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Abstract

Vehicular ad hoc networks (VANETs) are a widely discussed topic in the scientific
community of the recent past. Many publications focus on analysis and simulation
of communication between vehicles on idealized street networks. These networks
consist of streets forming a rectangular grid (Manhattan grid), where either the street
placement occurs in a fixed and constant interval or is determined by a random
process. Additionally, most scientific works use a maximum Euclidean distance to
determine whether two vehicles are connected or not.

In this work we present a simulation framework that allows the simulation of
connectivity in VANETs and the derivation of multiple static and dynamic network
metrics from these simulations. In contrast to conventional idealized street networks
the framework uses real-world street networks and building data. The street data is
used to place and move vehicles around the streets and the building data is used to
assign one of the propagation condition conditions line-of-sight (LOS), obstructed-
line-of-sight (OLOS) or non-line-of-sight (NLOS) to each link connecting two vehi-
cles. The status of a link can be either determined by a maximum Euclidean distance
or a maximum pathloss, using models derived from vehicular measurements.

The framework allows the placement of vehicles statically and randomly with a
uniform distribution, or by using external traffic simulators that routes and moves
the vehicles in the street network. Results of the simulations include the biggest
connected cluster size, path redundancies and link and connection durations.

Furthermore, we present and discuss simulation results for different scenarios
and compare them to results of idealized street networks.



iv

Kurzfassung

Fahrzeug-Ad-Hoc-Netzwerke basieren auf Technologien, die in frühester Vergan-
genheit verstärkt wissenschaftlich untersucht wurden. Oft beruhen diese Untersu-
chungen auf Simulationen mit idealisierten Straßennetzen. Diese Netze bestehen aus
Straßen, die ein rechteckiges Raster (Manhattan Grid) bilden, wobei Straßenabstän-
de entweder konstant sind oder von einem Zufallsprozess generiert werden. Des
weiteren wird meist die Euklidische Distanz benutzt um den Status von Verbindun-
gen zwischen Fahrzeugen zu bestimmen.

In dieser Arbeit präsentieren wir eine Software, welche die Simulation von Kon-
nektivität in Fahrzeug-Ad-Hoc-Netzwerken ermöglicht. Im Gegensatz zum Verbrei-
teten Ansatz der Verwendung von idealisierten Straßennetzen, erlaubt dieser Simu-
lator die Verwendung von realen Straßen- und Gebäudedaten. Die Straßendaten
werden dazu benutzt um Fahrzeuge auf den Straßen zu platzieren, während die Ge-
bäudegrundrisse dazu verwendet werden die Ausbreitungsbedingungen zwischen
Fahrzeugen zu bestimmen. Diese Ausbreitungsbedingungen können unterteilt wer-
den in Sichtverbindung (LOS), versperrte Sichtverbindung (OLOS) und keine Sicht-
verbindung (NLOS). Das Zustandekommen einer Verbindung kann aufgrund der
Euklidischen Distanz oder eines Pfadverlustmodells bestimmt werden.

Fahrzeuge können entweder statisch und mit einer Gleichverteilung im Straßen-
netz platziert werden, oder durch die Benutzung einer externen Software auf den
Straßen bewegt werden. Die Resultate aus diesen Simulationen umfassen die Be-
stimmung des größten verbundenen Gruppe an Fahrzeugen, die Pfadredundanzen,
sowie die physikalischen und logischen Verbindungsdauern.

Wir präsentieren weiteres Simulationsergebnisse für verschiedene Szenarios und
vergleichen diese mit Ergebnissen von idealisierten Straßennetzen.
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Chapter 1

Introduction

This chapter serves as an introduction to the thesis. It gives a brief overview of tech-
nologies using vehicular communication from a technical and societal point of view.
The relevance of the work is explained and its existence motivated. Furthermore,
this chapter gives an overview on the state of the art in relevant research areas by
presenting key publications we base our work on. It is concluded by explaining the
structure of the rest of this text.

1.1 Overview and Motivation

The focus of development in the automotive industry on assisted and autonomous
driving in recent years indicate that these systems will have a significant impact on
the road traffic of the future [1]. They will consequently play a big role in the lives
of people driving on and walking these roads.

Advanced driver-assistance systems (ADAS) are the first step in this innovation
process. Using different technologies they have the goal to improve car and road
safety and simplify the driving process. They do so by assisting the driver in its
human-machine interaction. The applications of ADAS range from adaptive cruise
control, where the speed of a car is automatically adjusted to keep a safe distance to
the preceding vehicle, to traffic sign recognition, where traffic signs along the road
are detected by the vehicle and displayed to the driver on the dashboard of the car.
Technologies that are used to realize these applications include radar, image process-
ing and computer vision. Upcoming implementations of ADAS will also leverage
communication between cars themselves, termed vehicle-to-vehicle (V2V) commu-
nication and between cars and the infrastructure along the road, termed vehicle-to-
infrastructure (V2I) communication. Both types can be summarized into vehicle-to-
everything (V2X) communication.

Autonomous vehicles (AVs) go one step further than ADAS by completely elimi-
nating the need for interaction between the driver and the vehicle during the driving
process. As in the assisted case this goal will be achieved by using on-vehicle sensors
and processing as well as V2X communication.

Studies predict that the trends of ADAS and AVs represent one way how road
safety will be increased. A report comes to the conclusion that widespread deploy-
ment of AVs could eliminate as much as 90 percent of all car accidents in the USA
[2]. Another study concludes that ADAS could help to avoid up to 79 percent of
all traffic accidents [3]. Statistics show that road traffic related deaths accounted for
an estimate of 2.52 percent of the total deaths worldwide in the year 20101. This has

1An estimated 1 328 500 road traffic related deaths out of 52 769 700 total deaths worldwide oc-
curred during 2010 [4].
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been an increase from an estimated 1.95 percent in 19902. While the absolute number
of road accident fatalities decreased constantly between 2005 and 2014 in the Euro-
pean Union, they are still a prevalent cause of death [5]. These numbers and trends
show that much needs to be done to increase safety on the road and in turn decrease
traffic related deaths.

Increased road safety might be the most important potential consequence of
widespread deployment of AVs, but definitely not the only one. By automating the
driving process, acceleration and breaking can be optimized and therefore become
more fuel efficient. By additionally removing human errors, congestions will be
reduced, which leads to less fuel usage in addition to time savings for people trav-
eling on the road. The increase in fuel efficiency will decrease the travel expenses
and reduce emissions, which otherwise burden the environment. Combined with
the advancing deployment of electric cars, the result could be a reduction of up to
90 percent of greenhouse-gas emissions per distance traveled by 2030 [6].

While people could spend less time in their vehicles due to less congestion, they
would be able to use the remaining time in their vehicles on other activities, such as
work, leisure or even to sleep. It has been predicted that AVs will free one billion
hours from the driving process every day globally [2].

Being a core part of ADAS and AVs, V2X communication technologies experi-
enced a rapid development in the recent past. The communication can be realized
by vehicular ad hoc networks (VANETs), the decentralized creation of a wireless net-
works for data exchange by moving vehicles. The foundation of all major VANET
implementations is IEEE 802.11p [7], an amendment to the popular IEEE 802.11 fam-
ily of standards, commonly referred to as WiFi. For the higher layers there are com-
peting standards, the two most important being defined by IEEE and ETSI. IEEE
proposed the 1609.x standards, with the full stack including 802.11p being named
Wireless Access in Vehicular Environments (WAVE). ETSI developed their own stan-
dard named Intelligent Transport Systems at 5 GHz (ITS-G5).

IEEE 802.11p, the fundamental standard of vehicular communication, defines the
physical and part of the medium access control (MAC) layer. The physical layer still
employs orthogonal frequency-division multiplexing (OFDM) as in 802.11a [8], but
instead of using channels of 20 MHz bandwidth, the bandwidth has been halved to
10 MHz. This change can be implemented in a straightforward manner, by doubling
the OFDM timing parameters and it results in half the data rate. The second major
change on the physical layer is the requirement of improved receiver performance
in adjacent channel rejection. These adaptations have the goal to allow communica-
tion within a longer range and support the vehicular channel, which consist of high
speeds and large multipath components. On the MAC layer standard 802.11 defines
a basic service set (BSS) as a group of devices forming a network. 802.11p allows the
usage of special vehicular BSSs and a wildcard BSS where the process of joining the
network is eliminated. This allows the instantaneous data exchange that is needed
for vehicular safety applications.

Before V2X communication technologies will see widespread deployment in mass
products they need to be examined and evaluated first. While hardware and testbed
developments are time-consuming and expensive, the technologies are constantly
evolving and legal frameworks are still being developed. This makes software sim-
ulations attractive as a first iteration in investigating and developing V2X technolo-
gies.

2An estimated 907 900 road traffic related deaths out of 46 511 200 total deaths worldwide occurred
during 1990 [4].
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In this thesis we introduce a simulation framework for vehicular connectivity
that could help to answer questions regarding V2V communication. The main char-
acteristic of this framework is to simulate connectivity on real world street networks.
It enables the gathering of insights into the differences concerning the connectivity
on idealized street networks used in publications such as [9] and street networks
from real world cities. Additionally, it allows us to compare connection metrics for
different places around the world.

By developing and subsequently using this framework we try to answer the fol-
lowing crucial questions:

– What density of vehicles equipped with V2V technology is needed, so that the
networks is fully connected, i.e. messages can propagate through the whole
network?

– For how long does the average link in a network of moving vehicles last?

– Is there a connection between the distance of a vehicle from the nearest inter-
section and the number of other vehicles it is connected to?

1.2 State of the Art

Network connectivity in VANETs have been studied extensively in the scientific
community in the recent past. In this section we will briefly present relevant publi-
cations of the subject, mention their insights, shortcomings and context in regard to
this thesis.

1.2.1 Analyzing Connectivity in Vehicular Networks

In [9] the authors present a comprehensive study on the connectivity of VANETs
in urban environments. The work is based on the assumption of a Cartesian grid of
streets, that consists of evenly spaced horizontal and vertical two-lane, bi-directional
streets. This street network type is also known as Manhattan grid. The vehicle move-
ment is based on a cellular automaton (CA) approach [10] where during each time
step each vehicle is in a state and updates its state according to a set of rules. The con-
nection of any two vehicles on the street network is determined by their Euclidean
distance, comparing it to a predefined maximum. This maximum depends on the
propagation condition of the link and can be either line-of-sight (LOS) or non-line-
of-sight (NLOS).

The authors present various simulation results, including static and dynamic
connectivity metrics. The static characteristics of the networks are captured by the
average network connectivity. For results regarding additional static metrics such as
path redundancy, the authors refer to [10], [11] by the same research group. Dynamic
characteristics include the average link and connection duration and the re-healing
time.

As a further contribution the publication derives closed form expressions for the
average link duration in different scenarios for vehicles moving on the Manhattan
grid, e.g. the two cars under investigation are approaching, the two cars are traveling
on perpendicular streets, etc. Additionally an expression for the conditional distri-
bution of the re-healing time is presented. These analytical results are then validated
by simulation results.

This publication is a valuable resource presenting analytical and simulation re-
sults that will be used in this thesis. However, the use of the Manhattan grid as
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street network and the use of Euclidean distance to determine connections are a
highly simplified model. The use of real world street networks and other metrics
to decide the state of connections would constitute a more realistic model therefore
allow further insights.

Another study on network connectivity is presented in [12]. It classifies different
traffic mobility models by trying to assess their realism and comparing the network
connectivity metrics resulting from their usage. In their conclusion they emphasize
the importance of realistic models for mobility due to the differences in the simula-
tion results. However, they base their simulations and analysis on an idealized street
network consisting of a 3 x 3 block grid. Additionally, no buildings are considered,
resulting in a very simplistic modeling of the transmission range. Furthermore, only
a very high density network is simulated (20 vehicles per km and lane) which does
not allow the investigation of weakly connected or disconnected networks.

1.2.2 Real-World Street Networks

Many publications (e.g. [9]–[12]) use strictly regular street networks, such as the
Manhattan grid. As an alternative street network data from real cities provided
by various data sources can be used. This is one method to make models more
realistic and to allow the comparison of results for different environments. One data
source, that collects accurate and exhaustive data and makes them available publicly,
is OpenStreetMap (OSM) [13]. Most publications that use real-world street networks
that have been investigated rely on OSM as their data source [14]–[17].

The suitability of OSM street and building data to model V2X channels has been
investigated in [14]. The authors compare building data offered by OSM with official
data from the municipality and come to the conclusion that OSM offers sufficient
accuracy to model vehicular communication channels. It is mentioned that height
information is mostly missing from building data, but this can be resolved by using
the mean height of buildings in the area. Furthermore, the authors observe that the
coverage and accuracy of data in OSM varies depending on the geographical region,
but is expected to improve drastically with time.

In [15] a simulator for V2V channel modeling is presented. It uses street and
building data from OSM to separate each link into LOS, obstructed-line-of-sight
(OLOS) and NLOS types and calculate its pathloss and shadow fading based on
it. Additionally, it models small-scale fading in a stochastic manner, based on sur-
rounding objects. As results the simulator delivers the received power and small
scale fading characteristics of each link. Data-sets of buildings, street networks and
vehicle traces for four European cities are already included in the simulator. How-
ever, it does not provide a trivial method to import additional data from OSM. Build-
ing data has to be manually downloaded from the OSM website, while street data
can not be imported from OSM at all. The project is therefore clearly limited in the
variety of different environments it can simulate and analyze. Additionally, its result
offers channel characteristics, which would need to be further processed to gather
insights about the connectivity in VANETs.

Different other publications base their research on the simulator presented in
[15]. In [17] the author study performance metrics, such as received signal strength
and packet delivery ratio, while no network connectivity results are presented. Fur-
thermore, only one geographical area, (Doha, Qatar) and one vehicle density have
been investigated. In [16] a closed form expression for the probability of a connec-
tion being in LOS is derived, using the distance between the two vehicles as input
and its parameters depending on the geographical area it has been fitted to. This
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probabilistic approach could be useful in reducing the computational complexity of
larger simulations, e.g. when analyzing network connectivity on large areas with a
high density of vehicles.

To efficiently extract street and building data from OSM, [18] introduced OSMnx,
a software library, that can be used directly or by integrating it into other projects.
OSMnx is written in the Python programming language and downloads street and
building data from an area, by supplying just its name. It then converts the street
network data into a graph object, retaining all the geometrical information. The
building data is processed and saved as a list of polygons. This allows a flexible
and efficient subsequent use. These properties make OSMnx a viable tool to retrieve
real-world street networks and building data in VANET simulations.

1.2.3 Pathloss Models for Vehicular Channels

To analyze network connectivity in VANETs one has to determine if any two vehi-
cles can connect to each other, as a first step. This is typically achieved by checking if
the link between vehicles is in LOS or NLOS. Subsequently, the Euclidean distance
between the vehicles is compared to a maximum distance of the corresponding prop-
agation condition and the vehicles are determined to be connected if their distance
is lower than the maximum. This is the approach applied in [9]–[12].

