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Kurzfassung

In wissenschaftlichen Disziplinen, wie Klimaforschung oder Elementarteilchenphysik
enstehen oft große Datenmengen von Zeitreihen. Um diese Daten für explorative Analyse
oder Data Mining verwenden zu können, muss die Datenqualität und -integrität gegeben
sein. Mithilfe von Data Cleansing können unerwünschte und irreführende Datenanomalien
bereinigt werden. Data Profiling hilft dabei Datenqualitätsprobleme zu entdecken und
darzustellen.

Bestehende Data Profiling Tools bieten Mechanismen zur Identifizierung von Daten-
qualitätsproblemen an, unterstützen jedoch keine zeit-orientierten Datenqualitätsproble-
me. Meist liefern diese Werkzeuge nur textuelle Statistiken über das Datenset und bieten
keine Interaktionsmöglichkeiten an.

Auf der technischen Universität Wien wird bereits ein Prototyp entwickelt der feh-
lerhafte Datensätze erkennt, teilweise bereinigt oder kennzeichnet. Diese Arbeit handelt
vom Design, Implementierung und Evaluierung eines prototypischen Moduls, bereits fest-
gestellte Fehler darzustellen. Zusätzlich sollen mithilfe von interaktiven Visualisierungen
weitere Datenqualitätsprobleme entdeckt werden können.
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Abstract

Scientific disciplines like climate research or high-energy physics build up large repositories
of time series data. In order to process big data sets for data mining or explorative
analysis, data integrity and quality has to be guaranteed. To increase data quality,
Data Cleansing is performed to remove unwanted and misleading data anomalies before
executing the analytical process. Data Profiling also helps to identify and communicate
data quality problems, which can then be cleansed.

Existing Data Profiling tools provide mechanisms to identify invalid data but without
prior focus on time-oriented data. Often those tools are limited providing simple statistics
about a given data set and do not offer interactive operations.

There is already a prototype being developed at the Technical University of Vienna
which detects, partially cleanses, and annotates erroneous data entries. This thesis is
about designing, implementing and evaluating a prototypical module of this prototype,
visualizing detected errors and providing visualizations to find further data problems
with a focus on time-oriented quality checks.
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CHAPTER 1
Introduction

1.1 General Introduction
Scientific disciplines like climate research or high-energy physics build up large repositories
of time series data [3]. In order to process big data sets for Data Mining or explorative
analysis, data integrity and quality has to be guaranteed. Data Mining is defined as “the
application of specific algorithms for extracting patterns from data.” [4, p.39] Inaccurate
data increases with complexity of systems and it requires aggressive actions to correct
problems which lead to data quality problems [5]. Therefore analysts need to identify
data quality problems in their data sets before they can be used for data analysis.

Data sets often contain so called dirty data which can be for instance invalid, erroneous,
missing values, outliers, or duplicate records [6]. To increase data quality, Data Cleansing
is performed to remove unwanted and misleading data anomalies before executing the
analytical process. Data Cleansing is a crucial task for data analysis which can take
about 80% of a project’s effort [7]. Therefore interactive Data Cleansing tools have the
potential to reduce a project’s cost and time.

Data Wrangling is defined as “a process of iterative data exploration and transfor-
mation that enables analysis” [8, p.272] to make data useful. It consists of (1) Data
Profiling, which is getting an overview about the current state of data and containing
errors [9], (2) Data Cleansing, which is the semi-automatic correction of data problems,
and (3) Data Transformation, to get data into desired state. Data Wrangling tools can
also be called Interactive Data Transformation tools (IDTs) [9]. The example of a Data
Wrangling process is shown in Figure 1.1.

Data Profiling tools help to get an understanding of the content, structure and quality
of data. With statistical methods and value distribution visualizations, this tools can
help to identify data quality problems [5]. Data Profiling can be done with statistics or
automated checks (e.g., giving an overview about missing/invalid data), but also with

1



1. Introduction

Figure 1.1: Iterative wrangling and analysis process. “The wrangling and analysis phases
overlap. While wrangling tools tend to be separated from the visual analysis tools, the
ideal system would provide integrated tools (light yellow). The purple line illustrates a
typical iterative process with multiple back and forth steps. Much wrangling may need
to take place before the data can be loaded within visualization and analysis tools, which
typically immediately reveals new problems with the data.” [7, p.273]

visualizations addressing specific problems like outliers. Human judgment is needed
because data anomalies may indicate data quality problems, which have to be verified by
analysts whether they are in fact errors [8].

Errors can then be cleaned, either automatically, semi-automatically or manually.
Data Cleansing tools help to find erroneous data by means of defined rules [8]. An error
can either be fixed with substitution and correlation or can be entirely rejected [5].

Often data has to be converted or redefined to get standardized values with specific
patterns or types. Sometimes data has to be merged from different sources (e.g., a data
set about employees is merged with data from subcompanies), which induces possible
multi-source data problems, like wrong references or naming conflicts [8].

2



1.2. Research Questions

Each transformation can have an impact on data quality, so Data Profiling has to be
performed after transformation. Therefore Data Wrangling is an iterative process, before
data can finally be considered useful.

Data quality problems can be divided into schema level and instance level [6]. While
schema level data problems can be solved by improving the schema design of, for instance,
a database (e.g., not allowing null fields or specifying patterns for Strings), they can’t
fully avoid problems with the instance level, i.e., data contents. Users may provide
dummy values for fields, which must be set, to satisfy the schema.

The results of classifying these data quality problems of different levels are data
quality taxonomies. They help to identify different types of errors which can then be
used by Data Cleansing tools. Most data quality taxonomies do not focus on time-
oriented data [2, 10, 11] except for the taxonomy by Gschwandtner et al. [12] which
includes error types like different or incorrect time zones or erroneous time intervals
(End ≤ Start; duration ≥ 0).

1.1.1 Information Visualization and Visual Analytics

Information Visualization (InfoVis) is defined as “the use of computer-supported interac-
tive visual representations of abstract data to amplify cognition.” [13, p.5] Since Data
Profiling is about gaining insights about a data set, interactive visualizations are suitable
for these kind of tools.

The combination of interactive visualization and automated analysis is called Visual
Analytics (VA) [14]. VA solutions combine the strengths of computers and human
respectively. While machines take over the calculation and data processing, humans
provide cognition, visual intelligence, and decision making. Users benefit from “an
effective understanding, reasoning and decision making on the basis of very large and
complex data sets.” [14, p.157] VA methods are suited for gaining an understanding of data
and its quality, supporting users to “detect the expected and discover the unexpected.” [14,
p.157]

Existing Data Cleansing tools [3, 9, 8, 15] provide mechanisms to cleanse invalid
data but without prior focus on time-oriented data sets. There is already a prototype
being developed at the Technical University of Vienna which detects and annotates
erroneous data entries. This thesis is about designing, implementing and evaluating
a VA prototypical module of this prototype, visualizing detected errors and providing
visualizations to find further data problems with a focus on complex time-oriented quality
checks.

1.2 Research Questions
The following research questions are formulated to be investigated in this thesis.

Main Question:

3



1. Introduction

• RQ1: How can VA methods help to identify and understand data quality problems
of complex time-oriented data?

Sub Research Question:

• RQ1.1: How can already detected and annotated quality problems be visualized
in an effective and adequate way?

• RQ1.2: What visualizations can help to find additional quality problems of time-
oriented data?

1.3 Methodological Approach
The methodological approach consists of the following steps:

1. Literature Review:
In a first step, a literature research was performed to gather theoretical knowledge
about Data Cleansing, Profiling, and Wrangling.

2. State of the Art Report:
Based on the findings of the literature review a detailed state-of-the-art report was
written, outlining the currently existing tools and possibilities in Data Profiling.

3. Conceptual Design of a VA Prototype:
The next step was a conceptual design phase of a VA prototype based on the
results of the state-of-the-art report. We conducted an iterative design with regular
feedback cycles. In our design phase we applied the Data-Users-Tasks design
triangle [1] and focused on Munzner’s nested model for visualization design [16].
We chose a suitable data quality taxonomy, on which we defined different error
types, to be visually investigated. In addition, a suitable graphical user interface
(GUI) has been designed.

4. Implementation:
The prototype consisting of different visualizations was implemented in JAVA. We
used a slightly modified version of the Prefuse Toolkit [17] which is continuously
extended by the Information Engineering Group at the Vienna University of
Technology.

5. Qualitative Evaluation:
We evaluated our prototype with the help of a qualitative evaluation with a special
focus on revealing insights. This provided the basis to answer our research questions
and gave us feedback for reflection.

6. Critical Reflection and Discussion:
We then reflect and discuss the results of the qualitative evaluation. Finally, we
provide a conclusion which summarizes the scope of this work and state future
work in this research area.
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1.4 Structure of the work
This paper is structured as followed:

• Chapter 2, Related Work: In this chapter we cover existing open source
and commercial Data Profiling products. We provide a comparison between their
features and techniques. Additionally, we show a selection of visualization techniques
for time-oriented data.

• Chapter 3, Design: This chapter covers the design process ranging from identi-
fying the requirements, brainstorming up to refining our idea. This also results in
a GUI design which will then be implemented.

• Chapter 4, Implementation: This section covers features and functionality of
the prototype and gives insight about the technical implementation.

• Chapter 5, Evaluation: This section covers the technique, results and discussion
of our qualitative evaluation with a special focus on revealing insights.

• Chapter 6, Critical Reflection & Discussion: Finally we conclude the work
by summarizing findings in the previous chapters. Also we will provide future work
within this research area.
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CHAPTER 2
Related Work

2.1 Literature research
In this chapter, we will investigate existing data quality tools and visualizations for
time-oriented data. The following results were discovered through my research, Google
and Google Scholar search. Digital, scientific libraries (ACM [18], IEEE Xplore [19], and
SpringerLink [20]) were also used, but they did not provide additional results than the
ones already found with Google Scholar. The keywords in Table 2.1 were used for the
previous mentioned search engines. We additionally investigated promising time-oriented
visualization types with the help of TimeViz browser [21]. Furthermore, we scanned the
reference lists of papers to discover further related work.

2.2 Data Quality Taxonomies
Whereas data quality is a broad term, this paper specifically focuses on data quality
problems for time-oriented data. An example is a data set of water quality measurements

used keywords
data quality data wrangling data cleansing
data profiling data cleansing prototype brushing and linking
google refine data mining data taxonomy
time-oriented data time-dependent data information visualization
visual analytics statistics dirty data

Table 2.1: Used keywords for literature research.
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Data Quality Problem Example
Illegal values 2010-13-32
Violated attribute dependen-
cies

birth date 50 years ago, and age of 10
years

Uniqueness violation two records with the same id
Referential integrity violation reference to a missing data record

Table 2.2: Schema-related data quality problems defined by Rahm et al. [2]

Data Quality Problem Example
Missing values dummy values or null
Misspellings “Viena” instead of “Vienna”
Cryptic values and abbrevia-
tions

“DBSTF” or “E”

Embedded values “John Smith, New York”
Misfielded values phone number in address field
Violated attribute dependen-
cies

wrong zip code for city

Word transpositions one user provides his name as “John S.”
and another one as “K. Miller”

Duplicated records “John Smith” and “J. Smith”
Contradicting records same records with different values
Wrong references “John Smith” is referenced with depart-

ment number 17, which is wrong

Table 2.3: Instance-related data quality problems defined by Rahm et al. [2]

from different stations. Beside quality checks like completeness or outliers, time-oriented
data needs different data quality checks. To stay with the example of water quality
measurements: Did every station measure every five minutes? Did a station stop working
for a specific time period? Or, were there at least fifty measurements per hour?

Data quality can be defined in many different ways for different target groups. As an
example, Olson [5] defines data quality as the satisfaction of data for its intended use due
to accuracy, timeliness, relevance, completeness, understanding, and trust. Data quality
can also be defined on the basis of data quality problems, which depend on the specific
use case.

Rahm et al. [2] provide definitions about data quality problems, which are divided
into schema-related and instance-related data quality problems. Schema-related problems
(see Table 2.2) can be addressed by a better schema design (e.g., by defining constraints
in a database). Instance-related problems (see Table 2.3) have no relation to the behind
schema, and are actual errors in data.

When data sets are merged together by multiple sources, additional data quality
problems arise: Referential Integrity constraints, wrong references, naming conflicts,
heterogeneity of syntaxes and semantics, and different encoding formats.
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Gschwandtner et al. [12] compared general data quality taxonomies for a definition
of a data quality taxonomy for time-oriented dirty data. Their comparison points out
additional single-source problems like unexpected low/high values, outdated temporal
data, dummy entries, and inconsistent spatial data. They also defined additional data
quality problems for time-oriented data, like wrong data formats, wrong time zones,
implausible time ranges, and unexpected short/long gaps or intervals.

2.3 Data Quality Tools
This section gives an overview about the current state of the art in data quality tools,
which can either be Data Profiling, Data Cleansing or Data Wrangling tools. The resulted
data quality tools are described due to own testing, or by its documentation if it has not
been accessible to test. In addition, each tool has a short summary about time-oriented
data quality support.

A solution was selected when it supported either Data Profiling, Data Wrangling
or Data Cleansing techniques. Solutions which were not accessible for testing were
excluded if they had insufficient documentation about their features. Many results of the
conducted scientific research deal with data quality algorithms (e.g., outlier detection,
pattern matching) which were excluded in this work, since this paper does not focus on
algorithms but on data quality tools.

The final results consist of three scientific approaches (Wrangler [8], Profiler [15] and
TimeCleanser [22]), two open source solutions (OpenRefine [9] and DataManager [23]),
and four commercial products (DataCleaner [24], Data Match 2013 [25], Talend Open
Studio [26] and Datamartist [27]).

2.3.1 Wrangler

Description

Wrangler [8] is a free accessible web application [28] developed at Stanford University
for Data Wrangling. Due to its web architecture, Wrangler has a limit of 1.000 data
records, and operation and calculations act slower compared to desktop applications.
After importing a data set, Wrangler attempts to infer a suitable data type for every
column. Based on the underlying data type, Wrangler tries to parse data and marks not
parseable records as invalid. Every data record has one of the following states: valid,
invalid (not parseable), or missing.

Those states are visualized in a data quality meter above every column (see Figure 2.1),
where a green marking indicates valid values, red shows invalid values, and gray displays
missing values. This data quality meter is linked with the tabular view. By clicking on
it, corresponding data records will be selected and transformation suggestions will be
shown. Transformations can be, f.i., removing, filling, splitting, and extracting, and are
performed with Natural language description, a transformation language with interactive
parameter selection.
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Figure 2.1: GUI of Wrangler [8]. Action menu containing operations for the current
selection (top). Transformation suggestions for current selection, and transformation
history (left). Tabular view of wrangled data set (right). Above each column a data
quality meter gives an overview about data quality.

Although the focus of this prototype lies on Data Wrangling, this system shows one
approach for dirty data visualization inside a data table.

Time-oriented Data Support

Wrangler supports date types with the format yyyy-MM-dd, therefore time domain is not
supported. The date is furthermore only checked by syntax, because Wrangler accepts
invalid dates like 2000-13-32.

Wrangling a simple example with mixed date formats like yyyy-MM-dd and yyyy.MM.dd
was relatively complex with the built-in Natural language description. A simple regular
expression would have solved this problem much faster.

Although Wrangler supports date object, no statistics or visualizations are provided
for Data Profiling purposes. The system can only display the syntactic validity of data
records.
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2.3.2 Data Match 2013

Description

Data Match 2013 [25] is a commercial product used for identifying data quality issues in
data sets and defining rules which can then be performed to generate a cleaned data set.
The focus lies on data deduplication, therefore duplicate data records can be identified
with exact or fuzzy search. The matched data can then be merged due to a give rule
(e.g., use the result with the highest value).

Figure 2.2: Data Profiling View of Data Match 2013 showing statistics about data
columns [25].

To identify possible data quality issues, Data Match 2013 provides a “Data Profile”
view (see Figure 2.2), where means of missing and distinct values, and textual statistics
are shown.

Displaying the completeness of the data set is informative about the data qualities
state. Unfortunately the program provides no options to identify the corresponding data
records where values are missing. An option to automatically fill those missing values is
also not given, as well as directly manipulating the data set in tabular view.

Data Cleansing is reduced to textual functions like removing letters, numbers, symbols
or white spaces. Additional features like spelling change (upper and lower case) as well
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as reversing text are supported to increase textual data quality.

After cleaning data and removing duplicates, the application can either generate a
change report, or export the data set. Due to the trial version restriction it is impossible
to tell in which output formats the data set can be exported.

