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Abstract

Within the scope of this thesis a GPU-accelerated software for the simulation of spin
dynamics is presented. The program features a solver for the Landau–Lifshitz–Gilbert
equation for an atomistic spin model considering dipole-dipole, exchange, anisotropy
and Dzyaloshinskii-Moriya interactions thereby allowing for the investigation of magnetic
skyrmions. By applying a continuum assumption, a micromagnetic description is derived
and also implemented in the software. The discrete numerical methods needed for the
solution of these models are discussed with a focus on finite difference methods, fast
convolutions and adaptive time integration techniques. Furthermore, an implementation
of the string method, a numerical method for the calculation of minimum energy paths
in barrier-crossing events, is presented and used to investigate the annihilation energy
of magnetic skyrmions.



Kurzfassung

Im Rahmen dieser Arbeit wird eine GPU-beschleunigte Software zur Simulation von
Spindynamik vorgestellt. Das Programm enthält einen Solver für die Landau-Lifshitz-
Gilbert-Gleichung für ein atomistisches Spinmodell, das Dipol-Dipol-, Austausch-,
Anisotropie- und Dzyaloshinskii-Moriya-Wechselwirkungen berücksichtigt und damit die
Untersuchung magnetischer Skyrmionen ermöglicht. Weiters wird mittels einer Kontinu-
umsannahme des Magnetfeldes das mikromagnetische Modell eingeführt und in der Soft-
ware implementiert. Die numerischen Methoden, die zur Lösung dieser Modelle benötigt
werden, werden mit einem Schwerpunkt auf Finite-Differenzen-Methoden, Faltungen
mittels Fourier-Transformationen und adaptive Zeitintegrationstechniken präsentiert.
Darüber hinaus wird eine Implementierung der Stringmethode vorgestellt und zur Un-
tersuchung der Annihilationsenergie magnetischer Skyrmionen verwendet.
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1 Introduction

Magnetic skyrmions have recently attracted a lot of attention in the scientific commu-
nity as a potential candidate for high density storage and logic devices [1–4]. The term
skyrmion is named after Tony Skyrme, who introduced a mathematical description for
topological stable field configurations which exhibit particle-like solutions [5]. This con-
cept applies to various mathematical objects in different fields of research ranging from
elementary particles to liquid crystals, Bose–Einstein condensates and quantum Hall
magnets [1]. Magnetic skyrmions are nano-scale chiral spin structures which cannot be
continuously deformed to other magnetic configurations such as spin spirals or ferro-
magnetic states [1]. This property is referred to as topological protection and gives rise
to the comparably high stability of these particle-like spin configurations. In the cur-
rent notion, the characteristic structure originates from chiral interactions, also known
as Dzyaloshinskii–Moriya (DM) interactions, which arise from spin-orbit scattering of
electrons in an inversion-asymmetric crystal field [6]. This effect was initially observed
in bulk non-centrosymmetric crystals such as MnSi, (FeCo)Si and FeGe where extended
lattices of magnetic skyrmions were found [7, 8]. These lattices can be moved by small
electric currents in the order of 1× 102 Acm−2 [9] and corresponding simulations indi-
cate that the flexibility of skyrmion lattices allows them to overcome defects more easily
compared to the current-induced motion of domain walls [9]. Extremely small sized
skyrmion lattices, with periodicity in the nano-meter range, have been observed using
spin-polarized scanning tunnelling microscopy in a monolayer of Fe on Ir(1,1,1) in the
absence of external magnetic fields [10]. The high skyrmion density is explained by very
strong DM interactions at the Fe/Ir interface.

More recently, increasing attention has also been devoted to isolated skyrmions [1–3].
These are single skyrmions or chains of skyrmions which can be nucleated as a metastable
state in thin films. The controlled manipulation of these isolated skyrmions is opening a
path to new concepts of spintronic devices such as information storage or logic devices.
Numerical micromagnetic investigations predicted that an isolated skyrmion can be a
stable configuration in a nanostructure, that it can be locally nucleated by injection of
a spin-polarised current and that it can be displaced by current-induced spin torques,
even in the presence of large defects [2]. Accordingly, subsequent experiments show the
feasibility to write and erase such spin textures in a controlled fashion using local spin-
polarized currents from a scanning tunnel microscope [3]. The controlled creation and
annihilation of isolated magnetic skyrmions demonstrates the applicability of topological
charge as a carrier of information and its potential for future storage-concepts. In the
experimental set up, an external magnetic field is used in order to tune the energy
landscape and the temperature is controlled to prevent thermally-activated switching
between topologically distinct states. Under this conditions, the switching rate and
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direction can then be controlled using the injected current [3]. This suggests isolated
magnetic skyrmions as promising candidates for future storage devices due to their size
of only several nanometres and the low current densities needed for their displacement.

Even though micromagnetic simulations are capable of describing skyrmion configu-
rations, they cannot account for skyrmion creation or annihilation processes mediated
by Bloch points. As mentioned above, a skyrmionic structure cannot be continuously
deformed to a ferromagnetic or other non-skyrmionic magnetic state, giving rise to its
topological protection. This is in contradiction with the main assumption of micromag-
netics, which assumes that the magnetic field can be approximated as a continuous field.
Therefore, we consider an atomistic spin model to account for such skyrmion creation
and annihilation processes.

Within this thesis, we present the simulation software pth-mag which allows for the
description of magnetic skyrmions in the framework of an atomistic spin model. This
model assumes discrete atomic spins and can thereby account for skyrmion annihilation
processes. The structure of the thesis is as follows:

In chapter 2 we discuss the physical models in order to describe the dynamics of such
magnetic skyrmions. At first, we introduce an atomistic spin model in section 2.1. The
interactions considered in this model are dipole-dipole, exchange, anisotropy and anti-
symmetric exchange or Dzyaloshinskii-Moriya interactions. In section 2.2 we introduce
the Landau–Lifshitz– Gilbert equation which describes the time-dependent precessional
motion of the magnetisation. In the following, we apply a continuum assumption onto
the magnetic field and derive the micromagnetic model with demagnetisation, exchange,
anisotropy and antisymmetric exchange interactions in section 2.3. In Chapter 3 we
discuss discrete mathematical concepts that are applied in the simulation in order to
solve for the atomistic and micromagnetic models. We present finite-difference meth-
ods for the numerical solution of differential equations and highlight the applicability
of convolutions in this framework, pointing out the efficiency of Fourier-space methods.
Moreover, we discuss explicit time integrators starting with the straightforward Euler
method. We generalize this concept to explicit Runge-Kutta methods and present a
variety of coefficient tables in the following. By the usage of a embedded Runge-Kutta
method, which features two different orders of the function approximation, an adaptive
step-size control algorithm is introduced. In section 3.4 we present the string method, a
numerical method to identify minimum energy paths in barrier-crossing events. Several
aspects of the implementation of the simulation software are discussed in chapter 4.
We highlight the applicability of parallelisation onto this mathematical framework and
discuss the advantages of the used GPU-accelerated high-performance mathematical li-
brary, emphasizing the hardware neutrality of the code. This allows users, depending
on their available hardware, to execute the program either on GPUs, OpenCL devices
or CPUs with the former yielding the highest performance. We perform simulations of
the µMAG standard problem #4 with and compare the results to measurement data of
the well established code magnum.fd and find very good agreement. In chapter 5 we
apply the string method to calculate the annihilation energy of magnetic skyrmions in an
atomistic model, show the inapplicability of the micromagnetic model in this scope and
present various simulation results which are in accordance with reference calculations.
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2 Magnetism

The phenomenon of magnetism is physically considered as a purely quantum mechan-
ical effect [11]. As stated by the Bohr–van Leeuwen theorem, a classical theory is not
capable of describing diamagnetism, paramagnetism or ferromagentism. The theorem
consistently applies classical mechanics with statistical mechanics and shows that in
this model the thermal average of the magnetisation is always zero. As a consequence,
magnetism can only be approached quantum mechanically.

One of the first atomistic models of magnetic materials was introduced by Ising in 1925
[12]. In this model the atoms possess local magnetic moments along a fixed quantization
axis which are in two states only, either spin-up or spin-down. This approach allows for
an analytical description in one and two dimensions. While the Ising model is capable
of describing phase transitions, it is limited in applicability to magnetic materials and
cannot describe dynamical processes.

A prominent extension of the Ising model – where all spins are orientated along a
specified axis – is the classical Heisenberg model [13]. It allows the atomic spins to be
orientated along an arbitrary axis in 3D but still neglects quantum mechanical effects
on the atomic spins. An approach by Monte Carlo methods allows the description
of phase transitions, surface and finite size effects in magnetic systems. The use of
Monte Carlo methods intrinsically limited the study of dynamic phenomena until the
development of dynamic [14, 15] and stochastic [16] Landau–Lifshitz–Gilbert atomistic
spin models. A major achievement of the atomistic spin model is its capability to close
the gap between ab initio electronic structure calculations and micromagnetics by using
a multi-scale model, e.g. as discussed in [17]. Another strength of the atomistic model is
its ability to directly interface with the micromagnetic model allowing to simulate large
systems by treating surface effects atomistically while calculating the bulk with a coarse
micromagnetic discretization [18].

2.1 Atomistic Spin Model

In this section we focus on the phenomenon of ferromagnetism and introduce an atom-
istic spin model based on [19,20]. The basic assumption of the model is the localization
of unpaired electrons to atomic sites which is expressed as an effective local atomistic
magnetic moment. The degree of localization of electrons in 3d metals has historically
been debated as magnetic effects arise from electrons which are ”loosely bound” to the
atoms. However, ab initio calculations of the electron density show that even for ferro-
magnets with itinerant magnetic moments – that are magnets modelled with nearly free
electrons which are shared amongst the entire solid in an electron gas – the spin polar-
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ization is well-localized to the atomic sites. This indicates that the bonding electrons
are unpolarized and when we account for the bonding charge, the remaining d-electrons
form a well-defined localized spin moment on the atomic site [19].

As mentioned above, magnetic systems are described fundamentally quantum- me-
chanically The electron energy levels are quantized and the electrons are subject to
the quantum mechanical effect of exchange interaction. This effect arises due to the
quantum mechanical behaviour of spins and the implications of the Pauli exclusion
principle [11, ch. 37]. The exchange interaction is responsible for ferromagnetic align-
ment and favours neighbouring spins to align in parallel. We expand the model by
considering further interactions such as the dipole-dipole interaction of the spins. This
interaction has the tendency to reduce the total magnetic moment and is thus referred
to as demagnetisation [21]. The geometry of the interacting dipoles affects the resulting
field which then features a preferred direction of alignment. This gives rise to the effect
of shape anisotropy which causes, for example, spacial anisotropy in ferromagnets with
a single magnetic domain and is responsible for the formation of magnetic domains in
larger ferromagnets. Another effect considered is magnetic anisotropy which is caused by
spin-orbit coupling. We discuss the uniaxial anisotropy where magnetically anisotropic
materials exhibit an energetically favourable axis of spontaneous magnetisation and the
magnetic moment tends to align with this axis. There exist other types of anisotropy
such as cubic anisotropy, for example. We further include antisymmetric exchange in
the model. This interaction prefers spin canting (i.e. the spins are tilted by a small an-
gle) in contrast to the usual parallel alignment and also arises from spin-orbit coupling.
Furthermore, we allow the system to be affected by an applied field by introducing the
Zeeman interaction. The field contributions arising from these interactions allow us to
accurately describe the dynamics of micron-scale ferromagnetic systems by introducing
the Landau–Lifshitz–Gilbert equation in section 2.2. At the end of this chapter, we
derive the well established micromagnetic model in section 2.3 by applying a continuum
assumption onto the atomistic model.

2.1.1 Interaction Hamiltonians

All these interactions can be treated by the extended Heisenberg spin model considering
a classical spin Hamiltonian which takes the form

H = Hexc +Hdip +Hani +HDM +Hzee, (2.1)

denoting terms for the exchange interaction, dipole-dipole interaction, magneto-crystalline
anisotropy, asymmetric exchange or Dzyaloshinskii-Moriya (DM) interaction and Zee-
man interaction.

Exchange Interaction

The Heisenberg exchange energy is the dominant term in the spin Hamiltonian of equa-
tion (2.1) and is a consequence of the symmetry of the electron wave-function and the
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Pauli exclusion principle, which determines the orientation of electronic spins in over-
lapping electron orbitals. The exchange interaction has an electrostatic origin leading to
energies in the range of 1–2 eV. This energy range is typically around 1000 times larger
than the next largest contribution to the Hamiltonian and causes magnetic ordering
temperatures between 300–1300 K.

In the following we discuss the exchange energy for a system of interacting atomic
moments. We start by considering two non-interacting electrons. The Hamiltonian of
the system is given by

Ĥ = −JŜ1 · Ŝ2 (2.2)

where J denotes the exchange integral, Ŝ1 and Ŝ2 denote the spin operators of the first
and second electron, respectively.

This result can now be generalized to the quantum mechanical Heisenberg model

Ĥexc = −1

2

∑
i 6=j

JijŜi · Ŝj (2.3)

where Jij are exchange integrals between atoms at lattice sites i and j, Ŝi is the spin
operator of the atom at site i and the factor 1

2
accounts for double counting. The sign

of the exchange integral Jij determines whether the preferred spin alignment is parallel
(Jij > 0) or antiparallel (Jij < 0).

This quantum mechanical expression can be approximated by a classical model when
applying the atomic sphere approximation (ASA). The atomic spin operator’s expecta-
tion values are decoupled by assuming

〈Ĥexc〉 = −1

2

∑
i 6=j

Jij〈ŜiŜj〉 ≈ −
1

2

∑
i 6=j

Jij〈Ŝi〉 · 〈Ŝj〉 (2.4)

.
We further can consider the adiabatic approximation in which we assume that the

electrons, whose dynamics take place in the femtosecond regime, almost instantaneously
adapt to the dynamics of the spins which take place in the nanosecond regime. From
this it follows that the values of the exchange integrals stay constant in time and we
thus obtain the classical Heisenberg exchange model

Hexc = −1

2

∑
i 6=j

Jijsi · sj (2.5)

where si denotes the classical spin direction on site i with ‖si‖ = 1 (i.e. the unit vector
pointing in the direction of the total angular momentum).

The exchange interaction is highly dependent on the distance and in most cases the
sum in equation (2.5) can be modified to include nearest neighbours only. We further
introduce the multi-indices i and j with i = (xi, yi, zi) and j = (xj, yj, zj) for a more
compact notation. So we finally obtain

Hexc = −J
2

∑
<ij>

si · sj (2.6)
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where < ij > restricts the sum to nearest neighbours.
While the exchange interaction is responsible for magnetic ordering at the atomic

level, the thermal stability of a magnet is mainly caused by magnetic anisotropy.