As an alternative to using the Euclidean distance between two vehicles to deter-
mine if they are connected, the pathloss could also be used. By employing appropri-
ate models for each propagation condition, the pathloss between two vehicles can
be calculated and the connection be set if the pathloss is below a maximum. This ap-
proach has the advantage of condensing the different maximum distances for each
propagation condition in the Euclidean case into one maximum pathloss value. Ad-
ditionally, using the pathloss, the effect of shadow fading can also be modeled. This
alternative method raises the questions, which pathloss models are suitable for the
environment that has to be simulated.

In [19] the authors present a pathloss and shadow fading model for V2V chan-
nels. It is applicable in the case that the line of sight connection is not obstructed
(LOS) and in the case that it is obstructed by other vehicles (OLOS). The model is
based on extensive measurements using a channel sounder between two vehicles,
moving in urban and highway environments. The measured channel transfer func-
tions were transformed to distance dependent pathlosses. The authors argue that the
measured data can be best represented by a dual-slope model for the path loss and
by a log-normal distribution for the shadow fading. By separating the highway and
urban environment measurements separate pathloss exponents and shadow fading
standard deviations can be provided for each scenario. This results in a pathloss
model equation where the deterministic part of the result is only dependent on the
distance between the two vehicles.

A pathloss and shadow fading model for V2V communication that covers the
NLOS case is introduced in [20]. It is applicable if the line of sight is blocked by
buildings and receiver and transmitter are moving on intersecting streets. The model
is based on measurements in urban and suburban areas of Munich, Germany. These
measurements have been conducted using off-the-shelf hardware, measuring the re-
ceived power. By fitting the measured data to a modified virtual source model [21],
an equation for the pathloss that is dependent on the distance between transmitter
and intersection, distance between receiver and intersection, wavelength of the sig-
nal, the scenario (urban or suburban) and street widths is derived. As in [19], the
shadow fading was best matched by a log-normal distribution.
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1.2.4 Vehicle Movement

Various models are available to describe vehicular traffic flow. They can be roughly
classified into three categories, namely microscopic, macroscopic and mesoscopic
models. Microscopic models describe the dynamics of each vehicle individually.
They update each vehicles speed by considering the speed and positions of other
vehicles in the area. Macroscopic models on the other hand describe average quan-
tities for a whole area, like density and average speed and disregard individual ve-
hicles. The third class, mesoscopic models combine approaches from microscopic
and macroscopic models.

Since we are interested in individual vehicle positions and movements to re-
alistically simulate VANET connectivity, we will focus on microscopic traffic flow
models and try to classify them further. The most trivial types are stochastic mod-
els. According to these models the street network is represented by a graph and
vehicles move on the edges of this graph randomly. They choose random paths and
travel with random speeds. A representative of this class is the Constant Speed Mo-
tion model [22], where each vehicle chooses a random speed, that is uniformly dis-
tributed between a minimum and a maximum speed. Further they select a random
source and destination and route their path between them, using a shortest path al-
gorithm. The Manhattan model [23] extends the Constant Speed Motion model by
updating the vehicle speed according to a safety distance to the vehicle in front and
therefore avoiding the overlap of vehicles.

The most prevalent type of microscopic traffic flow models are car-following
models. The dynamics of each vehicle are described by them as a function of po-
sition and speed of the vehicle in front of it. They determine the change of speed of
the respective vehicle. If the time domain and space domain are discretized a CA
model is obtained, which can be solved in a computationally efficient manner. Ad-
ditionally, as it is the most common model, there are many extensions to it. In [24]
the model is extended to allow the modeling of multi-lane traffic, line changing and
traffic jams.

[12] compares different models by investigating the connection between vehicle
speed and density in an area, simulating perturbation, congestion and traffic at an
intersection. Using the simulation results they try to assess the realism of the models.
They conclude that the car-following model provides a faithful representation of real
world dynamics, while the stochastic models fail all the tests.

To simulate vehicle movement using traffic flow models, different approaches
are available. There are publications, such as the already mentioned [9], that develop
and implement their own vehicle movement models, in addition to investigating the
communication between them. Alternatively there are publications and software
projects that focus mainly on vehicle movement and their results can be used as
basis to simulate VANETs.

Simulation of Urban Mobility (SUMO) [25] is a open source traffic simulation
suite that is widely used by academics. Road networks can be manually generated
with it, but also imported from different sources such as OSM [13]. It offers micro-
scopic traffic simulations by representing each vehicle explicitly, giving it an iden-
tifier, a source and a destination and a departure time. A path between source and
destination for each vehicle is calculated using a routing algorithm, such as shortest
path calculation under different cost functions. The movement of the cars is mod-
eled by an extended car-following model [24]. SUMO offers the possibility to save all
vehicle positions during each time step of the simulation, therefore enabling the user
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to subsequently analyze these vehicle traces or simulate other aspects on their ba-
sis. Using these traces in VANET simulations could yield more realistic results than
a simple random process to distribute the vehicles or implementing a rudimentary
car movement model.

Another microscopic traffic simulator has been introduced in [26]. It offers the
same basic features of SUMO, including the possibility of importing real world street
networks from OSM. Additionally, its focus lies on cooperate routing and intelligent
transport systems (ITS). This would make it a great candidate to further investigate
VANET connectivity, but the software has not been publicly released.

1.3 Structure of the Thesis

This document is divided into 4 chapters, with their content briefly outlined in this
section.

Chapter 1 gives an overview of the whole thesis. It introduces the topic of V2V
communication and explains why realistic simulations are needed. Additionally, it
presents the current state of research in this area.

Chapter 2 is a brief introduction to the graph theoretic concepts that are used
in the simulation process and when deriving network connectivity metrics from the
simulation results.

Chapter 3 introduces the simulation framework that has been developed within
the scope of this thesis. It gives an overview of the whole simulation process and
explains the different process steps in detail. Furthermore, it offers background in-
formation about the models, algorithms and theoretic results used using the frame-
work.

Chapter 4 gives a detailed explanation of the network connectivity metrics, that
can be derived from the simulation results. Based on individual connections be-
tween vehicles, these metrics capture global properties of the VANET.

Chapter 5 presents simulations that have been executed by the framework. It lists
the simulation parameters and shows simulation results. Finally, it draws conclu-
sions from these simulation results and compares them to results from simulations
on idealized street networks presented in scientific publications.

Chapter 6 is the final chapter of the document, it draws conclusions from the
work presented herein and mentions further tasks that could be done based on the
results of this thesis.
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Chapter 2

Graph Theory Introduction

The simulation process and the subsequent connection analysis heavily relies on
concepts from graph theory. Among other things, graphs are needed to route vehi-
cles in a street network and represent connections between vehicles in the vehicular
ad hoc network (VANET). We will therefore introduce the basic concepts, definitions
and algorithms from graph theory, that are used in the simulation framework. This
short introduction does by no mean claim completeness.

2.1 Types of Graphs

In the most common an basic definition a graph is a length-2 sequence G = (V,E).
The first element of this sequence is the set of vertices or nodes V = {v1, . . . , v|V |}. The
second element is the set of edgesE ⊆ {ei,j |i, j ∈ {1, . . . , |V |}, i < j}. The elements of
the edge set are 2-element subsets of the node set, i.e. ei,j = (vi, vj) with vi, vj ∈ V ,
as they reflect the association between nodes. The cardinality of the node set |V | is
termed the order of the graph, whereas the cardinality of the edge set |E| is referred to
as the size of the graph. To avoid ambiguity this type of graph can be characterized
more specifically as undirected, unweighted and simple graph. Such a graph could
describe a communication network, where the participants are represented by nodes
and the bidirectional communication channels by edges.

To introduce a direction to the association between nodes, we define a directed
graph as a length-2 sequence G = (V,E), where the edges are not sets but sequences
ei,j = (vi, vj) and are therefore ordered. The set is described as being directed from
vi to vj , vi is termed the tail of the edge and vj is termed the head of the edge. vj
is said to be a successor of vi, while vi is said to be a predecessor of vj . The set of
all edges E is a subset of the Cartesian square of the node set, i.e. E ⊆ V × V =
{(v1, v2)|vi ∈ V ∀i = 1, 2}. Note that by this definition, directed graphs can include
edges vi,i that connect nodes to themselves, termed loops. Directed graphs could
describe communication networks where the channels between two participants are
unidirectional, i.e. a participant in the network that can send to another one, can not
necessarily receive from it.

A multigraph, in contrast to a simple graph, is a graph that contains multiple edges.
Multiple edges are edges that connect the same two nodes. Therefore, E containing
all edges, is a multiset.

A graph that has a weight assigned to each edge, is termed a weighted graph. It
can formally be defined as length-3 sequence G = (V,E,w), with w being a function
that maps a weight to each edge, as w : E → R. The concept of weighted graphs
is especially important when path finding is involved. A weighted graph could
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describe a street network1, where nodes represent intersections and edges represent
streets. If the length of each street is chosen as the weight of the corresponding
edge, a shortest path algorithm that considers weights, would find the path with the
shortest length, between arbitrary nodes.
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FIGURE 2.1: Examples of different graph types

Examples of the introduced graph types are depicted in Figure 2.1. Figure 2.1a
shows an undirected, unweighted and simple graph. The nodes are represented
by circles and the edges by lines connecting the circles. For the directed graphs
Figures 2.1b and 2.1d the edges are represented by arrows, where the arrowhead
points towards the head of the edge. In Figures 2.1c and 2.1d, multigraphs are
depicted. Representative for all graphs we can state the graph in Figure 2.1a as
GA = (VA, EA) = ({v1, . . . , v5}, {e1,2, e1,4, e1,5, e2,3, e3,4, e3,5, e4,5}).

1Furthermore, this graph would ideally be directed, to consider one-way streets, and a multigraph,
to consider multiple streets connecting the same intersections.
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2.2 Graph Sequences

To capture the temporal evolution of graph edges we use a sequence of graphs
G = (G[1], . . . , G[|G|]). Each element of the sequence contains a graph with the
same nodes and time index n dependent edges, G[n] = (V,E[n]). This sequence
description is useful in the context of VANETs, where connections between vehicles
remain established only for a limited amount of time.

2.3 Neighborhood

To define the neighborhood of an node, a method to derive a graph from another
graph has to be introduced first. For a graph G = (V,E) and a subset of its nodes
V ′ ⊂ V , G[V ′] is the graph whose node set is V ′ and whose edge set E′ consists of all
the edges in E that have both endpoints in V ′. G[V ′] is called the subgraph induced
in G by V ′. Formally we can describe it as

G[V ′] = G(V ′, E′),

with
V ′ ⊂ V , E′ =

{
ei,j ∈ E

∣∣vi, vj ∈ V ′} .
(2.1)

Based on the definition of an induced subgraph the neighborhood can be defined.
The neighborhood of a node vi is the subgraph induced in G by the node vi and all
nodes that are connected to it with an edge. This can be expressed as

N(vi) = G[vi ∪ {vj ∈ Ns(vi)}] , (2.2)

with NS(vi) being the set of neighbors, given by

NS(vi) = {vj ∈ V |ei,j ∈ E} . (2.3)

By this definition, the subgraph is more specifically termed closed neighborhood,
since it includes the node vi itself. The open neighborhood of vi would not include it.

In the case of directed graphs, where the terms predecessor and successor have
been introduced, the set of neighbors can be formed, by first defining the set of suc-
cessors Γ+(vi) of a node vi as

Γ+(vi) = {vj ∈ V |ei,j ∈ E} , (2.4)

and the set of predecessors Γ−(vi) of a node vi as

Γ−(vi) = {vj ∈ V |ej,i ∈ E} . (2.5)

Their union then forms the set of neighbors NS(vi) = Γ+(vi) ∪ Γ−(vi). When
working with undirected graphs the three sets are equal, NS(vi) = Γ+(vi) = Γ−(vi).

To illustrate the concept of neighborhood we reuse the graphGA from Figure 2.1a
and show it side by side to the neighborhood N(v2) of node v2 in Figure 2.2.
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FIGURE 2.2: Examples of graph and neighborhood

2.4 Adjacency Matrix

Every finite graph2 can be compactly represented by a matrix. The adjacency matrix of
the graphG = (V,E) is a square |V |×|V |matrix A with its elements ai,j determined
by the edge set E. For a simple graph the elements ai,j are 1 if the graph G has an
edge from node vi to node vj ,

A =


a1,1 a1,2 · · · a1,|V |
a2,1 a2,2 · · · a2,|V |

...
...

. . .
...

a|V |,1 a|V |,2 · · · a|V |,|V |

 , (2.6)

with

ai,j =

{
1 if ei,j ∈ E
0 if ei,j /∈ E

i, j ∈ {1, . . . , |V |} . (2.7)

For multigraphs the value of the matrix elements ai,j correspond to the number
of edges between the nodes vi and vj ,

ai,j =
∑
e∈E

δ(e, ei,j) , (2.8)

where δ is the Kronecker delta function defined as

δ(x, y) =

{
1 if x = y

0 if x 6= y
. (2.9)

For weighted graphs the elements ai,j are equal to the weight of the correspond-
ing edge, as

ai,j =
∑
e∈E

δ(e, ei,j)w(ei,j) . (2.10)

Undirected graphs, having only bidirectional connection between the nodes, re-
sult in a symmetric adjacency matrix. Their diagonal elements are all zero, because
loops are not possible for this graph type.

2A graph is finite if the node and edge sets are finite. All graphs that will be treated in this work are
finite.
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As an example, the unweighted undirected simple graph depicted in Figure 2.1a
results in an adjacency matrix given by

AA =


0 1 0 1 1
1 0 1 0 0
0 1 0 1 1
1 0 1 0 1
1 0 1 1 0

 . (2.11)

whereas the adjacency matrix for the directed multigraph in Figure 2.1d is given
by

AD =


0 2 0 1 1
0 0 0 0 0
0 0 1 0 0
0 0 2 0 1
1 0 1 0 1

 . (2.12)

2.5 Path Finding

A fundamental application of graph theory is the shortest path problem. It is defined
as the problem of finding a path between two nodes in a graph, so that the summed
weights or the number of the edges that are traversed, is minimized. Its importance
becomes clear in its applications. It can be used to find the shortest route between
two points in a street network or the shortest route in a communication network with
relays between two communication nodes. It can also answer the more fundamental
question, about the existence of a path between two nodes. To define an algorithm
that solves this problem we first have to introduce some terms.