Time-oriented Data Support

Although data records can not be set to a data type “Date”, the program seems to
interpret them as Strings with a specific format, because the Data Profile view displays a
median date value. However, the built-in matching algorithm processes date types as
String, which does not satisfy desired Data Profiling results.

2.3.3 DataManager

Description

DataManager [23] is a free Data Wrangling software with integrated Data Profiling
techniques. It uses a graph-based approach, where input-file-nodes can be linked with
operation-nodes to generate transformed data sets (see Figure 2.3).

DataManager supports CSV files or database tables linked with database connections
as input streams, which are visualized as input nodes. These nodes can then be linked
with work nodes to transform the containing data set. Work nodes define operations on
the data set, like filtering or sorting specific rows. The following wrangling operations
are supported by DataManager:

• Merge two input streams into one output stream

• Append an input stream to another input stream

• Keep only distinct values of a specified attribute

• Fill empty fields with a specified rule

• Filter values based on an expression

• Sort the data set by rows

• Calculate values from existing data

The focus of DataManager lies on data transformation techniques, while Data Profiling
functions help to identify data quality problems like missing values and value distribution
to address those quality problems with suitable transformations. Data Profiling is limited
on numerical values and can’t process data types like Strings, Dates or Times.

12



2.3. Data Quality Tools

Figure 2.3: Example of DataManager merging and transforming two data sets into a
merged output data set [23].

Time-oriented Data Support

DataManager processes numerical and textual data types, however time-oriented data is
not supported.

2.3.4 Profiler

Description

Profiler [15] is a visual analysis web application integrated with Wrangler’s [8] data
transformation engine. After importing a data set into the browser, users can interactively
explore the data’s quality. Five categories of anomalies are handled: missing, erroneous
and inconsistent data, extreme values, and key violations. When clicking on a category
in the anomaly browser (see Figure 2.5) Profiler automatically provides a number of
different visualizations to give an overview of invalid data.

With the help of Profiler’s invented suggestion engine, the system automatically
provides visualizations so that users don’t have to bother with the selection of adequate
visualizations for different data attributes. Every visualization is a facet which can be
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Figure 2.4: DataManager Analysis results [23]. Distribution View showing the distribution
of values from the data set (top). Quality View giving an overview about completeness
(left). Statistics View displaying numerical statistics (right). The column C0 is a date-time
object which statistics are displayed as “N/A”.

arranged by users needs. Profiler also “includes built-in support for primitive types —
boolean, string, and numeric (int, double) — and higher-order types such as dates and
geographic entities; e.g., state/country names, FIPS codes, zip codes.” [15, p.4]

Figure 2.6 shows a binned scatter plot between Gross and Worldwide gross, where
orange values were identified as outliers. Through selection, these values are highlighted
with an orange marking, which then are also highlighted in other visualizations/facets.
This technique is called brushing and linking [29].

Profiler is open source and available at Stanford’s GitHub Repository [30]. However,
the version from May, 2012 is not functional. We failed to fix the project setup due to
the high amount of project dependencies and JavaScript errors, and therefore could not
test it.

Time-oriented Data Support

Profiler suggests various visualizations for different data types. Numeric types are shown
as histograms, while dates are aggregated to time units as days, weeks, months or years
(see Figure 2.7). With the help of this visualization, users can identify the date range
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Figure 2.5: GUI of Profiler [15] showing visualizations of different data fields. The gray
bar in the ’MPAA rating’ window shows missing values. The red bar in the ’Release
Date’ window shows incompatible types. [15]

Figure 2.6: Map assessing 2D outliers in a binned scatter plot (left) in Profiler [15].
Linked highlights on the map (right) give an overview about the geological information.
[15]
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Figure 2.7: Distribution of release dates of a movie data set in Profiler [15].

and get an overview about value distribution over time. Due to missing tests, it is not
possible to find out if Profiler’s Date Object also supports data quality profiling on the
time domain.

2.3.5 OpenRefine

Description

OpenRefine [9] is a web application, formerly developed by Google, which can be run on
a local machine or web server. After importing a data set, data columns can be converted
to desired data types, concluding: Text, Number or Date.

For every column facets can be defined, which are shown on the left side (see Figure 2.8).
Those facets give an overview about the data quality and value distribution or categorical
distribution. The value facets can be used as sliders for filtering, while categories can be
activated for filtering. With Google Refine Expression Language (GREL), Jython, and
Clojure data records can be transformed. Unfortunately, OpenRefine does not support
statistics about a column, and the GREL does not support calculations with more than
one cell. Therefore no statistics like mean, average, minimum, and maximum can be
displayed. Open Refine provides a history view, where users actions can be reverted.

Time-oriented Data Support

OpenRefine supports Date formats which contain date and time. It is represented as a
JavaScript Date object and can be used in any JavaScript (respectively GREL) function
for calculations and transformations.

The date facet shows whether invalid or missing values exist, and displays all valid
dates as a bar chart. This facet shows the minimum and maximum date records, as well
as date distribution (see Figure 2.8, left). With the help of sliders, a date range can be
set, which filters the data records in the tabular view.
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Figure 2.8: GUI of OpenRefine [9]. Facets giving overview and selection (left) for the
tabular view of data records (right).

2.3.6 Talend Open Studio

Description

Talend Open Studio [26] is an open source Data Profiling application. Delimited files (e.g.,
CSV and Microsoft Excel) and database connections can be used as data source. The
data set then is stored as relational tables, whereas columns are declared and converted
to different data types (e.g., String, Boolean, Integer, Double, Date). Due to type
declaration of each column, different quality profiling techniques can be performed. While
numerical data types like integer and double can be analyzed with statistical methods,
textual data types can be analyzed with blank spaces, words, and patterns.

Limited to database connections, Talend Open Studio provides analyses about the
database structure, f.i., number of tables, rows per table, indexes, and primary keys.
Match analysis helps to identify duplicates or gives an overview about defined groups of
the data set (e.g., setting numerical ranges to group the data set). Talend Open Studio
also provides correlation analyses (see Figure 2.10) where correlated values are displayed
as a network graph, to discover data quality issues by looking at it.

Beside those analyses, Talend Open Studio provides statistics about numerical, textual
and date types. Numerical values are analyzed in terms of missing data, minimum and
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Figure 2.9: GUI of Talend Open Studio [31]. Repository view containing analyses and
data sets (left). Results of a textual analysis (right).

maximum values, mean and the median. Statistics about textual data types contain the
length and even statistics about the length including and/or excluding white spaces.

Time-oriented Data Support

Talend Open Studio provides simple statistics (minimum, maximum, and missing values)
about dates. However, a finer granularity (e.g., hours, minutes, and seconds) is not
supported.

Furthermore, this application provides analyses about date distributions in case
of years, months, weeks and weekdays. Figure 2.11 shows an example of a month
distribution.
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Figure 2.10: Nominal Correlation Analysis in Talend Open Studio displaying correlated
values as a network graph to find data quality issues by looking at it [31].

Figure 2.11: Month distribution in Talend Open Studio [31].
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Figure 2.12: GUI of Datamartist [27]. Library and worksheet (top). Value distribution
explorer (bottom) of employee IDs of the selected Join Stub (yellow circle).

2.3.7 Datamartist

Description

Datamartist [27] is another graph based approach for Data Profiling and wrangling.
Every node - called “block” - can be linked together to transform data to get the desired
(cleaned) output. Each block can consist of at least one input and output stub. Each of
these stubs contain a data set which can be profiled.

Datamartist provides different profiling visualizations. Figure 2.12 shows the Value
distribution explorer of employee IDs of a joined data set. In Figure 2.13 the category
count explorer is shown, where the count of data records with the same category are
visualized. The Field Format explorer gives an overview about the format of values (e.g.,
nnn for 586, and nn for 59. See Figure 2.12, bottom left).

Datamartist provides simple techniques like join, filter, sort, and calculate, as well as
duplicate detection to transform and cleanse data.

Time-oriented Data Support

Datamartist supports the data types Date and DateTime on which operations can be
performed, f.i., Week Day calculation, Date conversion, and whether the date is a weekday.
With this, users have the possibility to transform data on the basis of time-oriented
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Figure 2.13: Category count explorer giving an overview about distribution in years from
the field birth-date in Datamartist [27].

calculations. The program also supports a year and month distribution, but provides no
finer granularity.

2.3.8 DataCleaner

Description

DataCleaner [24] is a commercial software, which has been tested with a demo version.
It is also built up on a graph based approach, where data sources can be linked with
converters, analyzers or transformations (see Figure 2.14). This application can be used
as a data profiler, wrangler and cleansing tool.

After opening a data set from a database or delimited file, each column is initially
interpreted as a String. Converters can be used to change columns to specific data types
(Boolean, Date, Number, and String). After refining the data types, data quality analyses
like duplication detection and pattern matching can be performed. Data Wrangling can be
performed with filtering, coalescing, and calculating data records. DataCleaner provides
predefined matchers for String values, such as URL, Country and email standardizing,
which can be used to extract or split values into multiple columns (e.g., the email address
into user name and domain).
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Figure 2.14: GUI of DataCleaner [24]. Overview about data stores, transformations,
improvement and analysis tools (left). Graph-based work sheet (right).

Time-oriented Data Support

DataCleaner supports extended statistics on time-oriented data: highest and lowest date,
highest and lowest time, mean and median (see Figure 2.15).

The program also provides a date gap analyzer which opens an interactive visualization,
displaying gaps between dates which can be scrolled and zoomed. Another feature is a
distribution over years, months, weeks or weekdays. With supportive calculations of date
differences, period lengths, and timestamps, own quality checks can be defined, inspected
or used for transformations (e.g., in a filter).

2.3.9 TimeCleanser

Description

TimeCleanser [22] is a desktop application prototype specialized on time-oriented Data
Cleansing. This prototype has been developed over 3 years with a user-centered design
process, aiming to address time-oriented data quality problems. It is not accessible since
it was specially developed for a company, therefore information about its features were
extracted by the corresponding research paper.
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Figure 2.15: Date/Time Analyzer of DataCleaner giving statistics about time-oriented
data (top). With selecting the green arrow symbol next to “Lowest date” details about
the corresponding data record is displayed in a new window (bottom) [24].

Time-oriented Data Support

While other tools provide simple statistics about a single date field, in TimeCleanser
users have to assign semantic roles to different data columns. “In particular, the user
needs to declare which column contains ‘from’ values, which contains ‘to’ values (or
timestamps, or durations, respectively), and which column contains the associated data
values that are to be analyzed.” [22, p.5]

With the help of semantic roles, specialized visualizations with period length can be
provided. Figure 2.17 shows a heat map of working hours of employees. The red circle
indicates a possible data quality problem, where an employee worked over night. The
analyst has to verify if this data record is plausible or not.

Another example is the visualization of values over time. In Figure 2.18 (top), raw
values over times are displayed. We can see constant high values, which indicate an error.
Figure 2.18 (center) display the difference between subsequent values, where analysts
can see that values did not change over a period of time. Figure 2.18 (bottom) shows the
length of intervals with constant values as bar plot. The outliers in this visualization
also indicate a data quality problem. Beside visualizations to identify implausible values,
TimeCleanser also provides temporal constraint checks, like duration constraints, gap
constraints, and if entries for each ID cover a specified time span.
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Figure 2.16: Date gap analyzer displaying gaps from customers order dates and ship
dates [32].

Figure 2.17: Heat map of working hours of employees in TimeCleanser [22].
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Figure 2.18: Overview of values over time (top). Difference plot of subsequent data
values (center). Interval length as bars over time (bottom) [22].
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2.3.10 Discussion

Table 2.4 gives an overview about Data Profiling techniques as a feature matrix. Each
column represents a data quality tool, where rows define Data Profiling techniques. These
features were selected on the basis of the programs features itself. When a tool provided
a feature for a specific data quality problem, it was added to the list and compared with
the other selected applications.

The following sections give a short summary about the possibilities and features of
each application. Further information about each tool can be found in Section 2.3.

Wrangler

Looking at the table, you can see that Wrangler [8] only shows missing values. As an
additional note the program also displays whether data is valid for a specified data type.
Since Wranglers focus lies on Data Wrangling, the Data Profiling features are sufficient.
Wrangler supports a date type, but processes it only as a text format (so dates like
2010-13-32 are possible).

Data Match 2013

Data Match 2013 [25] is focused on detection and removal of duplicate data records. It
provides simple statistics for different data types, as well as date formats. However, the
time domain is not processed and the duplicate detection function handles date objects
as Strings.

DataManager

DataManager [23] is a graph-based Data Wrangling tool, which generally provides Data
Profiling statistics tools. Unfortunately this program can only handle numeric and text
data types. Time-oriented data is not supported.

Profiler

Profiler [15] is focused on Data Profiling and therefore provides many different visu-
alizations for various data types with semantic roles. With this application missing,
erroneous, and inconsistent data, extreme values, and key violations can be detected.
Date objects can be processed, and visualized as histogram. It is unknown if the date
type also contains the time domain.

OpenRefine

OpenRefine [9] looks like a combination of Wrangler [8] and Profiler [15] focused on
wrangling a data set with the help of Data Profiling statistics and visualizations (facets
in this case). Unlike Wrangler, OpenRefine supports date objects and visualize them as
a histogram facet, which can be used for detecting outliers, getting an overview about
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Statistics
Missing Values • • • • • • • •
Missing Data (%) • • • •
Distinct Values • • • • •

Numerical Statistics
Minimum/Maximum • • • • • •
Mean • • • • •
Median • •
Standard Deviation • •

Textual Statistics
White Spaces • • •
Upper- and Lowercase •
Words •
Length •

Time-oriented Statistics
Minimum/Maximum • • • • • •
Mean • • •

Features
Value Distribution/Histogram • • • • •
Duplicate Detection • • • • • • •
Pattern Matching • • • •
Correlation Analysis • •

Time-oriented Visualizations
Date Gaps • •
Date Distribution • • • • • •
Period Length •

Time-oriented Constraints
Period Length •
Time Gap •

Table 2.4: Comparison of Data Profiling techniques (•...supported by application)
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value distribution, and defining temporal ranges for a filter. Date types can be used in
any calculations with the integrated Google Refine Expression Language.

Talend Open Studio

Talend Open Studio [26] is a Data Profiling tool, providing many analyses for different
data types. Numerical data is analyzed with mathematical statistics, while textual data
provides additional information about white spaces. A network graph can help to find
data quality issues with correlated data. Although Talend Open Studio supports date as
a data type, only year and month distribution views are provided. The time domain is
not processed.

Datamartist

Datamartist [27] is another Data Wrangling tool with the powerful ability to profile the
data set in each state, before and after a specified transformation. Value distribution
visualizations, category count explorers, missing values, and pattern detection make it
to a solid Data Wrangling tool with integrated Data Profiling techniques. Datamartist
supports a Date and DateTime format, which can be used in calculations and therefore
in filtering and cleansing techniques. It also provides a date distribution visualization
(limited to years and months).

DataCleaner

DataCleaner [24] is another graph-based Data Wrangling software with integrated Data
Profiling techniques. Pattern finding, statistics, and transformations combine it to a
powerful tool. This program has the most statistics about DateTime objects: minimum
and maximum date and time, as well as median. Besides date distributions aggregated
with years, months, weeks or weekdays, DataCleaner provides a date gap analyzer,
visualizing gaps from specified temporal values.

TimeCleanser

Previous mentioned data quality tools partially support time-oriented data, but most of
them lack on finding temporal data quality problems (e.g., period length checks). Besides
providing statistics about invalid temporal data, f.i., with a wrong date format, even
valid entries can be implausible. Discovering implausible values can be checked with
formal tests, f.i., if a delivery time of a product is longer than a week, this value can be
declared as implausible. Often a formal definition for implausible values is impossible,
because of hazy constraints. Due to contextual circumstances delivery times can exceed a
specified duration, which can not automatically detected. Therefore insight of an analytic
is needed.

TimeCleanser [22] is specialized on time-oriented data quality problems and does
mainly provide time-oriented data quality checks. Beside statistic means, this prototype
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provides syntax checks, like duration constraints and gap constraints. With the help of
semantic roles, data values can be set as points in time or intervals, with different settings.
F.i., some time intervals may allow overlapping, while other overlapping intervals should
be detected as erroneous. In addition, TimeCleanser provides visualizations like period
length heat maps to identify implausible values, as well as value differences over time. All
in all, this prototype provides the most techniques for time-oriented data quality checks.

2.4 Visualization Techniques

This section covers visualization techniques that are not specifically focused on data
quality but on the visualization of time-oriented data. The following concepts were found
with the help of TimeViz [21], an interactive online browser of visualization techniques
which are covered in the book “Visualization of Time-Oriented Data” [33].