Anisotropy

The magnetic anisotropy describes the tendency of the spin moments to align along
particular spacial directions. Several physical effects give rise to magnetic anisotropy
with the most important being magneto-crystalline anisotropy. This effect describes the
preference of the atomic moments to align with a particular crystallographic axis and
arises from the interaction of atomic electron orbitals with the local crystal structure.
Opposed to exchange interaction, the effect of anisotropy is of relativistic origin and
significantly smaller.

A common form of anisotropy is single-ion uniaxial anisotropy where the spins tend
to align along a single axis denoted as e and often referred to as the easy axis of the
system. Uniaxial anisotropy is the simplest form of anisotropy and is commonly found
in materials where the crystal lattice is distorted along a single axis such as hexagonal
Cobalt or L10 ordered FePt [19].

The classical Hamiltonian for uniaxial anisotropy reads

Hani = −k
∑
i

(si · eani)
2, (2.7)

where k is the anisotropy energy per atom in units of Joule.

Dipole-Dipole Interaction

The dipole-dipole interaction, or demagnetisation, results from the magneto-static in-
teraction of the atomic spins. It has the tendency to reduce the total magnetic moment
of the system and gives rise to shape anisotropy in ferromagnets with a single magnetic
domain or the formation of magnetic domains in lager ferromagnets.

The dipole-dipole interaction yields a Hamiltonian of the form

Hdip = −µ0µs
2

∑
i

Hdip(si) · si, (2.8)

where µ0 is the vacuum permeability, µs the magnitude of the atomistic magnetic mo-
ment and Hdip is the dipole field of equation (2.18) which is discussed in detail in the
following sections.

Antisymmetric Exchange

The antisymmetric exchange is an interaction which favours spin canting rather than
(anti)parallel spin alignment. Spin canting means that the spins tend to tile by a small
angle about their axis opposed to being aligned perfectly (anti)parallel. This interaction
was first postulated by Igor Dzyaloshinskii by phenomenological considerations of the
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Landau theory [22]. Toru Moriya then discovered the spin-orbit coupling to be the
microscopic mechanism of the antisymmetric exchange [23] and thus the interaction is
often referred to as Dzyaloshinskii-Moriya interaction (DMI).

Experimentally, large values of antisymmetric exchange are encountered at interfaces
between a magnetic film and a heavy metal with high spin-orbit coupling [24,25].

In an atomic description the DMI is written as

HDM =
∑
<ij>

dij · (si × sj), (2.9)

where dij is the DM interaction vector between atomic sites i and j in Joule, ui is the
atomic moment unit vector at site i (which yields ui = si

µ0µs
) and the summation is

performed over nearest neighbours < ij >. The direction of dij is dependent on the
system under consideration. In the case of magnetic ultra-thin films, DMI is caused by
the interaction with the high spin-orbit coupled heavy metal of the adjacent layer and
the DM interaction vector dij can be written as d uij×eDM, where uij is the unit vector
from site i to site j and eDM is the unit vector normal to the film and d is the atomistic
antisymmetric exchange constant in Joule.

In this case the Hamiltonian takes the form of

HDM = d
∑
<ij>

(uij × eDM) · (si × sj). (2.10)

Zeeman Interaction

The influence of an external applied field Hzee, which may arise due to an electric field
from an electric current or nearby magnetic materials, is considered in the classical
Hamiltonian by

Hzee = −µ0µs
∑
i

si ·Hi
zee, (2.11)

where Hi
zee denotes the external field at site i.

2.1.2 Effective Field Contributions

In the previous section we discussed the contributions to the classical Heisenberg Hamil-
tonian for the atomistic spin model. However, when it comes to the description of
dynamics of the system, we are interested in effective fields generated by these interac-
tions. These field contributions sum up to a net effective field Heff which is then plugged
into the Landau-Lifshitz-Gilbert equation (2.27) to describe the time evolution of a spin
system.

The effective field at the atomic site i can be calculated using the corresponding
Hamiltonian by

Hi
eff = − 1

µ0µs

∂H
∂si

, (2.12)
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where H is the classical Heisenberg Hamiltonian of equation (2.1) which is considering
all interactions. The effective field can also be split up into contributions arising from
each type of interaction and thus we can write

Heff = Hexc +Hani +Hdip +Hant +Hzee. (2.13)

In the following, we use equation (2.12) to derive the field terms of each interaction
introduced above.

Exchange Field

As of the exchange interaction, the calculation of the exchange field yields

Hi
exc = − 1

µ0µs

∂Hexc

∂si
= − 1

µ0µs

∂

∂si

[
− J

2

∑
<jk>

sj · sk
]

=
J

µ0µs

∑
<j>i

sj , (2.14)

where < j >i denotes the sum over nearest neighbours at site i. In the last step a factor
of 2 arises due to double counting.

In many cases we have already calculated the field and want to determine its corre-
sponding energy. In the case of the exchange interaction, we can calculate the exchange
energy of a given exchange field by

Hexc = −µ0µs
2

∑
i

Hi
excsi. (2.15)

Anisotropy Field

Considering the field contribution of the anisotropy we obtain

Hi
ani = − 1

µ0µs

∂Hani

∂si
= − 1

µ0µs

∂

∂si

[
− k

∑
i

(si · eani)
2
]

=
2k

µ0µs
(si · eani)eani. (2.16)

The corresponding energy is given by

Hani = −µ0µs
2

∑
i

H i
anisi. (2.17)

Dipole-Dipole Field

In the case of the dipole-dipole interaction, we first define the dipole-dipole field which
then yields the Hamiltonian. The dipole-dipole field for a certain atomic site i describes
the interaction of this spin with each other spin in the entire system an thus is a so-called
global interaction. The field is given by

Hi
dip = µs

∑
j

D̃i−jsj , (2.18)
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where D̃i−j is the dipole-dipole tensor for the atomic sites i and j.
In a classical description of the magnetic pole limit, we can define a scalar potential

of the magnetic dipole by

ψ(d, r) =
d · r
4πr3

, (2.19)

where d is the magnetic moment of the dipole and r is denoting the spacial vector with
components rx, ry, rz and magnitude r.

From this, we obtain the dipole field by taking the negative gradient and which reads
[26]

Hclassic
dip (d, r) = −∇ψ =

1

4π

(
3r(d · r)

r5
− d
r3

)
=

1

4π


3r2x
r5
− 1

r3
3rxry
r5

3rxrz
r5

3rxry
r5

3r2y
r5
− 1

r3
3rxrz
r5

3rxrz
r5

3ryrz
r5

3r2z
r5
− 1

r3

·
dxdy
dz

 .

(2.20)
We identify the dipole-dipole tensor with the matrix of equation (2.20) assuming the

vector r = i− j points from atomic site i to j and find:

D̃i−j =
1

4π


3r2x
r5
− 1

r3
3rxry
r5

3rxrz
r5

3rxry
r5

3r2y
r5
− 1

r3
3rxrz
r5

3rxrz
r5

3ryrz
r5

3r2z
r5
− 1

r3

 (2.21)

Due to the long-range character of this interaction each spin interacts with every other
spin in the entire system leading to a high computational complexity. In chapter 3 we
discuss an efficient way to compute the dipole-dipole field.

The corresponding energy can be calculated by

Hdip = −µ0µs
2

∑
i

H i
dipsi. (2.22)

Antisymmetric Field

We obtain the field contribution of the antisymmetric exchange in the same way by
considering

Hi
DM = − 1

µ0µs

∂HDM

∂si
= − 1

µ0µs

∂

∂si

[
d
∑
<ij>

(uij × eDM) · (si × sj)
]
. (2.23)

Again, the corresponding energy is calculated with

HDM = −µ0µs
2

∑
i

Hi
DMsi. (2.24)
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Zeeman Field

Given an external field Hzee, the corresponding energy is given by

Hzee = −µ0µs
∑
i

Hi
zeesi. (2.25)

The Hamiltonians introduced allow for a description of the energetics of magnetic
systems. However, they do not provide information concerning their time evolution,
thermal fluctuation or ground state. In the following section we will discuss the Landau-
Lifshitz-Gilbert equation which is capable of describing the dynamics of the atomistic
magnetisation.

2.2 Spin Dynamics

The first description of spin dynamics originated from ferromagnetic resonance experi-
ments, where the dynamics of a magnetic material is described by an equation introduced
by Landau and Lifshitz [27]. In modern form the Landau Lifshitz (LL) equation reads

∂m

∂t
= −γm×Heff − αγm× (m×Heff). (2.26)

where m denotes the direction of the sample magnetisation, γ the gyromagnetic ratio, α
a phenomenological damping constant dependent on the material and Heff the effective
field which acts on the sample. Note that the LL equation was initially introduced for
the dynamics of macroscopic systems and thus we introduced the variablem which refers
to a sample magnetisation and is principally not related to the atomistic magnetisation
direction s.

Two physical effects give rise to this equation. The first term in the LL equation
2.26 describes the precession of the magnetisation and originates from the quantum
mechanical interaction of an atomic spin with the applied field. The second term in
LL equation 2.26 is introduced due to the relaxation of the magnetisation and accounts
for energy dissipation [19]. It tends to align the magnetisation along the field direction
with a characteristic coupling strength given by α. However, this relaxation rate of the
magnetisation to the field direction is a linear function in the damping rate α and Gilbert
has shown that this leads to an incorrect description of the dynamics for systems with
high damping.

As a consequence, Gilbert adapted the LL equation by introducing critical damping,
leading to the Landau-Lifshitz-Gilbert (LLG) equation given by

∂m

∂t
= − γ

1 + α2
m×Heff −

αγ

1 + α2
m× (m×Heff). (2.27)

Even though this equation was initially derived to describe the dynamics of macro-
scopic systems, the LLG is the standard equation of motion in the field of numerical
micromagnetism, capable of describing small magnetic elements.
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Furthermore, the LLG equation can also be applied on an atomistic level. The preces-
sion term still has the same origin as it naturally arises from the quantum mechanical
interaction of the spins with the effective field. The relaxation term now considers direct
angular momentum transfer between the spins and the heat bath including contributions
from the lattice and the electrons.

For the atomistic model the LLG equation reads

∂s

∂t
= − γ

1 + α2
s×Heff −

αγ

1 + α2
s× (s×Heff), (2.28)

where we only interchanged the direction of the sample magnetisation m with the atom-
istic magnetisation direction s.

A Side Note on Langevin Dynamics

It is important to mention that the LLG equation (2.27) is strictly only capable of
describing systems at zero temperature. Thermal effects lead to thermodynamic fluctu-
ation of the magnetic spin moments. For sufficient high temperatures these effects exceed
the exchange interaction and oppress magnetic ordering, leading to the ferromagnetic-
paramagnetic transition. A common method considering thermal effects is the Langevin
Dynamics developed by Brown [28]. The main assumption is that thermal fluctuation
on each atomic site can be represented by a Gaussian white noise term. The width of
the Gaussian distribution increases with increasing temperature thus modelling stronger
thermal fluctuations. In the framework of spin dynamics these thermal effects are con-
sidered by an additional thermal field term 1

µ0
Hi

th at each time step which takes the
form

Hi
th = Γ(t)

√
2λkBT

γµs∆t
, (2.29)

where Γ(t) is the three dimensional Gaussian distribution with a mean of zero which is
non-correlated in time, λ the Gilbert damping term, kB the Boltzmann constant, T the
Temperature, γ the absolute value of the gyromagnetic ratio, µs the absolute value of
the magnetic spin moment and ∆t the integration time step.

The resulting effective field then reads

Hi
eff, LD = − 1

µ0µs

∂H
∂si

+
1

µ0

Hi
th. (2.30)

However, within this thesis we consider systems at low temperatures where the thermal
fluctuation becomes negligible and therefore do not include the additional field term in
the current implementation.

When it comes to the description of larger magnetic systems the atomic model with its
consideration of every single spin in the magnet is neither feasible nor – at least in most
cases – necessary. In this case the more reasonable approach to describe the magnetics
of micron-scale systems is the well established model of micromagnetics which we will
discuss in the following.
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2.3 Micromagnetic Model

The micromagnetic model can be derived from the atomistic model by introducing a
continuum assumption which is justifiable for magnetic materials at length-scales be-
tween 1 nm and 1µm . Derivations are based on [19–21,29]. In the atomistic model the
exchange interaction by far is the dominating contribution to the Hamiltonian. Thus,
the micromagnetic description of ferromagnets assumes only a slight tile between neigh-
bouring atomic spins and a smooth change of the magnetisation direction within the
sample. Therefore the discrete lattice of atomic spins can be replaced by a continuous
varying magnetisation density function M (r) with constant modulus |M | = Ms and
the spin Hamiltonian becomes an energy functional. The assumption that the elemen-
tary spins are aligned almost parallel holds true within a characteristic length scale λ,
also referred to as the exchange length, which depends on the strength of the exchange
interaction. Correspondingly, we state

M i ≈Mj for |ri − rj| � λ (2.31)

with M i and Mj being the magnetic moments at sites i and j, respectively. Moreover,
a homogeneous density of elementary magnets is assumed and therefore we can express
the vectorial magnetisation function M (r) in terms of a magnetisation direction vector
m(r) by writing

m(r) =
M(r)

Ms

with |m(r)| = 1, (2.32)

where Ms is the saturation magnetisation.
Within the framework of micromagnetics, the same interactions as introduced by the

atomistic model are considered. In the following, we take into account the implica-
tions of the continuum approximation onto these interaction terms and introduce the
corresponding micromagnetic interactions.