We define a path as an alternating sequence of nodes and edges which begins
and ends with nodes. In the sequence the edges connect the preceding node with
the succeeding node in the sequence. In a path all nodes, except the first and last in
the sequence, and all edges are distinct. We can therefore denote a path with length
k from node vi to node vj as

pi,j = (vi, ei,(1), v(1), . . . , v(k−1), e(k−1),j , vj) . (2.13)

Alternatively that are two other ways to denote the path pi,j , that are useful de-
pending on the situation. The node representation pVi,j is the sequence of the k + 1
nodes that are traversed expressed as

pVi,j = (vi, v(1), . . . , v(k−1), vj) . (2.14)

The edge representation pEi,j , on the other hand, is the sequence of the k edges
that are traversed expressed as

pEi,j = (ei,(1), e(1),(2), . . . , e(k−2),(k−1), e(k−1),j) . (2.15)

A graph is called connected if there exists a path between any pair of nodes, oth-
erwise it is called disconnected. Further we define the connectivity indicator A(G, i, j)
which takes the value 1 if there is a path between vi and vj , and 0 if there is no path.

A(G, i, j) =

{
1 if ∃pi,j in G
0 if @pi,j in G

. (2.16)
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With these terms defined, the shortest path problem can be investigated. To
find the shortest paths in an unweighted undirected simple graph G = (V,E), the
breadth-first search (BFS) algorithm [27] can be used. It determines all shortest paths
from a source node vs ∈ V to all other nodes in the graph. In the context of un-
weighted graphs, shortest refers to the length of the path, i.e. the number of nodes
that are traversed. Furthermore, the algorithm can be used for either weighted or
unweighted, directed or undirected, and simple or multigraphs to determine if the
graph is connected or if a path between two nodes exists. This means we can use it
to evaluate A(G, i, j) in Equation (2.16). For other types of graphs it has first to be
converted into a unweighted undirected simple graph.

The algorithm is described by the pseudo-code in Algorithm 1. The lengths of the
paths are returned by d[v] for all v ∈ V . The shortest path from vs to any vd can then
be constructed in reverse by recursively evaluating p[v], starting from p[vd]. A graph
is connected if ∀v ∈ V : d[v] 6= ∞. To only determine the path to one destination
node vd ∈ V , the algorithm has to be adapted by adding the declaration vd ∈ V to
the parameter list on Line 1 and expanding Line 17 by ∨d[vd] 6=∞.

Algorithm 1 BFS algorithm

1: procedure SHORTEST-PATH(G = (V,E), vs ∈ V )
2: for all vi ∈ V do
3: d[vi]←∞ . Set all distances to infinity
4: end for
5: d[vs]← 0 . Set the distance to the source node to 0
6: n← 0 . Set the current distance to 0
7: repeat
8: for all vc ∈ {v ∈ V |d[v] = n} do
9: for all vn ∈ NS(vc) do

10: if d[vn] =∞ then
11: d[vn]← n+ 1 . Set the distance
12: p[vn]← vc . Set the predecessor
13: end if
14: end for
15: end for
16: n← n+ 1
17: until n = |V |
18: return p, d . Return predecessors and distances
19: end procedure

An alternative algorithm to find the shortest paths has been defined in [28] and
is referred to by its authors name as Dijkstra’s algorithm. It applies to connected
graphs that can either be undirected or directed, unweighted or weighted and sim-
ple or multigraphs. In the context of weighted graphs, shortest refers to the sum of
edge weights that are traversed on the path. In case of a weighted graph it has the
condition of all weights being positive,3 while for unweighted graphs the weight
can simply be set to 1 for all edges e ∈ E.

For a graph G = (V,E) we define the extended weight of edge vi to edge vj from
V as

3An algorithm that can be applied to weighted graphs with negative weights is the Bellman-Ford
algorithm [29].
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we(vi, vj) =


0 if vi = vj

we(ei,j) if ei,j ∈ E
∞ otherwise

, (2.17)

where w(ei,j) is the weight of the edge ei,j in a weighted graph.
Dijkstra’s algorithm to find the shortest path in G from the source node vs to

the other nodes v is then given by the pseudo-code described in Algorithm 2. It re-
turns the shortest distances from node vs to each node vd ∈ V as d[vd], that is the
sum of the weights along the shortest path. Additionally, it returns the predeces-
sors for all nodes on the shortest path p[v]. The shortest path from vs to any vd can
be constructed the same way as with the BFS algorithm, in reverse by recursively
evaluating p[v], starting from p[vd].

Algorithm 2 Dijkstra’s Shortest Path algorithm

1: procedure SHORTEST-PATH(G = (V,E), vs ∈ V )
2: for all vi ∈ V do
3: d[vi]←∞ . Set all distances from vs to infinity
4: q[vi]← 0 . Set all nodes to unvisited
5: end for
6: d[vs]← 0
7: q[vs]← 1
8: n← 1 . Set the number of visited nodes to 1
9: repeat

10: vc ← arg minv∈V |q[v]=0{d[v]}
11: for all vn ∈ Γ+(vc) do
12: if (q[vn] = 1) ∧ (d[vn] > d[vc] + we(vc, vn)) then
13: d[vn]← d[vc] + we(vc, vn) . Set the distance of vs to vn
14: p[vn]← vc . Set the predecessor of vn
15: end if
16: end for
17: q[vc]← 1
18: n← n+ 1
19: until n = |V |
20: return p, d . Return predecessors and distances
21: end procedure

In case the goal is to find only the path to one specific node vd, this can be
achieved by minimal changes to the algorithm. The modifications consist of replac-
ing Line 19 with q[vd] = 1 and adding the destination declaration vd ∈ V to the
parameters on Line 1.
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Chapter 3

Simulating Connectivity in
Vehicular Networks

This chapter presents the simulation framework developed as part of this thesis.
It allows the simulation of connectivity in vehicular ad hoc networks (VANETs).
First, a high level overview of the functionality, implementation and availability of
the framework is given. Subsequently, the different simulation stages are presented
in more detail. This includes theoretic background on the models that are being
employed.

3.1 Simulation Framework Overview

The simulation framework is written in the Python1 programming language and
relies heavily on third party libraries and software. The most important ones are
OSMnx [18] for real world map retrieval, NetworkX [30] to work with graphs and
networks, Simulation of Urban Mobility (SUMO) [25] to model vehicle movement
and SciPy [31] for general numerical calculations.

The framework is freely available on the Internet2 under the permissive GNU’s
not Unix (GNU) General Public License. This gives anyone the opportunity to re-
produce the results presented in Chapter 5, run own simulations and expand and
redistribute the framework.

The simulation process consists of multiple stages, that are explained in detail
in the following sections. The process starts by loading and processing street net-
works, including the street data itself, building data as well as data to determine the
propagation condition between two points.

All the following steps will be repeated in a loop for the defined vehicle densities.
First, vehicle snapshot positions are generated. The simulation framework supports
two methods to generate these. Employing the first method the vehicles are placed
randomly with a uniform distribution along the streets and independently between
repetitions. As an alternative the framework also allows more realistic placement
and movement of vehicles via SUMO [25].

The resulting vehicle snapshots are then iterated, whereby in each iteration the
connected vehicles are determined. This is done by iterating all pairs of vehicles in
the snapshot. For each pair, the propagation condition is determined: If there are
buildings on the line connecting the pair, the connection is assumed to be non-line-
of-sight (NLOS). If there are other vehicles in between, the connection is assumed
to be obstructed-line-of-sight (OLOS) and if nothing is in between, the connection is
assumed to be line-of-sight (LOS).

1Available at https://www.python.org
2Available at https://v2v.sad.bz

https://www.python.org
https://v2v.sad.bz
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To then determine if a pair of vehicles is connected, two different metrics, pathloss
and Euclidean distance, are supported by the framework. If using the former, a
pathloss model corresponding to the respective propagation condition is used to
determine the pathloss between the two vehicles. The connection is active if the
pathloss is smaller than a set threshold. If the latter is used, the connection is ac-
tive if the distance between the two vehicles is smaller than a set threshold for the
respective propagation condition.

The resulting connections between vehicles in each time step are saved and fur-
ther analyzed to derive metrics that are described in Chapter 4. The whole simula-
tion process is depicted by a flowchart in Figure 3.1. More specifically, it shows the
case where pathloss is used as a connection metric. However, it behaves analogous
to the case where Euclidean distance is used.

3.2 Real-World Street Networks

The simulation framework uses the OSMnx [18] Python package to retrieve real
world street networks, which in turn uses OpenStreetMap (OSM) [13] as main data
source. When using OSMnx, a place name is passed to it which is translated to a
polygon corresponding to the place’s boundary geometry. A buffer is then added
and the street data within the extended boundary is downloaded from OSM. From
this data the street network is constructed by placing directed edges for one-way
streets and reciprocal directed edges in both directions for bidirectional streets. Af-
terwards, OSMnx corrects the topology and determines degrees and node types. As
a result nodes in the network represent dead-ends, the point from which an edge
self-loops or the intersection of multiple streets.

The network is then truncated to the original boundary geometry. This buffering
and subsequent truncation ensures that intersections with an incident edge connect-
ing to a node outside of the boundary, are not represented as dead-ends. The result
is a weighted directed multigraph (see Section 2.1), describing the street network.
The lengths of the streets are chosen to be the weights of the graph. The direction
of the edges corresponds to the driving direction of the street. Finally, the graph is a
multigraph, so it can represent multiple streets between the same two intersections,
as well as streets starting and ending in the same intersection.

To illustrate the context, Figure 3.2 shows an exemplary street network and its
corresponding graph with the nodes/intersections numbered.

Additional to the street network, OSMnx also downloads the building geome-
tries within the boundary of the place and returns them as a list of polygons. Both
street network and building data are finally projected onto the Universal Transverse
Mercator (UTM) coordinate system [32].

To reduce the computational complexity, the simulation framework supports the
simplification of the building data but in turn sacrifices geometrical accuracy. More
specifically, the determination of the propagation condition of each possible link be-
tween two vehicles needs to check if there are buildings on the straight line connect-
ing the two vehicles. The complexity of this check grows linearly with the number of
total building edges, because it needs to be verified if the connecting line intersects
any of the building edges. So by reducing the number of edges, the complexity of
the propagation condition identification is reduced.

The first step of the simplification algorithm consists of iterating all pairs of
buildings and merging the ones that are not further apart geometrically than a cer-
tain threshold. If the two polygons are intersecting, then the merge consists of the
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FIGURE 3.1: Flowchart of the simulation process
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unary union of the polygons. If they are not intersecting, the two pairs of the clos-
est edges of the polygons are determined and from these four points a valid poly-
gon, the filler polygon is constructed by connecting permutations of the points. The
merged polygon then consists of the unary union of the two polygons and the filler
polygon.

In the next step the interiors of all polygons are removed and the exteriors of
the polygons are simplified using the Douglas-Peucker algorithm [33]. The algorithm
simplifies a curve, represented by a connected series of line segments. It does so
by reducing the number of its defining points while ensuring a maximum distance
ε > 0 from any point on the simplified curve to the nearest point on the original
curve.

The recursive algorithm starts by taking the original curve defined by the series
of points of the connecting line segments Corig = (p0, . . . ,pn), constructing a new
line defined by the first and last point of the original curve p0pn and searching for
the point with the largest distance to the new line as

pa = arg max
pi∈{p1,...,pn−1}

d(pi,p1pn) . (3.1)

If d(pa,p1pn) ≤ ε the algorithm is aborted and the simplified curve is formed by
Csimp = (p0,pn). Otherwise, the temporary curve is formed by Csimp = (p0,pa,pn)
and the process repeated with the two section curves C1 = (p0, . . . ,pi) and C2 =
(pi, . . . ,pn). This process is then repeated recursively until all recursions are aborted
ensuring the maximum distance ε of the simplified curve to the original one.

An example for original and simplified building data for Neubau, Vienna, Aus-
tria can be seen in Figure 3.3. A tolerance of one meter has been selected for the pro-
cess. It can clearly be seen that the number buildings has been greatly reduced and
the shapes of the resulting polygons have been simplified. This has been achieved
while not changing the exteriors of the city blocks visibly. The result indicates that
LOS conditions between points on streets should not change significantly due to the
applied building simplification.

The effectiveness of the simplification algorithm for different places can be seen
in Table 3.1. It shows the number of buildings and their edges with and without
simplification for three different places. The tolerance has again been set to 1 meter.
The number of buildings could be reduced by up to a factor of 5 and the sum of
the number of all edges by up to a factor of 2.75. As intuition would suggest, the
algorithm is more effective in areas where the building density is high for constant
tolerances. Results regarding the error during simulations when using the simplified
building data instead of the original one are presented in Section 5.4.

Original Simplified
Place Buildings Edges Buildings Edges

Salmannsdorf, Vienna, Austria 388 3987 326 3097
Neubau, Vienna, Austria 1876 27 826 382 10 123
Upper West Side, New York, USA 4860 54 124 967 28 796

TABLE 3.1: Number of buildings and edges with and without simpli-
fication

The simulation framework generates an additional network based on the street
network. This propagation network can be used during the simulation to determine
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FIGURE 3.3: Original and simplified building footprints
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the propagation condition (NLOS, OLOS, LOS) of connections. It takes the street net-
work graph, converts it to an undirected graph and then iterates all pairs of nodes.
If the nodes are not already connected by an edge, the Euclidean distance is smaller
than a certain maximum and a straight line between the two nodes is not intersected
by any building, an edge between the two nodes is added. This edge is represented
geometrically by the straight line connecting the two nodes.

3.3 Vehicle Placement and Movement

The framework allows the placement of vehicles along roads via two different meth-
ods. The first method consists of placing vehicles randomly and uniformly dis-
tributed on the streets, therefore achieving a placement that is independent between
time steps. A second, more sophisticated method uses the external software SUMO
[25] and allows a more realistic simulation with vehicles moving in time between
their randomly selected sources and destinations.

The number of vehicles that will be placed can be set by three different parame-
ters independent of the placement method that has been chosen. It can be specified
directly by supplying the total count of vehicles. Alternatively it can be specified by
setting the area density (vehicles per area of the street network in m−2) or the length
density (vehicles per total road length of the street network in m−1).

3.3.1 Static Placement with Uniform Distribution

The static placement of vehicles distributes every vehicle randomly by drawing from
a uniform distribution and thus assigning each point along a street the same proba-
bility for being chosen as a vehicle position.

The vehicle placement process starts by calculating the length of each street in
the network. These lengths are then used as probabilities when drawing streets that
vehicles will be placed in. To finally place each vehicle on a point along the street, a
number from the uniform distribution, with minimum 0 and the length of the street
as maximum is drawn. This results in all points on a street being equally likely to
be chosen as position for a vehicle. More specifically it results in points on one-way
streets being half as likely as points on two-way streets. This algorithm is equivalent
to a Poisson point process that distributes vehicles along a line. The probability
P (k, l) of finding k vehicles on a street segment of length l is then given by

P (k, l) =
(βl)ke−βl

k!
, (3.2)

where β represents the vehicles density, in vehicles per street length.