2.4.1 ThemeRiver

ThemeRiver [34] is a visualization of thematic trends of document collections. The
visualization flows from left to right through time, getting thicker along with the strength
of specific themes (see Figure 2.19). With ThemeRiver temporal patterns like trends or
relationships may be discerned. The visualization technique behind the prototype can
also be used for visualizing other quantitative data.

2.4.2 Tile Map

Tile Maps [35] help to visualize long term trends and seasonal patterns of time-oriented
data. The main idea behind this concept is to arrange data based on different time
granularities. A tile (cell) visualizes values of a day due to its lightness, whereas rows
display Days of Week and columns represent Weeks (see Figure 2.20). Seasonal patterns
and long term trends can be conveyed due to its two-dimensional representation as our
experience to look at calendars.

2.4.3 Cycle Plot

Cycle Plots [36] are visualizations to discern seasonal and trend components in time-
oriented data. The visualization consists of nested line plots inside a plot showing
a seasonal pattern. In Figure 2.21 (left) the Cycle Plot shows sales over four Weeks
combined with each corresponding Day of Week. With this visualization an upward trend
is visible for Mondays, whereas sales are decreasing on Tuesdays. Generally the seasonal
pattern reveals a sales peak on Wednesday.

2.4.4 Spiral Graph

Spiral Graphs [37] visualize time-series data along a spiral so that periodic structures
can be identified. They support the comparison of several cycles, which length can be

29



2. Related Work

Figure 2.19: Example of a ThemeRiver showing the trend of different themes over time
using a river metaphor [34].

Figure 2.20: Example of a Tile Map displaying ozone concentrations with a different
brightness inside tiles which stand for single days of a year [35].
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Figure 2.21: Cycle Plot combining different time granularities so that seasonal and trend
components can be discerned (left), which is almost impossible with line plots (right) [36].

Figure 2.22: Example visualizations of a months sunshine intensity using a Spiral Graph
(right), in comparison with a line chart (left) using the same data [37].

interactively set by the user. Figure 2.22 (left) shows an example of a Spiral Graph
displaying sunshine intensity (quantitative data) with a twenty-four hour cycle.
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Figure 2.23: GROOVE Visualization showing the amount of police assignments [38].
Blocks representing one day are wrapped by weeks (of month). Inside a block hours are
displayed as rows, where columns are five-minute-intervals. In this example on the fourth
Saturday the data is missing.

2.4.5 GROOVE

GROOVE [38] (GranularOverviewOverlay) is an interactive pixel-based InfoVis method
using different time granularities (e.g. Year, Week of Month) to provide different represen-
tations time-oriented data. This visualization is configured with four time granularities,
which then are rendered as a recursive grid layout (see Figure 2.23). Besides giving an
overview about the data, GROOVE also provides detail information due to three possible
overlays:

• Color-based Overlay: The value of each pixel has a special color (e.g. blue: low,
red: high)

• Opacity Overlay: The average values per block can be displayed based on a
blocks lightness (e.g. bright: low, dark: high)

• Spatial Overlay: Additionally users can interactively expand or collapse different
levels of time granularities.
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2.5 Conclusion
Most of our evaluated data quality tools cover techniques to profile or wrangle data
with missing support of complex time-oriented constraints. Only four out of nine tools
provide distribution visualizations aggregated by a specific time granularity. DataCleaner
provides an time-oriented visualization showing time gaps between specific data entries.

Of all the evaluated tools, TimeCleanser is the only one supporting annotated data
entries. It provides annotation of data entries based on time-oriented constraints and
offers visualizations for durations and value changes over time. This prototype, however,
mainly provides time-oriented data quality checks, making it difficult to discover further,
general data quality problems.
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CHAPTER 3
Design

3.1 Requirement Analysis

To come up with an appropriate concept we first had to identify the requirements of
the prototype. Grooviler is planned to be a part of a workflow-based framework to
cleanse and profile time-oriented data quality problems. In a previous step a prototypical
application named QualityTime [39] was developed to detect and annotate data quality
problems with the help of (semi-)automatic cleansing and profiling techniques. Based on
the resulting data, Grooviler should be used in the next step to visualize the annotated
data with a focus on time-oriented data quality problems. It is also planned to use it for
identifying further data quality problems with the help of interactive visualizations.

The resulting prototype of Grooviler should therefore be capable of covering/profiling
as many data quality problems as possible (R1) in addition to displaying already anno-
tated data quality problems in an adequate way (R2). The prototype’s concept solely
concentrates on Data Profiling and therefore should not provide possibilities to wrangle
or transform the underlying data. As well as QualityTime, Grooviler uses the taxonomy
of time-oriented single source data quality problems by Gschwandtner et al. [12] as a
basis for its requirements (R3).

To provide an overview about the underlying data and its scope, we want to provide
simple statistics like minimum, maximum or mean of different columns (R4). Like
most of our evaluated Data Profiling tools, we also want to provide histograms showing
distribution of certain values.
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Requirements

R1 Display annotated data: display already annotated data quality problems.
R2 Data Profiling: provide mechanisms to profile further data quality problems.
R3 Data Quality Problem Coverage: cover time-oriented single source data quality

problems by Gschwandtner et al. [12] (if applicable).
R4 Statistics: display statistics about the data set or parts of it.

3.2 Design Models

3.2.1 Nested Model for Visualization Design

To ease the design and analysis of our prototype, we use the nested model for visualization
and validation of Munzner [16]. She defines four levels of visualization creation, of which
each one contains threats of an unsuitable design (see Figure 3.1 (a)). Each level results
into the next level, with separate problems and risks.

On the first level, which is the characterization of domain, users and data have to be
specified. It contains the risk that visualizations are designed for the wrong people or
domain.

The second level is the abstraction of the domain to specific operations and data
types. This is the basis for interaction techniques in the next level. The threat in this
level is that chosen operations do not fulfill the needs of users.

The third level is about visual encoding holding the risk that the design does not
communicate the abstraction to the user effectively. The innermost level is about the
performance of implemented algorithms.

Figure 3.1 (b) shows approaches to validate the design of Grooviler. To define domain,
data and operation characteristics of the first two levels, we will use the data-users-tasks
triangle by Miksch et al. [1] (see Section 3.2.2). To validate our encoding/interaction
design, we conducted iterative feedback cycles until we were satisfied with the result of
our design (see Section 3.3). During implementation, we ensured the correctness or our
algorithms with the help of built-in visualizations of Microsoft Excel [40].

(a) Model of visualization creation by Munzner [16]. (b) Grooviler validation methods.

Figure 3.1: Grooviler validation methods by Munzner [16].
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Munzner [16] diferentiates between lab studies measuring human errors for operation
and tests on target users. While lab studies reveal usability problems (covering the
encoding/interaction level), tests on target users provide the evidence of a systems utility
(covering the abstraction level). In this work, we mixed both approaches, conducting an
evaluation with target test users in a laboratory setting containing tasks. This delivers
both, usability issues, and feedback, as well as the usefulness of our prototype measured
with quantitative amounts of insights (see Chapter 5).

3.2.2 Data-Users-Tasks Design Triangle

For designing an appropriate, effective, and expressive VA approach, we need to consider
the characteristics of data, users and tasks [1]. Only after addressing those three main
aspects, we can think of adequate interactive visualizations (see Figure 3.2). Especially
application designs that handle the complexity of time, need to take these considerations
into account. Satisfying those three quality criteria results in effective, expressive, and
appropriate VA methods.

Data

Grooviler should cover as many data types as possible. We do not plan on restricting
any data type. In particular, we want to cover numerical, textual and time data types.
Our prototype supports only tabular data.

Aigner et al. [33] summarizes design aspects of time-oriented data, which will now be
discussed. We plan on using a discrete scale of time, so that it can be converted to a
quantifiable unit (e.g., seconds). Date and time granularities should be offered as users
are aware of the Gregorian calendar system (e.g., year, month, day). We handle intervals
only as a span (duration) without anchored information about the beginning or end.

Figure 3.2: Data-Users-Tasks Design Triangle by Miksch et al [1].
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Users

Our prototype should be used by any application domain. We define our target users
as domain expert and data analyts, having a at least a minimal amount of technical
experience in analysis tools. We also expect our users to have large displays (e.g.,
> 25" screen resolution) and computers containing a strong hardware (e.g., at least 8 GB
RAM, Quad-Core CPU, SSD).

Tasks

General tasks were already covered in our requirement analysis. Users want to inspect
already annotated data, as well as identifying further data quality problems. They
also want to gain an understanding about the structure and content of underlying data.
Specific user tasks and derived user interactions will be defined during the design process
(see Section 3.3.2).

3.3 Design Process

First, we performed a brainstorming based on a broad range of visualization types with the
help of the TimeViz Browser [21]. This is a scientific collection of different visualization
techniques concentrating on time-oriented data. Then we assembled different ideas and
approaches into a single InfoVis concept. The next step was to create a GUI design for
the prototype. At last, we compared our approach with existing techniques found in our
research.

3.3.1 Brainstorming

In addition to the Data Profiling solutions found in the related work, we took a step
back and analyzed different visualization techniques. With the help of the TimeViz
Browser [21], a collection of more than hundred scientific visualization techniques, we
made a quick review about different visualizations whether they can be used for our
time-oriented data quality problems or not. For this, every visualization technique was
printed onto a small paper to get some inspiration for appropriate visualizations (see
Figure 3.3).

The results of the first brainstorming iteration were 5 different approaches to display
annotated dirty data and 8 techniques to discover further data quality problems.

Approaches to display annotated dirty data:

• Stacked Bar Chart over Time:
This visualization stacks annotated data quality problems in groups on a bar chart
which horizontal axis is ordered by a specific time column (see Figure 3.4).
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Figure 3.3: Printed visualization techniques from the TimeViz Browser to do a rough
evaluation and pre-selection.

• Data Quality Tile Map:
A Tile Map [35] could be used to display the amount of data quality problems
(e.g., missing values) expressed by its opacity (see Figure 2.20). Therefore users
might discover seasonal causes for data quality problems (e.g., identifying a higher
amount of dirty data each Monday because of periodic maintenance work). Users
then could interactively set specific data quality annotations which are then dis-
played.

• Annotation ThemeRiver:
Using a ThemeRiver [34] visualization (see Figure 2.19) would be an option to show
the trend of data quality problems over time. Instead of themes the prototype
could use different data quality problem types.

• Bar Chart grouped by Date Granularity:
Annotated data could be grouped by a specific date granularity of a specific column.
As an example dirty data could be grouped by hour intervals ([00:00 - 01:00[,
[01:00 - 02:00[, ...) and be visualized over time in a bar chart. Stacked granularity
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Figure 3.4: Stacked bar chart which stacks the amount of data quality problems in a bar
shown over time.

grouping would also be possible, e.g. Week Day + Hours ([Mo: 00:00 - 01:00[, ...
[Fr: 23:00 - 23:59]).

• Annotation Spiral Graph:
An interactive Spiral Graph [37] (see Figure 2.22) rendering the occurrence count
of a specific data quality problem would show dirty data over time which occur
over several cycles. A combination of multiple views with spiral graphs showing
different data quality annotations could help to make a connection between data
and its dirtiness over time in cyclic manner.

Approaches to find further data quality problems:

• Duplicate detection:
The prototype could provide a configuration page for users to set up aspects of
data which define them as unique (e.g., ID). With this technique corresponding
data entries would be identified and annotated as duplicates. These results then
may be visualized in different date or time granularities (e.g., duplicates per year,
duplicates per month, ...).
This idea was dropped rather quickly since QualityTime [39] already supports elimi-
nation of duplicates.

• Configurable Quantity Violation:
Another idea was to provide a modular configuration for the users for time-oriented
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Figure 3.5: Sketch of a line chart displaying value changes over time (similar to Time-
Cleanser’s visualization [22]) with (a) quantitative values and (b) two possible visualiza-
tions for nominal value changes over time.

Figure 3.6: Sketch of a bar chart showing the distribution of duration interval length.

constraints. Setting cross-dependent constraints like a number which must be in
a given range for a given time, would then be annotated as invalid (e.g., between
00:00 and 08:00 the number of customers must be 0).

• Date Gap/Overlap Analyzer:
Providing a date gap analyzer as it is used in DataCleaner [24] (see Figure 2.16)
could help to find potential data quality problems based on overlappings or gaps in
time-oriented data.

• Value Changes over Time:
TimeCleanser’s [22] visualization for value changes over time (see Figure 2.18) can
help to find unexpected value changes over time, which could also be adapted to
nominal data (see Figure 3.5 (b)).

• Duration Heatmap:
TimeCleanser’s duration heatmap (see Figure 2.17) is an example of a technique
helping users to visually identify implausible or wrong data.
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• Duration Length Distribution Bar Chart:
Interval lengths (durations) could also be displayed as a distribution with the
help of a bar chart (see Figure 3.6). This bar chart would provide interactive
possibilities like details on demand by showing information about corresponding
data and brushing and linking.

• Cycle Plot:
Although Cycle Plots [36] generally were intended to discern seasonal and trend
components, they could be used to visualize trends of dirty data. This technique
could also be used to identify seasonal patterns on data quality problems (e.g.,
missing values have an upward trend on Mondays). As we can see combining
different temporal granularities can result in remarkable visualization results.

• GROOVE:
Rendering different stacked time granularities in one visualization like in GROOVE [38]
is another interesting approach. This type of visualization could help to find ad-
ditional data quality problems, like missing values in a seasonal pattern (see
Figure 2.23). It could also help to visualize annotated data quality problems by
mapping a pixels opacity to the amount of a specific data quality problem.

Additionally the first brainstorming iteration resulted in notes about possible features of
the prototype (where applicable):

• Display the data table containing the profiled data
• Integrate brushing and linking between visualizations and the data table
• Support temporal granularities
• Offer interactive switching of a temporal granularities
• Provide interactive setting of cycle lengths
• Integrate multiple views

3.3.2 Idea refinement

At this point, within the scope of this work, we decided to solely concentrate on building
one and up to a maximum of two interactive visualizations. Hence the next step was to
decide which type of visualization would fit best covering as many data quality problems
as possible.

Looking at the results of the first brainstorming iteration (see Section 3.3.1), it
seems that two-dimensional visualization approaches fit our previously defined require-
ments. They can be used to (1) display already annotated data (e.g., Data Quality Tile
Map [35]) as well as (2) help the user identifying further data quality problems (e.g.,
Cycle Plot [36], Duration Heatmap [22] GROOVE [38]). Therefore we decided to use a
heatmap visualization similar to a tile map, which axes can be freely configured.
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Temporal Granularity
Granularity Minimum Maximum Next Zoom Granularity
Year - - Month
Month 0 11 Day of Month
Week of Year 1 53 Day of Week
Week of Month 1 5 Day of Week
Day of Year 1 365 Hour of Day
Day of Month 1 31 Hour of Day
Day of Week 1 7 Hour of Day
Hour of Day 0 23 Minute
Minute 0 59 Second
Second 0 59 -
Millisecond 0 999 -

Table 3.1: Temporal Granularities provided by JAVA Development Kit from version 1.5
to 1.7 including their value range returned by the Calendar API. Milliseconds are not
supported by the Prefuse Toolkit. The last column covers the next logical granularity if
users want to zoom inside this granularity.

Axes

The axes of our heatmap visualization present specific columns of the data set, which can
either hold data that is quantitative (e.g., sale, price), nominal (e.g., category) or temporal
(e.g., birth date, time of purchase). Users should have the ability to interactively change
and combine axes based on a data set’s column and its data type. As an example, users
might configure the row-axis with nominal data like First Name and the column-axis
with temporal data like Birth Date grouped by years. This could show anomalies or
trends of first names over time.

Quantitative axes have a linear range of a column’s minimum to its maximum value.
Temperatures might reach between -50 and 50° Celsius whereas prices may range between
0 and 1.000 €.

Nominal axes render categorical data of a specific column sorted in alphabetical order.
The categories are taken from the columns containing textual data (String representation).
The amount of categories depends on the amount of different nominal values.

Temporal axes based on a certain column containing date, time, or both, display
data in a specific temporal granularity. The different types of temporal granularities are
shown in Table 3.1. In our concept years are the highest granularity, therefore the range
of years has to be calculated by the minimum and maximum year of the underlying data.
Other granularities are constrained by one of their superior time granularities (e.g., a
year consists of twelve months, a week consists of seven days).
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Figure 3.7: Example of different step-widths with a quantitative axis containing integer
values from 1 to 25. With a step-width of 1, which is the most fine-grained step-width
for integers, no binning has to be done (a). With a setting of a step-width like 5, or 25,
which are divisible by the maximum range of 25 without a remainder, tiles are evenly
distributed (b-c). Using an indivisible step-width like 10, results in a tile at the last
position which ranges up to 30 although this tile only holds integers up to 25 (d).

