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Abstract

In recent years, the low-dimensional representation of high-dimensional signals has
been recognized as an essential concept in modern signal processing. An important
family of problems is subsumed under the term compressed sensing (CS). CS copes
with the reconstruction or estimation of a high-dimensional vector from a (noisy)
underdetermined system of linear equations, assuming that the measured vector has
only a relatively low number of nonzero components. Under mild conditions on the di-
mensions and the structure of the system matrix (measurement matrix), reconstruction
or robust estimation is feasible. Approximate message passing (AMP), an approximate
and highly simplified version of loopy belief propagation, has proven to cope efficiently
with high-dimensional sparse problems. Its Bayesian version, Bayesian approximate
message passing (BAMP), which is an approximate minimum mean squared error
(MMSE) estimator, is a versatile algorithm that can incorporate prior knowledge about
the measured vector in the form of a prior probability density function (pdf) of its
components. When there is a set of measured vectors which are somehow dependent,
e.g., jointly sparse (i.e., their sets of nonzero components are identical), joint recovery
proves advantageous. More specifically, when a multivariate prior pdf for the vector
components of the jointly measured vectors is available, BAMP can be extended to its
vector version, the vector Bayesian approximate message passing (V-BAMP). V-BAMP
is an approximate MMSE estimator for the whole set of jointly measured vectors, and
its analysis can be derived from the scalar BAMP. Specifically, the state evolution (SE)
equations provide an analytical prediction for the residual mean squared error (MSE)
of the vector estimates. Understanding the dynamics of SE in terms of fixed points as
a function of the signal prior, the noise parameters, and the sampling rate is of crucial
importance because it uncovers the expected behavior of V-BAMP.
In this work we investigate the V-BAMP algorithm. In particular, both the increasing
number of jointly sparse measured vectors, as well as correlation between the nonzero
signal components and the noise components are explored. The SE equations are
extended to the multivariate case and extensive simulations show the effect of the
number of measurement vectors and the effect of having correlation on the recovery.
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We show that (i) arbitrary signal and noise correlations can be eliminated in the joint
measurement case using a linear transform; (ii) V-BAMP is equivariant with respect to
linear transformations; and (iii) for the widely employed multivariate Bernoulli-Gauss
(BG) signal prior the uncorrelatedness of the signal and of the noise are preserved
through the V-BAMP iterations. It follows that the decorrelation transform has to be
done only once before starting V-BAMP, and neither the convergence nor the MSE
performance are affected. Furthermore, the analysis of V-BAMP with BG signals is
reduced to the case with diagonal signal and noise covariance structure. Recently,
based on the analogy between the statistical physics of large disordered systems and
loopy belief propagation, the replica method was used to approximate the MMSE of
the Bayesian estimator of the CS measurement, for BG signal prior with standard
Gaussian nonzero signal components and isotropic uncorrelated Gaussian noise. In
this work, the replica analysis is extended to the case with arbitrary (anisotropic)
uncorrelated Gaussian noise. Together with the joint decorrelation transform and
the equivariance property of V-BAMP, the replica analysis turns out to predict the
dynamics of V-BAMP for BG signals and Gaussian noise, with arbitrary signal and
noise correlations. Simulations confirm the analogy between the SE analysis and the
replica analysis, and demonstrate the effect of measuring multiple signals and that of
signal correlation from many aspects.
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Notation and Definitions

deterministic scalar, column vector, and matrix a, a, A
random scalar, column vector, and matrix a, a, A
nth component of vector an

columns of matrix A = (a1, ..., aN)
(m, n)th entry of a matrix (A)m,n = Am,n

vector and matrix transpose aT , AT

matrix inverse A−1

matrix determinant |A|
N ×N identity matrix IN

M ×N all zeros matrix 0M×N

diagonal matrix with entries on the diagonal
given by vector or ordered list diag(a)

vector of diagonal entries of a matrix diag(A)
outer product of a (column) vector with itself ⟨a⟩ = aaT

vector composed of the identically indexed
components from an ordered set of B vectors a⃗n = (an(1), . . . , an(B))T

vector p-norm (p ≥ 1) ∥a∥p

matrix Frobenius norm ∥A∥F

(ordered) set S
cardinality of a set |S|
set of positive integers up to N [N ] = {1, . . . , N}
vector with components indexed by set aS

matrix with columns indexed by set AS

probability of an event P{·}
expectation of a random quantity E{·}
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variance of a random quantity Var{·}
sample variance of a quantity Var(·)
covariance of a random vector Cov{·}
sample covariance of a vector Cov(·)
discrete uniform distribution U [ ]
(multivariate) normal distribution with
mean µ and (co-)variance Σ N (µ, Σ)
(multivariate) normal distribution function with
mean µ and (co-)variance Σ (evaluated at x) N (x; µ, Σ)

iteration index (e.g., in an algorithm) (·)(t)

convolution of two functions ∗

Sets

• Support (set): for a vector a,

supp(a) = {n : an ̸= 0} .

• For a column vector a of dimension N and set S = {n1, . . . , n|S|} ⊆ [N ],

aS = Fa with F ∈ {0, 1}|S|×N and Fi,ni
= 1 ⇔ ni ∈ S ,

i.e., aS is the vector composed of the components of a whose indices are in S
(preserving the order).

• For a matrix A of dimension M ×N and set S = {n1, . . . , n|S|} ⊆ [N ],

AS = AF with F ∈ {0, 1}|S|×N and Fi,ni
= 1 ⇔ ni ∈ S ,

i.e., AS is the matrix composed of the columns of A whose indices are in S
(preserving the order).

Probabilities

• Discrete uniform distribution: for a finite set S = {s1, . . . , sN}, the discrete
uniform distribution U [s1, . . . , sN ] is defined by the (generalized) probability
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density function

fs(s) =
N∑

n=1

1
N

δ(s− sn) or P{s = sn} = 1
N
∀n .

Functionals

• Dirac delta (generalized) function: in the strict sense the Dirac delta is not a
function, but defined by the integral

f(a) =
∫

R(f)
f(x)δ(x− a)dx

over any function f : R(f)→ I(f) with R(f), I(f) ⊆ R.

• Multivariate Dirac delta (generalized) function: for all functions f : R(f)→ I(f)
with R(f), I(f) ⊆ RN the N -D Dirac delta satisfies

f(a) =
∫

R(f)
f(x)δ(x− a)dx .

Miscellaneous

• Mean squared error (MSE): the MSE between two vectors of dimension N is
defined as

MSE(a, b) = 1
N
∥a − b∥2

2 .

• Decibel notation: quantities x ∈ R in dB units are defined as

x dB = 10 x
10 .





Chapter 1

Introduction

As humanity is ever faster developing and forming its environment to its own advantage,
it seems unavoidable that information technology and digitalization will dominate the
upcoming era [1, 2]. The progress of hardware development [3] resulted in both the
explosion of available processing power and massively available (affordable) hardware
devices. These devices not only surround and aid our everyday lives, but by assigning
to them ever more serious and complicated tasks, ranging from a digital calendar
to controlling a city’s transportation and energy supply system, humans are bound
to them stronger than ever before. It is the task of signal processing scientists to
exploit the potential that arises under these circumstances: the responsible design of
efficient acquisition, storage, and processing methods for the next generation apparatus.

An important paradigm in signal processing is the fact that the captured data
carries redundancy. In particular, it is possible to compress a bundle of data such that
it can be restored in its whole, or, in some cases, the valuable pieces of contained infor-
mation can be retrieved from the compressed data, when necessary. Prime examples
of this phenomenon are image [4] and audio compression [5, 6]. Compressed sensing
(CS) [7–10] relies on the observation that the two-step process of data acquisition or
measurement followed by data compression is suboptimal. More specifically, the data
compression step corrects for the suboptimality of the data acquisition phase which
preserved the unnecessary redundancy.
Based on this consideration, CS aims at replacing this two-step procedure by a single
step, which naturally captures the data in a compressed form. Take the following
historical example: in a large population, say of more than thousand individuals, only
a small fraction possesses a medical condition that renders the individual defective for
some purpose, e.g., military service. By blood test, it is possible to test a person for
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Fig. 1.1 Original highly redundant image and its reconstruction with 2% respectively
5% measurements.

its condition. Testing all individuals one by one is a tedious and expensive process.
However, forming groups of individuals and performing single tests first on the groups
(by mixing fractions of the individuals’ blood samples), one can, with high probability,
discard large healthy fractions of the population before continuing to perform individual
tests within the groups that turn out to contain at least one defective member. When
the portion of defective members is relatively low, e.g., < 30%, this procedure makes
the detection much more efficient than individual testing. This observation by Robert
Dorfman in 1943 [11] laid the foundation of the branch of mathematics called group
testing.
In 2006, Duarte et al. created a proof of concept setup for a real-world CS appli-
cation: the single-pixel camera [12] is capable of acquiring an optical image loaded
with redundancy with far less measurements than the number of pixels would sug-
gest. Typically, in order to obtain the raw data, the number of measurements is
the number of pixels on the camera sensor. After acquiring every pixel value, the
raw image data is compressed in order to obtain a version optimized for storage and
human view experience. With the single pixel camera, the researchers could control
how much information is sequentially acquired through the optics. Figure 1.1 shows
the ideal 256 × 256 image (acquired by performing 65536 = 100% measurements),
and the images obtained after sensing with the single pixel camera with only 2%
respectively 5% measurements (taken from [12]). The original image is very redundant
and, clearly, the carried information is contained after strong compressive measurement.

In this chapter we outline the mathematical foundations of CS, reconstruction
methods, and some generalizations. First, the concept of sparsity is introduced and we
discuss how it arises in a class of redundant signals. Then, conditions for the unique
mapping and robust sampling of sparse signals are discussed. A short overview of
existing recovery methods follows, and the chapter is closed with a short list of possible
generalizations of the classical CS problem.
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1.1 Sparsity and the Linear Inverse Problem

1.1.1 The Linear Inverse Problem

At the very core of applied linear algebra lies the problem of solving the system of
linear equations [13]

y = Ax , (1.1)

where y ∈ RM and A ∈ RM×N are known and A has full column rank. The (cardinality
of the) solution set X̂ = {x̂ |Ax̂ = y} depends on the dimensions M, N :

1. If M > N the system is overdetermined and has no solution: X̂ = ∅.

2. If M = N the system has one unique solution: X̂ = {A−1y}.

3. If M < N the system is underdetermined and has infinitely many solutions:
X̂ = {x̂ |x̂ = AT (AAT )−1y + v , Av = 0}.

If the system is underdetermined, the Moore-Penrose pseudoinverse AT (AAT )−1 and
the associated solution x̂ = AT (AAT )−1y has a special role: it is the solution with
minimum ℓ2-norm. Note that the mapping between x and y is not unique, i.e.,
infinitely many vectors of dimension N result in y. In general, the linear inverse
problem consists of finding the solution of (1.1) when the unknown is subject to some
nonlinear constraint(s).

1.1.2 Sparsity

Consider a signal vector s ∈ RN , which carries redundancy in some sense. To formulate
this in a mathematical way, we assume that the vector has only a few nonzero coefficients
in some orthonormal basis B ∈ RN×N , i.e., its representation coefficient vector

x = Bs

has many zeros.

Definition 1 A vector x is K-sparse if it has at most K nonzero components.

Example: In Figure 1.2 the original cameraman image (of size N = 256×256 pixels) was
transformed using the discrete cosine basis [14]. The smallest 90% of the coefficients (in
magnitude) were discarded (the threshold is represented by the red dashed line), which
resulted in a coefficient vector with sparsity ratio 1 −K/N = 0.9. The compressed
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Fig. 1.2 Original 256× 256 image, its transform coefficients sorted by magnitude, and
a compressed image restored from 10% of the coefficients.

image after inverse transformation can be seen on the right. Clearly, there is visible
quality loss, but the main content and most details of the image are preserved. Thus,
the image is compressible and can be represented by a sparse vector.
Another useful way to capture sparsity is the ℓ0-seminorm

∥x∥0 = lim
p→0

(
N∑

n=1
|xn|p

)1/p

= |supp(x)| ,

which counts the number of components in x that are nonzero. Then, the fact that a
vector x is K-sparse can be compactly written as ∥x∥0 ≤ K.

1.1.3 Unique Mapping of Sparse Vectors

If x ∈ RN is sparse, then under certain constraints the measurement (mapping)

y = Ax

with A ∈ RM×N is unique even if the system is underdetermined, i.e., if M < N . A
simple condition on the measurement matrix can be easily shown: in order to map
each pair of distinct K-sparse vectors x1 and x2 to different measurements y1 ̸= y2,
one needs A(x2 − x1) ̸= 0. This is guaranteed if every set of 2K columns in A is
linearly independent.

Definition 2 The spark of a matrix A is the smallest number n such that there exist
n columns in A that are linearly dependent.

Corollary 1 If spark(A) > 2K, the mapping y = Ax is unique for all vectors x with
∥x∥0 ≤ K [15].
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Definition 3 The original CS problem attempts to find the sparsest vector x̂ that
is consistent with the noiseless measurement y = Ax (or the noisy measurement
y = Ax + w.)

The straightforward approach to solve the original CS problem is ℓ0-minimization

x̂ = argmin
x̃∈RN

∥x̃∥0 s.t. y = Ax̃ , (1.2)

where, if ∥x∥0 ≤ K and spark(A) > 2K, x̂ = x. Unfortunately, to compute the
spark of a matrix is NP-hard [16]. Moreover, solving the optimization problem (1.2)
is combinatorially hard because it involves an exhaustive search through all column
combinations of A of size K.

1.1.4 Robust Sampling

In practice, oftentimes the measurement does not perfectly match the mathematical
model. Thus, the noisy measurement model is introduced in the form

y = Ax + w , (1.3)

where w captures measurement noise and modelling errors. Since typically the additive
noise is unknown and only described statistically, one becomes interested in robust
sampling. This requires that the distance between a pair of K-sparse vectors is
approximately preserved by the mapping through A. The rationale behind this is
that if the minimum distance between the images of sparse vectors exceeds the noise
level with high probability (whp), the chance of recovering the wrong sparse vector is
minimal.

Definition 4 [17] The matrix A ∈ RM×N fulfills the restricted isometry property
(RIP) of order s with RIP constant δs if for all s-sparse vectors v ∈ RN

(1− δs)∥v∥2
2 ≤ ∥Av∥2

2 ≤ (1 + δs)∥v∥2
2 .

In order to achieve robust sampling, one is interested in a low RIP constant δs = δ2K ,
so that the measurements of pairs of 2K-sparse vectors are well separated. The RIP
constant is bounded from below by the scaling of the dimensions N, M, and K. For
example, it can be shown that for a measurement matrix A that fulfills the RIP with δ2K

such that δ2K ≤ 1
2 , necessarily M ≥ 0.3K log N/K [10, Theorem. 1.4]. Unfortunately,
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for a given matrix A and a RIP constant δs, it is NP-hard to decide whether A fulfills
the RIP with δs, as well as to determine the minimum RIP constant. Furthermore,
it is nearly impossible to construct deterministic measurement matrices with desired
dimensions and RIP constant [18].
In contrast, probability theory provides CS with very promising results. In particular,
random constructions deliver measurement matrices that possess the desired properties
with overwhelming probability. The interested reader is referred to [10, 16, 18, 19] for
comprehensive material on random matrix constructions and their properties. The
most relevant cases are the Bernoulli or Rademacher measurement matrix and the
Gaussian measurement matrix, whose entries are independent and identically distributed
(i.i.d.) zero-mean discrete uniform respectively Gaussian, i.e.,

Am,n ∼ U
[
− 1√

M
,

1√
M

]
respectively Am,n ∼ N

(
0,

1
M

)
,

and they obey normalized columns. These two matrices belong to the class of sub-
Gaussian matrices [20], for which the following theorem holds.

Theorem 1 [19, Theroem 9.2] Let A be an M ×N sub-Gaussian random matrix with
normalized columns. Then there exists a constant C > 0 (independent of M, N, δs)
such that the RIP constant of A satisfies δs ≤ δ with probability at least 1− ϵ provided
M ≥ 2Cδ−2(s ln(eN/s)− ln(2ϵ)).

Setting ϵ = 2 exp(−δ2M/(2C)) yields the condition M ≥ 2Cδ−2s ln(eN/2) with proba-
bility 1− 2 exp(−δ2M/(2C)).
Literature supports the wide range of applicability of both the Bernoulli and the Gaus-
sian matrix: In radio-frequency identification (RFID) [21] and multiuser communication
systems [22] nodes can be identified by a unique binary signature sequence. When
chosen in a random fashion, the sequences form columns of a Bernoulli matrix, which
in the communication system model forms a valid measurement matrix. When the
node activity is sparse, i.e., only a small fraction of the nodes is transmitting at the
same time, activity detection corresponds to a valid CS measurement. The Gaussian
measurement matrix has applications, e.g., in radar imaging [7] and compressive analog
sampling [23]. For a comprehensive survey on CS applications the interested reader is
referred to [24] and Chapter 4.
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1.2 Reconstruction Methods

In theory, M ≥ 2K measurements are sufficient to reconstruct any K-sparse vector
from noiseless measurements [19, Theorem 2.14]: for every N ≥ 2K there exists a mea-
surement matrix A ∈ R2K×N such that every K-sparse vector x can be reconstructed
from the measurements y = Ax via

x̂ = argmin
x̃∈RN

∥x̃∥0 s.t. y = Ax̃ . (1.4)

(1.4) is referred to as ℓ0-minimization problem, and it can be proven to be NP-hard
since solving it involves an exhaustive search through all column K-combinations of A.
Moreover, the noisy ℓ0-minimization

x̂ = argmin
x̃∈RN

∥x̃∥0 s.t. ∥y−Ax̃∥2
2 ≤ η , (1.5)

which aims at estimating the solution of (1.3) with any nonnegative η, is NP-hard as
well [19, Theorem 2.17].

1.2.1 Convex Relaxation

The ℓ0-minimization (1.4) is NP-hard. Observing that ∥z∥p
p tends to ∥z∥0 as p→ 0, a

sequence of approximations of the solution can be obtained by

x̂(p) = argmin
x̃∈RN

∥x̃∥p s.t. y = Ax̃

for p > 0. The smallest p for which this problem becomes convex is p = 1 and the
corresponding problem is referred to as ℓ1-minimization or basis pursuit (BP):

x̂(1) = argmin
x̃∈RN

∥x̃∥1 s.t. y = Ax̃ . (1.6)

Under mild conditions, the solution of BP and that of ℓ0-minimization are identical
and thus the CS reconstruction problem can be replaced by a convex optimization
problem, for which there is a variety of methods. Analogously to (1.5), it is possible
to incorporate a quadratic constraint in order to account for measurement and model
inaccuracies, and state the quadratically constrained BP:

x̂BP = argmin
x̃∈RN

∥x̃∥1 s.t. ∥y−Ax̃∥2
2 ≤ η . (1.7)
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The solution of (1.7) is strongly related to the dual problem termed BP denoising:

x̂BPDN = argmin
x̃∈RN

∥y−Ax̃∥2
2 s.t. ∥x̃∥1 ≤ λ ,

with a parameter λ > 0 that trades off the sparsity and the empirical ℓ2 error. Both
the quadratically constrained BP and BP denoising are strongly related to the solution
of the least absolute shrinkage and selection operator (LASSO) [25]

x̂lasso = argmin
x̃∈RN

∥y−Ax̃∥2
2 + λ∥x̃∥1 , (1.8)

where the parameter λ, again, trades off the sparsity and the empirical ℓ2 error.
For an overview of existing convex optimization methods developed for CS and in
particular BP and LASSO the interested reader is referred to [26, 27]. These methods’
shortcomings become apparent when the dimensions get large. In many applications,
the CS equation’s dimensions reach the range of hundreds of thousands or even millions,
where convex optimization methods can become slow.

