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Abstract

The holographic principle originates from the observation that black hole
entropy is proportional to the horizon area and not, as expected from
a quantum field theory perspective, to the volume. This principle has
found a concrete realization in the Anti-de Sitter/Conformal Field Theory
(AdS/CFT) correspondence. It is interesting to ponder whether the key
insights about holography so far are specific to AdS/CFT or if they are
general lessons for quantum gravity and (non)relativistic field theories.

Relativistic and nonrelativistic geometries play a fundamental role in
advances of holography beyond AdS spacetimes, e.g., for strongly coupled
systems in condensed matter physics. Holography for higher spin theories
is comparably well understood and they are therefore good candidates to
gain further insights. In three spacetime dimensions they are distinguished
by technical simplicity, the possibility to write the theory in Chern–Simons
form and the option to consistently truncate the infinite higher spin fields
to any integer spin greater than two.

Here we will show progress that has been made to construct relativistic
and nonrelativistic theories in spin-three gravity. These theories describe a
coupled spin two and three field and are based on Chern–Simons theories
with kinematical gauge algebras of which the Poincaré, Galilei and Carroll
algebra are prominent examples. To have a spin-three theory where all fields
are dynamical it is sometimes necessary, as will be shown, to extend the
gauge algebras accordingly.

We will also discuss concepts which are useful in these constructions.
Guidance is provided by combining Lie algebra contractions and, a procedure
that will be reviewed extensively, double extensions.
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Chapter 1

Introduction

Symmetries have always been a successful guiding principle in physics. Al-
ready Galilei realized that the everyday physical laws are invariant under
transformations like rotations, time and space translations but also more
general ones like the so called inertial transformations. Under the assump-
tions [8] that space is rotation invariant and boots form a noncompact
subgroup (and another natural technical assumption) and sufficient knowl-
edge of Lie algebras Galilei would have seen that his physical worldview
might be an approximation of a more fundamental one. He would have
arrived at the Poincaré algebra of which the Galilei algebra emerges as a
contraction. See Figure 1.1, where at each corner sits a so called “kinematical
algebra” which we will further discuss in Chapter 9.

The difference between the laws of physics how Galilei would have seen
them and the relativistic ones can be made obvious by introducing the speed
of light. We know nowadays that the speed of light is a finite constant
approximately given by c = 3 · 108 m/s. For nonrelativistic theories there is
no reason for the speed of light to be finite and they are often described as
approximate theories in the c→∞ limit of more fundamental relativistic
ones (see Figure 1.1).

Nonrelativistic Theories
For many everyday phenomena the finiteness of the speed of light is of no
relevant consequence and can be safely ignored. Interesting examples with
technological interest are strongly coupled condensed matter systems (for a
review see [9]) or the fractional quantum Hall effect [10–13]. In both cases
nonrelativistic geometries play an influential role.

1
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Anti-de Sitter

Relativistic

Nonrelativistic

`→∞

c→∞

Figure 1.1: This figure shows that the relativistic symmetries can be un-
derstood as a contraction from the Anti-de Sitter symmetries where the
universe is negatively curved with radius `. From relativistic systems we
can send the speed of light to infinity to arrive at the nonrelativistic ones.

AdS/CFT
Interestingly, new ways to analyze strongly coupled systems have been
found [14–17] and are best understood on another place of the cube, to be
specific, at the Anti-de Sitter corner (see Figure 1.1). Here one needs to
introduce an additional constant which equals the curvature of the universe.
These new techniques are due to the holographic principle [18, 19] which
states that a quantum gravitational theory admits a dual description in terms
of a non-gravitational quantum field theory in lower spacetime dimension.
It is considered a key element of any approach to quantum gravity.

This principle found its realization in the famous AdS/CFT (Anti-de
Sitter/Conformal field theory) correspondence [14–17]. But neither AdS
spacetimes nor CFTs are strictly necessary for the holographic principle
to be true. This begs the question if the tools used in AdS/CFT can lead
to insights at other corners of the cube. For that it is useful to start with
theories where the duality has been tested in detail and is comparably well
understood. For that higher spin gravity seems like a good candidate which



CHAPTER 1. INTRODUCTION 3

has passed various nontrivial checks in different dimensions (for reviews
see [20,21]).

Higher Spin Theories
A very interesting class of theories where holography is realizable is higher
spin theory. Most of the work in this thesis is focused on 2 + 1 dimensions
where the theory admits a Chern–Simons formulation [22]. Much of the
simplicity comes then from the fact that there might be a two-dimensional
conformal field theory on the boundary. Due to the large amount of symme-
tries in two-dimensions these conformal field theories provide a high degree of
analytic control and are therefore distinguished theories for the exploration
of conceptual questions that seem far out of reach in higher dimensions.
The higher spin bulk theory can be understood as a generalization of pure
(2+1)-dimensional Einstein gravity in the Chern–Simons formulation [23,24]
accompanied by bosonic higher spin fields, or as a simplified version of the
Fradkin–Vasiliev theory [25]. These theories provide new insights with
respect to possible dualities [26–29], higher spin generalizations of black
holes [30], singularity resolution thereof [31], thermodynamics [32–34], entan-
glement entropy [35,36], holography [37] and string theory [38,39]. Therefore,
this seems like an interesting starting point to look for generalizations.

This work centers around which of the above mentioned features are
specific to AdS and which can be generalized. The discussion will be focused
towards spacetimes that have the possibility to describe boundary theories
with applications in, e.g., condensed matter physics [40,41].

Two such spacetimes (Lifshitz and Null-warped) were realized explicitly in
higher spin gravity, and consistent boundary conditions and the asymptotic
symmetry algebra were provided [2, 3]. This showed that it is possible to
realize spacetimes beyond AdS in higher spin gravity.

What was missing so far was a systematic procedure to go from higher
spin Anti-de Sitter to (non)relativistic higher spin theories. Concepts that
will provide this transition will be investigated in this thesis (see also [5]).
It can be seen on the cover of this thesis that symmetry was again a
useful guide in deriving these (non)relativistic higher spin geometries. Since
nonrelativistic geometries play a central role in non-AdS holography [42–45]
the hope is that their higher spin geometry generalization lead to an equal
important generalization.
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Outline
The Chapters 1 to 4 can be seen as introduction to the main part given
by Chapters 7 to 10 after which conclusion, outlook and appendices follow.
The introductory chapters are without reference to a specific gauge algebra
and therefore of general interest. Furthermore, various statements generalize
to any gauge theory that is based on a Lie algebra valued one-form. In
the main part we will focus on specific examples of higher spin theories
and follow closely the publications [1–7]. The appendices can in principle
be omitted, but they fix the notation (see also the Index at the end) and
provide useful additional information.

Chapter 2 The theory that this work is centered around, the Chern–Simons
theory, is introduced. It is usually based on a gauge algebra with a
symmetric invariant nondegenerate bilinear form (invariant metric)
and each of these requirements is examined for its importance.

Chapter 3 Due to a structure theorem it is known how Lie algebras that
posses such an invariant metric are constructed and it is therefore
of interest to review the ingredients. Besides the direct sum of one-
dimensional and simple Lie algebras, double extensions are introduced.
This is beneficial for later considerations of kinematical algebras, since
they are based on these concepts.

Chapter 4 For the study of approximate physical theories contractions are
a useful tool since one is automatically guided by considerations of
the original theory. Lie algebra contractions of different generality are
discussed. Contractions are used later in Chapter 9 and 10 for the
classification of (spin-3) kinematical algebras.

Chapter 5 A contracted Lie algebra that is useful for gauge theories should
be accompanied by an (also contracted) invariant metric. For self-dual
algebras a special invariant metric preserving contraction is defined.

Chapter 6 The global charges of Chern–Simons theories with boundary
provide information concerning possible boundary theories and are
therefore reviewed.

Chapter 7 After a short review of higher spin theories the standard W3
boundary conditions are introduced as û(1) composite objects [4, 7].

Chapter 8 Consistent boundary conditions for Lifshitz [2] and null-warped [3]
spin-3 gravity and difficulties concerning their interpretation are re-
viewed.
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Chapter 9 Kinematical algebras are analyzed and boundary conditions for
Carroll gravity [5] are proposed.

Chapter 10 Using contractions spin-3 kinematical algebras are classified [5].
For spin-3 Carroll gravity the invariant metric preserving contractions
of Chapter 5 show their usefulness whereas the considerations of
Chapter 3 concerning double extensions provide spin-3 Galilei gravity
with an invariant metric.

Chapter 11 Conclusions and a discussion of interesting open problems and
possible future projects are provided.

Appendix A A summary of the conventions is provided in this appendix.

Appendix B A brief review of Lie algebra concepts that are used in the
main part of this thesis is given, partially to fix the notation.

Appendix C Some explicit calculations for symmetry discussions for CS
actions are provided.

Appendix D A useful and extensive overview of the various Lie algebras
and their invariant metrics that underlie spin-2 and spin-3 gravity is
given.



Chapter 2

Chern–Simons Theory

We start by introducing the theory that forms the foundation of this work,
the Chern–Simons theory. It is based on a Lie algebra with an invariant
metric. The importance of the properties of this symmetric nondegenerate
invariant bilinear form will be examined.

2.1 Chern–Simons Action
The Lagrange density of the three-dimensional Chern–Simons (CS) the-
ory [46] (see also [47, 48] and [49]) is given by

CS[A] = 〈dA ∧ A+ 2
3A ∧ A ∧ A〉 (2.1)

≡ 〈dA ∧ A+ 1
3[A,A] ∧ A〉 (2.2)

= 〈TaTb〉(dAa ∧ Ab + 1
3f

a
cd A

c ∧ Ad ∧ Ab) (2.3)

with some connection A. We also write A = Aµ dx
µ = AaTa = Aaµ Ta⊗dxµ ∈

g⊗TM∗
3 , which shows that A is a Lie algebra valued one-form1. We define the

commutator between Lie algebra valued one-forms by [A,B] ≡ Aa∧Bb [Ta, Tb]
where [Ta, Tb] = f c

ab Tc. The symmetric nondegenerate invariant bilinear
1 By writing the Lagrangian density in this form we implicitly assume that the G

bundle is trivial. The connection can otherwise not be regarded as a Lie algebra valued
one-form although a suitable generalized definition exists (see, e.g., [50]). For connected,
simply connected Lie groups on a three manifold the G bundle is necessarily trivial.
So specifying the Lie group and not just the Lie algebra differentiates between the Lie
groups whose Lie algebra is g and provides additional information. We will ignore this
subtleties in the following and restrict mainly to discussions of the Lie algebra. For more
information see [50].

6
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form, also called invariant metric, is denoted by 〈TaTb〉 (see Definition 2.1
in Section 2.2). Often this is written as tr(TaTb), but as will become clear
this form can be defined without any reference to a matrix representation
and a trace thereof. Therefore, this notation is reserved for places where
the matrices are actually defined. Using the Lagrangian density the action
is given by

ICS[A] = k

4π

∫
M3

CS[A] (2.4)

where M3 denotes an oriented three-dimensional manifold.
As we have just defined the Chern–Simons (bulk) theory this leaves still

some freedom:

1. The three-dimensional manifold is the spacetime and it is mostly
assumed that we can decompose it as M3 = R × Σ. The time part
R might get identified periodically when black holes are discussed in
an Euclidean setup. The space part Σ is for holographic purposes
assumed to have an (asymptotic) boundary, see Figure 2.1.

φ

r

t

Σ
∂Σ

Figure 2.1: The three-dimensional manifold M3.

2. Our goal is to describe three-dimensional gravitational theories using
the Chern–Simons description [23,24]. The Lie algebra g specifies then
which one. The Chern–Simons theory based on sl(2,R)⊕ sl(2,R) for
example leads to three-dimensional gravity with negative cosmological
constant, whereas sl(2,C) and isl(2,R) corresponds to positive and
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vanishing cosmological constant, respectively. Lie algebras that have
these Lie algebras as a subalgebra can be understood as a generalization
of Einstein gravity, e.g., sl(3,R)⊕ sl(3,R) is a generalization including
an additional spin 3 field.

3. Additionally to the Lie algebra one needs to specify the invariant metric.
Once a Lie algebra is chosen it might happen that the invariant metric
has some freedom, outside of the overall scaling, that one needs to
specify. Another possibility is that the Lie algebra might not posses an
invariant metric. So, there is actually a tight connection between the
Lie algebra and its possible invariant metric. To specify one without
the other makes little sense.
The importance of the various conditions of the invariant metric for a
well defined Chern–Simons theory will be discussed in the next section.
The kind of Lie algebras that have an invariant metric are reviewed in
Section 3.

4. One point that might not seem obvious from the definition of the
action is the importance of boundary conditions. Without specifying
these the action is not well defined and from a holographic point of
few the boundary conditions determine the possible boundary theories.
They will be discussed in Section 6.

One point that differentiates Chern–Simons theory from other theories
like electrodynamics and general relativity is that it is independent of any
spacetime metric. It is thus a topological quantum field theory of Schwarz
type, for a review see [51].

Another property of CS theories (in three dimensions) is that it has no
local degrees of freedom in the bulk or in other words, there are no “Chern–
Simons waves” propagating inside the spacetime. This fits nicely with the
fact that pure three-dimensional gravity, for any value of the cosmological
constant, also has no gravitational waves [52].

Variation and Equations of Motion
To get the equations of motion we vary the CS Lagrangian density

δCS[A] = 〈d δA ∧ A+ (dA+ 2A ∧ A) ∧ δA〉 (2.5)
= 〈2F δA〉 − d〈A ∧ δA〉 . (2.6)

Here we have defined the Lie algebra valued two-form F = dA+ A ∧ A ≡
dA + 1

2 [A,A], which is the curvature of the connection. Given suitable
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boundary conditions, meaning that the boundary term in (2.6) vanishes
when integrated, leads to the equations of motion that the curvature is flat
F = 0, or more explicitly,

F a
µν = ∂µA

a
ν − ∂νAaµ + fabcA

b
µA

c
ν = 0 . (2.7)

Solutions to the equations of motion can locally be written as A = g−1 dg
for a group element g, see Appendix C.1.

