𝑥𝑡
𝑡∈𝐺

 (3.11) 

Where 𝑀(𝑣) is the set of neighbors of 𝑣; 𝑎𝑣,𝑡 = 1 if vertex 𝑣 is linked to vertex 𝑡 and 

𝑎𝑣,𝑡 = 0 otherwise; and 𝜆 is a constant. 

 Betweenness centrality: explained before in (3.7). 
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Although simple centrality measures look at total traffic volume only at individual 

intersections, the measures used in the research they did weight intersections based on their 

location and connection strength. 

After the studies realized, they saw that Eigenvector and Bonacich power explain the 

important role of nodes in a social network. In a road network, the degree of a node can 

create connectivity in and popularity of an intersection with respect to spatially neighboring 

intersections. A node with a high Bonacich value has more opportunities and alternatives 

than other nodes to reach anywhere in the network. Eigenventor values reflect the closeness 

of nodes in terms of global or overall network structures. 

Betweenness indicates the controlling power that a subject node has over other, 

unconnected nodes. Thus, high betweenness means that the subject node connects the 

other nodes.  

Two-step reach is considered a good measure of accessibility if networks have relatively 

harmonic traffic counts. However, it is not recommended in nonuniform traffic networks 

because it does not take nodal weight (traffic count in this case) into consideration. 

It is recommended that all of the centrality measures be used in parallel, because the exact 

interpretation of each one is yet to be completely developed. 

 

Two other researchers who used some of the same measurements such as the above ones 

were Matthias Kowald & Kay W. Axhausen in their investigations [16]. They described 

density as the proportion of all possible connections between actors of a given graph and all 

actual connections. Therefore, density values and network sizes should be considered 

together. Measurements of degree and betweenness centralization are complementary to 

the density concept. Both are global measurements for a personal network topology. 

 

The last research about social network analysis taken into account in the Master Thesis in 

question is the one carried out by Parthasarathi [17], whose aim was to develop quantitative 

measures that capture various aspects of the network structure, using data from fifty 

metropolitan areas across the US. The argument presented is that while the metropolitan 

transportation network need not be the only indicator of travel in a region, an understanding 

of relationship between network architecture and travel is essential for the design of 

sustainable and efficient cities. The following measures of street network structure were 

estimated for each of the fifty metropolitan areas: 
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- Hierarchy: Entropy and Percentage of freeways 

- Topology: Treeness, Completeness and Average circuity 

- Scale: Street density 

 

 Entropy: explained previously in (3.8). Entropy captures the differentiation that exists 

among road networks. Roadways networks typically have a very high proportion of 

local streets compared to other functional categories. The differentiation in network 

structure, as measured by the entropy variable, identifies a variation from this typical 

condition. Therefore, a higher entropy measure indicates the presence of higher 

functional classification links in the network such as arterials compared to local 

streets. 

 Percentage of freeways: is also designed to capture the hierarchy in real-world street 

networks. It focuses specifically on the freeways in the area. The percentage of 

freeways is estimated as: 

%𝐹 =
𝐿𝑓

𝐿
∗ 100 (3.12) 

Where 𝐿𝑓 is the number of freeway kilometers in the area and 𝐿 is the total roadway 

kilometers in the area.  

 Treeness: based on the two basic structures of a planar transportation network: 

circuit and tree. As has been explained before, a circuit is a closed path (with more 

than two links) that begins and ends at the same node. A tree is defined as a set of 

connected lines that do not form a complete circuit. The treeness for each street 

network was estimated as: 

𝜙𝑡𝑟𝑒𝑒 =
𝐿𝑡
𝐿

 (3.13) 

Where 𝐿𝑡 is the length (in 𝑘𝑚) of street segments belonging to a branch network in 

the area and 𝐿 is the total roadway kilometers in the area. 

The treeness measures capture the differences in topology and connection patterns 

that exist among real-world street network.  

 Completeness: captures the level of completeness in the network using a link-node 

approach. This concept is explained in advance in the Figure 3.5 part. The number of 

links in a real world network is typically less than the maximum number of links and 

the completeness index used captures this difference. Considering a road network 

with 𝐸 links (edges) and 𝑉 nodes (vertices), the completeness of the street network is 

defined as: 
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𝜌𝑒 =
𝐸

𝑉2 − 𝑉
 (3.14) 

 

Nodes in 

network 

Maximum 

number of 1-way 

links 

Maximum 

number of 2-way 

links 

Completeness 

2 1 2 100% 

3 3 6 100% 

4 6 12 100% 

5 10 20 100% 

6 15 30 100% 

Table 3.3. Maximum number of links in sample networks 

 Average Circuity: the ratio of the shortest path network distance to the Euclidean or 

straight-line distance between an origin and destination (OD) pair. It is designed to 

capture the inefficiency in the network from the point of view of a traveler. The 

average circuity for a subsample of OD pairs in each area wan estimated as: 

𝐶 =
𝐷𝑛
𝐷𝑒

 (3.15) 

Where: 

𝐶 Average circuity in the metropolitan area 

𝐷𝑛 Sum of the network distance (𝑘𝑚) between all OD pairs in the subsample 

𝐷𝑒 Sum of the Euclidean distance (𝑘𝑚) between all OD pairs in the subsample 

 Street density (𝜌𝑙𝑚): for each metropolitan, it is estimated as: 

𝜌𝑙𝑚 =
𝐿

𝐴
 (3.16) 

Where  𝐿 is roadway kilometers in the area and 𝐴 is the size of the area (𝑘𝑚2). 

The estimated value has a unit of 1/𝑘𝑚. This measure differs from the completeness 

measure in that it provides a measure of the size of the actual network in comparison 

to the size of the urban area.  
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 Accessibility: refers to the ease of reaching destinations or activities. The cumulative 

opportunity is one of the many methods to estimate accessibility in the region; it 

estimates the number of destinations (𝑂𝑡) that can be reached in a given time 

threshold. A similar approach is used here to measure the average number of people 

that can be reached in 𝑡 minutes by automobile at uniform average metropolitan 

density. The accessibility measure is estimated as: 

𝑂𝑡 = ᴨ ∗ [
𝑆𝑛 · 𝑡

𝐶
]
2

∗ 𝜌𝑝𝑚 (3.17) 

Where: 

𝜌𝑝𝑚 Urban area population density (𝑝𝑒𝑟𝑠𝑜𝑛 · 𝑘𝑚−2) 

𝑡 Time threshold (in minutes) 

𝑆𝑛 Average network speed in 𝑘𝑚/ℎ 

𝐶 Average circuity, as estimated above 

Parthasarathi’s research aimed to develop quantitative measures that capture various 

aspects of network structure. The influence of these measures on system performance was 

then tested using two linear regression models. The results from both models confirm that 

the quantitative measures of network structure affect the system performance, after 

controlling for independent variables that are non-network based.  

The first model shows the influence of network treeness while the second model shows the 

influence of accessibility, street density, completeness and the percentage of freeways in the 

urban area. 

The author confirms that it is absolutely essential that we consider network architecture in the 

design of new transportation facilities. We are at a stage worldwide where the transportation 

systems in the developed world are in mature stage while the developing countries are just 

getting started with designing new infrastructure. This provides us a valuable opportunity 

where we can apply the lessons learned from the mature transportation systems to help 

design efficient and sustainable facilities.  
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3.4. Traffic network topologies 

3.4.1. Introduction 

Many studies propose measures to characterize networks for different types of applications: 

physics, geography, the Internet, and biological and social systems. Some examples in these 

fields include Kansky (1963), Hagget and Chorley (1967) and Garrison and Marble (1974). 

Kansky used graph theory to develop measures to quantify the special structure of 

transportation networks. Kansky considered three main indices as nodal importance and 

network complexity in transportation networks: Alpha, Beta, and Gamma indices, all 

measures of connectivity. These and other measures are going to be defined later. Their 

studies, however, were limited by computational resources. 

More recently, relations between network shape and transportation system arrangement 

have been studied, due to advances in computers, in a considered number of works, which 

include, for example, road and air networks (e.g., Gastner and Newman, 2006; Reggiani et 

al., 2011) and subway networks (e.g., Derrible and Kennedy, 2010).  

Moreover, random, scale-free and small-world network structures were found to be 

particularly significant. In random graphs, nodes are randomly linked with an equal 

probability of placing a link between any pair of nodes. As defined in Barabási and Albert 

(1999), a scale-free network has a nodal degree distribution that follows a power law. Thus, 

some nodes have a degree that greatly exceeds the average. Small-world networks, on the 

other hand, are densely connected in local regions, creating highly connected subgraphs 

with few crucial connections between distant neighbours. Wu et al. (2004) showed that scale-

free type characteristics exist in urban transit networks in Beijing (example of the bus 

landscape in the Figure 3.14), while Latora and Marchiori (2002) suggested that the Boston 

subway system has a small-world network structure (seen in the Fgure 3.15).  

 

 

  

 

 

 

 Figure 3.14. Beijing Bus Landscape [Source:     

https://www.beijingcitylab.com/projects-1/3-bus-

landscapes /] 

Fgure 3.15. Boston Subway [Source: 

http://www.boston-discovery-

guide.com/boston-subway.html ]  

https://www.beijingcitylab.com/projects-1/3-bus-landscapes
https://www.beijingcitylab.com/projects-1/3-bus-landscapes
http://www.boston-discovery-guide.com/boston-subway.html
http://www.boston-discovery-guide.com/boston-subway.html
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Watts and Strogatz (1998) studied the performance of neural and power grid networks in 

terms of shortest average path length and clustering. They found that some neural and 

power grid networks have the shape of small-world networks. Zhao and Gao (2007) studied 

the performance of small-world, scale-free and random networks in terms of total travel time 

and traffic volume in the context of a traffic network. 

Other works have studied connections between system topology and performance. In the 

context of transit networks, Li and Kim (2014), for example, proposed a connectivity-based 

survivability measure to study the Beijing subway system (visible in the Figure 3.16). 

Similarly, Rodríguez-Núñez and García-Palomares (2014) presented a vulnerability measure 

and applied it to study the Madrid Metro, whose system is shown in the Figure 3.17.  

 

In work by Derrible and Kennedy (2010), the robustness of 33 metro systems around the 

world was investigated. In their work, robustness is defined in terms of cyclicity. Cyclicity is a 

connectivity measure that like average degree is used to characterize a network topology 

herein. Exploiting noted relationships between these real system layouts and scale-free and 

small-world network structures, they provided strategies for improving performance of both 

small and large systems. They provide a comprehensive review of related works, as well. 