3.3.2 Dynamic Placement with Vehicle Movement

To generate more realistic vehicle placements than the uniform distribution, the sim-
ulation framework uses a dynamic placement that interacts with the traffic simulator
SUMO. It has been chosen to simulate vehicle movement because it is publicly avail-
able and uses the car-following model. This model is widely used and has been de-
termined to model real-world vehicular dynamics, also in regard to vehicular com-
munication [12]. SUMO allows the generation of vehicle positions by first randomly
choosing start and destination positions for every vehicle, determining a route be-
tween them and then moving the vehicles along this route considering other vehicles
and traffic light systems (TLSs).
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SUMO employs an extended car-following model that is defined in [24]. The
model development begins by distinguishing between two modes a vehicle can
move in, free motion and interaction with other vehicles. Free motion is the case, when
there is no other vehicle in front of a vehicle and its speed v is bound by a maximum
v ≤ vmax. This maximum can be interpreted as the desired speed the driver wants
to reach. In the other case, when vehicles are in front, the speed v is bound by the
maximum v ≤ vsafe, that can be interpreted as the speed guaranteeing collision free
movement.

The model further assumes that there is a maximum acceleration a and deceler-
ation b, resulting in the conditions

−b ≤ dv

dt
≤ a,

a > 0, b > 0.
(3.3)

When considering only discrete time steps in increments of ∆t and by combining
all the previous conditions we arrive at the update scheme for the vehicles given by

v(t+ ∆t) ≤ min {vmax, v(t) + a∆t, vsafe} . (3.4)

The information how vehicles interact has to be determined by an equation defin-
ing vsafe that must fulfill the condition

v(t+ ∆t) ≥ v(t)− b∆t . (3.5)

To arrive at an expression for the safe speed a condition on the gap between the
vehicles is defined first. The gap g between the leading vehicle (denoted by the l) and
the following vehicle (denoted by the f ), is given by g = xl − xf − l, where x is the
position of the respective vehicle and l is the length of a vehicle. To guarantee the
absence of collisions the gap has to be larger than some non-negative desired gap
gdes and fulfill the condition

dg

dt
≥ gdes − g

τdes
, (3.6)

with the relaxation time τdes and the desired gap gdes, both of which can be func-
tions of g and the vehicles speeds. By again applying a discretization in the time
domain and using ġ(t) = vl(t)− vf (t) this yields the update rule

vf (t+ ∆t) ≤ vl(t) +
g(t)− gdes(t)

τdes(t)
. (3.7)

The vehicle position is then updated according to

x(t+ ∆t) = x(t) + v(t+ ∆t)∆t . (3.8)

This then results in the equations defining the car-following model from [24] as

vsafe(t) = vl(t) +
g(t)− gdes(t)

τdes

vdes(t) = min {vmax, v(t) + a(v)∆t, vsafe(t)}
v(t+ ∆t) = max {0, vdes(t)− η}
x(t+ ∆t) = x(t) + v(t+ ∆t)∆t

, (3.9)
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where non-ideal driving has been introduced by the random perturbation η. The
model further defines multiple ways to set the desired gap gdes and starts by setting
gdes = τvl with τ being the reaction time. Additionally, the model is extended to
support multi-lane traffic with lane changing and the modeling of traffic congestion.

The frameworks prepares for the SUMO process by converting the street network
from our simulation framework to an Extensible Markup Language (XML) format
that can be read by SUMO. SUMO then generates random trips for each vehicle by
selecting random points on the street network as start and destination and calculat-
ing routes between them. To prevent all TLSs from being synchronized it calculates
TLS signal offsets based on a fraction of the vehicle routes. The SUMO simulation is
then run and the vehicle positions for every time step are saved. These vehicle posi-
tion snapshots are then loaded by the simulator and each vehicle position is moved
to the nearest point on the street network to account for small differences between
the coordinates of the two street networks.

Figure 3.4 shows two instances of the two different vehicle distributions. In both
cases 250 vehicles, represented by blue circles, have been placed inside the street
network of Neubau, Vienna, Austria. In Figure 3.4a they have been placed according
to the uniform distribution whereas Figure 3.4b is a snapshot of a SUMO simulation,
after a 10 minute warm-up period. It can clearly be seen that in the uniform case all
parts of the street network are covered by vehicles. In the SUMO case on the other
hand, there are regions where no or few vehicles ar residing and other parts show a
high density of vehicles, where congestion formation can already be observed.

The described characteristics could be an early indicator that the uniform dis-
tribution of vehicles in the street network is not a realistic model to investigate the
connectivity of a VANET. Since we expect high and low density areas in reality, sim-
ilar to the SUMO case, there will be unconnected vehicles in the low density areas
that can not be modeled by the uniform distribution.

3.4 Propagation Conditions

The simulation frameworks supports different propagation conditions, depending on
the employed connection metric (see Section 3.5). If the Euclidean distance is used as
the connection metric, only LOS and NLOS are used as propagation conditions. The
connection is LOS if there is free space between the two vehicles and NLOS if there
are buildings between the two vehicles. More specifically the simulation framework
only investigates if the direct geometrical line connecting the two vehicles does not
intersect any buildings. This is of course a simplification of the more accurate model,
where the propagation is only assumed to be LOS if the first Fresnel zone is free
of any obstructions [34, p. 58]. However, this simplification has been accepted as
necessary, because of the much higher computational complexity of the alternative.
Eventually, this approach makes the simulation result also comparable to published
results in [9]–[11] using the same model.

If the pathloss model is used as a connection metric, additionally to LOS and
NLOS there can be OLOS propagation between two vehicles if another vehicles
blocks the line of sight. Furthermore, NLOS is split into NLOS between vehicles on
orthogonal streets and NLOS between vehicles on parallel streets. This distinction
becomes necessary because the used pathloss model distinguishes the same cases
[19], [20].

To determine the propagation condition, the simulator iterates all pairs of vehi-
cles. For each pair it constructs a direct line between the vehicles. It checks if this
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FIGURE 3.4: Vehicle placements
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line intersects any of the buildings by iterating all buildings and for each building
iterating all line segments forming the building polygon. It subsequently verifies
if the polygon line segment intersects the connection line. If there is no intersec-
tion detected, the connection is either marked as LOS in case of Euclidean distance
simulation or as OLOS or LOS with further investigation needed in case of pathloss
simulation. In the case of an intersection, the connection is marked as NLOS when
simulating with Euclidean distance and NLOS between vehicles on parallel or or-
thogonal streets with further investigation needed when simulating with pathloss.

As explained, in the case of pathloss simulation further distinctions are needed.
To distinguish between OLOS and LOS, all other vehicles not part of the pair under
investigation are iterated and checked if they intersect the line connecting the pair.
In this simulation step the vehicles are modeled as circles with a set radius. If an
intersection is found, the connection is marked as OLOS, otherwise it is marked as
LOS.

The distinction between NLOS on parallel and orthogonal streets is done by cal-
culating the shortest path between the two vehicles on the street network. This cal-
culation is done using Dijkstra’s algorithm, which is explained in Algorithm 2. The
shortest path is then converted to a line segment and the angles along the line seg-
ments are summed up. If this sum angle is greater than a certain threshold, the two
vehicles under investigation are assumed to be on parallel streets, otherwise they are
assumed to be on orthogonal streets. Additionally, the position of the largest angle
is saved, to later determine the location of the intersection for the pathloss model.

During the development of this algorithm we observed that the intuitive thresh-
old sum angle of π/2 is too small and an angle π/2 < α < π should be chosen, to ac-
count for street irregularities. Furthermore, it should be noted that the shortest path
algorithm of the framework uses the street lengths as weight which is sub-optimal
to the more appropriate weight of sum angles along the street. Nevertheless, this
simplification does not impair the accuracy of the algorithm considerably.

Figure 3.5 and Figure 3.6 show two exemplary results of determining the prop-
agation conditions. 250 vehicles were placed randomly with uniform distribution
on the streets of two areas. The center vehicle is marked by ’X’ and all others are
marked by circles, their colors corresponding to the propagation condition in regard
to the center vehicle.

We first investigate Figure 3.5, corresponding to Upper West Side, New York,
USA. The vehicle closest to the center vehicle in each of the two directions is deter-
mined to be in LOS, as would seem intuitive. Since no other vehicles were placed on
the same street, no OLOS links exist. Vehicles on parallel streets are detected as such,
whereas some vehicles that seem to be on intersecting streets have been detected as
being on parallel streets. This can be explained by the simplifications made during
the routing process.

This behavior can not be observed in Figure 3.6, corresponding to Neubau, Vi-
enna, Austria. Here, all vehicles on intersecting streets are correctly detected as such.
Additionally, the vehicles marked as being on parallel streets also correspond to in-
tuition. The vehicles on the same street as the center vehicle but with the link being
blocked by other vehicles are correctly determined to be in OLOS.

In general, it can be concluded from these examples, that the distinction between
LOS, OLOS and NLOS works well and that further improvements in detecting or-
thogonal and parallel streets should be examined. The performance mainly depends
on the topography of the selected area and the selected maximum sum angle.
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FIGURE 3.5: Propagation conditions - Upper West Side, New York,
USA

1000 m

Center
LOS
OLOS
NLOS orth
NLOS par

FIGURE 3.6: Propagation conditions - Neubau, Vienna, Austria
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3.5 Connection Metrics

To determine if two vehicles, with a previously determined propagation condition,
are connected or not the simulation framework allows the use of two different con-
nection metrics, the Euclidean distance and the pathloss.

3.5.1 Euclidean Distance

Using the Euclidean distance is a trivial method to decide if two vehicles on a street
network are connected or not. It has been used by many publications such as [9]–
[12]. Using this method the simulator calculates the distances between all pairs of
vehicles. It then compares these distances to a specified maximum for the corre-
sponding propagation condition. If the distance is smaller the vehicles are set to be
connected otherwise they are not connected.

3.5.2 Pathloss

As an alternative to specifying a maximum Euclidean distance, the framework al-
lows to model the pathloss and shadow fading loss between vehicles and compare them
to an adjustable maximum value in order to decide if a vehicle pair is connected or
not. Together with small scale fading, pathloss and shadow fading constitute the
three phenomena, that are generally used to model signal attenuation over a wire-
less channel.

Using the pathloss and shadow fading for connection decisions has the disad-
vantage that it is computationally more complex because it involves the application
of a pathloss formula in addition to all the steps also required for the Euclidean dis-
tance method. However, it offers the advantages of modeling the random nature of
shadow fading and the need of only one parameter, namely the maximum pathloss,
instead of different maxima for each propagation condition. The simulator uses the
pathloss model specified in [19] for OLOS and LOS propagation and the one given
in [20] for NLOS links.

In [19] the authors use measurements between two moving cars using rooftop
mounted omnidirectional antennas to derive a pathloss model for OLOS and LOS
propagation. The measurements have been conducted in an urban and highway
environments. These properties make the model applicable to our goal of modeling
VANET connectivity.

The measurements have been conducted using a channel sounder with a band-
width of 200 MHz and a center frequency of 5.6 GHz. To derive a pathloss formula
from the measured channel transfer functions H(f, t) they are transformed to the
equivalent complex time varying channel impulse responses h(t, τ) via an inverse
Fourier transform. From the impulse response the power delay profile (PDP) can be
derived, which is additionally averaged to eliminate the effect of small scale fading,
yielding the average PDP as

Ph(tk, τ) =
1

Navg

Navg−1∑
n=0

|h(tk + n∆t, τ)|2 , (3.10)

for tk = 0, Navg∆t, . . . , bNt/Navg−1cNavg∆t. Navg is the averaging period and its
chosen value corresponds to a relative movement of the two cars by 15λ satisfying
the wide-sense stationary (WSS) assumption. Nt is the total number of measure-
ments.
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After suppressing the noise the averaged channel gain is obtained as

Gh(tk) =
∑
τ

Ph(tk, τ) , (3.11)

with τ being the propagation delay. By finally compensating for the antenna
gainsGa and the implementation lossesPIL we retain the distance dependent pathloss
as

PL(d) = 2Ga − PIL − 10 log10Gh(d) . (3.12)

To determine the statistical properties of the shadow fading the data sets for
LOS and OLOS are investigated separately and the distance dependent channel gain
Gh(d) is divided into log-spaced distance bins. By investigating these datasets indi-
vidually the authors come to the conclusion that the large-scale variations can be
modeled by a random variable with log-normal distribution. This coincides with
the most widely accepted approach to model shadow fading.

To model the pathloss the authors use a dual-slope model, given by

PL(d) =

PL0 + 10n1 log10

(
d
d0

)
+Xσ if d0 ≤ d ≤ db

PL0 + 10n1 log10

(
db
d0

)
+ 10n2 log10

(
d
db

)
+Xσ if d > db

. (3.13)

This model is a piecewise linear approximation where the mean pathloss in-
creases with exponent n1, termed the pathloss exponent, until the breakpoint distance db
and with exponent n2 afterwards. The reference distance d0 is the distance which re-
sults in the reference pathloss PL0 and also the minimal distance the model can be used
for. The shadow fading is modeled by the zero mean Gaussian random variable Xσ

with standard deviation σ1 in the first region and σ2 in the second.
The breakpoint distance is generally assumed to be the distance where the first

Fresnel zone touches the ground i.e. the distance where the first signal bounces of
the ground that travels db + λ/4 being reflected by the ground, while traveling from
the transmitter to the receiver. This would result in a breakpoint distance of db =
4htxhrx/λ − λ/4 = 161 m with htx and hrx being the height transmitter and receiver
respectively. However, a breakpoint distance of 104 m has been chosen to better fit
the measurement data.

After selecting a reference distance of d0 = 10 m, the pathloss exponents are
selected to fit the median value of the data sets in the least square sense. This leads to
the parameters listed in Table 3.2 that are used in the simulation framework together
with the dual-slope equation.

Propagation Scenario n1 n2 PL0 σ

LOS
Highway −1.66 −2.88 −66.1 3.95

Urban −1.81 −2.85 −63.9 4.15

OLOS
Highway — −3.18 −76.1 6.12

Urban −1.93 −2.74 −72.3 6.67

TABLE 3.2: Parameters for the OLOS and LOS pathloss model

To determine the NLOS pathloss between vehicles that have buildings blocking
their line of sight, the model proposed in [20] has been chosen. It has been derived
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from an extensive measurement campaign between vehicles in urban and suburban
scenarios and is recommended by [19] as an appropriate method.

The measurements have been conducted in the city of Munich, Germany using
off-the-shelf radios that implement IEEE 802.11p [7], that report per packet recep-
tion power values. Two cars have been equipped with these radios and placed on
intersecting streets. The transmitting car has been placed on different fixed posi-
tions, while receiving car drove on the crossing street passing the intersection. The
intersections have been chosen to represent a wide variety of widths of the two in-
tersecting streets, but all crossing at an angle of 90 degrees.