1.2.2 Greedy Algorithms

Greedy algorithms are iterative algorithms that are based on variations of the following
procedure:

1. Start with the empty set as the support estimate of the unknown x.

2. Search for the column in the measurement matrix A (that has not been selected
previously) which, together with the previously selected columns, best explains
the measurement y.

3. Add the selected column’s index to the support set estimate and repeat from 2.

The two most prominent greedy algorithms are the orthogonal matching pursuit [28]
and the compressive sampling matching pursuit [29]. Because typically every iteration
in the algorithm involves solving a least squares problem with the matrix A, the
applicability of greedy methods is limited by the problem dimensionality.
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1.2.3 Iterative Thresholding Algorithms

By multiplying the measurement equation (1.3) with the adjoint measurement matrix
from the left one can approximately invert the measurement:

AT y = AT Ax + AT w

= x + (AT A− I)x + AT w︸ ︷︷ ︸
additive noise

If the measurement matrix design is suitable, AT A is close to being an identity matrix.
It follows that the norm of (AT A − I)x is small compared to that of x and can be
interpreted as noise (as the two are also uncorrelated). Thresholding reduces the
additive noise part in an iterative manner, where the threshold is based on either
prior knowledge of the sparsity N −K, or the noise statistics. It has been shown that
iterative hard thresholding [30] solves the ℓ0-regularized minimization

argmin
x̃∈RN

∥y−Ax̃∥2
2 + λ∥x̃∥0 ,

while iterative soft thresholding [31] solves the ℓ1-regularized minimization

argmin
x̃∈RN

∥y−Ax̃∥2
2 + λ∥x̃∥1 .

A comprehensive comparison and extensions can be found, e.g., in [32–34]. Thresholding
algorithms are simple to implement, have low computational complexity, and yield
reasonable recovery performance even for huge problem dimensions.

1.2.4 The Probabilistic Approach and Message Passing Algo-
rithms

As an alternative to the deterministic sparsity concept, where K of N entries of the
unknown are nonzero, the probabilistic approach assumes a prior probability density
function (pdf) valid independently and identically on the N components:

fx(x) =
N∏

n=1
fxn(xn) =

N∏
n=1

fx(xn) . (1.9)

For instance, a probabilistic model for the sparse vector reads

fx(xn) = (1− ϵ)δ(xn) + ϵgx(xn) ,
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where 1≫ ϵ > 0 and gx is the pdf of the nonzero components. Then, it is possible to
define the corresponding graphical model [35] for the measurement equation (1.3) and
perform approximate loopy belief propagation [36, 37]. The estimate resulting from
approximate message passing (AMP) [38] is closely related to the solution of the LASSO
(1.8). The extended version, Bayesian approximate message passing (BAMP), is an
approximate minimum mean squared error (MMSE) estimator, when the measurement
instance y = Ax + w and the prior (1.9) is given [39–41]. Variations of AMP are
very simple to implement, converge fast, and have excellent recovery performance.
Furthermore, they are very flexible due to the incorporation of prior knowledge. Thus,
they are suitable for very high problem dimensions and a wide range of applications.
This work mainly focuses on BAMP and its extensions.

1.3 Generalizations of the Linear Inverse Problem

In this section we outline some popular generalizations, special cases, and related
branches of the original CS problem (cf. Definition 3).

1.3.1 Group and Block Sparsity

Suppose that the nonzero components are not distributed arbitrarily in x but appear in
groups. Then, the index set [N ] can be partitioned into G groups G1, . . . ,GG (possibly
nonuniformly) such that x is sparse in a group sense, i.e., only a relatively small fraction
of the groups contain nonzero components. This signal model is referred to as group or
block sparsity.
Even though standard CS recovery methods can solve this problem, exploiting the prior
knowledge about the group structure yields significant advantages. A wide range of
standard methods have been generalized that solve this problem more efficiently (even
for overlapping groups), e.g., greedy methods [42, 43], convex optimization methods
[44–46], and methods based on message passing [47, 48].

1.3.2 Joint Sparsity

Say, B vectors of the same dimension are measured, whose nonzero patterns are
identical, i.e.,

y(b) = A(b)x(b) + w(b) , b = 1, . . . , B , (1.10)
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with supp(x(b′)) = supp(x(b)), b, b′ ∈ [B] [49, 50]. An important distinction can
be made: if the B measurement matrices are identical, the setup is referred to as
the multiple measurement vectors (MMV) problem, and otherwise as the distributed
compressed sensing (DCS) problem. In both cases the naive approach is to perform B

individual recoveries and combine the results such that the support sets match, which
is clearly suboptimal. Better recovery performance is achieved when the knowledge of
the joint sparsity is exploited beforehand and joint recovery is performed. A collection
of methods [51–54], some tailored for specific applications, has been elaborated, e.g., for
(medical) imaging [55–58], direction of arrival estimation [59], RFID [60], and multiuser
communications [61, 62].

1.4 Contribution and Outline

In this work we describe the BAMP algorithm and its multivariate extension, the
vector Bayesian approximate message passing (V-BAMP), for the MMV and the DCS
scenarios that inherently copes with joint sparsity, and arbitrary signal and arbitrary
noise correlations. We present the state evolution (SE) equations for the multivariate
case and show through extensive numerical simulations how multiple measured vectors
and signal correlation affect the recovery relative to the scalar case, and give insight
into the dynamics of V-BAMP in terms of the SE equations and the phase transition
(PT) property. We demonstrate that the PT is only present in the CS regime, i.e., when
the unknown signal is sparse. We prove for the jointly sparse CS measurement that
arbitrary signal and noise correlations can be eliminated. In particular, the measure-
ment equation is transformed using an invertible linear transform, thereby obtaining
an equivalent measurement model with purely diagonal signal and noise structure.
Moreover, we prove that V-BAMP and its SE are equivariant with respect to such
transformations, i.e., the dynamics and performance of V-BAMP are not affected by the
joint decorrelation. We show that for signals with multivariate Bernoulli-Gauss (BG)
prior, the diagonal signal and noise statistics are preserved through V-BAMP iterations.
Thus, in terms of analysis, the set of all measurement instances with BG prior are
reduced to the set of those with purely diagonal correlation structure. It follows that the
state of the B-dimensional V-BAMP for the BG prior is not B(B + 1)/2 dimensional,
but only B dimensional. Furthermore, for the jointly diagonal CS measurement with
BG signals we derive the estimation MMSE using the replica method, whose dynamics
matches with that of the SE. In particular, the local maxima of the free energy function
correspond to stable fixed points of the SE equation. We hypothesize that V-BAMP
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is a gradient ascent algorithm on the free energy function. Using the both the SE
and the replica analysis we show that when the number of jointly sparse vectors
becomes large, V-BAMP is not characterized by a PT anymore, but the estimation
mean squared error (MSE) decreases smoothly with the sampling rate. Finally, we dis-
cuss a number of modern applications of CS with emphasis on the potential of V-BAMP.

In Chapter 2, we introduce the scalar BAMP algorithm and discuss its variables
and properties, and specify two signal priors of interest, the BG prior and the discrete
prior. Then, we demonstrate the analytical properties of BAMP in terms of the SE
equation and the PT.
In Chapter 3, we briefly discuss the differences between the DCS and the MMV scenarios,
and present the V-BAMP algorithm along with an examination of its properties. Then,
signal priors of interest and reestimation/exploitation of soft information are explored.
Next, we discuss the multivariate SE equations and the PT for the multivariate V-
BAMP with the BG prior. The joint decorrelation procedure is followed by a discussion
on correlated CS, and we close the chapter with the replica analysis for CS with signals
with BG prior.
In Chapter 4, three applications are briefly outlined: RFID, activity detection and
channel estimation, and quadrature amplitude modulation (QAM) demodulation in
wireless multiuser communication systems.
We conclude this work in Chapter 5.



Chapter 2

Bayesian Approximate Message
Passing

The probabilistic approach to CS assumes both the unknown signal vector and the
additive noise vector to be a realization of a random vector. Thus, the measurement
becomes a mapping of two random vectors onto one random vector:

y = Ax + w . (2.1)

The components of the additive noise are assumed to be i.i.d. zero-mean normal with
variance σ2

w, i.e.,
w ∼ N (0, σ2

wIM)→ wm ∼ N (0, σ2
w) . (2.2)

The signal x is characterized by the prior pdf. Its components are i.i.d. with

fx(x) =
N∏

n=1
fxn(xn) =

N∏
n=1

fx(xn) . (2.3)

The assumption of sparsity in CS can be incorporated using the multivariate Dirac
delta in the prior pdf, i.e., it is assumed that

fxn(xn) = fx(xn) = (1− ϵ)δ(xn) + ϵfnz(xn)

with 0 < ϵ≪ 1. Here, fnz ̸= δ is the distribution of xn given that n ∈ supp(x). In this
probabilistic setting, exact recovery is not possible anymore. A common approach is to
search for the vector x̂ which minimizes the expected MSE:

x̂ = argmin
x̃∈RN

E
{
∥x− x̃∥2

2

}
.
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A well known result in estimation theory [63] is that the MMSE or the Bayes’ estimator
is the conditional expectation of the random variable given the measurement, i.e.,

x̂ = Ex {x | y = y} . (2.4)

Writing out the expectation and using Bayes’ rule results in

x̂ = Ex {x | y = y}

=
∫
RN

xfx|y(x | y)dx

= 1
fy(y)

∫
RN

xfy|x(y | x)fx(x)dx .

Inserting the posterior probability function fy|x(y | x) that results from the measurement
model (2.1) and the additive noise pdf (2.2) gives

x̂ = 1
fy(y)

∫
RN

x
M∏

m=1

1√
2πσ2

w
exp

(
−(ym − (Ax)m)2

2σ2
w

)
N∏

n=1
fx(xn)dx . (2.5)

Apart from some special cases (e.g., if x follows a multivariate Gaussian distribution or
is a discrete random vector), this integral cannot be carried out component-wise for each
n since the posterior pdf requires the full vector x for each component m. Therefore
the integration is infeasible even when the problem dimension is only moderate. BAMP
offers an approximate solution of the integral in (2.5) via loopy belief propagation
[35, 64, 65].

2.1 The BAMP Algorithm

We first state the BAMP algorithm including initialization and stopping criterion in
its most general form in Algorithm 1. Next, the quantities involved and their roles are
discussed:

• u(t), decoupled measurement: in [36] an intuitive interpretation was suggested
named the decoupling principle. Even though the measurement y has (only)
dimension M (typically M < N), the measurement model (2.1) is replaced by
an equivalent decoupled measurement model

y = Ax + w ⇔ u(t) = x + v(t) , (2.6)
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Algorithm 1 Bayesian approximate message passing
Input: t = 0 , x̂(t) = 0N×1 , z(t) = y
do:
1: t← t + 1 ▷ increment iteration counter
2: σ2

v
(t−1) = Var(z(t−1)

m ) ▷ estimate effective noise variance
3: u(t−1) = x̂(t−1) + AT z(t−1) ▷ decouple measurements
4: ∀n ∈ [N ]: x̂(t)

n = F
(
u(t−1)

n ; σ2
v

(t−1))
▷ estimation

5: z(t) = y−Ax̂(t) + 1
M

z(t−1)∑N
n=1 F ′

(
u(t−1)

n ; σ2
v

(t−1))
▷ calculate residual

while stopping criterion is false
Output: x̂ = x̂(t)

with v(t) ∼ N (0, σ2
v

(t)IN ). Note that the measurement noise w in (2.1) has power
σ2

w. In the decoupled model, due to the interference that arises from the fact
that A has mostly nonzero entries, σ2

v
(t) ≥ σ2

w. BAMP is designed such that xn

and v(t)
n are independent. It follows that the pdf of u(t)

n reads [66, Chapter 6.2]

fu(t)
n

(u(t)
n ) = fu(t)(u(t)

n ) = fx(u(t)
n ) ∗ N (u(t)

n ; 0, σ2
v

(t)) ,

i.e., the convolution of the signal prior pdf with a Gaussian pdf.

• σ2
v

(t), effective noise variance: the effective noise variance arises as the sum of the
additive noise variance and the interference or undersampling noise that results
from the mixing nature of the linear measurement. It is calculated as the mean
empirical power of the residual z(t−1).

• x̂(t), current signal estimate: the estimator function F (·; ·) is the MMSE estimator
or denoiser that acts on the decoupled measurement u(t)

n , with parameter σ2
v

(t).
It is designed specifically for the signal prior pdf fxn(xn) and additive Gaussian
noise:

F (u(t)
n ; σ2

v
(t)) = E

{
xn | u(t)

n = u(t)
n

}
. (2.7)

• z(t), residual: the residual is in essence the mismatch between the measurement
y = Ax + w and the measured version of the estimated signal Ax̂(t). The last
term in Step 5 of Algorithm 1, i.e.,

1
M

z(t−1)
N∑

n=1
F ′
(
u(t−1)

n ; σ2
v

(t−1))
,
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is called the Onsager term and renders the effective noise vn = un − xn Gaussian
distributed and guarantees the independence of xn and vn as N →∞ [36, 39].

• x̂, output estimate: in practice, since computational power and time is limited, a
suitable stopping criterion is declared in order to terminate the algorithm and use
the current estimate as the final estimate. Typically, one can use two conditions
for termination (possibly simultaneously): a) the relative change in the value of
a set of variables is small enough and its accuracy is judged sufficient, b) the
prescribed maximum number of iterations is reached. Formally, for t ≥ 1

stop if ∥x̂(t) − x̂(t−1)∥2
2 ≤ εtol∥x̂(t−1)∥2

2 or t ≥ tmax (2.8)

with a small εtol > 0.

As the iterations proceed, x̂(t) approaches the MMSE estimate (2.4), which is in general
not equal to the maximum a posteriori (MAP) estimate

x̂ = argmax
x̃∈RN

P{x̃ | y = y} .

The difference between the MAP and the MMSE estimator (in our case BAMP) becomes
apparent when the components of the unknown x take discrete values. Prominently
in CS, a large fraction of the components is expected to be exactly zero. Due to
BAMP being an MMSE estimator, the final estimate almost never hits a discrete value
exactly. Thus, when discrete values are involved, post-processing is necessary: this can
be as simple as nearest-neighbor search (quantization), or more complex such as the
expectation-maximization (EM) algorithm [67], which is elaborated in Section 3.5.
Another noteworthy property of the BAMP algorithm is its low computational com-
plexity. It does not involve matrix inversions. Once the estimator function F (·; ·) is
available, the algorithm requires only matrix-vector multiplications and additions. This
makes it not only an attractive choice from a theoretical viewpoint but also easily
implementable in practice [68].

Zero-mean prior In general, the prior knowledge or assumption about the unknown
is in form of a pdf fx(xn). If µx = E {x} ≠ 0, i.e., the unknown has a nonzero mean,

y = Ax + w
= Aµx + A(x− µx) + w ,
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which results in
ȳ = y−Aµx = Ax̄ + w , (2.9)

where E{x̄} = 0. That is, every measurement of a nonzero-mean random variable can
be recast as an equivalent measurement of a transformed zero-mean random variable
characterized by a pdf fx(xn − µn) centered at 0. We highlight that this does not
influence the performance or the convergence behavior of BAMP.
Also note that if the unknown x is expected to be zero-mean, the decoupled measurement
u(t), the residual vector z(t), and the current estimate vector x̂(t) are zero-mean and
preserve this property across iterations.

2.2 Priors of Interest

2.2.1 Bernoulli-Gauss Prior

The BG pdf is defined as

fx(xn) = (1− ϵ)δ(xn) + ϵN (xn; 0, σ2
x) ,

with parameters nonzero probability ϵ and complementary sparsity (or zero probability)
1 − ϵ, and variance of the nonzero components σ2

x . In CS, typically, 0 < ϵ ≪ 1.
Note that the sparsity K is not deterministic anymore, but is controlled by the zero
probability (1 − ϵ). In practice, one can assume K ≈ (1 − ϵ)N . An example for a
compressible signal with BG prior is depicted in Figure 2.1. The BG prior is a very
powerful tool to model compressible signals, because when only a small fraction of
the entries is nonzero, the remaining nonzero components will mostly fit the Gaussian
distribution (a mismatch analysis between the BG and the Bernoulli-Laplace prior
can be found in [60]). Furthermore, the BAMP with BG signals allows for an elegant
analysis via multiple tools and extensive analytical results, which are discussed in
Chapter 3. The MMSE estimator (2.7) is (neglecting the iteration index t and the
component index n)

F (u; σ2
v) = E {x | u = u} ,

where u = x + v. Using

Var {x | x ̸= 0} = σ2
x , Var {v} = σ2

v , and Var {u | x ̸= 0} = σ2
x + σ2

v = σ2
u ,
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Fig. 2.1 A realization of a BG signal (dimension N = 1000, nonzero probability ϵ = 0.1,
variance σ2

x = 1).

the final result reads

F (u; σ2
v) = ϵN (u; 0, σ2

u)
(1− ϵ)N (u; 0, σ2

v) + ϵN (u; 0, σ2
u)σ2

xσ−2
u u

= FN(u; σ2
v)

FD(u; σ2
v)σ2

xσ−2
u u ,

with numerator and denominator

FN(u; σ2
v) = ϵN (u; 0, σ2

u) ,

FD(u; σ2
v) = (1− ϵ)N (u; 0, σ2

v) + ϵN (u; 0, σ2
u) .

Its derivative is derived as

F ′(u; σ2
v) = d

du
F (u; σ2

v)

= 1
FD(u; σ2

v)

ϵN (u; 0, σ2
u)
(

σ2
xσ−2

u − σ2
xσ−4

u u2)
)

+
(

(1− ϵ)N (u; 0, σ2
v)σ−2

v + ϵN (u; 0, σ2
u)σ−2

u

)
F (u; σ2

v)u
 .

An example of the estimator and its derivative for the BG signal prior is depicted in
Figure 2.2. Observe that values close to zero, as they most probably correspond to
zero components, are dampened strongly and set to almost zero. As the argument
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Fig. 2.2 MMSE estimator (F (u; σ2
v)) and its derivative for the BG prior (nonzero

probability ϵ = 0.1, variance σ2
x = 1, noise variance σ2

v = 0.25).

gets larger, distinguishing between activity and non-activity becomes harder and the
dampening turns softer. When the argument is large even compared to the nonzero
signal variance σ2

x , the dampening gets stronger again in order to remove the additive
noise from the decoupled measurement of the probably nonzero component.

2.2.2 Discrete Prior

The discrete prior pdf is defined as

fx(xn) =
C∑

c=1
ϵ(c)δ(xn − s(c)) ,

where S = {s(1), . . . , s(C)} is the symbol alphabet of size C = |S|, and ϵ(c) (c ∈ [C])
are the individual symbol probabilities which sum up to 1:

P
{
xn = s(c)

}
= ϵ(c) , with

C∑
c=1

ϵ(c) = 1 .