Binning

Approaches using temporal axes, like GROOVE or Tile Maps, use the same date objects
with different temporal granularities for column and row representation. The mapping
of cells (tiles) or pixels with opacity or coloring is based on the data that falls in the
corresponding time period. With our modular approach, letting users decide how to
configure the heatmap’s axes, our axis layout has to look up for the corresponding data
type, based on the current axis configuration. Thus, binning depends on the respective
data type of the current axis.

Nominal data can easily be grouped into different categories which then are evenly
distributed along the axis. This also applies to temporal data grouped by a temporal
granularity. However quantitative or numerical data, in particular floating point data,
have no natural non-decomposable unit on which the axis can rely on.

Therefore quantitative axes need a so called “step-width” which defines the length
of intervals used for grouping corresponding data records. Figure 3.7 shows a simple
example with a quantitative axis containing integer values from 1 to 25 and different
step-width configurations and its drawbacks. Using an indivisible step-width results in
partly filled tiles, distorting the users perception while visually profiling the data.
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We may now decide to only allow step-widths that are divisible without a remainder,
but we want to keep the prototype as unrestricted in configuration as possible. Neverthe-
less, we plan on calculating a suitable step-width for quantitative data, that the user can
interactively change.

As we can see in Table 3.1 temporal granularities also act like ordered nominal data
due to their interval ranges. Therefore we could also provide a step-width to set interval
ranges in temporal granularities. This could be a step-width of 12 with Hour of Day to
differentiate forenoon and afternoon, or a step-width of 5 with Minutes. A step-width in
temporal granularities could be described as “each x granularities” (e.g., each 12 hours,
each 5 minutes).

In our prototype, step-widths must be within a temporal granularity’s interval range
which can be found in Table 3.1. Although granularity configurations like 50 hours or
100 minutes may be useful in special situations, we restrict this configuration based on
the calendar’s structure.

Using step-widths in temporal axes with granularities, provides another different,
aggregated overview of the data. We want to offer a quick and responsive setting for
step-widths so that users get immediate feedback of the impact of aggregating data and
its changes. This could be accomplished with a slider component.

Cell Color Coding and Calculation

Figuratively speaking, with defining axes we offered different ways to change the width
and height of tiles in our heatmap. Using quantitative data with scope of more than
10.000 and a step-width of 1 will result in a pixel-based visualization. Whereas nominal
data with 5 different categories will result in a heatmap containing 5 big tiles.

The next step is to define a mapping between data and color. A tile of the heatmap
contains a subset (list of tuples) of the data which falls into the boundaries given by the
axes. We want to offer three different ways to generate a color based on the tuples of a
tile.

• Tuple Count:
The most simple coloration is setting the color based on the amount of tuples
contained in a tile. This can help to give an overview about occurrences of tuples
and their distribution.

• Aggregate Tuples:
Another option is to set a tile’s color based on a single value which is grouped by
an aggregate function. A specific tile could hold a subset of sales transactions on
Mondays between 9 and 10 o’clock. We may now want to know the sum of sales
during this period. Therefore we would aggregate the column “Sales” with the
aggregate function Sum. This form of coloration could help to identify implausible
values.
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Therefore, we provide the following aggregate functions:

– Count
– Distinct Count
– Median
– Sum *
– Mean *
– Standard Deviation *
– Minimum *
– Maximum *

Functions marked with an asterisk * can only be applied to numerical data. Count,
Distinct Count, and Median can also be used for ordinal and temporal data.

• Annotation Count:
To visualize data entries that were annotated with identified quality problems in
a previous step, we want to provide a coloring based on the amount of tuples
annotated with data quality problems. Users then could choose only to visualize
an individual or any type of quality problem. With this, users can inspect the
distribution of data quality problems across the data set.

We might use several types of overlays as it was implemented in GROOVE. In our case,
however, we decided to only use a single color coding to not overtax users using the
prototype.

Interaction Operations

At this point, users can interactively configure horizontal and vertical axes based on a
certain column’s value, data type and step-width (if ordinal). They can also configure
the type of aggregate functions used for heatmap cells (tuple count, tuple aggregation,
or annotation count). To identify the scope of Grooviler’s interaction operations, we
decided to create a small proof of concept prototype (see Figure 3.8).

It is build with JAVA without any technical constraints as a disposable application.
It consists of a data table implemented with a JTable and a heatmap arranged with a
MigLayout as a grid layout. MiG Layout [41] is an open source JAVA layout manager.
We could have used a java.awt.GridLayout which is included in JAVA Development
Kit since version 1.0. However, its implementation can only deal with integer values,
resulting in gaps between tiles when the heatmap’s width is indivisible.

Thanks to a JSplitPane, the prototype already supports flexible panel dimensions
of the table or heatmap panel. With this, the movable divider can be used to setup the
desired height of the corresponding panels.
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Figure 3.8: Screenshot of the first prototype serving as a proof of concept identifying
possible interaction operations. Selecting a heatmap cell highlights the corresponding data
table rows with interactive markers (known as TODO-markers from Eclipse IDE [42])
Hovering over a heatmap cell results in a tooltip providing information about the cell’s
calculated value and temporal granularities.

The disposable prototype is able to create a heatmap based on programmatically
defined temporal granularities, which are shown in a status bar at the bottom of the
screen. Hovering a tile results in a tooltip showing the amount of containing table entries.
By clicking on a tile, the corresponding table rows get highlighted and annotated with
markers. This markers are a starting point for Grooviler since they are not yet interactive.
Otherwise, this first prototype does not provide any interaction operations. Also, the
heatmap configuration view was not defined and implemented yet.

With the help of this proof of concept we refined the provided interaction operations.
We additionally implemented the Visual Information Seeking Mantra by Shneiderman [43]:

1. Overview: This is already supported by the heatmap’s appearance due to its axes,
data types, and used values.
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Figure 3.9: Sketch of a Zoom History. Each zoom action gets stored and displayed as an
interactive element to the right of the prior zoom action. Each action can be undone by
clicking the close-button in the right corner of each element.

2. Zoom & Filter: We accomplish this by offering a technique to zoom inside a
heatmap cell. With numerical data this filters the cell’s numerical interval range.
Zooming inside temporal data switches to the next finest temporal granularity
based on the parents granularity. As an example zooming inside a heatmap tile
containing the year 1999 would display Months of the year 1999.

3. Details-on-Demand: We accomplish this by providing a separate view displaying
statistics (e.g., box plots, value distribution) about a user selection.

4. Relate: Existing tools do not provide the possibility to identify corresponding data
entries of a specific data quality problem. We bridge this gap with the help of
interactive markers next to the data table’s scroll bar (similar to TODO-markers
implemented in Eclipse IDE [42]). When users select a specific heatmap tile, related
table rows get highlighted and annotated with interactive markers. Clicking the
marker causes the table to scroll automatically to the clicked table element.

5. History: We provide a simple history containing each zoom action (see Figure 3.9).
With this, each zoom level (and filter operation) can be undone.

6. Extract: The extraction of sub-collections or query parameters is not supported by
this prototype.

3.3.3 GUI Design

Now that we defined possible user interaction operations, we were able to design an
appropriate GUI. We identified 4 areas which are needed to offer already discussed
functionality: We need (1) a data table containing all data, (2) a heatmap visualization,
(3) a panel containing statistic visualizations and (4) a section providing configuration
elements for heatmap configuration.

The first attempt was using 4 different views arranged in a grid layout (see Figure 3.10).
This GUI design has weaknesses using space inefficiently. Data tables often need a certain
width due to their cell’s contents. This layout would result in limiting the remaining
space for our heatmap visualization. Another flaw with this approach is, that statistic
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Figure 3.10: Sketch of the first GUI approach, showing a data table (upper left), heatmap
visualization (upper right), statistic visualizations for selection (lower left), and heatmap
configuration (lower right, see Figure 3.11).

visualizations would also need to be arranged as a grid layout. This visualizations are
then limited in their size, especially in their height.

Also, the configuration panel for the heatmap (see Figure 3.10 lower right, and
Figure 3.11) would need a lot of space. Therefore the statistics panel automatically
adopts that height. When users have no active selection this would result in a large,
empty area.

To address this problems we reorganized the layout (see Figure 3.12). First of all we
moved the statistics panel on to the side into a separate panel containing a vertical scroll
bar next to the main panel. We assume that users do not need to constantly reconfigure
the heatmap visualization. Therefore we extracted the heatmap configuration view into
an own separate window, since it takes up a significant amount of space. With this, it is
up to the users to decide when and how to display the configuration window. This may
be on top or besides the main window, or even on another monitor.

A panel containing the zoom history (see Figure 3.9) was missing in the first design.
It is now arranged below the heatmap at the bottom of the main window. Also, we
arranged the heatmap below the data table to give it enough width.
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Figure 3.11: GUI Sketch of the heatmap configuration containing configuration of
the horizontal axis (upper left), configuration of the vertical axis (upper right), and
configuration of the calculated/colored value (bottom).

To provide enough flexibility we provide adjustable panel dimensions. Users should
be able to customize the width of the statistics panel, as well as the height of the data
table and heatmap. Therefore we want to use movable dividers between the main panel
and statistics panel, and between the data table and heatmap.

3.3.4 Feature Comparison

Before starting the implementation we compared our concept with the techniques found
in our research about Data Profiling tools (see Table 2.4). The following list shows
additional features offered by our current approach:

• Value Distribution/Histogram: by showing a boxplot about a selected subset of the
data.
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Figure 3.12: Sketch of the second and final GUI approach. The heatmap configuration is
extracted into a separate window (left) separated from the main window (right). The
statistics panel is now attached at the right side of the window. The main panel consists
of the data table, heatmap and the zoom history.

• Pattern Matching: because QualityTime supports regular expression matching
which annotates matching data.

• Date Gaps: using a separate column containing calculated date gaps which then
can be visualized.

• Date Distribution: due to temporal granularity settings of each axis of the matrix.
• Period Length: by visualizing manually, pre-calculated lengths of intervals (e.g., in

milliseconds).
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CHAPTER 4
Grooviler

This chapter covers the implementation of the prototype, and gives an overview about
project dependencies. After discussing architecture decisions we then cover each imple-
mentation of every visualization.

4.1 Technical Details and Implementation

We will now give an overview about technical dependencies of Grooviler. Then we will
cover the architecture of our prototype and explain each implemented visualization.

4.1.1 QualityTime Dependency

As already mentioned, Grooviler needs to work with a data set where erroneous data
entries are already annotated. This is accomplished with another prototype called Quali-
tyTime [39] developed by Thomas Braunsberger at the Vienna University of Technology.
It extends a prototype named TimeProfiler developed by Theresia Gschwandtner and
Benjamin Klaus.

QualityTime offers the possibility to import given data in CSV (comma separated val-
ues) data format. It automatically identifies basic data quality problems on runtime (e.g.,
missing values). Contextual data quality issues can be found with specific configurable
checks (e.g., identifying outliers, checking time raster). Faulty data is then annotated
and highlighted in the provided fisheye table (see Figure 4.1).

Also, this tool provides possibilities to wrangle data with the help of semi-automatic
cleansing algorithms (see Figure 4.2). It also provides data transformation operations,
i.e., adding columns, and performing calculations on different column values. Each step
of the user is recorded and can therefore be undone.
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Figure 4.1: Example of annotated data quality problems in QualityTime [39]. The
hovered row and its neighbors are displayed bigger than the rest due to its representation
as a fisheye table. In this screenshot various data quality issues are highlighted with
different background colors. Hovering a cell provides a detail on demand tooltip with a
short description of the specific problem.

Figure 4.2: Structure of QualityTime’s UI: (a) Menu bar to perform quality checks to
annotate data or data transformations, (b) command line and (c) status bar [39].
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Figure 4.3: Project Dependencies of Grooviler: QualityTime and Grooviler both depend
on Prefuse Vienna and DirtyData. Prefuse Vienna is a slightly modified version of
Prefuse [17]. DirtyData is an extension of Prefuse providing a dirty data model, time
quality checks and wrangling operations.

At the start of the implementation phase QualityTime had not been fully implemented.
To avoid complicated merge problems, Grooviler is being developed in a separate project
using the same project dependencies as QualityTime (see Figure 4.3). Prefuse Vienna
is a slightly modified version of Prefuse [17] which is continuously extended by the
Information Engineering Group at the Vienna University of Technology. DirtyData is
also developed by the Information Engineering Group and is an extension of Prefuse
providing data structures which can be annotated with data quality problems. It also
offers time-oriented data quality checks, cleansing operations and a history of the user’s
action.

With this project setup we ensure that our prototype also complies with technical
constraints given by QualityTime. To ensure that our prototype uses the same table as
QualityTime, we reuse the singleton Manager of the DirtyData project. The Manager
consists of the user’s history and a model manager containing the data and attached
observers. We also use the already implemented TPColorManager to provide the same
coloring in our data table based on annotation types.

To simplify our test procedure we annotate data with random data quality problems
at start-up. With this we can easily test our visualization based on already annotated
data. Each row has a 50% chance that a random cell obtains a data quality annotation.
10% of those rows have the chance that each cell of that row get completely annotated.
This gives us a highly annotated but randomly distributed data basis.

4.1.2 Architecture

To comply with the architecture of QualityTime, we apply the Model View Controller
pattern [44]. At first we planned on implementing different controllers for each view.
But since user interactions require to notify changes across different views, we ended
up with a single controller, named GroovilerController. We applied the Singleton
pattern [45] to ensure that it has only one instance.
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Figure 4.4: Parts of Grooviler’s code visualized as an UML class diagram showing the
Model View Controller principle. The model, controller and the heatmap panel are
singleton classes, to reduce the expense with weaving them into other classes.

To simplify the dependency weaving, our heatmap panel also uses the Singleton pat-
tern, because it is the most frequently changing component in our system. A disadvantage
with that pattern is the missing reusability, which is irrelevant for our prototype.

Data Types

Data types are analyzed and set during application start-up by Prefuse. In our case we
need the possibility to change the data type so that our configuration keeps flexible. Tem-
poral data normally behaves ordinal. Due to our introduction of temporal granularities
we need to extend the data types with a new one, namely TEMPORAL. With this, users
can now decide to switch the representation of a column holding temporal data between
ordinal and temporal (aggregated). To be downwardly compatible we only use this data
type in Grooviler in our utility method that identifies the data type of a column.

Interestingly, Prefuse explicitly defines numerical data with a type named NUMERICAL.
This is not to be confused with the data type ORDINAL. The difference can easily be
shown with a simple example. We may have a data set containing the following numerical
data: [1, 3, 5, 2, 4, 6]. When we set the data type to ordinal, the data set keeps the way
written above. However, if it is changed to numerical, the data set gets a numerical
sorting which results in the following data set: [1, 2, 3, 4, 5, 6]
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There is another data type called NOMINAL, which is however merely used. Prefuse
does not want to miss out on ordinal data, therefore it cautiously sets nominal data
as ordinal. This does not have any side-effects though, since ordering is based on the
occurrence in the data set.

In summary, we now have 4 data types available, whose representation can be changed
at runtime through user input:

• NUMERICAL: data that is getting handled with numerical sorting. Can also be
displayed as ordinal data.

• ORDINAL: any data using an ordinal scale (in our case also nominal data).
• TEMPORAL: data that contain a time or date. This data type is used for temporal

granularities. Temporal data may also be represented as ordinal data.
• NOMINAL: data that has no ordinal scale. Merely in use, since it is typically defined

as ORDINAL anyway and therefore ignored in our prototype.

Extensions for Temporal Granularities

To provide the possibility to use temporal granularities with Prefuse we needed to make
further adaptions. The first change is to introduce a temporal data type which was
already discussed in Section 4.1.2.

We also needed to provide a specific ObjectRangeModel which defines interval
ranges based on a temporal granularity. We already covered the interval ranges of
temporal granularities in Table 3.1, which we now implemented. The range model is
an important concept in our heatmap visualization so that each cell knows its internal
bounds.

Since we want to filter data with temporal granularities, we also had to extend the
current Predicate implementations. We implemented a TemporalGranularity
Predicate that is flexible enough to handle different temporal granularities and a
specific range. With this we can define a filter containing a range (e.g., January - March,
Years: 1990 - 2000, Tuesday - Thursday).