Exchange Interaction

Starting from the atomistic exchange Hamiltonian in equation (2.6), we derive the en-
ergy functional for the micromagnetic exchange interaction based on [20]. We consider
the atomic spins to be placed on a three-dimensional square lattice with Cartesian co-
ordinates and a lattice constant a. From this it follows that each spin has six nearest
neighbours. We associate each atomic site i with a vector (xi, yi, zi) and write
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Hexc = −J
2

∑
<ij>

si · sj

= −J
2

∑
<ij>

s(xi, yi, zi) · s(xj, yj, zj)

= −J
2

∑
i

s(xi, yi, zi) ·
[
s(xi + a, yi, zi) + s(xi − a, yi, zi)

+ s(xi, yi + a, zi) + s(xi, yi − a, zi) + s(xi, yi, zi + a) + s(xi, yi, zi − a)
]

(2.33)

Assuming the lattice constant a is much smaller than the system size we perform Taylor-
expansion by writing

s(xi ± a, yi, zi) ≈ s(xi, yi, zi)± a∂xs(xi, yi, zi) +
a2

2
∂2
xs(xi, yi, zi) (2.34a)

s(xi, yi ± a, zi) ≈ s(xi, yi, zi)± a∂ys(xi, yi, zi) +
a2

2
∂2
ys(xi, yi, zi) (2.34b)

s(xi, yi, zi ± a) ≈ s(xi, yi, zi)± a∂zs(xi, yi, zi) +
a2

2
∂2
zs(xi, yi, zi) (2.34c)

The exchange Hamiltonian can then be written as

Hexc ≈ −
J

2

∑
i

s(xi, yi, zi)·
[
6s(xi, yi, zi) + a2∂2

xs(xi, yi, zi)

+ a2∂2
ys(xi, yi, zi) + a2∂2

zs(xi, yi, zi)
]
.

(2.35)

As s are spin moment directions with magnitude of unity we can write

si · si = 1

→ (∂x,y,zsi) · si + si · (∂x,y,zsi) = 0

→ si · (∂x,y,zsi) = 0

→ (∂x,y,zsi)
2 = −si · (∂2

x,y,zsi)

(2.36)

Inserting into equation (2.35) yields

Hexc ≈ −
J

2

∑
i

6− a2
[
(∂xsi)

2 + (∂ysi)
2 + (∂zsi)

2
]
.

≈ −3NJ +
Ja2

2

∑
i

[
(∇six)2 + (∇siy)2 + (∇siz)2

]
.

≈ −3NJ +
Ja2

2

∑
i

(∇si)2.

(2.37)
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Where N is the number of atoms. The sum approaches an integral in the limit and s is
described by the continuous magnetisation direction m thus yielding

Hexc ≈ −3NJ +
J

2a

∫
Ω

(∇m)2dr. (2.38)

where Ω is the integration volume. The constant first term in equation (2.38) yields the
minimum exchange energy the system can reach in a configuration where all spins are
aligned in parallel. The second term describes the exchange energy caused by the tilt of
the atomic spins from the minimum-energy configuration.

In micromagnetics, the first term is usually neglected as it only adds a constant term to
the energy and does not affect the physics of the system. Moreover, the most commonly
used notation for the exchange energy reads

Hmicro
ex = A

∫
Ω

(∇m)2dr, (2.39)

where we introduced the micromagnetic exchange constant A with dimensions [J/m]
which fulfils the relation A = J

2a
. In analogy to the atomistic model, the field contribution

of the micromagnetic exchange interaction is given by the negative variational derivative
of the energy which reads

Hexc = − 1

µ0Ms

δHmicro
exc

δm
=

2A

µ0Ms

∆m. (2.40)

The exchange energy can be expressed in terms of Hex with

Hmicro
exc = −1

2
µ0Ms

∫
Ω

Hexc(m) ·m dr. (2.41)

Uniaxial Anisotropy

The derivation of the micromagnetic uniaxial anisotropy is more straightforward. Again
starting with the atomistic Hamiltonian we then account for the same assumptions made
as in the previous section and find

Hani = −k
∑
i

(si · eani)
2 ≈ − k

a3

∫
Ω

(m · ez)2dr (2.42)

We will use the common micromagnetic notation by writing

Hmicro
ani = −K

∫
Ω

(m · ez)2dr, (2.43)

where by also introducing a micromagnetic uniaxial anisotropy constant K with di-
mensions [J/m3] which fulfils the relation K = k

a3
.

[29] The micromagnetic anisotropy field is given by

Hani = − 1

µ0Ms

δHmicro
ani

δm
=

2K

µ0Ms
eu(eu ·m) (2.44)

and the energy functional can by calculated by evaluating

Hmicro
ani = −1

2
µ0Ms

∫
Ω

Hani(m) ·m dr. (2.45)
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Demagnetisation Field

The demagnetisation field accounts for the dipole-dipole interaction of the atomistic
elementary magnets. In a continuous magnetisation configuration the demagnetisation
field reads [29]

Hdemag(r) = Ms

∫
Ω

Ñ (r − r′)m(r′)dr′, (2.46)

where Ñ is the demagnetisation tensor given by

Ñ (r − r′) = − 1

4π
∇∇′ 1

|r − r′|
. (2.47)

When the continuous demagnetisation field is considered on a regular grid, an ana-
lytical expression for the demagnetisation tensor can be derived as was first shown by
Newell et al [30]. Details of the numerical computation of the demagnetisation tensor
are discussed in section 3.1.1.

The corresponding energy functional for a given demagnetisation field can be calcu-
lated by

Hmicro
dip = −1

2
µ0Ms

∫
Ω

m(r) ·Hdemag(m) dr = −1

2
µ0M

2
s

∫∫
Ω

m(r)Ñ (r−r′)m(r′)dr′dr.

(2.48)

Micromagnetic Antisymmetric Exchange Interaction

The derivation of the micromagnetic DMI is performed in analogy to the derivation of
the micromagnetic exchange following [20]. For the micromagnetic DMI derivation we
consider the atomistic DMI assuming a thin film in z direction and then generalize the
result to arbitrary DMI axes. Again, we use Cartesian coordinates, replace spins of
neighbouring sites with corresponding Taylor-expansions and then take the limit where
the sum approaches the integral. We start with the atomistic Hamiltonian in equation
(2.10) and find
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HDM = d
∑
<ij>

(uij × eDM) · (si × sj)

= d
∑
<ij>

(uij · si)(eDM · sj)− (uij · sj)(eDM · si)

= d
∑
i

sx(xi, yi, zi) ·
[
sz(xi + a, yi, zi)− sz(xi − a, yi, zi)

]
− sz(xi, yi, zi) ·

[
sx(xi + a, yi, zi)− sx(xi − a, yi, zi)

]
+ sy(xi, yi, zi) ·

[
sz(xi, yi + a, zi)− sz(xi, yi − a, zi)

]
− sz(xi, yi, zi) ·

[
sy(xi, yi + a, zi)− sy(xi, yi − a, zi)

]
=

2d

a2

∑
i

a3
(
six∂xsiz − siz∂xsix + siy∂ysiz − siz∂ysiy

)

(2.49)

where we used the property of the cross product (a×b)·(c×d) = (a·c)(b·d)−(a·d)(b·c)
in the first step and multiplied by a2

a2
in the last step.

In the continuum limit, the sum approaches the integral and we find in agreement
with [24]

HDM ≈
2d

a2

∫
Ω

(
mx∂xmz −mz∂xmx +my∂ymz −mz∂ymy

)
dr. (2.50)

We introduce the micromagnetic DMI constant D in units of [J/m2] to find

Hmicro
DM = D

∫
Ω

(
mx∂xmz −mz∂xmx +my∂ymz −mz∂ymy

)
dr (2.51)

using the relation D = 2d
a2

.
For this derivation we assumed the normal vector of the interface n pointing in z-

direction. We can generalize equation (2.51) for arbitrary directions of n with

Hmicro
DM = D

∫
Ω

(
(m · n)(∇ ·m)−m · (∇(m · n))

)
dr (2.52)

The effective micromagnetic DMI field is the negative functional derivative of the
energy with respect to the magnetisation direction

Hmicro
DM =

1

µ0Ms

δHmicro
DM

δm
= − 2D

µ0Ms

[n(∇ ·m)−∇(n ·m)]. (2.53)

For a given DMI field the energy functional can be directly calculated evaluating

Hmicro
DM = −1

2
µ0Ms

∫
Ω

HDM(m) ·m dr. (2.54)
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Micromagnetic Zeeman Energy

In the case of an external applied field Hzee we approximate the discrete atomistic
expression with an integral

Hzee = −µ0µs
∑
i

si ·Hi
zee ≈ −µ0µs

∫
Ω

m ·Hzeedr (2.55)

and thus we define the micromagnetic Zeeman energy by

Hmicro
zee = −µ0µs

∫
Ω

m ·Hzeedr. (2.56)

Overview of the Atomistic and Micromagnetic Model

Within this chapter, we discussed the main assumptions of the atomistic spin model
and described the interactions on a theoretical basis. We introduced a formalism to
describe the dynamics of such a spin system and then derived the micromagnetic model
by means of a continuum approach. Table 2.1 gives an overview of the interaction
variables introduced within the atomistic and micromagnetic models and points out their
relation. The compact formulation of those models in some way hides the complexity
which arises in terms of the numerical computation. In the following chapter we will
discuss the mathematical methods necessary to efficiently perform magnetic simulations
within this framework.

Variable Atomistic Micromagnetic Relation
Symbol Unit Symbol Unit

Magnetic moment µs [J T−1] M [J T−1m−3] µs=Ms a3/n
Exchange energy J [J] A [J m−1] J = 2Aa
Anisotropy energy k [J] K [J m−3] k = Ka3

DMI energy d [J] D [J m −2] d = Da2/2

Table 2.1: Overview of the interaction variables introduced by the atomistic and micro-
magnetic models.
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3 Discrete Mathematical Concepts

In the previous chapter we introduced the physical models which allow for the descrip-
tion of the dynamics of magnetic materials at micron scales. In the following we discuss
the discrete numerical methods applied in order to solve these models. We especially
consider the calculation of the demagnetisation field which is of high computational
complexity as a result of its long-range character. We discuss the finite difference ap-
proach and investigate several discrete time integration methods in terms of precision
and performance. Further considerations concerning the actual implementation of the
simulation program are discussed in chapter 4. Moreover, we discuss the string method,
a numerical method for the calculation of minimum-energy paths between arbitrary
magnetic configurations [31]. This technique is applied in the calculation of magnetic
skyrmion annihilation energies as described in chapter 5.

3.1 Fast Convolution Algorithm

When we consider the calculation of the atomistic dipole-dipole field or the discrete mi-
cromagnetic demagnetisation field in equations (2.18) and (3.14) , respectively, we face
the computational expensive problem of solving a discrete convolution over the entire
magnetisation. In a straight-forward approach, the calculation of these convolutions
has a computational complexity of O(N2) where N is the total number of simulation
cells. However, in cases where we can convert the discrete convolution to a circular con-
volution, fast transform methods with convolution properties such as the Fast Fourier
Transform (FFT) can be used to implement the computation which leads to a computa-
tional complexity of O(N logN). In the following we introduce the convolution theorem
on a continuous level and derive the corresponding discrete formulation following [32].

We start by considering a integrable function f : R → C and define the Fourier
transform f̂(ω) of f(t) with ω, t ∈ R as

f̂(ω) ≡
∫ ∞
−∞

f(t)e2πitωdt = F(f(t))(ω), (3.1)

and the inverse Fourier transform as

f(t) ≡
∫ ∞
−∞

f̂(ω)e−2πiωtdω = F−1(f̂(ω))(t), (3.2)

where we denoted the Fourier transformation itself by F and the inverse transformation
by F−1. Now considering two functions g(t) and h(t) with their corresponding Fourier
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transforms F(g(t)) and F(h(t)), we define the convolution of the two functions, denoted
as g ∗ h as [32, eq. 12.0.9]

(g ∗ h)(t) ≡
∫ ∞
−∞

g(τ)h(t− τ)dτ (3.3)

where g∗h = h∗g. The convolution theorem states that the function g∗h is one member
of a simple transform pair

g ∗ h⇔ F(g)F(h) (3.4)

and thus the Fourier transform of the convolution can be written as the product of the
individual Fourier transforms

F(g ∗ h) = F(g)F(h). (3.5)

On a discrete level we consider a even sequence of N complex numbers fk with k =
0, 1, · · · , N − 1 with sampling interval ∆. The discrete variables tk and ωn are given by
tk = k∆ and ωn = n

N∆
with n = −N

2
, · · · , N

2
.

The continuous Fourier transform can now be approximated by

f̂(ωn) =

∫ ∞
−∞

f(t)e2πitωndt ≈
N−1∑
k=0

fke
2πitkωn∆ = ∆

N−1∑
k=0

fke
2πikn/N = ∆f̂n (3.6)

where the summation is referred to as the discrete Fourier transform D(fk) of the N
points fk:

D(fk) =
N−1∑
k=0

fke
2πikn/N = f̂n. (3.7)

The continuous Fourier transform evaluated on the sequence fk is then written as
F(ωn) ≈ ∆Dn and the discrete Fourier transform itself does not depend on any di-
mensional parameter such as the scale ∆. The inverse discrete Fourier transform D−1

recovers exactly the initial sequence fk and reads

D−1(f̂n) =
1

N

N−1∑
k=0

f̂ne
−2πikn/N = fk. (3.8)

We define the discrete convolution of the complex functions g and h defined on the
set Z of integers as

(g ∗ h)j ≡
∞∑

k=−∞

gj−k hk. (3.9)

Typically, one of these functions represents a data stream and the other a response
function which is also referred to as convolution kernel. In most cases the kernel is of
finite size N and the sum of the convolution can be truncated and is written as

(g ∗ h)j =

N/2∑
k=−N/2+1

gj−khk. (3.10)
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The discrete convolution theorem states that for a periodic signal gj with period M,
such that it is completely define by its values g0, · · · , gN−1, its discrete convolution with
a response function of equal size M is a member of the discrete Fourier pair

N/2∑
k=−N/2+1

gj−k hk ⇔ ĝn ĥn (3.11)

where ĝn is the discrete Fourier transform of the values gj, j = 0, · · · , N − 1 and ĥn is
the discrete Fourier transform of the values hk where k = 0, · · · , N − 1. These values
hk are the same as for the previous range k = −N/2 + 1, · · · , N/2 but in ’wrap around’
order, where the first half of the values corresponds to the positive coordinates and the
second half to the negative coordinates.

As a result, we can write the discrete Fourier transform of the convolution as the
point-wise product of the transformed functions:

D(g ∗ h) = D(g)D(h). (3.12)

Finally, we can express the discrete convolution by the inverse discrete Fourier transform
of the point-wise product of the transformed functions:

(g ∗ h) = D−1
(
D(g)D(h)

)
. (3.13)

This numerical method is referred to as fast convolution and finds application in
many fields such as signal and image processing. Moreover, we can use this method to
efficiently calculate the micromagnetic demagnetisation field and the atomistic dipole-
dipole field as shown in the following.

3.1.1 Discrete Micromagnetic Demagnetisation Field

The calculation of both the demagnetisation tensor and demagnetisation field is a com-
putational expensive task. In this section we discuss the mathematical methods applied
to allow for an efficient numerical calculation. Derivations follow [29,33].