In CS, typically, w.l.o.g. s(1) = 0 and 1 > ϵ(1) ≫ 0. Note that if there is a dominant
symbol that is nonzero, the measurement can be transformed into an equivalent
measurement following the procedure similar to the mean removal in Section 2.1 in
order to obtain a CS measurement with 0 as the dominant symbol. This, however,
does not influence the performance of BAMP. An example discrete prior signal is
depicted in Figure 2.3. The discrete prior is a powerful tool for, e.g., telecommunication
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Fig. 2.3 A realization of a signal with discrete prior (dimension N = 1000, S =
{0,−1, 1}, ϵ(1) = 0.9 , ϵ(2) = ϵ(3) = 0.05).

applications, where the set of possible transmit symbols constitute a finite symbol
alphabet [69, 70]. The MMSE estimator function for the discrete prior pdf reads

F (u; σ2
v) =

∑C
c=1 ϵ(c)s(c)N (u; s(c), σ2

v)∑C
c=1 ϵ(c)N (u; s(c), σ2

v)
,

which is essentially a weighted sum of all symbols. Its derivative calculates as

F ′(u; σ2
v) = d

du
F (u; σ2

v)

= σ−2
v

∑C
c=1 ϵ(c)s(c)2N (u; s(c), σ2

v)∑C
c=1 ϵ(c)N (u; s(c), σ2

v)
− F (u; σ2

v)
 .

An example of the estimator and its derivative for the discrete signal prior is depicted
in Figure 2.4.
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Fig. 2.4 MMSE estimator (F (u; σ2
v)) and its derivative for the discrete prior (S =

{0,−1, 1}, ϵ(1) = 0.9 , ϵ(2) = ϵ(3) = 0.05, noise variance σ2
v = 0.25).

2.3 Analysis

2.3.1 State Evolution

A very advantageous property of BAMP is that its performance can be analytically
predicted. The corresponding framework is termed SE [39, 71]. In particular, the
SE equations are capable of describing the evolution of the expected effective noise
variance (the state), and thus the expected MSE, over iterations. The BAMP algorithm
is equivalent to a dynamical system described by the SE equation with state σ2

v
(t). The

SE prediction becomes exact as M, N →∞ as the sampling rate R = M
N

is constant.
In practice, however, its results are sufficiently accurate even for moderately large
dimensions (e.g., N = 1000). This can be used to, e.g.,

• predict the average performance of BAMP given a set of parameters (nonzero
probability ϵ, sampling rate R = M

N
, noise level σ2

w, and signal prior fx(xn)),

• find the required sampling rate R = M
N

in order to achieve a desired performance.

For any signal prior fx(xn) and any fixed (not necessarily the MMSE) estimator function
F (un; σ2

v), additive noise variance σ2
w and effective noise variance σ2

v
(t), the input-output

relationship between the successive effective noise variances (states) is

σ2
v

(t+1) = S(σ2
v

(t)) = σ2
w + 1

R
Ex,v

{(
F (x + v; σ2

v
(t))− x

)2}
︸ ︷︷ ︸

M̂SE(x̂(t),x)

, (2.10)
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where v ∼ N (0, σ2
v

(t)). The initial estimate reads

σ2
v

(0) = σ2
w + 1

R
Ex
{
x2
}

= Var{ym} .

Note that the BAMP algorithm delivers an estimate of the corresponding MSE for
every signal estimate x̂(t) with σ2

v
(t):

M̂SE(x̂(t), x) = Ex,v

{(
F (x + v; σ2

v
(t))− x

)2}
.

This feature of the BAMP algorithm has been exploited in a number of works, e.g., for
joint sparsity [47, 48] and reconstruction without prior information [72]. In general,
computing the integral involved in (2.10) is infeasible. Nonetheless, solving it numer-
ically and visualizing the results is crucial in understanding the behavior of BAMP.
Details on the numerical evaluation can be found in Appendix D.

Discussion

In order to understand the behavior of BAMP, one relies on the fact that it can
be interpreted as a dynamical system whose state at (discrete) time t is σ2

v
(t). The

stationary (fixed) points of the SE equation (2.10) correspond the stationary points
of BAMP, i.e., where σ2

v
(t+1) = σ2

v
(t) and x̂(t+1) = x̂(t). Roughly speaking, a stable

fixed point is a fixed point to which the system converges from an arbitrarily small
neighborhood of that point; whereas an unstable fixed point is a fixed point to which
the system does not converge from an arbitrarily small neighborhood of that point. In
Figure 2.5 the (continuous) SE curves are depicted for different sampling rates R and
the BG prior with nonzero probability ϵ = 0.1. The observer can distinguish between
two rate regions:

1. High rate region, e.g., R = 0.4 (Figure 2.5a): the SE curve stays below the
baseline and they have a single intersection, i.e., one stable fixed point, in
σ2

v
(t+1) = σ2

v
(t) = σ2

w = 0. (Note that this is not visible on the double logarithmic
plot, but as the SE curve stays below the baseline, one can be sure that (0, 0) is
a stable fixed point.) That is, in expectation BAMP converges to σ2

v
(t) = σ2

w = 0
and x̂(t) → x, i.e., MSE(x̂(t), x)→ 0.

2. Low rate region, e.g., R ≲ 0.21 (Figure 2.5b-d): SE has a stable fixed point
at σ2

v
(t) = 0 and a second stable fixed point at high effective noise (e.g., for

R = 0.165: σ2
v

(t) ≈ −5dB). The two stable fixed points are separated by an
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Fig. 2.5 Empirical noiseless SE curves for the BG prior and estimator obtained from
Monte Carlo simulation (dimension N = 1000, ϵ = 0.1, σ2

w = 0).

unstable fixed point. BAMP typically reaches the fixed point with the higher
effective noise variance. Note that at R = 0.08 V-BAMP reached the PT of
second order, where only two fixed points exist, both stable: one at σ2

v
(t) = 0 and

one at a relatively high effective noise variance (in this particular case σ2
v ≈ 0dB).

The rate that separates the high and low rate regions according to the above clas-
sification is called the PT rate and is denoted by RPT. It separates R+ into two
regions: for R < RPT, BAMP reaches a relatively high σ2

v
(t) (and thus MSE) and
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Fig. 2.6 Empirical noisy SE curves for the BG prior and estimator obtained from Monte
Carlo simulation (dimension N = 1000, ϵ = 0.1, σ2

w = −35dB).

we call the recovery unsuccessful. for R > RPT, BAMP reaches a relatively low σ2
v

(t)

(and thus MSE) and we call the recovery successful. In Figure 2.6 additive noise with
σ2

w = −35dB was added, and analogously to the noiseless case, the PT does occur with
a similar RPT.
In Figure 2.7 SE curves for the BG signal prior are shown, for R = 0.21 ≈ RPT and

different noise levels. Observe that as the additive noise variance increases, the SE
curve flattens, i.e., it shifts away from having a nearly parallel section with the baseline.
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Fig. 2.7 Empirical noisy SE curves for the BG prior and estimator with rate R = 0.21
and different additive noise levels.

That is, it does not have two crossings with the baseline and the PT does not occur.
We conclude that in the noiseless case (and the very low noise level case) BAMP is
characterized solely by the PT rate RPT: at R > RPT BAMP is successful with high
probability, while at R < RPT it is unsuccessful with high probability. Furthermore,
with increasing additive noise, the PT (i.e., the sudden drop in the MSE with increasing
rate R) vanishes.

2.3.2 Phase Transition Curves

In the case of noiseless CS measurement

y = Ax ,

the average evolution of BAMP is characterized by the sampling rate R and the prior
pdf fx(xn). When the prior pdf models a sparse signal (as in the case of the BG pdf
with a high zero probability 1− ϵ) and can be characterized by the nonzero probability
ϵ, BAMP is analyzed as a function of the pair (R, ϵ). Typically, for a pair (R, ϵ)
BAMP either does or does not converge to the correct solution with probability close
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Fig. 2.8 MSE of BAMP as predicted by SE, sampling rate R versus nonzero probability
ϵ with BG signal prior. The darkness of the shades corresponds to the MSE(x̂(t), x)/dB
as t→∞. The PT curve is what separates the dark region from the bright region in
the low ϵ regime.

to one. For a given nonzero probability ϵ, BAMP with R > RPT will converge to the
correct solution whp, whereas for R < RPT BAMP will fail to find the correct solution
whp. The two regions in the sampling rate - sparsity plane are separated by the phase
transition curve (PTC) [39, 73, 74]. In Figure 2.8 the MSE as a function of the sampling
rate R and the nonzero probability ϵ is depicted for a BG signal and correspondingly
designed BAMP. The darkness of the shades corresponds to MSE(x, x̂)/dB. The PTC
can be easily identified as the line separating the dark and the bright region in the low
ϵ regime: with parameters in the dark region, BAMP converges to x whp, whereas
for parameters in the bright region, BAMP fails to converge to x whp. Observe that
the transition from the low MSE to high MSE region is smoother as the the nonzero
probability ϵ grows out of the CS region, i.e., the PT description is valid only in the
CS regime, where ϵ≪ 1.

Note that above the SE and PT analysis are precisely valid only for the signals
with BG prior and its corresponding MMSE estimator. The SE curves for other signals
and other estimators might look differently. However, in the CS regime, where the zero
probability is high, the deviation in terms of the fixed points of the SE equation and
of the PT curves is expected to be minor.



Chapter 3

Vector Bayesian Approximate
Message Passing

A practically relevant and theoretically challenging extension of the original CS problem
arises when multiple measurements of the form

y(b) = A(b)x(b) + w(b) , b ∈ [B] (3.1)

are obtained. Here, the unknowns have the same dimension x(b) ∈ RN . When the
B measured vectors x(b), b ∈ [B], are not completely independent, it is a promis-
ing path to perform joint recovery, i.e., incorporate the dependencies between the
different measurements. A prominent case of dependency is subsumed under the
joint sparsity models (JSMs) [49], which require that the nonzero patterns of the b

measured vectors are overlapping in some sense. Suppose that after measurement
one performs B independent recovery procedures to obtain B estimates. In the low
noise and ideal sparsity-sampling rate regime the result is typically satisfying, but with
increasing noise or decreasing sampling rate all individual recoveries will fail to succeed.
It was proved to be advantageous, however, to modify existing recovery methods
such that they exploit the knowledge of the mutual support, which results in signif-
icant broadening of the supported signal-to-noise ratio (SNR) and sampling rate regime.

In the probabilistic setting, the measured vectors x(b) are realizations of a random
vector x(b). Let us denote the column vector constituted by the identically indexed
components of the B measured vectors by x⃗n = (xn(1), . . . , xn(B))T . In order to
incorporate the dependencies between the measured vectors, a joint pdf similar to (2.3)
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for the random vector x⃗n is introduced, which in general satisfies

fx⃗n(x⃗n) ̸=
B∏

b=1
fxn,b

(xn(b)) .

The concept of joint sparsity in CS can be incorporated by the multivariate Dirac delta
in the prior pdf, i.e., it is assumed that

fx⃗n(x⃗n) = fx⃗(x⃗n) = (1− ϵ)δ(x⃗n) + ϵfnz(x⃗n)

i.i.d. over the n components and with 0 < ϵ≪ 1. Here, fnz ̸= δ is the distribution of
x⃗n given that n ∈ supp(x(b)), b ∈ [B].

3.1 Motivation and Overview

Joint sparsity arises in a number of applications: multiuser communications [62], RFID
[60], and (medical) imaging [55–58]. The notion of joint sparsity can be precisely
specified by the JSMs [49]:

JSM-1: sparse common support with sparse innovations. JSM-1 admits the
following representation for the set of measured signals:

x(b) = xc + xi(b) , ∀b .

Here, xc is common for all B signal vectors and sparse, and xi(b) is the innovation of
each signal vector: in general they differ for the B signal vectors and are sparse. This
allows us to model, e.g., a sensor network whose nodes measure a quantity for which
a sparse representation is known. The common component is due to high temporal
and geographical correlation, whereas the innovation components model temporally or
spatially local effects. The innovation term can also represent sensor failures by, e.g.,
canceling nonzero components of the common component.

JSM-2: strictly common sparse support. JSM-2 admits the following represen-
tation for the set of measured signals:

supp(x(b)) = S ∀b , (3.2)
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where S is the common support of all B sparse vectors. This can model, e.g., a
communication system in which a signal (sparse in time, frequency, or code domain)
transmitted by a single node is captured by multiple separate receiver units (antennas).

JSM-3: nonsparse common support with sparse innovations. JSM-3 admits
the following representation for the set of measured signals:

x(b) = xc + xi(b) , ∀b , (3.3)

where xc is common for all signal vectors and is nonsparse, and xi(b) is the innovation
of each signal vector: in general they differ for the B signal vectors and are sparse.
This model can be useful, e.g., in case of a sensor network whose nodes aim to detect
different sources while receiving a strong background signal. In video encoding, the
difference between subsequent frames can be interpreted as sparse innovation, whereas
the images themselves (or the average image) constitute a dense signal.

The focus of this chapter is JSM-2. A collection of greedy methods (see Section
1.2.2) generalized to solve the joint sparse recovery is introduced in [49, 75]. Convex
optimization based approaches such as group LASSO are presented in [76, 77]. Methods
that support higher problem dimensions are based on the probabilistic measurement
model and in particular message passing. The authors of [47, 48] introduce a binary
latent variable for each component n that indicates whether component n is nonzero
or not, and perform BAMP once on each measurement. Each BAMP instance in each
iteration delivers a likelihood on the underlying latent variable. The B likelihoods on
latent variable n are then equalized and fed back into the B BAMP instances. This is
a powerful yet simple method (also known as turbo reconstruction) that interconnects
individual recoveries during their iterations, which leads to a very fast converging
method and a low probability of disagreement over the nonzero patterns.
Generalizing the BAMP algorithm for JSM-2 delivers an efficient and fast approximate
MMSE estimator algorithm. Moreover, it turns out to be applicable even to JSM-1
for certain priors, and also for general priors that do not necessarily reflect sparsity.
Furthermore, it allows for arbitrary correlations between the signal vectors x(b) and
the noise vectors w(b). The remaining part of this chapter is devoted to investigate
the extension of the BAMP algorithm to the JSM-2.
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3.2 MMV and DCS

A cardinal distinction can be made based on the construction of the measurement
matrices A(b) in (3.1).

Distributed compressed sensing (DCS). In the DCS model, the measurement
matrices are independent realizations of the same distribution, and thus differ in general,
i.e., A(b) ̸= A(b′), ∀b′ ̸= b. Furthermore, even the dimensions of each measurement can
differ, i.e., A(1) ∈ RM1×N , . . . , A(B) ∈ RMB×N with possibly different M1, . . . , MB.

Multiple measurement vectors (MMV). In the MMV model, the measurement
matrices coincide, i.e., A(b) = A, ∀b ∈ [B]. MMV can be also interpreted as measuring
B-dimensional symbols instead of scalars. This simplification allows us to write (3.1)
compactly as

Y = AX + W , (3.4)

with

Y = (y(1), . . . , y(B)) =


y⃗T

1
...

y⃗T
M

 ∈ RM×B ,

X = (x(1), . . . , x(B)) =


x⃗T

1
...

x⃗T
N

 ∈ RN×B ,

W = (w(1), . . . , w(B)) =


w⃗T

1
...

w⃗T
M

 ∈ RM×B .

Let us briefly discuss the differences in the recovery of jointly sparse vectors in the
DCS and MMV scenarios via the following intuitive special cases:

1. Noiseless measurements of identical vectors:

x(b) = x , w(b) = 0⇔

y(b) = A(b)x DCS ,

y(b) = Ax MMV .

Clearly, in the MMV case all measurements are identical, i.e., y(b) = y(1)
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(b ∈ [B]), and additional measurements are uninformative for the recovery. In
the DCS case, however, one can stack both the measurement vectors y(b) and
the matrices A(b) into a super-measurement


y(1)

...
y(B)

 =


A(1)

...
A(B)

x ,

and obtain a measurement with a valid measurement matrix of dimension BM×N

(note that the normalization of the stacked measurement matrix changes). For
B > 1, this is an obvious advantage of DCS.

2. Noisy measurement of identical vectors:

x(b) = x , w(b) ̸= 0⇔

y(b) = A(b)x + w(b) DCS ,

y(b) = Ax + w(b) MMV .

In the MMV case y(b) is the noisy observation of the same quantity Ax. Thus,
the possible advantage of having B measurements is the reduction of the additive
noise via the averaging effect. In the DCS case, after stacking, one hase BM

noisy measurements, and the noise reduction will be inherent to the recovery
method since the sampling rate R is larger.

The most general case is noisy measurement of jointly sparse vectors, i.e., (3.1) in
case of DCS and (3.1) with A(b) = A (b ∈ [B]) in case of MMV. Intuitively, DCS
is expected to have an advantage in terms of recovery accuracy over MMV because
of the randomness it introduces in the different measurements: since all measured
vectors x(b) select the same set of columns in the measurement matrices A respectively
A(b), differently drawn measurement matrices can eliminate errors that arise due to,
e.g., too similar columns selected by supp(x(b)) when the sampling rate is low. A
counterargument that speaks for the better recovery performance of MMV is that in
contrast to the mixing nature of DCS, MMV preserves correlation between the jointly
measured vectors which can then be exploited.
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Algorithm 2 Vector Bayesian approximate message passing for JSM-2
Input: t = 0, ∀b ∈ [B]: x̂(t)(b) = 0N×1, z(t)(b) = y(b)
do:
1: t← t + 1 ▷ increment iteration counter

2: Σv⃗
(t−1) =

Cov(⃗z(t−1)
m ) for MMV

diag(Cov(⃗z(t−1)
m )) for DCS

▷ estimate effective noise covariance

3: ∀b ∈ [B]: u(t−1)(b) = x̂(t−1)(b) + AT (b)z(t−1)(b) ▷ decouple measurements
4: ∀n ∈ [N ]: ˆ⃗x(t)

n = F
(
u⃗(t−1)

n ; Σv⃗
(t−1)

)
▷ estimation

5: ∀m ∈ [M ]: z⃗(t)
m = y⃗m−

(
A(1)ˆ⃗x(t)(1), . . . , A(B)ˆ⃗x(t)(B)

)
m

+ 1
M

∑N
n=1 F ′

(
u⃗(t−1)

n ; Σv⃗
(t−1)

)
z⃗(t−1)

m ▷ calculate residual
while stopping criterion is false

Output: x̂(b) = x̂(t)(b), ∀b ∈ [B]

3.3 Vector BAMP for JSM-2

Just as the BAMP algorithm, V-BAMP acts on the probabilistic measurement model
for vector-valued measurements:

y(b) = A(b)x(b) + w(b) .

The vectors x⃗n follow a prior pdf i.i.d. over n:

fx⃗n(x⃗n) = fx⃗(x⃗n) .

The noise w⃗m is assumed to be zero-mean Gaussian with covariance Σw⃗, i.e.,

w⃗m ∼ N (0, Σw⃗) .

When the B measurement matrices are identical (MMV), one can write the measure-
ments (3.1) compactly as

Y = AX + W .

From this form it is clear that the MMV model can be interpreted as mapping the set
of N B-dimensional symbols x⃗n onto the M B-dimensional symbols y⃗m. This fact is
helpful in understanding the differences between V-BAMP for DCS and MMV, as the
MMV case is a straightforward generalization of BAMP. We first state the V-BAMP
algorithm [78] including initialization and stopping criterion in its most general form
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in Algorithm 2. Next, the involved quantities and their roles are discussed, with focus
on the differences to DCS:

• u⃗(t)
n , decoupled vector measurements: following the decoupling principle introduced

in [36] and discussed in Section 2.1, the B individual decoupled measurements
(2.6) can be extended to the vector/multivariate version directly in vector form
as

u⃗(t)
n = x⃗n + v⃗(t)

n with v⃗(t)
n ∼ N (0, Σv⃗) .