Prefuse Extensions

We mainly commited source code to our own prototype project, but sometimes we have
to adapt the Prefuse Vienna itself. The DataLib includes serious bugs when it comes
to data operations on tuple sets. In some cases nominal data is treated as ordinal data
causing unexpected effects in sorting of axis labels.

Additionally, we provide extensions which are not dependent on data structures of
Grooviler and can therefore be reused by other developers. We contribute a new layout
and renderer for box plots which is covered in Section 4.1.3. We also added the data type
TEMPORAL to the Prefuse Constants and a helper method inverting colors. Further, we
introduces an AggregateAxisLayout which can be used as an underlying data source
for tile-based two-dimensional visualizations (e.g., heatmaps).
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Figure 4.5: GUI of Grooviler. Table showing the underlying data (top) aggregated in a
heatmap (center). Statistics panel (right) including a color legend (lower right). Panel
showing the zoom history/filter levels (bottom).

4.1.3 GUI

Figure 4.5 gives an overview of Grooviler’s GUI. The main panel is split with a split pane
into two separate panels. The left component holds the table containing the underlying
data and the heatmap visualization. The right view renders statistics about the data
set and selections. At the bottom we render the filter levels which are set during zoom
operations.

Table Panel

The table panel consists of a JTable with a custom cell renderer. It sets the background
color, as well as the blue border in case of an annotated or highlighted cell. To comply
with the standards of QualityTime we use the same background colors by re-using the
TPColorManager.

On the right side of the table’s scroll bar we place a table indicator component
containing interactive markers. Each marker represents an annotated vertical position
(row) inside the data table. The position gets calculated with ratio calculation between
the item number in relation to the amount of items. By clicking a marker the table
automatically scrolls to that specific item.
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Figure 4.6: Heatmap Visualization in Grooviler. In this example tuples get aggregated
in hour of days (column TestTime) and years (column TestDateTime). Axis labels are
shown at the left and bottom of the heatmap and display the labels based on the current
aggregation. Not every axis label is shown due to a configured spacing that prevents
overlapping labels.

Heatmap

The configurable heatmap aggregating values is the core of our prototype and consists
of several layouts and renderers. As a basis we use an AggregateTable where items
can hold aggregate items within. Our two-dimensional approach needs the possibility to
specify the x- and y-position of each item. Instead of re-implementing already existing
data structures with horizontal and vertical positions, we decided to use the row-index of
the aggregate table. Based on the column count, each position can easily be recalculated:
rowIndex = floor(index/columnCount)
columnIndex = index − columnCount ∗ rowIndex

Layout The default implementation of axis layouts calculates visual items based
on its data type. This would result in unevenly distributed visual items based on
the underlying data. Therefore we have to implement our own axis layout. This
AggregateAxisLayout handles underlying data as evenly distributed ordinal data. It
additionally calculates the width and height of visual items based on the total amount of
tiles. A shape renderer takes these dimensions as a reference to draw rectangles with the
given size.

The implementation of the axis layouts for the underlying AxisLabelLayout had
to be adapted as well. Our NominalAxisLayout handles ordinal data nominally. The
Prefuse Toolkit automatically uses an ordinal layout for data types which are not explicitly
defined as nominal. This sometimes results in illogical, alphabetical sorting, like ascending
month names (e.g., April to September) or wrong sorted bins (e.g., [1−5[, [10−15[, [5−10[).

Since our visual items have a fiducial in the lower left corner, the default implementa-
tion for the layout of axis labels is not sufficient. Using the default AxisLabelLayout
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Figure 4.7: Color Palettes in Grooviler taken from ColorBrewer [46]. The first 18 color
palettes can be used for sequential data. The 9 palettes in the right column can be used
for diverging quantitative values.

would result in axis labels at the lower left corner of each heatmap tile. Therefore
we extend the class and slightly modify it to a CenteredAxisLabelLayout which
relocates each label to the center of a tile.

The built-in axis label layout provides the possibility to define a specific spacing
in pixels. It is used to prevent overlappings by taking the spacing as minimum width
between origins of labels. Due to our configurability labels may need a different spacing.
Therefore we calculate the spacing based on the longest occurring label.

Because of the missing possibility to render a simple text onto a Prefuse visualization,
we further created a AxisDescriptionLabelLayout. Based on the underlying axis
label layout, a given text will be rendered above (for y-axes) or beyond (for x-axes) axis
labels. The axis description is computed based on the current axis configuration with
the help of the BinLabelHelper utility class.

Coloring Coloring is done with an extension of DataColorAction. This class
provides the possibility to map values of a certain column to a color. We extend it to
an AggregateData ColorAction which takes a color configuration as constructor
argument. Each tile calculates its value based on the containing aggregate items and the
setting of the coloring. This can be the count of tuples, annotation count or a specified
aggregation function. The relation between the bounds of the color palette and mappable
values is done in the setup() method.

Next to the heatmap we provide a color legend panel, displaying the minimum,
medium and maximum value of the heatmap. On every update action in the heatmap
the ColorLegendUpdateAction notifies the color legend panel with new values to
update accordingly.

We implemented a total of 27 different color palettes provided by the online tool
ColorBrewer [46]. 18 of them can be used to display sequential values while 9 color
palettes are suited to display diverging values. Since we only visualize quantitative data
in our heatmap, we do not implement the given 8 color palettes for qualitative data by
ColorBrewer. Our used color schemes cover simple gradients up to a spectrum scheme
ranging from red to yellow, white, green and finally blue. Figure 4.7 gives an overview
about all provided color palettes.
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Figure 4.8: Heatmap Tooltip in Grooviler. The tooltip is shown when users hover above
a certain cell in the heatmap. It shows the current tuple count (a), aggregation function
(b) or data quality types with corresponding values (c).

Sometimes it is difficult to differentiate between heatmap cells that contain low values
and ones that are empty (and therefore not rendered). Most color palettes treat low
values as a very light color, sometimes converging to white (see Figure 4.8 (c)) To address
this problem, we introduced a dotted background pattern to distinguish between those
cases.

Tooltip We implement a detail on demand technique by adding a tooltip to our heatmap
(see Figure 4.8). This shows a heatmap tile’s label, which is set during our color action
initializing. At that moment we have the access to underlying aggregated data and the
result based on aggregated items.

Dependent on the heatmap’s configuration the tooltip shows appropriate information.
We try to display it as descriptive as possible. As an example the annotation count shows
a textual distribution over different annotation types (see Figure 4.8 (c)).

Highlighting We provide a ControlListener to respond to user’s mouse input.
When a user left-clicks on a certain cell in the heatmap, the appropriate cell and its
relevant data is getting highlighted (see Figure 4.9). Thereby the table gets annotated
with interactive blue markers next to the data table which can be used to jump to a
corresponding table row. Finally we provide a feedback for the user by rendering a
border around the selected cell. The border color is an inversion of the cell’s color to be
independent of freely configurable color palettes.

Also, by selection, some table’s cells get marked with a blue, inner border. These
annotated cells show the columns which are used in the heatmap visualization. In our
example in Figure 4.9 the user selected the cell with Sales between 1.000 and 1.500 €
in February. The data table marks the column TestDateTime because it is used as
horizontal value and the Sales column because of its configuration as vertical axis. The
ILengthSec column (abbreviation for Interval Length in Seconds) is marked because of
the heatmap’s configuration to show data quality annotations.

Zooming Our ControlListener also reacts to a user’s right-click. It opens a context
menu that contains the possibility to zoom inside the row, column or both (see Figure 4.9).
To support users in their selection, we additionally provide the field name which is used
in the respective column or row.
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Figure 4.9: Heatmap Interaction Operations Zooming and Linking in Grooviler. In our
example the user left-clicked, and therefore highlighted the cell with Sales between 1.000
and 1.500 € in March. With a right-click the zoom menu shows the possibilities to zoom
inside the row, column or both.

Rule Error Message
When the underlying data type is ordinal and
the axis shows only one ordinal bin

You can’t zoom deeper into a
single ordinal bin

When the underlying data is temporal and con-
figured with temporal granularity Seconds

Milliseconds are not supported

When the underlying data is numerical and the
row/column/cell contains only a single value

Zooming into a single numeric
value is not supported

Table 4.1: Zoom Rules of the Grooviler Heatmap when zooming is not possible.

Of course users can’t zoom endlessly. Table 4.1 show the rules when it is not possible
to zoom. These rules are applied to the row and column respectively. The zoom function
gets disabled if one of the rules apply.

The following actions are performed during zooming:

• Clear the current selection and visualizations based on selection.
• Set a filter to the range of the selected heatmap tile (e.g. 0 - 1.000, Year: 1999,

Months: 4 - 6 ).
• Switch to the next logical temporal granularity (only with temporal data, see

Table 3.1).
• Add a filter component to the zoom filter panel.
• Update the heatmap with applied filters.
• Update corresponding histogram panels with applied filters.
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Figure 4.10: Example of nested zoom operations in Grooviler. The user zoomed into
April of year 1976 with sales between 0 and 1.000.

It is possible to perform nested zooms (see Figure 4.10). In this example, the user
first zoomed into the year ranging from 1980 to 1984 and sales between 0 and 2.000.
Then he/she zoomed into the second month of the year (February) and sales between 0
and 1.000.

As a side note to Figure 4.10: Although the filter is set to 0 - 1.000 you may notice that
the vertical axis only shows values up to 900. This is due to our initial step calculation
resulting in 3 tiles with a step-width of 300. Our calculation tries to find a balance
between not showing too many tiles and giving expressive values as interval ranges. In
this example the maximum value is 829. We could have used a step-width of 400, also
provided by 3 tiles but this would result in a distorted visualization (see Figure 3.7). Our
technique is a mixture of decade-based rounding with a dynamic control variable based
on the value’s span.

Statistics Panel

The Statistics panel consists of 3 box plot visualizations and 2 histograms. Each box plot
shows a selected subset of the data grouped by column, row and both. Both histograms
summarize the value distribution of the current heatmap configuration of each axis
respectively.

Box Plot We implement a Prefuse visualization for a basic box plot [47] without
hiskers. It is rendered horizontally so that our remaining space inside the statistics panel
is efficiently used. For this, we develop a BoxPlotLayout which constructs a single
VisualItem holding the positions of the data’s quartiles. The BoxPlotRenderer
then takes this VisualItem as a reference for the box plots shapes. It draws rectangles
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Figure 4.11: Histogram Visualizations in Grooviler. The upper histogram shows the
distribution of the horizontal axis. All values of year 2000 is summarized in a separate
histogram bar (green border). The lower histogram renders the vertical axis distribu-
tion. Values occurring in December are summarized in a specific bar in the histogram
(blue border). Each histogram consists of a title which explains what the histogram is
visualizing.

Figure 4.12: Box Plot Visualization in Grooviler. The first box plot shows the value
distribution of the selected region of the horizontal axis. The second box plot gives an
overview about the distribution of the selected vertical values. The third box plot gives
an overview about the calculated color field inside the cell.

and lines at the corresponding positions. The height of the box plot is calculated based
on the layout bounds giving a 5% padding.

Our implementation of box plots is independent of QualityTime or Grooviler and is
therefore added to Prefuse Vienna. Like other Prefuse visualizations, the BoxPlotLayout
requires a group that contains underlying data and a field name of a numerical column.
Optionally an AxisLabelLayout combined with an AxisRenderer can be provided
to display axis labels. We delivered a demo application with Prefuse Vienna to show its
usage.
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Our prototype holds 3 different box plot visualizations (see Figure 4.12). The first
one shows the value distribution of the selected region of our horizontal axis. In this
example the horizontal axis is defined with the numerical column DivergingNum. The
box plot now only shows values of the column DivergingNum which occur in our selected
range.

The second box plot works in the exactly same way, except that it takes the vertical
axis into account. The third plot gives an overview about the calculated values. In
Figure 4.12) we defined the calculation and coloration based on the mean of the column
ILengthSec. Therefore we now only show the distribution of ILengthSec values which fall
both inside the selected region of horizontal and vertical axis. We now have an overview
about Interval length in seconds which DivergingNum is between 2.000 and 4.000 and
Sales is between 1.100 and 1.200.

The leading description title of each box plot reveals what the box plot is about. A
details on demand tooltip shows the exact numbers.

Histogram The histogram visualization consists of nominal layouts so that categories
get correctly ordered. The shape renderer is slightly modified, so that rectangles are
drawn from the left side to each visual-item’s Position. We calculate the height of the
visualization with the amount of bars and a padding between them. Axis labels of the
horizontal axes use a calculated spacing based on the width of the longest label.

The Statistics Panel renders two histograms (See Figure 4.11). The first histogram is
giving an overview about the heatmap’s row distribution. The second histogram shows
the distribution of the column axis. At first we planned to support the user’s visual
mapping by providing a horizontal and vertical histogram for each axis respectively. We
abandoned this idea due to missing horizontal space. Users want to get an overview about
the data distribution. A small horizontal histogram with a scroll bar would interfere with
this approach.

However, users might now have problems associating the histograms to its particular
axis. To address this concern we add a description title on top of each histogram which
explains where the rendered data comes from. In the description we cover the following
information:

• Aggregation function (e.g., Count, Sum, ...)
• Calculation field (e.g., tuple row, Sales, ...)
• Field and aggregation for grouping

Therefore we might have descriptions like:

• Count of rows grouped by TestDate (Years)
• Sum of Sales grouped by Customer Count (each 500,00)
• Count of all annotations grouped by Game Category
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Figure 4.13: Heatmap Configuration Frame of Grooviler. Configuration of each axis by
column, data type, granularity and step-width (top). Calculation can be set as tuple
count, aggregation function, or annotation count (bottom).

Filter Zoom Level Panel

The filter levels panel below the heatmap shows the applied filters as interactive buttons
(see Figure 4.10 bottom). They can be used to clear a specific filter level of each axis.
With this, users have a flexible way to remove filters based on their needs.

Heatmap Configuration

We implement the configuration inside a separate frame, so that users can decide its
visibility and position. Therefore, we apply the Singleton pattern, so it is ensured that
there exists only one configuration.

To provide a fast transition between user’s configuration and causing visual changes,
we do not implement an apply button. Hence, the visualization needs to adapt on
every configuration change. Additionally, most of the components inside the frame are
dependent on each other. As an example, changing the column of the x-axis results in
updating the combo box for data types, which results in (re)setting a pre-calculated
step-width. Our simple modification changed the data basis and enforces a new rendering
of the heatmap and corresponding histogram visualizations.

With this in mind, we adopt each configuration element and only perform necessary
visualization adaptions. As an example, with the change of color calculation, we only
update the color configuration, labels and histograms. The rest of the heatmap remains
untouched.
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Figure 4.14: Grooviler configured with station numbers in relation to depth. Coloring is
done with the amount of any data quality annotation.

4.2 Use Cases

Since Grooviler is designed flexible, we will now cover two examples that act as possible
use cases. The first example shows how Grooviler can visualize already annotated data
entries to find out possible causes and relations. Then we will take a look on an example
where we can visually identify a specific data quality problem thanks to the heatmap
visualization.

For our use cases we will use an adapted data set from U.S. Geological Survey
containing measurements about water quality of San Francisco Bay [48]. It contains
measurements at specific times, depths and stations prodiving information about temper-
ature, salinity and oxygen production. This data set is also used in our evaluation and
therefore explained more in detail in Section 5.2.

4.2.1 Displaying Already Annotated Data Quality Problems

In this use case we want to take a look at the data set which is already annotated with
different types of annotations. Grooviler provides the flexibility to let us decide how
we want to render annotations in a heatmap. In our case we want to narrow down the
error-prone measurement stations. We have an idea that data quality problems might
occur at measurements with a specific depth. Therefore we configured the heatmap with
station numbers in relation to depth. The coloring is based on occurrences of all data
quality annotations (see Figure 4.14).
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Figure 4.15: Grooviler configured with station numbers in relation to depth. Coloring is
done with the amount of data quality annotations with the type “Value too low”.

Based on the heatmap visualization it seems that station number S18 seems to contain
the highest amount of annotated entries. A side check with the histogram confirms our
impression. The most concentrated data quality problems seem to occur in 3 to 6 meters
depth in station S34. The tooltip tells us that most of the dirty data in this area results
from missing values.

We will leave the missing values of station S34 for later and want to investigate other
data quality problems. So we switch the data quality problems in the coloring combo
box and find an interesting pattern with the annotation “Value too low”. We can see
that for this annotation station S18 is showing more annotated entries. By clicking on
the heatmap cell for this station and depths between 30 and 33 Grooviler highlighted the
according data entries inside our table.

We can see that the annotated entries are about oxygen saturation, and additionally
see that adjacent table entries also contain that annotation. The tooltip gives us additional
information about the current data quality annotation. In this case the oxygen saturation
seems to be lower than 30% of the calculated mean.