To model the pathloss as a function of distances, street widths and suburban/urban
differences the Virtual Source model proposed by [21] as

PL =

10 log10

(
1
α

(√
2π
xtwr

4πdtdr
λ

))
if dr ≤ db

10 log10

(
1
α

(√
2π
xtwr

4πdtd2r
λdb

))
if dr ≤ db

, (3.14)

has been selected. It takes the distances between the intersection and transmitter
dt, the distances between intersection and receiver dr, the distance between transmit-
ter and the wall parallel to the street xt and the receiver street width wr into account.
Additional parameters are the wavelength λ and the breakpoint distance db. The
breakpoint distance is determined by db = (4hthr)/λwhere ht and hr are the heights
of the transmitter and receiver, respectively. The higher losses at distances greater
than the breakpoint distance reflect the dominance of diffraction over reflection in
the region.

This model equation was adapted to better fit the influence of the street width
and the distance from the wall. Additionally, a suburban loss factor was introduced
to distinguish between urban and suburban scenarios. The measured receive power
values where then binned into distance regions and the median of each region de-
termined. To resolve the variables of the model equation, it was fitted to the median
values. This results in a pathloss equation given by

PL(dr, dt, wr, xt, is) = 3.75+is2.94+Xσ+


10 log10

((
d0.957t

(xtwr)0.81
4πdr
λ

)2.69
)

if dr ≤ db

10 log10

((
d0.957t

(xtwr)0.81
4πd2r
λdb

)2.69
)

if dr > db

.

(3.15)
The selector is has to be set to 1 to model a suburban scenario and to 0 to model

an urban one. The shadow fadingXσ is a Gaussian random variable with zero mean
and standard deviation σ = 4.1dB. This has been derived by centering the power
probability distributions to their average for each intersection and bin.

Since the model depends on the distances of the vehicles to the intersection, the
simulation framework needs to determine the location of it. Finding the intersection
is not as trivial on real-world street networks, as it is on idealized networks, such
as the Manhattan grid. The simulation framework chooses the position of the maxi-
mum angle along the path that has been determined in Section 3.4 as the intersection
location.

For the pathloss formula in the NLOS case, reciprocity does not hold, meaning
the pathloss does not remain constant when the transmitting vehicle changes to re-
ceiving vehicle and the receiving vehicle to transmitting. Therefore, we determine
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both pathlosses and take the maximum of the two. This guarantees, that the two ve-
hicle will be simulated only as connected, if both pathlosses lie below the maximum
pathloss.

Since the model defined in [20] only applies to vehicles on intersecting streets,
connections between vehicles on parallel streets are still not modeled. However, [19]
argues, that the pathloss between vehicles on parallel streets is very high (> 120dB).
We therefore ignore this case in the simulator and set the pathloss to infinity.

1000 m

Center
Finite PL
Infinite PL

Pathloss [dB]
75.3

138.8

202.2

FIGURE 3.7: Pathloss - Upper West Side, New York, USA

Figure 3.8 and Figure 3.7 show the street networks of Vienna, Neubau, Austria
and Upper West Side, New York USA respectively. In each network 250 vehicles
have been placed randomly with a uniform distribution. The ’X’ marker indicates
the position of the center-most vehicle, the bigger round markers correspond to ve-
hicles with finite pathloss. Their colors map to their respective pathloss in regard to
the center vehicle. The vehicles that have infinite pathloss are marked by smaller cir-
cles. It can clearly be seen that vehicles on the same street as the center vehicle have
the lowest pathloss, being either in LOS or OLOS. Vehicles on orthogonal streets are
in NLOS to the center vehicle and therefore have higher pathlosses, that again rise
with increasing distance. Vehicles on parallel streets have infinite pathloss.

3.6 Vehicle Connections

After each links connection metric has been calculated, they are compared to a pre-
defined maximum, corresponding to the propagation condition. If the metric is
smaller than this maximum the two vehicles are determined to be connected, other-
wise they are not connected.

From this data the vehicle connection graph sequence G is created. The elements of
the sequence are given by G[n] = (V,E[n]), as defined in Section 2.2. The sequence
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FIGURE 3.8: Pathloss - Neubau, Vienna, Austria

has length N = |G|, where N is the number of iterations for static vehicle placement
and the time duration for dynamic vehicle placement. In the graph G[n] vehicles are
represented by the nodes v ∈ V . Connections between the vehicles are represented
by time/iteration dependent edges E[n]. An edge ei,j is in the set E[n] if there is a
connection between vehicle vi and vj , with i < j, in the instance with index n. This
graph is generated for each iteration in the static case respectively time step in the
dynamic case. To unify these cases we will use the index n for both.

The graphs G[n] have the properties of being undirected, unweighted and sim-
ple, as defined in Section 2.1. They are undirected, since our definition of a network
connection assumes reciprocity, meaning all communication channels are bidirec-
tional. This fact is also reflected in the definitions of the network metrics. Further-
more, the graph is unweighted, since the network connections reflect a binary status,
either a communication channel between two nodes exists or it does not. There is no
notion of quality, data-rate or distance in our model of a communication network.
Finally, it is a simple graph, since no more than one communication channel can
exist between a given pair of nodes and a node can not be connected to itself.

Since all the information about these graphs needs to be saved, the correspond-
ing adjacency matrices are calculated as in Equation (2.6). It is saved instead of
directly saving the graph object, to save disk space while not losing any informa-
tion. The graph objects can easily be generated from the adjacency matrices. The
obtained list of graphs can then be analyzed further, to obtain connectivity metrics
that characterize the networks.

Exemplary vehicle snapshot are depicted in Figure 3.9 and Figure 3.10 for Upper
West Side, New York, USA and Neubau, Vienna, respectively. In each network 250
vehicles were placed and propagation conditions and pathlosses in regard to the
center vehicle, marked by an ’X’, calculated. The vehicles are connected to the center
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FIGURE 3.9: Connection status - Upper West Side, New York, USA
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FIGURE 3.10: Connection status - Neubau, Vienna, Austria
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vehicle if the pathloss was smaller than 120 dB. It can be observed that in Figure 3.9
no vehicles outside of the same street as the center vehicle are connected to it. This is
due to the higher pathloss between NLOS links. In Figure 3.10 vehicles on the same
street are connected to the center vehicle.
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Chapter 4

Connectivity Metrics for Vehicular
Networks

To characterize the connectivity of the simulated networks various metrics can be
formulated. They capture different aspects of the network and can be derived from
the sequence of vehicle connection graphs G, that result from the process described
in Chapter 3. There are two types of metrics, static and dynamic ones. Static met-
rics investigate each time instance of the graph individually and therefore neglect
the temporal dimension of the network. Therefore, to simplify the notation the se-
quence element index n is omitted and the graph in the sequence denoted by G
when considering these metrics. Dynamic metrics, on the other hand, consider the
temporal evolution of the network, and therefore the whole sequence of graphs G
will be investigated. The computation of the metrics described in this chapter is sup-
ported by the simulation framework introduced in Chapter 3 and can be done, after
the connections have been determined.

4.1 Network Connectivity

The network connectivity NC (G) of a graphG = (V,E) is a static metric and is defined
as

NC (G) , max
i∈{1,...,|V |}

 1

|V |

|V |∑
j=1

A(G, i, j)

 , (4.1)

where A(G, i, j) is the connectivity indicator defined in Equation (2.16). If the
network connectivity of a graph is 1, there is a path between any pair of nodes vi and
vj and the graph is connected. For a disconnected graph the network connectivity is
smaller than 1 and therefore at least one pair vi and vj exists, between which there is
no path.

The network connectivity can also be interpreted through a cluster level analysis,
if a cluster is defined as a group of nodes with any two nodes having paths between
them. As a consequence, nodes in different clusters have no path between them. It
follows that the network connectivity is the relative size of the largest cluster. If the
largest cluster contains the nodes Vl ⊆ V , then the network connectivity is NC =
|Vl|/|V |.

Regarding the vehicular ad hoc network (VANET) that is represented by the
graphG, it is obvious that a high network connectivity is desirable, withNC = 1 be-
ing the optimal case. This would guarantee that messages sent in the network could



38 Chapter 4. Connectivity Metrics for Vehicular Networks

potentially be received by every node. It is also intuitive that the network connec-
tivity strongly depends on the vehicle density in an area and it is therefore an issue
that will be investigated later on.

The simulation framework can efficiently determine the network connectivity of
a graph G = (V,E) by applying the breadth-first search (BFS) algorithm described
in Algorithm 1, |V | times, using each v ∈ V as departure node vd and counting the
resulting distances d[vd] 6=∞ ∀vd ∈ V . The maximum of these values is then divided
by |V |, yielding the network connectivity. The framework determines and saves the
network connectivities NC [n] for the whole sequence G. Additionally, it determines
the average network connectivity as

NC =
1

|N |

N∑
n=1

NC (G[n]), (4.2)

which is a more meaningful metric for the network, since it is not subject to
statistical fluctuations, if N is chosen large enough.

4.2 Path Redundancy

While the network connectivity is a suitable metric to determine whether a network
is connected, it does not capture how well-connected it is. This richness of connec-
tions is reflected by the path redundancy, another static network metric. On one side
it can be interpreted as a robustness of the network, since a message that can travel
two redundant paths can still reach its recipient if a relay along one path becomes
unavailable. However, the redundancy also indicates how many duplicate messages
the recipient will receive, implying the severity of possible broadcast storms [11].

The path redundancy is the maximum number of disjoint paths that are avail-
able between two nodes and can be defined in terms of nodes or edges. Two paths
are redundant if they start and end at the same nodes, they are edge-disjoint if the two
paths don’t traverse any common edges and they are node-disjoint if they don’t tra-
verse any common nodes, except the first and the last one. So the edge-disjoint path
redundancy KE−dis

i,j is defined as the maximum number of edge-disjoint paths, and
the node-disjoint path redundancyKV−dis

i,j as the maximum number of node-disjoint
paths.

Additionally, we define the local edge connectivity κEi,j as the minimum number of
edges that must be removed from the graph to disconnect vi and vj , and the local
node connectivity κVi,j as the minimum number of nodes that must be removed to
disconnect them. They are also referred to as the minimum edge and minimum
node cut, respectively. It is intuitive, however not trivial to prove, that the edge
connectivities are equal to the path redundancies, KE−dis

i,j = κEi,j and KV−dis
i,j = κVi,j

[35]. This justifies the denotation of redundancy, since it is a measure of resilience of
the graph to node or edge elimination.

The m-th path between two nodes vi and vj in the graph G = (V,E) denoted
by pi,j,m can be expressed using the edge representation pEi,j,m from Equation (2.15).
Alternatively the path can be denoted by the node representation pVi,j,m from Equa-
tion (2.14).

We can therefore define the set of all edge-disjoint paths between vi and vj in G
as

PE-dis
i,j =

{
pi,j,m : pEi,j,m ∩ pEi,j,m′ = ∅ ∀k 6= k′

}
. (4.3)
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Furthermore, we define the set of all node-disjoint paths between vi and vj in G
as

P V -dis
i,j =

{
pi,j,m :

(
pVi,j,m ∩ pVi,j,m′

)
\ {vi, vj} = ∅ ∀k 6= k′

}
. (4.4)

The edge-disjoint and node-disjoint path redundancy are therefore the maximum
cardinalities of these sets,

KE−dis
i,j = max

{∣∣∣PE-dis
i,j

∣∣∣} , (4.5)

and

KV−dis
i,j = max

{∣∣∣P V -dis
i,j

∣∣∣} , (4.6)

respectively.
To extend this notion of path redundancy to the whole network we can determine

the set of edge-disjoint and node-disjoint path redundancies for all unique pairs of
nodes as

DE-dis =
{∣∣∣PE-dis

i,j

∣∣∣ : i, j ∈ {1, . . . , |V |}, i < j
}

, (4.7)

and

DV -dis =
{∣∣∣P V -dis

i,j

∣∣∣ : i, j ∈ {1, . . . , |V |}, i < j
}

, (4.8)

respectively.
To find the sets with maximum cardinality, the Max-flow Min-cut theorem [36]

can be used by calculating the maximum flow in the network. Alternatively, [37]
proposes to iteratively find the shortest path between the two nodes using the BFS
algorithm from Algorithm 1. After each iteration the nodes along the path are re-
moved from the graph and the path count is incremented. This however yields not
the exact node-disjoint path redundancy, but a lower bound, since a shorter path
could use nodes that may belong to two different node independent paths, if the
paths were longer. It is however intuitive to always use the shortest path, so that a
minimum number of nodes is removed.

The simulator determines the two redundancies for all unique pairs of nodes and
generates its probability mass functions (pmfs). From them the average, minimum
and maximum path redundancies can be extracted, which are representative metrics
for the robustness of the network.

4.3 Nodal Degree

The nodal degree n(vi) of a node vi in a graph G = (V,E) is defined as the num-
ber of neighbors the node has in the graph. It is equal to the cardinality of the set
of neighbors (Equation (2.3)) or equivalently the order of the neighborhood of vi
(Equation (2.2)) reduced by one:

n(vi) = |NS(vi)| . (4.9)

Applied to the VANET it is the number of other vehicles that are in transmission
range of a vehicle and can be interpreted as the local density of the network from a
physical connectivity point of view.

The simulation framework determines and saves the nodal degree of all nodes.
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4.4 Link Duration

To investigate the temporal evolution of a network we define a link between two
nodes vi and vj as the existence of the edge ei,j ∈ E in the graph G = (V,E).
Equivalently it can be expressed as vi and vj being neighbors. The link duration
can subsequently be interpreted as the duration the link between two nodes exists
uninterrupted in time and it is therefore a dynamic network metric.

First we define the total link duration, which is given for the sequence of graphs
G[n] = (V,E[n]) and any pair of nodes with indices i and j at time instant n as

Tl,t[n] ,

{
nf − n0 + 1 if ei,j ∈ E[n]

0 if ei,j /∈ E[n]

with

n0, nf : ei,j /∈ E[n0 − 1],

ei,j /∈ E[nf + 1],

ei,j ∈ E[k] ∀k ∈ {n0, . . . , nf} .

(4.10)

It is therefore the duration for which an edge between nodes vi and vj has existed
and will still exist at time n. To only determine the duration an edge will still exist
in the future, we define the residual link duration as

Tl,r[n] ,

{
nf − n+ 1 if ei,j ∈ E[n]

0 if ei,j /∈ E[n]

with

nf : ei,j /∈ E[nf + 1],

ei,j ∈ E[k] ∀k ∈ {n, . . . , nf} .

(4.11)

Since the simulation framework determines and saves all link durations, it is
also of interest to determine unique link duration, that is the duration of a link period
n0, . . . , nf should only be counted once. We therefore define the unique link duration
as

Tl,u[n] ,

{
nf − n+ 1 if ei,j ∈ E[n] , ei,j /∈ E[n− 1]

0 otherwise

with

nf : ei,j /∈ E[nf + 1],

ei,j ∈ E[k] ∀k ∈ {n, . . . , nf} .

(4.12)

The index where the respective link duration is returned has been arbitrarily cho-
sen to be the beginning of the link duration, which corresponds to n0 in the definition
of the total link duration.