We consider the micromagnetic demagnetisation field of equation (2.46) and evaluate
the continuous field on a regular cuboid gird where we denote each simulation cell of size
∆r1×∆r2×∆r3 by a multi-index i = (i1, i2, i3). All continuous quantities are discretised
correspondingly to match the spacial discretization and we write m(i) ≡ mi. In this
case the convolution integral becomes a discrete convolution which reads

Hi
demag = Ms

∑
j

Ñ i−jmj , (3.14)

where the discrete demagnetisation tensor is given by

Ñ i−j =
1

∆r1∆r2∆r3

∫∫
Ωcell

Ñ
(∑

k

(ik − jk)∆rkek + r − r′
)

drdr′. (3.15)
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In the equation above, Ωcell denotes a cuboid reference cell and ek a unit vector in
direction of the kth coordinate axis. The magnetisation is assumed constant within
each simulation cell and the field generated by each source cell is averaged over each
target cell. As a result, we encounter a sixfold integral when calculating the discrete
demagnetisation tensor Ñ i−j of equation (3.15). Newell et al. [30] derived an analytical
solution of equation (3.15).

The diagonal element N1,1 is computed by

N1,1
i−j = − 1

4π∆r1∆r2∆r3

∑
k,l∈[0,1]

(−1)
∑

x kx+lxf
[
(i1 − j1 + k1 − l1)∆r1,

(i2 − j2 + k2 − l2)∆r2, (i3 − j3 + k3 − l3)∆r3

]
,

(3.16)

where f is an auxiliary function defined as

f(r1, r2, r3) =
|r2|
2

(r2
3 − r2

1)sinh−1

(
|r2|√
r2

1 + r2
3

)

+
|r3|
2

(r2
2 − r2

1)sinh−1

(
|r3|√
r2

1 + r2
2

)

− |r1r2r3|tanh−1

(
|r2r3|

r1

√
r2

1 + r2
2 + r2

3

)
+

1

6

(
2r2

1 − r2
2 − r2

3

)√
r2

1 + r2
2 + r2

3

(3.17)

The elements N2,2 and N3,3 can be obtained by cyclic permutation:

N2,2
i−j = N1,1

(i2,i3,i1)−(j2,j3,j1) (3.18)

N3,3
i−j = N1,1

(i3,i1,i2)−(j3,j1,j2) (3.19)

The off-diagonal element N1,2 calculates as

N1,2
i−j = − 1

4π∆r1∆r2∆r3

∑
k,l∈[0,1]

(−1)
∑

x kx+lxg
[
i1 − j2 + k1 − l1)∆r1,

(i2 − j2 + k2 − l2)∆r2, (i3 − j3 + k3 − l3)∆r3

]
,

(3.20)
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where we introduced another auxiliary function g which is given by

g(r1, r2, r3) =
(
r1r2r3

)
sinh−1

(
r3√
r2

1 + r2
2

)

+
r2

6

(
3r2

3 − r2
2

)
sinh−1

(
r1√
r2

2 + r2
3

)

+
r1

6

(
3r2

3 − r2
1

)
sinh−1

(
r2√
r2

1 + r2
3

)

− r3
3

6
tanh−1

(
r1r2

r3

√
r2

1 + r2
2 + r2

3

)

− r3r
2
2

2
tanh−1

(
r1r3

r2

√
r2

1 + r2
2 + r2

3

)

− r3r
2
1

2
tanh−1

(
r2r3

r1

√
r2

1 + r2
2 + r2

3

)

− r1r2

√
r2

1 + r2
2 + r2

3

3
.

(3.21)

The other off-diagonal elements are obtained by permutation once again:

N1,3
i−j = N1,2

(i1,i3,i2)−(j1,j3,j2) (3.22)

N2,3
i−j = N1,2

(i2,i3,i1)−(j2,j3,j1) (3.23)

The demagnetisation tensor is symmetric and thus the remaining components can be
obtained by using the relation N i,j = N j,i, explicitly given as N2,1 = N1,2, N3,1 = N1,3

and N3,2 = N2,3.
Fractions in the auxiliary functions f and g might feature zero denominators. How-

ever, limit considerations yield that all fractions tend to zero in that case. As of the
implementation, these limit considerations are applied by setting the fraction to zero in
case of zero denominators in order to avoid division-by-zero errors.

Considering a regular grid of size n1 × n2 × n3, possible index distances are −nx ≤
ix−jx ≤ nx and likewise for y and z. This leads to (2n1−1)×(2n2−1)×(2n3−1)×6 entries
of the demagnetisation tensor. The factor 6 arises as we can consider the symmetry of
the tensor.

In the implementation of the assembly of the demagnetisation tensor we take into
account that the actual calculation of the demagnetisation field is performed in Fourier
space. This affects the spacial ordering we use during the tensor assembly. Instead of
ordering the tensor array by increasing the distance starting with the largest negative
distance, numbering starts at zero distance and then cycles periodically as shown in Fig-
ure 3.1. By this choice the numbering is adapted in a way that the discrete convolution
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can be written as a cyclic discrete convolution. This gives rise to the usage of the fast
convolution algorithm as is shown in the following.

By choosing a regular grid the convolutional structure of the demagnetisation field
is maintained which gives rise to an evaluation using the fast convolution algorithm.
The discrete convolution in equation (3.14) decomposes to a point-wise multiplication
in Fourier space:

D(Ñ ∗m) = D(Ñ )D(m). (3.24)

The actual result is then obtained by performing an inverse fast Fourier transform:

Hdemag = D−1

(
D
(
Ñ
)
D
(
Msm

))
. (3.25)

This approach allows for a significantly reduced computational complexity of
O(N log N) when using the fast Fourier transform algorithm. In the following, we
refer to this method as fast convolution.

In order to perform a point-wise multiplication in Fourier space, both the demag-
netisation tensor and the discrete magnetisation are expected to have the same size.
However, the demagnetisation tensor is of size (2n1 − 1) × (2n2 − 1) × (2n3 − 1) and
the discrete magnetisation of n1× n2× n3. In fast convolution method, the convolution
kernel (in our case this is the demagnetisation tensor) is applied in a cyclic manner [32]:

(f ∗ g)i =
n−1∑
j=0

f(i−j+n)%n · gj (3.26)

We expand the discrete magnetisation by entries of zero to match the size of the demag-
netisation tensor, a method often referred to as zero-padding. By applying this method,
only contributions of the magnetisation at physically possible cell distances are taken
into account. After performing the inverse Fourier transform, the previously expanded
values of the discrete magnetisation are neglected and the zero-padding does not affect
the physical result.

At this point we want to emphasize the similar structure of equation (3.14) with
its atomistic pedant given in equation (2.18). As a consequence, the Fourier based
evaluation method for the demagnetisation field described above is also applicable to
the calculation of the atomistic dipole-dipole field when considering equation (2.18)
with atomistic dipole-dipole tensor D̃i−j as given in equation (2.21).

3.2 Finite-Difference Methods

Finite-Difference methods (FD) are discrete mathematical methods for finding an ap-
proximate solution to differential equations. The basic idea of these methods is the
approximation of differential equations by difference equations where finite-difference
quotients are used to approximate derivatives [32].
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Figure 3.1: Schematic structure of the discrete convolution of the demagnetisation kernel
Ñ with the zero-padded discrete magnetisation m. The tensor entries start
with zero distance and proceed in a cyclic fashion where negative distances
are wrapped around.

Other methods for numerically solving partial differential equations are the Fi-
nite Element Methods (FEM) or Monte Carlo, spectral and variational methods.
However, FD methods are a common choice when it comes to the numerical solution
of partial differential equations due to straightforward implementation and performance.

In general, we can write a finite-difference as f(x+ b)−f(x+a). Depending on where
we evaluate the function we may categorize finite-differences in three different forms:

The forward-difference
∆ff(x) = f(x+ h)− f(x), (3.27)

the backward-difference
∆bf(x) = f(x)− f(x− h), (3.28)

and the central-difference

∆cf(x) = f(x+ h/2)− f(x− h/2). (3.29)

By adding an appropriate denominator, finite-difference quotients are used to approxi-
mate derivatives in numerical methods. As an example, we can define the derivative of
a function f at point x by the limit

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
. (3.30)

3.2.1 Finite-Differences as Discrete Convolutions

When we consider the calculation of a finite-difference derivative of a regularly discretised
field we find that the result can be written as a convolution of the field with a small-sized
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kernel. In general, a discrete convolution is written as [32]

(f ∗ g)n =
∞∑

m=−∞

fmgn−m =
∞∑

m=−∞

fn−mgm, (3.31)

where f is the discrete field and g denotes the convolution kernel. The coefficients of
the kernel depend on the type of derivative and the dimensionality of the field. Note
that this method only is applicable if the considered field is discretised on a regular grid
where the cell sized are constant for each respective dimension.

As an example let us assume we want to calculate the discrete Laplace operator in
central-difference of an three-dimensional discrete field. In this case the convolution
kernel is of size 3× 3× 3 and can be written down as three 3× 3 matrices0 0 0

0 1
∆r3

0

0 0 0

 ,
 0 1

∆r2
0

1
∆r1

6
∆r1∆r2∆r3

1
∆r1

0 1
∆r2

0

 ,
0 0 0

0 1
∆r3

0

0 0 0

 , (3.32)

where 1
∆ri

are the cell sizes in the respective spacial dimension.
The calculation of finite-differences with convolutions is well suited for GPU process-

ing as these operations can easily be parallelized. However, when calculating a finite-
difference in terms of a convolution we have to especially consider the correct calculation
for the boundary elements and in many cases additional terms have to be added on the
boundaries. Considering a GPU implementation, this may result in a high number of
index operations leading to a performance loss when calculated on a GPU.

3.2.2 Calculation of the Micromagnetic Exchange Field

The exchange field in the micromagnetic model in equation(2.6) is calculated in finite-
differences where the second order derivative is approximated in lowest order centred
finite-difference which reads

f ′′(x) ≈ f(x+ ∆x)− 2f(x) + f(x−∆x)

∆x2
. (3.33)

We use this approximation in order to calculate the micromagnetic exchange field in
equation (2.40). Accordingly, the three dimensional Laplacian is approximated by

∆m ≈
∑
i

m(r + ∆riei)− 2m(r) +m(r −∆riei)

∆r2
i

. (3.34)

where ∆ri is chosen to naturally match the cell size.
On the boundary, where neighbouring cells are missing, the magnetisation of the

missing cell is assumed to be of the same value as the cell in the centre. This choice
implicitly accounts for the Neumann boundary condition [34]. Generally, the Neumann
boundary condition specifies the values in which the derivative of a solution is applied
within the boundary of the domain ∂nm, where n is the normal vector of the boundary.
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In our case, the derivative is implicitly set to zero by assuming the missing neighbours
with the same value as the cell itself. This yields a boundary condition given by

∂nm = 0. (3.35)

As a side note, in the special case of the exchange field this choice of boundary
condition has no effect on the time-derivative of the magnetisation, however. Adding
a neighbour cell with the same value as the boundary cell only adds a term in the
exchange field which is proportional to the magnetisation itself. On the right-hand side
of the LLG, the effective field only appears in cross products with the magnetisation
and thus this contribution is erased as parallel contributions drop out in cross-products.

Note that in the actual GPU implementation, index operations are high-priced and
should be avoided whenever possible. Considering the missing neighbours would require
∼ 2(n1n2 +n2n3 +n3n1) index operations. Therefore, neglecting the missing neighbours
not only does not affect the physics but also leads to a notable performance gain in the
GPU implementation.

Up to this point we introduced several numerical methods which are applied in order
to calculate the effective field contributions of the different interactions. These contri-
butions then sum up to the effective field in the LLG equation. In order to describe
the dynamics of a magnetic system, we start with a given magnetisation, calculate the
effective field and then integrate the LLG with respect to time. Mathematically, this
corresponds to the problem of solving an ordinary differential equation with a given
initial value problem which can be addressed by explicit time integration methods as
discussed in the following.

3.3 Discrete Time Integration

In this section we present numerical methods for the approximate solution of ordinary
differential equations (ODEs) using temporal discretization. Derivations follow [32].
Other methods are e.g. implicit methods or multi-step methods. We start with the
Euler method, introduce the well known Runge-Kutta method of 4th order and then
generalize the approach to the family of explicit Runge-Kutta (RK) methods. Later,
we discuss adaptive step-size RK methods.

We consider a first-order differential equation as an initial value problem of the form

ẏ = f(t, y(t)), y(t0) = y0, (3.36)

where y is a function of time t with value y0 at t0 = 0. The time derivative of y is
given by the function f(t, y(t)). Without loss of generality, we only consider first-order
differential equation as higher-order ODEs can be converted into systems of first-order
equations. This allows any integration scheme for first-order systems to be applied for
the approximate solutions of higher-order ODEs.
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We now perform a Taylor expansion of the function y around t0 with a small time
step h and find

y(t0 + h) = y(t0) + hy′(t0) +
1

2
y′′(t0) +O(h3). (3.37)

By neglecting the quadratic and higher-order terms and substituting y′ = f(t, y) we
obtain the explicit Euler method :

y(t0 + h) = y(t0) + hf(t0, y(t0)). (3.38)

Starting from the initial value y(t0) = y0, the Euler method is a scheme which allows
for the approximation of the function y at the subsequent time t0 +h = t1 and in general
we write

yn+1 = yn + hnf(tn, yn), (3.39)

where yn = y(tn) and hn is the – not necessarily constant – time step from tn to tn+1. The
Euler method is the most basic explicit method for the numerical integration of ODEs.
This method is of first order and therefore the local truncation error – which is the error
per step – is proportional to the square of the step size, and the global truncation error
– which is the accumulated error up to a given point in time – is proportional to the step
size. When we consider the integration of the LLG equation using explicit integration
schemes, we perform a re-normalisation of the magnetisation field after every integration
step. The magnetisation direction mi is a vector field with |mi| = 1 ∀ i and we attempt
to reduce the error per integration step by performing this re-normalisation. Due to
its simplicity, the Euler method often serves as a basis for integration methods but is
not recommended for practical use as the method involves a high local and global error
and low stability. In the following, methods with higher accuracy and better overall
performance are introduced.