2.2 Invariant Metric
We will now define what an invariant metric is. Afterwards will be examined
why and to which extend each of its properties are really necessary for a
well defined CS theory. This is of special importance since each part of the
definition of the invariant metric is an additional restriction on the possible
Lie algebras. For example, any Lie algebra would be possible for a well
defined CS theory if we left out the condition of non-degeneracy. So it is of
interest if one could relax some conditions and still get a well defined theory.

Definition 2.1. An invariant metric is a bilinear form 〈·, ·〉 : g× g→ K
on a Lie algebra g with field K which has the following three properties:

1. Symmetry

〈X, Y 〉 = 〈Y,X〉 for all X, Y ∈ g . (2.8)

2. Non-degeneracy

If 〈X, Y 〉 = 0 for all Y ∈ g then X = 0 . (2.9)

3. Invariance

〈[Z,X], Y 〉+ 〈X, [Z, Y ]〉 = 0 for all X, Y, Z ∈ g . (2.10)

A symmetric self-dual Lie algebra2 is a Lie algebra possessing an in-
variant metric.

When there is no risk of confusion the comma between the two arguments
of the bilinear form will be omitted. Given two symmetric self-dual algebras
with their invariant metrics (g1, 〈·, ·〉1) and (g2, 〈·, ·〉2) we can obtain a new
symmetric self-dual algebra by using a direct sum of Lie algebras and the

2 For details concerning the nomenclature see Remark 2.2. in [53].
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orthogonal direct product metric (g1 ⊕ g2, 〈·, ·〉1 +̇ 〈·, ·〉2). A Lie algebra
which can be written as such a direct sum is decomposable, if not it is
indecomposable. Examples for indecomposable symmetric self-dual Lie
algebras are simple and one-dimensional Lie algebras, whereas semisimple
ones are decomposable. That there are symmetric self-dual Lie algebras
beyond these examples will be shown in Section 3.

Using the basis Ta for the Lie algebra [Ta, Tb] = f c
ab Tc and Tab ≡ 〈Ta, Tb〉

the conditions on the invariant metric in components are given by

Tab = Tba (Symmetry), (2.11)
det(Tab) 6= 0 (Non-degeneracy), (2.12)

f d
ab Tdc + f d

ac Tdb = 0 (Invariance). (2.13)

Not every Lie algebra admits an invariant metric, e.g., the three-dimensional
Galilei algebra or the two-dimensional algebra [T1, T2] = T1, [T1, T1] =
[T2, T2] = 0 do not. We will now analyze why symmetry, nondegeneracy and
invariance are important properties for CS theories.

Symmetry
We start with the CS Lagrangian and ignore the condition that the invariant
metric should be symmetric. One is then always able to decompose the
bilinear form into symmetric and antisymmetric parts

〈TaTb〉 = 1
2(〈TaTb〉+ 〈TbTa〉) + 1

2(〈TaTb〉 − 〈TbTa〉) (2.14)

= 〈TaTb〉S + 〈TaTb〉AS . (2.15)

If we apply this to the CS Lagrangian the symmetric part reduces to the
well known CS Lagrangian (2.1), the antisymmetric part reduces to a total
derivative

〈dA ∧ A+ 1
3[A,A] ∧ A〉AS = 1

2 d〈A ∧ A〉AS . (2.16)

The first term of the left hand side of (2.16) leads to the total derivative
and the second one vanishes using the antisymmetry and the invariance of
the bilinear form.

So, in principle, one could relax the symmetry condition, but one would
merely change the theory by a total derivative3 or equivalently, the equations
of motion would stay unaltered.

3 This might have implications for boundary theories.
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Non-degeneracy
If we ignore the condition of non-degeneracy in the definition of the invariant
metric then there exists a vector subspace V ⊂ g of the Lie algebra to
which the whole Lie algebra is orthogonal, i.e., 〈V, g〉 = 0. An immediate
consequence is that the fields that are part of V have no kinetic term 〈A∧dA〉
and are therefore not dynamical.

So non-degeneracy is necessary if we want a theory where all fields have
a kinetic term.

Invariance
We will illustrate the importance of the invariance of the metric for non-
abelian gauge theories by applying (part of) a gauge transformation g = eZ

to 〈X, Y 〉,

〈g−1Xg, g−1Y g〉 = 〈X, Y 〉 − 〈[Z,X], Y 〉 − 〈X, [Z, Y ]〉+ O(Z2) . (2.17)

The invariance of the metric 〈[Z,X], Y 〉+ 〈X, [Z, Y ]〉 = 0 (equation (2.10))
is sufficiency that these kind of “gauge transformations” vanish. Not having
this invariance property might lead to additional constraints for the possible
Lie algebras.

If one inserts for X and Y the curvature and the Hodge dual curvature
of a connection this calculation basically shows also the importance of
the invariance of the metric for the gauge invariance of the Yang–Mills
action. Invariance is also important for similar calculations concerning the
CS theory in Section 6, as well as for other gauge theories like, e.g., the
Wess–Zumino–Witten (WZW) model.

Summary
For a well defined Chern–Simons theory where all fields have a kinetic term
it seems reasonable to search for Lie algebras with invariant metric, i.e., for
symmetric self-dual Lie algebras. In the next chapter we will discuss what
kind of Lie algebras posses such an invariant metric.



Chapter 3

Symmetric Self-dual Lie
Algebras

Lie algebras that posses an invariant metric play a fundamental role for
gauge theories in physics, e.g., as possible gauge algebras for Yang–Mills,
CS and WZW theories.

We will now examine what kind of Lie algebras admit such a metric.
The discussions in this chapter are general and independent of any specific
gauge theory. Appendix B contains further details and definitions.

3.1 Reductive Lie Algebras and the Killing
Form

Given a Lie algebra g over a field real or complex field K one can always
construct the Killing form κ : g× g→ K by defining

κ(X, Y ) ≡ tr(adX ◦ adY ) or using a basis κ(Ta, Tb) = f d
ac f

c
bd . (3.1)

The definition of the adjoint action (see appendix B.1) and the invariance
of the trace under cyclic permutations shows that the Killing form is a
symmetric invariant bilinear form on the Lie algebra. However, as stated by
Cartan’s criterion, in general the Killing form might be degenerate.

Theorem 3.1 (Cartan’s criterion). A Lie algebra is semisimple if and only
if its Killing form is non-degenerate.

So it follows that only for the semisimple Lie algebras the Killing form
automatically provides us with an invariant metric. For simple Lie algebras
this invariant metric is even unique up to overall normalization.

12
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Example 3.2 (sl(2,R)). An example for a simple Lie algebra is sl(2,R)
given by the commutation relations

[La, Lb] = (a− b)La+b (3.2)

where a = −1, 0,+1. As just discussed, since the Lie algebra is simple we
can construct the Killing form that then automatically provides us with an
invariant metric. An explicit calculation gives the Killing form (for further
details see Section D.1)

κ(La Lb) =


L−1 L0 L+1

L−1 0 0 −4
L0 0 2 0
L+1 −4 0 0

 (3.3)

which indeed fulfills all requirements of a well defined invariant metric. So
does any invariant metric proportional to it.

For a semisimple Lie algebra one could now add a second sl(2,R) Lie
algebra as a direct sum. So additionally to (3.2) we have now

[L̃a, L̃b] = (a− b)L̃a+b [L̃a, Lb] = 0 (3.4)

for which we get the Killing form κ(L̃a L̃b) = κ(La Lb) and κ(La L̃b) = 0. For
the direct sum we have two parameters in the invariant metric, one for each
factor, that we can freely choose.

A generalization of semisimple Lie algebras is given by reductive Lie
algebras which are direct sums of simple and abelian Lie algebras. Since the
commutator of an abelian Lie algebra vanishes, so does their Killing form.
Nevertheless is it possible to construct an invariant metric for reductive Lie
algebras.

Example 3.3 (u(1)). The abelian Lie algebra u(1), which is the unique
one-dimensional algebra, is given by the commutation relation [T, T] = 0.
Even though the Killing form is κ(T, T) = 0 we can define an invariant metric
by 〈T, T〉 = µ, where µ is a nonzero real constant.

A reductive Lie algebra would then be for example the direct sum
sl(2,R) ⊕ u(1), with the same invariant metrics as on their factors and
〈La, T〉 = 0.

One might ask if one could take direct sums of Lie algebras and find
an invariant metric that makes it indecomposable. This would mean for
Example (3.2) that κ(La L̃b) 6= 0 or for Example 3.3 that 〈La, T〉 6= 0.
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That this is not possible for the direct sum with a simple Lie algebra can
be easily shown. Suppose we have a symmetric self-dual Lie algebra s⊕ g
which is a direct sum of a simple one s with another arbitrary Lie algebra g.
Then the invariant metric is orthogonal since 〈s, g〉 = 〈[s, s], g〉 = 〈s, [g, s]〉 =
0 [53]. We have used that simple Lie algebras are perfect ([s, s] = s), that
the metric is invariant and afterwards that the Lie algebras are a direct
sum. For abelian Lie algebras one can always find an isomorphism that also
diagonalizes the invariant metric and therefore makes it decomposable. So,
reductive Lie algebras are also always decomposable.

Many important gauge theories are based on reductive gauge algebras,
e.g., electrodynamics with u(1) and the Standard Model of particle physics
with su(3)⊕ su(2)⊕ u(1).

3.2 Double Extensions
An interesting question is of course if there are Lie algebras possessing an
invariant metric besides the reductive ones. We answer this in the affirmative,
via the construction of double extensions, and discuss the construction of
any such symmetric self-dual Lie algebra in the next section. This section is
based on the work of Medina and Revoy [54], but we will follow closely [53].
For the notation see Appendix B or the Index (the symbol +̇ means direct
sum as vector space).

Definition 3.4 (Double extension [54]). Let (g, 〈·, ·〉g) be a Lie algebra with
an invariant metric on which a Lie algebra h acts on via antisymmetric
derivations, i.e.,

h · [x, y]g = [h · x, y]g + [x, h · y]g and 〈h · x, y〉g + 〈x, h · y〉g = 0 . (3.5)

Then we can define on the vector space g +̇ h +̇ h∗ the Lie algebra d, called
the double extension of g by h, by

[(x, h, α), (x′, h′, α′)] =
([x, x′]g + h · x′ − h′ · x, [h, h′]h, β(x, x′) + ad∗h ·α′ − ad∗h′ ·α) (3.6)

where x, x′ ∈ g, h, h′ ∈ h, α, α′ ∈ h∗. The skew-symmetric bilinear form
β : g× g→ h∗ fulfills

〈h · x, y〉g = 〈h, β(x, y)〉 . (3.7)
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Double extensions are symmetric self-dual Lie algebras since they always
carry an invariant metric defined by

〈(x, h, α), (x′, h′, α′)〉 = 〈x, x′〉g + 〈h, h′〉h + α(h′) + α′(h) (3.8)

where 〈·, ·〉h is a (possibly degenerate) invariant symmetric bilinear form on
h.

The stars following h∗ and ad∗ denote dual space and coadjoint repre-
sentation, respectively. We will denote double extensions by D(g, h) or the
mnemonic (g⊕c h∗) B h. This also explains the name double extension since
g is central extended by h∗ which then split extends h.

Any nontrivial double extension, meaning that h is nontrivial, is non-
semisimple. This is due to the abelian ideal [α, α′] = 0. If h is also nonabelian
we have a new class of symmetric self-dual Lie algebras.

Before we discuss further details of double extensions is it convenient to
write it in a basis. For g we fix the basis {Gi} in which the invariant metric
of g is given by Ωg

ij and the commutation relations by [Gi, Gj ]g = f k
ij Gk. For

the Lie algebra h the basis {Hα} has the Lie bracket [Hα, Hβ]h = f γ
αβ Hγ which

acts via antisymmetric derivations

Hα · Gi = f j
αi Gj (f j

αi = −f j
iα ) . (3.9)

That it is a derivation can be read of from Hα ·[Gi, Gj ] = [Hα ·Gi, Gj ]+[Gi, Hα ·Gj ],
and is equivalent to

f l
αk f

k
ij = f k

αi f
l

kj + f l
ik f

k
αj (3.10)

whereas the antisymmetry condition 〈[Hα, Gi], Gj〉g + 〈Gi, [Hα, Gj]〉g = 0 leads
to

f k
αi Ωg

kj + f k
αj Ωg

ki = 0 . (3.11)

Its canonical dual basis is given by {Hα}.
Then the Lie algebra d = D(g, h) defined on the vector space g+̇h+̇h∗

by

[Gi, Gj] = f k
ij Gk + f k

αi Ωg
kjH

α (3.12)
[Hα, Gi] = f j

αi Gj (3.13)
[Hα, Hβ] = f γ

αβ Hγ (3.14)
[Hα, Hβ] = −f β

αγ Hγ (3.15)
[Hα, Gj] = 0 (3.16)
[Hα, Hβ] = 0 (3.17)



CHAPTER 3. SYMMETRIC SELF-DUAL LIE ALGEBRAS 16

is a double extension of g by h. It has the invariant metric

Ωd
ab =


Gj Hβ Hβ

Gi Ωg
ij 0 0

Hα 0 hαβ δ β
α

Hα 0 δαβ 0

 (3.18)

where hαβ is some arbitrary (possibly degenerate) invariant symmetric
bilinear form on h.

Even though the notation D(g, h) might suggest otherwise further infor-
mation is necessary to fully define the double extension. Since that can be
clearly illustrated via the explicit Lie bracket realizations (3.12) to (3.17),
the necessary expression is provided in the parentheses:

1. The Lie algebra g (f k
ij ).

2. An invariant metric on g (Ωg
ij).

3. The Lie algebra h (f γ
αβ ).

4. The action (antisymmetric derivation) of h on g (f j
αi ).

As can be seen the remaining structure is mandated by the given one.
To fix the invariant metric of the double extension one has to additionally

provide the invariant symmetric bilinear form on h (hαβ). This part of the
bilinear form can be freely chosen without disturbing the properties of the
full invariant metric.

It might be illuminating to check that the double extended Lie algebra
is indeed well defined. Antisymmetry for the right hand side of the [Gi, Gj]
commutator, see equation (3.12), follows from the definition of g and the
antisymmetry condition (3.11). Otherwise antisymmetry follows from the
definition of the derivation and of the Lie algebra h.