O’Kelly (forthcoming) discusses the role of hubs in network vulnerability and resilience of 

various network structures.  

Finally, Reggiani et al. (forthcoming) propose the use of connectivity as a unifying framework 

for considering resilience and vulnerability in relation to transport networks. They test this 

concept through a synthesis of related literature. Numerous additional articles consider the 

performance of specific transportation networks under various resilience-related measures, 

but they do not investigate the general role of network topology. 

Figure 3.16. Beijing Subway System [Source: 

http://www.beijingchina.net.cn/transportation/

subway.html ] 

Figure 3.17. Madrid Subway System  

[Source: http://www.planometromadrid.org/ ] 

http://www.beijingchina.net.cn/transportation/subway.html
http://www.beijingchina.net.cn/transportation/subway.html
http://www.planometromadrid.org/
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3.4.2. Research 

In their investigations, Zhang et al. used 17 networks topologies of the 25 topologies 

discovered in a search [2]. These basic structures supply the fundamental elements to build 

larger comparable networks. In Figure 3.18, the chosen networks are represented, as well as 

the extrapolation to larger network sizes (with a bigger number of nodes and links). 

 

Figure 3.18. Network topology and extrapolation (Zhang et al. [2], 2015, p. 37) 
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According to them, a network topology can be characterized in terms of connectivity and 

accessibility measures. Connectivity measures are used to evaluate redundancies and 

connectedness, while accessibility measures are used to compare the relative position of 

nodes in the network. In their works, they studied relationships between network topology 

and vulnerability or similar measures, by investigating the role of network topology in system 

resilience. Here, the resilience is considered the innate ability of the system to absorb 

externally induced changes, and also the cost-effective and efficient, adaptive actions that 

can be taken to preserve or restore performance post-event. 

Before describing the measures, to define some parameters is necessary: 

𝑒 Number of links in the graph 

𝑣 Number of nodes in the graph 

𝐺 Number of sub-graphs in the graph 

𝑛𝑖 Number of arcs incident on node 𝑖 

𝑑𝑖𝑗 Distance of the shortest path between O – D pairs (𝑖, 𝑗)  

𝐶𝑦𝑐𝑙𝑒𝑖 Number of times random walk cycled back to node 𝑖 

|𝑅| Number of random walks 

𝜎𝑗𝑘 Total number of shortest paths from node 𝑗 to 𝑘 

𝜎𝑗𝑘(𝑖) Number of shortest paths from node 𝑗 to 𝑘 that pass through node 𝑖 

As connectivity measures, Zhang et al. used the following six: 

 Cyclomatic number: number of fundamental circuits in the network 

𝜇 = 𝑒 − 𝑣 + 𝐺,   𝑤ℎ𝑒𝑟𝑒 𝜇 ≥ 0 (3.18) 

 Alpha index: ratio of number of cycles to possible maximum number of cycles.  

𝛼 =
𝜇

2𝑣 − 5
       𝑤ℎ𝑒𝑟𝑒 0 ≤ 𝛼 ≤ 1 (3.19) 

 Beta index: ratio between number of links and number of nodes, equivalent to 

average degree 

𝛽 =
𝑒

𝑣
       𝑤ℎ𝑒𝑟𝑒 𝛽 ≥ 0 (3.20) 

 Gamma index: ratio of number of links to maximum possible number of links  

𝛾 =
𝑒

3(𝑣 − 2)
        𝑤ℎ𝑒𝑟𝑒 0 ≤ 𝛾 ≤ 1       (3.21) 
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 Average index: average number of arcs incident on the nodes 

�̅� =
∑ 𝑛𝑖𝑖

𝑣
           𝑤ℎ𝑒𝑟𝑒 �̅� ≥ 0 

(3.22) 

 Cyclicity: number of times random walk led to a cycle back to a previously visited 

node/number of random walks 

�̂� =
∑ 𝐶𝑦𝑐𝑙𝑒𝑖
𝑛
𝑗=1

|𝑅|
                  𝑤ℎ𝑒𝑟𝑒 0 ≤ �̂� ≤ 1 

(3.23) 

And as accessibility measures, Zhang et al. worked with these three ones: 

 Diameter: the maximum distance among all shortest distances between all O-D pairs 

in the network 

𝐷 = max (𝑑𝑖𝑗) (3.24) 

 Average Shimbel index: average of the sum of the lengths of all shortest paths 

connecting all pairs of nodes in the network 

𝐴𝑖 =
∑ 𝑑𝑖𝑗
𝑛
𝑗=1

𝑣 − 1
 

(3.25) 

 Betweenness centrality: explained before in (3.7). 

Analysing the results from large networks (with 100 nodes) gave several important 

discoveries. In general, resilience measures increase with average degree and greater 

cyclicity, but decrease with network diameter. Thus, the complete network has the highest 

values of resilience, while the ring network has the lowest. 

The general ordering of the network topologies from most resilient to least resilient was found 

to be: complete, matching pairs, complete grid, diamond, grid, single depot, central ring, hub-

and-spoke, double-U, converging tails, random, scale-free, small-world, crossing path, 

double tree, diverging tails and ring network. This ordering indicates a strong connection 

between resilience and average degree. 

The studied network topologies might also be categorized by type of connections: group 1 

(highly connected) – grid, matching pair, complete grid and diamond networks; group 2 

(centrally connected) – hub-and-spoke, double tree, ring, diverging tails and crossing paths 

networks; group 3 (circuit-like connected) – central ring, double U and converging tails; group 

4 (randomly connected) – random, scale-free and small-world networks. 
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Another interesting work, related to the parameters used on it, is the one carried out by 

Freiria et al. in 2015 [14]. This work is due to road networks interruptions caused by natural 

disasters are, every time, more frequent and their consequences, more varied. The main 

goal of their work was to identify the most important roads in a network, defined as those 

whose interruption would cause the most significant consequences (in terms of connectivity 

loss and average distance increase among the nodes).  

They propose a new model to evaluate the most important roads in the network by applying 

the biclustering technique, identifying patterns of attributes (road performance measures) 

and patterns of roads (connectivity patterns). 

In order to reach the main goal of their work, the indicators were selected on the basis of 

analysis of centrality, cohesion and density and also based on the literature review. The 

indicators selected are explained as follow, excluding those ones Zhang et al. used in their 

investigations, of which only extra information focused on Freiria et al.’s work is going to be 

given. 

 Alpha index: synonym of expansiveness and refers to the effect of each road’s out-

degree on the probability that it will have links to other roads. Equation exposed 

before in (3.19). 

 Betweenness: important for analysing the hierarchical structure of the network and 

ranking the links of the network. Equation exposed before in (3.7). 

 Bonacich power: explained before in (3.10). 

 Cluster index: measure of the likelihood that any two associates of a road will actually 

be associates. 

𝐶𝑖 =
𝑀_𝑖

𝑘𝑖(𝑘𝑖 − 1)/2 
 (3.26) 

Where: 

𝐶𝑖 Clustering coefficient of node 𝑖 

𝑀𝑖 Number of pair of neighbours of node 𝑖 that are connected 

𝑘𝑖 Number of neighbours for node 𝑖 

 

 Cutpoint: node that if removed, would leave the network with disconnected 

components, i.e. the structure would become divided into-unconnected parts. 

𝑐𝑢𝑡(𝐴, 𝐵) = ∑ 𝑤𝑖𝑗
𝑖∈𝐴,𝑗∈𝐵

 (3.27) 

Where node i belongs to the component A and j belongs to the component B and 𝑤𝑖𝑗 

is the weight of the connections between 𝑖 and 𝑗. 



Analysis of typical traffic networks  Page 37 

 

 Degree: explained before in (3.5). 

 Fragmentation: proportion of pairs of vertices that cannot reach each other. Given a 

matrix 𝑅 in which 𝑟𝑖𝑗 = 1 if 𝑖 can reach 𝑗 and 𝑟𝑖𝑗 = 0 otherwise, the fragmentation can 

be defined as: 

𝐹𝑖 =
2∑ ∑ 𝑟𝑖𝑗𝑗<1𝑖

𝑛(𝑛 − 1)
 (3.28) 

𝐹𝑖 is the fragmentation of the node 𝑖. Fragmentation centrality of a node 𝑖 is the 

difference in the total score with the node 𝑖 included in the network 𝑛 and the score 

with the node removed from the network 𝑛. 

The results of their investigations showed that the higher the level of connectivity of a link, 

the greater its interruption impact on the network. It is worth noting that while a link’s high 

level of connectivity might be considered a strength in a normal situation, it can be viewed as 

vulnerability in a road interruption scenario. 
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The thesis presented by B. Janis in 2014 [15] is about shape grammars, which are promising 

tools for designing urban areas. They can be applied in urban design methods, are 

applicable to different planning sites, and are suitable for solving interdisciplinary planning 

tasks. Three methodologies are proposed in his thesis to define and evaluate grammars and 

their effects in network design. 

In each era, network patterns were designed for specific requirements, by using the available 

technologies of each era. The network patterns of one era replaced these of the prior era, 

and many patterns were passed on to following generations.  

 

Figure 3.19. Example network patterns from Jacob (1993) [Source: in reference [15], p.2] 

The literature review that Janis did seems to be interesting for the Master Thesis in question. 
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Medieval structures as Venice (Figure 3.19 (a)) contrast with baroque layouts and gridirons 

as Barcelona (Figure 3.19 (b)), and these differ again from garden cities, modernist layouts 

as Brasilia (Figure 3.19(c)), as well as lollipop networks as Irvine (Figure 3.19(d)).  

Medieval networks grew through a largely self-organized, historical process. They therefore 

contrast to more recent patterns, which have been realized over a short period of time with a 

specifically designed pattern in a rather top-down approach, for example gridirons. 

In Europe, the medieval networks were built mainly for pedestrians and foot carriages. Later, 

industrialization had an important impact on transportation. Public transportation (trains and 

tramways for urbanized areas) emerged as a major transport mode at the turn of the century 

(1900).Regarding the urban design, gridirons were suitable for such modes and were 

designed and applied. Later, automobiles enabled individual transportation. Modernist and 

lollipop networks were designed, leading the new car age. 

Current and future technological developments allow now more optimized travel in ever more 

congested and complex networks. 

In the future, vehicle assistance might enable a more generic design, which could be 

detached from the existing network patterns. Advances in technology will allow to enhance 

transportation systems in the future, which will influence spatial development again. 