A common extension of the Euler method is the midpoint method. In this method
we take a first step as in equation (3.39) which serves as a trial step to the midpoint
of the interval, denoted as k1. The actual step is then evaluated using y and t at that
midpoint:

k1 = hf(tn, yn)

k2 = hf(tn +
1

2
h, yn +

1

2
k1)

yn+1 = yn + k2 +O(h3)

(3.40)

The symmetrization cancels out the first-order error term yielding a method of second
order. By convention, a method of order p with step size h exhibits a local truncation
error in the order of O(hp+1) and a global truncation error in the order of O(hp). This
approach of inserting trial steps in the interval can be advanced, resulting in a further
decrease of the error. On the one hand, inserting further trial steps leads to a higher
computational cost. On the other hand, higher-order methods allow for the choice of
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higher step-sizes and, in most cases, this results in a considerably improved overall
performance [32].

We can find many expressions to evaluate the function f(t, y) that all agree to first
order but feature different coefficient of higher-order. By adding up proper combinations
of these expressions, the local truncation error can be eliminated order by order. This
is the approach of general Runge-Kutta methods. In the following we introduce the
standard Runge-Kutta method, a well known 4th-order method, and we extend the
formulation to the family of Runge-Kutta methods.

3.3.1 Runge-Kutta methods

The widely used Runge-Kutta method of order 4 (RK4) uses 4 left-hand-side evaluations
per time step [32]. It is calculated by

k1 = hf(tn, yn),

k2 = hf(tn +
h

2
, yn +

1

2
k1),

k3 = hf(tn +
h

2
, yn +

1

2
k2),

k4 = hf(tn + h, yn + k3),

yn+1 = yn +
1

6
(k1 + 2k2 + 2k3 + k4).

(3.41)

This 4th order method exhibits a local truncation error in the order of O(h5) and a to-
tal accumulated error in the order of O(h4). Due to its straightforward implementation,
robustness and performance the RK4 is a common choice for calculating approximate
solutions of ODEs [32]. When we compare equations (3.40) and (3.41) we notice the
similar structure of the methods. Consequently, we introduce the notation of general
Runge-Kutta methods.

Generalization of Runge-Kutta methods

We denote the proximate step in a generalized Runge-Kutta method with

yn+1 = yn +
s∑
i=1

biki. (3.42)

At this point we distinguish between explicit and implicit Runge-Kutta methods. Ex-
plicit methods calculate the the proximate step yn+1 by considering the current state
only, whereas implicit methods solve an equation which involves the current step and
and the proximate step itself. In the following, we will only discuss explicit methods.
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The intermediate steps of such an explicit method are calculated by

k1 = hf(tn, yn),

k2 = hf(tn + c2h, yn + a21k1),

k3 = hf(tn + c3h, yn + a31k1 + a32k2),

· · ·
ks = hf(tn + cnh, yn + as1k1 + as2k2 + · · ·+ as,s−1ks−1),

(3.43)

where s is the number of stages or function evaluations, the coefficients aij with 1 ≤ j <
i ≤ s are referred to as the Runge-Kutta matrix, the coefficients bi with i = 1, 2, ..., s
as the weights and the coefficients ci with i = 2, 3, ..., s as the nodes. For visualization
these coefficients are usually given in the form of a Butcher tableau as shown in Table
3.1.

i ci ai,j bi
1 b1

2 c2 a2,1 b2

3 c3 a3,1 a3,2 b3
...

...
...

...
. . .

...
s cs as,1 as,2 . . . as,s−1 bs

j= 1 2 . . . s− 1

Table 3.1: Coefficients of an explicit Runge-Kutta method arranged in a Butcher tableau.

When we express the Runge-Kutta 4th order method within this formulation, we
obtain the tableau given in Table 3.2.

i ci ai,j bi
1 1/6
2 1/2 1/2 1/3
3 1/2 0 1/2 1/3
4 1 0 0 1 1/6

j= 1 2 3

Table 3.2: Butcher tableau of the standard Runge-Kutta 4th order method.

We emphasize that the number of stages s does not necessarily correspond to the order
p of the method. The minimum number of stages s required to yield a Runge-Kutta
method of order p is an open problem. Several known values are listed in Table 3.3 an
it can be shown that for M > 8 at least M + 3 stages and thus function evaluations are
required [32,35].

We further point out that the number of function evaluations, also referred to as right-
hand-side (RHS) evaluations, per time step is an important indicator of the efficiency of
the algorithm when considering the corresponding order of the method. Depending on
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p 1 2 3 4 5 6 7 8
min s 1 2 3 4 6 7 9 11

Table 3.3: Minimal number of stages s to yield a Runge-Kutta method of order p [35].

the problem under investigation, one function evaluation may be computationally more
expensive than the final addition of the intermediate values k. In the case of the LLG for
example, three cross products of the vector-based fields have to be performed for each
RHS evaluation. This leads to a trade off between achieving a high-order approximation
and restricting the number of RHS evaluations to a minimum which is highly dependent
on the respective problem.

Up to this point, the integration methods discussed take a particular value for the
size of each consecutive step as an input parameter. A convenient choice of the step size
is key to an efficient and accurate time integration algorithm. Most systems described
by ODEs exhibit high variations in the dynamics of the characteristic quantities. Pe-
riods with high fluctuations require very small time steps whereas periods with small
changes can be handled with larger time steps while still remaining sufficiently accurate.
Therefore, defining a constant step size for all time steps is an inappropriate choice in
most problems. Either the step size would be too small in certain periods leading to an
inefficient calculation with high computation times or the time step would be too large
resulting in insufficient accuracy.

These considerations suggest that the integration algorithm should be capable of de-
termining an adequate step size which is adapted to the respective problem. This leads
us to introducing time integrators with adaptive step-size control.

3.3.2 Adaptive Step-size Control

The aim of adaptive step-size control is to choose the highest step size possible in order
to retain a desired accuracy. As mentioned above, this is intended to increase the
integration efficiency as the algorithm chooses small step sizes for periods with high
fluctuations and large step sizes in periods with less changes. For the implementation of
an adaptive step-size integration method, the stepping control algorithm has to supervise
the integration by some measure. As we are most concerned about achieving a desired
accuracy, an estimate of the local truncation error is a good measure for choosing an
appropriate step size. Deviations follow [32].

Considering the RK4 method, the most straightforward approach to obtain an error
estimate is set doubling. In this approach we take each step twice, once in a full step 2h
and once in two half-steps of h. The overhead in terms of right-hand-side evaluations
created by this technique is 11

8
= 1.375 when considering the achieved accuracy. The

step-doubling technique requires 11 evaluations as one point is shared whereas two simple
steps would require 8 evaluations.

We denote the exact solution of these two steps by
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y(t+ 2h) = y1 + (2h)5φ+O(h6) + · · ·
y(t+ 2h) = y1 + 2(h5)φ+O(h6) + · · · ,

(3.44)

where, to the order of h5, φ is a constant with order of magnitude of y(5)

5!
, y1 denotes the

approximate solution of the full step and y2 the approximate solution of the half step.
The difference between the two approximations is an adequate estimation of the local
truncation error which we denote by ∆:

∆ ≡ y1 − y2. (3.45)

This estimation of the local truncation error is the quantity that the step-size controller
intends to keep at the desired degree of accuracy by choosing an adequate step size.

Performing a certain Runge-Kutta scheme once at full and once at half step size
is descriptive and straightforward, however, this approach requires a high amount of
function evaluations for the achieved accuracy.

A more convenient way is the development of a embedded Runge-Kutta tableau which
is designed especially for the application of adaptive step-size algorithms. The objective
is to find a set of Runge-Kutta coefficients aij, bi, b̂i, ci which yields two approximate

solutions (one of order p using bi and the other of order p − 1 using b̂i) with as few
right-hand-side evaluations as possible. This is achieved by finding a set of coefficients
where the lower order approximation uses the same intermediate steps k as the high
order approximation, but with other coefficients b̂. In this case, no further function eval-
uations have to be performed and the lower-order approximation is obtained by simply
adding the intermediate steps k with the second set of coefficients b̂. This approach was
originally proposed by Merson and popularized in a method of Fehlberg [32]. Later on,
Fehlberg developed a fifth-order method with six function evaluations where another
combination of the same functions yields a fourth-order method [36]. In general, such
an embedded Runge-Kutta scheme is written as

yn+1 = yn +
s∑
i=1

biki, ŷn+1 = yn +
s∑
i=1

b̂iki, (3.46)

where the function approximation yn+1 is of order p and the approximation ŷn+1 is of
order p − 1. The main performance gain compared to the RK4 double-step method is
due to the shared intermediate steps ki. The corresponding Butcher tableau for such an
integration scheme is extended by one row of b̂ coefficients, as shown in Table 3.4.

The truncation error ∆ is again approximated by the difference of the two results:

∆ = yn+1 − ŷn+1 =
s∑
i=1

(bi − b̂i)ki. (3.47)

This approximation of the truncation error applies to the lower-order value ŷn+1. How-
ever, we will use the higher order approximation yn+1 to continue the integration, a
method called local extrapolation [32].
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i ci ai,j bi b̂i

1 b1 b̂1

2 c2 a2,1 b2 b̂2

3 c3 a3,1 a3,2 b3 b̂3
...

...
...

...
. . .

...
...

s cs as,1 as,2 . . . as,s−1 bs b̂s
j= 1 2 . . . s− 1

Table 3.4: Extended Butcher tableau including the coefficients b̂ of the p − 1 order
method.

In the following we consider how to keep the approximated error within desired bounds.
At first we define a scale and require the error to be less or equal than that value

|∆| = |yn+1 − ŷn−1| ≤ scale. (3.48)

The scale is defined by
scale ≡ atol + |y| rtol, (3.49)

where atol is the absolute error tolerance and rtol is the relative error tolerance. In
practice, |y| is replaced by max(|yn|, |yn+1|) in the above equation to account for the case
where one of them is close to zero. However, when solving the LLG, the magnetisation
direction of each cell has the magnitude of unity and considering |y| only is sufficient.

Out of equation 3.48 we define the scaled error quantity err as the quotient of ∆ and
the defined scale subject to a specified norm

err ≡
∥∥∥∥ ∆i

scalei

∥∥∥∥ (3.50)

Two common choices for the norm are the euclidean norm or the maximum norm (i.e.
worst offender) where the latter is chosen in the code.

In the step-size control algorithm, we accept the step if err ≤ 1, otherwise reject it.
We now search for the relation between the scaled error err and the chosen step size h.
The error estimate ∆ scales as hp where p is the order of the higher-order method, and
so does err. Assume we take a step h1 with the scaled error err1. The step h0, which
would have given the scaled error err0, can be estimated as

h0 = h1

∣∣∣∣err0

err1

∣∣∣∣ 1p . (3.51)

When err0 denotes the desired error, which is 1 in an efficient integration, the above
equation tells us how to adapt the step size h for the next integration step. If err1 is
larger than 1 and the step is rejected, the equation tells us how much to decrease the
step size for the next try of the present failed step. In the other case, when err1 is
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smaller than 1, it tells us how much we can safely increase the step size for the next
step.

As the error estimates are not exact, but only accurate in leading order in h, a common
procedure is to include a safety factor s which is typically a little smaller than unity.
The subsequent step size is then given by

hn+1 = s hn

(
1

err

) 1
p

. (3.52)

Another commonly used procedure in adaptive step-size control is a limitation of the
factor with which the step size increases or decreases. This measurement intends to
avoid extreme changes in the step size which could lead to instability. A common choice
is to restrict the next step size such that it increases by a factor not higher that 10 and
decreases by a factor not less than 0.2.

In cases where the step size is limited by the stability properties of the integration
method rather than the accuracy of the individual steps, the above presented step-size
controller may not perform properly. The step size increases slowly as subsequent steps
are accepted up to a point where the method becomes unstable. The sudden increase in
the error estimate results in a drastic reduction of the following step and the procedure
repeats itself.

An effective way to overcome this problem is to use ideas of control theory [32]. The
classical controller of equation (3.52) is known as an integration controller with log h as
the discrete control variable for which the control variable is obtained by integrating the
control error signal. The approach from control theory is to add a term proportional to
the control error. This type of controller is referred to as PI controller where P stands
for proportional feedback and I for integral feedback. The resulting expression for the
next step size takes the form

hn+1 = s hn err
−α
n errβn−1. (3.53)

The exponents α and β should be chosen to scale at 1/p. Setting α = 1/k and β =
0 recovers the classical controller on equation (3.52). Non-zero values for β improve
the stability but reduces the efficiency for integration periods with less changes. As a
compromise, [32] recommends β ≈ 0.4/k and α ≈ 0.7/k = 1/k − 0.75β.

In the following, we introduce several embedded Runge-Kutta schemes which allow
for the application of the adaptive step-size algorithm. The first number used within the
notation of these methods refers to the order used to advance the integration whereas
the second number (in brackets) denotes the order used to calculate the error estimate.

Runge-Kutta-Fehlberg 5(4) method

The wide spread Runge-Kutta-Fehlberg 5(4) method yields one fifth-order and one
fourth-order approximation by performing six function evaluations [36]. In the liter-
ature, this method is commonly abbreviated with RKF45. Comparing with Table 3.3,

38



we notice that this is the minimum amount possible in order to obtain a method accu-
rate in fifth-order. This method is designed such that the fourth-order solution yields
a lower error than the fifth-order solution which would not suggest the usage of local
extrapolation (using the higher-order expression to advance the integration). Despite
the original intention to use the fourth-order solution for the integration, Shampine and
others suggest the usage of local extrapolation [37]. Table 3.5 shows the coefficients
aij, bi, b̂i, ci of the method arranged in a Butcher tableau.

i ci ai,j bi b̂i

1 16
135

25
126

2 1
4

1
4

0 0

3 3
8

3
32

9
32

6656
12825

1408
2565

4 12
13

1932
2197

−7200
2197

7296
2197

28561
56430

2197
4104

5 1 439
216

−8 3680
513

− 854
4104

− 9
50

−1
5

6 1
2
− 8

27
2 −3544

2565
1859
4104

−11
40

2
55

0

j= 1 2 3 4 5

Table 3.5: Runge-Kutta-Fehlberg 5(4) coefficients arranged in a Butcher tableau.

Dormand-Prince 5(4) method

The following fifth- and fourth-order method was developed by Dormand and Prince [38]
and will be denoted as DP45. The coefficients of this method are chosen to minimize
the error of the fifth-order solution which suggests the usage of local extrapolation.
Even though this method uses seven stages, only six function evaluations per step are
necessary in most cases. This is achieved by designing the method such that the last
stage – k7 in this case – is evaluated at the same point as the first stage k1 of the
next step, a method referred to as first-same-as-last (FSAL). This property is directly
observable in the Butcher tableau as in this case, the ai,j coefficients of the last stage
equal the respective bi coefficients such that as,1 = b1, as,2 = b2, · · · , , as,s−1 = bs−1. As a
result, the number of function evaluations decreases by one evaluation per step (except
for the first step). Another specific restriction on the usage of the FSAL property occurs
by the integration of the LLG equation: As the magnetisation direction is normalized
after every time step, the first stage of the subsequent step does no longer match the
seventh stage of the previous step and thus the full seven stages have to be calculated
in every step.