4.2.2 Identifying Further Data Quality Problems

For identifying further data quality problems, we might have assumptions leading us
to desired configurations. For example, in the above use case we thought of problems
occurring at specific depth, which lead to a heatmap configured with a depth-axis.
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Figure 4.16: Random configuration in Grooviler showing a suspicious pattern in temper-
atures around 0.0° Celsius. It also reveals potential missing measurements of the second
day of month.

Another possibility is to explore the data set using random configurations with
different granularities or step-widths. This lead us to a configuration seen in Figure 4.16
which doesn’t really make sense. Why would you want to set the day of month for
measurements in relation with temperatures? However, it revealed a suspicious pattern
which leads to an ongoing investigation.

The heatmap reveals one or more outliers at the eight day of month around 0.0°
Celsius. By clicking on it, we relate to the corresponding highlighted table entries.
Adjacent table entries have temperatures about 10° Celsius, so this is likely to be a data
quality problem. We can also spot possible outliers about 27° Celsius on the third day of
month.

Looking at the histogram in the statistics panel we revealed another anomaly, which
can also be seen at the heatmap. No measurements were made at the second day of
month.

A side effect of working with Grooviler is the possibility to gain knowledge of the
data set. In this example, coloring is based on the mean of salinity. Based on the
heatmap visualization we can see that temperature and salinity do not seem to correlate.
Otherwise the coloring of the heatmap would result in a more gradient pattern instead of
this flecked one.
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CHAPTER 5
Evaluation

To evaluate the usefulness of our prototype and to gain answers to our research questions,
we performed a qualitative study with a special focus on revealing insights. We modified
a data set for our testing purposes and let 3 test users execute 5 tasks covering different
aspects of Grooviler. We thereby observed participants using our prototype to evaluate
which types of insights they gained. We also gathered feedback about our approach for
reflection and discussion.

5.1 Sample
For our evaluation we recruited 3 target users without any knowledge of our prototype.
They are all working in IT area and have an education in science and technology. As
they use visualizations mainly for presentation purposes, their experience with interactive
visualizations is limited. For data analysis they only used Microsoft Excel [40] to identify
duplicates or filter data for management needs.

5.2 Data set
We used an adapted data set from U.S. Geological Survey containing measurements
about water quality of San Francisco Bay [48]. For the sake of simplicity we adapted the
data so that we only include the following columns instead of the original 26 columns:
Timestamp, Station Number, Depth, Chlorophyll, Oxygen Saturation [%], Oxygen,
Salinity, Temperature.

The original data set contains measurements since year 1969. For this user study we
only provided five years (2012 – 2016) to avoid performance issues. With this limited
data we also wanted to support users to understand the underlying data. The given
test data set was already annotated with different data quality problem annotations like
“Missing value”, “Value too high”, or “Unexpected Value”.
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5.3 Task
The tasks were designed with a focus on one or more requirements and try to cover each
functionality of our prototype:

• Task 1: Changes over time
Identify measurement stations which are most error-prone. Which stations improved
or decreased their measurement quality over the last years?

• Task 2: Identifying possible causes
There is a significant amount of data quality problems within some of the stations.
Identify the exact time when these problems occur (Hint: Zoom). Can you find
correlations between data quality problems across different stations?

• Task 3: Annotated Data Quality Problems
Identify already annotated data quality problems. Can you identify patterns where
or when specific problems occur?

• Task 4: Statistics Panel
Configure the x-axis with the column “Timestamp”, as temporal data type with
the Granularity “Day of Month” and a Step of 1. Set the y-axis with the column
“Temperature”, with a step-width of 5. What can you tell about the measurement
distribution when you look at the heatmap in the Statistics Panel?

• Task 5: Statistics
Task 5a: Identify the coldest and hottest month.
Task 5b: Also identify the following statistics of temperature and salinity: mini-
mum, maximum, mean, median, standard deviation.

The first two tasks provide possibilities to identify further data quality problems (R2).
Task 3 is designed to evaluate the visualization techniques of already annotated data
entries (R1). Task 4 and 5 cover statistical features of Grooviler (R4). The requirements
to cover specific types of data quality problems (R3) is not covered in this evaluation
and will be seperately discussed in the next chapter.

Due to the prototype’s flexibility we did not want to restrict users in their exploration.
Therefore we encouraged them to take their time for exploring the prototype between or
during tasks.

5.4 Procedure
The study took place in a quiet meeting room, in which the developer and respective
participant were present. The developer acted as observer for taking notes and as support
for logical and technical questions. The test session started with an introduction of the
prototype, its GUI, and the test data set used for this session. Afterwards, we conducted
a semi-structured interview to learn about their experience with visualization techniques
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and experience in data analysis. We then used audio recording software and encouraged
the test user to think aloud while performing the tasks mentioned above.

After they completed the tasks, we asked about their impression of our prototype, the
usefulness of its visualizations and interaction techniques. We also questioned them about
possible improvements, missing features or visualizations and what could be improved in
general.

5.5 Data Analysis
Our collected qualitative data consists of observation, audio recordings and interview
notes. We analyzed it to answer our main research question (RQ1), how interactive VA
methods can help to increase data quality of complex time-oriented data.

Users of our prototype make sense of data and its containing quality problems and
therefore might gain insights. That is why we wanted to analyze the effectiveness of our
prototype visualizing already existing data quality problems (RQ1.1). In order to answer
whether our prototype can help to find additional data quality problems (RQ1.2) we also
studied insights.

We therefore chose Klein´s five categories [49] for gaining insights, and categorized
our qualitative data accordingly:

• Connections: These insights happen if a connection of events provides new
information. For example, displaying values in different constellations due to
various axis-configurations might result in insights.

• Coincidence: Coincidence insights result from repetitive patterns without obvious
connections. For example, reoccurring non-changing values in the data set might
indicate a data quality problem.

• Curiosity: A curiosity insight is triggered by a single event instead of repetition.
A value outlier might catch a users attention and therefore leads to a curiosity
insight.

• Contradiction: Specific events causing doubts can result in contradiction insights.
Data entries containing unrealistic values could be an example.

• Creative Desperation: These insights happen when users require to find new
ways out of inescapable traps. For example, changing the visualization´s configura-
tion if no further quality problems can be found.

5.6 Results
All tasks have been solved by all participants with an average duration of 60 minutes.
The duration for the pre- and post-interviews took about 50 minutes.
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In total, we spotted 56 insights which vary per user between 15 and 24. Users investing
more time into exploration gained more insight about the data and its quality problems.
One user concentrated on nearly solely task-solving, which resulted in the lowest amount
of insights. Another participant understood each task as a starting point and dug into
the data set, resulting in the highest amount of insights.

Most of the insights were curiosity insights (37.5%) and contradiction insights (28.6%).
Connection insights (14.3%) and coincidence insights (10.7%) played a negligible role.
Creative desperation only occurred in 5.4% of the cases.

Most insights were gained with the help of Grooviler’s heatmap visualization (66,1%).
The table panel resulted in 19 of 56 insights (33.92%). By using the statistics panel we
only discovered 4 insights (7.1%). Please note that percentages by visualization type sum
up to more than 100%. This is because of connection insights which eventually include
more than one visualization type.

5.6.1 Connections

Connection insights, with a total of 8, occurred randomly during the test session. We
can differentiate between two types of connection insights. The first one is gaining an
insight with a connection between different views. For example, selecting a heatmap cell
inspecting related data table entries or cross-checking between the histogram view and
heatmap view.

The second type results from connections between values, for example a participant
noted: “station S18 only measures exactly 27.0° Celsius at that specific day”. We
discovered 5 connection insights between views and 3 between values.

5.6.2 Coincidence

We found 8 coincidence insights that occurred during any task. Repetitive values over
a given time indicate data quality problems. A test user stated: “it seems that the
measurement sensor was stuck because of many on-following measurements with 17.1°
Celsius temperature”.

Another type of coincidence insight resulted from reoccurring annotations of data
quality problems. With this, users gained an insight about a specific station which
generally was error-prone. All coincidence insights occurred inside the table visualization.

5.6.3 Curiosity

The most insights were curiosity insights with an amount of 21 out of 56 discovered
insights. Of those 21 curiosities, 16 (76.2%) were about color differences or cell-rendering
inside the heatmap visualization. As an example, a participant stated that “Station S18
is most error-prone due to its dark coloring”. Another participant noted: “due to the
missing cells, we can see that there are no measurements on the second day of month
ever”.
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3 curiosity insights were gained while exploring the table view discovering colored
table entries. 2 insights were gained by inspecting the histogram visualization. A test
user stated: “it makes sense that the histogram shows less measurements on 31st day of
month, because of months that have less than 31 days (e.g., February)”.

5.6.4 Contradiction

In total, we found 17 contradiction insights. Of those, 14 (82.3%) resulted from color
differences or cell-rendering of the heatmap visualization. A participant stated: “temper-
atures more than 20°C in December seem like a measurement error”. Another participant
noted: “there are measurements with more than 100% of oxygen saturation, which seems
to be unrealistic.”.

The other 3 out of 17 contradiction insights (17.7%) resulted from values inside the
data table causing doubts. A test participant noted: “it seems odd that there are 7
measurements about 0° Celsius between regular 10° Celsius measurements”.

5.6.5 Creative Desperation

Creative desperation insights occurred only 3 times. For example, a participant randomly
scrolled through the table and found annotated values. Those were hour outliers which
he would not have found because he did only set up the heatmap with date boundaries.

The other 2 creative desperation insights happened while randomly setting up seem-
ingly illogical relations in the heatmap. With this, participants found implausible negative
salt values.

5.7 Feedback
Our post-interview delivered us a broad range of feedback about our prototype and its
usefulness. We will separate feedback into positive and negative, and group them by the
amount of occurrence.

Positive Feedback from every Participant

• Coloring: Expressive coloring and dynamic color palettes, so that even marginal
values can be made visible (by changing it to a spectral color palette).

• Heatmap flexibility: Anything can be set into relation with different grouping
or granularity.

• Overview: Depending on configuration, the heatmap can give a good overview
about the data (e.g., temperature flow over years).

• Connections: Looking up parts of the data set by clicking on specific heatmap
cells in combination with our table markers.
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Positive Feedback from 2 Participants

• Tidy UI: Anything is visible, nothing is hidden inside cascaded tabs, or overlapped
by other elements. Everything fits on the screen, providing a good overview.

• Statistics: Statistical values could be found easily for parts of the data set (e.g.,
mean salinity for stations over years).

• Filter Levels: Filter levels giving users feedback about what they see. Intuitive
buttons to remove specific filter levels.

Positive Feedback from 1 Participant

• Box Plot: The box plot gives a good overview about the selected sub-set of data.

• Draggable Columns: Columns are draggable and can therefore be reordered.

• Details on Demand: Tooltips providing the specific numbers behind colored
parts of our visualization.

• Colored Table: Colored data table cells based on the underlying data quality
problem annotation.

Negative Feedback from every Participant

• Bad Performance: Grooviler was evaluated on a slower personal computer than
it was developed on. This resulted in bad performance so that freezes occurred.
Users also sometimes performed interactions twice because of the not responding
application.

• Zooming: Each user missed a functionality to zoom back out of specific zoom/filter
levels.

Negative Feedback from 2 Participants

• Disappearing Tooltips: Tooltips automatically disappeared after 3 seconds
giving users not enough time to process displayed information.

• Small Descriptions: The description of heatmap axes have a small font-size
which is hard to read.

Negative Feedback from 1 Participant

• Missing Histogram Interactivity: One test participant missed the interactivity
of our histogram visualizations. He expected them to also highlight respective
values inside the heatmap and data table.
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• Confusing Label Padding: When labels begin to overlap our prototype auto-
matically hides some of the labels. A test user was confused and did not know
what type of data he selected due to a hidden label field.

• Hide Statistics Panel: One user missed a functionality to minimize the statistics
panel.
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CHAPTER 6
Critical Reflection & Discussion

Based on our collected qualitative data, we discuss whether the requirements are fulfilled
and answer our research questions. Then we discuss possible improvements and conclude
our work with benefits and shortcoming of this work.

6.1 Requirement Coverage

In total, Grooviler fulfills the requirements which where defined in Section 3.1. Our
prototype is possible to display already annotated data (R1) and provides visualization
techniques to profile data further (R2) with the help of statistical information (R4).
However, our prototype only covers 11 out of 17 data quality problems defined by
Gschwandtner et al. [12] (R3).

6.1.1 R1 - Display annotated data

We already described a use case for evaluating already annotated data quality problems
in Section 4.2.1. Grooviler supports the configuration of annotation occurrences for
heatmap rendering and coloring. User can configure the calculation for any annotation
type or filtering them by a specific type.

Figure 6.1 shows an example of this visualization type. In our evaluation we spec-
ified Task 3 to cover the visualization and exploration of already annotated data (see
Section 5.3). Users inspected the heatmap visualization colored with annotation count
with all annotations and only for specific types. As we can see in Figure 6.1, generally
2016 has a lower amount of data quality problems. Unexpected values occurred only in
the years 2014 - 2016 and too low values were often produces by station number S18 in
year 2014.
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Figure 6.1: Example of different heatmap visualizations with data quality annotations in
Grooviler. The heatmap shows annotated data quality problems of water measurements
from station numbers in relation to year for any annotation type (a), only of type
“Unexpected Value” (b) and only of type “Value too low” (c).

Our test participants then inspected specific data quality problems further by clicking
on a specific heatmap cell. With this, the respective data was highlighted inside the data
table to get analyzed further.

One of our test users noted that it would be useful to display a textual statistic about
annotation distribution. This way one can get a coarse overview about the data quality
of the inspecting data and gets an idea where to start inspecting.

6.1.2 R2 - Data Profiling

Identifying further data quality problems in addition to annotated data was exemplary
shown in Section 4.2.2. In this use case we identified missing tuples and domain violations
in form of outliers.

Task 1 and task 2 of our evaluation aimed at Data Profiling with the help of
Grooviler’s heatmap and its navigation functionality (e.g., zoom, linking). With our
heatmap visualization, test participants discovered unexpected values in form of repetitive
measurements of 27° Celsius from a stuck sensor. They also identified unexpected high
values of Oxygen. Domain violations of unexpected temperatures in December and
April were also identified. Missing tuples and missing values were also discovered by all
test participants. The spectrum of possible further identifiable data quality problems is
covered with R3.
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All of our test users stated in our post-interview, that the combination of heatmap
visualization with statistics and linkage to raw data helps to identify further data quality
problems. One user explains: “By experimenting with different heatmap visualization
settings, sometimes a specific pattern catches your attention indicating data anomalies”.

6.1.3 R3 - Data Quality Problem Coverage

This requirement is about covering time-oriented single source data quality problems by
Gschwandtner et al. [12]. We will now evaluate each type, whether it can be displayed as
annotated data (R1) or can be found with the help of Grooviler’s InfoVis (R2).

In total, Grooviler supports profiling of 10 out of 16 single source data quality problems
(62.5%). 4 data quality problems can not be handled due to technical limitations of
Prefuse (25.0%). Each data quality problem will now be discussed in detail with the
following structure:

Data Quality Problem

• Annotations: Does a specific data quality problem annotation type exist for this
specific data quality problem (R1)? If yes, it will be described with a “Description”
and (JAVA_ENUMERATION_KEY).

• Grooviler Support: Is our prototypical InfoVis able to find this specific data
quality problem (R2)?

• Example: Optional example to display the possibility of our prototype.

Missing data: Missing value

• Annotations: Yes.
Missing values get automatically annotated with “Missing Value” (MISSING_VALUE)
at the start-up of Grooviler and QualityTime.

• Grooviler Support: Yes.
Prefuse initializes missing integer values to -1, decimal values to 0.0 and missing
date values to 01-01-1970. When the underlying values differ from 0 they can be
easily spotted inside the heatmap visualization.

• Example:
Figure 6.2 shows missing values of Oxygen in relation to measurement stations.
Since Oxygen was normally recorded with values above 5, missing values concentrate
at the bottom of the heatmap.

Missing data: Missing tuple

• Annotations: No.
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Figure 6.2: Example of missing values in Grooviler. Due to Prefuse’s initialization of
missing values with -1 or 0.0 Oxygen can be identified as missing due to its occurrence
at the bottom of the heatmap.

Figure 6.3: Example of missing tuples in Grooviler. The heatmap renders water mea-
surements at a specific day of month in relation to depth. At the 2nd day of month no
measurement took place, indicating missing tuples.