To verify that the Jacobi identity is satisfied we will use that fijk ≡ f l
ij Ωg

lk

and fijα ≡ f k
αi Ωg

kj are totally antisymmetric in ijk and ijα, respectively.
Then

	
ijk

[[Gi, Gj], Gk] =	
ijk
f l
ij f

m
αl Ωg

mkH
α (3.19)

= (fljk f l
αi + filk f

l
αj + f l

ki fljα + f l
jk fliα )Hα (3.20)

= 0 (3.21)

where we used in the first line that g itself satisfies Jacobi’s identity, which
leaves us with the remaining terms. In the second line the sum is expanded
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and the derivation condition (3.10) is used on the first term. The total
antisymmetry of fijk and fijα can then be used to show that the first (second)
and last (third) term cancel. The other identities terms can be verified in a
similar manner.

3.3 Indecomposable Symmetric Self-dual
Lie Algebras

In the last section we have seen that double extensions provide an additional
way to construct Lie algebras with invariant metrics. The proof that all
symmetric self-dual Lie algebras can be obtained by direct sums and double
extensions of simple and one-dimensional Lie algebras is due to the structure
theorem of Medina and Revoy [54]. Here, we add two additional refinements
(3a and 3c) which, to my best knowledge, were first presented in [53].

Theorem 3.5. Every indecomposable Lie algebra which permits an invariant
metric, i.e., every indecomposable symmetric self-dual Lie algebra is either:

1. A simple Lie algebra.

2. A one-dimensional Lie algebra.

3. A double extended Lie algebra D(g, h) where:

a) g has no factor p for which H1(p,R) = H2(p,R) = 0.
b) h is either simple or one-dimensional.
c) h acts on g via outer derivations.

Since every decomposable Lie algebra can be obtained from the inde-
composable ones this theorem describes how all of them can be generated.

In Theorem 3.5 we have presented further restrictions on double ex-
tensions that are necessary to make them indecomposable. They are not
sufficient as will be shown in Example 3.8. Before, the restrictions on
indecomposable double extensions of Theorem 3.5 will be further discussed.

The condition 3a is necessary since otherwise the factor p would also
factor out of the double extension, i.e., D(p ⊕ g, h) = p ⊕ D(g, h) which
makes it decomposable. This is basically due to the restriction 3c, since for
such a factor p all derivations are inner and these also factor out of double
extensions [53]. Lie algebras p with H1(p,R) = H2(p,R) = 0 are sometimes
called pluperfect [53]. Partly because H1(p,R) = 0 is equivalent to the
condition that p is perfect ([p, p] = p). The second condition H2(p,R) = 0
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is equivalent to the condition that p does not admit any nontrivial one-
dimensional central extensions, see Appendix B.6. Semisimple Lie algebras
are pluperfect and are therefore not allowed as factors if the resulting double
extension should be indecomposable [53]. This restricts the class of Lie
algebras that one could double extend to the abelian and the ones that have
already been double extended.

It should be emphasized that there is no restriction concerning decom-
posability on g. Example 3.11 shows the double extension of a degenerate
symmetric self-dual Lie algebra to an indecomposable one.

One special case are double extensions of trivial Lie algebras. For these
the resulting symmetric self-dual Lie algebra is a semidirect sum since
D(0, h) = (0⊕c h∗) B h = h∗ B h.

Example 3.6 (Poincaré). The three-dimensional Poincaré algebra is a
double extension of a trivial Lie algebra by so(2, 1), i.e., D(0, so(2, 1)). This
can be seen explicitly from the commutation relations

[JA, JB] = ε C
AB JC

[
JA, PB

]
= −ε B

AC PC
[
PA, PB

]
= 0 (3.22)

and the invariant metric

〈JA, JB〉 = ηAB 〈JA, PB〉 = δ B
A 〈PA, PB〉 = 0 . (3.23)

3.4 Low-Dimensional Symmetric Self-dual
Lie Algebras

To get more familiar with the above mentioned constructions the lowest
dimensional symmetric self-dual Lie algebras will be discussed. Since the
dimension 1 was already discussed in Example 3.3 we proceed with dimension
2.

Dimension 2
Example 3.7 (u(1)⊕u(1)). For the direct sum of two u(1) algebras one has
the commutation relations [Gi, Gj] = 0 for i, j = 1, 2 and the most general
invariant metric is given by

Ω =
(
a c
c b

)
for ab− c2 6= 0 . (3.24)

Since it is a symmetric matrix we can always find an invertible matrix that
diagonalizes it. This in turn shows that there exists an isomorphism that
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makes it decomposable. Depending on the three parameters a, b and c the
metric might be positive definite.

Similar reasoning generalizes to higher-dimensional abelian Lie algebras,
which always admit an invariant metric and are decomposable.

Example 3.8 (D(0, u(1))). We will now double extend a trivial g by an
abelian algebra u(1). This example fulfills all the necessary requirements of
Theorem 3.5 for a double extension to be indecomposable. In the end it will
fail to be so. Of course, in the case at hand the conditions 3a and 3c are
rather trivial.

Since u(1) is abelian it follows that the double extension is also abelian,
[H, H] = [H, H∗] = [H∗, H∗] = 0. This is the same Lie algebra as discussed in
Example 3.7. As discussed, double extensions admit an invariant metric
given by 〈H, H∗〉 = c. In this example we could also add 〈H, H〉 = a and, what
is more uncommon for double extensions, the 〈H∗, H∗〉 = b term. We will
ignore these two terms subsequently. Using the isomorphism H± = 1/2(H±H∗)
we can show that the double extension is decomposable. The commutation
relations remain that of an abelian algebra and the invariant metric is given
by 〈H±, H±〉 = ±1 and 〈H+, H−〉 = 0. So the double extension is decomposable
D(0, u(1)) ' (u(1)⊕ u(1), 〈−,−〉+ +̇ 〈−,−〉−).

As for generic double extension, with possibly a 6= 0 but b = 0, we see
that the invariant metric is non positive definite.

Even though two Lie algebras might be isomorphic this might not be
true when in addition their invariant metrics as additional structure are
taken into consideration. An example for this phenomena would be the just
mentioned abelian Lie algebras, where once we take the invariant metric
(3.24) with c = 0 and once with a = b = 0. Even though the Lie algebras
are isomorphic the metric is positive definite and indefinite, respectively.

Example 3.9 (Nonabelian). In two dimensions up to isomorphism there is
exactly one nonabelian Lie algebra. The nonzero commutator is [G1, G2] =
c1G1 + c2G2 with the restriction that not both c1 and c2 are allowed to vanish.
The most general invariant metric is then proportional to

Ω =
(

c2
2 −c1c2

−c1c2 c2
1

)
(3.25)

which is always degenerate.
That it is the only nonabelian Lie algebra of dimension two can be shown

with the isomorphism Gi = T j
i G̃j (see B.1), which leads with

c̃2T
1

1 + c̃1T
2

1 = −c2 (3.26)
c̃2T

1
2 + c̃1T

2
2 = c1 (3.27)
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to [G̃1, G̃2] = c̃1G̃1 + c̃2G̃2. Except for c̃1 = c̃2 = 0 we can always find a
invertible T j

i that fulfills (3.26) and (3.27).

Dimension 3
The smallest simple Lie algebras have dimension three. They have an
invariant metric that is proportional to the Killing form and we therefore do
not need to discuss it further. Furthermore, we have the three-dimensional
abelian Lie algebra which was discussed in Example 3.7.

Example 3.10 (D(u(1), u(1)). This is the only possible three-dimensional
double extension, but it leads to an abelian Lie algebra as we will show.

We start with g = u(1) since it has an invariant metric, as is required
for double extensions, see Example 3.3. It is not perfect and therefore
H1(u(1),R) 6= 0, which is another requirement for a possible double ex-
tension. However there do not exist antisymmetric outer derivations since
the most general derivation D · G = c G (which is outer for c 6= 0),using the
antisymmetry condition, leads to 〈D ·G, G〉+ 〈G, D ·G〉 = 2c〈G, G〉 = 2ca, which
is nonzero for outer derivations and thus not antisymmetric.

Dimension 4
In exist no four-dimensional simple Lie algebras. Again there is the abelian
algebra given by the direct sum of four u(1) algebras. Additionally there
are reductive Lie algebras given by the direct sum of the three-dimensional
simple Lie algebras with u(1).

In four dimensions exists the first indecomposable double extension. The
Lie algebra u(1)⊕ u(1) is actually the only option for which an indecompos-
able double extension is possible.

Example 3.11 (D(u(1)⊕u(1), u(1)). We start with the decomposable direct
sum g = u(1)⊕ u(1) explicitly given by the commutators [Gi, Gj ] = 0 and the
invariant metric 〈Gi, Gj〉 = δij

1. All conditions for a possibly indecomposable
double extension are fulfilled since there exists an outer antisymmetric
derivations given by [H, Gi] = ε ji Gj, where ε 2

1 = −ε 1
2 = 1. The double

extension is then given by

[Gi, Gj] = ε ki δkjH
∗ (3.28)

[H, Gi] = ε ji Gj (3.29)
[H, H∗] = 0 (3.30)

1 We restrict the invariant metric to specific values.
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with the invariant metric

Ωd
ab =


Gj H H∗

Gi δij 0 0
H 0 h 1
H∗ 0 1 0

 . (3.31)

This algebra has been used by Nappi and Witten to construct a nonsemisim-
ple WZW model [55].

Summary
All symmetric self-dual Lie algebras are given by application of direct
sums and/or double extensions to simple and/or u(1) Lie algebras. The
indecomposable ones are of the type described in Theorem 3.5.



Chapter 4

Contractions of Lie Algebras

Contractions go back to the works of Segal [56] and Inönü and Wigner [57].
While also mathematically interesting, in physics their importance comes
from the fact that they are related to approximations. The probably most
famous example is the contraction from the Poincaré group to the Galilei
group [57], i.e., going from relativistic to nonrelativistic physics.

We will discuss contractions on the level of Lie algebras and in relation
to invariant metrics, but often useful insights for other interesting structures
like the Lie group and representations follow.

We start by introducing contractions, generalized and simple Inönü–
Wigner contractions and briefly discuss their relations. Afterwards the effect
of contraction on invariant metrics will be investigated.

We will follow partially [58, 59]1 where further details can be found.

4.1 Contractions
We will start with the most general Lie algebra contraction definition. For
that we start with a Lie algebra g with an underlying vector space V over
R.

Definition 4.1 (Contraction). Let T (ε), with 0 < ε ≤ 1, be a family of
continuous non-singular linear maps on V . Then the Lie algebras

gT (ε) = (V, [·, ·]T (ε)) for ε > 0, (4.1)

where

[x, y]T (ε) = T−1(ε)[T (ε)x, T (ε)y] with x, y ∈ V (4.2)
1Lemma 2.2. in [59] is not correct and therefore the proof of Theorem 3.1. does not

work [58,60].

22
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are isomorphic to g = (V, [·, ·]). If the limit

[x, y]T ≡ lim
ε→0

[x, y]T (ε) (4.3)

exists for all x, y ∈ V , then [·, ·]T is a Lie product and the Lie algebra
gT = (V, [·, ·]T ) is called the contraction of g by T (ε), in short,

g
T (ε)−→ gT . (4.4)

When a basis is fixed T (ε) is a matrix and we can define the limit on
the structure constants by

(fT ) c
ab ≡ lim

ε→0
T (ε) d

a T (ε) e
b T
−1(ε) c

f f
f

de . (4.5)

When the specific contraction is clear we will sometimes leave out the T (ε)
or just write an ε.

Two contractions always exist:

1. gT ' g: Contractions where the contracted Lie algebra is isomorphic
to the original one are called improper. Such a contraction can be
defined using just an identity matrix for T (ε).

2. Abelian gT : This trivial contraction also always exists. One just has
to set T (ε) = diag(ε, . . . , ε), which leads to

[x, y]T = lim
ε→0

ε−1[εx, εy] = lim
ε→0

ε[x, y] = 0 . (4.6)

This definition of a contraction is more general than the one for Inönü–
Wigner contractions [57] (IW-contractions) as well as for Saletan contractions
[61], because we do not restrict to the existence of the limit

T (0) ≡ lim
ε→0

T (ε) . (4.7)

In all cases the dimension of the Lie algebra stays unaltered.
One justification for this generalization is that this restriction is not

necessary for the existence of the contracted Lie algebra. But it might be
useful to have an equivalent contraction where T (0) is well defined. Because
there might arise situations where one wants to interpret the quantities
T (0)x and not only the contracted Lie algebra bracket. Therefore, it might
be preferential if all components of T (0) are finite, or are composed in such
a way that the structure of interest is finite. One such a situation where
this is the case will be seen in Section 5. Here by equivalent we mean
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contractions that lead from two isomorphic Lie algebras g ' g′ again to two
isomorphic Lie algebras gT ' g′S, i.e.,

g gT

g′ g′S

'

T (ε)

'

S(ε)

.

4.2 Generalized IW-contractions
A subclass of contractions are the generalized Inönü–Wigner contractions.
Due to the diagonal form they are very useful for explicit calculations and
they go back to work of Doebner and Melsheimer [62].

Definition 4.2. A contraction g
T (ε)−→ gT is called a generalized Inönü–

Wigner contraction (gIW-contraction) if the matrix T (ε) has the form

T (ε) b
a = δ b

a ε
nb where nb ∈ R; ε > 0; a, b = 1, 2, . . . , dim(g) (4.8)

for some basis G1, . . . , GN .

Another way to write gIW-contractions is T (ε) = diag(εn1 , . . . , εndim g).
There are no sums over the exponents na, which can be restricted to integer
values without loss of generality . This includes negative exponents which,
as already discussed, render the ε→ 0 limit of T (ε) (see (4.8)) non-existent.
Furthermore, the matrices T (ε) for gIW-contractions are not necessarily
linear in ε, which differentiates them from IW-contractions [57] and Saletan
contractions [61].