The simulation framework determines the three different link durations for all
unique node sets {vi, vj} and all time instances n. It saves the ones different from
zero in a sequence. The pseudo code in Algorithm 3 illustrates the process. Addi-
tionally, the framework calculates their empirical pmf and the averages for all three
cases.
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Algorithm 3 Link Durations

1: procedure LINK-DURATIONS(G[n] = (V,E[n]))
2: τ l,t = () . Initialize empty sequence
3: τ l,r = ()
4: τ l,u = ()
5: for all i ∈ {1, . . . , |V |} do
6: for all j ∈ {i+ 1, . . . , |V |} do . Iterate all unique node pairs
7: for all k ∈ {1, . . . , |G[n]|} do . Iterate all time instances
8: if Tl,t[k] 6= 0 then
9: τ l,t

[
|τ l,t|+ 1

]
← Tl,t[k] . Add total duration to sequence

10: end if
11: if Tl,r[k] 6= 0 then
12: τ l,r

[
|τ l,r|+ 1

]
← Tl,r[k] . Add unique duration to sequence

13: end if
14: if Tl,u[k] 6= 0 then
15: τ l,u

[
|τ l,u|+ 1

]
← Tl,u[k] . Add residual duration to sequence

16: end if
17: end for
18: end for
19: end for
20: return τ l,t, τ l,r, τ l,u . Return all sequences of link durations
21: end procedure

4.5 Connection Duration and Period

To not only capture the immediate physical attachment between two nodes in terms
of links, the notion of connections is introduced. A connection between a pair of
nodes vi and vi exists the connectivity indicator in Equation (2.16) A(G, i, j) = 1.
Connections reflect the attachment of two vehicles in terms of a network, instead
of a direct physical attachment. If the higher layers of a communication protocol
support routing and relaying, messages can not only propagate via links but also via
connections and therefore potentially reach much further. To investigate the time
evolution of connections we define the connection duration as the time interval a
connection between two nodes exists uninterrupted.

As in the link case, we can define three different connection durations and due to
the analogy they will be defined briefly. The total link duration for any pair of nodes
with indices i and j in the graph G[n] at time instant n is defined as

Tc,t[n] ,

{
nf − n0 + 1 if A(G[n], i, j) = 1

0 if A(G[n], i, j) = 0

with

n0, nf :A(G[n0 − 1], i, j) = 0,

A(G[nf + 1], i, j) = 0,

A(G[k], i, j) = 1 ∀k ∈ {n0, . . . , nf} .

(4.13)

The residual link duration for any pair of nodes with indices i and j in the graph
G[n] at time instant n is defined as
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Tc,r[n] ,

{
nf − n+ 1 if A(G[n], i, j) = 1

0 if A(G[n], i, j) = 0

with

nf :A(G[nf + 1], i, j) = 0,

A(G[k], i, j) = 1 ∀k ∈ {n, . . . , nf} .

(4.14)

The unique link duration for any pair of nodes with indices i and j in the graph
G[n] at time instant n is defined as

Tc,u[n] ,

{
nf − n+ 1 if A(G[n], i, j) = 1 , A(G[n− 1], i, j) = 0

0 otherwise

with

nf :A(G[nf + 1], i, j) = 0,

A(G[k], i, j) = 1 ∀k ∈ {n, . . . , nf} .

(4.15)

The simulation framework determines the total, residual and unique connection
durations for all unique pairs of nodes and all time instants. The process is analogue
to the one for link durations described in Algorithm 3. Additionally, their averages
and pmfs are calculated and stored. To gather more insight into the dynamics of the
network the number of connected periods

NCP = |{Tc,u[n]|n ∈ {1, . . . N} : Tc,u[n] 6= 0}| , (4.16)

for all unique pairs of nodes are calculated and saved.

4.6 Re-Healing Time

To investigate disconnected nodes, i.e. nodes that have no path between them, we
introduce the re-healing time. It is the time duration two nodes have to wait until
a connection is again established. The re-healing time is an extremely important
metric for higher layer communication protocols that implement a store-and-carry-
forward mechanism, where nodes store sent messages that they were tasked to relay
until a path to the recipient becomes available. It also impacts the optimal frequency
of periodic beacon messages, where nodes announce their existence to the network.
A high frequency tends to overflow the network while a low frequency can result in
nodes missing the joining and leaving of a node completely.

We therefore define the unique re-healing time for any pair of nodes with indices i
and i in the graph G[n] at time instant n as

Tr,u[n] ,

{
nf − n+ 1 if A(G[n], i, j) = 0 , A(G[n− 1], i, j) = 1

0 otherwise

with

nf :A(G[nf + 1], i, j) = 1,

A(G[k], i, j) = 0 ∀k ∈ {n, . . . , nf} .

(4.17)
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In the set of re-healing times we collect all unique re-healing times different from
zero as

Srt = {Tc,u[n]|n ∈ {1, . . . N} : Tr,u[n] 6= 0} , (4.18)

to determine the average re-healing time as

T r =
1

|Srt|
∑

Tr∈Srt

Tr (4.19)

and the empirical pmf from all elements in Srt.

4.7 Information Bottleneck Method

Depending on the analyzed properties of the VANET we might get empirical distri-
butions in two variables X and Y , in the form of their joint pmf p(x, y) as a result. A
natural objective would then be to simplify the distribution by clusteringX while re-
taining most information. This can generally be stated as the question, what features
of X are relevant to predict Y ?

To rephrase the question in an information theoretic context we first introduce
the mutual information between two random variables X and Y as

I(X;Y ) =
∑

x∈X,y∈Y
p(x, y) log

(
p(x, y)

p(x)p(y)

)
=

∑
x∈X,y∈Y

p(x)p(y|x) log

(
p(y|x)

p(y)

)
.

(4.20)
The question is then, what is the compressed representation of X , X̃ , that retains

the most mutual information I(X̃;Y ), while being constrained on the mutual infor-
mation I(X; X̃). This representation is found by the Information Bottleneck method
[38] which yields a set of self-consistent equations for the representation:

p(x̃|x) = p(x̃)
Z(β,x) exp(−βDKL[p(y|x)||p(y|x̃)])

p(y|x̃) =
∑

x p(y|x)p(x̃|x)p(x)
p(x̃)

p(x̃) =
∑

x p(x̃|x)p(x)

, (4.21)

where

DKL[p||q] =
∑
y

p(y) log

(
p(y)

q(y)

)
, (4.22)

is the Kullback-Leibler divergence [39]. β is a Lagrange multiplier and Z(β, x) a nor-
malization function. For the limit β →∞ the mapping p(x̃|x) becomes deterministic
and leads to the Agglomerative Information Bottleneck algorithm [40].

To show how the algorithm works we look at a m-partition of X , Zm, in which
several components will be merged into a m-partition Zm, by merging the compo-
nents {z1, . . . , zk} ⊆ Zm into zk ∈ Zm with m = m − k + 1. For the new component
zk we can define its probability distributions as
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p(zk|x) =

{
1 if x ∈ zi for some 1 ≤ i ≤ k
0 otherwise

∀x ∈ X

p(y|zk) = 1

p(z)k

∑k
i=1 p(zi, y) ∀y ∈ Y

p(zk) =
∑k

i=1 p(zi)

. (4.23)

For other z ∈ Zm, z 6= zk the probability distributions stay the same as in Zm.
We can define the merge prior distribution Πk = (π1, . . . , πk), where πi is the

prior probability of zi in the merged subset, πi = p(zi)/p(zk). We observe that the
merge {z1, . . . , zk} ⇒ zk results in the decrease of mutual information I(X̃;Y ) given
by

δIy(z1, . . . , zk) , I(Zm;Y )− I(Zm;Y )

= p(zk) JSΠk
[p(Y |z1), . . . , p(Y |zk)] ≥ 0 ,

(4.24)

and termed Y -information decrease. JSΠ is the Jensen-Shannon divergence with
the priors Π, defined as

JSπ[p1, p2, . . . , pM ] , H

[
M∑
i=1

πipi(x)

]
−

M∑
i=1

πiH[pi(x)] , (4.25)

where H[p(x)] is the Shannon entropy, given by

H[p(x)] = −
∑
x

p(x) log(p(x)) . (4.26)

In a decision theoretic problem, the Jensen-Shannon divergence of the condi-
tional pmfs is identical to the mutual information between the sample spaces of the
classes, expressed as

JS p(y1),...,p(yM )[p(x|y1), . . . , p(x|yM )] = H(X)−H(X|Y ) = I(X;Y ) (4.27)

The decrease of mutual information I(X̃;X) can be determined as

δIx(z1, . . . , zk) , I(Zm;X)− I(Zm;X)

= p(zk)H[Πk] ≥ 0 ,
(4.28)

and is termed X-information decrease. It can now be proven that any merge of
k components can be equivalently realized by (k − 1) consecutive merges of pair of
components. Furthermore, for every k ≥ 2, δIy(z1, ¸ . . . , yk) ≤ δIy(z1, . . . , zk, zk+1)
and Ix(z1, ¸ . . . , yk) ≤ δIx(z1, . . . , zk, zk+1). It follows further, that for every 1 ≤ m ≤
N an optimal m-partition can be realized by (N −m) consecutive merges of pairs.

This leads to the Agglomerative Information Bottleneck algorithm. Because of
the aforementioned properties, the merges can be performed iteratively by searching
for the pair of clusters, that minimize the reduction of information δIy.

Since in our applications, it makes sense to only merge adjacent clusters, we add
this modification to the algorithm. The modified version is described by pseudo-
code in Algorithm 4, whereas if Lines 17 and 19 to 21 are omitted, we obtain the
original algorithm described in [40].

The need for this modification is best understood by applying the algorithm to
an example. From simulation and analysis of their results we can obtain distances
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Algorithm 4 Modified Agglomerative Information Bottleneck method

1: procedure MOD-AGGLOM-INFO-BOTTLENECK(p(x, y), N = |X|,M = |Y |)
. Initialization

2: for i = 1, . . . , N do
3: zi ← {xi}
4: p(zi)← p(xi)
5: p(y|zi)← p(y|xi) ∀y ∈ Y
6: for j = 1, . . . , N do
7: if j = i then
8: p(z|xj)← 1
9: else

10: p(z|xj)← 0
11: end if
12: end for
13: end for
14: Z ← {z1, . . . , zN}
15: for i = 1, . . . , N do
16: for j = i+ 1, . . . , N do
17: if j − i = 1 then
18: di,j ← (p(zi) + p(zj)) JSΠ2 [p(y|zi), p(y|zj)]
19: else
20: di,j ←∞ . Non-adjacent clusters get assigned infinite divergence
21: end if
22: . Every di,j points to the corresponding couple in Z
23: end for
24: end for

. Loop
25: for t = 1, . . . , N − 1 do
26: Find {α, β} ← arg mini,j di,j
27: merge {zα, zβ} ⇒ z
28: p(z)← p(zα) + p(zβ)
29: p(y|z)← (p(zα, y) + p(zβ, y)) /p(z)
30: for all x ∈ X do
31: if x ∈ {zα, zβ} then
32: p(z|x) = 1
33: else
34: p(z|x) = 0
35: end if
36: end for
37: end merge
38: Update Z ← {Z \ {zα, zβ}} ∪ {z} . Z is the (N − t)-partition of X
39: Update di,j costs and pointers w.r.t. z
40: end for
41: end procedure



46 Chapter 4. Connectivity Metrics for Vehicular Networks

between the vehicles X and their path redundancy Y . Their distribution can be ex-
pressed using the empirical joint pmf p(X,Y ). We can apply the Agglomerative In-
formation Bottleneck algorithm to p(X,Y ) to partition the distances X into clusters.
However, it is intuitive to only cluster adjacent distances, resulting in continuous
distance regions.
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Chapter 5

Simulations

This chapter presents simulation setups and results, as well as conclusions drawn
from them. These simulations have been conducted using the simulation framework
presented in Chapter 3 and the results analyzed by metrics defined in Chapter 4.

5.1 Manhattan Grid vs. Real-World Maps

The main characteristics of the simulation framework is the usage of real-world
street network data. We therefore want to investigate the impact of using these maps
in comparison to the idealized Manhattan grid. The results for Manhattan grid simu-
lations originate from [9]. It has been chosen as source because it is a comprehensive
work on vehicular ad hoc network (VANET) connectivity and offers a wide range of
connectivity metrics resulting from simulations.

5.1.1 Simulation Setup

The simulations in [9] were conducted using a Manhattan grid, consisting of a 2 x 2
km road network with each road block being 125 m long. The resulting street net-
work is a two-dimensional regular square grid. Two different places to compare this
scenario with, were chosen. The first street network consists of the area Upper West
Side, New York, USA, a part of Manhattan. This area has been chosen because it has
similar properties as the Manhattan grid, namely only perpendicular and parallel
streets, and comparable intersection density and average road length. Additionally,
we simulated Neubau, Vienna, Austria, to have further simulation results, originat-
ing from a street network with different properties.

In the reference work [9], vehicle movement is modeled via a simple cellular
automaton (CA) approach described in [10], whereas we use the more sophisticated
car-following model of Simulation of Urban Mobility (SUMO) [24], as described in
Section 3.3.2. The maximum speed of SUMO was set to 10 m/s, the same value used
for the cellular automaton model.1 For an additional comparison, we repeated the
simulation with static vehicle placement, where vehicles are distributed randomly
following a uniform distribution.

To model the traffic light system (TLS), the same timing parameters as in [9]
have been chosen. However, they apply a signal offset of 10 seconds to neighboring
traffic lights in each direction. This is not possible in a non-ideal street network and
therefore the TLSs offsets were determined by the routes of the simulated vehicles.

The distinction between line-of-sight (LOS) and non-line-of-sight (NLOS) links
in the reference paper is done by checking if the two vehicles are on the same street,

1This can not be stated with certainty, because of a mistake in [9, Table 1], where both 15 m/s and
36 km/h are stated as maximum speed.
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or at an intersection where they can see each other. Our simulation, on the other
hand, considers building data and employs the process described in Section 3.4. The
Euclidean distance has been used in both cases to determine connections. Addi-
tionally, the maximum distances for both propagation conditions have been chosen
consistently.

Both simulation scenarios were repeated with multiple vehicle densities, rang-
ing from 10 to 160 veh/km2. Vehicle snapshots of a 2000 s period have been used
to derive the resulting metrics, so that statistical fluctuations were eliminated. A
warm-up period of 1000 s has been employed, where vehicle snapshots have been
discarded. This results in only the steady-state in the network being considered.
The simulation parameters, that are consistent in our simulation and the ones con-
ducted by [9], are summarized in Table 5.1, while the differing parameters are listed
in Table 5.2.