• Grooviler Support: Yes.
By configuring the heatmap with coloring based on tuple count, users can identify
missing values based on missing rendered cells.

• Example:
Figure 6.3 renders measurements of water temperature in relation to depth. At the
2nd day of month no cells get rendered vertically, indicating missing measurements.
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6.1. Requirement Coverage

Figure 6.4: Example of Duplicate Detection in Grooviler. Duplicates can be identified by
divergent colors of numerical values (a) or ordinal values (b).

Duplicates: Unique value violation, Exact & Inconsistent duplicates

• Annotations: No.
QualityTime provides possibilities to cleanse duplicates instead of annotating them.
Therefore the existing annotation type “Duplicate” (DUPLICATE) will not end up
in Grooviler.

• Grooviler Support: Yes (although not necessary).
Configuring the heatmap with coloring based on tuple count and setting both axes
with a unique attribute should reveal a linear, uniform colored heatmap. Duplicates
can then be identified by a divergent coloring.

• Example:
Figure 6.4 shows an example with a small data set containing IDs and names.
Setting the unique attributes on each axis shows divergent colors when duplicates
occur.

Implausible Data: Implausible range

• Annotations: Yes.
QualityTime provides a check for Intervals resulting in annotated data with type of
“Negative Interval” (INTERVAL_NEGATIVE).

• Grooviler Support: Yes (with help of a workaround).
Grooviler does not directly support intervals as data type and can therefore not be
specifically rendered inside the heatmap. However, by calculating interval lengths
as seconds or milliseconds in a separate column, intervals can then be treated as
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Figure 6.5: Example of Outlier Detection in Grooviler. This example renders water
temperatures in relation to measurement timestamp aggregated by Month. We can
identify a possible outliers in December around 26-28° Celsius (selected heatmap cell)
and in April around 0° Celsius.

numeric values and addressed properly. Negative intervals can then be identified
due to their value less than 0.

Implausible Data: Unexpected low/high values

• Annotations: Yes.
QualityTime supports outlier detection for values and intervals. Based on the results,
corresponding data entries get annotated with one of the following annotation types:
– “Interval too long/short” (INTERVAL_TOO_LONG/SHORT)
– “Interval out of Boundaries” (INTERVAL_OUT_OF_BOUNDARIES)
– “Value too low/high” (VALUE_TOO_LOW/HIGH)
– “Time value out of Boundaries” (VALUE_INVALID)
– “Unexpected Value” (VALUE_UNEXPECTED)

• Grooviler Support: Yes.
Our prototype can go beyond the algorithmic functions of QualityTime. Additional
outliers can be identified in our heatmap visualization by setting values in relation
with another value dimension. We can therefore discover outliers which depend on
another value (e.g., date).

• Example:
Let us take a look at our evaluation test data set with water temperatures with a
mean of 20° Celsius. There are some measurements about 27° Celsius in December.
This might not be identified as an outlier due to its adjacency to the mean of 20°C
Celsius. With the help of Grooviler’s heatmap visualization such time-oriented
outliers can be identified (see Figure 6.5).

Outdated: Outdated temporal data

• Annotations: No.
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Figure 6.6: Example of Grooviler detecting outdated data of sales.

• Grooviler Support: Yes.
With our prototype outdated data can be found when its identification is based on
a date column inside the data set.

• Example:
Figure 6.6 shows a small data set of sales, where outdated sales occur at year 2016.

Wrong data: Wrong data type

• Annotations: No.
• Grooviler Support: No.

Prefuse initializes data based on its textual representation, and does not allow a manual
configuration of data types. Therefore no adequate annotation exists and Grooviler is not
able to identify wrong data based on a specific type. This kind of data quality problem,
however, is handled with “Wrong data format” (see below).

Wrong data: Wrong data format

• Annotations: Yes.
QualityTime Data entries with a wrong data format are automatically getting anno-
tated at start-up with the annotation type “Data Format” (DATA_FORMAT). Users
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can additionally perform a regular expression check to annotate data with the anno-
tation type “Mismatching Regular Expression” (REGULAR_EXPRESSION_MISMATCH).
For time-oriented data quality problems, users can let QualityTime evaluate
and annotate the time raster. This can result in annotations “Raster Missing”
(RASTER_MISSING) and “Out of Raster” (OUT_OF_RASTER).

• Grooviler Support: Partially.
Prefuse initializes numeric integer values to -1 and decimal values to 0.0 when they
contain a wrong format. There can then be found inside the heatmap visualization,
the same as with missing values (see Figure 6.2). Date values with a wrong format
result in a Java Exception breaking the whole Prefuse framework.
Data quality problems based on the amount of occurrences inside a specific raster
can be found by inspecting values aggregated by specific date- or time-domain. The
structure of a raster (so that values are “out of raster”) can not be inspected with
Grooviler.

Wrong data: Misfielded values

• Annotations: No.
• Grooviler Support: No.

Misfielded date-values (e.g., day is set in month field) would fail at start-up due to invalid
date values.

Wrong data: Embedded values

• Annotations: No.
• Grooviler Support: No.

Embedded date-values result in Java Exceptions.

Wrong data: Coded wrongly or not conform to real entity

• Annotations: No.
• Grooviler Support: No.

Neither QualityTime nor Grooviler provide a functionality to identify whether a given
data entry is conform to the real world.

Wrong data: Domain violation (outside of domain range)

• Annotations: Yes.
QualityTime can annotate data entries during domain violation checks:

– “Value too low/high” (VALUE_TOO_LOW/HIGH): When a value is too low or
high based on a given check (e.g., calculation based on mean value).
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– “Value unexpected” (VALUE_UNEXPECTED): When a value is unexpected due
to a given check (e.g., distance-based).

– “Only Key in Time Unit” (KEY_ONLY): When this is the only entry identified
with a given key with the only time-instant (e.g., station S18 is the only one
containing Month April).

– “Only Key Missing in Time Unit” (KEY_ONLY_MISSING): When this is an
entry identified with a given key missing a given time-instant (e.g., station
S17 is missing entries in year 1999).

– “Not all Keys have an entry in Time Unit” (KEY_NOT_ALL_PRESENT): An-
notates a whole column when keys are missing a given time-instant.

– “Sequence not monotone” (SEQ_NOT_MONOTONE): When an entry is disturb-
ing the monotony of a sequence (e.g., 1, 2, 4, 3 ).

– “Value not a part of defined Sequence” (SEQ_INVALID): When an entry is
not part of a manually defined sequence pattern (e.g., 0, 2, 4, 7 ).

– “Time between intervals too low (off time)” (OFF_TIME_VIOLATION): When
pauses between specified intervals are too low (e.g., between Interval A and B
must be a pause of 30ms).

• Grooviler Support: Yes (depends).
– Unexpected, low and high values can be identified by setting them in relation

with other values (see Figure 6.5).
– Identifying entries with a given key (e.g., station number) where given time-

instants are missing (e.g., Day of Month) is also possible to a certain extent
(see Figure 6.2).

– Sequence checking is not possible with Grooviler’s heatmap visualization.
– Since Grooviler does not support intervals it is also not possible to visualize

pauses between intervals.

Wrong data: Incorrect derived values

• Annotations: No.
• Grooviler Support: No.

Both tools do not support detection of errors in computing duration.

Ambiguous data: Abbreviations or imprecise/unusual coding

• Annotations: No.
• Grooviler Support: No.

None of both prototypes can handle ambiguous data due to a short format (e.g., 03-05-06
or 5 minute interval represented as ‘09:00’) due to technical restrictions of Prefuse.
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Figure 6.7: Example of a heatmap visualization showing mean temperatures per depth
and Month. The color legend gives an idea about the temperature distribution ranging
from 9° to 20° Celsius.

6.1.4 R4 - Statistics

This requirement is about providing statistical information about the data set or parts
of it. We designed task 4 and 5 of our evaluation to cover statistical tools of Grooviler.
Section 4.1.3 gives an overview about the GUI containing 3 box plots and 2 histograms.
The box plots provide information about the distribution of the users current selected
heatmap cell. The histograms give an overview about the value distribution along the
respective heatmap axis.

Besides this visualizations Grooviler provides aggregation functions for value calcula-
tion of heatmap cells. Users can relate values along the axes, while calculating values
based on the following aggregation functions: Count, Distinct Count, Median, Sum,
Mean, Standard Deviation, Minimum and Maximum. Test participants admired the
ability to evaluate mean temperatures of different depths at over the year (see Figure 6.7).

Grooviler does not provide a coarse, textual statistic about the whole data set (e.g.,
mean temperature over the whole data set), while most of the evaluated profiling tools
offer this out of the box. However, there is a workaround by configuring axes so that
the heatmap contains only a single cell (and therefore all values) with a given aggregate
function.
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6.2 Answers to Research Questions
Main Research Question

Grooviler was developed to answer RQ1: ‘How can VA methods help to increase the data
quality of complex time-oriented data?’. It covers the ability to display already annotated
data quality problems in combination with profiling the data set further. With this, data
analysts can examine already annotated data and better reason about the causes of data
quality problems, resulting in a better knowledge about the data set and its quality. They
can also identify further data quality problems with the help of our interactive heatmap
visualization. Our evaluation with a focus on revealing insights showed the usefulness of
our approach.

Sub Research Questions

We already covered our research questions RQ1.1: ‘How can already detected and annotated
quality problems be visualized in an effective and adequate way?’ and RQ1.2: ‘What
visualizations can help to find additional quality problems of time-oriented data?’ They
were covered in our iterative design from the first brainstorming iteration (see Section 3.3.1)
to the final evaluation of our prototype Grooviler. We first demonstrated five existing
visualization types which can be used to display already detected and annotated data
quality problems. Further we discussed eight visualization approaches to support users
to identify further data quality problems.

We decided for a combination of visualizations and interaction means that best fit
our requirements and implemented these in a prototypical VA solution. To support
both use-cases, we decided to use a two-dimensional visualization. Thereby our heatmap
visualization can be used to display already annotated data and it provides techniques to
identify further data quality problems. Our evaluation shows that users could effectively
use our prototype to understand existing quality problems in the data and also to identify
additional quality problems.

6.3 Possible Improvements
Besides gaining a lot of feedback during our evaluation and associated post-interviews
(see Section 5.7), we also asked test participants about possible improvements of our
prototype.

Save Heatmap Configuration

One of the most criticized points was a missing navigation functionality to zoom back
out of a specific zoom level. This is however not easily implemented, due to our flexible
setting to handle zooming for axes independently. This suggested feature arose from
the main problem that users are not able to preserve a desired heatmap visualization
configuration state.
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As an example, a user configured the heatmap with Station Numbers in relation to
Year to inspect separate stations. He/She therefore zooms into a specific station and in a
certain year to inspect the cause of concrete problems. In the next step he/she wants to
inspect a different station. For this, the user needs to reset filter levels and manually
change the time granularity from Month to Year.

To address this issue, users suggested different solutions:

1. Popout-Zoom
One user suggested a zoom that opens a separate window running another instance
of Grooviler with the settings for the zoomed values. This would certainly impair
the current positive feedback about the tidy UI, and that everything fits on a single
screen. Another problem is the high performance it takes to process two Grooviler
instances.

2. Configuration Presets/Favorites
Two users provided the idea to save a configuration state as a kind of preset or
favorite setting. This allows users to switch back to specific configurations without
thinking of a certain zoom event history.

General Filter

66.7% of our test users seek a possibility to set a general filter on the whole data set.
Given our evaluated test data set, users want to filter by a specific station. Then the
table and corresponding heat map settings only apply to this specific station which helps
to narrow down specific data quality problems.

Users only mentioned use cases for nominal data specific measurement stations.
However, filtering could also be done with temporal values (e.g., only year 2015, only
Fridays, ...), but also with quantitative value ranges (e.g., only with temperatures between
20.5° and 23.5° Celsius).

Improve Heatmap Selection

Our evaluation showed that users sometimes had difficulties to identify what the user
has clicked on an axis. Figure 6.8 shows an example of a selected heatmap cell of Station
Numbers in relation to depth. Due to missing space, axis label descriptions get hidden.
Hence, it is not visible that the user selected a range between 46.0 - 49.0 and Station
Number S18.

There are several approaches to address this issue (see Figure 6.8). The first is to
render floating labels of the current selection when the user clicked on it. The second idea
is to display a grid line to trace back corresponding axis labels. Finally, a user suggested
to format the associated selected axis label with a bold text like in Microsoft Excel.
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Figure 6.8: Possible improvements for selected heatmap cells in Grooviler. The first
approach is providing floating labels showing the corresponding axis (middle). Another
idea is to provide grid lines to trace back the axis labels (right).

Statistics Panel

It seems that the statistics panel is not as helpful as other visualizations. It only had
an effect on 7.1% of all insights (see Section 5.6). One test participant considered the
statistics panel so irrelevant, he suggested a functionality to minimize it.

Based on this feedback, we could think of removing the statistics panel. However,
these arguments are not sufficient to discard that panel and its statistical visualizations.
Task 4 and Task 5 of our evaluation demonstrated possible use cases for this panel.
Furthermore, our test users did not possess enough knowledge about the test data set
and its domain. Therefore they concentrated more on exploration instead of quantitative
statistics. Long explanations were needed to give an idea about what the box plot
of a given selection rendered. From our test participants point of view, our box plot
visualizations seemed cryptic.

Minor improvements

• Axis configuration improvement:
To improve the usability of the heatmap configuration, we could add a small
horizontal arrow to the x-axis configuration. For y-axis configuration we would add
a vertical arrow respectively.

• Nominal data support:
Grooviler should be able to display each data type as nominal data. This would
result in a pixel-based visualization since each row acts as a single heatmap cell.
This feature is implemented but disabled due to performance issues.

• Remove columns:
Users seek a functionality to completely remove a specific column. This would
retain a good overview about the data table and improve performance.
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• Improve tooltips:
The timeout on which Tooltips automatically disappear should be removed (3
Seconds). Another option would be to display the detailed values inside a status
bar at the bottom of our prototype.

• Export functionality:
Test participants suggested an export functionality for still images, but also as SVG
images. Another possibility is exporting specific heatmap visualization as HTML
containing tooltips.

• Reset all filters:
Our evaluation showed the need of a functionality to reset all filter levels at once.
The current prototype only supports selective filter resets.

Experimental Improvements

The following improvements are major design changes of the heatmap visualization. They
could result in losing overview about the ordinal scale of underlying data. Therefore we
recommend a separate evaluation of these features.

• Flexible hiding of specific bins:
Assuming a heatmap configured with an axis of Days of Week. Users might want
to only display working days or weekend days. They could also want to only render
Monday, Wednesday and Friday.

• Display only non-empty heatmap cells:
Another possibility is to hide any cells inside the heatmap that contain no values.
Imagine a data set ranging from year 2000 to 2005 containing a single entry with
year 1970. Our current implementation renders a heatmap with an axis from Year
1970 to 2005 containing 36 cells ([1970, 1971, ..., 2004, 2005], see Figure 6.9 a).
In this case we render 30 unnecessary cells because of a single unexpected value
([1971 - 1999]). With only displaying non-empty cells, we would only render 6
non-empty cells (see Figure 6.9 b). This avoids unnecessary stretching of the
heatmap visualization, and might increase the overview about data in some cases.

6.4 Conclusion
In this work we developed Grooviler, a scientific VA prototype to communicate and identify
quality problems of time-oriented data. We conducted a literature research which showed
the demand of Data Profiling tools supporting time-oriented data. We concentrated on
profiling data quality problems defined in a taxonomy of dirty time-oriented data from
Gschwandtner et al. [12]

We built apon a prototypical application named QualityTime, which already annotates
dirty data entries, which can then be visualized by Grooviler for detailed investigation
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Figure 6.9: Possible experimental improvement of Grooviler’s heatmap visualization. The
current implementation renders cells, even if they are empty (a). This could be improved
by only displaying cells holding values (b).

and reasoning. Yet, Grooviler’s main requirement is to act as a profiling tool to discover
further data quality problems. Thus, we designed Grooviler including a two-dimensional
heatmap visualization which meets both requirements.

After iterative refinement and implementation, we evaluated the prototype with
respect to its potential to identify data quality problems and reveal insights into the data.
This evaluation showed very promising results; Grooviler was especially appreciated for its
flexible heatmap visualization, dynamic coloring, and connection to corresponding data
entries. Moreover the evaluation pointed us to interesting possibilities for improvement
and further work. We thus demonstrated how to effectively use VA methods to identify
and understand complex quality problems of time-oriented data.
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Grooviler is an interactive information visualization prototype supporting users by identifying 

time-oriented data quality problems in two-dimensional data sets (tables).  