For a generic gIW-contraction our definition leads to

[Ga, Gb]T (ε) = εna+nb−ncf c
ab Gc . (4.9)

It is a contraction, i.e., well defined in the ε → 0 limit, if and only if
na + nb − nc ≥ 0 for nonzero f c

ab . For such a well defined contraction we
then get

(fT ) c
ab =

f c
ab if na + nb = nc

0 otherwise.
(4.10)
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4.3 Simple IW-contractions
A special class of gIW-contractions are the ones originally defined by Inönü
and Wigner [57].

Definition 4.3. A (simple) Inönü–Wigner contraction ((s)IW-con-
traction) is a generalized Inönü–Wigner contraction where all nb in

T (ε) b
a = δ b

a ε
nb (ε > 0) (4.11)

are either 0 or 1.

An immediate consequence of this definition is that T (0) always exists
for sIW-contractions. This is of course always true when all na ≥ 0.

The condition for the existence of sIW-contractions can be translated
into conditions for Lie subalgebras. Suppose we start with a Lie algebra
g that is a (non-intersecting) vector space direct sum g = h +̇ i. We then
set for h all na = 0 and for i all na = 1. We see, using (4.9), that the
commutator of two elements of h is not allowed to close into i for the
contraction (h +̇ i) T (ε)−→ (h +̇ i)T to be well defined because

[h, h]T (ε) = h +̇ ε−1i (4.12)

is not well defined in the ε→ 0 limit. So a Lie algebra can be contracted
with a sIW-contraction with respect to a Lie subalgebra (e.g., h above)
and only with respect to a Lie subalgebra [57]. This subalgebra specifies
the contracted Lie algebra (e.g., (h +̇ i)T ) uniquely up to isomorphism [61].
This property makes sIW-contractions, although less general than arbitrary
contractions and gIW-contractions, conceptually much easier and gives an
easy criterion for when the contraction exists.

So explicitly the whole contraction (h +̇ i) T (ε)−→ (h +̇ i)T with respect to
the subalgebra h is given by

[h, h]T (ε) = h [h, h]T = h (4.13)

[h, i]T (ε) = εh +̇ i
T (ε)−→ [h, i]T = i (4.14)

[i, i]T (ε) = εh +̇ ε2i [i, i]T = 0 . (4.15)

The ideal i of (h+̇ i)T is abelian and therefore any proper sIW-contraction
leads to a nonsemisimple Lie algebra. The subalgebra h stays unaltered
under the contraction and is isomorphic to the quotient algebra (h +̇ i)T/i.

It should be noted, that the sIW-contractions do not exhaust all possible
contractions. A Saletan contraction where no equivalent sIW-contraction
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exists was already constructed by Saletan in [61]. Even for the wider class
of Saletan contractions, which are still linear in ε and include the sIW-
contractions, no contraction from so(3) to the Heisenberg algebra exists.
On the other hand a gIW-contraction from so(3) to the Heisenberg algebra
exists, but there are other contractions where no equivalent diagonal gIW-
contraction is possible. This phenomena starts with four-dimensional Lie
algebras [58]. One might hope that every gIW-contraction is decomposable
in sIW-contractions. In full generality this is not the case (for more details
see, e.g., [58]).

Leaving this very general considerations aside a lot of physically inter-
esting contractions, see e.g., [8, 57] are given by sIW and gIW-contractions
and we will in the following restrict to these cases.

One remark should be added concerning this general discussion, especially
because it will become important later. Here we have discussed Lie algebras
merely on the level of an abstract mathematical structure without any
reference to physics. When a physical Lie algebra is discussed specific
Lie algebra generators have an interpretation, e.g., as generator of time
translations. So just because two Lie algebras are isomorphic does not mean
they are physically the same. Exchanging the interpretation of a rotation
and a time translation leads to the same Lie algebras, but obviously our
physical interpretation would change drastically. Suddenly elements that
commuted with time translations do not anymore and are therefore not
conserved. One such example are the Poincaré and para-Poincaré algebras
that will be discussed later.

4.4 Contractions and Central Extensions
There is an interesting interplay between contractions and central extensions.
The Lie algebra a will be abelian and more details concerning Lie algebra
cohomology are given in Appendix B. One consequence is the following
diagram

g⊕ a gT ⊕ a

g⊕ a gT ⊕c a

Contraction

Change of coboundary �

Contraction

which means that trivial central extension (g⊕a) might lead after contraction
to nontrivial ones (g ⊕c a) [61, 63]. The reason for that being that the
coboundary that makes a central extension trivial might be gone after the
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contraction. One famous example for this effect is that one can centrally
extend the Poincaré algebra and can contract it to a nontrivial central
extended Galilei algebra, the Bargmann algebra. This central term is of
importance since it is the mass of the system.

Example 4.4. We start by trivially centrally extending the two-dimensional
Lie algebra with the nonzero commutator [X, Y] = X. We now change by a
coboundary, which means that the central extension Z is still trivial, to get

[X, Y] = X + Z . (4.16)

This can be implemented by shifting X by Z. The contraction with nX = 0
and nY = nZ = 1, which leads to

[X, Y]ε = εX + Z (4.17)

shows now that that the central extension is not trivial anymore in the
ε→ 0 limit . The reason for this effect is that the necessary coboundary is
gone or in other words that the shift by X is not possible anymore.

These considerations also have an influence on invariant metrics since
nontrivial central extensions can then render a degenerate invariant metric
nondegenerate. Further examples where this is of interest are given by
the three-dimensional Galilei algebra, which can be centrally extended
to the Extended Bargmann algebra. Similar to the above considerations
contractions from a trivially extended (Anti)-de Sitter algebra or Poincaré
algebra are possible, see Section 9.2.



Chapter 5

Contractions and Invariant
Metrics

We now want to set Lie algebra contractions in relation to existence of
invariant metrics. Instead of trying to give a complete discussion we will
focus on examples that are of relevance for our later considerations.

5.1 Contraction of Invariant Metric
We start with a Lie algebra g and a contraction T (ε). Given this contraction
of the Lie algebra we can induce one on the invariant metric by

〈x, y〉T (ε) = 〈T (ε)x, T (ε)y〉 . (5.1)

We see that a divergent T (0) might lead to a divergent contracted invariant
metric. Of course one could always ignore that an invariant metric exists for
the original Lie algebra, contract it and look afterwards for invariant metrics.
While this is certainly an option it might, e.g., for a theory given by an
action, be beneficial to also have a contraction on the level of the invariant
metric. For CS theories the contraction on the level of the invariant metric
basically corresponds to the limit on the level of the action. Therefore, it
might lead to additional insights and input for the contracted theory.

The considerations of Sections 4.2 and 4.3 can be adapted in a straight-
forward manner for invariant metrics and will therefore not be explicitly
carried out.

28
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5.2 Contraction to Inhomogeneous Lie
Algebras

Here we will show how the invariant metric of the inhomogeneous Lie
algebras can be derived via contractions from a direct sum of two simple Lie
algebras g⊕ g̃. This is of special importance since this is how the Poincaré
algebra and its higher spin generalizations in three spacetime dimensions
are contracted. The Lie algebras g and g̃ are isomorphic and since they
are simple automatically admit an invariant metric. A basis for the first
and second summand is given by Ga and G̃a, respectively. The commutation
relations are of the form

[Ga, Gb] = f c
ab Gc [Ga, G̃b] = 0 [G̃a, G̃b] = f c

ab G̃c (5.2)

with the most general invariant metric

〈GaGb〉 = µΩab 〈GaG̃b〉 = 0 〈G̃aG̃b〉 = µ̃Ωab (5.3)

where µµ̃ 6= 0. Defining

G±a = Ga ± G̃a (5.4)

leads to

[G+
a , G

+
b ] = f c

ab G+
c [G+

a , G
−
b ] = f c

ab G−c [G−a , G−b ] = f c
ab G+

c (5.5)

with the invariant metric

〈G+
a G+

b 〉 = µ+ Ωab 〈G+
a G̃−b 〉 = µ−Ωab 〈G̃−a G̃−b 〉 = µ+ Ωab . (5.6)

where µ± = µ± µ̃. The generators G+
a span a Lie subalgebra with respect

to which we now make a sIW-contraction. This leads to the Lie algebra gε

[G+
a , G

+
b ]ε = f c

ab G+
c [G+

a , G
−
b ]ε = f c

ab G−c [G−a , G−b ]ε = ε2f c
ab G+

c (5.7)

and the, for ε→ 0 degenerate, bilinear form

〈G+
a G+

b 〉ε = µ+ Ωab 〈G+
a G−b 〉ε = εµ−Ωab 〈G−a G−b 〉ε = ε2µ+ Ωab . (5.8)

This degeneracy is to be expected since we have basically contracted the
Killing form which for nonsemisimple Lie algebra should be degenerate. We
know on the other hand that this can not be the most general invariant metric
since the contracted algebra is a trivial double extension D(0, g+

0 ) = g−0 B g+
0

and therefore symmetric self-dual. We know from our earlier considerations



CHAPTER 5. CONTRACTIONS AND INVARIANT METRICS 30

that we can add 〈G+
a G−b 〉0 = µ−Ωab to make it nondegenerate. One might

ask, if it is possible to also get this term using our current discussion. It
works if one recognizes that one could rescale µ− 7→ ε−1µ− to cancel the ε
term in (5.8) leading to the final contracted Lie algebra with an invariant
metric

[G+
a , G

+
b ]0 = f c

ab G+
c [G+

a , G
−
b ]0 = f c

ab G−c [G−a , G−b ]0 = 0 (5.9)
〈G+
a G+

b 〉0 = µ+ Ωab 〈G+
a G−b 〉0 = µ−Ωab 〈G−a G−b 〉0 = 0 . (5.10)

5.3 Invariant Metric Preserving
Contraction

There exists a special class of contractions, which we will call invariant
metric preserving, that lead from a double extended Lie algebra to another
one. Therefore, it leaves the properties of the invariant metric untouched.
This is done in a fashion that is naturally adapted to double extensions.
and it is not just of theoretical importance. As we will see in Example 5.3,
these contractions explain why the contraction of Poincaré to Carroll (higher
spin) algebras in 2 + 1 dimensions leaves the degeneracy of the invariant
metric untouched. This gives another explanation for the algebras discussed
in [5, 64]. To the best of my knowledge this special kind of contraction has
not yet been discussed in the literature.

One starts with a double extended Lie algebra D(g, h +̇ h̃), where h
should be a Lie subalgebra. This allows us to perform a sIW-contraction
on h +̇ h̃ with respect to the subalgebra h, since this is a subalgebra of the
whole double extension. Now, this would not leave the invariant metric
invariant since the important part for nondegeneracy 〈h̃, h̃∗〉T (ε) = ε〈h̃, h̃∗〉,
would degenerate. But, this already hints towards the solution that we have
to do the “dual”, i.e., the inverse transformation on the dual space h̃∗. Given
the knowledge of double extensions this seems a very natural thing to do.
We will now write this contraction explicitly in a basis.

Using the contraction T (ε)h̃ = εh̃ and T (ε)h̃∗ = ε−1h̃∗ where the remain-
ing parts stay unaltered we write it, in hopefully obvious notation (we omit
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the subscript T (ε) for the Lie brackets)

[Gi, Gj] = f k
ij Gk + f k

αi Ωg
kjH

α + εf k
α̃i Ωg

kj H̃
α̃ (5.11)

[Hα, Gi] = f j
αi Gj (5.12)

[H̃α̃, Gi] = εf j

α̃i
Gj (5.13)

[Hα, Hβ] = f γ
αβ Hγ +����

��XXXXXXε−1f γ̃
αβ H̃γ̃ (5.14)

[Hα, H̃β̃] = εf γ

αβ̃
Hγ + f γ̃

αβ̃
H̃γ̃ (5.15)

[H̃α̃, H̃β̃] = ε2f γ

α̃β̃
Hγ + εf γ̃

α̃β̃
H̃γ̃ (5.16)

[Hα, Hβ] = −f β
αγ Hγ − εf β

αγ̃
H̃γ̃ (5.17)

[Hα, H̃β̃] = −����
��XXXXXXε−1f β̃

αγ Hγ − f β̃

αγ̃
H̃γ̃ (5.18)

[H̃α̃, Hβ] = −εf β

α̃γ
Hγ − ε2f β

α̃γ̃
H̃γ̃ (5.19)

[H̃α̃, H̃β̃] = −f β̃

α̃γ
Hγ − εf β̃

α̃γ̃
H̃γ̃ . (5.20)

The two crossed terms indicate elements that would render the contraction
not well defined. But the first, in (5.14), is no obstruction, because we require
h to be a subalgebra. This is just the usual condition for sIW-contractions.
It is nice that this property automatically also renders the second crossed
term nonexistent and therefore the whole contraction is well defined.

The corresponding invariant metric is given by

Ωd
ab =



Gj Hβ H̃
β̃

Hβ H̃β̃

Gi Ωg
ij 0 0 0 0

Hα 0 hαβ εh
αβ̃

δ β
α 0

H̃α̃ 0 εhα̃β ε2h
α̃β̃

0 δ β̃

α̃

Hα 0 δαβ 0 0 0
H̃α̃ 0 0 δα̃

β̃
0 0


(5.21)

and one can see that this special kind of contraction leaves it nondegenerate.
Given that after the ε→ 0 limit we have again a symmetric self-dual Lie

algebra one might ask what kind of double extension this contraction leads.
It is of the form D(g⊕D(0, h̃), h). Notice that according to Theorem 3.5
the decomposability of g⊕D(0, h̃) is no problem for the indecomposability
of the new double extension. One nice feature of this contraction is that,
like for sIW-contractions, just the specification of a subalgebra gives a very
easy criterion for a well defined contraction. So we have proven the following
theorem.
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Theorem 5.1 (Invariant metric preserving contraction). Let the double
extended Lie algebra D(g, h +̇ h̃) have a Lie subalgebra h. Then a contraction
of the form T (ε)h̃ = εh̃ and T (ε)h̃∗ = ε−1h̃∗ with the remaining elements un-
altered, see (5.11) to (5.20), is a contraction that leads to a double extension
D(g⊕D(0, h̃), h) explicitly given by

[Gi, Gj] = f k
ij Gk + f k

αi Ωg
kjH

α (5.22)
[H̃α̃, Gi] = 0 (5.23)
[H̃α̃, H̃β̃] = 0 (5.24)

[H̃α̃, H̃β̃] = −f β̃

α̃γ
Hγ (5.25)

[Hα, Gi] = f j
αi Gj (5.26)

[Hα, H̃β̃] = f γ̃

αβ̃
H̃γ̃ (5.27)

[Hα, H̃β̃] = −f β̃

αγ̃
H̃γ̃ (5.28)

[Hα, Hβ] = f γ
αβ Hγ (5.29)

[Hα, Hβ] = −f β
αγ Hγ (5.30)

(5.31)

with the invariant metric

Ωab =



Gj Hβ H̃
β̃

Hβ H̃β̃

Gi Ωg
ij 0 0 0 0

Hα 0 hαβ 0 δ β
α 0

H̃α̃ 0 0 0 0 δ β̃

α̃

Hα 0 δαβ 0 0 0
H̃α̃ 0 0 δα̃

β̃
0 0


. (5.32)

We will call this type of contractions invariant metric preserving.
Ignoring the double extension structure and since we rescale h̃∗ by inverse

powers, this contraction is interpreted as a gIW-contraction. Taking the full
structure into account one could see this contraction as a sIW-contraction
and its dual.