Parameter Value

Vehicle densities {10, 20, . . . , 80, 120, 160} 1/km2

Maximum vehicle speed 10 m/s
TLS cycle time 45 s

TLS yellow light duration 2 s
TLS green / red light ratio 0.5

Connection metric Euclidean distance
Maximum distance LOS 250 m

Maximum distance NLOS 140 m
Simulation time 3000 s

Warm-up time 1000 s
Time resolution 1 s

TABLE 5.1: Consistent simulation parameters

Parameter Manhattan grid Real world network

Place Idealized Manhattan grid Upper West Side, New York, USA
Network area 4 km2 4.82 km2

Intersection density 6.4× 10−5 1/m2 7.90× 10−5 1/m2

Average road length 125 m 120.86 m
TLS signal offset 10 s Determined by vehicle routes
Vehicle placement CA {SUMO, Uniform distribution}

TABLE 5.2: Differing simulation parameters

5.1.2 Results and Conclusion

From the simulations described in the previous section and subsequent analysis
multiple connectivity metrics were derived. We first look at the network connectiv-
ity. Figure 5.1 shows the connectivities resulting from our simulation, as well as the
ones for the Manhattan grid listed in [9]. We can observe that in the Manhattan grid
case, vehicle densities of 80 veh/km2 result in fully connected networks on average.
The relation between vehicle density and average network connectivity is similar
in the case where the real street network of Upper West Side has been simulated
and vehicles were placed statically. The connectivity is slightly worse at densities
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FIGURE 5.1: Network connectivity

higher than 40 veh/km2 and reaches 96 percent at 80 veh/km2 while they are fully
connected on average only at 120 veh/km2. The situation is fundamentally differ-
ent when placing the vehicles via SUMO. While the average network connectivity is
higher than in the Manhattan grid at densities lower than 60 veh/km2, it only grows
slowly afterwards and does not reach 100 percent in the simulated density region.

These observations can be explained by essential differences in the two simula-
tion settings. The CA vehicle movement in combination with the Manhattan grid
in [9] leads to a highly uniform distribution of cars in the network, similar to the
random uniform distribution in the real street network. However, the real street net-
work does not offer the same regular geometrical patterns, resulting in clustering
effects of vehicles. There are regions, mainly at intersections on main streets, where
there is a high density of vehicles. In other areas, mainly side roads, blind alleys and
remote streets, there are very few vehicles residing at any moment. The low density
leads to a disconnection from the main clusters and a separation between the main
clusters.

The Manhattan grid has an intersection every 125 m, while the LOS range of
the vehicles is 250 m. This means a vehicle moving on a street always sees two
intersections, while cars currently at an intersection see four. If at every intersection
there is one car, the network would already be fully connected. This is the case
from a certain threshold density onwards, while for lower densities there will be no
large clusters. This explains the very low connectivity at low vehicle densities, the
steep increase and full connectivity at higher densities. For the real network there is
already a higher average connectivity at low vehicle densities due to large clusters
on main streets, however the increase at high vehicle densities is small, due to the
vehicles in remote side roads.

In the following we will investigate the average link duration. In the Manhattan
grid simulation result [9, Figure 4] we see a nearly constant value of 20 s over all
densities, with only a slight increase with increasing density. Figure 5.2 shows the
average unique link duration for different vehicle densities in Upper West Side and
Neubau. It exhibits the same behavior of constant averages at low densities. How-
ever, with high densities, the average link duration increases substantially in both
areas, in Neubau much steeper than in Upper West Side.
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FIGURE 5.2: Unique link duration

The longer link durations with increasing vehicle densities can be attributed to
traffic congestion. With higher densities the roads become overcrowded in bottle-
neck areas, which results in reduced speeds of the vehicles. Therefore, vehicles stay
near each other for longer periods which increases their link durations. Due to the
regularity of the Manhattan grid, traffic does not concentrate on areas and therefore
congestions are not likely to occur with the chosen vehicle densities. This results
in an average link duration that is independent of the vehicle density within some
bounds.
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FIGURE 5.3: Unique link duration distribution

We moreover investigate distribution of the link duration. Figure 5.3 shows the
unique link duration distribution for Upper West Side and a vehicle density of 70
veh/km2. It exhibits qualitative similarities to the distribution for the Manhattan
grid in [9, Figure 5], both showing a multimodal distribution.
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Both distributions have modes at around 20 and 45 s. These values coincide ap-
proximately with half of and a full duration of the TLS cycle duration. A potential
correlation between the cycle duration and the peaks in the distribution will there-
fore be investigated further in Section 5.2.

While the average link duration in the real street network is 30 s, nearly 20 per-
cent of the links last for only 3 seconds or less. Due to many short-lived links, the
robustness of upper-layer protocols becomes important. These protocols should of-
fer a fast connection establishment and quick routing mechanisms.
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FIGURE 5.4: Number of connection periods

We will now turn our focus from links to connections. Figure 5.4 shows the
average number of connection periods. The values have been normalized to the
number of pairs of vehicles, to make the results from different networks comparable.
As before, a vehicle density of 70 km2 has been simulated for two areas. Both curves
have a peak at approximately 60 veh/km2, being much more distinctive in the case
of Neubau. Qualitatively this coincides with result in the Manhattan grid [9, Figure
6a], where the peak is at 40 veh/km2.

For low densities, the vehicles are mostly disconnected and seeing only few con-
nections during the whole simulation duration. With increasing density, the number
of connection periods also increases. From a certain density onwards, the network
becomes well-connected and the connections are therefore long-lived. This results
in the number of connections to decrease with rising density. The result is a peak of
number of connections at some medium density.

In Figure 5.5 the average connection duration over vehicle densities for the two
areas is depicted. These results are compared to the corresponding ones for the
Manhattan grid [9, Figure 6b]. Generally the Manhattan grid offers much longer
connections on average then the two real street networks. At 80 veh/km2, the aver-
age network connection lasts for 400 s in the Manhattan grid, while in Upper West
Side it lasts for 38 s and even less, 23 s in Neubau. However, the dependence of the
average duration on the vehicle density in the Manhattan grid and Neubau show
striking similarities. In the low density regions (< 40 veh/km2), the average connec-
tion duration is slightly decreasing with increasing density while it shows an expo-
nential increase from 40 to 100 veh/km2. This differs strongly from results in Upper
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FIGURE 5.5: Unique connection duration

West Side, where the average connection duration grows mostly linearly with the
vehicle density.

It is remarkable and seems counterintuitive at first, that at low vehicle densities,
the average connection lasts for a shorter time period, than the average link (cf. Fig-
ure 5.2). However, this can be explained by the fact, that in a disconnected network
a single vehicle that establishes a path to the largest cluster and later disconnects,
established only one link, while it established a connection to each vehicle in the
cluster. It has therefore a greater effect in the statistic of connections, while having
only a small one in the statistics of links.

Regarding the requirements for VANETs it can be deduced from these results,
that a very high density of vehicles with vehicle-to-vehicle (V2V) communication
equipment is needed in real street networks, to support reliable communication with
long average connection durations and few connection periods.
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Finally, we investigate disconnected networks, using the data depicted in Fig-
ure 5.6. It shows the average unique re-healing time over vehicle densities. We can
again compare these results to the ones for the Manhattan grid in [9, Figure 7].

The curves show a good qualitative agreement, both being exponentially de-
creasing with rising vehicle density. The values vary drastically and are much higher
in real street networks. In the Manhattan grid the mean re-healing time is already
below 5 s at 50 veh/km2 while in both Neubau and Upper West Side it does not
reach this value even in a very dense network of 160 veh/km2. Additionally, no
improvement can be observed in the region with densities higher than 80 veh/km2,
suggesting a minimum re-healing time of approximately 5 s. This can be attributed
to the network connectivity never reaching 100 percent in all cases and therefore dis-
connected vehicles still existing. The higher average re-healing times in real-world
street networks increases the importance of effective store-and-carry-forward mech-
anisms as well as delay tolerance in upper layer protocols.

To summarize the insights from the comparison with the Manhattan grid, it can
be stated that using the real-world street networks can reproduce effects that also
occur in reality. However, these effects do not manifest themselves during simula-
tions using a Manhattan grid. Therefore, simulations using real street data is always
advisable. The Manhattan grid however offers a first estimate in terms achievable
performance for the investigated network metrics.

The relevant connectivity metrics were worse in real-world street networks than
the results presented in [9] for the Manhattan grid for the same vehicle densities.
This means, to achieve a certain average connection duration, link duration or re-
healing time, a much higher vehicle density on real world street networks is needed.
The results from the Manhattan grid could be used as an upper bound on the achiev-
able performance metrics.

Since for the most metrics, the performance of the real world network is worse
than in the Manhattan grid, the requirements to deployments, especially regarding
the minimum vehicle density, enhanced. Additionally, conditions to timing param-
eters of higher layer protocols need to be tightened. The duration of joining a net-
work needs to be low, resulting from short link durations. The routing and discovery
mechanism needs to be quick because of short connection durations and many con-
nection periods. Finally, the store-and-carry-forward mechanism needs to support
long storage periods, because of increased re-healing times.

5.2 Vehicle Speed and Traffic Light Systems

The vehicle movement model of SUMO allows the setting of a multitude of param-
eters that either influence the behavior of vehicles directly or indirectly through the
underlying street network. It is of interest how these parameters affect the connec-
tivity metrics of a VANET. We will assess the significance of the maximum speed
a vehicle can move with and the effect of the cycle time of the TLS on the street
network.

5.2.1 Simulation Setup

To determine the influence of the maximum vehicle speed and the TLS cycle time we
simulate the area of Upper West Side, New York, USA using three different vehicle
densities. The Euclidean distance was used as connection metric, where links have a
maximum range of 250 and 140 m for LOS and NLOS, respectively. The simulations
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were repeated with two maximum vehicle speeds, 10 and 15 m/s, and two TLS cycle
times, 45 and 90 s. The complete set of simulation parameters is listed in Table 5.3.

Parameter Value

Place Upper West Side, New York, USA
Vehicle densities {25, 50, 75} 1/km2

Vehicle placement SUMO
Maximum vehicle speed {10, 15} m/s

TLS cycle time {45, 90} s
TLS yellow light duration 2 s

TLS green / red light ratio 0.5
Connection metric Euclidean distance

Maximum distance LOS 250 m
Maximum distance NLOS 140 m

Simulation time 3000 s
Warm-up time 1000 s

Time resolution 1 s

TABLE 5.3: Simulation parameters

5.2.2 Results and Conclusion

We will first investigate the influence of the two parameters on the link duration.
We observed that the link duration distribution did not differ significantly for the
different vehicle densities. We therefore only show results for 75 veh/km2, since it
has the most possible connections and is therefore subject to statistical fluctuations
the least.
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FIGURE 5.7: Unique link duration distribution - maximum speed

The unique link duration distributions for the two different maximum vehicle
speeds are depicted in Figure 5.7. Both distributions have a multimodal character
and a strong similarity, but the distribution for 10 m/s is shifted to longer durations
in regard to the distribution for 15 m/s. This corresponds to the intuitive notion that
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higher speeds lead to shorter link durations. In the simple scenario representing the
case of the largest reduction in link durations, two vehicles are approaching each
other. Both travel with the same speed vl instead of vl < vh and have a maximum
communication range of d. The link duration then decreases from d/(2vl) to d/(2vh)
resulting in ∆Tl = d(vh−vl)/(2vhvl). Using the same parameters as in the simulation
this would yield a reduction of 4.17 s of the link duration. In the best case scenarios,
where one vehicle is directly following another or both vehicles are not moving and
in range, the maximum speed has no impact on their link duration. The median
link duration in the simulations were 22 and 18 s for maximum speeds of 10 and 15
m/s maximum speeds, respectively. The decrease by 4 s corresponds to the largest
possible reduction for a single link.
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FIGURE 5.8: Unique link duration distribution - TLS cycle time

Figure 5.8 shows the unique link duration distributions for the two different TLS
cycle times. Both distributions have a multimodal character but with significant
differences. For link durations between 1 and 15 s seconds the distributions are
almost identical. The mode at 18 s is much stronger and thinner for 90 s cycles
and the mode at 47 s in the 45 s case is shifted to 69 s. We suspect that the second
mode results from vehicles approaching each other, while the third mode results
from vehicles driving in the same direction. This would explain the shift of the third
mode, since the vehicles driving in the same direction have to stop at a red light
longer if the cycle time is longer. The simulation result shows that the cycle time
strongly influences the link duration characteristics.

In conclusion, it can be stated, that the model parameter choices strongly influ-
ence the connectivity results. While increasing the maximum vehicle speed leads to
a shifted link duration distribution with shorter links, adapting the TLS cycle time
has more complex consequences changing and shifting the modes of the distribu-
tion.

5.3 Euclidean Distance vs. Pathloss

The developed simulation framework supports the Euclidean distance and pathloss
models to determine if vehicles are connected or not. We want to compare these
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two methods in regard to differences in simulation results and their runtime. If both
methods deliver nearly identical results for adequately chosen parameters and the
Euclidean distance method is much less computationally expensive, the pathloss
models could be used to determine a maximum Euclidean distance, and this dis-
tance be used instead in the subsequent simulation.

5.3.1 Simulation Setup

To compare both methods a simulation in the area of Upper West Side, New York,
USA has been set up. We arbitrarily chose a maximum pathloss of 100 dB. From
the pathloss formulas for LOS and NLOS in Equation (3.13) and Equation (3.15) re-
spectively, we eliminate shadow fading by setting Xσ = 0 and therefore receiving
the average pathloss. We then extract the distances for a pathloss of 100 dB. For the
NLOS pathloss we assume that half of the distance is between transmitter and inter-
section and the other half between intersection and receiver. This method results in
a maximum distance of 434.33 and 40.72 meters for LOS and NLOS, respectively.

The simulation has been repeated using the Euclidean distance and pathloss us-
ing 100 iterations each time. The whole parameter set is summarized in Table 5.4.

Parameter Value

Place Upper West Side, New York, USA
Vehicle densities {10, 20, . . . , 80, 120, 160} 1/km2

Vehicle placement Uniform distribution
Iterations 100

Connection metric {Euclidean distance, Pathloss}
Maximum Euclidean distance LOS 414.33 m

Maximum Euclidean distance NLOS 40.72 m
Maximum pathloss 100 dB

TABLE 5.4: Simulation parameters

5.3.2 Results and Conclusion

To compare the two connection metrics to determine vehicle links, we analyze the
network connectivity and the runtime of the simulation. Figure 5.11 shows the av-
erage network connectivity for both methods over all the vehicle densities. The
two curves show a good agreement, where smaller densities lead to higher differ-
ences in average network connectivity, the maximum difference being 7 percent at
30 veh/km2. For very low and high densities the curves overlap almost perfectly.
Generally, the usage of the pathloss model leads to higher average network connec-
tivities than the usage of the Euclidean distance.