Grooviler is planned to be a part of a workflow-based framework to cleanse and profile time-

oriented data quality problems. In a previous step a prototype named QualityTime is used to 

detect, partially correct and annotate data quality problems with pre-defined techniques. 

Grooviler should then be used to visualize already annotated data quality problems, as well 

as providing techniques to identify further data quality problems. 

 

Figure 1:   Grooviler GUI. Table showing the underlying data (top) aggregated in a heatmap (center). 

Statistics panel (right) including a color legend (lower right). Panel showing the zoom 

history/filter levels (bottom). 

The table at the top displays the data set. With the configuration panel (which can be opened 

with “View > Heatmap Configuration”) the data will then be aggregated and displayed as a 

heatmap (Figure 1, center). 
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Figure 2:  Heatmap Configuration of Grooviler. Configuration of each axis with column, data type, 

possible granularity and its step (top). Coloring an its calculation function can be set as tuple 
count, aggregation function, or annotation count (bottom). 

The main visualization of Grooviler is its heatmap. With the configuration frame you have the 

ability to freely configure axis and colored values. 

Each axis can be configured with a column that should be used with a specific data type (e.g. 

temporal, numerical), granularity (if applicable, e.g. year, month) and a specific “step” which 

can be used to group data. 

Configuration examples can be seen in Figure 2. The x-axis is configured with the column 

“TestDateTime” as a temporal data type, aggregated with the granularity “Month of Year” and 

a step of 2. That means that the x-axis shows each 2 months of each year. The y-axis is 

configured with the column “Sales” as numerical data type and a step of 250, which means 

that the y-axis is grouped in bins containing ranges of 250 (e.g., 1-250, 251-500, …) 

The calculation (and therefore coloration) of a heatmap cell can also be freely configured. By 

default the coloration is based on the tuple count falling into each axis group. You may also 

define an aggregation function over a specific column falling into each heatmap bin. Another 

possibility is to colorize the heatmap based on the amount of occurring data quality 

annotations. 
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Each cell of the heatmap provides two interaction operations: 

(1) Left-clicking a cell results in selecting and highlighting a cell. 

All containing table rows get highlighted inside the table with an interactive blue 

marker beside the table to navigate to the corresponding items. Also a box plot is 

rendered inside the statistics panel on the right side when the particular values are 

numerical. 

 

(2) Right-clicking a cell displays a context menu which provides zoom operations. 

Users can then decide to zoom inside the x- or y-axis or into both dimensions. During 

zooming an adequate filter is set and displayed at the filter panel (Figure 1, bottom) 

Depending on configuration, the right panel shows different statistics about what is rendered 

as a heatmap. If the selected bins x-, y- or coloring-values are numerical a box plot of their 

value distribution is rendered. A value distribution in form of histograms is always provided 

for each axis (Figure 1, lower right). 

In this task you will use an adapted data set from U.S. Geological Survey containing 

measurements about water quality of San Francisco Bay. For the sake of simplicity we 

adapted the data so that we only include the following columns instead of the original 26 

columns: 

Column Description 

Timestamp Timestamp of measurement. 

Station Number Station Numbers ranging from S1 to S38. 

Depth The depth at which a measurement was carried out. 

Chlorophyll The green pigment of plants, including phytoplankton, which absorbs 

sunlight energy and converts it to chemical energy used in the process 

of photosynthesis. Measured in units of milligram per liter. 

Oxygen 
Saturation [%] 

Measured oxygen concentration divided by the concentration that would 

occur if dissolved oxygen was determined only by exchanges with the 

atmosphere. 

Oxygen Amount of oxygen measured in units of milligram per liter. 

Salinity Salt content of water measured in practical salinity units (psu). River 

water often contains about 0.1 psu while Pacific Ocean water about 34 

psu. 

Temperature Water temperature. 

 

The original data set contains measurements since year 1969. For this user study we only 

provide five years (2012 – 2016) to avoid performance issues. The adapted data set is 

already annotated with different data quality problem annotations like: “Missing value”, “Value 

too high” or “Unexpected Value”. 
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Groovilers flexible configuration may help to spot anomalies in the data set which where 

undiscovered. Different axes and coloration configurations display data in various ways. 

There is no right or wrong, each task can be solved differently. 

If you stumble across data quality problems which may not part of the specific task, please 

feel free to investigate them. 

Identify measurement stations which are most error-prone. Which stations improved or 

decreased their measurement quality over the last years? 

There is a significant amount of data quality problems within some of the stations. Identify the 

exact time when these problems occur (Hint: Zoom). Can you find correlations between data 

quality problems and their cause (across different stations)? 

Identify already annotated data quality problems. Can you identify patterns where or why 

specific problems occur? 

Configure the heatmap with the following settings and take a look at the histograms: 

 Column Data Type Granularity Granularity Step 

X-Axis: TimeStamp Temporal Day of Month 1 

Y-Axis: Temperature Numerical - 5 

 

What can you tell about the measurement distribution? 

Identify the coldest and hottest month. 

Also identify the following statistics of temperature and salinity: minimum, maximum, mean, 

median, standard deviation (Hint: Try to configure a heatmap with a single cell containing all values) 

 

Thank you for participating in the study! 

A.1. User Study Material

99





Bibliography

[1] S. Miksch and W. Aigner, “A matter of time: Applying a data–users–tasks design
triangle to visual analytics of time-oriented data,” Computers & Graphics, vol. 38,
pp. 286–290, Feb. 2014.

[2] E. Rahm and H. Do, “Data Cleaning: Problems and Current Approaches,” IEEE
Data Eng. Bull., vol. 23, pp. 3–13, 2000.

[3] J. Bernard, T. Ruppert, O. Goroll, and e. al, “Visual-Interactive Preprocessing of
Time Series Data,” in SIGRAD 2012, Interactive Visual Analysis of Data. Proceed-
ings, 2012, pp. 39–48.

[4] U. Fayyad, G. Piatetsky-Shapiro, and P. Smyth, “From data mining to knowledge
discovery in databases,” AI magazine, vol. 17, no. 3, p. 37, 1996.

[5] J. E. Olson, Data Quality: The Accuracy Dimension, new. ed. San Francisco:
Morgan Kaufmann, Dec. 2002.

[6] H. Galhardas and J. Barateiro, “A Survey of Data Quality Tools,” Datenbank-
Spektrum, vol. 1, pp. 14:15–21, 2005.

[7] S. Kandel, J. Heer, C. Plaisant, J. Kennedy, F. V. Ham, N. H. Riche, C. Weaver,
B. Lee, D. Brodbeck, and P. Buono, “Research Directions in Data Wrangling:
Visualizations and Transformations for Usable and Credible Data,” 2011.

[8] S. Kandel, A. Paepcke, J. Hellerstein, and J. Heer, “Wrangler: Interactive Visual
Specification of Data Transformation Scripts,” Human factors in computing systems.
ACM, pp. 3363–3372, 2011.

[9] R. Verborgh and M. D. Wilde, Using OpenRefine, 1st ed. Packt Publishing, 2013.

[10] W. Kim, B. J. Choi, E. K. Hong, S. K. Kim, and D. Lee, “A Taxonomy of Dirty
Data,” Data Mining and Knowledge Discovery, vol. 7, pp. 81–99, 2003.

[11] P. Oliveira, F. Henriques, and P. Henriques, “A Formal Definition of Data Quality
Problems,” 2005 International Conference on Information Quality, pp. 1–14, 2005.

101



[12] T. Gschwandtner, J. Gärtner, W. Aigner, and S. Miksch, “A Taxonomy of Dirty
Time-Oriented Data,” Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol.
7465 LNCS, pp. 58–72, 2012.

[13] S. K. Card, J. D. Mackinlay, and B. Shneiderman, Readings in Information Visual-
ization: Using Vision to Think. Morgan Kaufmann, 1999.

[14] D. Keim, G. Andrienko, J.-D. Fekete, C. Görg, J. Kohlhammer, and G. Melançon,
“Visual Analytics: Definition, Process and Challenges,” no. 4950, pp. 154–175, Aug.
2008.

[15] S. Kandel, R. Parikh, A. Paepcke, J. M. Hellerstein, and J. Heer, “Profiler: Integrated
Statistical Analysis and Visualization for Data Quality Assessment,” Proceedings of
Advanced Visual Interfaces, AVI, pp. 547–554, 2012.

[16] T. Munzner, “A Nested Model for Visualization Design and Validation,” IEEE
Transactions on Visualization and Computer Graphics, vol. 15, no. 6, pp. 921–928,
Nov. 2009.

[17] “Prefuse | Information Visualization Toolkit,” http://prefuse.org/, retrieved at May
30, 2015.

[18] “ACM Digital Library,” http://dl.acm.org/, retrieved at May 14, 2015.

[19] “IEEE Xplore Digital Library,” http://ieeexplore.ieee.org/Xplore/home.jsp, retrieved
at May 14, 2015.

[20] “Springer Link,” http://link.springer.com/, retrieved at May 14, 2015.

[21] C. Tominski and W. Aigner, “The TimeViz Browser: A Visual Survey of Visualiza-
tion Techniques for Time-Oriented Data,” http://browser.timeviz.net/, Oct. 2016,
retrieved at October 7, 2016.

[22] T. Gschwandtner, W. Aigner, S. Miksch, J. Gärtner, S. Kriglstein, M. Pohl, and
N. Suchy, “TimeCleanser: A Visual Analytics Approach for Data Cleansing of Time-
Oriented Data,” in Proceedings of the 14th International Conference on Knowledge
Technologies and Data-Driven Business, ser. i-KNOW ’14. New York, NY, USA:
ACM, 2014, pp. 18:1–18:8.

[23] “Data Manager - Data Transformation, Data Cleaning, Data Cleansing,” http:
//datamanager.com.au/, retrieved at May 14, 2015.

[24] “The Premier Open Source Data Quality Solution | DataCleaner,” http://datacleaner.
org/, retrieved at May 8, 2015.

[25] D. Hoang, “DataLadder - DataMatch 2013 - Best Data Matching software for
Deduping,” https://dataladder.com/data-matching-software/, retrieved at May 14,
2015.

102

http://prefuse.org/
http://dl.acm.org/
http://ieeexplore.ieee.org/Xplore/home.jsp
http://link.springer.com/
http://browser.timeviz.net/
http://datamanager.com.au/
http://datamanager.com.au/
http://datacleaner.org/
http://datacleaner.org/
https://dataladder.com/data-matching-software/


[26] “Open Studio Integration Software Platform | Talend,” https://www.talend.com/
products/talend-open-studio, retrieved at May 14, 2015.

[27] “Data Profiling Tool | Datamartist,” http://www.datamartist.com/, retrieved at
May 14, 2015.

[28] “DataWrangler,” http://vis.stanford.edu/wrangler/app/, retrieved at May 15, 2015.

[29] R. A. Becker and W. S. Cleveland, “Brushing Scatterplots,” Technometrisc, vol. 29,
no. 2, pp. 127–142, 1987.

[30] “GitHub: StanfordHCI/profiler,” https://github.com/StanfordHCI/profiler/, re-
trieved at May 16, 2015.

[31] “TalendForge Tutorials,” https://www.talendforge.org/tutorials/menu.php, retrieved
at May 14, 2015.

[32] “YADC2S: Yet Another DataCleaner 2.0 Screenshot,” http://kasper.eobjects.org/
2010/12/yadc2s.html, retrieved at May 14, 2015.

[33] W. Aigner, S. Miksch, H. Schumann, and C. Tominski, Visualization of Time-
Oriented Data, ser. Human-Computer Interaction Series. London: Springer London,
2011.

[34] B. H. S. Havre and L. Nowell, “ThemeRiver: Visualizing Theme Changes over Time,”
in Information Visualization, 2000. InfoVis 2000. IEEE Symposium On, 2000, pp.
115–123.

[35] D. Mintz, T. Fitz-Simons, and M. Wayland, “Tracking Air Quality Trends with
SAS/GRAPH,” Proceedings of the 22nd Annual SAS User Group International
Conference (SUGI), 1997.

[36] W. S. Cleveland, Visualizing Data. Murray Hill, N.J. : Summit, N.J: Hobart Press,
Jan. 1993.

[37] M. Weber, M. Alexa, and W. Muller, “Visualizing Time-series on Spirals,” in IEEE
Symposium on Information Visualization, 2001. INFOVIS 2001, 2001, pp. 7–13.

[38] T. Lammarsch, W. Aigner, A. Bertone, J. Gärtner, E. Mayr, S. Miksch, and M. Smuc,
“Hierarchical Temporal Patterns and Interactive Aggregated Views for Pixel-Based
Visualizations,” in 2009 13th International Conference Information Visualisation,
Jul. 2009, pp. 44–50.

[39] T. Braunsberger, “Automatic Cleansing Operations of Time-Oriented Data,” Mas-
ter’s thesis, Vienna University of Technology, 2016.

[40] “Microsoft Excel 2016 Spreadsheet Software, Excel Free Trial,” https://products.
office.com/en/excel, retrieved at July 14, 2017.

103

https://www.talend.com/products/talend-open-studio
https://www.talend.com/products/talend-open-studio
http://www.datamartist.com/
http://vis.stanford.edu/wrangler/app/
https://github.com/StanfordHCI/profiler/
https://www.talendforge.org/tutorials/menu.php
http://kasper.eobjects.org/2010/12/yadc2s.html
http://kasper.eobjects.org/2010/12/yadc2s.html
https://products.office.com/en/excel
https://products.office.com/en/excel


[41] “MiG Layout Java Layout Manager for Swing and SWT,” http://www.miglayout.
com/, retrieved at October 24, 2016.

[42] E. Foundation, “Eclipse,” https://www.eclipse.org/, retrieved at October 18, 2016.

[43] B. Shneiderman, “The Eyes Have It: A Task by Data Type Taxonomy for Information
Visualizations,” in , IEEE Symposium on Visual Languages, 1996. Proceedings, Sep.
1996, pp. 336–343.

[44] G. E. Krasner and S. T. Pope, “A Cookbook for Using the Model-view Controller
User Interface Paradigm in Smalltalk-80,” J. Object Oriented Program., vol. 1, no. 3,
pp. 26–49, Aug. 1988.

[45] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements of
Reusable Object-Oriented Software. Pearson Education, Oct. 1994, google-Books-ID:
6oHuKQe3TjQC.

[46] M. Harrower and C. A. Brewer, “ColorBrewer.org: An Online Tool for Selecting
Colour Schemes for Maps,” The Cartographic Journal, vol. 40, no. 1, pp. 27–37, Jun.
2003.

[47] R. Mcgill, J. W. Tukey, and W. A. Larsen, “Variations of Box Plots,” The American
Statistician, vol. 32, no. 1, pp. 12–16, Feb. 1978.

[48] J. E. Cloern and T. Schraga, “USGS measurements of water quality in San Francisco
Bay (CA), 1969-2015,” 2016.

[49] G. Klein, Seeing What Others Don’t: The Remarkable Ways We Gain Insights.
PublicAffairs, 2013.

104

http://www.miglayout.com/
http://www.miglayout.com/
https://www.eclipse.org/

	Kurzfassung
	Abstract
	Contents
	List of Figures
	List of Tables
	Introduction
	General Introduction
	Information Visualization and Visual Analytics

	Research Questions
	Methodological Approach
	Structure of the work

	Related Work
	Literature research
	Data Quality Taxonomies
	Data Quality Tools
	Wrangler
	Data Match 2013
	DataManager
	Profiler
	OpenRefine
	Talend Open Studio
	Datamartist
	DataCleaner
	TimeCleanser
	Discussion

	Visualization Techniques
	ThemeRiver
	Tile Map
	Cycle Plot
	Spiral Graph
	GROOVE

	Conclusion

	Design
	Requirement Analysis
	Design Models
	Nested Model for Visualization Design
	Data-Users-Tasks Design Triangle

	Design Process
	Brainstorming
	Idea refinement
	GUI Design
	Feature Comparison


	Grooviler
	Technical Details and Implementation
	QualityTime Dependency
	Architecture
	GUI

	Use Cases
	Displaying Already Annotated Data Quality Problems
	Identifying Further Data Quality Problems


	Evaluation
	Sample
	Data set
	Task
	Procedure
	Data Analysis
	Results
	Connections
	Coincidence
	Curiosity
	Contradiction
	Creative Desperation

	Feedback

	Critical Reflection & Discussion
	Requirement Coverage
	R1 - Display annotated data
	R2 - Data Profiling
	R3 - Data Quality Problem Coverage
	R4 - Statistics

	Answers to Research Questions
	Possible Improvements
	Conclusion

	Appendix
	User Study Material

	Bibliography