It is evident that technology and urban design interdependent. Advances in technology 

enable new transport modes, which require new infrastructure, both for transportation and 

spatial developments. New modes and new infrastructure enable further cost reduction, 

improve productivity and increase economic well-being. It is expected that urban network 

design and redesign will prevail in urban planning due to population changes and continuous 

technological progress. 

Changes on the travel demand side are difficult to predict in long-term forecast models. 

Therefore, planners aim at reliable and robust transport systems which allow to absorb 

variation in travel demand and infrastructure supply. Reliability and robustness of the 

transport systems has become a priority as there are changing or increasing travel demand, 

longer trip distance and higher flows and therefore also capacity problems and delays due to 

the capacity limits on the infrastructure side. 

Summing up, it can be stated that our transport systems face two major tasks: The systems 

should be as efficient and productive as possible in the current state, and at the same time 

reliable and robust to short and long term changes. 
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3.5. Intersections 

An intersection is the area where two or more streets join or cross at-grade [18]. The 

intersection includes the areas needed for all modes of travel: pedestrian, bicycle, motor 

vehicle, and transit. Intersections are a key feature of street design in four respects: 

 Focus of activity – The land near intersections might contain a set of travel 

destinations. 

 Conflicting movements – Intersections typically concentrate several movements: 

pedestrian crossings, and motor vehicle and bicycle turning and crossing 

movements. 

 Traffic control – At intersections, movements of users is assigned by traffic control 

devices such as yield signs, stop signs, and traffic signals. Traffic control helps to 

organize traffic and decrease the potential for conflict. 

 Capacity – It is defined as the number of users that can be accommodated within a 

given time period. In several cases, capacity of the intersecting roadways is limited by 

traffic control at intersections. 

The major street is typically the intersection street with greater traffic volume, larger cross-

section, and higher functional class. The minor street is the intersecting street likely to have 

less traffic volume, smaller cross-section and lower functional classification than the major 

street.  

Two geometric features are common to all intersections. The angle of intersection is formed 

by the intersection streets’ centerlines. Where the angle of intersection departs significantly 

(more than approximately 20 degrees) from right angles, the intersection is referred to as a 

skewed intersection. 

Intersection legs are those segments of roadway connecting to the intersection. The leg used 

by traffic approaching the intersection is the approach leg, and that used by traffic leaving is 

the departure leg. 

Intersections can be categorized into four major types, as illustrated in Figure 3.20: 

 Simple intersections: maintain the street’s typical cross-section and number of lanes 

throughout the intersection, on both the major and minor streets. 

 Flared intersections: expand the cross-section of the street (main, cross or both).  

 Channelized intersections: use pavements markings or raised islands to designate 

the intended vehicle paths. 

 Roundabouts: has one-way traffic flow circulating around a central island. 
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Figure 3.20. Intersection types [Source: in reference [18], p. 6-11] 
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Most intersections have three or four legs, but multi-leg intersections (five and six-legs 

intersections) are not unusual. Ideally, streets in three-leg and four-leg intersections cross at 

right angles or nearly so. Typical intersection configurations are shown in the next figure 

(Figure 3.21). 

 

Figure 3.21. Intersecting street configuration [Source: in reference [18], p. 6-14] 

In another theoretic study about intersections [19], talking about intersection spacing, it is 

mentioned that, when introducing a new intersection, the designer must ensure that there is 

sufficient distance between the new and the adjacent intersections so that they form distinct 

intersections. For example, if two intersections are close together, they must be considered 

as one for signal phasing purposes. Therefore, distance among intersections is an important 

parameter that might define networks in places with determined intersections.   
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4. Experimental part 

Once the research has been done, the experimental part carried out by the author is going to 

be exposed. First of all, to define the parameters that are used to characterize a network is 

necessary. Then, the process to achieve the results (all MATLAB challenges and the 

solutions proposed) is explained. And finally, the results obtained are going to be analyzed 

and explained in order to verify that the objective of the project is achieved. 

4.1. Useful parameters 

The parameters used to analyse the maps are the key of the project. Choosing correctly the 

values that best fit to this project is not an easy work. The better chosen the parameters are, 

the more accurate results are going to be. Unfortunately, these are limited by the difficulty of 

the programming. Despite programming difficulties and among all the possible features to 

choose, the following four parameters are the selected: 

1) Distance between two intersections connected by a link 

The distance among the intersections (example in the Figure 4.1) might be a good 

characteristic to start the classification. The used graph (histogram: graph of the 

representation of frequency distributions, in which rectangles are used within coordinates) 

can give important information about the map in question. As we will see later, if the 

histogram has only one bar, this could indicate a square grid. If the histogram has two 

defined bars, it could be a rectangular grid. And finally, an irregular histogram might indicate 

other types of networks: random, scale-free, diamond, etc. 

 

Figure 4.1. Distance between two intersections of Barcelona 
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2) Angle between streets that arrive to an intersection 

To obtain all the angles of a map gives an idea of the network. Again, if the angles histogram 

has only one bar in 90˚ or two (one in 90˚ and another in 180˚) might indicate the network is 

a grid (square or rectangular) and, together with the distances obtained in the first parameter, 

we could classify it. Then, if the distribution is irregular, we should look into other parameters 

to decide. 

 

Figure 4.2. Angle between two streets in a intersection of Barcelona 

3) Degree centrality 

This is a parameter used in other network analysis seen in the literature research part. The 

distribution of number of streets that arrive and leave an intersection gives an idea of the 

network connectivity. Analysing the degree histogram, we can expect the kind of network we 

are studying. 

 

Figure 4.3. Degree of an intersection of Barcelona 
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4) Significant streets orientation 

And finally, the streets orientation can be decisive to classify a grid (there are just two 

significant streets orientation) or in case there are more than two orientations, combined with 

the other three parameters, might be decisive to make a decision. This parameter is always 

included in a range of 0˚ to 180˚. 

 

Figure 4.4. Orientations of the grid 

 

Apart of these four parameters, to obtain other simple parameters is also possible, such as: 

- number of nodes (intersections) in the map,  

- number of links (streets),  

- number of streets of one direction and two directions, 

- cyclomatic number (seen in the equation (3.18) and if we consider 𝐺 = 1, as we 

cannot obtain the number of sub-graphs in the map),  

- the alpha index (seen in the equation (3.19) and also considering that 𝐺 = 1, as it 

depends on the cyclomatic number), 

- the beta index (seen in the equation (3.20)(3.20)), 

- and the gamma index (seen in the equation (3.21)(3.21)).  
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4.2. Process 

The experimental part of this thesis has been developed with MATLAB, which combines an 

improved desktop environment for iterative analysis and design processes with a 

programming language that expresses the mathematics of matrices and arrays directly. The 

toolboxes of MATLAB are professional developed, rigorous and fully documented [25]. 

The process holds all the MATLAB functions that include from the exported map (from 

OpenStreetMap) to get the results (graphics, parameters, etc.). This process has been 

divided in four parts. First of all, the part where the OSM map is converted to MATLAB useful 

language and is plotted to see the map. Right after, to fix the matrices and map obtained in 

the first step is necessary and depends on each map, i.e. not all the maps need to be 

cleaned (to be modified in order to have maps with all the streets plotted just once) the same 

way. Finally, the functions to obtain results and characteristics are programmed. 

 

Figure 4.5. Process representation 

4.2.1. Convert an OSM map to a connectivity matrix 

The first part of the project is characterized by taking an OSM file from OpenStreetMap and 

converting it to a usable format for MATLAB (matrices). Then, a function to read the matrices 

and plot them is also necessary in order to see if the matrices are correct. 

Due to the difficulty of this step, the three functions that are part of it are extracted from 

https://es.mathworks.com/matlabcentral/fileexchange/35819-openstreetmap-functions 

created by an expert in MATLAB programming [26]. From this source, only three functions 

have been used, although they call other functions, so the author recommends downloading 

the entire package. The three functions used are the following: 

 First function: parse_openstreetmap 

This function parses an OpenStreetMap XML file (OSM XML) downloaded from the Export 

option from openstreetmap.org.  

It has as a unique input: the string of OpenStreetMap XML Data file name (the path where 

the map is saved, called openstreetmap_filename). Moreover, it calls two other functions 

(load_osm_xml and parse_osm) and has another one as dependency (xml2struct, renamed 

OSM map 
Connectivity 
(adjacency) 

matrices 

Fix matrices 
and maps 

Obtain 
results 

https://es.mathworks.com/matlabcentral/fileexchange/35819-openstreetmap-functions
https://www.openstreetmap.org/
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to xml2struct_fex28518). The outputs are two: a MATLAB data structure of XML of parsed 

OpenStreetMap file (called parsed_osm) and a MATLAB data structure of XML 

OpenStreetMap file (called osm_xml). Both are very similar.  

The parsed_osm variable (see Figure 4.6) is a structure formed by four fields:  

- Bounds: map limits, expressed as longitude and latitude,  

- Node: formed by a vector with the nodes identification “id” and another vector “xy” 

with the coordinates longitude and latitude of each node,  

- Way: created by a vector with the ways identification “id”, a structure “nd” with sets of 

nodes that form each way and the structure “tag” with sets of vectors with strings 

about the key and value of the way, although may not be available for all the ways, 

and 

- Attributes: structure with five fields about the map (attribution, copyright, generator, 

license and version). 

 

Figure 4.6. Parsed_osm variable from MATLAB 

 Second function: extract_connectivity 

This function extracts the connectivity of the road network of the OpenStreetMap file. This 

yields a set of nodes where the roads intersect. Some intersections may appear multiple 

times, because different roads may meet at the same intersection and because multiple 

directions are considered different roads. For this reason, in addition to the connectivity 

matrix, the unique nodes are also identified. 

The unique input is parsed_osm, as returned by the first function (parse_openstreetmap). 

This function calls others: assign_from_parsed and get_way_tag_key. The outputs are two 

parameters: the connectivity matrix (called connectivity_matrix, the adjacency matrix of the 

directed graph of the transportation network, where 

  𝑎𝑑𝑗(𝑖, 𝑗) = 1 𝑖𝑓 𝑎 𝑟𝑜𝑎𝑑 𝑙𝑒𝑎𝑑𝑠 𝑓𝑟𝑜𝑚 𝑛𝑜𝑑𝑒 𝑖 𝑡𝑜 𝑗 𝑎𝑛𝑑 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 as it is explained before in 

3.2.5. Matrices of Graphs) and the parameter with the unique nodes of the intersections 

(called intersection_node_indices). 
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 Third function: plot_road_network 

The third function taken from the package plots the nodes and the edges by connecting 

them. It needs three parameters: the axes object handle (called ax and normally used “gca”, 

which means current axes or chart), the connectivity_matrix (obtained in Second function: 

extract_connectivity) and the parsed_osm structure (obtained in First function: 

parse_openstreetmap). It returns the plot of the map.  