• Σ(t)
v⃗ , effective noise covariance: in the MMV case, due to the fact that all B

values xn(1), . . . , xn(B) are measured through the same matrix, their statistical
properties carry over to u⃗n (and also y⃗m and z⃗m). Thus, V-BAMP considers the
full covariance (second order statistics) of the residual, which is designed such
that u⃗n − x⃗n is zero-mean Gaussian with covariance matrix Σ(t)

v⃗ . In the DCS
case, however, due to the independence of the measurement matrices, correlations
between signal components are eliminated, and the effective noise covariance
consists of only the B individual variances.

• ˆ⃗x(t)
n , current signal estimate: the estimator function F (·; ·) is the MMSE estimator

that acts on the decoupled vector measurement u⃗(t)
n with parameter Σ(t)

v⃗ . It is
designed specifically for the signal prior pdf fx⃗(x⃗n) and additive Gaussian noise:

F (u⃗(t)
n ; Σ(t)

v⃗ ) = E
{
x⃗n | u⃗(t)

n = u⃗(t)
n , Σ(t)

v⃗

}
. (3.5)

• z(t)(b), residual: the residual vectors represent the mismatch between the mea-
surement, i.e., y(b) and A(b)x̂(t)(b). The last term in Step 5 of Algorithm 2,
i.e.,

1
M

N∑
n=1

F ′
(
u⃗(t−1)

n ; Σv⃗
(t−1)

)
z⃗(t−1)

m ,

the (matrix-valued) Onsager term, modifies the residuals z⃗(t)
m such that the

effective noise v⃗(t)
n = u⃗(t)

n − x⃗n is zero-mean Gaussian with covariance Σ(t)
v⃗ , and

v⃗(t)
n and x⃗n independent, as N →∞.

• x̂(b), output estimate: in practice, computational power and time is limited, and
a suitable stopping criterion is used in order to terminate the algorithm and use
the current estimate as the final estimate. The stopping criterion (2.8) can be
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extended to, e.g.,

stop if
B∑

b=1
∥x̂(t)(b)− x̂(t−1)(b)∥2

2 ≤ εtol

B∑
b=1
∥x̂(t−1)(b)∥2

2 or t ≥ tmax

with a small ϵtol > 0.

Heterogeneous DCS

By assumption the jointly sparse vectors have dimension N , i.e., x(b) ∈ RN , and the B

measurement and noise vectors have the same dimension, i.e., y(b), w(b) ∈ RM , b ∈ [B].
When the B additive noise vectors are i.i.d., it is possible to extend the V-BAMP
algorithm to the case when the measurement dimensions are not identical. That is,
y(b), w(b) ∈ RMb , with possibly different dimensions Mb. Note that the vectors y⃗m

and w⃗m are not defined anymore, and the noise pdf is written as

fwm(b)(wm) = fw(b)(wm) = N (wm; 0, σ2
w(b)) , m ∈ [Mb] . (3.6)

Since the noise covariance is diagonal, the estimator derivative in the Onsager term
1

M
z(t−1)(b)∑N

n=1 F ′
(
u⃗(t−1)

n ; Σv⃗
(t−1)

)
becomes diagonal, i.e.,

1
M

z(t−1)(b)
N∑

n=1
F ′
(
u⃗(t−1)

n ; Σv⃗
(t−1)

)
= 1

M
z(t−1)(b)

N∑
n=1

d

dub

F
(
u⃗(t−1)

n ; Σv⃗
(t−1)

)
, b ∈ [B] .

3.4 Priors of Interest

3.4.1 Bernoulli-Gauss Prior

Similar to the scalar case, the BG prior in B dimensions is defined as

fx⃗(x⃗n) = (1− ϵ)δ(x⃗n) + ϵN (x⃗n; 0, Σx⃗) , (3.7)

where ϵ is the nonzero probability, 1− ϵ is the sparsity, and Σx⃗ is the covariance matrix
of the vector composed of the identically indexed components x⃗n = (xn(1), . . . , xn(B))T .
When considering the noisy decoupled measurement with multivariate additive Gaussian
noise, i.e.,

u⃗ = x⃗ + v⃗ with v⃗ ∼ N (0, Σv⃗) ,
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the pdf of u⃗ reads

fu⃗(u⃗) = (1− ϵ)N (u⃗; 0, Σv⃗) + ϵN (u⃗; 0, Σu⃗) with Σu⃗ = Σx⃗ + Σv⃗ .

The MMSE estimator of x⃗ given u⃗ = u⃗ reads

F (u⃗; Σv⃗) = E {x⃗ | u⃗ = u⃗}

= ϵN (u⃗; 0, Σu⃗)
(1− ϵ)N (u⃗; 0, Σv⃗) + ϵN (u⃗; 0, Σu⃗)Σx⃗Σ−1

u⃗ u⃗

= FN(u⃗; Σv⃗)
FD(u⃗; Σv⃗)

Σx⃗Σ−1
u⃗ u⃗ , (3.8)

with

FN(u⃗; Σv⃗) = ϵN (u⃗; 0, Σu⃗) ,

FD(u⃗; Σv⃗) = (1− ϵ)N (u⃗; 0, Σv⃗) + ϵN (u⃗; 0, Σu⃗) .

Its derivative is the Jacobian matrix

F ′(u⃗; Σv⃗) = d

du⃗T
F (u⃗; Σv⃗)

= 1
FD

ϵN (u⃗; 0, Σu⃗)
(

Σx⃗Σ−1
u⃗ − Σx⃗Σ−1

u⃗ u⃗u⃗T Σ−1
u⃗ )

)

+ F (u⃗; Σv⃗)u⃗T ·
(

(1− ϵ)N (u⃗; 0, Σv⃗)Σ−1
v⃗ + ϵN (u⃗; 0, Σu⃗)Σ−1

u⃗

) .

3.4.2 Discrete Prior

The discrete prior pdf is a straightforward generalization of the scalar discrete prior
and is defined as

fx(x⃗n) =
C∑

c=1
ϵ(c)δ(x⃗n − s⃗(c)) .

The symbol alphabet S = {⃗s(1), . . . , s⃗(C)} is of size C = |S| and composed of B-
dimensional symbol vectors s⃗(c) ∈ RB, and ϵ(c) (c ∈ [C]) are the individual symbol
probabilities, which sum up to 1:

P
{
x⃗n = s⃗(c)

}
= ϵ(c) , with

C∑
c=1

ϵ(c) = 1 .
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In CS, typically, w.l.o.g. s(1) = 0 and 1 > ϵ(1) ≫ 0. If there is a dominant symbol vector
that is nonzero, the measurement can be transformed into an equivalent measurement
following the procedure similar to the mean removal in Section 2.1. Note that this
does not influence the performance of BAMP. The discrete prior is a powerful tool for,
e.g., telecommunication applications, where the transmit symbols typically constitute
a finite alphabet [69, 70]. The MMSE estimator function for the discrete prior pdf
given a noisy observation with Gaussian noise with covariance matrix Σv⃗ reads

F (u⃗; Σv⃗) =
∑C

c=1 ϵ(c)⃗s(c)N (u⃗; s⃗(c), Σv⃗)∑C
c=1 ϵ(c)N (u⃗; s⃗(c), Σv⃗)

,

which is essentially a weighted sum of all symbol vectors. Its derivative is

F ′(u⃗; Σv⃗) = d

du⃗T
F (u⃗; Σv⃗)

= 1
FD(u⃗; Σv⃗)

C∑
c=1

ϵ(c)N (u⃗; s⃗(c), Σv⃗)(F (u⃗; Σv⃗)− s⃗(c))(u⃗− s⃗(c))T Σ−1
v⃗ .

3.5 Soft Information and Reestimation

After meeting the stopping criterion, BAMP and V-BAMP deliver approximate MMSE
estimates. It follows that if the prior pdf contains any discrete components, xn(b)
will almost never exactly take on the desired discrete value. In case of the widely
employed BG prior, one is often interested in the support S = supp(x(b)) (b ∈ [B])
of the signal, i.e., the set of (non)zero components/indices. And while approximately
(1 − ϵ)N components are expected to be 0, the (V)BAMP estimate x̂(b) (b ∈ [B])
contains in general no zeros. Furthermore, in case of the discrete prior, one needs to
transform the obtained continuous values to discrete values in order to obtain a final
valid estimate. Thus, post-processing is necessary.

3.5.1 Expectation-Maximization-based Classification

It is clear that if ∥u⃗(t)
n ∥2 is relatively large, based on the decoupled measurement model

one can be confident that x⃗n is a nonzero vector and hence n ∈ S. On the other
hand, if ∥u⃗(t)

n ∥2 is relatively small, one cannot be sure whether ˆ⃗x(t)
n is a noisy estimate

of x⃗n = 0 or a (noisy) estimate of a small but nonzero x⃗n. A theoretically sound
way of (soft) clustering vectors (numbers) that are assumed to come from different
distributions is the EM algorithm [67, 79]. For Gaussian mixture distributions, the
EM algorithm not only classifies the vectors (E-step), but also finds its parameters
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(mean, (co-)variance, occurrence probability) in the M-step. Since V-BAMP already
delivers those parameters, only a single E-step is necessary for classification. The
E-step calculates the so called responsibilities. The responsibility is a measure of how
well an observation is explained by a certain component distribution. By deciding for
the component distribution with the highest responsibility one achieves statistically
optimal classification [67] and quantization to the desired discrete values. Furthermore,
by saving the soft information (i.e., the responsibilities) further post-processing is
possible. This has been exploited in a number of works [47, 48, 80].

Bernoulli-Gauss prior

After including the knowledge that the event n /∈ S has probability (1− ϵ), while n ∈ S
has probability ϵ, one can write the distribution of u⃗(t)

n as

fu⃗(t)
n

(u⃗(t)
n ) = (1− ϵ)N (u⃗(t)

n ; 0, Σ(t)
v⃗ ) + ϵN (u⃗(t)

n ; 0, Σ(t)
v⃗ + Σx⃗) .

Formally, u⃗(t)
n comes from one of the two distributions:

u⃗(t)
n ∼

N (0, Σ(t)
v⃗ ) if n /∈ S ,

N (0, Σ(t)
v⃗ + Σx⃗) if n ∈ S ,

i.e., u⃗(t)
n contains only effective noise, or signal plus effective noise. The E-step calculates

responsibilities as

ρ(n /∈ S) = P{n /∈ S | u⃗(t)
n = u⃗(t)

n } = 1
Z

(1− ϵ)N (u⃗(t)
n ; 0, Σ(t)

v⃗ ) ,

ρ(n ∈ S) = P{n ∈ S | u⃗(t)
n = u⃗(t)

n } = 1
Z

ϵN (u⃗(t)
n ; 0, Σ(t)

v⃗ + Σx⃗) ,

with Z being a normalization constant.

Discrete prior

When the prior contains only discrete values (symbols), x⃗(t)
n is expected to be close to

u⃗(t)
n . Inserting the prior symbol probabilities ϵ(c), the distribution of u⃗(t)

n reads

fu⃗(t)
n

(u⃗(t)
n ) =

C∑
c=1

ϵ(c)N (u⃗(t)
n ; s⃗(c), Σ(t)

v⃗ ) .
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Formally,
u⃗(t)

n ∼ N (⃗s(c), Σ(t)
v⃗ ) if x⃗n = s⃗(c) .

The E-step calculates responsibilities as

ρ(x⃗n = s⃗(c)) = P{x⃗n = s⃗(c) | u⃗(t)
n = u⃗(t)

n } = 1
Z

ϵ(c)N (u⃗(t)
n ; s⃗(c), Σ(t)

v⃗ )

c ∈ [C], with Z being a normalization constant. Note that if the symbol probabilities
ϵ(c) of the discrete prior are identical, i.e., ϵ(c) = ϵ, c ∈ [C], then the C responsibilities
are inversely (exponentially) proportional to the distance of the decoupled measurement
to each of the C symbol vectors, i.e., u⃗(t)

n − s⃗(c). That is, the classification based on
the E-step responsibilities is identical to nearest neighbor quantization.

3.5.2 Reestimation

Suppose the signal prior pdf contains discrete components as well as continuous
components. With the E-step described above, one is able to fine tune the estimates ˆ⃗xn

on a subset of the indices [N ] and assign them to discrete values from the prior pdf. The
values classified as coming from the continuous component distribution(s) are unaltered.
Let us collect the indices of these values into the set Sc (c for continuous) and the
remaining indices into the set Sd = [N ] \ Sc (d for discrete). Then the measurements
can be written as

y(b) = A(b)Scx(b)Sc + A(b)Sd
x(b)Sd

+ r(b) ,

where r(b) denotes the residual noise. Rearranging the terms in the above equation
results in

y(b)−A(b)Sd
x̂(b)Sd︸ ︷︷ ︸

ȳ(b)

= A(b)Sc︸ ︷︷ ︸
Ā(b)

x̂(b)Sc︸ ︷︷ ︸
x̄(b)

+r(b) ,

where the left side is known due to the assumption that the discrete values have been
assigned correctly by the E-step. Now one can write the reduced measurement

ȳ(b) = Ā(b)x̄(b) + r(b) , (3.9)

where the dimensions of the reduced measurement matrix Ā(b) are (depending on the
fraction of excluded discrete components) much more favorable than those of A(b).
In some cases, Ā(b) might even be overdetermined. The reduced measurement (3.9)
allows for reestimation of a subset of the components, for which various methods are
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available: V-BAMP, least squares estimation etc. Note that the EM algorithm and
reestimation can be combined in several ways, even in an iterative manner, in order
to exploit soft information and achieve more accurate estimation depending on the
demands [72].

3.6 State Evolution

The SE presented in Section 2.3.1 for BAMP has been extended to the MMV and DCS
scenarios in, e.g., [81]. It allows us to analytically describe the behavior of V-BAMP.
(We point the interested reader to the fact that in [81] the Onsager term is defined
incorrectly; nonetheless, the presentation of the multivariate SE is correct.) The SE
equation allows us to track the evolution of the effective noise covariance (its state)
across iterations in an iterative manner:

Σv⃗
(t+1) = S(Σv⃗

(t))

=

Σw⃗ + 1
R

Ex⃗,⃗v
{
⟨F (⃗x + v⃗; Σv⃗

(t))− x⃗⟩
}

for MMV ,

diag
(
Σw⃗ + 1

R
Ex⃗,⃗v

{
⟨F (⃗x + v⃗; Σv⃗

(t))− x⃗⟩
})

for DCS ,
(3.10)

for a general signal prior x⃗ ∼ fx⃗(x⃗n) and estimator F (u⃗(t)
n ; Σv⃗), with v⃗ ∼ N (0, Σ(t)

v⃗ ).
(Note that the SE equations are valid even if the estimator F () is not the MMSE
estimator of x⃗.) The state of V-BAMP is B-dimensional for DCS and in general
B(B + 1)/2-dimensional for MMV (since the covariance matrix is symmetric). From
(3.10) the MSE prediction follows as

Cov(u⃗(t)
n − x⃗n) = Σ(t)

v⃗ ,

M̂SE(x̂(t)(b), x(b)) = R(Σ(t)
v⃗ − Σw⃗)b,b .

Details on the numerical evaluation of (3.10) can be found in Appendix D.

Discussion

In Figure 3.1 and Figure 3.2, the experiments from Section 2.3.1 were repeated
(corresponding to Figure 2.5 and Figure 2.6, respectively) with the B = 5-dimensional
BG prior

fx⃗(x⃗n) = 0.9 δ(x⃗n) + 0.1N (x⃗n; 0, I5)
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Fig. 3.1 Empirical noiseless SE curves for the 5-D multivariate BG prior and MMSE
estimator obtained from Monte Carlo simulation (dimension N = 1000, ϵ = 0.1,
Σw⃗ = 0). The SE curves for the scalar case (B = 1, identical parameters) are shown in
gray dashed lines for comparison.

and the Bayesian setting, i.e., the corresponding MMSE estimator. In this case the
MMV and DCS SE are identical (the proof is elaborated in Appendix C). Moreover,
when both the signal covariance and the additive noise covariance are diagonal and
constant along their diagonals, the effective noise covariance is diagonal as well and
defined by a single parameter, (Σ(t)

v⃗ )b,b (identical for b ∈ [B]). Thus, it is possible to
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Fig. 3.2 Empirical noisy SE curves for the 5-D multivariate BG prior and MMSE
estimator obtained from Monte Carlo simulation (dimension N = 1000, ϵ = 0.1,
Σw⃗ = −35dB I). The SE curves for the scalar case (B = 1, identical parameters) are
shown in gray dashed lines for comparison.

visualize the SE with a 1-dimensional curve instead of a B(B + 1)-dimensional function.
Since V-BAMP exploits the knowledge of the common support of the measured vectors,
we expect a drop of the PT rate in the noiseless case relative to the B = 1 case.
Observe that the SE curves drop, i.e., in the noiseless case V-BAMP converges faster
and its PT rate lower, while in the noisy case the reached effective noise variances
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are lower. Note that the nonzero signal components are uncorrelated, i.e., the only
information that is common among the 5 vectors is their support. In Figure 3.3, the
gain from increasing the number of jointly sparse vectors is investigated by plotting the
empirical noiseless SE curve for ϵ = 0.1, B = 1, B = 2, and B = 10, with parameters
to Σw⃗ = 0, rate R = 0.21 (which is approximately RPT for B = 1), and identical
signal powers, i.e., Σx⃗ = I. Observe that while the gain from additional jointly sparse
vectors seems minor, there is a significant difference for larger B values (discussed
in the following). In Figure 3.3b, the correlation coefficient between each pair of the
Gaussian components was set to 0.9, i.e., (Σx⃗)b,b′ = C = 0.9 for b ≠ b′. (Note that a
correlation coefficient 1 in the noiseless case corresponds to the single measurement
vector problem for MMV and doubling the measurement rate R for DCS. Further
discussion on the effect of signal correlation can be found in Section 3.8.) We highlight
that in this case the SE is not described by a single quantity (the diagonal (Σ(t)

v⃗ )b,b)
anymore because the off-diagonal elements of the effective noise covariance ((Σ(t)

v⃗ )b,b′ ,
b ̸= b′) are in general nonzero. Nonetheless, plotting the evolution of the diagonal
elements gives insight into the MSE performance of V-BAMP. Observe that the gain
from additional jointly sparse vectors is stronger relative to the uncorrelated signal
case, i.e., there is a considerable sampling rate and noise regime in which V-BAMP
will be successful only by exploiting information from additional vectors. In Figure 3.4,
the effect of the correlation coefficient C on V-BAMP is investigated. The reduced
SE curves representing the evolution of the diagonal elements (Σ(t)

v⃗ )b,b for ϵ = 0.1,
B = 10 jointly sparse vectors, R = 0.21, and no additive noise are plotted for different
correlation coefficients C, i.e., (Σx⃗)b,b′ = C (b′ ̸= b) while (Σx⃗)b,b = 1. Observe that
increasing correlation results in better performance (in an MSE or convergence speed
sense or both) as the reduced SE curve drops.
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Fig. 3.3 Empirical SE curves for different number of (a) uncorrelated (b) highly
correlated identically BG distributed components (jointly sparse vectors). In the
correlated case only the diagonal effective noise variance evolution is plotted.