Bogacki-Shampine 3(2) method

The Bogacki-Shampine 3(2) method (BS23) is an embedded Runge-Kutta method of
third- and second-order [39] based on a second-order method proposed by Ralston [40].
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i ci ai,j bi b̂i

1 35
384

5179
57600

2 1
5

1
5

0 0

3 3
10

3
40

9
40

500
1113

7571
16695

4 4
5

44
45

−56
15

32
9

125
192

393
640

5 8
9

19372
6561

−25360
2187

64448
6561

−212
729

−2187
6784

− 92097
339200

6 1 9017
3168

−355
33

46732
5247

49
176

− 5103
18656

11
84

187
2100

7 1 35
384

0 500
113

125
192

−2187
6784

11
84

0 1
40

j= 1 2 3 4 5 6

Table 3.6: Dormand-Prince 5(4) coefficients arranged in a Butcher tableau.

The authors recommend using local extrapolation due to accuracy and stability consid-
erations. Therefore, the third-order approximation is used for the advancement of the
steps. The pair is designed to feature the FSAL property resulting in only three net
function evaluations per step. Even though this method is of comparatively low order,
the authors state that such a low-order method is more efficient at crude accuracies [39],
but only when considering linear differential equations [41]. The stability properties
of higher-order methods worsen considerably at such accuracies and lower-order pairs
perform better within this scope. Compared to the Dormand-Prince 3(2) and Fehlberg
2(3) methods, this method proves to perform better in terms of efficiency, reliability and
stability [39]. The coefficients of the pair are given in Table 3.7.

i ci ai,j bi b̂i

1 2/9 7/24
2 1/2 1/2 1/3 1/4
3 3/4 0 3/4 4/9 1/3
4 1 2/9 1/3 4/9 0 1/8

j= 1 2 3

Table 3.7: Bogacki-Shampine 3(2) coefficients arranged in a Butcher tableau.

Cash-Karp 5(4) method

The following method proposed by Cash and Karp is a variable-order Runge-Kutta
method designed for initial value problems with rapidly varying right-hand sides [42].
The introduced fifth-order formula contains embedded formulas of all orders 1 through 4
and thus would be denoted as Cash-Karp 5(4,3,2,1) in our notation. This approach allows
for computing solutions at several different orders and thus detecting discontinuities
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before all function evaluations have been performed, either accepting the lower-order
result or aborting the step.

However, within the scope of this thesis we use the firth-order to advance the integra-
tion and consider the fourth-order estimate only to calculate the estimated error, thus
denoting the method as Cash-Karp 5(4) or CK45. The coefficients of this pair are given
in Table 3.8.

i ci ai,j bi b̂i

1 37
378

2825
27648

2 1
5

1
5

0 0

3 3
10

3
40

9
40

250
621

18575
48384

4 3
5

3
10

− 9
10

6
5

125
594

13525
55296

5 1 −11
54

5
2

−70
27

35
27

0 277
14336

6 7
8

1631
55296

175
512

575
13824

44275
110592

253
4096

512
1771

1
4

j= 1 2 3 4 5

Table 3.8: Cash-Karp 5(4) coefficients arranged in a Butcher tableau.

Bogacki Shampine 5(4) method

This fifth- and fourth-order method proposed by Bogacki and Shampine (BS45) uses
eight stages with a net value of seven function evaluations per step due to exploiting
the idea of FSAL [43,44]. The unusual aspect of this pair is that it provides two fourth-
order formulas (b̂i with i = 1, 2, · · · , 7 and b̂∗i with i = 1, 2, · · · , 8) in order to obtain
two independent estimates of the local truncation error, thus enhancing the robustness
of the error control. The error estimate obtained by the b̂ coefficients is used after the
seventh stage whether to accept the step or not. If proceeded, the second error estimate
calculated with b̂∗ is used as a second input for the step-size controller. If the step
is accepted for both error estimations, the next step size is calculated using the error
estimation obtained with the b̂∗ coefficients, as these yield a more precise error estimate.

The main advantages of this pair are significantly low truncation error coefficients and
a fifth-order solution with low error coefficients. This method is more efficient compared
to the DP45 and RKF45 in terms of achieving a very high accuracy for cheap function
calls [43]. The coefficients of this method are shown in Table 3.9.

Dormand Prince 8(7) method

The Dormand Prince 8(7) method uses 13 stages in order to obtain an 8th order approx-
imation used for proceeding the integration in local extrapolation [41]. The 7th order
solution is used to obtain the error estimation for the step-size algorithm. The high
number of 13 function evaluations per step is compensated by the step-size algorithm
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i ci ai,j bi b̂i b̂∗i
1 587

8064
6059
80640

2479
34992

2 1
6

1
6

0 0 0

3 2
9

2
27

4
27

4440339
15491840

8559189
30983680

123
416

4 3
7

183
1372

−162
343

1053
1372

24353
124800

26411
124800

612941
3411720

5 2
3

68
297

− 4
11

42
143

1960
3861

387
44800

− 927
89600

43
1440

6 3
4

597
22528

81
352

63099
585728

58653
366080

4617
20480

2152
5985

443
1197

2272
6561

7 1 174197
959244

−30943
79937

8152137
19744439

666106
1039181

−29421
29068

482048
414219

7267
94080

7267
94080

79937
1113912

8 1 587
8064

0 4440339
15491840

24353
124800

387
44800

2152
5985

7267
94080

3293
556956

j= 1 2 3 4 5 6 7

Table 3.9: Bogacki-Shampine 5(4) coefficients.

allowing for very large time steps due to the high order of the method. A preference for
low order methods in the case of low accuracy calculations is only justified when treating
linear differential equations. However, if a high order method is efficient or not highly
depends on the application. In cases where the step size is restricted externally due to
output or stability considerations, lower order methods perform better. The coefficients
of this pair are given in [44].

3.4 String Method

In this section we present the string method proposed by Weinan E et al. [31, 45], a
technique for computing transition pathways, free energy barriers and transition rates
in complex systems with relatively smooth energy landscapes. The method advances by
evolving strings using ODE solvers to solve initial value problems. The Runge-Kutta
methods described above are a convenient choice for this application. A string describes,
in this context, a smooth curve with an intrinsic parametrisation spawned between two
metastable regions in configuration space. The string satisfies a differential equation
which is constructed such that the dynamics of the string lead it to the most probable
transition path between those two points.

In the following, we denote the two metastable points by A and B. Our object of
interest is the most probable transition path between those points. Such most probable
transition paths correspond to the minimum energy paths (MEPs) which are paths in
configuration space along which the potential force is parallel to the path at every point.
The MEPs allow for the identification of the relevant saddle points which represent the
bottlenecks for a particular barrier-crossing event.

The basic idea of the string method is spanning a string between the points A and B
and then evolving this string under a potential force field in order to find the MEP. This
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field originates from the potential energy V (x) and the two points A and B are assumed
to be local minima of V (x).

By definition, a MEP is a curve γ connecting A and B with satisfies

(∇V )⊥(γ) = 0, (3.54)

where (∇V )⊥ is the component of ∇V normal to γ, thus

(∇V )⊥(γ) = (∇V )⊥ − (∇V (γ), τ̂)τ̂ . (3.55)

Here, τ̂ is defined as the unit tangent of the curve γ and (·, ·) denotes the Euclidean
inner product. It can be proven that, in an appropriate mathematical setting, the MEP
is the most probable path that the system will take under the over-damped dynamics
to move between A and B while crossing the barriers in-between [46].

In an abstract notation, the dynamics for the evolution of such a curve is given by

vn = −(∇V )⊥, (3.56)

where vn denotes the normal velocity of the curve. We emphasize that for the evolution
of the curve, only the normal component of the velocity affects the result. The tangential
velocity moves points along the curve, changing its parametrisation only. As we are free
to chose any particular parametrisation, this does not affect the curve itself.

We choose a particular parametrisation of the curve γ : γ = {ϕ(α) : α ∈ [0, 1]} and
in this case obtain τ̂(α) = ϕα/‖ϕα‖, where ϕα denotes the derivative of ϕ with respect
to α. A simple parametrisation is the equal arc-length parametrisation in which α is
a constant multiple of the arc-length from point A to ϕ(α). With this choice, we have
‖ϕα‖ = lγ =const where lγ is the length of the curve γ.

In the original proposal of the string method [45], equation (3.56) is represented in
the following model:

ϕ̇ = −∇V (ϕ)⊥ + λ(α, t)τ̂(α, t), (3.57)

where ϕ̇ denotes the time derivative of ϕ and the term λ(α, t)τ̂(α, t) is a Lagrange mul-
tiplier added in order to enforce the particular parametrisation. In analogy to above,
the Lagrange multiplier term does not affect the evolution of the string itself, but only
its parametrisation as it does not contribute to the normal velocity of the curve. The
stationary states of the dynamics of equation (3.57) satisfy equation (3.55) (as the time
derivative vanishes). The action of the Lagrange multiplier term is, in the actual imple-
mentation, implicitly accounted for by an interpolation step.

The main issue of this method is in the computation of the projected force. In many
cases, the method to calculate the tangent vector has to be changed before and after the
saddle points are crossed due to numerical stability requirements [45]. This procedure
lowers the accuracy of the entire method. However, the unfavourable projection step can
be eliminated by using another model as proposed in the simplified and improved string
method [31]. This method is not only simpler but also more stable and more accurate
than the original method. Instead of the approach in equation (3.57), the new method
uses

ϕ̇ = −∇V (ϕ) + λ̄(α, t)τ̂(α, t), (3.58)
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where λ̄(α, t)τ̂(α, t) again is a Lagrange multiplier term used to enforce a particular
parametrisation. This equation is equivalent to equation (3.57) by identifying λ̄(α, t) =
λ(α, t) + (∇V, τ̂), but better suited for the numerical implementation.

The string is discretised by a number of images {ϕi(t), i = 0, 1, · · · , N} where each
image is evolved by iteration over the following two-step procedure:

1. The discrete images on the string are evolved over some time interval ∆t according
to the full potential force:

ϕ̇i = −∇V (ϕi). (3.59)

2. The images are redistributed along the string using interpolation/re-
parametrisation.

In the first step, the images are integrated in time according to equation (3.59) using
an ODE solver. For this application, the adaptive Runge-Kutta methods discussed above
are very efficient. In the second step, the string is re-parametrised by redistributing the
images along the string according to a given parametrisation method.

The standard choice is enforcing parametrisation by equal arc length. In this case,
given the images {ϕ∗i } on a non-uniform mesh {α∗i }, we interpolate these values onto a
uniform mesh with the same number of images. This re-parametrisation is performed
by:

(a) Calculation of the arc length of the current images:

s0 = 0, si = si−1 + ‖ϕ∗i − ϕ∗i−1‖, i = 1, 2, · · · , N, (3.60)

where the mesh {α∗i } is obtained by normalization of {si}:

α∗i =
si
sN
. (3.61)

(b) The new images {ϕi} are obtained by interpolation of the old images {ϕ∗i } onto
the uniform grid points αi = i/N .

After obtaining these re-parametrised images, we restart with step one and iterate until
convergence.

Another choice of the parametrisation is using energy-weighted arc length. This ap-
proach gives finer resolution around saddle points and thus a better estimate of the
energy barrier. In the re-parametrisation procedure, we calculate the energy-weighted
arc length corresponding to the current images with

sw0 = 0, swi = swi−1 +Wi−(1/2)‖ϕ∗i − ϕ∗i−1‖, i = 1, 2, · · · , N, (3.62)

with Wi−(1/2) = W (Vi+1/2), where W (z) is some positive, increasing function of z ∈ Z
and Vi+1/2 being the average of the potential energy at ϕ∗i−1 and ϕ∗i . The non-uniform

mesh {α∗i } is again obtained by normalizing α∗i =
swi
swN

and the new images ϕi on αi = i/N

are obtained by interpolation.
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3.4.1 String Method applied to Micromagnetics

We consider the micromagnetic models introduced in chapter 2 and want to apply the
string method within this framework. The objective is to find an expression for the
potential force of equations (3.57) or (3.58). In general, the potential force is a gradient
field of the potential energy and the negative gradient points in the direction of the
steepest decent on the energy landscape. Applied onto micromagnetics, the energy
potential is given by the free energy H.

Its potential force F is given by the negative variational derivative with respect to the
magnetisation direction m. Accounting for the conservation of the magnetisation, only
the component perpendicular to the magnetisation is considered in F and we write

F (m) = −
( δH
δm

)
⊥
. (3.63)

This expression can be rewritten as

F (m) = −
( δH
δm

)
⊥

= −

[
δH
δm
−
( δH
δm

)
‖

]
= −

(
m ·m

) δH
δm

+
(
m · δH

δm

)
·m

= m×
(
m× δH

δm

)
= −m×

(
m× µ0µsHeff

)
,

(3.64)

where we used the identity A × (B × C) = (A · C) · B − (A · B) · C between the third
and the fourth step and the identification H i

eff = − 1
µ0µs

∂H
∂mi

with |m| = 1 as in equation

(2.12). This expression is now used for the simplified string method and, according to
equation (3.59), the dynamics of the images are given by

ṁ = F (m). (3.65)

As a remark, an additional pre-factor for F in equation (3.65) does only change the
arbitrary time scale. In the string method this timescale has no physical meaning and
thus we chose to adapt the pre-factor to equal the second them of the LLG in order to
get a better ’feeling’ for the time parametrisation.
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4 Implementation

Up to this point, we have introduced both the atomistic spin model and the micromag-
netic model and discussed the respective discrete numerical methods necessary for their
computation. In this chapter we discuss several aspects of the actual implementation of
the simulation software, which we will refer to as pth-mag. In the first section, we discuss
several decisions regarding the design of the software. Following, we perform simulations
for the well-known µMAG standard problem # 4. This problem considers dynamic as-
pects of micromagnetism and is highly sensitive to the interplay of the demagnetisation
field and the exchange field. The presented results obtained with pth-mag show high
agreement with reference simulations performed with magnum.fd. In the third section,
we discuss several aspects of the embedded Runge-Kutta methods.