 

Figure 4.7. A little area of l’Eixample (Barcelona) from OpenStreetMap 

 

Figure 4.8. Map graph of l’Eixample after using the three functions 
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This useful function is used during the whole experimental part. It gives a global vision of how 

the map with the actual connectivity_matrix and parsed_osm is, and can be plotted with or 

without the nodes numeration (starting at 1 and until the number of nodes). 

Let’s see how these functions work in a little example of l’Eixample (an area of Barcelona). In 

the Figure 4.7 we can see the part of map that has been exported as an OSM file and in the 

Figure 4.8 we can see how it is represented with the MATLAB functions. A perfect grid where 

only the roads are printed (with the right direction) is expected. As we can see in the Figure 

4.9 (zooming in a part of the graph), the grid is not perfect.  

 

Figure 4.9. Intersection with multiple lines 

Some links are connected multiple times because there is more than one node when it has 

to be just one, so more than one way exists when we only want one. This fact might happen 

because the map from OpenStreetMap exports the bicycle lane, the sidewalks, the bus 

lanes, the vehicles lanes, etc. or because the function is designed to join every pair of nodes 

that are connected (even there is one intersection in the middle that joins both).  

Moreover, some links have a node in the middle that divides the link in two and should not be 

there, as we can see in the Figure 4.10. This fact might falsify the results about the 

intersections, so it has to be resolved. 

These are the problems that are tried to be fixed with the functions explained in 4.2.3. Fix 

map. 
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Figure 4.10. Intersection with links divided into two 

4.2.2. Fix matrices 

So far, the three functions explained (and the called ones) have been taken from the 

package [26], as mentioned before. From now on, most of the functions are programmed by 

the author of this thesis. 

The matrices extracted from the previous functions are bigger than needed, i. e. they have all 

the nodes of the map, in spite of not being used in any link. For this reason, a function to 

reduce the useful matrices is programmed. Moreover, latitude and longitude are not a useful 

mode of coordinates for calculating distances and angles, so it is going to be changed. 

 The reduce_connectivity_matrix function  

This function is created to eliminate those nodes that are not used in the process. It means to 

delete the rows and/or the columns of the matrices to make them smaller. In order to do that, 

the intersection_node_indices parameter is applied: all those nodes that are not contained in 

this vector are deleted.  

The inputs are the matrices to reduce: the connectivity matrix and the parsed_osm (the 

“node” field, where there are the node identification and the node coordinates). As only two 

parameters of this size can be inputs, the intersection_node_indices vector is calculated 

again. The outputs are the same parameters as the input, but modified (the nodes are 

renumbered). Since the links are not changed, the map plot is the same as in the Figure 4.8. 

A representation of the MATLAB code function is summarized in the following box: 
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 For each node i: 

  If node i is in intersection_node_indices vector: 

   Delete row “i” of connectivity matrix 

   Delete column “i” of connectivity matrix 

   Delete column “i” of parsed_osm.node.id 

   Delete column “i” of parsed_osm.node.xy(all rows, i) 

  End 

 End 

Taking the same example of l’Eixample (Barcelona), the original connectivity matrix has a 

1409 × 1409 dimension and, after applying this function, it becomes a 38 × 38 matrix 

(logically, the same as the vector intersection_node_indices length). 

 The convert_to_meters function  

Another problem to fix is that working with meters is preferred (as distance unit) to work with 

variation of latitude and longitude coordinates. To find a solution is needed.  

Latitude and longitude are the units that represent the coordinates at geographic coordinate 

system [28]. Every single point on the surface of the Earth can be specified by the latitude 

and longitude coordinates.  

The latitude shows the angle between the straight line in the certain point and the equatorial 

plane. It is specified by degrees, starting from 0˚ and ending up with 90˚ to both sides of the 

equator, making latitude Northern and Southern. The longitude is another angular coordinate 

defining the position of a point on a surface of the Earth. It is defined as an angle pointing 

west or east from the Greenwich Meridian, which is taken as the Prime Meridian. It can be 

defines maximum as 180˚ east from the Prime Meridian and 180˚ west from the Prime 

Meridian. We can see a drawing representation in the following figure. 

 

Figure 4.11. Latitude (left) and longitude (right) representation [Source: 

https://blog.eogn.com/2014/09/16/convert-an-address-to-latitude-and-longitude/ ] 

https://blog.eogn.com/2014/09/16/convert-an-address-to-latitude-and-longitude/
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The solution comes with the haversine formula, which determines the great-circle distance 

between two points on a sphere given their longitudes and latitudes [27]. For any two points 

on a sphere and solving the haversine of the central angle between them, the distance 

between them is: 

𝑑 = 2𝑟 𝑎𝑟𝑐𝑠𝑖𝑛 (√sin2 (
𝜑2 − 𝜑1
2

) + cos𝜑1 cos𝜑2 sin
2 (
𝜆2 − 𝜆1
2

)) (4.1) 

Where: 

𝑟 Radius of the Earth 

𝜑1, 𝜑2 Latitude of point 1 and latitude of point 2, in radians 

𝜆1, 𝜆2 Longitude of point 1 and longitude of point 2, in radians 

The aim of this function is to point out all the nodes to a reference point. This means to name 

every node with a distance variation “x” and a distance variation “y” in meters respect to the 

reference point. This reference point in question, with new coordinates (0,0) is chosen as the 

center of mass (giving mass 𝑚 “1” to all the points) to minimize distances and its definition is: 

𝐶𝑒𝑛𝑡𝑒𝑟 𝑜𝑓 𝑚𝑎𝑠𝑠 =  
∑𝑚𝑖𝑟𝑖
𝑀

 (4.2) 

Where: 

𝑚𝑖 Mass of the particle 𝑖 

𝑟𝑖 Coordinates of the particle 𝑖 

𝑀 Total mass of the system 

But when we consider the same mass for each point, we are becoming the center of mass 

equation into the average equation. So, the reference point in that one with the average 

latitude and the average longitude of the map. 

The problem of the haversine formula is that it gives the distance between any two points, 

but it does not give the distance variation “x” and the distance variation “y” (an angle is 

needed).  Therefore, an alternative that uses geometric variables based on the haversine 

formula has been applied. The MATLAB code utilized is in the following link 

“http://pordlabs.ucsd.edu/matlab/coord.htm” although some code lines have been modified. 

The new map plot is as the one seen in the following figure. 

http://pordlabs.ucsd.edu/matlab/coord.htm
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Figure 4.12. Map graph of l’Eixample after using “convert to meters” function  

Let’s prove that it is a reliable function. If we take a link close to the reference point 

(supposed to have the more accurate coordinates), which vertices are A (-128.67, -18.84) 

and B (-33.95, -117.26), we obtain these parameters: 

𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐𝑎𝑙 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑓𝑟𝑜𝑚 𝑀𝐴𝑇𝐿𝐴𝐵 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠) = 136,60 𝑚 

𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑎𝑝𝑝𝑟𝑜𝑥. 𝑓𝑟𝑜𝑚 𝐺𝑜𝑜𝑔𝑙𝑒 𝑀𝑎𝑝𝑠) = 134,57 𝑚  

With these two parameters, the relative variation is calculated. We suppose from the 

beginning that a good relative variation result is a value smaller than the 5%. 

∆ 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(%) =
136,60 − 134,57

136,60
∗ 100 = 1,49 % 

To have a 1,49 % of variation is a good result. Let’s calculate the same variation for a further 

link respect to the reference point (worse results are expected), with vertices A  

(248.59, -18.93) and B (156.95, 73.79). 

𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐𝑎𝑙 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑓𝑟𝑜𝑚 𝑀𝐴𝑇𝐿𝐴𝐵 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠) = 130,36 𝑚 

𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑎𝑝𝑝𝑟𝑜𝑥. 𝑓𝑟𝑜𝑚 𝐺𝑜𝑜𝑔𝑙𝑒 𝑀𝑎𝑝𝑠) = 132,94 𝑚  

Then, again the relative variation is calculated: 

∆ 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(%) =
132,94 − 130,36

132,94
∗ 100 = 1,94 % 

In spite of this result is worse than the first one, it is less than a 5 %, so we consider the 

convert_to_meters function as a good approximation to convert the variation of latitude and 

longitude to variation of meters. 
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4.2.3. Fix map 

In order to obtain good results in the parameters explained in the 4.1 section, to fix the map 

mistakes (as the two mistakes shown in the Figure 4.9 and Figure 4.10) is needed. It is 

logical to think not all the maps will have the same troubles; consequently, to adapt the 

functions to correct “on the go” is necessary. This part is not methodical and the person who 

uses the fix-map functions has to check every time that the function is working as it is wanted 

to, by plotting the map and/or by checking the matrices. 

These functions are focused on deleting those nodes and ways which should not be there. 

Now, the problem is to know which nodes and ways are the ones that have to be eliminated. 

 The eliminate_nodes function  

The first try to fix the map is this function, eliminate_nodes, which eliminates the nodes that 

are close to a caught node. It replaces the connections that the removed node has with new 

connections with the node that stays. 

In the following figure, a graphic representation of a possible situation is represented: 

 

Figure 4.13. Steps representation of the “eliminate nodes” function 
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Given the connectivity matrix and the parsed_osm parameter, the first step is to detect a 

node (in order it comes in the connectivity matrix; the red node on the left in the example) 

and see which nodes (if exist) are close to it in an accurate distance (threshold) in order to 

consider them all as a unique node. The threshold depends on the map and finding the one 

that fits better is a challenge for the function user. This is not an automatic step. 

The next step is to redirect the links of those nodes that are going to be deleted to the 

detected node. The third step is basically repeating the first step for all the nodes of the map. 

At the end (fourth step), the function “reduce connectivity matrix” is used to delete those 

nodes that have no links. The problem of this function comes when the superposed links do 

not have the same beginning and ending vertices. 

A representation of the MATLAB code function is summarized in the following box: 

 For each node i: 

  For each node j: 

   If node i and node j are different nodes: 

    Calculate distance between them 

    If distance < threshold: 

     Eliminate links of the node j 

     Create links of node j into links of node i 

    End 

   End 

  End 

 End 

 

 The eliminate_ways function package (from 1 to 9) 

The whole “eliminate ways” package is dedicated to delete all those ways (links) that are 

multiple and are unnecessary. To understand what every function does and to know if it is 

applicable to the map we have in every situation is necessary in order to optimize this 

process and have a perfect map as soon as possible. 
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 The eliminate_ways1 function  

This function does basically the same as the eliminate_nodes function, but catching a way 

instead of a node. Let’s see it represented in the same example as seen in the Figure 4.13. 