One observation will be useful, when we want to explain why the sIW-
contractions from the Poincaré to Carroll algebras lead to such a contraction.

Corollary 5.2. For trivial double extensions, i.e., D(0, h+̇h̃) the contraction
described in Theorem 5.3 equals to a sIW-contraction with respect to the
subalgebra h +̇ h̃∗



CHAPTER 5. CONTRACTIONS AND INVARIANT METRICS 33

This explains that even though sIW-contractions were done in [5] the
invariant metric stayed nondegenerate.

Example 5.3 (Poincaré to Carroll). The Poincaré algebra in 2+1 dimension
is a trivial double extension D(0, h) where h = {J, Ga} and h∗ = {H, Pa}, see
Table 5.1. There exists a sIW-contraction, with respect to the subalgebra
{J, Pa} to the Carroll algebra [8]. Similar to considerations of Section 5.2
we could have found the invariant metric of the Carroll algebra. But in this
case it is equivalent to an invariant metric preserving contraction, with the
notation of before Hα = J, H̃α̃ = Ga and Hα = H, H̃α̃ = Pa.

This discussion generalizes to the contractions of the higher spin versions
of Poincaré and Carroll.

poi car

[ J , Ga ] εamGm εamGm
[ J , Pa ] εamPm εamPm
[ Ga , Gb ] −εabJ 0
[ Ga , H ] −εamPm 0
[ Ga , Pb ] −εabH −εabH

〈H , J〉 −µ− −µ−
〈Pa , Gb〉 µ−δab µ−δab
〈J , J〉 −µ+ −µ+

〈Ga , Gb〉 µ+δab 0

Table 5.1: Poincaré and Carroll algebra and their invariant metrics.



Chapter 6

Charges and Boundary
Conditions

According to the AdS/CFT dictionary asymptotic symmetries of the bulk
theory correspond to global symmetries of the boundary theory. So to get
information concerning possible boundary theories the asymptotic symmetry
algebra is a very useful tool. To construct it one first needs to define
differentiable gauge transformations. From there global charges can be
defined, which one then quotients by the true (proper) gauge transformations.

Although they are not of direct importance to the considerations of
these sections some possibly useful and explicit calculations in relation to
symmetries of CS theories are summarized in Appendix C.

6.1 Global Charges
To construct global charges for CS theories we follow the approach pioneered
by Regge and Teitelboim [65] (see also [66]) and first applied to CS theories by
Bañados [67]. I will follow Section 3 of [27] (which is based on [67–69]), [34]
and [70] where more information can be found.

We start by 2 + 1 decomposing1 the CS action (for the notation see
1 We ignore terms at t = ±∞.

34



CHAPTER 6. CHARGES AND BOUNDARY CONDITIONS 35

Appendix A.3)

ICS[A] = k

4π

∫
M3
〈A ∧ dA+ 2

3A ∧ A ∧ A〉 (6.1)

= k

4π

∫
R×Σ
〈dN ÃÃ+ 2AN F̃ + d̃(AN Ã)〉 (6.2)

= k

4π

∫
R×Σ
〈ȦiAj + AtFij〉 dt dxi dxj + k

4π

∫
R×∂Σ

tr(AtÃi) dt dxi .
(6.3)

This action principle is that of a constrained system in Hamiltonian form,
i.e., it has the form

∫
(q̇p− uγ(q, p)) dt. The dim(g) Lagrange multipliers A0

enforce the first-class constraints and the (bulk) Hamiltonian consists only
of these. There are 2 · dim(g) canonical/dynamical fields Ai and via the
standard formula (e.g., [71]), and since there are no second-class constraints,
we get

2 ·
(
Number of physical
degrees of freedom

)
=
(
Canonical
variables

)
− 2 ·

(
First-class
constraints

)
(6.4)

= 2 dim(g)− 2 dim(g) (6.5)
= 0 . (6.6)

So there are no (local) degrees of freedom (in the bulk).
The equal-time Poisson bracket for two differentiable functionals M [Ai]

and N [Ai] is defined by

{M,N} = 2π
k

∫
Σ
dxi ∧ dxj

〈
δM

δAi(x)
δN

δAj(x)

〉
. (6.7)

Using the Poisson bracket first-class constraints generate gauge transforma-
tions (if they are differentiable) by defining the gauge generator

Ḡ[λ] = k

2π

∫
Σ
〈λF̃ 〉 . (6.8)

The variation of this gauge transformation shows that gauge generator is
not differentiable as can be seen from the nonvanishing boundary term in

δḠ[λ] = k

2π

∫
Σ
〈δλ F̃ − δ̃λÃ ∧ δÃ〉+ k

2π

∫
∂Σ
〈λδÃ〉 (6.9)

where
δ̃λ• ≡ d̃+ [•, λ] . (6.10)



CHAPTER 6. CHARGES AND BOUNDARY CONDITIONS 36

Only differentiable gauge transformations are allowed to enter the Poisson
bracket so one needs to add the boundary term δQ[λ]. Assuming that λ is
independent of dynamical fields2 δQ[λ] can be integrated in field space and
leads to

G[λ] = Ḡ[λ] +Q[λ] (6.11)

= k

2π

∫
Σ
〈λF̃ 〉 − k

2π

∫
∂Σ
〈λÃ〉 (6.12)

= k

4π

∫
Σ
dxi ∧ dxj〈λFij〉 −

k

2π

∫
∂Σ
dxi〈λAi〉 . (6.13)

We can now plug this differentiable gauge generator into the Poisson algebra

{G[λ], G[σ]} = G[[λ, σ]] + k

2π

∫
∂σ
dxi〈λ ∂iσ〉 . (6.14)

One has to differentiate between two categories of differentiable gauge
transformations [65,66]:

• Proper or true gauge transformations are defined by G[λ] = 0 on the
constrained surface F̃ = 0. This implies that generically Q[λ] = 0 since
this term does not automatically vanish on-shell. On the other hand
Ḡ[λ] = 0 vanishes automatically since this is the part that consists of
the constraints. These are the true gauge symmetries of the system
in the sense that they are a redundancy of the description. Or said
in a more drastic fashion, proper gauge transformations do physically
nothing. They form an ideal subalgebra of the differentiable gauge
transformations.

• Improper gauge transformations are nonzero on the constraint surface
and therefore G[λ] = Q[λ] 6= 0. These are no true gauge transfor-
mations and they lead to the global symmetries of the theory. They
change the physical state of the system and are the origin of the
boundary degrees of freedom.

When the constraints are solved and the gauge is fixed, the Q[λ] give
the global charges of the theory, which in turn generate the asymptotic
symmetry algebra (when the quotient by the proper gauge symmetries is
taken)3. The global symmetries are then generated by

δλM = {Q(λ),M} (6.15)
2 Here might appear a problem with integrability if this is not the case.
3 This is possible since the proper gauge symmetries are an ideal.



CHAPTER 6. CHARGES AND BOUNDARY CONDITIONS 37

and on the reduced phase space lead to

{Q[λ], Q[σ]} = Q[[λ, σ]] + k

2π

∫
∂σ
dxi〈λ ∂iσ〉 . (6.16)

6.2 Boundary Conditions
Once an action principle is fixed the procedure to establish boundary condi-
tions “is one of trial and error” [34]. This means no bullet proof recipe is
known, but one minimum requirement is that the extremized action gives
the desired equations of motion up to surface terms at (spatial) infinity

δICS[A] = k

2π

∫
M3
〈F ∧ δA〉 − k

4π

∫
∂M3
〈A ∧ δA〉 (6.17)

= k

2π

∫
R×Σ

dt ∧ 〈(∂tÃ− δ̃AtÃ)δÃ+ F̃ δAt〉

+ k

4π

∫
R×∂Σ

dt ∧ 〈ÃδAt − AtδÃ〉 . (6.18)

Using the boundary conditions the final action should be differentiable, i.e.,
extremized without additional boundary terms. Furthermore, the boundary
conditions should allow for all solutions of interest.

For CS theories and ignoring any specific physical requirements one
might have, there exist always (up to topological obstructions) boundary
conditions that are related to the WZW model [49,72].



Chapter 7

AdS Higher Spin Gravity

We will first review higher spin theories1, with emphasis towards (2 + 1)-
dimensional spacetimes. A nice and more complete review can be found
in [27]. Afterwards we discuss, following closely [4], the u(1) higher spin
boundary conditions.

7.1 Higher Spin Theories
The equations for non interacting massless particles of integer spin in (3 + 1)
dimensions on a flat background were found by Frondsdal [74]2. For s = 0, 1, 2
they reduce to the well known Klein–Gordon equation, Maxwell equation
and to linearized general relativity. It is comparably easy to write down
these free higher spin fields. But coupling these for s > 2 to gravity leads
to various no-go theorems (for a review see [75]). Fradkin and Vasiliev [25]
showed that consistent higher spin gauge theories involving gravity need
to be defined on a curved background. They were first formulated by
Vasiliev [76] (and are reviewed in [77–79]). These theories involve an infinite
tower of massless fields and can be constructed on (A)dS spaces.

One interesting aspect of higher spin gauge fields is that they might
be connected to string theory in the tensionless limit in which the massive
excitations of string theory become massless. It is conjectured that string
theory is a broken phase of a higher spin gauge theory. For more details
see [80] and references therein.

Furthermore the holographic principle finds a realization in the form of
the proposal made by Klebanov and Polyakov [81] and Sezgin and Sundell [82,
83]. They conjectured that there exists a duality in the large N limit of

1We partially follow [1,73].
2We will restrict our explanations to integer spin for the sake of simplicity.
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the critical 3-dimensional O(N) model and the minimal bosonic higher spin
theory in AdS4. This holographic proposal got supported by calculations of
Giombi and Yin [84] and is reviewed in [20].

In 2+1 spacetime dimensions the situation changes significantly. Massless
gauge fields with “spin”3 s > 1 posses no local degrees of freedom anymore.
This makes theories in 2+1 dimensions interesting in various aspects. While
there is still enough structure to be nontrivial the technical difficulties that
arise in the higher-dimensional cases are often circumvented.

This is already the case in the famous result by Brown and Henneaux [85]
which can be seen as a precursor of the AdS3/CFT2 correspondence. They
showed that three-dimensional Einstein–Hilbert gravity with a negative
cosmological constant and Brown–Henneaux boundary conditions leads to
asymptotic symmetries given by the infinite-dimensional conformal algebra
in two dimensions. These are two copies of the Virasoro algebra (see Section
D.5) with a nonvanishing central charge. Equivalent results were derived in
the CS formulation, based on sl(2,R)⊕ sl(2,R) [67].

The central charge appears again in the analysis of another unexpected
result, the Bañados–Teitelboim–Zanelli (BTZ) black hole [86, 87]. Even
though there are no local degrees of freedom in three-dimensional gravity, for
the case of negative cosmological constant these black holes exist. Using the
central charge it was shown that it is possible to calculate the asymptotic
density of states and the entropy [88]. So a microscopic interpretation for the
states of the black hole is possible and the holographic principle is realized.

To add interacting fields with spin s > 2, in contrast to the higher-
dimensional case in 2 + 1 dimension, no infinite number of higher spin fields
are needed (at least in the classical theory) [89]. The Brown–Henneaux
analysis has been generalized to higher spin fields [26–29]. In the case
of the coupling of a spin-3 field to gravity the asymptotic symmetries
are given by W3 ⊕W3 algebras [26, 27]. For a review of W algebras see
[90] and for the explicit commutation relations see Section D.5. Fields
of spin s = 3, 4, . . . , N coupled to gravity are given by a Chern-Simons
theory with gauge algebra sl(n,R) ⊕ sl(n,R) (see Appendix D for the
commutation relations) and have in the case of an AdS3 background the
asymptotic symmetries WN ⊕WN [28,29]. Using the infinite-dimensional
higher spin algebras hs[λ]⊕ hs[λ] as gauge algebra we get gravity coupled
to spin fields s = 3, 4, . . . ,∞ and again for AdS3 asymptotic symmetries
W∞[λ] ⊕W∞[λ] [28]. The hs[λ] algebra can be truncated to sl(N,R) for
integer N , see Appendix D.4.

3“Spin” in D = 3 refers to the transformation properties of the field under Lorentz
transformations.
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Another aspect that is advantageous in 2 + 1 dimensions is that the
dual to AdS3 is given by CFT2 and extensions thereof. Two-dimensional
conformal field theories are well understood and offer a high degree of
analytic control. It was proposed by Gaberdiel and Gopakumar [37] that
the hs[λ] theory on AdS3 is dual to the large-N limit of WN minimal models
on the CFT side. As a hint for the validity of this proposal can be seen
that this limit on the CFT side leads, like in the bulk theory, also to a W∞
algebra. The duality is reviewed in [21] and new developments can be found
in [38,39].

The BTZ black hole can also be generalized to higher spin black holes
[30]. Since higher spin gauge theories have an extended gauge symmetry
with respect to general relativity new questions concerning gauge invariant
characterization and black hole thermodynamics arise (for a review of the
proposed answers see [91,92]).