4.1 Software Design

Considering the equations describing the atomistic model and the micromagnetic model
on a discrete gird, most of the calculation steps can be performed in parallel. When we
consider the calculation of the uniaxial-anisotropy field in equation (2.16), for example,
the numerical calculation for each simulation cell is straightforward. For an increasing
number of cells, the operations performed on each cells has the same structure. In the
field of parallel computing, this is referred to as singe instruction, multiple data (SIMD).
For a large number of cells or nodes, this results in large blocks of data to be processed
at once, which gives rise to the usage of graphical processing units (GPUs).

A common application programming interface (API) for parallel computing is the
platform CUDA® (Compute Unified Device Architecture) created by Nvidia® [47]. It
is a platform for general-purpose computing on GPUs (GPGPU) and allows for high per-
formance computing on CUDA-enabled GPUs giving direct access to the GPU’s virtual
instruction set, parallel computation elements and compute kernels. CUDA supports
the programming framework OpenCL and the interface of the platform is designed to
work with the programming languages C,C++ and Fortran.

For the implementation of the simulation software, we decided to use the open-source
high-level general-purpose software library ArrayFire [48] in version 3.5 at the time of
writing. ArrayFire is a C/C++ library targeting parallel and massively-parallel archi-
tectures including central processing units (CPUs) and GPUs. Main benefits of this
library are:

(a) Cross platform compatibility: ArrayFire provides a high-level of abstraction al-
lowing the same code to be executed with CUDA, OpenCL and native CPU.
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(b) Multilingual support: Although written in C/C++, the library provides wrap-
pers for the programming languages Python, Rust, .NET, Java, R, Go, Node.js,
Javascript, Lua, and Fortran.

(c) Open Source and distributed and maintained on GitHub: By going open-source
the library receives contributions by the community accelerating the development
and maintenance.

Although optimized for GPU computing, ArrayFire and – thus pth-mag – is compat-
ible with CUDA, OpenCL and CPU which allows for hardware neutrality. Therefore,
pth-mag is executable on CUDA-capable NVIDIA GPUs, OpenCL devices such as AMD
GPUs/APUs (i.e. Accelerated Processing Units) and Intel Xenon Phi co-processors.

In order to decide for the actual programming language used in the implementation,
two main aspects are considered. First of all, high performance is a key requirement
needed for the ability to simulate large systems and minimize computation time. This
would suggest a fully pre-compiled code like C++. However, higher flexibility for the
adaption of simulation parameters and configurations as well as and extensions of the
functionality would advocate a high-level programming language like Python.

For a benchmark, we timed two computational expensive operations needed in the
micromagnetic simulation: 3D-FFTs and 3D convolutions with small kernel sizes. The
3D-FFT is used twice in the fast convolution algorithm and represents an important
operation for the calculation of the demagnetisation field. The ArrayFire implementa-
tion of the FFT uses a Cooley-Tukey scheme in a divide-and-conquer approach. The
convolutions with kernel sizes of (3 × 3 × 3) elements allow for an efficient calculation
of the field contributions of the exchange and DM interactions in both the atomistic
and the micromagnetic code and therefore represent another important operation in the
implementation.

We performed both these operations on cubic data arrays once using the C++ Array-
Fire version and once the ArrayFire-Python wrapping and measured the computation
time. The used hardware is a Nvidia® Tesla® K20m GPU and an Intel® Xeon® E5-
2630 0 CPU. Starting with two elements per dimension, the number of elements in each
dimension (denoted by n) was increased up to 100 elements. For each n, one hundred
operations are timed and the average time is plotted over n in Figures 4.1a and 4.2a.
For a better comparison between the C++ and the Python version, the quotient of those
timings is given in Figures 4.1b and 4.2b. The timings show that for smaller systems,
the C++ version performs considerably better whereas for larger systems both versions
achieve the same calculation time and the overhead of the Python wrapping is negligible.
However, in many simulations scenarios, magnetic films with few simulation elements
in one direction are investigated. In these applications, the C++ version is assumed to
perform significantly better.

Following these considerations, we decided to implement the time-critical components
of the code in C++ and provide an additional Python wrapper to allow for more flex-
ibility and a user-friendly interface. Furthermore, with this self-made wrapping, new
functionalities can be added easily to the existing code with full access to the functions
provided by the ArrayFire-Python wrapping.
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(a) Average time per 3D-FFT plotted over the number of elements per direction n.
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(b) Ratio of the C++ and Python timings plotted over the number of elements per direction
for a better comparison.

Figure 4.1: Timings of 3D-FFT operations of the C++ and Python versions.
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(a) Average time per 3D-convolution plotted over the number of elements per direction n.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  10  20  30  40  50  60  70  80  90  100

 

n

C++/Py
1

(b) Ratio of the C++ and Python timings plotted over the number of elements per direction
for a better comparison.

Figure 4.2: Timings of 3D-convolution operations of the C++ and Python versions.
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4.2 The µMAG Standard Problem 4

In order to validate the software, we simulate the Standard Problem number 4 (SP4)
proposed by the Micromagnetic Modelling Activity Group (µMAG) [49]. This problem
focuses on dynamic aspects of micromagnetic computations. The specifications of the
problem statement are as follows:

We consider a thin magnetic film in an initial ’S-state’ in equilibrium. An S-state
is a magnetisation configuration such as obtained by applying a saturating field along
the (1, 1, 1) direction and then reducing the external field to zero. In this equilibrium
state, the magnetisation direction is S-shaped, giving this configuration its name. In
the following, external fields of a given direction and magnitude are applied and the
time evolution of the system is investigated as it moves towards equilibrium in the new
circumstances.

The magnetic probe is of dimensions lx = 500 nm, ly = 125 nm and lz = 3 nm and
has material parameters similar to permalloy:

A = 1.3× 10−11 J/m

Ms = 8.0× 105 A/m

K = 0 J/m3

(4.1)

Further parameters are

γ = 2.211× 105 m

As
α = 0.02

(4.2)

The applied field is of strength µ0Happ = 25 mT and is directed at 170°counter-
clockwise from the positive x-axis. At time t = 0 the field is applied instantaneously on
the initial S-state. A meaningful description of the resulting dynamics is obtained by
plotting the components of the spatially averaged magnetisation of the sample over the
time.

Figure 4.3 shows the initial state of the simulation. The arrows indicate the direction
of the magnetisation and the colour scale gives the magnitude of the y-component of m.
In the implementation, this state is obtained by relaxing a homogeneous magnetisation
in (1,1,1)-direction until equilibrium.

In Figure 4.4, the respective spatially averaged magnetisation directions are plotted as
a function of time. The results of pth-mag are compared to a simulation performed with
the well established program magnum.fd [50] and show very good agreement. Figure 4.5
compares the 〈my〉 component of both simulations for a better visualization.
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Figure 4.3: Initial magnetisation of the SP4 in equilibrium forming an S-state. The
arrows indicate the magnetisation direction, the colour the magnitude of
my.
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Figure 4.4: Spatially averaged magnetisations of the SP4 over time calculated by pth-
mag and compared to magnum.fd.
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Figure 4.5: The 〈my〉 component of the spatially averaged magnetisation direction of
the SP4 as a function of time calculated by pth-mag and compared to mag-
num.fd.
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4.3 Comparison of Adaptive Runge-Kutta Methods

All Runge-Kutta methods discussed in chapter 3 are implemented in the code. We
apply the different methods in the calculation of the SP4 and compare them in terms of
accuracy and computational cost. The methods with fixed step size are not considered in
the following as they are clearly outperformed by the embedded Runge-Kutta methods
using adaptive step-size control.

We investigate the number of right-hand-side evaluations performed to simulate one
nano second by each method for a given value of atol. Figure 4.6 shows the number
of RHS evaluations as a function of atol for each method. As we already mentioned in
chapter 3, the FSAL properties of the methods BS23, DP45, BS45 and BS45de cannot
be exploited in this application as the magnetisation is re-normalized after every time
step in order to enforce the norm preservation of the LLG, leading to one more function
evaluation per time step. For lower accuracy requirements, the lower-order method
(BS23) uses comparably few evaluations, as might be expected. For all methods, going
from high atol values to lower ones, the number of RHS evaluations remains rather
constant at the beginning up to some individual point, from where on the number of
function evaluation increases exponentially (i.e. linearly for a logarithmic scale as in
Figure 4.6). The slope of the graphs depends on the order of the method and is of the
same magnitude for all fifth-order methods, highest for the third order method BS23,
lowest for the eight order DP78 . The values of atol where the exponential increase
starts are approximately atol ≈ 10−4 for BS23, atol ≈ 10−5 for RK45, atol ≈ 10−7

for the remaining order 5 methods and atol ≈ 10−8 for DP78. Remarkable is the low
number of RHS-evaluations of the RKF45 method up to atol ≈ 10−6. The evaluations
of the DP78 method even decreases between atol = 10−5 and atol ≈ 10−8 and for values
of atol ≈ 10−9 and below, this method needs the least function evaluations.

In order to get an estimate for the accuracy obtained depending on the chosen toler-
ance atol of equation (3.49), we compared the value of the averaged magnetisation in
x-direction at 1 ns of simulation time between the several methods. The value of rtol is
set to atol, as suggested in [32]. As a reference vref, we choose the value of 〈mx(t = 1ns)〉
obtained by the DP78 method with atol set to 10−11 and express the deviation vdev of a
value v in terms of the absolute relative error

vdev =
∣∣∣v − vref

vref

∣∣∣ (4.3)

Figure 4.7 shows vdev of 〈mx(t = 1ns)〉 for each method as a function of atol. The
different Runge-Kutta methods are abbreviated as in chapter 3. Additionally, we con-
sider the Bogacki-Shampine 5(4) method once with single error estimation (BS45) and
once with double error estimation (BS45de). For the high value of atol = 0.1, most
of the methods do not converge to the expected result as seen in the high discrepancy
of the values. For atol = 0.001, all methods give already results with a relative error
smaller than 1 ∗ 10−5 in magnitude. From atol = 10−5 up to atol = 10−11, the different
methods are very close together. When we consider the DP78 results, decreasing the
error tolerance atol yields values slightly closer to the reference value. For the other
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Figure 4.6: Number of right-hand-side evaluations of each Runge-Kutta method for sim-
ulating the SP4 for 1ns as a function of atol plotted on a logarithmic scale.

methods, no clear tendencies are observed. These results suggest that, at least at some
point, the various methods all perform similarly for a tolerance up to 10−5. However, we
emphasize that these results are only meant to indicate the behaviour of the respective
RK methods and are in no way a rigorous accuracy estimation.

Considering the low number of function evaluations we decide to set the RKF45
method with atol = 10−6 as a default for further calculations due to its performance
while supposedly maintaining reasonable accuracy.

54



 1e-09

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1e-12  1e-10  1e-08  1e-06  0.0001  0.01  1

a
b

s(
re

le
rr

)

atol

BS23
RKF45
CK45
DP45
BS45

BS45de
DP78
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5 Skyrmion Annihilation Energy
Barriers

In this chapter we investigate the formation and annihilation of magnetic skyrmions
using pth-mag. We use both the atomistic and the micromagnetic model with all
four interaction types as introduced in chapter 2. Namely, these are exchange, dipole-
dipole/demagnetisation, uniaxial-anisotropy and antisymmetric exchange(DMI). Even
though the two models are similar in many aspects, we point out the limitations of the
micromagnetic model to describe atomic-scale processes.

By implementing the string method (described in section 3.4) and combining it with
the models and numerical techniques described in chapters 2 and 3, we provide a tool to
compute the minimum-energy-path (MEP) between two arbitrary magnetic configura-
tions. In the following, we apply this method for the calculation of skyrmion annihilation
energy barriers. Such a barrier determines the energy needed in order to erase a skyrmion
and is correlated to the stability of this magnetic configuration. Systems featuring a high
magnitude of the energy barrier are more stable compared to configurations with a lower
barrier. When discussed in the scope of future storage devices, this barrier is the energy
which thermal fluctuations or other excitations need to provide in order switch one equi-
librium state into another (i.e. ’flipping a bit’). Therefore, this energy barrier can be
used to estimate the average time the system remains in a specific state which provides
the time scale over which it is possible to store information without corruption [4].

5.1 Energy Barrier Calculation

In the following, we demonstrate the application of the string method onto the atomistic
model and how we obtain the energy barrier within this calculation. As a starting point
for applying the string method, we define two magnetic configurations A and B which
are in equilibrium and represent local minima on the energy landscape. These points are
initial images A and B of the string method (c.f. section 3.4). In this context, an image
describes a certain magnetisation configuration. The approach of the string method
now is to define a curve in configuration space connecting these two images. In the
numerical computation, the curve is split into a discrete amount of configurations which
are located with a specific distance along the curve. In the implementation, we define
the number of images and calculate the initial curve by interpolation of the two input
images. Optionally, further images can be used as additional configurations located at
the curve between A and B.

The dynamics of the string are such that each image heads in the direction of the
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steepest descent on the energy landscape. In the case of the atomistic and the micro-
magnetic model, these dynamics are given by equation (3.65). The dynamical process is
divided into discrete time steps and after each time step, the string is re-parametrised
in order to sustain the desired spacings between the images. Speaking figuratively, one
could imagine marbles placed in a line across a hill. At the beginning, the marbles are
equally distanced (note that the distancing is not necessarily equal, however) . When
released, the marbles on the left side roll off to the left and the marbles on the right
side head to the right. The re-parametrisation could be thought of drawing a line be-
tween the marbles, picking them up and placing them on the drawn line according to
specified distances. In the algorithm, this re-parametrisation is performed by an inter-
polation routine. The string method now repeats the two steps of (1.) evolving the
string for a certain time and (2.) and re-parametrising the string to match some given
parametrisation, until the curve approaches the MEP and reaches convergence.

For the calculation of the energy barrier we identify the skyrmion with image A
and specify the second configuration to be a homogeneous magnetisation pointing in
positive z-direction, identified with image B. The initial string is then obtained by
linear interpolation between these two configurations. For the interpolation, we choose
parametrisation according to equal arc-length (c.f. equation (3.60)).

We obtain the initial skyrmion configuration by time-evolving a circular magnetic
configuration until it reaches equilibrium. Depending on the interactions we enable in
the system and on the choice of the respective interaction strengths, such a circular
magnetic configuration can relax into a skyrmionic state.

In the following, we discuss a exemplary atomistic simulation in order to present the
evaluation procedure to determine an energy barrier. The parameters used in this sim-
ulation are given in Table 5.1. We note that the cell size of 1nm does not represent a
physical lattice size but is used for an internal comparison with other calculations. Sim-
ulations with a set of parameters featuring atomistic distances are presented in section
5.2.