 

Figure 4.14. Steps representation of the “eliminate ways 1” function 

Given the connectivity matrix and the parsed_osm parameter, the first step is to catch a link 

and see which links have beginning and ending vertices close enough (again the threshold 

parameter) to the vertices of the caught link. Then, the links that are not useful are eliminated 

by cancelling them in the connectivity matrix (to make “0” the pertinent element of the matrix 

that represents the link). Finally, here the “reduce connectivity matrix” function is also applied 

to accelerate the MATLAB processing time and to work with simpler matrices. 

As commented before, the problem of this function is that only works in situations when the 

links start and end in similar points. 

The MATLAB code used here is very similar to the “eliminate nodes” function, but here both 

vertices limits are compared at the same time. 
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 The eliminate_ways2 function  

This function is based on the inclinations of the links. When the inclination of the links is very 

similar and the links start at the same vertex means that the links are superposed and are 

unnecessary. In the following figure, a possible situation is visible and then how the function 

works is explained. 

 

 

Figure 4.15. Steps representation of the “eliminate ways 2” function 

The first step is the initial situation. When a node has more than one connection (always the 

connection can be in or out), the function calculates the inclination of all of them and saves 

the values in a vector. If the link is in and out (has both directions), is saved only once, for the 

good performance of the function; for that, it calls the eliminate_repeated_elements function. 
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After going through the first step, the next one is to detect those inclinations that are similar. 

The second step is based on the threshold value again. The vector before used is now 

reorganized with only those links with an inclination difference less than the threshold 

parameter imposed by the user, according to the map requirements. Moreover, the vector 

saves the links ordered by length (in ascending order).  

The third and the fourth steps in the Figure 4.15 are the key of this function. As the ending 

vertices do not have to be close, they might have other respective links that need to be 

saved. In this way, the nodes are not lost and all have their correspondent links. This part 

uses the vector ordered by length and does what is represented in the third and fourth steps 

in the Figure 4.15. In the drawing, the inclinations are exaggerated, but in the reality the lines 

should be seen as straight lines. Anyway, to notice or not the lines deformation will depend 

on the threshold value used. 

A representation of the MATLAB code function is summarized in the following box: 

 For each node i: 

  Find links (in and out) & eliminate repeated elements 

  For each link w: 

   Calculate length and inclination 

   New column vector C: limit vertices, inclination & length of link w 

   Matrix Ways: previous Ways, adding vector C 

  End 

  For every two inclinations in matrix Ways: 

   If (inclination1 – inclination2)<threshold & coord. restrictions 

    Matrix D: previous D, adding column of matrix Ways 

    referred to the second inclination 

   End 

  End 

  Sort the matrix D by length, in ascending order 

  Delete the correspondent links and create the new ones 

 End 

 

The code might look complicated, but it is the unique way found to carry out this function 

after trying simpler options and learning about the mistakes.  
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 The eliminate_ways3 function  

This function is created to solve the problem when a link is crossed by a node and the link is 

not divided when it should be. This problem comes from the map extraction or as result of 

the application of other functions. 

 

Figure 4.16. Steps representation of the “eliminate ways 3” function 

After several attempts, the solution that best fits is based on the threshold concept and the 

equation on a line.  

The first two steps shown in the Figure 4.16 are detecting the situation and proving that is the 

indicated situation. First of all, detecting the situation means to take every combination of one 

node and one link and see if the distance between them is close enough (threshold 

parameter, which depends on the author). Considering the link as the explicit form of the 

equation of a line with respective coordinate’s limits: 

𝑦 − 𝑦1 = 𝑚(𝑥 − 𝑥1) (4.3) 

Where: 

𝑚 Inclination of the link 

𝑥1, 𝑦1 Coordinates of one point of the line 

𝑥, 𝑦 Coordinates of a point that fits in the line (red point, in this case) 

Then, the function uses the next condition to know if the red point in step 2 is the adequate: 

𝑦 − 𝑦1 −𝑚(𝑥 − 𝑥1)  <  𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 (4.4) 

If this condition is true, to prove that the coordinates 𝑥, 𝑦 of the red node are comprised 

between (not equal) the 𝑥, 𝑦 coordinates of the beginning and ending nodes of the link, 

respectively, is necessary. That means the same as proving the red vertex is contained 

inside the rectangle or the square that is formed by the limits of the link. Let’s see this in the 

following image: 
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Figure 4.17. Required condition for the “eliminate ways 3” function 

Once these conditions are true, the third step is implemented: to eliminate the original link 

and create two new links, through the node. As mentioned before, the threshold value will 

determine the accurate execution of this function. 

A representation of the MATLAB code function is summarized in the following box: 

 For each node i: 

  For each link z with limit nodes ≠ node i: 

   Calculate inclination m of link z 

   If  𝑦𝑧 − 𝑦𝑖 −𝑚(𝑥𝑧 − 𝑥𝑖) < threshold & coordinate restrictions: 

    Delete link z 

    Create two new links from limit nodes of link z to  

    node i with the appropriate direction 

   End 

  End 

 End 
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 The eliminate_ways4 function 

Basically, this function does the opposite to the previous function. A link is sometimes divided 

into two when it is not expected (as seen in Figure 4.10 and graphically visible in the next 

figure). 

 

Figure 4.18. Steps representation of the “eliminate ways 4” function 

As always, the first thing to do is to detect the situation. In this case, the situation is a node 

with two links (they can be four links if we think of both directions of the links, but it becomes 

two when the eliminate_repeated_elements functions is applied). These two links must have 

similar inclination (in this function, it is checked by the standard deviation of the set of 

inclinations, so that it is less than a threshold value) but they must be in different quadrants 

too (checked by the x-coordinates).  

Once the situation is detected, the connectivity matrix is changed by becoming the short links 

into one (the directions must be respected). Then, the reduce_connectivity_matrix function is 

applied. 

 A representation of the MATLAB code function is summarized in the following box: 

 For each node i: 

  Find links (in and out) & eliminate repeated elements 

  For each link w of node i: 

   Calculate inclination 

   New vector C: previous C, adding inclination of link w 

  End 

  If standard deviation of C < Threshold & X-coordinates restrictions 

   Change connectivity matrix, respecting the link directions 

  End 

 End 
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 The eliminate_ways5 function 

Once the main problems have been solved, other little detected problems can be figured out. 

In several maps, it is common to see a set of links that cross each other, as we can see in 

the Figure 4.19, which it is a zoomed part of the center of Vienna. This fact might be because 

of the presence of zones such as parks, churches, lakes, rivers, etc.  

 

Figure 4.19. Set of links that cross each other 

This function works by eliminating the set of links that cross each other. Consequently, if we 

think there is a link that doesn’t have to be deleted, we should not run this function. It is 

based on finding if two lines intersect in a point inside the coordinate restrictions between 

these two lines. 

A representation of the MATLAB code function is summarized in the following box: 

 For each link w: 

  Calculate limit vertices coordinates & inclination of the link w 

  For each link z ≠ link w 

   Calculate limit vertices coordinates & inclination of the link z 

   Calculate intersection point (x, y) 

   If x ∈ X coordinates restrictions & y ∈ Y coordinates restrictions 

    Delete both links  

   End 

  End 

 End 
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 The eliminate_ways6 and eliminate_ways7 functions 

Several times, the links are extremely long, especially those in the boundaries of the map. 

Therefore, these two functions have been created. On the one hand, the sixth function 

eliminates the links whose length is greater than X meters (value to choose by the user). On 

the other hand, the seventh function eliminates the links whose length is X times greater than 

the average length of all links. 

The eliminate_ways6 function has no mystery, it is very simple. It compares, for each link, its 

length with the X length given. If this condition is true, the link is deleted. We must ensure we 

delete those links we want to.  

However, the eliminate_ways7 function is a little bit more complicated. It has to ensure that 

the average length does not count those links that have both directions as two links, so the 

first step is to occult one direction in this calculation. Then, the average length is calculated 

after having all links length in a vector. Finally, we can compare the “X times” average length 

to each link length (previously calculated in the average calculation). 

 The eliminate_ways8 function 

This function is created to delete those links that have no other connections on the vertices, 

neither in the beginning, nor at the end (subgraph of only one link), as we can see on the 

bottom of the Figure 4.19. This may happen when possible links have not been taken into 

account in the extraction (first functions problems). It is sometimes useful in order to no alter 

the characteristics results. 

 The eliminate_ways9 function 

And finally, this last function to eliminate ways (links) works for deleting all the links that have 

a coordinate greater or smaller than one given. Sometimes we want to delete a whole part of 

the map, so we can apply this function. The programming code is not very complicated. It 

compares every vertex with the given 𝑥 or 𝑦 coordinates. 

 

After applying the proper functions in the example seen before of l’Eixample, an area of 

Barcelona, the map result is shown in the Figure 4.20. The result is a square grid with only a 

line between two intersections. Having a look at the graph, we can’t know if a street has one 

direction or both. We should examine the connectivity matrix and see if the (𝑖, 𝑗) and (𝑗, 𝑖) 

elements are both 1. After all, this map is now in the optimal conditions for being extracted 

the characteristics we need for the project. 
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Figure 4.20. Map graph of l’Eixample after using the appropriate functions 

 

4.2.4. Functions to get parameters 

When the matrices and the map are ready to be examined, it’s time to apply the functions 

designed to get parameters, which have been explained before, in 4.1.Useful parameters.  