Before background and boundary conditions beyond AdS3 will be dis-
cussed it is useful to review the standard spin-3 ones. There exist excellent
resources where they are derived from first principles [27,34,93] and therefore
we will choose a different route. We will construct them following [4] where
they are composed out of u(1) boundary conditions [94].

7.2 W3 via û(1) Boundary Conditions
Higher spin gravity in 2 + 1 dimensions can be generically described in terms
of the difference of two Chern–Simons actions for independent gauge fields
A± that take values in sl(N,R), so that the action reads

I = ICS
[
A+

]
− ICS

[
A−

]
, (7.1)

with
ICS[A] = kN

4π

∫
M3

tr
(
A ∧ dA+ 2

3A ∧ A ∧ A
)
, (7.2)

where tr(· · · ) stands for the trace in the fundamental representation of
sl(N,R) (see Appendix D.3). The level in (7.2) relates to the Newton
constant and the AdS radius according to kN = k

2εN = `
8GεN , whose normal-

ization is determined by εN = N(N2−1)
12 .

The gauge fields are related to a suitable generalization of the zuvielbein
and the spin connection, defined through

A± = ω ± e

`
(7.3)
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and hence, the spacetime metric and the higher spin fields can be recon-
structed from

gµν = 1
εN

tr(eµeν) Φµ1...µs = 1
ε

(s)
N

tr(e(µ1 . . . eµs)) . (7.4)

Asymptotic Structure
The asymptotic structure of AdS gravity coupled to higher spin fields in
three-dimensional spacetimes was investigated in [26, 27], where it was
shown that the asymptotic symmetries are spanned by two chiral copies of
W algebras (see also [28, 29]). In order to accommodate the different higher
spin black hole solutions in [30,31], and [34,95], the asymptotic behavior has
to be extended so as to incorporate chemical potentials associated to the
global charges. The one in [30,96] successfully accommodates the black hole
solution with higher spin fields of [30], while the set of boundary conditions
in [34,95] do for the higher spin black holes described therein. It is worth
pointing out that the asymptotic symmetries of both sets are different.

Here we construct an inequivalent set of boundary conditions, which
reduces to the one recently introduced in [94] when the higher spin fields
are switched off. The asymptotic behavior of the sl(3,R) gauge fields is
proposed to be given by

A± = b−1
±

(
d+ a±

)
b± (7.5)

so that the dependence on the radial coordinate is completely contained in
the group elements

b± = exp
(
± 1
`ζ±

L1

)
· exp

(
±ρ2L−1

)
. (7.6)

The auxiliary connection reads

a± =
(
±J± dϕ+ ζ± dt

)
L0 +

(
±J±(3) dϕ+ ζ±(3) dt

)
W0 (7.7)

where Li, Wn, with i = −1, 0, 1, and n = −2,−1, 0, 1, 2, span the sl(3,R)
algebra (see Appendix D.2). Following [95], it can be seen that J± and J±(3)
stand for arbitrary functions of (advanced) time and the angular coordinate
that correspond to the dynamical fields, while ζ± and ζ±(3) describe their
associated Lagrange multipliers that can be assumed to be fixed at the
boundary without variation (δζ± = δζ±(3) = 0). We shall refer to ζ±, ζ±(3) as
chemical potentials.
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The field equations, implying the local flatness of the gauge fields, then
reduce to

J̇± = ±ζ ′ J̇±(3) = ±ζ ′(3) , (7.8)
where dot and prime denote derivatives with respect to t and ϕ, respectively.

Asymptotic Symmetries and Canonical Generators
In the canonical approach [65], the variation of the conserved charges

Q[ε+, ε−] = Q+[ε+]− Q−[ε−] (7.9)

associated to gauge symmetries spanned by ε± = ε±i Li+ε±(3)nWn, that maintain
the asymptotic form of the gauge fields, is determined by

δQ±
[
ε±
]

= ∓ k

4π

∫
dϕ
(
η±δJ± + 4

3η
±
(3)δJ

±
(3)

)
, (7.10)

with η± = ε±0 , and η±(3) = ε±(3)0. According to (7.7), the asymptotic symme-
tries fulfill δε±a± = dε± + [a±, ε±] = O(δa±), provided that the transforma-
tion law of the dynamical fields reads

δJ± = ±η±′ δJ±(3) = ±η±′(3) (7.11)

and the parameters are time-independent (η̇± = η̇±(3) = 0). One has to take
the quotient over the remaining components of ε±, since they just span
trivial gauge transformations that neither appear in the variation of the
global charges nor in the transformation law of the dynamical fields.

The surface integrals that correspond to the conserved charges associated
with the asymptotic symmetries then readily integrate as

Q±
[
η±, η±(3)

]
= ∓ k

4π

∫
dϕ
(
η±(ϕ)J±(ϕ) + 4

3η
±
(3)(ϕ)J±(3)(ϕ)

)
, (7.12)

which are manifestly independent of the radial coordinate ρ. Consequently,
the boundary could be located at any fixed value ρ = ρ0. Hereafter, we
assume that ρ0 →∞, since this choice has the clear advantage of making
our analysis to cover the entire spacetime in bulk.

The algebra of the global charges can then be obtained directly from
the computation of their Poisson brackets; or as a shortcut, by virtue of
δYQ[X] = {Q[X], Q[Y ]}, from the variation of the dynamical fields in (7.11).
Expanding in Fourier modes

J±(ϕ) = 2
k

∞∑
n=−∞

J±n e
±inϕ J±(3)(ϕ) = 3

2k

∞∑
n=−∞

J (3)±
n e±inϕ (7.13)
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leads to the asymptotic symmetry algebra which is described by a set of
û(1) currents whose nonvanishing brackets are given by

i
{
J±n , J

±
m

}
= 1

2knδm+n,0 i
{
J (3)±
n , J (3)±

m

}
= 2

3knδm+n,0 , (7.14)

with levels 1
2k, and

2
3k, respectively.

(Higher Spin) Soft Hair
Following the spin-2 construction [94], we consider now all vacuum descen-
dants |ψ(q)〉 labeled by a set q of non-negative integers N±, N±(3), n

±
i , n

(3)±
i ,

m±i and m(3)±
i

∣∣∣ψ(q)〉 = N(q)
N±∏
i=1

(
J±−n±i

)m±i N±(3)∏
i=1

(
J

(3)±
−n(3)±

i

)m(3)±
i ∣∣∣0〉 . (7.15)

Here N(q) is some normalization constant such that 〈ψ(q)|ψ(q)〉 = 1 and
the vacuum state4 is defined through highest weight conditions, J±n |0〉 =
J (3)±
n |0〉 = 0 for non-negative n.
We want to check now if all vacuum descendants |ψ(q)〉 have the same

energy as the vacuum and are thus soft hair (our discussion easily generalizes
from soft hair descendants of the vacuum to soft hair descendants of any
higher spin black hole state). To this end we consider the surface integral
associated with the generator in time, given by

H := Q(∂t) = k

4π

∫
dϕ
(
ζ+J+ + ζ−J− + 4

3ζ
+
(3)J

+
(3) + 4

3ζ
−
(3)J

−
(3)

)
. (7.16)

For constant chemical potentials ζ±, ζ±(3) the field equations (7.8) imply that
the dynamical fields become time-independent, and the total Hamiltonian
reduces to

H = ζ+J+
0 + ζ−J−0 + ζ+

(3)J
(3)+
0 + ζ−(3)J

(3)−
0 , (7.17)

which clearly commutes with the whole set of asymptotic symmetry gener-
ators spanned by J±n and J (3)±

m . One then concludes that for an arbitrary
fixed value of the total energy, configurations endowed with different sets
of nonvanishing û(1) charges turn out to be inequivalent, because they can
not be related to each other through a pure gauge transformation. Since
excitations (7.15) associated with the generators J±n , J (3)±

m preserve the total
energy and cannot be gauged away, they are (higher spin) soft hair in the
sense of Hawking, Perry and Strominger [97].

4The vacuum state considered here resembles Poincaré-AdS rather than global AdS.
The state corresponding to global AdS is gapped by an imaginary amount of the zero
mode charges from the vacuum state considered here.



CHAPTER 7. ADS HIGHER SPIN GRAVITY 44

Highest Weight Gauge and the Emergence of
Composite W3 Symmetries
Quite remarkably, it can be seen that spin-2 and spin-3 charges naturally
emerge as composite currents constructed out from the û(1) ones. Actually,
the full set of generators of the W3 algebra arises from suitable composite
operators of the û(1) charges through a twisted Sugawara construction. Here
we show this explicitly through the comparison of the new set of boundary
conditions proposed in the previous section with the ones that accommodate
the higher spin black holes in [34, 95], whose asymptotic symmetries are
described by two copies of the W3 algebra. In order to carry out this task
it is necessary to express both sets in terms of the same variables. The
asymptotic behavior described by (7.5) and (7.7) is formulated so that the
auxiliary connections a± are written in the diagonal gauge, while the set
in [34,95] was formulated in the so-called highest weight gauge. Consequently,
what we look for can be unveiled once the gauge fields in (7.5) and (7.7) are
expressed in terms of the variables that are naturally adapted to the gauge
fields Â± in the highest weight gauge.

For a generic choice of Lagrange multipliers, which are still unspecified,
the asymptotic form of the gauge fields in the highest weight gauge reads
[34,95]

Â± = b̂−1
± (d+ â±)b̂± , (7.18)

where the radial dependence can be captured by the choice b̂± = e±ρL0 , and

â±ϕ = L±1 −
2π
k
L±L∓1 −

π

2kW±W∓2 â±t = Λ±[µ±, ν±] , (7.19)

with

Λ±=±
[
µ±L±1 + ν±W±2 ∓ µ′±L0 ∓ ν ′±W±1 + 1

2

(
µ′′± − 4π

k
µ±L± + 8π

k
W±ν±

)
L∓1

−
(
π
2kW±µ± + 7π

6kL
′
±ν
′
± + π

3kν±L
′′
± + 4π

3κL±ν
′′
± −4π2

k2 L
2
±ν± − 1

24ν
′′′′
±

)
W∓2

+ 1
2

(
ν ′′± − 8π

k
L±ν±

)
W0 ∓ 1

6

(
ν ′′′± − 8π

k
ν±L

′
± − 20π

k
L±ν

′
±

)
W∓1

]
, (7.20)

where L±, W± and µ±, ν± stand for arbitrary functions of t, ϕ.
One then needs to find suitable permissible gauge transformations span-

ned by group elements g±, for which â± = g−1
± (d+ a±)g±. These group

elements indeed exist and are given, as well as necessary consistency condi-
tions, explicitly in [4]. The gauge fields a± and â± are then mapped to each
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other provided

L± = ± k

4π

(1
2
(
J±
)2

+ 2
3
(
J±(3)

)2
+ J±′

)
(7.21)

W± = ∓ k

6π

(
−8

9
(
J±(3)

)3
+ 2

(
J±
)2
J±(3) + J±(3)J

±′ + 3J±J±′(3) + J±′′(3)

)
(7.22)

from which one recognizes the Miura transformation between the variables,
see e.g. [90].

Note that the functions L±, W±, that are naturally defined in the highest
weight gauge, depend on the global charges J±, J±(3) as in eqs. (7.21), (7.22).
In sum, our proposal for boundary conditions once expressed in the highest
weight gauge, is such that the Lagrange multipliers µ± and ν± depend on
the dynamical variables.

Indeed, for a generic choice of Lagrange multipliers in the highest weight
gauge, the field equations read [34]

L̇± = ±2L±µ′± ± µ±L′± ∓
k

4πµ
′′′
± ∓ 2ν±W′± ∓ 3W±ν ′± (7.23)

Ẇ± = ±3W±µ′± ± µ±W′± ±
2
3ν±

(
L′′′± −

16π
k

L2′
±

)
± 3

(
L′′± −

64π
9k L2

±

)
ν ′±

± 5ν ′′±L′± ±
10
3 L±ν

′′′
± ∓

k

12πν
(5)
± , (7.24)

which by virtue of the definition of our boundary conditionsreduce to the
remarkably simple ones, given by J̇± = ±ζ ′, J̇±(3) = ±ζ ′(3), which were directly
obtained in the diagonal gauge (see eq. (7.8)).

It is also worth highlighting that eqs. (7.21), (7.22) can be regarded as
the higher spin gravity version of the twisted Sugawara construction. In
fact, as show in [4] the currents L±, W± fulfill the W3 algebra.

δL± = ±2L±ε′± ± ε±L′± ∓
k

4πε
′′′
± ∓ 2χ±W′± ∓ 3W±χ′± (7.25)

δW± = ±3W±ε′± ± ε±W′± ±
2
3χ±

(
L′′′± −

16π
k

L2′
±

)
± 3

(
L′′± −

64π
9k L2

±

)
χ′±

± 5χ′′±L′± ±
10
3 L±χ

′′′
± ∓

k

12πχ
(5)
± . (7.26)

It is then apparent that L± and W± turn out to be composite anomalous
spin-2 and spin-3 currents, respectively. In other words, the asymptotic W3
algebra obtained in [34, 95] for a different set of boundary conditions, being
defined through requiring the Lagrange multipliers in the highest weight
gauge to be fixed without variation (δµ± = δν± = 0), is recovered as a
composite one that emerges from the û(1) currents.
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Despite of the fact that the spin-2 and spin-3 currents L±, W± fulfill
the W3 algebra, their associated global charges generate the û(1) current
algebras discussed in section (7.2). This is so because, by virtue of the
consistency conditions and (7.21), (7.22) the variation of the global charges
readily reduces to

δQ± = ∓
∫
dϕ(ε±δL± − χ±δW±) = ∓ k

4π

∫
dϕ
(
η±δJ± + 4

3η
±
(3)δJ

±
(3)

)
,

(7.27)
so that they satisfy the current algebras in (7.14). Indeed, this result just
reflects the fact that the gauge transformation that maps our asymptotic
conditions in the highest weight and diagonal gauges is a permissible one in
the sense of [34]. Therefore, the global charges associated with our asymp-
totic conditions, although written in the highest weight gauge manifestly
do not fulfill the W3 algebra. This is because the Lagrange multipliers µ±,
ν±, are not chosen to be fixed at infinity without variation as in [34, 95],
but instead, here they explicitly depend on the global charges. What is
actually kept fixed at the boundary without variation is the set of Lagrange
multipliers that is naturally defined in the diagonal gauge (δζ± = δζ±(3) = 0).