We consider a circular magnetisation in an atomistic description with parameters
as given in Table 5.1 subject to exchange, uniaxial-anisotropy and DM interactions.
The magnetic moments within the circle of diameter lx/2 point in negative z-direction
whereas the remaining moments point in positive z-direction. This configuration is
shown in Figure 5.1a. By time-evolving this configuration until it reaches equilibrium,
we obtain the magnetic skyrmion shown in Figure 5.1b. The magnetisation direction
vectors for this type of skyrmions form a hedgehog-like structure and thus these field con-
figurations are denoted as hedgehog skyrmions. There exist other skyrmion shapes such
as bubble skyrmions or chiral skyrmions [51]. However, the hedgehog type is favoured by
interfacial DMI and we only observe this skyrmion type in the following simulations. In
Figure 5.2 we compare the geometry of this hedgehog skyrmion with calculations of De-
splat et al. and a micromagnetic simulation performed with magnum.fe and notice good
agreement with those results. This skyrmionic configuration is used as the initial state
A for the string method. As mentioned above, state B is chosen to be a homogeneous
magnetisation pointing in positive z-direction and the string is obtained by interpolation
using equal arc-length parametrisation.
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Quantity Variable Value Unit
x-length lx 29 nm
y-length ly 29 nm
z-length lz 1 nm
Cell size a 1 nm
Atomic magnetic moment µs 1.1× 10−21 J/T
Exchange energy J 3.2× 10−20 J
Anisotropy energy k 6.4× 10−21 J
DMI energy d 1.152× 10−20 J
Anisotropy direction eani (0,0,1)
DMI direction eDM (0,0,-1)
Number of images Image ID 60
Time step dt 10−13 s
Termination limit lterm 10−8

Table 5.1: Exemplary set of simulation parameters used to present the evaluation pro-
cedure of the energy barrier calculation and for internal comparison.

For each string we associate an energy curve which determines the energy barrier we
have to overcome in order to change the magnetisation configuration according to this
string. As we can choose the energy scale arbitrarily, we set the energy of the first image
(Image ID=0) to zero. As a result, the maximum of the energy curve represents the
energy barrier for the annihilation of the skyrmion.

In the discrete case, we have a fixed number of images representing the string. Each
image has a corresponding energy as given by the Hamiltonian (c.f. equation (2.1)) of
the system. For every step of the string method, we evolve each image for a certain
time step dt, re-parametrise the string and calculate the according energy curve until we
reach convergence. As a measure of convergence mconv, we consider the absolute value
of the relative difference of the energy barrier between two consecutive steps. Denoting
the energy barriers of the current step i and the previous step i − 1 with Ei and Ei−1,
we write the convergence measure as

mconv =

∣∣∣∣∣ Ei − Ei−1

1
2
(Ei + Ei−1)

∣∣∣∣∣. (5.1)

If this value drops below a defined limit lterm, we terminate the calculation.
For a time step of 10−13 s per iteration and a limit of lterm = 10−8, the termination

criterion was reached after 1462 iterations. The obtained energy curve of the string is
shown in Figure 5.3. By setting the energy of the first image to zero, the value of the
maximum determines the magnitude of the energy barrier. A selection of four images
shows the respective magnetisation configurations at certain energies and indicates the
annihilation of the skyrmion. The third configuration corresponds to the highest energy
and depicts a point singularity. Such a singularity is also referred to as a Bloch point [21].
This magnetic field configuration is of special interest in the calculation of the energy
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(a) Initial magnetic configuration. The magnetic moments inside the cir-
cle point in negative z-direction whereas the outer moments point in
positive z-direction.

(b) Resulting skyrmionic configuration obtained by evolving (a) until equi-
librium.

Figure 5.1: Initial magnetic configuration (a) in order to obtain the magnetic skyrmion
in (b). The set of parameters defining the interaction strengths is given in
Table 5.1. The initial configuration evolved in time until equilibrium results
in the skyrmionic configuration.
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Figure 5.2: mz component of the relaxed initial skyrmion (c.f. Figure 5.1b) plotted over
the x-axis compared to an atomistic calculation of Desplat et al. and a
micromagnetic calculation performed with magnum.fe.

barrier as it features the highest energy and therefore determines the magnitude of the
energy barrier. For this set of parameters the resulting energy barrier has a magnitude
of

4.421× 10−20J.

This value is in good agreement with atomistic calculations performed by Desplat et al. 1

which yield a value of 4.416×10−20J. Figure 5.4 shows the energy curves for each iteration
step and displays the convergence of the individual curves against the result. The initial
barrier (black line in Figure 5.4 corresponding to iteration 0) is around ∼ 2.7 × 10−19J
and decreases rapidly in the further iterations. The corresponding energy barrier for
each respective curve is plotted in Figure 5.3 and shows at first a rapid decrease followed
by minor changes until convergence. After 30 iterations, for example, the value of the
energy barrier differs from the final result by ∼ 2.2% and after 100 iterations ∼ 0.6%
are obtained.

A convenient choice for the time step dt is crucial for an efficient calculation. Too
small values result in unnecessary computational effort due to the interpolation steps
whereas too large time steps interfere with the convergence of the method. Considering
the energy barrier per iteration (c.f. Figure 5.3) we observe kinks of the graph when the
time step is chosen too large. Observing this graph for each simulation, we can adapt
the time step accordingly.

1Internal communication with Louise Desplat
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Figure 5.3: Converged energy curve of the string plotted over the image positions. Each
image represents a magnetisation configuration along the string with an as-
sociated energy. Four selected configurations are depicted above and indicate
their respective position on the curve by arrows. The energy barrier for the
skyrmion annihilation is given by the difference of the highest energy value
and the initial image energy (which is, by convention, set to zero).
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Figure 5.4: Energy curve of the string given for each iteration.
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Figure 5.5: Magnitude of the energy barrier as a function of the iteration.
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5.2 Atomistic Simulations

In the previous section we presented the application of the string method onto the
magnetic models and discussed the calculation of the energy barrier presenting results
obtained with a set of exemplary model parameters. In the following, we consider an
atomic spin system modelled with the parameters given in Table 5.2. We assume a
cell size of a = 0.2715 nm, which is the elementary magnet cell size for a monolayer
of Fe on Ir(1,1,1) [10] and consider all four interactions which are exchange, dipole-
dipole, uniaxial-anisotropy and antisymmetric exchange. This system represents a mag-
netic thin-layer with dimensions 30.1365 nm × 30.1365 nm × 1.086 nm and we consider
112 × 112 × 4 simulation cells. Figure 5.6a shows the initial skyrmionic configuration
representing the first image of the string method. The resulting energy curve is shown
in Figure 5.6b and yields an energy barrier of 1.891 × 10−19 J. The energy curves per
each iteration are given in Figure 5.7a and show the convergence of the curves towards
the final energy curve. The according energy barrier for each step are given in Figure
5.7b and are used to monitor the choice of the time steps of the string method.

Quantity Variable Value Unit
x-length lx 30.408 nm
y-length ly 30.408 nm
z-length lz 1.086 nm
Cell size a 0.2715 nm
Atomic magnetic moment µs 2.2014× 10−23 J/T
Exchange energy J 3.2× 10−20 J
Anisotropy energy k 6.4× 10−21 J
DMI energy d 1.152× 10−20 J
Anisotropy direction eani (0,0,1)
DMI direction eDM (0,0,-1)
Number of images Image ID 60
Time step dt 5× 10−13 s
Termination limit lterm 1× 10−6

Table 5.2: Model parameters for an atomistic simulation.
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(a) Initial skyrmionic configuration obtained with the parameters
given in Table 5.2. The transparent arrows indicate the mag-
netisation direction, the colour the magnitude of mz.
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(b) Energy curve of the converged string yielding a barrier of 1.891× 10−19 J.

Figure 5.6: Initial skyrmion image (a) and converged energy curve (b). The correspond-
ing energy of the magnetic configuration (a) is set to zero.

64



-2.0e-19

-1.0e-19

0.0e+00

1.0e-19

2.0e-19

3.0e-19

4.0e-19

5.0e-19

6.0e-19

7.0e-19

 0  10  20  30  40  50  60

E
 [

J]

Image ID

E

 0

 20

 40

 60

 80

 100

 120

It
e
ra

ti
o
n

(a) Energy curve of the string, plotted for each iteration.
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(b) Energy barrier as a function of the iteration.

Figure 5.7: Energy curves (a) and energy barrier (b) of the string for each iteration.
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5.3 Limitations of the Micromagnetic Model

In the previous section, we presented the results of the energy barrier calculation for a
magnetic thin-film with parameters according to Table 5.2 yielding a skyrmion annihila-
tion energy of 1.891×10−19 J. In the following, we compare this result to micromagnetic
simulations and calculate the according micromagnetic interaction energies by the rela-
tions given in Table 2.1. A requirement for the validity of the continuum assumption is
that the results converge against a solution when the discretizaiton is decreased and, in
the limit, the approximation should converge against the true solution.

In the following simulation, however, we show that the micromagnetic model is not
capable of describing skyrmion destruction mechanisms (if they are not mediated by a
boundary), even though the similar formulation of micromagnetics and the atomistic
model would suggest otherwise. Under a continuum description of the magnetisation
field, as is assumed in micromagnetism, skyrmion destruction mechanism not mediated
by a boundary are forbidden due to the topological protection of the skyrmion and
estimates of the energy barriers will depend on the numerical discretization [4].

Figure 5.8 shows the energy barriers calculated with the atomistic code (green, fixed
cell size) and the micromagnetic code (red) as a function of the cell size. When we com-
pare the atomistic simulation to the micromagnetic simulation with the corresponding
cell size (i.e. a = 0.2715nm), we encounter a significant difference in the magnitude of
the energy barrier and the values differ by a factor of ∼ 2.2. This discrepancy is notable
considering the closely related models. Furthermore, the energy barrier calculated by
the micromagnetic code diverges for smaller cell sizes. This indicates that the model’s
continuum assumption is no longer valid and that the model is not capable of describing
such skyrmion annihilation processes.
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micromagnetic simulations are obtained using the relations of Table 2.1.
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5.4 Phase Diagram

Based on the atomistic simulation with the parameters given in Table 5.2, we perform
a variation of the interaction energies for both the DM interaction and the uniaxial-
anisotropy. The resulting energy barriers for these simulations are shown in the phase
diagram of Figure 5.9. A selection of five initial skyrmionic configurations is displayed
and indicates their corresponding position on the phase diagram by arrows. Figure 5.10
shows three initial configurations for various values of d and the corresponding energy
curves per iteration. The magnetisation direction is indicated by transparent arrows.

The colour coding in Figure 5.9 represents the energy barrier found for the respective
set of parameters. When we perform a variation of the parameters k and d, we en-
counter two opposing trends: The higher the uniaxial-anisotropy constant k, the more
energetically favourable are spins directed in parallel or antiparallel to the uniaxial vec-
tor, which is – in our case – out-of-plane. On the other hand, the DM interaction prefers
spins to tilt with respect to each other. Therefore higher values of d favour the creation
of domain-walls and thus skyrmions.

The black area in Figure 5.9 corresponds to vanishing energy barriers which indicate
that no stable skyrmionic configuration is obtained for this choice of parameters. In this
case, the high anisotropy prevents the formation of a skyrmion and the initial image is
a homogeneous configuration. This results in an energy barrier of zero.

For increasing values of the DM interaction constant d, we observe the formation of
skyrmions in the initial image and encounter an annihilation via a Bloch point. When
going from small values of d to higher values, these skyrmion formations start earlier for
smaller values of k due to the two opposing effects discussed above. We identify straight
lines of equal energies in the phase diagram indicating a linear relation.

Simulations performed with very high values of d and comparable low values of k –
which lie within the dashed rectangle in the phase diagram – do not describe skyrmion
annihilations. For these parameters, the initial homogeneous configuration used for
point B in the string method is no longer a local energetic minimum and evolves to a
skyrmionic configuration itself. From this it follows that the energy barrier for these
simulations does no longer refer to the annihilation of a skyrmion via a Bloch point but
yields the barrier between two skyrmionic field configurations. Therefore, these energy-
barrier values cannot be directly compared to the other values of the phase diagram
which do represent skyrmion annihilations.
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Figure 5.9: Phase diagram showing the magnitude of the energy barrier as a function
of the atomistic parameters k and d. The simulation parameters are given
in Table 5.2. Five selected magnetisation configurations corresponding to
the first string image are displayed and indicate their position in the phase
diagram. Values within in dashed rectangle do not refer to skyrmion anni-
hilations.
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(a) Initial image for d = 1.0615e× 1021 and
k = 9.6062× 1023.
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(b) Energy curves corresponding to image (a)
for each iteration yielding a barrier of
2.0633× 10−20 J.

(c) Initial image for d = 1.4860× 1021 and
k = 9.6062× 1023.
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(d) Energy curves corresponding to image (c)
for each iteration yielding a barrier of
2.2297× 10−19 J.

(e) Initial image for d = 1.9106× 1021 and
k = 9.6062× 1023.
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(f) Energy curves corresponding to image (e)
for each iteration yielding a barrier of
6.9805× 10−19 J.

Figure 5.10: Several initial skyrmion configurations and the corresponding energy curves
as function of the image ID for each iteration.
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6 Conclusion

In this thesis we present the GPU-accelerated simulation software pth-mag which is de-
veloped for the simulation of spin dynamics. The current modules include an atomistic
solver and a micromagnetic solver for the Landau–Lifshitz–Gilbert equation considering
dipole-dipole/demagnetisation, exchange, anisotropy and Dzyaloshinskii-Moriya interac-
tions. The mathematical models are introduced in chapter 2 and the discrete numerical
methods in order to solve for these models are presented in chapter 3. We discuss
finite difference methods for the numerical solution of differential equations, discrete
convolutions for the calculation of the local interaction terms, fast convolutions using
Fourier-methods for an efficient calculation of global interactions and embedded Runge-
Kutta methods with adaptive step-size control for explicit time integration. We point out
several software design considerations in chapter 4 and present simulations of the well-
known µMAG standard problem #4 which are in perfect agreement with simulations
obtained by the software magnum.fd. Moreover, an implementation of the string method
is provided in the software package to allow for the calculation of minimum-energy-paths
between two arbitrary magnetic configurations (c.f. section 3.4). In chapter 5 we use this
routine in the calculation of energy barriers of magnetic skyrmion annihilations medi-
ated by a Bloch point and find good agreement with reference calculations. We show the
inapplicability of the micromagnetic model for these annihilation processes and present
several calculations of energy barriers for various magnetic parameters.
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