 The one_two_ways function 

First of all, this function works in order to know how many streets (links) are just “one way” 

and how many are bidirectional. As mentioned before, these are parameters that can’t be 

seen in the map graph. Given the connectivity matrix, it calculates the parameters without 

necessity of programming with for, if, while, etc. structures. The general equations are the 

following for a given connectivity matrix 𝐷 of 𝑛 × 𝑛 is: 

𝐸 = 𝑎𝑏𝑠(𝐷 − 𝐷𝑇) (4.5) 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑛𝑒 𝑤𝑎𝑦 𝑠𝑡𝑟𝑒𝑒𝑡𝑠 =
∑ ∑ 𝐸𝑛

𝑗=1
𝑛
𝑖=1

2
 (4.6) 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑤𝑜 𝑤𝑎𝑦 𝑠𝑡𝑟𝑒𝑒𝑡𝑠 =
(∑ ∑ 𝐷𝑛

𝑗=1
𝑛
𝑖=1 ) − 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑛𝑒 𝑤𝑎𝑦 𝑠𝑡𝑟𝑒𝑒𝑡𝑠

2
 

(4.7) 
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Let’s see how these equations work with an example: 

        𝐷 = (

0
0
1

0
0
1

1 1
0 1
0 1

0 1 0 0

) 

 

For an example like this, with four nodes and a connectivity matrix 𝐷 of 4 × 4 dimensions 

(𝑛 = 4), where we can see there are 3 one-way links and 2 two-way links, we calculate them 

analytically:  

        𝐸 = (

0
0
0

0
0
1

0 1
1 0
0 1

1 0 1 0

) 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑛𝑒 𝑤𝑎𝑦 𝑠𝑡𝑟𝑒𝑒𝑡𝑠 =
∑ ∑ 𝐸𝑛

𝑗=1
𝑛
𝑖=1

2
=
6

2
= 3 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑤𝑜 𝑤𝑎𝑦 𝑠𝑡𝑟𝑒𝑒𝑡𝑠 = 𝑤𝑎𝑦2 =
(∑ ∑ 𝐷𝑛

𝑗=1 )𝑛
𝑖=1 − 3

2
=
7 − 3

2
= 2 

These parameters can be used in statistics and for having an overlook of the map. 

 The distance function 

The distance function calculates one of the most important parameters: the link lengths 

plotted in a histogram, among other characteristics. Remember what a histogram is: graph of 

the representation of frequency distributions, in which rectangles are used within 

coordinates. 

The first step is not to consider a link as two streets for not falsifying the results. So, as it is 

seen before, the connectivity matrix is changed (in another variable) to make it all one-way 

and to get the link lengths. Then, the distance between intersections is saved in a vector and 

the average and the standard deviation are calculated. The histogram is plotted with the 

more appropriate bar width and limits. For the example of Barcelona (Eixample), the 

histogram is as seen in the Figure 4.22. 

After this, to calculate the average distance among parallel streets (useful for grids) and to 

find the significant orientations has been considered interesting. For that, the matrix slopes is 

created and it is designed as a set of columns with the following structure:  

Figure 4.21.Example of a directed graph 
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𝐶 =

(

 
 

𝑛𝑜𝑑𝑒 1
𝑛𝑜𝑑𝑒 2
𝑠𝑙𝑜𝑝𝑒
𝑑𝑖𝑠𝑡

𝑐𝑜𝑢𝑛𝑡𝑒𝑟)

 
 

 (4.8) 

Where node 1 is the beginning vertex of the link, node 2 is the ending vertex of the link, slope 

is the inclination of the link, dist is the link length accumulation and counter is a counter of 

links. It works the following way: 

- If the slopes matrix is empty, the column (4.8) of the first link is added, with counter 

equal to 1.  

- If the slopes matrix is not empty (it has at least one column), the slope of the current 

link is compared to the slopes of the links that are already in the matrix (all third row) 

by calculating the difference between the current slope and the slope 𝑖 in the matrix. 

Now there are two options: 

 If the difference is less than a threshold parameter so that the links have 

similar inclination, what means that the two links are parallel or are in the 

same line, the dist parameter is now the previous value plus the link length of 

the current link and the counter is increased in one. 

 If the difference is greater than a threshold parameter so that the links have 

different inclination, the slopes matrix is increased in one column with the 

vector 𝐶 (4.8) of the current link. 

A representation of this MATLAB code function part is summarized in the following box: 

 slopes = empty matrix 

 For each link w: 

  Calculate inclination and length and C vector 

  If slopes is empty 

   Slopes = vector C, with counter = 1 

  Else if number of columns of slopes > 0 

   For each column i in slopes 

    If (inclination i – current inclination) < Threshold 

     slopes(4,i) = slopes(4,i)+dist  

     slopes(5,i) = slopes(5,i)+1  

    End 

   End 

  End 

 End 
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At the end of this function part, four parameters can be extracted: 

1) Number of orientations in the map. This parameter is the number of columns in the 

slopes matrix, and how many streets form each orientation is the counter of each 

column. In order to see the most important orientations or the significant orientations 

and to avoid possible threshold mistakes, the orientations with less than a 5% of the 

total are eliminated. This is the number of significant orientations parameter and is 

also plotted in a histogram. 

Then, a set of parameters can be calculated if the number of significant orientations is two 

(when a grid is expected).  

2) When the number of significant orientations is two, with the slopes matrix, to know 

the average of the distance among parallel streets is possible. The accumulate 

distance (fourth row) divided by the accumulate number of streets (fifth row) of one 

orientation is the average distance among parallel streets of the other orientation. 

3) Although the angle between the two orientations is expected to be 90˚, it is also 

calculated (angle between two inclinations 𝑚1 and 𝑚2) as: 

𝛼 = tan−1 |
𝑚2 −𝑚1
1 +𝑚1𝑚2

| (4.9) 

4) And finally, the orientation of the grid (minimum angle of the orientations respect to 

the 0˚ or X axe) is also computed. 

In addition, the percentage of one-way streets with the total, using the one_two_ways 

function, is figured out. 

To sum up, the example used during the process explanation (Barcelona) is shown. The 

information displayed in this function and the graph it plots are the following (in the Results 

part are going to be commented): 

 “Found 2 significant directions in this zone. 

 And the minimum angle among streets is 88.077°. 

 The grid is oriented + 44.5028° East. 

 The distance among parallel streets are 126.3079 meters and 118.7696 meters. 

 The average distance among intersections is 122.653 meters. 

 The percentage of one-way streets with the total is 100%. 

 The standard deviation of the distance among streets is 27.7332 meters.” 
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Figure 4.22. Histogram of distances between intersections of Barcelona 

 

Figure 4.23. Histogram of significant orientations of Barcelona 

 The angles function 

The main objective of this function is to plot in a histogram the angles formed by two streets 

when arrive to an intersection. Taking advantage of this, other parameters are also 

calculated: average and standard deviation of the list of angles and a histogram of the 

number of streets that arrive to an intersection (degree centrality) and average.  

The strategic process to carry out this function is the following: for every intersection, find the 

links; for each of these links, calculate the angle respect to 0˚; then, sort the angles (0-360˚) 



Analysis of typical traffic networks  Page 69 

 

since they can be disordered; and finally, calculate the angle difference of two consecutive 

links. A representation of this MATLAB code function part is summarized in the following box: 

 For each node (intersection) i: 

  Find links in and out, and eliminate repeated elements 

  For each link 

   Calculate angle respect to 0˚ at the height of the node i 

   Save this angle into the angles vector 

  End 

  Sort the angles (0-360˚) 

  For each pair of consecutive angles 

   Calculate the difference (1) and save it in angles_abs vector 

  End 

 End 

(1) This step is done as follows. If the pair of angles does not contain the last angle in the 

vector, the difference is calculated as the second angle minus the first angle. However, when 

the difference is about the last angle of the vector and the first one, it is calculated this way: 

𝛽 = 𝑓𝑖𝑟𝑠𝑡 𝑎𝑛𝑔𝑙𝑒 + 360˚ − 𝑙𝑎𝑠𝑡 𝑎𝑛𝑔𝑙𝑒 (4.10) 

In the meantime, the degree centrality is being extracted for each node and saved in a vector 

in order to plot then the histogram. At the end, what the function displays in the Command 

Window and the plots are the next, about the example: 

 

Figure 4.24. Histogram of angles among streets of Barcelona 
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Figure 4.25. Histogram of degree centrality of Barcelona 

 “The average angle among streets is 116.129°. 

 The standard deviation of the angle among streets is 54.7305°. 

 An average degree centrality is 2.75 streets/intersection.” 

 The characteristics function 

This last function is designed to get the characteristics explained at the end of the Useful 

parameters section. The extracted parameters here are complements of the functions 

explained before, i.e. they are not necessary to classify a network but give more information. 

As already mentioned, the number of subgraph 𝐺 is always considered one. What the 

function returns when it is run, is the following: 

 “Number of nodes: 24 

 Number of links: 33 

 Cyclomatic number: 10 

 Alpha index: 0.23256 

 Beta index: 1.375 

 Gamma index: 0.5” 

 
  



Analysis of typical traffic networks  Page 71 

 

4.3. Results 

The aim of this part is to expose and analyze the information (matrices, graphs and written 

function information) obtained when the suitable process functions are applied in every 

studied map.  

At first, some relevant results are exposed. Since the quantity of graphs and images is 

considerable, the whole part of results is attached in Appendix.  

Then, basically, an analysis of the information will be done in order to, in a future, classify a 

network with only this information, i.e. try to extrapolate the knowledge of the examples here 

used to apply it when a random traffic network is given.  

Classifying a map by taking a look at it is relatively easy in some cases (if the map is, for 

example, clearly a grid). However, sometimes, it is a difficult task and several graphs and 

parameters are needed in order to guess the class of network.  

The limited time of the project execution has allowed studying four cities of the world. First of 

all, the functions have been tested with a simple map as it is l’Eixample, Barcelona; then, 

with other cities such as Vienna, and finally, with other more complicated maps (mix of grids 

or mix of grid with old town areas). To sum up, the areas which have been analyzed are the 

following: 

- Barcelona: Eixample area, Barri Gòtic area and a mix of Eixample and Barri Gòtic 

- Vienna: inner city 

- Brooklyn: one grid and two grids with different orientations 

- Hoorn (Holland): outskirts of the city 

4.3.1. Presentation of results 

Here are exposed the more relevant results. To get started, the graphs are presented. Some 

of them are correlative and need to go together to understand how the network is. 

Afterwards, the characteristics extracted from the MATLAB Command Window are 

summarized in tables. 

Although they are presented separately (graphs and characteristics), it is important to 

remember they might depend on each other. As commented before, the whole studies 

(graphs and map zones) and how the results are extracted “step by step” are in the 

Appendix. 

The graphs are presented in trios: for each studied map, lengths (left) and angles (middle) 

and degree (right). 
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4.3.1.1. Graphs 

 
 
 
 
 
A.1. 

 

 

 

Figure 4.26. Eixample – Results 

 

 

 
 
 
 
 
 
A.2. 

 

 

 

Figure 4.27. Barri Gòtic – Results 
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A.3. 

 

 

 

Figure 4.28. Barcelona mix – Results 
 

 

 
 
 
 
 
A.4. 

 

 

 

Figure 4.29. Vienna – Results 
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A.5. 

 

 

 

Figure 4.30. Brooklyn (1 grid) – Results 

 

 

 
 
 
 
 
 
A.6. 

 

 

 

Figure 4.31. Brooklyn (2 grids) – Results 
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A.7. 