Looking at the runtime of the two simulations we get the result that the one using
the pathloss takes 48 times longer than the one using the Euclidean distance. This
grave difference can be attributed to the much more complex simulation process
in the pathloss case. Not only does the simulator additionally need to apply the
appropriate pathloss formula, but it also needs to distinguish between obstructed-
line-of-sight (OLOS) and LOS and between NLOS between vehicles on parallel and
vehicles on orthogonal streets.

The drastically reduced simulation time while maintaining accuracy leads to the
conclusion that the method of defining a maximum pathloss, subsequently trans-
forming it to maximum Euclidean distances using the pathloss models and then
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FIGURE 5.11: Network connectivity

using these distances during the simulation is a viable option. Naturally, the error
resulting from this simplification, varies for different network connectivity metrics
and needs to be assessed beforehand. If an agreement for all metrics is required,
directly comparing the resulting connection matrices is advisable.

5.4 Building Simplification

To assess the performance of the building simplification algorithm developed in Sec-
tion 3.2, we set up a set of simulations, where unmodified building data and sim-
plified building data has been used. The resulting propagation conditions between
vehicle pairs and the runtimes where compared for both scenarios.

5.4.1 Simulation Setup

The simulation was conducted using the different areas, Upper West Side, New York,
USA and Neubau, Vienna, Austria. The simulations where repeated with a building
tolerance of 0 meters, resulting in no simplification, 1 meter and 5 meters.

To generate the same vehicle positions for all building tolerances, the random
seed has been kept constant between simulation runs. To cover most of the area
by the investigation, the vehicles were uniformly distributed on the streets. Since
the simulation framework delivers the link status between vehicle all vehicle pairs
as output, and not the propagation condition, the NLOS range has been set to 0
while the LOS range has been set to an extremely high value. From the resulting
vehicle connection matrix, the propagation condition can subsequently be derived
by interpreting an established link as LOS link and an unestablished link as NLOS.

Additionally, the runtime of the whole simulation was saved, to determine the
speed up by using simplified building data. All the simulation parameters are sum-
marized in Table 5.5.
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Parameter Value

Place {Upper West Side, Neubau}
Vehicle placement Uniform distribution

Vehicle count {10, 100, 1000}
Iterations 100

Building tolerances {0, 1, 5}m
Connection metric Euclidean distance

Maximum distance LOS 1× 106 m
Maximum distance NLOS 0 m

TABLE 5.5: Simulation parameters

5.4.2 Results and Conclusion

To describe the accuracy of the resulting propagation conditions using the simpli-
fied building data we define use relative error ηsimp. It is defined as the number of
links with different propagation conditions Nerror in relationship to the total number
of links Ntotal =

(
Nveh

2

)
, where Nveh is the vehicle count. This relationship can be

expressed as ηsimp = Nerror/Ntotal. Furthermore, we define the gain in reduced run-
time of the simulation resulting from the use of the simplified building data by δsimp,
which is the ratio of the runtime of the simulation using the simplified building data
Tsimp and the runtime of the simulation using the original building data Torig. This
can be expressed as δsimp = Tsimp/Torig. The resulting speedups and errors for the
set of simulations are summarized in Table 5.6.

1 m tolerance 5 m tolerance
Place Nveh Ntotal ηsimp δsimp ηsimp δsimp

10 45 0 0.329 0 0.363
Upper West Side 100 4950 4.8× 10−5 0.255 4.8× 10−5 0.244

1000 499 500 5.7× 10−5 0.232 5.7× 10−5 0.233

10 45 0 0.510 6.12× 10−2 0.417
Neubau 100 4950 1.18× 10−4 0.396 6.70× 10−2 0.389

1000 499 500 7.92× 10−5 0.371 6.64× 10−2 0.387

TABLE 5.6: Building simplification results

The simulation results for Upper West Side show that a large speed up is possible
while keeping the inaccuracy minimal. For the low vehicle count the resulting error
is zero, since not enough connections have been simulated, to result in errors. For
the two higher vehicle counts the error is in the region o 10−5. The factor of runtime
gain ranges from one quarter to one third, decreasing with increasing vehicle count.
Additionally, no differences in speedup and error resulted from the two tolerances,
1 and 5 meters. This means that when running simulations in Upper West Side, the
computation time can be reduced by up to a factor of 4, while keeping the error
minimal.

For the area of Neubau the gain is smaller but still significant. When using 1
meter of building tolerance the factor of runtime gain ranges from 0.5 to slightly
below 0.37, while the error ranges between 0 and 10−4. However, when using a
building tolerance of 5 meters the error is more than 6 percent, which is already too
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high to get accurate results. In Neubau, a building tolerance of 1 meters is therefore
advisable, resulting in a speedup of factor 2, while achieving a minimal error.

Generally it can be concluded that the building simplification process is a viable
approach that reduces the computational complexity of the simulation process while
having very limited impact on the simulation result. However, the gain in reduced
simulation time and the resulting error are dependent on the simulated place. The
building tolerance should be chosen as a trade-off between accuracy and computa-
tional complexity.

5.5 Vehicle Distributions at Urban Intersections

Using the simulation framework we want to investigate a potential relation between
the distance a vehicle has from the nearest intersection and its nodal degree. The
nodal degree is the number of neighbors of a node and is formally defined in Sec-
tion 4.3. Intuitively, one would assume that in case of uniform distribution of the
vehicles, the nodal degree grows with decreasing distance to the intersection. This
however, can not be assumed for more complex vehicle distributions, resulting from
SUMO usage. Using the Information Bottleneck we want to discretize the road seg-
ments into coarse intervals providing each interval’s empirical cumulative distribu-
tion function (ECDF) of the nodal degree.

5.5.1 Simulation Setup

We investigate the issue by running simulations using the street network of Linz,
Austria. Three different vehicle densities will be investigated, 10 veh/km (low den-
sity), 20 veh/km (medium density) and 50 veh/km (high density). The large size of
the street network paired with higher vehicle densities results in a very high num-
ber of possible connections that need to be simulated. This in turn results in long
simulation time. To not increase the simulation time further, Euclidean distance in-
stead of pathloss will be used as connection metric. To investigate the impact of
vehicle distributions, we repeat the simulation with random uniform distribution
and with SUMO snapshots. A comprehensive list of the general and SUMO specific
simulation parameters is presented in Table 5.7 and Table 5.8, respectively.

Parameter Value

Place Linz, Austria
Vehicle densities {10, 20, 50} veh/km

Vehicle placement {Uniform distribution, SUMO}
Connection metric Euclidean distance

LOS range 350 m
NLOS range 100 m

Building tolerance 1 m

TABLE 5.7: General simulation parameters

The simulation yields six data sets Sβ,v for all combinations of vehicle densities
β and distribution methods v. Each set consists of tuples ti = (di, ni), one for every
vehicle that has been simulated. The tuple consists of the distance di of the respective
vehicle to the nearest intersection and the nodal degree ni. The distance is then
quantized finely with a resolution of five meters resulting in the discrete distances
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Parameter Value

Warmup duration 1000 s
TLS cycle time 45 s

TLS green / red light ratio 0.5
TLS yellow light duration 2 s

TLS coordination Deactivated

TABLE 5.8: SUMO specific simulation parameters

d′i. The estimated joint probability mass function (pmf) can therefore be expressed
as

pβ,v(d
′, n) =

1

|Sβ,v|
∑

ti∈Sβ,v

δ(ti, (d
′, n)) , (5.1)

where δ is Kronecker delta function defined in Equation (2.9).
From the estimated joint pmf we can derive the estimated conditional pmf pβ(n|d′),

that is the probability of a vehicle having n neighbors when being d′ away from
the nearest intersection. We want to find a coarser quantization d̃′ that has L steps
and minimizes the information loss introduced by the quantization. This can be
achieved using the Agglomerative Information Bottleneck algorithm introduced in
Section 4.7. We used the modified version described by Algorithm 4, that only
merges adjacent clusters. The algorithm was aborted after only L clusters remain.

Placement β veh/km Boundary 1-2 Boundary 2-3 Boundary 3-4

Uniform
0.01 14 m 57 m 143 m
0.02 39 m 97 m 251 m
0.05 31 m 107 m 177 m

SUMO
0.01 29 m 62 m 106 m
0.02 16 m 56 m 77 m
0.05 37 m 69 m 123 m

TABLE 5.9: Interval boundaries

As a trade-off between simplicity of the resulting model and information loss re-
sulting from it, we choose L = 4. The resulting distance region boundaries are listed
in Table 5.9. For all densities and vehicle placement methods the first region is rela-
tively small, with the largest one being 39 m. This indicates that the region close to
the intersection differs in its statistics from the rest and is therefore of special interest.
For farther distanced regions, the Information Bottleneck algorithm chooses larger
interval sizes with uniform placement than with SUMO. A possible explanation for
this is that vehicles in the SUMO case accumulate in the main streets and produce
traffic congestion. Therefore, a larger amount of vehicles is encountered at smaller
distances. The final interval region in the uniform distribution case is chosen well
outside of the NLOS range, while it is very close to the NLOS sensing range in the
SUMO case.

5.5.2 Results and Conclusion

Figure 5.12 and Figure 5.13 show ECDFs of the number of neighbors a node in the
VANET has for the static and the dynamic vehicle placement, respectively. They
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FIGURE 5.12: ECDFs of the nodal degree - static placement



5.5. Vehicle Distributions at Urban Intersections 63

0 50 100 150 200 250 300

0.0

0.5

1.0

E
C
D
F
(n
)

Interval 1
Interval 2
Interval 3
Interval 4

(A) 10 veh/km

0 50 100 150 200 250 300

0.0

0.5

1.0

E
C
D
F
(n
)

(B) 20 veh/km

0 50 100 150 200 250 300

Nodal degree n

0.0

0.5

1.0

E
C
D
F
(n
)

(C) 50 veh/km

FIGURE 5.13: ECDFs of the nodal degree - dynamic placement



64 Chapter 5. Simulations

show that few intervals are needed to capture the statistics in dependence of the
distance to the next intersection. First we investigate the case were vehicles where
placed using a uniform distribution, depicted in Figure 5.12. For low and medium
traffic densities the ECDFs of the nearest intervals 1 to 3 are almost perfectly overlap-
ping. However, the farthest region 4 shows a shifted distribution, meaning a vehicle
far away from the intersection has on average fewer neighbors. It is therefore im-
portant to consider this far-off region in a potential model. For higher densities the
effect is similar. Interval 4 again shows a strong offset while intervals 1 to 3 differ
only slightly, by at most 15 neighbors for any given probability. The general trend
is that vehicles nearer to the intersection always have more neighbors than vehicles
farther away. This corresponds to the intuition that nearer vehicles could potentially
also connect to vehicles on the intersecting street.

Next we examine the case where SUMO snapshots have been used to determine
vehicle positions. The resulting ECDFs are depicted in Figure 5.13. For medium
and high densities the lower intervals 1 to 3 overlap almost perfectly and vary only
slightly when using a low density. Again, the farthest distant interval 4 shows an
offset in regard to the others. The general trend in the SUMO simulation is however
completely the opposite as with the uniform distribution. The number of neighbors
a vehicle has increases with increasing distance to the intersection. This counter-
intuitive behavior can be explained by congestion at intersections. While it is likely
that a vehicle at an intersection has only neighbors that are also at or near this in-
tersection, a vehicle currently traveling between two intersections could have neigh-
bors at two intersections. This different trends show the importance of considering
distance-dependent behavior when modeling road intersections.

These results show that simple assumptions about the vehicular distributions on
street networks can have a large impact on the results and the models derived from
them. Additionally, it has been shown that the number of other nodes a vehicle can
reach, is dependent on the distance from the nearest intersection. Furthermore, we
provided a coarse quantization to capture and model this effect for different scenar-
ios. The static and dynamic placement led to contradictory trends when investigat-
ing the ECDF of the number of neighbors. While a uniform random distribution
resulted in distributions where the number of neighbors grows with the distance
from the intersection, the opposite is the case with SUMO placement.
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Chapter 6

Conclusion and Outlook

In this thesis we treated the topic of connectivity in vehicle-to-vehicle (V2V) net-
works. While the state of the art is to use strictly regular or randomly generated
street networks for simulations, we proposed the usage of real-world street networks
to achieve a more realistic model. Additionally, we proposed the usage of pathloss
models derived from vehicular measurements instead of the Euclidean distance to
determine connections between vehicles.

In the course of the thesis we developed a simulation framework that automates
the process of downloading street network and building data, running V2V con-
nectivity simulations and the subsequent analysis of simulation results by deriving
connectivity metrics. The street and building data is obtained from OpenStreetMap
(OSM), which offers public access to map data, that is highly accurate, especially
in urban areas. The framework offers the usage of Euclidean distance and pathloss
models to determine connections, where the appropriate models are used for line-of-
sight (LOS), obstructed-line-of-sight (OLOS) and non-line-of-sight (NLOS) links. To
place vehicles two methods were implemented. A simple static placement resulting
in a uniform distribution is available, as well as using Simulation of Urban Mobil-
ity (SUMO), allowing vehicle movement while considering traffic lights and traffic
congestions. The simulation framework has been made public, to allow the repro-
duction of the results presented in this work, as well as to allow anyone to modify
or adapt the software.

In subsequent simulations using the framework, we compared the resulting net-
work metrics of vehicular ad hoc networks (VANETs) in real-world street network
with those from a regular (Manhattan) grid. The fundamentally different vehicle
distributions in the two scenarios resulted in differing network connectivity metrics.
Generally, the simulations using real-world street networks result in worse perfor-
mance metrics than in the Manhattan grid scenario. These differences prove the im-
portance of using real-world street networks when simulating V2V communication.
Additionally, we investigated the impact of the maximum vehicle speed and traffic
light period time. The chosen parameter values impacted the connectivity metrics
substantially, resulting in shifted distributions for the link duration.

Furthermore, we compared the two different methods to determine links, Eu-
clidean distance and Pathloss. While simulating with pathloss models was much
more computationally expensive, the results for the investigated scenario coincided
for both cases, where the maximum distances have been set to match the maximum
pathloss. This gave rise to the idea to only use a pathloss to determine the respective
maximum distances and use these during the simulations.

To reduce the computational complexity of simulations, we developed an algo-
rithm to simplify building data. These simplifications lead to less time spent to de-
termine if a link is LOS or NLOS and therefore reducing the overall simulation time.
In simulations, we compared results from original and simplified building data. The
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results have shown, that the error resulting from the simplification is not significant,
while the computational complexity is drastically reduced. Naturally, the perfor-
mance depends on the chosen tolerance.

Finally, we investigated the relationship between the number of neighbors a ve-
hicle in a VANET has, and its distance to the nearest intersection. We have shown
that a uniform random distribution resulted in a growing number of neighbors with
decreasing distance to the intersection. When using vehicle movement with SUMO,
the opposite association could be observed. This underlines the importance of real-
istic vehicle placement and movement in simulations.

In conclusion, it can be stated, that the usage of real-world street networks for
VANET simulations is suitable to model these communication networks realistically
and merits further investigation.
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