Higher Spin Black Holes with Soft Hair
As shown the simpler subset of our boundary conditions, obtained by
choosing the Lagrange multipliers ζ±, ζ±(3) to be constants, possesses the
noticeable property of making the global charges J±n , J (3)±

m to behave as
(higher spin) soft hair. An additional remarkable feature that also occurs
in this case is the fact that regularity of the whole spectrum of Euclidean
solutions that fulfill our boundary conditions holds everywhere, regardless
the value of the global charges.

An interesting effect occurs for the branch of higher spin black holes that
is continuously connected to the BTZ black hole [86,87], corresponding to
m = 0, n = 1. Indeed, for this branch the entropy is found to depend just
on the zero modes of the electric-like û(1) charges of the purely gravitational
sector, i.e.,

S = 2π
(
J+

0 + J−0
)
. (7.28)

Nonetheless, the information about the presence of the higher spin fields is
subtle hidden within the purely gravitational global charges, as can be seen
from the map between the û(1) and W3 currents. In fact, for the spherically
symmetric higher spin black hole, by virtue of (7.21), (7.22), the relationship
between the zero modes of the purely gravitational û(1) charges and the
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zero modes of the W3 ones reads

J±0 =
√

2πkL± cos
[

1
3 arcsin

(
3
8

√
3k

2πL3
±
W±

)]
. (7.29)

Therefore, replacing (7.29) into (7.28) one recovers the following expression
for the higher spin black hole entropy in terms of the spin-2 and spin-3
charges, which reads

S = 2π
√

2πk
(√

L+ cos
[

1
3 arcsin

(
3
8

√
3k

2πL3
+
W+

)]

+
√
L− cos

[
1
3 arcsin

(
3
8

√
3k

2πL3
−
W−

)])
, (7.30)

in full agreement with the result obtained in [34].
This analysis was generalized to arbitrary spin [4] as well as to the case

of flat space [98] and flat space higher spin [7]. For more on “Black Hole
Horizon Fluff” see [99].



Chapter 8

Non-AdS Higher Spin Gravity

In Chapter 7 we have discussed higher spin theories based on sl(3,R)⊕sl(3,R)
algebras and (higher spin generalized) AdS spacetimes. We want to stick
to the same underlying Lie algebra (this will be changed in the following
chapters), but we want to generalize to backgrounds and boundary conditions
beyond AdS.

In many applications it is necessary to generalize holography to space-
times more general than asymptotic AdS, for a review see e.g., [9]. Examples
for which the spacetime can be constructed in higher spin theories are [100]:

Null-warped AdS spacetimes which arise in proposed holographic duals
of nonrelativistic CFTs describing cold atoms [40,41].

Schrödinger spacetimes, which generalize null warped AdS by introducing
an arbitrary scaling exponent [101].

Lifshitz spacetimes, which arise in gravity duals of Lifshitz-like fixed points
[102] and also have a scaling exponent parametrizing spacetime aniso-
tropy.

A variational principle for 3-dimensional higher spin gravity that accom-
modates spacetimes like asymptotically AdS2 × R, H2 × R, Schrödinger,
Lifshitz or warped AdS spacetimes was proposed and the connections that
generate this backgrounds presented [100]. For the case of H2×R realized in
sl(3,R) HS gravity in the non-principal embedding the asymptotic symmetry
algebra turned out to be the direct sum of the W

(2)
3 ⊕ û(1) [103]. We now

want to investigate following [2] the case of Lifshitz higher spin theories.
Since the situation for null-warped AdS [3] follows similar considerations we
will only provide a short overview.

48



CHAPTER 8. NON-ADS HIGHER SPIN GRAVITY 49

8.1 Lifshitz Higher Spin
A variety of condensed matter systems exhibits anisotropic scaling near
a renormalization group fixed point. Classical Lifshitz fixed points, in
which the system scales anisotropically in different spatial directions, are
extensively explored. Quantum Lifshitz fixed points, in which time and
space scale anisotropically, with relative scaling ratio z, are particularly
common in strongly correlated systems [104–114]. Many-body field theories
describing such anisotropic fixed points were proposed to be holographically
dual to gravity in the background of Lifshitz geometries, where time and
space scale asymptotically with the same ratio z [102].

Lifshitz Spacetime in Three Dimensions
The (2 + 1)-dimensional Lifshitz spacetime [102] is described by the line
element

ds2
Lifz

= `2
(
− r2z dt2 + dr2

r2 + r2 dx2
)
. (8.1)

The Lifshitz spacetime (8.1) is invariant under the anisotropic scaling (z ∈ R):

t→ λzt x→ λx r → λ−1r . (8.2)

For z = 1, the scaling is isotropic and the spacetime (8.1) reduces to Poincaré
patch AdS3.

It is often useful to consider a change of coordinates to the radial variable
ρ = ln r. The spacetime (8.1) now becomes

ds2
Lifz

= `2
(
−e2zρ dt2 + dρ2 + e2ρ dx2

)
. (8.3)

The asymptotic region is approached for ρ→∞.
The Lifshitz spacetime (8.3) possesses spacetime isometries. These

Lifshitz isometries are generated by the Killing vector fields

ξH = ∂t ξP = ∂x ξD = −zt ∂t + ∂ρ − x ∂x (8.4)

whose isometry algebra is the Lifshitz algebra lif(z,R)

[ξH, ξP] = 0 [ξD, ξH] = z ξH [ξD, ξP] = ξP (8.5)

The Killing vector ξH (ξP) [ξD] generates time translations (spatial trans-
lations) [anisotropic dilatations]. The Lifshitz spacetime with z = 1 cor-
responds to the Poincaré patch of the isotropic AdS3 spacetime. With
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enhanced (1 + 1)-dimensional Lorentz (boost) invariance, the isometry alge-
bra gets enlarged to sl(2,R)⊕ sl(2,R) associated with two copies of chiral
and anti-chiral excitations. Conversely, the Lifshitz algebra lif(1,R) is a
subalgebra of the sl(2,R)⊕ sl(2,R) isometry algebra of the AdS3 spacetime.

Since the Lifshitz spacetime does not fulfill the vacuum Einstein equations,
matter contributions are necessary. Known realizations so far involve, e.g.,
p-form gauge fields [102]. For example, AdS Einstein gravity coupled to two
1-form abelian gauge fields F2 = dA1, G2 = dC1,

I = 1
16πG3

∫
d3x
√
−g
[
R(g) + 2

`2 + 1
4 ||F2||2 + 1

4α ||G2||2 + 1
2 ∗ (A1 ∧G2)

]
,

(8.6)
admits the Lifshitz spacetime as a classical solution, where the scaling ratio
z is determined by

z = α±
√
α2 − 1 (α ≥ 1) . (8.7)

Some other constructions require either a massive gauge field [115], a massive
graviton [116,117] or Hořava–Lifshitz gravity [118].

Here, we take a different route and realize the Lifshitz spacetime by
coupling AdS3 Einstein gravity to a spin-3 field with full higher-spin gauge
symmetry. In the next section, we construct an explicit example of (2 + 1)-
dimensional z = 2 Lifshitz spacetime (8.3) with non-trivial spin-3 back-
ground field. We shall then carefully examine boundary conditions for the
gravitational and spin-3 excitations over this Lifshitz spacetime.

Lifshitz Boundary Conditions
In order to find the Lifshitz spacetime, we decompose again as in (7.5) but
with the group element b± = e±ρL0 .

To fix a variational principle, we take δA+
t = 0 = δA−t at asymptotic

infinity ρ→∞, where this time we denote our boundary coordinates by t
and x. With the boundary term

k

4π

∫
R×∂Σ

tr
(
AtAx − A−t A−x

)
dt dx (8.8)

added to the bulk action (7.2), such a variational principle is well-posed [100].
We take as a background that leads to the Lifshitz spacetime the connections

â+ = 4
9W+2 dt+ L+1 dx (8.9a)

â− = W−2 dt+ L−1 dx . (8.9b)
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The specific numerical coefficients are chosen to cancel factors arising from
traces.

Using the standard definition of the metric in terms of the zuvielbein
(7.4) leads to the geometry

ds2
Lif2 = `2

(
−e4ρ dt2 + dρ2 + e2ρ dx2

)
. (8.10)

We thus obtain as a classical configuration the (2 + 1)-dimensional Lifshitz
spacetime (8.3) with z = 2. The classical solution also involves the totally
symmetric spin-3 gauge field. For our configuration, we find that the Lifshitz
spacetime is supported by a nontrivial spin-3 background gauge field

φµνλ dx
µ dxν dxλ = −5`3

4 e4ρ dt (dx)2 . (8.11)

From now on we set ` = 1 to reduce clutter. The spin-3 gauge field is
invariant under the transformations generated by the Killing vector fields
(8.4). We conclude that the classical configuration (8.10), (8.11) respects the
Lifshitz algebra lif(2,R). The above construction of the Lifshitz spacetime
is quite elementary and simple.

Let us next examine the algebra of the symmetry currents for the Lifshitz
system we have constructed. To this end, we first need to impose boundary
conditions consistent with the background Lifshitz spacetime geometry. Note
that we take the ansatz used in [73, 103], which differs from the asymptotic
behavior A− Â = O(1) used in [27,119], where Â was a fixed background
connection. The fluctuations, which are already on-shell, turn out to take
the following form

a+ =
(

8π
9k tW(x)L0 − π

2kL(x)L−1
)
dx

+
(
− 32π

81k t
2W(x)W+2 + 8π

9k tL(x)W+1 + 2π
9kW(x)W−2

)
dx (8.12)

a− =
(
− 2π

k
tW(x)L0 − π

2kL(x)L+1
)
dx

+
(
− 2π

k
t2W(x)W−2 − 2π

k
tL(x)W−1 + 2π

9kW(x)W+2
)
dx (8.13)

The set of all boundary functions L, L, W and W specify the set of all
admissible fluctuations about the Lifshitz background.

A interesting and possibly disturbing feature of these boundary conditions
is the polynomial time dependence. In general, time-dependent boundary
conditions lead to non-conservation of canonical charges. However, due to
the specific form of the boundary conditions, and as can be seen explicitly
in [2] all t-dependence is canceled in the boundary charge density and hence
the canonical charges are conserved.
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Below, we address some immediate consequences of the above boundary
conditions, which all point to the fact that consistency of the boundary
conditions is a highly non-trivial result.

Using (7.4), we also extract fluctuations of spin-2 and spin-3 fields. Up
to the sub-leading terms, fluctuations of the spin-2 field take the form (for
notational simplification, we suppress the x-dependence of all component
functions hereafter)

gtt = −e4ρ (8.14a)
gtρ = 0 (8.14b)
gtx = t2e4ρ

(
πW + 4π

9 W
)

+ π
4W + π

9W (8.14c)
gρρ = 1 (8.14d)
gρx = t

(
π
2W + 2π

9 W
)

(8.14e)

gxx = e2ρ − t4e4ρ 16π2

81 WW− t2e2ρ π2

9 LL

+ π
6L + π

6L + t2 8π2

81 WW + π2

36e
−2ρLL− π2

81e
−4ρWW , (8.14f)

while fluctuations of the spin-3 field take the form

φtxx = − 5
12e

4ρ + t2e4ρ
(
π2

3k2L
2 − 3π2

4k2L
2
)

+ e2ρ
(
π
3kL−

3π
4kL

)
+ π2

12k2L
2 − 3π2

16k2L
2 (8.15a)

φρxx = te2ρ
(

2π
3kL−

3π
2kL

)
+ t

(
π2

3k2L
2 − 3π2

4k2L
2
)

φxxx = t4e4ρ
(

2π3

k3 L
2W− 2π3

k3 L
2W

)
+ t2e4ρ

(
9π
2kW −

8π
9kW

)
+ t2e2ρ

(
2π2

k2 LW − 2π2

k2 LW
)

+ t2
(
π3

k3 L
2W − π3

k3L
2W

)
− π

2kW + π
2kW

+ e−2ρ
(
π2

2k2LW− π2

2k2LW
)

+ e−4ρ
(
π3

8k3L
2W− π3

8k3L
2W

)
(8.15b)

φµνλ = 0 otherwise . (8.15c)

The boldfaced terms denote background geometry, while the remaining
terms correspond to state-dependent contributions to the spin-2 and spin-3
fields.

It is also interesting to observe that, although the background geometry
is Lifshitz, the boundary conditions also admit spin-2 field configurations
that have asymptotically stronger divergent contributions in ρ than the
background geometry. For example, it is possible to have configurations
whose gtt and gxx have the same asymptotic growth, ∼ e4ρ. Nevertheless, as
we are going to show below, all the configurations allowed by our boundary
conditions correspond to finite energy excitations, in the sense that all the
canonical charges associated with these configurations are finite (as well as
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integrable and conserved). It should be stressed that this feature crucially
relies on higher-spin gauge symmetry that acts nontrivially on the spin-2
metric field: the would-be infinite energy density in Einstein-gravity for
configurations of ∼ e4ρ asymptotic growth is canceled off by the spin-3 gauge
transformations in higher-spin gravity.

The computation of the asymptotic symmetries and the canonical charges
is quite lengthy and cumbersome. Therefore we refer to [2] for the details
and jump directly to the answers. The canonical charges are conserved
and well defined and the asymptotic symmetry algebra is given by two
commuting W3 algebras (see Appendix D.5), i.e., W3 ⊕W3 with the same
central charge as Brown–Henneaux [85]. This are not the symmetries one
might expect of a nonrelativistic Lifshitz system and one might therefore
ask what to the aforementioned Lifshitz symmetries happened. But, as
remarked in [2] and by virtue of the relation between gauge symmetries and
diffeomorphisms, ε = ξµAµ, ε = ξµA−µ [24] (see Section C.5) one can see
that the Lifshitz symmetries (8.5) get enhanced. With the identification
W−2 ↔ H, L−1 ↔ P, L0 ↔ D and the use of (D.57), it becomes obvious
that we have the isometry subalgebra lif(2,R) as a subalgebra of W3.