-40 -30 -20 -10 0 10

-40

-30

-20

-10

0

10

(Σv⃗
(t))b,b

(Σ
v⃗(t

+
1)

) b,
b

baseline
C = 0
C = 0.3
C = 0.6
C = 0.9

Fig. 3.4 Empirical SE curves for different correlation coefficients C for B = 10 identically
BG distributed components (jointly sparse vectors, ϵ = 0.1, N = 1000, (Σx⃗)b,b′ = C for
b′ ̸= b, (Σx⃗)b,b = 1). Only the diagonal effective noise variance evolution is plotted.

Noiseless PT curves obtained from the SE MSE prediction are plotted in Figure
3.5, for B = 1, 2, 3-dimensional isotropic uncorrelated BG prior. Even though the
advantage of additional (uncorrelated) jointly sparse vectors seems minor in the SE
(Figure 3.3a), the differences are pronounced at rates at the PT rate (and also with
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increasing additive noise and signal correlation). Also note that the PT happens only
in the CS regime, i.e., where ϵ ≪ 1. As B increases, the sudden transition requires
smaller ϵ: while at ϵ = 0.2 for B = 1 and B = 2 (Figures 3.5a and 3.5b) there is still
a sudden drop in the MSE, for B = 3 at ϵ = 0.2 the transition is already smooth.
Further investigation on the PT of jointly sparse CS can be found in Section 3.9.
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Fig. 3.5 MSE of V-BAMP as predicted by SE, as a function of the sampling rate R and
the nonzero probability ϵ with (a) B = 1-D, (b) B = 2-D, (c) B = 3-D BG signal prior
with Σx⃗ = I. The shade corresponds to MSE(x̂(t)(b), x(b))/dB as t→∞, identically for
b ∈ [B]. The PT curve is what separates the dark region (corresponding to successful
recovery) from the bright region (unsuccessful recovery) in the low ϵ regime.
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Note that above the SE and PT analysis are precisely valid only for the signals with
(multivariate) BG prior and its corresponding MMSE estimator. The SE curves for
other signals and other estimators might look differently. However, in the CS regime,
where the sparsity is high, the deviation in terms of the fixed points of the SE equation
and of the PT curves is expected to be minor.

3.7 Joint Diagonalization for MMV

3.7.1 Joint Diagonalization of the Measurements

The presented V-BAMP algorithm for DCS and MMV is a powerful tool that can
deal with arbitrary signal and noise correlations Σx⃗ and Σw⃗. In the DCS scenario the
effective noise covariance Σ(t)

v⃗ is always a diagonal matrix due to the independence of
the measurement matrices A(b), b ∈ [B]. In contrast, in the MMV case in general Σ(t)

v⃗
will be nondiagonal, even if the signal prior and the additive noise are uncorrelated
themselves, i.e., if Σx⃗ and Σw⃗ are diagonal. This means O(B2) SNR relations in the
decoupled measurements u⃗ = x⃗ + v⃗: each xn(b) is correlated with all xn(b′) and is
thus influenced simultaneously by all effective noise components vm(b′) (b′ ∈ [B], n ∈
[N ], m ∈ [M ]). In other words, the V-BAMP system is described by B(B + 1)/2
states, even if only the B effective noise variances on the diagonal are of interest after
convergence (since these store the MSE estimates). Next we show that any MMV
measurement of the form (3.1) or (3.4) can be transformed into one with diagonal
signal and diagonal noise covariance.
Our aim is to transform (3.1) by a nonsingular matrix T such that Cov{Tx⃗n} =
T Cov{x⃗n}TT = TϵΣx⃗TT and Cov{Tw⃗m} = TΣw⃗TT are both diagonal:

(
y(1), . . . , y(B)

)
TT =

(
A(1)x(1), . . . , A(B)x(B)

)
TT +

(
w(1), . . . , w(B)

)
TT

(3.11)

= A
(
x(1), . . . , x(B)

)
TT +

(
w(1), . . . , w(B)

)
TT

= AXTT + WTT

⇕
˜⃗ym = Ty⃗m , ˜⃗xn = Tx⃗n , ˜⃗wm = Tw⃗m . (3.12)

Remember that Σx⃗ denotes the covariance of x⃗ given that it is nonzero, i.e., Σx⃗ =
Cov{x⃗n | x⃗n ̸= 0}. Under the assumption that the covariance matrices Σx⃗, Σw⃗ are full
rank and using the fact that covariance matrices are symmetric and positive definite
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Algorithm 3 Joint diagonalization transformation
1: Given Σx⃗, Σw⃗
2: find P such that PPT = Σw⃗
3: G = P−1Σx⃗P−T

4: find eigendecomposition QGΛGQ−1
G = G

5: T = Λ−1/2
G QT

GP−1

and [82, Thm. 7.6.1.], T exists and can be computed using Algorithm 3. Here, QG is
the matrix of orthonormal eigenvectors, and ΛG is a diagonal matrix containing the
eigenvalues. Note that if the goal is only joint diagonalization, infinitely many matrices
T are suitable. In particular, for any diagonal matrix D, T = DQT

GP−1 is suitable for
joint diagonalization. However, the choice D = Λ−1/2

G (Step 5 in Algorithm 3) results
in

Cov{x⃗nT} = ϵΣ˜⃗x = ϵIB ,

Cov{w⃗mT} = Σ ˜⃗w = diag
(

1
SNR(1) , . . . ,

1
SNR(B)

)
,

where the now independent inverse SNRs of the B measurements are carried directly
in the transformed noise covariance matrix Σ ˜⃗w (and the off-diagonals are zero). In the
uncorrelated signal and uncorrelated noise case the SNR per channel is defined as

SNR(b) = Ex,w

{
∥A(b)x̃(b)∥2

2
∥w̃(b)∥2

2

}
= ϵ(Σ˜⃗x)b,b

(Σ ˜⃗w)b,b

.

If one wishes to apply V-BAMP to the transformed measurement model (3.11), the
change in the prior pdfs has to be taken into account, which might be difficult for
general prior pdfs. That is, the MMSE estimator (3.5) and its derivative will have a
new form.

Joint Diagonalization Algorithm

The matrix T given by Algorithm 3 performs noise whitening and signal decorrelation
simultaneously. While simply TΣx⃗TT = IB, TΣw⃗TT depends on Σw⃗ and Σw⃗ in a
nontrivial way. However, there are two important special cases that give insight into
how the resulting Σ ˜⃗w arises.

• Σx⃗ = IB and Σw⃗ is arbitrary (full rank). Through simple calculation Σ ˜⃗w = Λw⃗ =
diag(λw⃗(1), . . . , λw⃗(B)), i.e., the diagonal matrix with the B eigenvalues of Σw⃗.
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That is, the underlying inverse SNRs correspond exactly to the eigenvalues of
the noise covariance matrix, as Σ˜⃗x = Σx⃗ = IB.

• Σw⃗ = IB and Σx⃗ is arbitrary (full rank). It follows that Σ˜⃗x = IB and Σ ˜⃗w = Λ−1
x⃗ =

diag( 1
λ⃗x(1) , . . . , 1

λ⃗x(B)), i.e., the diagonal matrix composed of the B reciprocal
eigenvalues of the signal covariance matrix. That is, the eigenvalues of the
nonzero signal covariance matrix correspond exactly to the SNR values.

In any other case, the SNRs depend in a nontrivial way on the covariance matrices.
They can be, however, bounded by max(λ⃗x)

min(λw⃗) ≥ SNR(b) ≥ min(λ⃗x)
max(λw⃗) , b ∈ [B].

Parameter Estimation

When the measurement matrices A(b) (b ∈ [B]) have normalized columns, by simple
calculation

Cov (⃗ym) =

Σw⃗ + 1
R

Cov{x⃗n} MMV ,

Σw⃗ + 1
R

diag ({Var{xn(b)}b=1,...,B}) DCS .

That is, either the noise or the signal covariance has to be known in order to estimate
the other via the observed (sample) covariance Cov (y⃗m). We refer the interested reader
to the EM AMP approach introduced in [72], which could be applied to estimate the
unknown parameters during iterations, as long as the measured signal comes from a
(Bernoulli-)Gaussian mixture.

3.7.2 Equivalence of the Transformed Model

Next we discuss the fact that both MMV V-BAMP and its SE are equivariant w.r.t. (in-
vertible) linear transformations of the input as long as F () is the MMSE estimator
matched for the signal prior fx⃗(x⃗n). That is, transforming the system once, then
iterating V-BAMP on the transformed measurement, and ultimately transforming back
the variables of interest is equivalent to iterating V-BAMP on the original measurement.

Theorem 2 Algorithm 2 for MMV and its SE are equivariant w.r.t. invertible linear
transformations if F () is the MMSE estimator matched for the signal prior fx⃗(x⃗n).
That is, for any nonsingular T:

1. If one iteration of Algorithm 2 maps (y⃗m, ˆ⃗x(t)
n , r⃗(t)

m , Σ(t)
v⃗ )→ (ˆ⃗x(t+1)

n , r⃗(t+1)
m , Σ(t+1)

v⃗ ),
then it maps (Ty⃗m, Tˆ⃗x(t)

n , Tr⃗(t)
m , TΣ(t)

v⃗ TT )→ (Tˆ⃗x(t+1)
n , Tr⃗(t+1)

m , TΣ(t+1)
v⃗ TT ), ∀m, n.
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2. The following transformed SE equation holds

TΣ(t+1)
v⃗ TT = TΣw⃗TT + 1

R
Ex⃗,⃗v

{
⟨F (T(⃗x + v⃗); TΣv⃗

(t)TT )−Tx⃗⟩
}

(3.13)

⇕

Σ(t+1)
v⃗ = Σw⃗ + T−1 1

R
Ex⃗,⃗v

{
⟨F (T(⃗x + v⃗); TΣv⃗

(t)TT )−Tx⃗⟩
}

T−T . (3.14)

The proofs of Theorem 2 is elaborated in Appendix B. An important consequence is
that if Algorithm 2 converges to x̂(b) with inputs y(b), Σx⃗, Σw⃗, and it converges to ˜̂x(b)
with inputs ỹ(b), Σ˜⃗x, Σ ˜⃗w, then T−1 ˜⃗̂xn = ˆ⃗xn (b ∈ [B], n ∈ [N ]).

3.7.3 Bernoulli-Gauss Prior

As discussed in Section 3.7.1, even if the signal prior and the noise prior possess
diagonal covariance structure, i.e., Σx⃗ and Σw⃗ are diagonal matrices (and so is Σ(0)

v⃗ ),
as V-BAMP iterates, the effective noise covariance Σ(t)

v⃗ (t > 0) does not preserve this
property in general. The intuition behind this is that while the variable Σ(t)

v⃗ is solely a
second moment, the MMSE estimator F (u⃗(t)

n , Σ(t)
v⃗ ) takes the full pdf of the signal into

account. Remember that the Gaussian probability distribution is fully characterized
by its first two moments, the mean and the covariance. Moreover, the generalized pdf
described by a centered Dirac (δ(x⃗n)) has zero covariance. Taking a linear combination
of a Dirac function and a Gaussian pdf is thus also fully described by its first two
moments (and the weights of the linear combination, i.e., the nonzero probability ϵ).
To summarize, one can expect that for the BG prior V-BAMP and its SE preserve the
(once given) diagonal property of the effective noise covariance Σ(t)

v⃗ . For the BG prior,
after applying the transformation T, the equivalent measurement model becomes

ỹ(b) = A(b)x̃(b) + w̃(b) . (3.15)

In the MMV scenario, T can be compactly incorporated as

YTT = AXTT + WTT .

The transformed pdfs read

f˜⃗x(˜⃗xn) = (1− ϵ)δ(˜⃗xn) + ϵN (˜⃗xn; 0, IB) , (3.16)
f ˜⃗w( ˜⃗wm) = N ( ˜⃗wm; 0, Σ ˜⃗w) , (3.17)
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i.i.d. over m, n, and with diagonal Σ ˜⃗w. That is, a BG prior in the transformed domain
is retained but with uncorrelated components. This is peculiar to the BG prior: in
general the joint distribution will have a different form to the original one.
Consider the SE equation (3.10) that describes the expected evolution of the effective
noise covariance across the V-BAMP iterations. In the MMV scenario, apart from some
special cases, even if Σw⃗ and Σ(t)

v⃗ are diagonal, Σ(t+1)
v⃗ will not be diagonal because the

estimator G(u⃗(t)
n ) operates on the whole vector u⃗(t)

n (but the diagonalization described
in Algorithm 3 can be performed successively in every iteration). However, for the
diagonalized equivalent model (3.15) and the uncorrelated BG prior (3.17), it can be
shown that the V-BAMP iterations preserve the diagonal property of Σ(t)

˜⃗v for all t. The
proof is sketched in Appendix C. This has the following implications:

• The computation of the estimator F (u⃗n; Σv⃗) and its derivative is significantly
simplified.

• The SE becomes B-dimensional instead of B(B + 1)/2-dimensional. In other
words, B(B + 1)/2 effective noise covariance parameters of Σv⃗ are reduced to B

effective noise variances, which in turn carry naturally the MSE estimates for
each signal vector:

MSE(x̂(t)(b), x(b)) = R(Σ(t)
˜⃗v − Σ ˜⃗w)b,b .

It follows that the transformation has to be done only once after taking the measure-
ments. Since B is typically not large, determining T is of negligible computational
effort.

3.8 Correlated Compressed Sensing

As shown in Section 3.7, an MMV CS measurement can always be transformed into an
equivalent one with uncorrelated signal and additive noise vectors. Furthermore, one of
the covariance matrices can be chosen to be transformed into the identity matrix. Using
these facts, it is possible to analyze the effects of signal correlation on the recovery
behavior. In the following, MMV and DCS with the BG prior are considered in order
to gain intuition for the effects of signal correlation. Some of the results, however, are
not limited to the BG prior.
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Noiseless Correlated Compressed Sensing

Assume B = 2 jointly sparse measured vectors with Σx⃗ =
(

1 C
C 1

)
, i.e., the nonzero

components have unit variance and the parameter C ∈ [−1, 1] controls the correlation
between the components of x⃗n. In the MMV case, by intuition, as C increases and the
(nonzero) components of x(1) and x(2) tend to be more similar, one would assume
that the second measurement is less informative, since y(1) and y(2) tend to be more
similar as well. In the limiting case C = 1, x(1) = x(2) and so y(1) = y(2), i.e., the
measurements are simply repeated. However, as long as |C| < 1, one can apply a
whitening (or decorrelation) transform to x⃗n (e.g., with T = (Σx⃗)− 1

2 ), and obtain an
equivalent measurement with Σ˜⃗x = I2. Since the diagonal entries of Σx⃗ as well as those
of Σ(t)

v⃗ are uneffected by the whitening transform (TΣx⃗TT , TΣv⃗TT ), the resulting MSE
is identical to that of the original system.
In contrast, in the DCS the signal correlation does not carry over to the measurement
y⃗m. The case of full correlation (i.e., C = 1) results in a single measurement vector
problem with doubled number of measurements (sampling rate):

(
y(1), y(2)

)
=
(
A(1)x(1), A(2)x(2)

)
⇕y(1)

y(2)

 =
A(1)

A(2)

x(1) .

We conclude that the dimensionality/uncertainty of the noiseless MMV measurement
is rank(Σx⃗) irrespective of signal correlation, while the noiseless DCS measurement
supports the hypothesis that increasing signal correlation is equivalent to an increased
sampling rate.

Noisy Correlated Compressed Sensing

Consider the measurement scenario where Σw⃗ = I2 and Σx⃗ =
(

1 C
C 1

)
, i.e., the nonzero

signal components have unit variance and the parameter C ∈ [−1, 1] controls the
correlation between the B = 2 components of x⃗n. As C approaches 1, the (nonzero)
components in x(1) and x(2) become more and more similar. Applying the joint
diagonalization transformation in the MMV case one obtains Σx⃗ = I2 and diag(Σ ˜⃗w) =
( 1

1+C
, 1

1−C
)T . That is, with increasing correlation the measurement can be interpreted

as if one of the SNRs tends to 0, while the other tends to double the initial value
(or equivalently, one of the noise variances goes to ∞, and the other to 1

2). In the
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limiting case C = 1, x(1) = x(2), and joint diagonalization with Algorithm 3 can not
be performed due to the rank deficiency of Σx⃗ (note that purely joint diagonalization
is possible when one does not require Σ˜⃗x = I). However, the interpretation is still
valid: one of the noise variances goes to ∞ and that measurement is uninformative
(as the corresponding SNR → 0), thus the MMV measurement turns into a single
measurement vector problem with doubled SNR (i.e., half of the original noise variance
on the remaining single vector):

(
y(1), y(2)

)
= A

(
x(1), x(2)

)
+
(
w(1), w(2)

)
⇕

y(1) = Ax(1) + w′ ,

where E{w′
n

2} = 1
2 E{wn(1)2}. The same result can be obtained by the noise averaging

argument. That is, the signal parts are equal (Ax(1) = Ax(2)), but observed twice
with i.i.d. noise realizations. By combining the observations

y(1) + y(2)
2 = Ax(1) + w(1) + w(2)

2

one arrives at a single measurement vector problem with doubled SNR.
In contrast, the DCS scenario turns into a single measurement vector problem with
doubled measurement rate and unchanged noise parameters, as the measurement
matrices can be stacked:

(
y(1), y(2)

)
=
(
A(1)x(1), A(2)x(2)

)
+
(
w(1), w(2)

)
⇕y(1)

y(2)

 =
A(1)

A(2)

x(1) +
w(1)

w(2)

 .

We conclude that in the MMV scenario signal correlation amounts to rescaling of the
SNRs, while in the the DCS scenario correlation can presumably be interpreted as
increasing the sampling rate.

3.9 Replica Analysis

In [83], the replica trick [84] was utilized in order to derive the MSE performance
of loopy belief propagation/V-BAMP for the measurement (3.1) and the BG prior
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(3.7), assuming Σx⃗ = IB and isotropic noise, i.e., Σw⃗ = σ2
wIB. The derivation is very

sophisticated and the generalization to arbitrary signal and noise correlations seems
infeasible due to technical difficulties. However, for the MMV scenario, through the
joint diagonalization presented in Section 3.7 one is able to circumvent these difficulties,
and so it only remains to extend the replica analysis to Σx⃗ = IB and an arbitrary
diagonal (positive definite) noise covariance matrix Σw⃗ = diag(σ2

w(1), . . . , σ2
w(B)).

In particular, the replica method is capable of predicting the fixed points of loopy
belief propagation, which are equivalent to the fixed points of BAMP in the asymptotic
regime (N, M → ∞, R = M/N = const.), as a function of the MSE [85, 86]. In
[83], the analysis has been extended for V-BAMP, where identical noise variance was
assumed and so the overall MSE equals the MSE on each of the B channels. Note
that rigorous equivalence between the replica method and SE is not always guaranteed
and requires additional technicalities [87]. Following the analysis in [83], we derive an
analytical performance prediction for the BAMP for MMV and DCS problems, in which
B different additive noise variances and so B different MSE parameters are incorporated.