 

 
 

Figure 4.32. Hoorn – Results 
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4.3.1.2. Tables 

Green cells: minimum values; red cells: maximum values. 

Table 4.1. Information extracted from MATLAB after running the distance and the angles functions   

Parameters\City 
Eixample  

(Barcelona) 

Barri Gòtic  

(Barcelona) 

Eixample and Barri 

Gòtic (Barcelona) 

Brooklyn  

(one grid) 

Brooklyn  

(two 

grids) 

Vienna Hoorn 

Number of significant 

orientations 
2 7 6 2 4 7 6 

Minimum/Maximum 

angle among streets 
88,08° / 91,92° - - 89,97° / 90,03° - - - 

Grid orientation + 44,50° East - - + 8,59° East - - - 

Average angle  

among streets 
116,13° 134,71° 116,36° 104,28° 108,29° 137,34° 125,12° 

St. dev. of angle 

among streets 
54,73° 65,44° 55,13° 40,16° 45,42° 75,63° 60,63° 

Distance among 

parallel streets in grid 

1) 126,30 m  

2) 118,77 m 
- - 

1) 247,36 m  

2) 114,15 m 
- - - 

Average distance 

among intersections  
122,65 m 53,73 m 49,60 m 174,33 m 143,37 m 26,27 m 49,60 m 

St. dev. of distance 

among intersections  
27,73 m 63,38 m 39,46 m 107,07 m 84,21 m 27,68 m 39,46 m 
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Parameters\City 
Eixample  

(Barcelona) 

Barri Gòtic  

(Barcelona) 

Eixample and Barri 

Gòtic (Barcelona) 

Brooklyn  

(one grid) 

Brooklyn  

(two grids) 
Vienna Hoorn 

% one-way streets 100 % 81,00 % 93,73 % 98,73 % 99,20 % 99,82 % 93,73 % 

Average degree 

centrality 

(streets/intersection) 

2,75 2,16 2,70 2,87 3,29 2,01 2,38 

Table 4.2. Information extracted from MATLAB  

 

Parameters\City 
Eixample  

(Barcelona) 

Barri Gòtic  

(Barcelona) 

Eixample and Barri 

Gòtic (Barcelona) 

Brooklyn  

(one grid) 

Brooklyn  

(two grids) 
Vienna Hoorn 

Approximately 

map area 
0,25 km2 1,8 km2 7,02 km2 0,64 km2 1,92 km2 0,7 km2 2,28 km2 

Number of nodes 24 666 1725 55 153 542 858 

Number of links 33 858 2264 80 254 546 1085 

Cyclomatic number 10 193 540 26 102 5 228 

Alpha index 0,23 0,15 0,16 0,25 0,34 0,0046 0,13 

Beta index 1,38 1,29 1,31 1,45 1,60 1,01 1,26 

Gamma index 0,50 0,43 0,44 0,50 0,56 0,34 0,42 

Table 4.3. Information extracted from MATLAB after running the characteristics function  
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4.3.2. Analysis of results 

In spite of the studied maps do not cover all types of maps we have seen in Figure 3.18 (17 

networks topologies Zhang et al. used in a search), they can be reference object for future 

results and analysis. 

First of all, when we observe the “links length” graphs (on the left in each study), three 

behaviours are observed. However, this may also depend on the bars width. 

The first behaviour is when the graph seems a 

normal distribution (such as in Figure 4.26. 

Eixample – Results, on the left). This might mean, if 

the graph has a very pronounced peak in the 

distribution, the whole map is formed by links with 

similar length and, due to the accumulated variation 

in the functions, it appears as a normal distribution. 

For a not very pronounced peak in the normal 

distribution, it could simply mean that the map is 

dominated by links with a mean length and has 

other links (in less quantity) with greater or smaller 

length than the mean length, as seen in Figure 4.33.  

The second behaviour found is the map that has defined peaks like if they were impulses (as 

it is shown in Figure 4.30. Brooklyn (1 grid) – Results, on the left). That means the map is 

dominated by the links with the peak length. 

And the third one is when the graph has a great number of small links and few ones for 

longer links (the graph is decreasing, as it is seen on the left in Figure 4.27. Barri Gòtic – 

Results and Figure 4.29. Vienna – Results, both on the left). This is normally related to non-

regular maps: random, scale-free and small-world networks. 

Continuing with next type of graph, angles among streets that arrive to an intersection (graph 

in the middle in the presentation of results), we can see in all of them that there are peaks in 

90˚ and in 180˚. The right angle predominates in almost all the cases. The 180˚ angle can 

appear in the map limits and, when the map has few nodes, can predominate in the angle 

graph. Nevertheless, two kinds of graphs can be distinguished.  

On the one hand, there is the type of map with the mentioned peaks (90˚ and 180˚) but 

almost without other bars (without other angles), as shown in the Figure 4.30. Brooklyn (1 

grid) – Results, in the middle. These graphs are matched with those graphs with a link length 

with a normal distribution or with defined peaks, both explained before. Everything indicates 

Figure 4.33. Normal distribution  

[Source:http://www.statsdirect.com/

help/distributions/normal.htm] 



Analysis of typical traffic networks  Page 79 

 

these maps must be grids. That one that has only one peak in the length graph must be a 

square grid. If it has two peaks in the length graph must be a rectangular grid. However, this 

information should be confirmed with other parameters. 

On the other hand, there is the possibility of the type of map with the 90˚ and 180˚ peaks but 

also with other bars (with other angles), as it can be seen in the graph in the middle in Figure 

4.27. Barri Gòtic – Results and Figure 4.29. Vienna – Results. This indicates, firstly, it is 

clearly not a grid. Then it is observable that this happens when the lengths graphs are 

decreasing, the third behaviour commented before about links length graphs. 

And to finish with graphs, the third graph can give extra information to corroborate the 

previous hypothesis. It can be seen, on the one hand, that the graphs that match with the 

supposed grids have peaks in the degree 3 and 4. This is logical if we think in 4 streets per 

intersection in the middle of the grids and 3 streets per intersection in the limits of the map 

(for big maps, the degree 3 should not be very significant in grids). On the other hand, the 

graphs that have high bars in 1, 2 or 3 degree match with those maps with irregular angle 

graph and with decreasing length graphs. This corroborates that they could be random, 

scale-free and small-world networks. 

Moreover, the parameters extracted in the tables can give extra information. For example, 

looking at the table 4.1, the grids have a lot of clear information that corroborate they are 

grids: two orientations (the 4 orientations should be looked carefully in order to know if they 

are 2 combined grids); an angle between them of approximately 90˚; and the distance 

among parallel streets, in the case of Barcelona, the distances are not very similar (relative 

variation of nearly 6%) although a square grid should be considered if we think these values 

come from an average of all the links with the other orientation, whereas in the case of 

Brooklyn, the distances are significantly different and it is clearly a rectangular grid. However, 

the average angle among streets is quite higher than 90˚ (and the standard deviation of this 

value is also high; this fact is due to the boundaries of the map, where most of the angles are 

180˚ and they are significant because the map is small. 

Having a look at the table 4.1 and table 4.2, we observe that the old town areas have the 

minimum average distance among intersections (such as Vienna and Barri Gòtic) while 

modern cities have this parameter higher. The same fact happens with the average degree 

centrality: higher in grid cities and smaller in old towns. Instead, with the average angle 

among streets, is backwards: higher in old towns and smaller in grid cities. The percentage 

of one-way streets with the total is not a significant parameter to classify networks, but we 

can maintain it for curiosity. 

The table 4.3 contains information about the connectivity measures. The first three 

parameters (map area, number of links and number of nodes) do not have a significant role 
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in classifying networks. The map area values have been manually calculated from the 

MATLAB map with meter coordinates, they are not displayed in the characteristics function. 

Let’s remember the meaning of the other four parameters. The cyclomatic number is the 

number of fundamental circuits in the network. The alpha index is the ratio of number of 

cycles to possible maximum number of cycles. The beta index is the ratio between number 

of links and number of nodes, equivalent to average degree. The gamma index is the ratio of 

number of links to maximum possible number of links. 

The alpha, beta and gamma indices (connectivity measures) coincide in the order of the 

cities, i.e. from maximum to minimum the order is: Brooklyn (two grids), Brooklyn (one grid), 

Eixample, Eixample and Barri Gòtic, Barri Gòtic, Hoorn and Vienna. 

As Zhang et al. discussed in their investigations, the studied 17 network topologies might 

also be categorized by type of connections: group 1 (highly connected) – grid, matching pair, 

complete grid and diamond networks; group 2 (centrally connected) – hub-and-spoke, 

double tree, ring, diverging tails and crossing paths networks; group 3 (circuit-like connected) 

– central ring, double U and converging tails; group 4 (randomly connected) – random, scale-

free and small-world networks. 

Brooklyn (two grids), Brooklyn (one grid) and Eixample, as they are grids or combination of 

grids, have the higher levels of connectivity. The mixed map of Eixample and Barri Gòtic (see 

A.3. Barcelona – Eixample and Barri Gòtic), as it is grid in a 60% of the area and old town in 

the remaining 40%, it must be in the group 2 or 3. In mixed maps, the connectivity degree 

depends on how all the parts influence on the measures; moreover, the graphs of this mixed 

map is a vertical sum of the individual graphs (graphs in Figure 4.26 + graphs in Figure 4.27 

≈ graphs in Figure 4.28) clearly dominated by the Barri Gòtic as it has more links. Finally, the 

maps with smaller alpha, beta and gamma values (Barri Gòtic, Hoorn and Vienna) are 

included in group 4. Hoorn has a curious map and it is not an old town, but has some 

features like them (small links and all types of angles) but a set of intersections with 3 streets. 

To sum up, grids have determined links length (normal distribution or peaks on the links 

length graph), angles among streets of 90˚ (and sometimes also of 180˚ in the boundaries), 

and should have a majority of 4 streets/intersection (maybe 3 and 4 if the map is small). 

Furthermore, basing these theories in the results here obtained, they have higher average 

distance among streets, higher average degree and smaller average angle among streets 

than the other maps, and are highly connected. Instead, old towns as Vienna or Barri Gòtic 

of Barcelona have little links length (decreasing graph), all type of angles among streets and 

abundance intersections with degrees of 1, 2 or 3. Additionally, they have smaller average 

distance among streets, smaller average degree and higher average angle among streets, 

and are randomly connected. 
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Conclusions 

So far, a deep research about map data, graph theory, social networks, traffic network 

topologies and intersections has been done, and then, a method to classify traffic networks 

has been applied: the tool OpenStreetMap to download maps, a set of functions to adapt the 

maps to the requirements and an analysis of results.  