Consider the signal prior

fx⃗(x⃗n) = (1− ϵ)δ(x⃗n) + ϵN (x⃗n; 0, IB) (3.18)

for n ∈ [N ] and x⃗n ∈ RB×1. The measurement equations are

y(b) = A(b)x(b) + w(b) , b ∈ [B] , (3.19)

with A(b) ∈ RM×N and w⃗ ∼ N (0, Σw⃗), where Σw⃗ = diag(σ2
w(1), . . . , σ2

w(B)) is a
diagonal matrix carrying the additive noise variances σ2

w(b). We highlight that:

• The analysis is presented for the MMV scenario, i.e., A(1) = . . . = A(B) = A for
the sake of simplicity. The generalization to DCS follows straightforwardly with
only more cumbersome notation.

• The analysis assumes that the measurement matrices have normalized rows, but
at the end of the derivation the result is translated to the normalized columns
case.

The posterior pdf of the estimate X̂ = (x̂(1), . . . , x̂(B)) reads

fX̂|Y(X̂ | Y) = 1
Z

N∏
n=1

fˆ⃗x(ˆ⃗xn)
M∏

m=1
(2π|Σw⃗|)− 1

2 exp
(
−
(
Y −AX̂

)
m

Σ−1
w⃗

(
Y −AX̂

)T

m

)
,

(3.20)
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where Z is the partition function

Z =
∫
RN×B

N∏
n=1

fˆ⃗x(ˆ⃗xn)
M∏

m=1
(2π|Σw⃗|)− 1

2 exp
(
−
(
Y −AX̂

)
m

Σ−1
w⃗

(
Y −AX̂

)T

m

) N∏
n=1

dˆ⃗xn .

Following the analogy between the measurement model (3.19) and the many-body
thermodynamic system [84–86, 88–90] the posterior (3.20) can be interpreted as the
Boltzmann measure on a disordered system with Hamiltonian

H(X) =
N∑

n=1
log fˆ⃗x(ˆ⃗xn) +

M∑
m=1

(
Y −AX̂

)
m

Σ−1
w⃗

(
Y −AX̂

)T

m
. (3.21)

The average free energy of the disordered system given by (3.21) characterizes its
thermodynamic properties. Evaluating the local extrema in the free energy function
provides the channel-wise MMSE for the measurement model (3.19) [84–86, 88–90].
Remember that V-BAMP is an approximate MMSE estimator. When the V-BAMP
estimate is close to the true MMSE estimate, the replica analysis provides the vector-
wise MSE of the estimates at the fixed points of V-BAMP. Assuming self-averaging
[84–86, 88–90] the free energy is defined as

F = lim
N→∞

1
N

EA,X,W {log(Z)} . (3.22)

In general, this is extremely difficult to evaluate. The replica method [84–86, 88–90]
introduces k replicas X̂1, . . . , X̂k of the estimate X̂ and the free energy (3.22) can be
approximated by the replica trick [84–86, 90]

F ≈ lim
N→∞

lim
k→0

EA,x,w
{
Zk
}
− 1

Nk
. (3.23)

Note that the self-averaging property that leads to (3.22) and the replica trick (3.23),
as well as the replica symmetry assumptions are assumed to be valid. Their theoretical
justification is, however, still an open problem in mathematical physics [84–86, 88–90].
In order to evaluate the free energy (3.22) via the approximation (3.23), we write

EA,X,W
{
Zk
}

= |2πΣw⃗|−
k
2 EX

{∫
RN×B

N∏
n=1

k∏
a=1

fx⃗(x⃗a
n)

M∏
m=1

Xmdx⃗a
n

}
, (3.24)
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where

Xm = EA,W

{
exp

(
−1

2

k∑
a=1

v⃗a
mΣ−1

w⃗ (v⃗a
m)T

)}

= EA,W

{
exp

(
−1

2

k∑
a=1

B∑
b=1

1
σ2

w(b)(va
m,b)2

)}
,

and
v⃗a

m = (va
m,1, . . . , va

m,B) =
(
A(X− X̂a) + W

)
m

.

The argument of Xm is rewritten in vector form as

Xm = EA,W

{
−1

2 v⃗mΣ̄−1
w⃗ v⃗T

m

}
= EA,W

{
−1

2
¯⃗vm

¯⃗vT
m

}
(3.25)

with
v⃗m = (v1

m,1, . . . , vk
m,1, v1

m,2, . . . , . . . , vk
m,B) ∈ RkB

and
¯⃗vm = v⃗mΣ̄− 1

2
w⃗

with
Σ̄w⃗ = Σw⃗ ⊗ Ik .

Let us evaluate the covariance matrix Gm = Cov{¯⃗vm}. It is composed of B×B blocks
of size k × k:

1. The main diagonal of Gm consists of entries g1(b) = EA,w{ 1
σ2w(b)(v

a
m,b)2}, which is

different in each of the B blocks but identical within a block.

2. The remaining entries in the blocks of the main diagonal are g2(b) = EA,w{ 1
σ2w(b)v

a
m,bv

a′
m,b},

which are different in each block but identical within a block.

3. The diagonal entries of the off-diagonal blocks are g3(b, b′) = EA,w{va
m,bv

a
m,b′}.

4. The off-diagonal entries of the off-diagonal blocks are g4(b, b′) = EA,w{va
m,bv

a′
m,b′}.

For random measurement matrices A (e.g., Bernoulli or Gaussian, see Section 1.1.4),
and due to (i) x⃗a

n following the same distribution as x⃗n, (ii) the replica symmetry



3.9 Replica Analysis 55

[85, 86], these values turn out to be

g1(b) = 1
σ2

w(b) EA,w{(va
m,b)2}

= 1
σ2

w(b)

( 1
N

N∑
n

(xn(b)− x̂a
n(b))2 + σ2

w(b)
)

,

g2(b) = 1
σ2

w(b) EA,w{va
m,bv

a′

m,b}

= 1
σ2

w(b)

( 1
N

N∑
n

(xn(b)− x̂a
n(b))(xn(b)− x̂a′

n (b)) + σ2
w(b)

)
,

g3(b, b′) = 1
σw(b)σw(b′) EA,w{va

m,bv
a
m,b′}

= 1
σw(b)σw(b′)

( 1
N

N∑
n

(xn(b)− x̂a
n(b))(xn(b′)− x̂a

n(b))
)

,

g4(b, b′) = 1
σw(b)σw(b′) EA,w{va

m,bv
a′

m,b′}

= 1
σw(b)σw(b′)

( 1
N

N∑
n

(xn(b)− x̂a
n(b′))(xn(b)− x̂a′

n (b′))
)

.

By introducing the auxiliary quantities

ma(b, b′) = 1
N

N∑
n=1

x̂a
n(b)xn(b′) ,

Qa(b, b′) = 1
N

N∑
n=1

x̂a
n(b)x̂a

n(b′) ,

qaa′(b, b′) = 1
N

N∑
n=1

x̂a
n(b)x̂a′

n (b′) ,

q0(b, b′) = 1
N

N∑
n=1

xn(b)xn(b′) ,
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the covariance values can be written as

g1(b) = 1
σ2

w(b)(ϵ− 2ma(b, b) + Qa(b, b) + σ2
w(b)) ,

g2(b) = 1
σ2

w(b)(ϵ− (ma(b, b) + ma′(b, b)) + qaa′(b, b) + σ2
w(b)) ,

g3(b, b′) = 1
σw(b)σw(b′)(q0(b, b′)− (ma(b, b) + ma′(b, b)) + qaa′(b, b)) ,

g4(b, b′) = 1
σw(b)σw(b′)(q0(b, b)− (ma(b, b′) + ma′(b′, b)) + qaa′(b′, b′)) .

The pdf of ¯⃗vm is approximated using the central limit theorem by a multivariate
Gaussian distribution as

f¯⃗vm

(¯⃗vm

)
= N

(¯⃗vm; 0, Gm

)
. (3.26)

Combining (3.25) and (3.26) one obtains

Xm = E¯⃗vm

{
exp

(
−1

2
¯⃗vm

¯⃗vT
m

)}
=
∫
RkB

exp
(
−1

2
¯⃗vm

¯⃗vT
m

)
N
(¯⃗vm; 0, Gm

)
d¯⃗vm

=
∫
RkB
|2πGm|−

k
2 exp

(
−1

2
¯⃗vm(IkB + G−1

m )¯⃗vT
m

)
d¯⃗vm

= |2πGm|−
k
2 |2π(G−1

m + IkB)−1| k2
∫
RkB
N
(¯⃗vm; 0, (IkB + G−1

m )−1
)

d¯⃗vm

= |IkB + Gm|−
1
2 .

In the Bayesian setting the distribution of x⃗n matches the distribution of ˆ⃗xn and that
of the replicas ˆ⃗xa

n, thus g3 = g4 = 0. Furthermore, due to the replica symmetry [85, 86]
ma(b, b) = ma′(b, b) = m, Qa(b, b) = Q(b), and qaa′(b, b) = q(b). The covariance Gm is
a structured matrix that, due to its block structure, can easily be constructed using
all-ones matrices, identity matrices, and Kronecker products. Its kB eigenvalues turn
out to be:

α1(b) = g1(b) + (k − 1)g2(b) , ×1 , b ∈ [B] ,

α2(b) = g1(b)− g2(b) , ×(k − 1) , b ∈ [B] ,
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with α1(b) having multiplicity 1 (b ∈ [B]) and α2(b) having multiplicity k− 1 (b ∈ [B]).
Thus,

|IkB + Gm|−
1
2 =

(
B∏

b=1
(1 + α1(b))(1 + α2(b))k−1

)− 1
2

=
 B∏

b=1

(
1 + k

ϵ− 2m(b) + q(b) + σ2
w(b)

σ2
w(b) + Q(b)− q(b)

)
B∏

b=1

(
1 + 1

σ2
w(b)(Q(b)− q(b))

)k−1
− 1

2

.

Using the Taylor series approximation

exp(x) ≈ 1 + x⇒ (1 + x)− 1
2 ≈ exp

(
−x

2

)
,

one arrives at

lim
k→0

Xm ≈ exp
(
−k

2

B∑
b=1

ϵ− 2m(b) + q(b) + σ2
w(b)

σ2
w(b) + Q(b)− q(b) − log

(
Q(b)− q(b) + σ2

w(b)
)

+ log
(
σ2

w(b)
))

.

Following the derivation in [83, App.], (3.24) can be written as

EA,X,W
{
Zk
}

=
∫

exp
(
kNΦ(m, m̂, q, q̂, Q, Q̂)

)
dm dm̂ dq dq̂ dQ dQ̂ .

Remember that one is only interested in the stationary points of the free energy
expression (3.24) [83]. Thus, we set

F = Φ({m(b)∗, m̂(b)∗, q(b)∗, q̂(b)∗, Q(b)∗, Q̂(b)∗}b=1,...,B)

= 1
2

B∑
b=1

(Q(b)Q̂(b)− 2m(b)m̂(b) + q(b)q̂(b))− R

2 log
(|2πΣw⃗|

)
− R

2

B∑
b=1

(
ϵ− 2m(b) + q(b) + σ2

w(b)
Q(b)− q(b) + σ2w(b) + log

(
Q(b)− q(b) + σ2

w(b)
)− log

(
σ2

w(b)
))

+
∫
RB

fx⃗(x⃗)
∫
RB

log
∫
RB

fˆ⃗x(ˆ⃗x)

B∏
b=1

exp
(
− 1

2 q̂(b) x̂(b)2 + m̂(b) x̂(b)x(b) +
√

m̂(b) x̂(b)h(b)
)
dˆ⃗xDh⃗ dx⃗ , (3.27)

where ∗ denotes stationary points, and the second integration is over a Gaussian
measure, i.e., Dh = N (h⃗; 0, IB)dh⃗ = ∏B

b=1N (h(b); 0, 1)dh(b). The stationary points
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are obtained by differentiation as

dΦ
dm(b) = 0 ⇒ m̂(b)∗ = R

E(b) + σ2
w(b) = γ(b) ,

dΦ
dq(b) = 0 ⇒ q̂(b)∗ = R

E(b) + σ2
w(b) = γ(b) ,

dΦ
dQ(b) = 0 ⇒ Q̂(b)∗ = 0 ,

where we used the substitution1 E(b) = Q(b)− q(b), and that in the Bayesian setting
q(b)∗ = m(b)∗, and Q(b)∗ = ϵ. As N →∞, E(b) = MSE(x̂(b), x(b)). Substituting back
into (3.27) and using E⃗ = (E(1), . . . , E(B))T one obtains

F(E⃗, Σw⃗) = −R

2

B∑
b=1

(
log

(
2π(σ2

w(b) + E(b))
)

+ ϵ + σ2
w(b)

E(b) + σ2
w(b)

)

+
∫
RB

fx⃗(x⃗)
∫
RB

log
∫

RB
fˆ⃗x(ˆ⃗x)

B∏
b=1

exp
(
− 1

2γ(b) x̂(b)2 + γ(b)x̂(b)x(b) +
√

γ(b)x̂(b)h(b)
)

dˆ⃗x
Dh⃗ dx⃗ .

Inserting the signal prior (3.18) results in

F(E⃗, Σw⃗) = −R

2

B∑
b=1

(
log

(
2π(σ2

w(b) + E(b))
)

+ ϵ + σ2
w(b)

E(b) + σ2
w(b)

)

+ (1− ϵ)
∫

log
(

(1− ϵ) + ϵ
∫

exp
(
− 1

2γ(b)x̂2 +
√

γ(b)x̂(b)h(b)
)
Dx

)
Dh⃗

+ ϵ
∫ ∫

log
(1− ϵ)+

ϵ
∫

exp
(
− 1

2γ(b)x̂(b)2 + γ(b)x̂(b)x(b) +
√

γ(b)x̂(b)h(b)
)
D ˆ⃗x

Dh⃗Dx⃗ ,

1Following the proof: 1
N

∑
n x̂2

n − x2
n = 1

N

∑
n(xn + en)2 − x2

n = 1
N

∑
n x2

n + 2xnen + e2
n − x2

n =
1
N

∑
n e2

n = 1
N

∑
n(x̂n − xn)2 → MSE(x̂, x), where we used that the estimation error en and xn are

uncorrelated and that N → inf.
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with the measures Dx⃗ and D ˆ⃗x analogously to Dh⃗. Writing out the integration measures
and further simplifying leads to

F(E⃗, Σw⃗) = −R

2

B∑
b=1

(
log

(
2π(σ2

w(b) + E(b))
)

+ ϵ + σ2
w(b)

E(b) + σ2
w(b) −

γ(b)(1 + ϵγ(b))
R(1 + γ(b))

)

+
∫

log
(

ϵ
B∏

b=1
(1 + γ(b))− 1

2 + (1− ϵ) exp
(
− 1

2

B∑
b=1

γ(b)h2(b)
))
Dh⃗

+
∫

log
(

ϵ
B∏

b=1
(1 + γ(b))− 1

2 + (1− ϵ) exp
(
− 1

2

B∑
b=1

γ(b)
1 + γ(b)h2(b)

))
Dh⃗ .

We underline that the result coincides with [83, eq.(14)] when the noise variances are
identical, i.e., σ2

w(b) = σ2
w, ∀b ∈ [B].

Free energy function rescaling

Remember that the above derivation assumes normalized rows in A(b), b ∈ [B]. In
order to arrive at a free energy function that is valid for measurement matrices with
normalized columns we rescale the measurement equation and replace σ2

w(b) with
Rσ2

w(b):

y = Ax + w ⇔ 1√
R

y = Āx + 1√
R

w

= ȳ = Āx + w̄ ,

where Ā has normalized columns and w̄m ∼ N (0, σ2
w

R
) if wm ∼ N (0, σ2

w). The free
energy function given that the measurement matrices have normalized columns becomes

F(E⃗, Σw⃗) = −R

2

B∑
b=1

(
log

(
2π(Rσ2

w(b) + E(b))
)

+ ϵ + Rσ2
w(b)

E(b) + Rσ2
w(b) −

γ(b)(1 + ϵγ(b))
R(1 + γ(b))

)

+
∫

log
(

ϵ
B∏

b=1
(1 + γ(b))− 1

2 + (1− ϵ) exp
(
− 1

2

B∑
b=1

γ(b)h2(b)
))
Dh⃗

+
∫

log
(

ϵ
B∏

b=1
(1 + γ(b))− 1

2 + (1− ϵ) exp
(
− 1

2

B∑
b=1

γ(b)
1 + γ(b)h2(b)

))
Dh⃗

(3.28)

with
γ(b) = R

E(b) + Rσ2
w(b) .
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Discussion

The free energy function (3.28) cannot be further simplified, because the arguments
of the exponents are weighted sums of χ2-distributed random variables (for which a
closed form pdf is not known), and the antiderivative of 1 + log(x) is not known as
well. Thus, it remains to numerically evaluate the integrals and F(E⃗) in the region
of interest on a high resolution grid. In Figure 3.6, free energy functions for different
rates and B = 1, ϵ = 0.1, σ2

x = 1, and no additive noise are shown. The values of
E = E(1) at the local extrema of F(E) correspond to fixed points of (V)BAMP (i.e.,
where x̂(t+1) = x̂(t) = x̂) in terms of the MSE(x̂(t), x), and the local maxima to stable
fixed points. Starting from a large MSE (i.e., from the right on the E-axis), V-BAMP
typically converges to the local maximum with the larger MSE, whereas the MMSE of
the CS measurement is the smallest E for which F(E) is a local maximum. Comparing
with Figure 2.5 (Section 2.3.1) one can establish a match:

• At R = 0.4 > RPT there is one local maximum at E = 0.

• At R = 0.165 < RPT there are two local maxima, one at E ≈ −10dB, and one
at E = 0. The local minimum is at E ≈ −30dB, corresponding to the second
crossing in Figure 2.5c.

• At R = 0.08 < RPT there are two local maxima, one at E ≈ −10dB (corre-
sponding to the crossing in 2.5d), and one in the limiting case at E → 0. In
particular, as R = 0.08 lies below the second order PT, the two local maxima
are not separated by a local minimum.

• The RPT lies at R ≈ 0.21, above which V-BAMP will converge to MSE(x̂, x) = 0
whp (successful), and below which V-BAMP will converge to a relatively high
MSE whp (unsuccessful). This is visualized in Figure 3.3b, where the local
minimum and the first local maximum simultaneously (dis)appear at R ≈ 0.21,
and the only remaining maximum is at E = 0.
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Fig. 3.6 1-D free energy functions for different rates (ϵ = 0.1 and σ2
w = 0).

Next, the noisy uniform case is investigated. In Figure 3.7, free energy functions
are shown for different rates, B = 1, ϵ = 0.1, and additive noise with σ2

w = −35dB.
Comparing with Figure 2.6 (Section 2.3.1), one can establish a match:

• At R = 0.4 > RPT and R = 0.21 ≳ RPT there is a local maximum at E ≈
−32dB and E ≈ −30dB, corresponding to the crossing on Figure 2.6a and 2.6b,
respectively.

• At R = 0.165 < RPT and R = 0.08 < RPT, there is a local maximum at
E = −12dB and E = −10dB, corresponding to the crossing on Figure 2.6c and
2.6d, respectively.

• The RPT lies at R ≈ 0.21, above which V-BAMP will converge to MSE(x̂, x) = 0
whp (successful),and below which V-BAMP will converge to a high MSE(x̂, x)
whp (unsuccessful). This is visualized in Figure 3.7(b), where a second local
maximum and a local minimum appear at R ≈ 0.17, and disappear at R ≈ 0.21.
That is, between R = 0.17 and R = 0.21, the MMSE of the CS measurement (as
predicted by the replica analysis) is typically not reached by V-BAMP.
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Fig. 3.7 1-D free energy functions for different rates (ϵ = 0.1 and σ2
w = −35dB).

In order to understand the connection between the free energy function and SE in
full depth, in Figure 3.8 and Figure 3.9 the free energy functions are shown directly
below the 2-dimensional SE with matched axes. The parameters are again B = 2,
ϵ = 0.1, Σx⃗ = I2, and (Σw⃗)b,b = −35dB. Let us use MSE(t)(b) for MSE(x̂(t)(b), x(b)),
and MSE(b) for MSE(t)(b) as t → ∞. In the upper two rows, the axes are the
MSE values of the vectors b = 1 respectively b = 2, in dB. In the first row, the
arrows point from one pair of MSE (MSE(t)(1), MSE(t)(2)) towards the MSE pair
(MSE(t+1)(1), MSE(t+1)(2)) predicted by the SE equation (note that the arrows are
scaled for clarity). In the second row the streamlines corresponding to the arrows
in the first row are plotted, i.e., the curves whose tangents are the arrows. In the
third row, the free energy F(E⃗) = F(E(1), E(2)) is shown, where the brightness of
the shades corresponds to the value of the free energy function (i.e., brighter means
larger value). The blue arrows depict the gradient vectors of F(E⃗), while the black
lines are isolines. In all three plots, stable fixed points (of the SE equation)/sinks
(of the streamlines)/local maxima (of the free energy function) are denoted by a red
square, while unstable fixed points/sources/saddle points are denoted by a black square.
Observe that at a low rate (e.g., R = 0.11) there is only one stable fixed point/local
maximum, at a pair of relatively high MSE /E⃗. As the measurement rate increases, a
second stable fixed point/local maximum appears at a pair of lower MSE /E⃗ (which is
the component-wise MMSE), together with an unstable fixed point/saddle point. As
the rate increases further, the value of the second local maximum rises, while the fixed
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point/saddle point translates towards the first fixed point/local maximum. At an even
higher rate the unstable fixed point/saddle point merges with the first stable fixed
point/local maximum and they annihilate each other, leaving only the stable fixed
point/local maximum with the pair of lower MSE /E⃗. We conclude that the sampling
rate region in which V-BAMP does not reach the MMSE performance is where two
local maxima of F(E⃗) simultaneously exist, as V-BAMP typically converges to the
fixed point with the higher component-wise MSE, while the component-wise MMSE
corresponds to the fixed point with the lower component-wise MSE. Comparing the
arrows of the SE prediction (first row) and the gradient vectors of the free energy, one
can establish a match and interpret V-BAMP empirically as a gradient ascend on the
free energy function, which is initialized at a high component-wise MSE.
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Fig. 3.8 The 2-dimensional (symmetric) SE and replica analysis MSE prediction
(Σx⃗ = I2, σ2

w(1) = σ2
w(2) = −35dB). Top row: the SE prediction on the 2-D MSE

plane. Middle row: streamline curves whose tangents are the arrows of the top row.
Bottom row: 2-D symmetric free energy function with isolines and gradient vectors:
the brightness of the shade represents the free energy value (i.e., brighter means
larger value). Red/black squares are placed at stable/unstable fixed points and local
maxima/saddle points, respectively.
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Fig. 3.9 The 2-dimensional (symmetric) SE and replica analysis MSE prediction
(Σx⃗ = I2, σ2

w(1) = σ2
w(2) = −35dB). Top row: the SE prediction on the 2-D MSE

plane. Middle row: streamline curves whose tangents are the arrows of the top row.
Bottom row: 2-D symmetric free energy function with isolines and gradient vectors:
the brightness of the shade represents the free energy value (i.e., brighter means
larger value). Red/black squares are placed at stable/unstable fixed points and local
maxima/saddle points, respectively.
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The non-uniform noise case

In Figure 3.10 and Figure 3.11, the SE and replica analysis prediction are compared,
this time for the anisotropic noise case with ϵ = 0.1, σ2

w(1) = −45dB, and σ2
w(2) =

−25dB. Analogously to the uniform case, one observes phase transitions as the rate
R increases: at a low rate one stable fixed point/local maximum (at a pair of high
(MSE(1), MSE(2))/E⃗ pair) is present; as the rate increases, a second stable fixed
point/local maximum appears simultaneously with an unstable fixed point/saddle
point; at an even higher rate the unstable fixed point/saddle point merges into the
first stable fixed point/local maximum and only one stable fixed point/local maximum
at a pair of low (MSE(1), MSE(2))/E⃗ pair remains. The match between the SE and
the replica analysis prediction confirms that the generalization to arbitrary diagonal
noise covariance matrices Σw⃗ is meaningful.
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Fig. 3.10 The 2-dimensional (asymmetric) SE and replica analysis MSE prediction
(Σx⃗ = I2, σ2

w(1) = −45dB, σ2
w(2) = −25dB). Top row: the SE prediction on the 2-D

MSE plane. Middle row: streamline curves whose tangents are the arrows of the top
row. Bottom row: 2-D symmetric free energy function with isolines and gradient
vectors: the brightness of the shade represents the free energy value (i.e., brighter
means larger value). Red/black squares are placed at stable/unstable fixed points and
local maxima/saddle points, respectively.
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Fig. 3.11 The 2-dimensional (asymmetric) SE and replica analysis MSE prediction
(Σx⃗ = I2, σ2

w(1) = −45dB, σ2
w(2) = −25dB). Top row: the SE prediction on the 2-D

MSE plane. Middle row: streamline curves whose tangents are the arrows of the top
row. Bottom row: 2-D symmetric free energy function with isolines and gradient
vectors: the brightness of the shade represents the free energy value (i.e., brighter
means larger value). Red/black squares are placed at stable/unstable fixed points and
local maxima/saddle points, respectively.
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Fully correlated signals

As discussed in Section 3.8, thanks to the decorrelation transform, fully correlated
signals ((Σx⃗)b,b′ = (Σx⃗)b,b, b, b′ ∈ 1, 2) can be interpreted as if there were no correlation
((Σx⃗)1,2 = 0) but zero SNR on one of the measurements, i.e., (Σw⃗)2,2 = ∞. In order
to confirm this result by the replica analysis, we plug in σ2

w(2) → ∞ into (3.28): as
σ2

w(2) → ∞, γ(2) → 0, and the two integrals simplify from a 2-D to a 1-D integral,
which is reduced to the 1-D free energy function. Furthermore,

− R

2

B∑
b=1

(
log

(
2π(Rσ2

w(b) + E(b))
)

+ ϵ + Rσ2
w(b)

E(b) + Rσ2
w(b) −

γ(b)(1 + ϵγ(b))
R(1 + γ(b))

)

= −R

2

(
log

(
2π(Rσ2

w(1) + E(1))
)

+ ϵ + Rσ2
w(1)

E(1) + Rσ2
w(1) −

γ(1)(1 + ϵγ(1))
R(1 + γ(1))

)

− R

2

(
log

(
2π(Rσ2

w(2) + E(2))
)

+ ϵ + Rσ2
w(2)

E(2) + Rσ2
w(2) −

γ(2)(1 + ϵγ(2))
R(1 + γ(2))

)
,

where the second term goes to∞ independently of E(2). This corresponds to a shift in
the free energy function F(E(1), E(2)) uniformly towards −∞ along E(2). Since one
is interested only in the local extrema (and the curvature), the free energy function is
essentially reduced to F(E(1)) (while in fact it is constant over E(2)).

Large B limit

Next, the behavior of V-BAMP is discussed as the number of jointly sparse vectors
B is increased. In Figure 3.12, the SE curves for different values of B are plotted for
the BG prior at nonzero probability ϵ = 0.1, sampling rate R = 0.25, and uniform
signal and noise Σx⃗ = IB, (Σw⃗)b,b = −35dB, b ∈ [B]. Because of the symmetry, the
evolution is characterized by a single effective noise variance (Σ(t)

v⃗ )b,b. At this rate, all
SE curves are crossing the baseline at a relatively low effective noise variance. However,
as the rate is further decreased, the first crossing (at a relatively high effective noise
variance) that explains the PT appears later for larger values of B. Ultimately, the
question arises whether a first crossing at a relatively high effective noise variance
exists, since the SE curves become nearly parallel to the baseline in a large range of the
effective noise variance. This is further illustrated in Figure 3.13: free energy curves
for the same setting are plotted at sampling rates around the PT, showing the birth
and death of the local extrema as a function of the rate R. One can observe that even
though a PT is still observable for B = 10, the jump from a relatively high MSE to
a relatively low MSE becomes soft. We hypothesize that the appearance of the local
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minimum in the free energy curve (and so the second crossing of the SE curve and the
baseline) vanishes as B is further increased. It follows that instead of V-BAMP being
characterized by the PT rate, the MSE of V-BAMP decreases smoothly with R.
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Fig. 3.12 Noisy SE curves for different number of jointly sparse BG signals (ϵ = 0.1,
Σx⃗ = IB, (Σw⃗)b,b = −35dB, R = 0.25).
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Fig. 3.13 1-D free energy functions for different number of jointly sparse BG signals
and different rates (ϵ = 0.1, (Σw⃗)b,b = −35dB).



Chapter 4

Applications

CS has applications in many fields of signal processing, such as sampling [91], com-
pression [92, 93], solution of inverse problems, design of radiating systems, radar
and through-the-wall imaging [7, 94–97], antenna characterization [98], photography
[12, 99], and medical imaging [55, 100–104]. The majority of these applications involve
sophisticated manipulations that lead to a clean CS formulation (e.g., (1.3) or (1.10)).
In the following, we discuss some applications that are already closely related to the
linear inverse problem and require only simple modifications in order to uncover the
underlying CS problem, and in particular the potential utilization of BAMP and
V-BAMP.

4.1 Complex-valued Compressed Sensing

Most of existing work in the field of CS focuses on real-valued signals. However,
in many branches of modern signal processing the calculation with complex-valued
variables is nearly unavoidable [7, 95, 101, 105]. For an overview of existing algorithms
for complex-valued CS the interested reader is referred to [106] and the references
therein. Consider a real-valued measurement matrix A and complex-valued signal
(and additive noise) vector. As in the real-valued CS scenario, most components of
the unknown x are 0, and the other components are nonzero in both their real and
imaginary parts. That is, the real and imaginary parts of component n are dependent:

y = Ax + w ,

Re{y}+ j Im{y} = A Re{x}+ jA Im{x}+ Re{w}+ j Im{w} .
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Assuming the probabilistic measurement model and separating the real and the imagi-
nary parts results in

(
y(1), y(2)

)
= A

(
x(1), x(2)

)
+
(
w(1), w(2)

)
, (4.1)

where y(1) = Re{y}, x(1) = Re{x}, w(1) = Re{w}, y(2) = Im{y}, w(2) = Im{w},
and x(2) = Im{x}. When the pdf of the complex-valued signal is expressed as
fx⃗(x⃗n) = fx(1),x(2)(xn(1), xn(2)) (and the noise is complex normal distributed), together
with (4.1) it comprises an MMV scenario, which can be solved efficiently with V-BAMP.

Now assume that not only the signal vector and the measurement noise are complex-
valued, but also the measurement matrix A. In general, the real and imaginary parts
of the measurement matrix A are independent, i.e., Re{A} = A(1) and Im{A} = A(2)
are two independent measurement matrices. Separating real and imaginary parts
results in

Re{y} = Re{A}Re{x} − Im{A} Im{x}+ Re{w} ,

Im{y} = Re{A} Im{x}+ Im{A}Re{x}+ Im{w} .

After rewriting (using the notation of (4.1) and A(1) = Re{A}, A(2) = Im{A}),
y(1)

y(2)

 =
A(1) −A(2)

A(2) A(1)

x(1)
x(2)

+
w(1)

w(2)

 ,

where the unknown obeys the group sparsity property discussed in Section 1.3.1. While
the V-BAMP algorithm presented in Section 3.3 is not directly suited for the group
sparse problem, several closely related algorithms have been proposed [47, 48, 107]
which cope efficiently with group sparsity.

4.2 Radio Frequency Identification

RFID is a modern technology that allows us to wirelessly identify transponders (tags)
with a reader device [108, 109]. For its numerous applications in healthcare, retail,
supply chain management, public transport, and many other areas, the interested
reader is referred to [60] and references therein. In particular, tags are typically very
small, low-cost, and battery-less devices that carry an integrated passive circuit. The
reader, when in the vicinity of the tags, initiates the data exchange between the tags
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and itself by establishing a wireless link, i.e., emitting a carrier signal. The tags that
receive the carrier signal first establish a handshake mechanism with the reader in the
acquisition phase and then transmit their payload in the data read-out phase. The
payload typically carries information about the object to which the tag is attached,
e.g., product code or sensory information.
Our focus is on the the acquisition phase, which can be modelled by the following
sequence of events:

1. The reader emits the known carrier signal.

2. The carrier signal passes through the forward channel and is received by the tag.

3. The tag is activated and modulates its signature sequence onto the received signal
(backscatter modulation) and transmits it [110].

4. The backscatter signal passes through the backward channel and is then received
by the reader.

In order to formally state the acquisition phase in the baseband signal model, the
following quantities are defined:

• N : the total number of tags in the pool. The reader is prepared to acquire and
read-out a number of tags from this pool.

• hf
n: the forward channel coefficient of tag n, i.e., the channel coefficient from the

transmit antenna of the reader to tag n. It is typically modelled as a Rayleigh
distributed random variable. One can collect the forward channel coefficients
into the vector hf = (hf

1 , . . . , hf
N)T .

• sn: the signature sequence of tag n. It is typically a sequence of M bits or
symbols from a finite symbol alphabet.

• hb
n: the backward channel coefficient of tag n, i.e., the channel coefficient from

tag n to the receive antenna of the reader. It is typically modelled as a Rayleigh
distributed random variable. One can collect the backward channel coefficients
into the vector hb = (hb

1, . . . , hb
N)T .

• hn = hf
nhb

n: the compound channel coefficient of tag n. Again, h = (h1, . . . , hN )T

is the collection of compound channel coefficients.
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Suppose K out of N tags from the collection are in the reading range, with indices
n1, . . . , nK , and respond simultaneously. The forward and backward channel coefficients
for the tags not in reading range ([N ] \ {n1, . . . , nK}) are assumed to be 0 in the
transmission model. Then, the received baseband signal at the reader during acquisition
reads

y =
K∑

k=1
snk

hf
nk

hb
nk

+ w

= Sh + w ,

where
S = (s1, . . . , sN)

is the collection of the N signature sequences and w is additive noise, assumed to be
white Gaussian. Here, y, S are known to the reader, wm (m ∈ [M ]) is assumed to be
zero-mean i.i.d. Gaussian, and the nonzero components of h correspond to the indices
of the tags in read range. The task of the reader is to determine which of the N tags
are in reading range as efficiently and as fast as possible. This could be, e.g., in a
shopping cart at checkout or a package of goods at a transportation checkpoint. With
clever choice of the signature sequences (e.g., normalized pseudo-random antipodal
sequences of sufficient length [21]), the matrix S fulfills the prerequisits of a valid CS
measurement matrix whp. When the collection of all tags is sufficiently large and the
number of tags that are to be read out simultaneously is relatively low, i.e., K ≪ N ,
the signature sequences can be chosen with length M ≪ N . Moreover, the channel
coefficients can be modelled as random variables, where hf

n (hb
n) and hf

n′ (hb
n′) are

i.i.d. and their distribution is known. Taking these factors into consideration, the
potential of BAMP is self-evident. The interested reader is referred to [60], in which
the application of CS to the presented model is investigated in depth and compared to
state-of-the-art methods.

Above, a reader unit with a single receive antenna was considered. Suppose the
same setup but with a reader that is equipped with B > 1 receive antennas (but still
a single carrier emitting transmit antenna). Then, a backward channel coefficient is
associated with each pair of tag and receive antenna, i.e., between tag n and receive
antenna b one has hb

n(b). The compound channel coefficient hf
nhb

b(b) = hn(b) is obtained
through the chain: transmit antenna → tag n → receive antenna b. The B received
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baseband signals at the reader can be written as
(
y(1), . . . , y(B)

)
= S

(
h(1), . . . , h(B)

)
+
(
w(1), . . . , w(B)

)
= SH + W .

Here, each row of H is either the zero vector or a realization of a random vector
representing the collection of B compound channel coefficients, i.e., nonzero whp. That
is, the distribution of h⃗n = (h(1), . . . , h(B))T can be determined (based on the physical
properties of the system), and the potential of V-BAMP becomes apparent. This model
can be straightforwardly extended to the case of multiple readers with an arbitrary
number of receive antennas.
In the majority of wireless telecommunication models zero correlation between signals
at different receive antennas is approximately guaranteed by the distance between the
pairs of antennas, and the resulting signal model describing the system is relatively
simple. However, in RFID, due to physical limitations, uncorrelatedness of the signals
at the neighboring receiver antennas is not necessarily given. The V-BAMP algorithm,
the joint decorrelation transform, and the replica analysis provide an efficient means to
cope with the complexity of the signal models that result from closely spaced antennas.

4.3 Multiuser Detection

Wireless multiuser communication systems [111], and specifically machine-to-machine
(M2M) communications, have received much attention recently since the number of
autonomously communicating devices is expected to grow tremendously [112]. Many
practical scenarios can be represented by a star topology, in which a multitude of
battery-driven and/or low-complexity devices communicate with one central aggregation
node. In the uplink transmission, when the central node collects data from the
multitude of spatially distributed devices, several multiple access schemes are available
(time/code/frequency division multiple access) for simultaneous transmission such that
the receiver is still able to separate the data streams. However, with the growing
number of devices in one system, and due to the fact that typically only a small
fraction of all devices transmit at the same time, orthogonal multiple access schemes
introduce a significant overhead. Applications involving low-complexity and possibly
battery-driven devices call for a low-overhead, simple transmission protocol and efficient
signal processing methods with minimal cooperation between the users. The interested
reader is referred to the related state of the art works [70, 113–116].
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4.3.1 Joint Activity Detection and Channel Estimation

Consider a code division multiple access (CDMA) wireless communication system
with star topology, i.e., N devices (denoted by 1, . . . , N) communicate with a central
aggregation node C. Addressed is the uplink scenario, in which a subset of the N

devices transmit simultaneously to C. The task of activity detection and channel
estimation refers to the problem of detecting the set of active (transmitting) users, and
estimating their individual channel coefficients. Estimating the channel coefficients
is crucial for subsequent data transfer since equalization is an essential part in the
transmission chain. For the time being, asynchronicity in the system is neglected
and time is discretized into frames: each device is active and transmits within the
duration of a complete frame, or is inactive and does not transmit in a given frame.
For simplicity, only one frame is considered in the following, because frames do not
overlap in time and thus are independent. We assume a flat fading channel, i.e., the
channel does not change within the duration of one frame. Within a frame an arbitrary
constellation of pilot and data symbols is possible as long as there is at least one pilot
symbol per frame. Without loss of generality, one pilot symbol pn per frame is assumed,
which allows for simple presentation. Assume binary phase-shift keying modulation
with symbol alphabet B = {−1, 1}. The symbols of user n are spread using a unique
spreading sequence for user n, vn ∈ {−1/

√
M, 1/

√
M}M , where M < N and thus the

CDMA system is overloaded in the sense that there are more users in the system than
signal space dimensions. The transmitted pilot signal corresponding to one symbol of
user n is

xn = pnsn .