This thesis is not a closed project. Due to all the fields it reaches, it is open to be spread out. 

First of all, the reader should consider that the literature research is large and most probably 

it will be actualized with new discoveries and theories over the years. 

Secondly, the used maps are the base of the project, so they must come from a reliable 

source. The user is free to choose the source he wants while it is reliable and it is in OSM 

XML format. Anyway, it is advisable not to use very large maps in order to the MATLAB 

functions work in optimal conditions. In addition, in order to have more results to compare, 

more cities, village or any area of the world all welcome to this project. 

Then, the MATLAB functions have been tried to develop the best way possible and are 

totally open to improvements. The author, before of carrying out this project, had basic 

knowledge in MATLAB, so programming most of the functions has been a challenge. 

Consequently, all improvements are welcome to ameliorate the code for decreasing the 

process time that means, in other terms, to reduce project expenses. Moreover, some maps 

might need functions that have not been developed in this thesis, so, if required, the author 

encourage anyone to update, change or create new functions. 

And finally, although a great number of network parameters are analysed in this project, they 

can be extended in order to obtain more accurate results and be able to do a better 

classification of the traffic networks. The actual results must be used as a reference in future 

studies and show a way to observe the graphs and the parameters. At times, it is more 

interesting and more productive to analyse a set of maps than do it only for one map. 

In a global vision, the project objective (to classify cities in traffic network topologies) has 

been satisfactorily reached through achieving the steps that lead to it, commented in this 

section. Moreover, to carry out this project has been a great experience for the author in 

order to extend the knowledge in all the fields the project includes, improve the programming 

skills and improve in data analysis. 
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A. Appendix 

This appendix contains the graphs and results that come from the MATLAB functions in the 

order they are being displayed. For digital copies: the source links of the first figure in each 

part redirect to the city in OpenStreetMap. 

A.1. Barcelona – Eixample 

 

Figure A.1. Capture of l’Eixample (Barcelona) [Source: openstreetmap.org] 

 

Figure A.2. L’Eixample (Barcelona) map after applying the MATLAB functions 

https://www.openstreetmap.org/search?query=barcelona#map=17/41.39111/2.15622
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Figure A.3. Links length graph of l’Eixample (Barcelona) 

 

Figure A.4. Significant orientations graph of l’Eixample (Barcelona) 

 
“Found 2 significant orientations in this zone. 

And the minimum angle among streets is 88.077°. 

The grid is oriented + 44.5028° East. 

The distance among parallel streets are 126.3079 meters and 118.7696 meters. 

The average distance among intersections is 122.653 meters. 

The percentage of one-way streets with the total is 100%. 

The standard deviation of the distance among streets is 27.7332 meters.” 
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Figure A.5. Angle among streets graph of l’Eixample (Barcelona) 

 

Figure A.6. Degree centrality graph of l’Eixample (Barcelona) 

“The average angle among streets is 116.129°. 

The standard deviation of the angle among streets is 54.7305°. 

An average degree centrality is 2.75 streets/intersection.” 

“Number of nodes: 24 

Number of links: 33 

Cyclomatic number: 10 

Alpha index: 0.23256 

Beta index: 1.375 

Gamma index: 0.5” 
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A.2. Barcelona – Barri Gòtic 

 

Figure A.7. Capture of Barri Gòtic (Barcelona) [Source: openstreetmap.org] 

 

 

Figure A.8. Barri Gòtic (Barcelona) map after applying the MATLAB functions 

  

https://www.openstreetmap.org/search?query=barcelona#map=16/41.3838/2.1770
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Figure A.9. Links length graph of Barri Gòtic (Barcelona) 

 

 

Figure A.10. Significant orientations graph of Barri Gòtic(Barcelona) 

“Found 7 significant orientations in this zone. 

The average distance among intersections is 53.7348 meters. 

The percentage of one-way streets with the total is 80.9986%. 

The standard deviation of the distance among intersections is 63.376 meters.” 
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Figure A.11. Angle among streets graph of Barri Gòtic(Barcelona) 

 

Figure A.12. Degree centrality graph of Barri Gòtic (Barcelona) 

“The average angle among streets is 134.7097°. 

The standard deviation of the angle among streets is 65.4378°. 

The average degree centrality is 2.1652 streets/intersection.” 

“Number of nodes: 666 

Number of links: 858 

Cyclomatic number: 193 

Alpha index: 0.14544 

Beta index: 1.2883 

Gamma index: 0.43072” 
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A.3. Barcelona – Eixample and Barri Gòtic 

 

Figure A.13. Capture of l’Eixample and Barri Gòtic (Barcelona) [Source: openstreetmap.org] 

 

 

 

Figure A.14. L’Eixample and Barri Gòtic (Barcelona) map after applying  

the MATLAB functions 

 

https://www.openstreetmap.org/search?query=barcelona#map=15/41.3838/2.1640
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Figure A.15. Links length graph of l’Eixample and Barri Gòtic (Barcelona) 

 

 

Figure A.16. Significant orientations graph of l’Eixample and Barri Gòtic (Barcelona) 

 
“Found 6 significant orientations in this zone. 

The average distance among intersections is 49.6006 meters. 

The percentage of one-way streets with the total is 93.7316%. 

The standard deviation of the distance among intersections is 39.4557 meters.” 
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Figure A.17. Angle among streets graph of l’Eixample and Barri Gòtic (Barcelona) 

 

Figure A.18. Degree centrality graph of l’Eixample and Barri Gòtic (Barcelona) 

“The average angle among streets is 116.36°. 

The standard deviation of the angle among streets is 55.1261°. 

The average degree centrality is 2.7002 streets/intersection.” 

“Number of nodes: 1725 

Number of links: 2264 

Cyclomatic number: 540 

Alpha index: 0.15675 

Beta index: 1.3125 

Gamma index: 0.438” 
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A.4. Vienna 

 

Figure A.19. Capture of Vienna [Source: openstreetmap.org] 

 

 

Figure A.20. Vienna map after applying the MATLAB functions 

https://www.openstreetmap.org/search?query=vienna#map=15/48.2094/16.3708
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Figure A.21. Links length graph of Vienna 

 

Figure A.22. Significant orientations graph of Vienna 

“Found 7 significant orientations in this zone. 

The average distance among intersections is 26.2711 meters. 

The percentage of one-way streets with the total is 99.8165%. 

The standard deviation of the distance among intersections is 27.6774 meters.” 
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Figure A.23. Angle among streets graph of Vienna 

 

Figure A.24. Degree centrality graph of Vienna 

“The average angle among streets is 137.3363°. 

The standard deviation of the angle among streets is 75.6338°. 

The average degree centrality is 2.0111 streets/intersection.”  

“Number of nodes: 542 

Number of links: 546 

Cyclomatic number: 5 

Alpha index: 0.0046339 

Beta index: 1.0074 

Gamma index: 0.33704” 
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A.5. Brooklyn (one grid) 

 

Figure A.25. Capture of Brooklyn (one grid) [Source: openstreetmap.org] 

 

 

 

Figure A.26. Brooklyn (one grid) map after applying the MATLAB functions 

 

https://www.openstreetmap.org/#map=15/40.6853/-73.9344
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Figure A.27. Links length graph of Brooklyn (one grid) 

 

 

Figure A.28. Significant orientations graph of Brooklyn (one grid) 

“Found 2 significant orientations in this zone. 

And the minimum angle among streets is 89.969°. 

The grid is oriented + 8.5943° East. 

The distance among parallel streets are 247.3558 meters and 114.1517 meters. 

The average distance among intersections is 174.3271 meters. 

The percentage of one-way streets with the total is 98.7342%. 

The standard deviation of the distance among intersections is 107.0727 meters.” 
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Figure A.29. Angle among streets graph of Brooklyn (one grid) 

 

Figure A.30. Degree centrality graph of Brooklyn (one grid) 

“The average angle among streets is 104.2759°. 

The standard deviation of the angle among streets is 40.1604°. 

The average degree centrality is 2.8727 streets/intersection.” 

“Number of nodes: 55 

Number of links: 80 

Cyclomatic number: 26 

Alpha index: 0.24762 

Beta index: 1.4545 

Gamma index: 0.50314” 
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A.6. Brooklyn (two grids) 

 

Figure A.31. Capture of Brooklyn (two grids) [Source: openstreetmap.org] 

 

 

 

Figure A.32. Brooklyn (two grids) map after applying the MATLAB functions 

 

https://www.openstreetmap.org/#map=15/40.6890/-73.9191
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Figure A.33. Links length graph of Brooklyn (two grids) 

 

 

Figure A.34. Significant orientations graph of Brooklyn (two grids) 

 

“Found 4 significant orientations in this zone. 

The average distance among intersections is 143.3685 meters. 

The percentage of one-way streets with the total is 99.2063%. 

The standard deviation of the distance among intersections is 84.2149 meters.” 
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Figure A.35. Angle among streets graph of Brooklyn (two grids) 

 

Figure A.36. Degree centrality graph of Brooklyn (two grids) 

“The average angle among streets is 108.2869°. 

The standard deviation of the angle among streets is 45.4171°. 

The average degree centrality is 3.2941 streets/intersection.” 

“Number of nodes: 153 

Number of links: 254 

Cyclomatic number: 102 

Alpha index: 0.33887 

Beta index: 1.6601 

Gamma index: 0.56071”  



Analysis of typical traffic networks  Page 103 

 

A.7. Holland – Hoorn  

 

Figure A.37. Capture of Hoorn [Source: openstreetmap.org] 

 

 

Figure A.38. Hoorn map after applying the MATLAB functions 

https://www.openstreetmap.org/search?query=hoorn#map=15/52.6519/5.0925
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Figure A.39. Links length graph of Hoorn 

 

Figure A.40. Significant orientations graph of Hoorn 

 

“Found 6 significant orientations in this zone. 

The average distance among intersections is 49.6006 meters. 

The percentage of one-way streets with the total is 93.7316%. 

The standard deviation of the distance among intersections is 39.4557 meters.” 
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Figure A.41. Angle among streets graph of Hoorn 

 

Figure A.42. Degree centrality graph of Hoorn 

“The average angle among streets is 125.157°. 

The standard deviation of the angle among streets is 60.6345°. 

The average degree centrality is 2.38 streets/intersection.” 

“Number of nodes: 858 

Number of links: 1085 

Cyclomatic number: 228 

Alpha index: 0.13326 

Beta index: 1.2646 

Gamma index: 0.42251” 