Assuming sporadic device activity, during each frame only a small subset S ⊂ [N ] of
the devices is active, each independently and uniformly with probability ϵ≪ 1. The
unknown channel coefficients corresponding to the active devices are assumed to be
complex, i.e., hn = Re{hn}+ j Im{hn} ∈ C for n ∈ S, whereas the channel coefficients
corresponding to the inactive devices are defined to be zero, i.e., hn = 0 for n /∈ S.
The pilot signal received by the central aggregation node C from device n becomes

yn = hnxn , n ∈ [N ] ,

which sum up to the overall received signal

y =
∑
n∈S

yn + w , (4.2)
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with wm ∼ CN (0, 2σ2
w) (m ∈ [M ]) being complex zero-mean additive white Gaussian

noise (AWGN) i.i.d. over m. Rewrite (4.2) as

y = S diag(p1, . . . , pN)h + w

= S̃h + w , (4.3)

where S̃ = (p1s1, . . . , pNsN). The task of simultaneous activity detection and channel
estimation amounts to detecting and estimating the nonzero channel coefficients. In
(4.3), the unknown h is complex-valued and sparse, and with proper choice of pilot
symbols and CDMA sequences the matrix S̃ is a valid CS measurement matrix fulfilling
the conditions for robust sampling (cf. Section 1.1.4). As shown in Section 4.1, (4.3) is
an MMV CS measurement, which, when the pdf of the channel coefficients is available,
can be solved via V-BAMP. Remember that V-BAMP is an approximate MMSE
estimator and the estimate ĥn almost never equals exactly hn. Activity detection
consists in detecting the indices of the nonzeros in h. When the number of active users
is known, e.g., K, this can be achieved by keeping the K indices with largest magnitude
hn. However, when the number of active users is not known, other techniques such as
thresholding or the EM algorithm (see Section 3.5) can be employed. The similarity
of the above setup to the RFID application is clear. However, in wireless multiuser
communication systems activity detection and channel estimation can be combined
with (subsequent) data transmission, as discussed in the following. Pilot and data
symbols can be arranged in particular patterns into frames. Performing simultaneous
frame-wise activity detection, channel estimation, and data demodulation is a potential
application of V-BAMP, with a prior pdf that is matched to the frame composed of
pilot and data symbols.

4.3.2 QAM Demodulation

In the previous section channel estimation using pilot symbols was considered. Once
the channel coefficients are available at the central receiving node, it is ready to receive
the user data payload as it can equalize the channel within the channel coherence time
[117].
Only one frame is considered in the following. User n is either inactive and not
transmitting, or is active and transmitting log2 U bits in a frame, that are Gray-
mapped onto an Q-ary QAM symbol. In QAM, which is well established in practice,
the QAM symbols are composed of a real and an imaginary part. Both take values
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from the same real-valued alphabet, which is symmetric around 0:

s(q)∗ = a + jb , a, b ∈ A = 1
Z
{±1,±3, . . . ,±(

√
Q− 1)}

with Z being a normalization factor depending on the modulation order and A being the
set of real values for the real/imaginary parts of the complex-valued symbol alphabet
S∗. In practice, U ∈ {4, 16, 64, 256, 1024, 4096}. Each of the QAM symbols s(q)∗ ∈ S∗

is represented by a complex number, i.e., s(q)∗ = Re{s(q)∗} + j Im{s(q)∗}, whose real
and imaginary parts correspond to the in-phase and quadrature-phase components
of the symbols. Note that the superscript ∗ denotes complex-valued quantities. The
sporadic node activity is modeled by the activity probability ϵ, i.e., in a given frame
each node transmits with probability ϵ independently from the other nodes. When the
inactive users are represented as transmitting a zero symbol, the vector of transmitted
symbols x∗ = (x∗

1, . . . , x∗
N)T consists of elements from the extended alphabet

x∗
n ∈ S∗ ∪ {0} ∀n ∈ [N ] ,

where S∗ = {s(1)∗, . . . , s(Q)∗} denotes the QAM symbol alphabet normalized to average
symbol energy 1. To keep the theoretical description simple, only one transmit
symbol per frame is assumed. The canonical input-output relationship of the uplink
transmission from the N nodes to the center node C can be cast as

y∗ = Ax∗ + w∗ , (4.4)

where w̃ ∈ CK is circularly-symmetric complex AWGN, and the measurement matrix
A ∈ RM×N subsumes the transmit and receive filters, the channel impulse responses,
and the multiple access scheme signature sequences [70]. In orthogonal systems, (4.4)
is well determined. However, in very large communication systems one can fall back to
the underdetermined design, i.e., M < N , which can be handled by the CS framework.
One can write (4.4) equivalently as

(
y(1), y(2)

)
= A

(
x(1), x(2)

)
+
(
w(1), w(2)

)
, (4.5)

where x⃗n = (xn(1), xn(2))T , and the equivalent QAM vector alphabet is

S =
{(

Re{s(1)∗}, Im{s(1)∗}
)T

, . . . ,
(

Re{s(Q)∗}, Im{s(Q)∗}
)}
∪ {(0, 0)T}

= {⃗s(1), . . . , s⃗(Q)} .
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If one assumes that the distribution of the transmitted symbols is uniform, the pdf of
x⃗n becomes

fx⃗(x⃗n) = (1− ϵ)δ(x⃗n) + ϵ

Q

Q∑
q=1

δ(x⃗n − s⃗(q)) .

If the matrix A is suitably designed (which is partially ensured by the randomness
of the channel coefficients), together with (4.5) this constitutes a probabilistic MMV
scenario, which can be solved efficiently with V-BAMP.





Chapter 5

Conclusions

This thesis investigated the V-BAMP algorithm for the DCS and MMV scenarios,
which can account for arbitrary signal and noise correlation. The effects of correlation
in the signal were examined both using numerical simulations and the SE equations.
A joint decorrelation method showed that an arbitrary MMV measurement can be
transformed (using an invertible linear transformation) into an equivalent measurement
without signal and noise correlations, such that the noise covariance matrix contains
the B individual inverse SNRs on its diagonal. Additionally, it was proven that the
V-BAMP algorithm and its SE are equivariant w.r.t. invertible linear transformations.
That is, both V-BAMP and its theoretical analysis on the original measurement and
the transformed (decorrelated) measurement are equivalent. Furthermore, we show
that for the widely employed BG prior V-BAMP preserves the diagonality of the
effective noise covariance matrix. An important consequence is that while in general
V-BAMP is described by B(B + 1)/2 states for B jointly measured vectors, for BG
signals this is reduced to only B states, which are in direct correspondence with the
B individual MSEs. Furthermore, when performing the analysis of V-BAMP with
BG signals, it suffices to account for the set of measurements with uncorrelated signal
and noise. This allows us to employ the replica trick borrowed from statistical physics
to derive the MMSE for the CS measurement. This work shows that the underlying
V-BAMP dynamics predicted by the replica method matches those predicted by SE,
and supports the hypothesis that V-BAMP can be interpreted as a gradient ascent
on the B-dimensional free energy function of the MSEs. Together with the joint
decorrelation transform, this provides an in-depth analysis of V-BAMP in terms of the
MSE evolution for the multivariate BG signal prior in the jointly sparse CS scenario.
Moreover, it was shown that as the number of measured jointly sparse vectors increases,
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the phase transition behavior of V-BAMP vanishes, and that instead the estimation
error decreases smoothly with increasing sampling rate.



Appendix A

MMSE Estimator: Derivative and
(Co-)Variance Relation

Scalar Case

Given a realization x of a random variable x with pdf fx(x) and its noisy observation

u = x + w

with w ∼ N (0, σ2
w) being independent additive Gaussian noise, its MMSE estimator is

x̂(u, σ2
w) = E

{
x | u = u, σ2

w
}

.

Then, the following relation holds:

Var
{
x | u = u, σ2

w
}

= σ2
w

d

du
x̂(u, σ2

w) .

The proof is provided in the next section for a more general form of this statement.

Multivariate Case

Given a realization x of a random vector x ∈ RN with pdf fx(x) and its noisy observation

u = x + w

with w ∼ N (0, Σw⃗) being independent additive Gaussian noise, its MMSE estimator is

x̂(u, Σw⃗) = E {x | u = u, Σw⃗} .



86 MMSE Estimator: Derivative and (Co-)Variance Relation

Then, the following relation holds:

Cov {x | u = u, Σw⃗} = d

duT
x̂(u, Σw⃗)Σw⃗ .

Proof: Given the definition of the conditional mean and covariance,

E {x | u, Σw⃗} = 1
fu(u)

∫
RN

xfu|x(u | x)fx(x)dx

Cov {x | u, Σw⃗} = 1
fu(u)

∫
RN

xxT fu|x(u | x)fx(x)dx− E {x | u, Σw⃗}E {x | u, Σw⃗}T ,

we have

d

duT
x̂(u, Σw⃗)Σw⃗ = 1

fu(u)

∫
RN

xfx(x) d

duT
fu|x(u | x)dxΣw⃗

−
∫
RN

1
fu(u)xfu|x(u | x)fx(x)dx

1
fu(u)

d

duT
fu(u)Σw⃗ . (A.1)

Since fu|x(u | x) = N (u; x, Σw⃗) [118],

d

duT
fu|x(u | x) = fu|x(u | x)(x− u)T Σ−1

w⃗ . (A.2)

Furthermore, the MMSE estimator can also be written as [119, 120]

x̂(u, Σw⃗) = u + Σw⃗
1

fu(u)
d

du
fu(u) . (A.3)

Combining (A.1), (A.2), and (A.3) we have

d

duT
x̂(u, Σw⃗)Σw⃗ = 1

fu(u)

∫
RN

x(x− u)T fu|x(x | u)fx(x)dx

− 1
fu(u)

∫
RN

xfu|x(u | x)fx(x)dx(x̂(u, Σw⃗)− u)T

= 1
fu(u)

∫
RN

xxT fu|x(u | x)fx(x)dx− x̂(u, Σw⃗)x̂(u, Σw⃗)T

= Cov {x | u, Σw⃗} ,

which completes the proof.
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Equivariance of MMV VBAMP
and its SE

Consider Algorithm 2 with the transformed variables Σ˜⃗x, Tˆ⃗x(t)
n , Tr⃗(t)

m , Tu⃗(t)
n , Σ(t)

˜⃗v . Lines
5 and 6 are trivially equivariant. The equivariance of line 7 can be verified by the
invariance property of MMSE estimators to affine transformations [63, Ch. 11.4]. In
the residual term (line 8), the equivariance of y⃗m − (A(1)x̂(t)(1), . . . , A(B)x̂(t)(B))m is
trivial. It remains to show that the Onsager term is equivariant. Thus, the transformed
Onsager term is written as

1
M

N∑
n=1

F ′(Tu⃗n; TΣv⃗TT )Tr⃗m

(1)= 1
M

N∑
n=1

Cov{˜⃗x | Tu⃗n; TΣv⃗TT}
(
TΣv⃗TT

)−1
Tr⃗m

= 1
M

N∑
n=1

E{⟨˜⃗x− E{˜⃗x}⟩ | Tu⃗n; TΣv⃗TT}T−T Σ−1
v⃗ r⃗m

= 1
M

N∑
n=1

T E{⟨x⃗− E{x⃗}⟩ | u⃗n; Σv⃗}TT T−T Σ−1
v⃗ r⃗m

(2)= T
1

M

N∑
n=1

Cov{x⃗ | u⃗n; Σv⃗}Σ−1
v⃗ r⃗m

= T
1

M

N∑
n=1

F ′(u⃗n; Σv⃗)⃗rm ,

where (1) and (2) follow from the result in Appendix A, and the proof of part 1)
of Theorem 2 is complete. Using elementary probability theory and the invariance
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property of MMSE estimators to affine transformations [63, Ch. 11.4], part 2) of
Theorem 2 can be proven by simple calculation.



Appendix C

Diagonality of SE with BG Prior

We show that MMV SE (3.10) preserves diagonality for the BG prior. In particular,
we prove that if Σ(t)

v⃗ , Σw⃗ and Σx⃗ are diagonal, then

Σ(t+1)
v⃗ = Σw⃗ + 1

R
Ex⃗,⃗v

{
⟨F (⃗x + v⃗t; Σv⃗

(t))− x⃗⟩
}

︸ ︷︷ ︸
C

is also diagonal. Since the factor 1
R

and the term Σw⃗ do not influence the diagonality,
we examine the expectation C. Writing out the expectation we have

Ex⃗,⃗v(t)

{
⟨F (⃗x + v⃗(t); Σv⃗

(t))− x⃗⟩
}

= Ex⃗,⃗v(t)

{
⟨F (⃗x + v⃗(t); Σv⃗

(t))⟩
}

− Ex⃗,⃗v(t) {⟨⃗x⟩}
− Ex⃗,⃗v(t)

{
F (⃗x + v⃗(t); Σv⃗

(t))⃗xT
}

− Ex⃗,⃗v(t)

{
x⃗F (⃗x + v⃗(t); Σv⃗

(t))T
}

Using the argument that the mapping x⃗→ Ex⃗{x⃗} is self-adjoint and substituting the
conditional expectation for the estimator F (⃗x + v⃗(t); Σv⃗

(t)), we have

Ex⃗,⃗v(t)

{
F (⃗x + v⃗(t); Σv⃗

(t))⃗xT
}

= Ex⃗,⃗v(t)

{
Ex⃗,⃗v(t)

{
x⃗ | x⃗ + v⃗, Σ(t)

v⃗

}
x⃗T
}

= Ex⃗,⃗v(t)

{
Ex⃗,⃗v(t)

{
x⃗x⃗T

}
| x⃗ + v⃗, Σ(t)

v⃗

}
= Ex⃗,⃗v(t)

{
Ex⃗,⃗v(t)

{
x⃗ | x⃗ + v⃗, Σ(t)

v⃗

}
Ex⃗,⃗v(t)

{
x⃗T | x⃗ + v⃗, Σ(t)

v⃗

}}
= Ex⃗,⃗v(t)

{
⟨F (⃗x + v⃗(t); Σv⃗

(t))⟩
}

.
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Overall, we have

Ex⃗,⃗v(t)

{
⟨F (⃗x + v⃗(t); Σv⃗

(t))− x⃗⟩
}

= Ex⃗ {⟨⃗x⟩} − Ex⃗,⃗v(t)

{
⟨F (⃗x + v⃗(t); Σv⃗

(t))⟩
}

.

Using the substitution u⃗(t) = x⃗ + v⃗(t) and writing out the integral defined by the
expectation gives

Ci,j =
∫
RB

(⃗x)i(⃗x)jfx⃗(x⃗)dx⃗−
∫
RB

F (u⃗(t); Σ(t)
v⃗ )iF (u⃗(t); Σ(t)

v⃗ )jfu⃗(t)(u⃗(t))du⃗

= (Σx⃗)i,j −
∫
RB

F (u⃗(t); Σ(t)
v⃗ )iF (u⃗(t); Σ(t)

v⃗ )jfu⃗(t)(u⃗(t))du⃗

where fu⃗(t)(u⃗(t)) = fx⃗(u⃗(t)) ∗ fv⃗(t)(u⃗(t)) = (1− ϵ)N (u⃗(t); 0, Σ(t)
v⃗ ) + ϵN (u⃗(t); 0, Σ(t)

u⃗ ), and
with Σ(t)

u⃗ = Σx⃗ + Σ(t)
v⃗ , which is diagonal by assumption. By assumption, (Σx⃗)i,j = 0 for

i ̸= j. Substituting the estimator function (3.8) into the second term we can verify that
the integrand has odd symmetry w.r.t. (u⃗)i and thus integrates to 0 if i ≠ j. Thus, if
Σw⃗, Σx⃗, and Σ(t)

v⃗ are diagonal, Σ(t+1)
v⃗ is diagonal as well.
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SE Integral Evaluation

The SE equation for (MMV) (V)BAMP reads

Σ(t+1)
v⃗ = Σw⃗ + 1

R
Ex⃗,⃗v

{
⟨F (⃗x + v⃗; Σv⃗

(t))− x⃗⟩
}

.

with pdfs fx⃗(x⃗) and fv⃗(v⃗) = N (v⃗; 0, Σ(t)
v⃗ ). Given that x⃗, v⃗ ∈ RB, the expectation

Ex⃗,⃗v
{
⟨F (⃗x + v⃗; Σv⃗

(t))− x⃗⟩
}

requires in general B(B + 1) integrals (using the fact that the covariance matrix is
symmetric) over B + B variables. When the integrals are not available in closed form,
alternatively, using Monte Carlo simulation, a sufficiently large number of pseudo-
random vectors x⃗i and v⃗i (i = 1, . . . , I) can be generated independently according to
the pdfs fx⃗(x⃗) and fv⃗(v⃗). Then, the expectation can be estimated by

Ex⃗,⃗v
{
⟨F (⃗x + v⃗; Σv⃗

(t))− x⃗⟩
}
≈ 1

I

I∑
i=1

⟨F (x⃗i + v⃗i; Σv⃗
(t))− x⃗i⟩ .

This, however, can become computationally expensive, as the accuracy of the estimate
requires (especially at low noise levels) I to be very large. This is partly due to the
fact that both x⃗ and v⃗ need a very large number of independent realizations. By using
the calculation derived in Appendix C, we have

Ex⃗,⃗v
{
⟨F (⃗x + v⃗; Σv⃗

(t))− x⃗⟩
}

= Ex⃗ {⟨⃗x⟩} − Ex⃗,⃗v
{
⟨F (⃗x + v⃗; Σv⃗

(t))⟩
}

.
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For the BG prior fx⃗(x⃗) = (1− ϵ)δ(x⃗) + ϵN (x⃗; 0, Σx⃗),

Ex⃗ {⟨⃗x⟩} = ϵΣx⃗

and with u⃗ = x⃗ + v⃗,

Ex⃗,⃗v
{
⟨F (⃗x + v⃗; Σv⃗

(t))⟩
}

= Eu⃗
{
⟨F (u⃗; Σv⃗

(t))⟩
}

,

where fu⃗(u⃗) = fx⃗(u⃗) ∗ fv⃗(u⃗) = (1− ϵ)N (u⃗; 0, Σ(t)
v⃗ ) + ϵN (u⃗; 0, Σ(t)

u⃗ ) and Σ(t)
u⃗ = Σx⃗ + Σ(t)

v⃗ .
Thus, it suffices to perform the Monte Carlo integration only over B dimensions variable,
namely the components of u⃗i.
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List of Acronyms

AMP approximate message passing

AWGN additive white Gaussian noise

BAMP Bayesian approximate message passing

BG Bernoulli-Gauss

BP basis pursuit

CDMA code division multiple access

CS compressed sensing

DCS distributed compressed sensing

EM expectation-maximization

i.i.d. independent and identically distributed

JSM joint sparsity model

LASSO least absolute shrinkage and selection operator

MAP maximum a posteriori

MMSE minimum mean squared error

MMV multiple measurement vectors

MSE mean squared error

pdf probability density function

PT phase transition

PTC phase transition curve

QAM quadrature amplitude modulation

RFID radio-frequency identification

RIP restricted isometry property
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SE state evolution

SNR signal-to-noise ratio

V-BAMP vector Bayesian approximate message passing

whp with high probability
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