Another work focusing on aspects of Lifshitz black holes [119] also found
boundary conditions that lead to a W3 algebra, as pointed out in [92]. In
fact, their field configurations turn out to be a special case of a general class
of solutions of spin-3 gravity in the presence of chemical potentials [95, 120].

Built upon their work and ours, we put forth the conjecture that for
generic higher-spin Lifshitz holography the asymptotic symmetry algebra
gets ubiquitously enhanced to a class of W-algebras.

It was pointed out in [121], that when considering gravitational theories
in the first order formalism it can sometimes happen that the spin connection
is not uniquely determined by the zuvielbein. In such cases the second order
formulation is difficult to interpret as a gravitational theory in the traditional
sense. While this is not an obstruction to studying such theories, it can
make the interpretation more difficult and our Lifshitz theory is plagued by
this issues. Further remarks concerning the degeneracy of the nonrelativistic
solutions can be found in [121].

8.2 Null-warped Higher Spin
In [3] three-dimensional spin-3 gravity was equipped with a set of boundary
conditions called “asymptotically null warped AdS”. Null warped AdS is
a special case of a large class of geometries studied by a number of re-
searchers mainly in the context of topologically massive gravity [47, 48, 122],
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see e.g. [123–129]. The asymptotic symmetry algebra for the higher spin
generalization found in [3] was found to be a chiral copy of theW(2)

3 Polyakov–
Bershadsky algebra reminiscent of the situation in topologically massive
gravity with strict null warped AdS boundary conditions (see [129]). Again,
the “usual” null warped isometry algebra get enhanced to a much bigger
one.

Furthermore, was it shown that the invertibility issues [121] are not a
problem for the null warped AdS case. Given the asymptotic symmetries
it seemed natural to check if our boundary conditions can be mapped to
asymptotically AdS boundary conditions that also lead to a W(2)

3 algebra [34]
which was indeed the case. We refer to [3] for further details concerning the
introduction of chemical potentials, the derivation of entropy, free energy,
and the holographic response functions.

Summary
As seen in this chapter, it is nontrivial to get boundary conditions where
the asymptotic symmetry algebra does not get enhanced to one that could
be considered as relativistic. It can be observed that in both cases the
resulting asymptotic symmetry algebra is related to the gauge algebra. The
W3 algebras as well as the W

(2)
3 algebra arise naturally in connection to

the two inequivalent embedding of sl(2,R) into sl(3,R) and their highest
weight boundary conditions (for details concerning this differentiation see,
e.g., [34]).

This considerations already hint towards a way to make other symmetries
than (A)dS manifest. A change of gauge algebra seems like a reasonable
starting point to get asymptotic symmetry algebras of different kinematics
and will be discussed in the next chapters.



Chapter 9

Kinematical Spin-2 Theories

Due to the principle of relativity, the notion of kinematical or spacetime
symmetry algebras, which contain all symmetries that relate different inertial
frames, is a crucial ingredient in the construction of physical theories. Bacry
and Lévy-Leblond have classified all possibilities for kinematical algebras [8],
consisting of spacetime translations, spatial rotations and boosts, under some
reasonable assumptions. Apart from the relativistic Poincaré and (A)dS
algebras, this classification also contains the Galilei and Carroll algebras
(and generalizations thereof that include a cosmological constant), that
appear as kinematical algebras in the nonrelativistic (c → ∞) and ultra-
relativistic (c→ 0) limit. Even though fundamental theories are relativistic,
the Galilei and Carroll algebras continue to play an important role in current
explorations of string theory, holography and also phenomenology.

For instance, nonrelativistic symmetries underlie Newton–Cartan geome-
try, a differential geometric framework for nonrelativistic spacetimes that
has found recent applications in holography [40–44,102,130–132], Hořava–
Lifshitz gravity [45,133,134] and in the construction of effective field theories
for strongly interacting condensed matter systems [12,13,135–140].

On the other hand, ultra-relativistic Carroll symmetries have recently
been studied in relation to their connection [141] with the Bondi–Metzner–
Sachs (BMS) algebra of asymptotic symmetries of flat spacetime [142,143].
As such, Carroll symmetries play a role in attempts to construct holographic
dualities in asymptotically flat spacetimes [144–152], as symmetries of the
S-matrix in gravitational scattering [153] and in the recent notion of soft
hair on black hole horizons [97,154].

The kinematical algebras that have been classified by Bacry and Lévy-
Leblond pertain to theories that contain bosonic fields with spins up to
2. One can also consider theories in which massless higher spin fields are
coupled to gravity [155]. These so-called higher spin gauge theories have been

55
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formulated in (A)dS spacetimes (see [77–79] for reviews) and have featured
prominently in the AdS/CFT literature, as a class of theories for which
holographic dualities can be constructed rigorously [20,21,37,84,156–160],
essentially because they are a weak-weak type of duality, i.e., CFTs with
unbroken higher spin currents are free [161]. They typically contain an
infinite number of higher spin fields. As a consequence, their spacetime
symmetries are extended to infinite-dimensional algebras that include higher
spin generalizations of spacetime translations, spatial rotations and boosts.
Higher spin gauge theories have thus far mostly been considered in relativistic
(A)dS spacetimes, with relativistic CFT duals1.

Since both higher spin gauge theories as well as non- and ultra-relativistic
spacetime symmetries have played an important role in recent developments
in holography, it is natural to ask whether one can combine the two. In order
to answer this question, one needs to know which non- and ultra-relativistic
kinematical algebras can appear as symmetries of higher spin theories. This
will first be discussed without the additional higher spin symmetries and in
Chapter 10 including them.

Chapter 9 and Chapter 10 are based on [5]. There is a slight change
of terminology, which hopefully does not lead to confusion. In order to be
consistent with the introductory material presented in the beginning the
term “contraction procedure” is substituted by just “contraction” or special
cases thereof.

9.1 Kinematical Algebras
Before discussing spin-3, it is convenient to start with giving a short review
of the spin-2 case [8]. Since both the spin-2 and spin-3 cases make use of the
sIW-contractions thoroughly reviewed in Section 4.3 we just fix the notation
that will be used throughout the next sections.

Starting from a Lie algebra g, one can choose a subalgebra h and consider
the decomposition g = h +̇ i. As already discussed h will be the subalgebra
with respect to which we will sIW-contract the original Lie algebra leading
to

[ h , h ] ⊂ h [ h , i ] ⊂ i [ i , i ] = 0 . (9.1)

Remember that a nontrivial sIW-contraction is uniquely specified by a
suitable choice of the subalgebra h ⊂ g.

1See however [2, 3, 100,103,119,121,162] for attempts to consider higher spin theories
in non-AdS backgrounds with nonrelativistic CFT duals.
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Not all possible subalgebras, however, lead to interesting contractions
that can, e.g., be interpreted as kinematical algebras. For spin-2, the question
which contractions of the isometry algebras of AdS or dS lead to kinematical
algebras, has been addressed by Bacry and Lévy–Leblond [8]. In particular,
they have shown that there are only four different sIW-contractions of the
AdS or dS algebras that lead to kinematical algebras. These have been called
“space-time”, “speed-space”, “speed-time” and “general” in [8]. Effectively,
the first three of these contractions can be described by either taking a limit
of the (A)dS radius ` or the speed of light c. Specifically, the space-time
contraction corresponds to `→∞, the speed-time contraction corresponds
to c→ 0 and the speed-space contraction corresponds to c→∞. However,
in this work we suppress factors of ` and c. The general contraction can also
be obtained as consecutive sIW-contractions of the other three and therefore
does not provide us with a new algebra. Moreover, it has been shown that
there are in total 8 possible kinematical algebras2 that can be obtained by
combining different sIW-contractions of the AdS or dS isometry algebras.
We have summarized the four sIW-contractions in the following Table 9.1,
by indicating the subalgebra h with respect to which the contraction is
taken, as well as the generators that form the abelian ideal i.

Contraction h i

Space-time {J, Ga} {H, Pa}
Speed-space {J, H} {Ga, Pa}
Speed-time {J, Pa} {Ga, H}
General {J} {H, Pa, Ga}

Table 9.1: The four different IW contractions classified in [8].

The names of the eight kinematical algebras of [8], along with the symbols
we will use to denote them, are given in Table 9.2. The sIW-contractions and
the resulting Lie algebras that we have discussed so far can be conveniently
summarized as a cube, see Figure 9.1 and all the commutation relations of
the resulting Lie algebras, together with the most general invariant metric
of (A)dS, are collected in Appendix D.6.

2The possible kinematical algebras considered in [8] are all possible spacetime sym-
metry algebras that obey the assumptions that space is isotropic and therefore their
generators have the correct (H is a scalar, P, J, G are vectors) transformation behavior
under rotations. Furthermore, parity and time-reversal are automorphisms and boosts
are non-compact.
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Name Symbol
(Anti)-de Sitter (A)dS
Poincaré poi
Para-Poincaré ppoi
Newton–Hooke nh
Galilei gal
Para-Galilei pgal
Carroll car
Static st

Table 9.2: Names of the kinematical algebras and the symbols that denote
them.

For discussions concerning the invariant metric we have copied some
of them in Table 9.1. The (A)dS(−)+

Lie algebras are real (semi)simple
Lie algebras are have therefore an invariant metric proportional to the
Killing form. The contraction to the poi algebra is of the form discussed
in Section 4.2 and leads therefore also to a Lie algebra with invariant
metric. Another kinematical algebra that is automatically equipped with
an invariant metric is given by the car algebra. This is due to the invariant
metric preserving contraction of poi to car (see Section 5.3) and was shown
explicitly in Example 5.3. So, the (A)dS, Poincaré and Carroll algebra
permit an invariant metric, but the Newton–Hooke and Galilei algebra do
not.

(A)dS(−)+
poi nh gal ebarg

[ J , Ga ] εamGm εamGm εamGm εamGm εamGm
[ J , Pa ] εamPm εamPm εamPm εamPm εamPm
[ Ga , Gb ] −εabJ −εabJ 0 0 εabH∗

[ Ga , H ] −εamPm −εamPm −εamPm −εamPm −εamPm
[ Ga , Pb ] −εabH −εabH 0 0 εabJ∗

[ H , Pa ] ±εamGm 0 ±εamGm 0 0
[ Pa , Pb ] ∓εabJ 0 0 0 0

Table 9.3: The commutation relations of the (Anti)-de Sitter, Poincaré,
Newton–Hooke, Galilei and Extended Bargmann algebras.

We will now analyze what needs to be done to get an extension of the
Galilei algebra that is symmetric self-dual (see Table 9.1). Here knowledge
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(A)dS

poi

nh

ppoi

gal

pgal

car

st

Space
-time

Speed-space
Speed-time

Ge
ner

al

Figure 9.1: This cube summarizes the contractions starting from (A)dS.
The lines represent contractions and the dots represent the resulting con-
tracted Lie algebra. We consider contractions starting from AdS and dS
simultaneously. Each dot can therefore represent one Lie algebra, if the
contractions from AdS and dS lead to the same algebra, or two Lie algebras,
if the contractions from AdS and dS lead to two different results. We have in-
dicated this in the cube by using single lines, for contraction that lead to the
same contraction, and double lines otherwise. Dashed lines have no specific
meaning except that they should convey the feeling of a three-dimensional
cube.

about double extensions is useful. Restricting to Pa and Gb and recognizing
that 〈Pa , Gb〉 = δab is an invariant metric on this restricted Lie algebra leads
to the insight that we can double extend g = u(1)4 = {Pa, Gb} by H and J
which leads to two nontrivial central extensions H∗ and J∗, respectively. This
algebra will be called Extended Bargmann algebra or ebarg. “Bargmann
algebra” because the importance of the central extension J∗, which is possible
in any spacetime dimension and is interpreted as mass, has been emphasized
by Bargmann [163]. “Extended Bargmann algebra” because of the second
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central extension, which is not possible for higher dimensions (for a discussion
and references concerning possible interpretations see, e.g., the introduction
of [164]). In three spacetime dimension there actually is a third nontrivial
central extension possible. Since it is not necessary to get an invariant
metric and does not correspond to a central extension of the group [165] we
will ignore it in the following.

The projective unitary irreducible representations of this extended Gali-
lei group were analyzed in [166]. The invariant metric that the Extended
Bargmann algebra possesses was used in [164] to define “Galilean quantum
gravity” using a CS formulation. Furthermore, the coadjoint orbits of the
group were discussed. In [45] is was shown that this theory is related to
projectable Hořava–Lifshitz gravity with a local u(1) gauge symmetry and
without a cosmological constant. There also exists an extension to Extended
Bargmann supergravity [167]. We will now study if we can arrive at the
Extended Bargmann algebra using contractions.

9.2 Extended Kinematical Algebras
We have already discussed in Section 4.4 that trivial central extensions
can lead to nontrivial ones upon contraction. Since we want to start our
investigations from (A)dS algebras which are (semi)simple our only option
is to centrally extend trivially. With hindsight we shift J → J − H∗ and
H→ H−J∗ where the starred generators denote the trivial central extensions.
The shift applied to the commutation relations and to the invariant metric,
also normalized with hindsight, can be seen in Table 9.4.

The contraction that leads from (A)dS to the Poincaré algebra is given
by a sIW-contraction with respect to the subalgebra spanned by {J, Ga, H∗}.
Or with the notation of (4.9) where we just denote the subscript of a of
each na (e.g., H = 1 means that nH = 1): J = Ga = H∗ = 0, H = Pa = J∗ = 1
and µ− = −1. The poi algebra does still not allow for nontrivial central
extension.

Now the interesting contractions are the ones from the centrally extended
relativistic algebras (A)dS and Poincaré to the extended nonrelativistic
Newton–Hooke and Galilei algebra. They indeed lead to nontrivial central
extended ones which posses an invariant metric. The gIW-contraction is in
both cases given by: J = H = 0, Ga = Pa = 1, J∗ = H∗ = 2 and µ− = −2.

For completeness we also provide the gIW-contraction nh ⊕c u(1)2 →
ebarg: J = J∗ = 0, Pa = −Ga = 1, H = −H∗ = 2 and µ− = 0.
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(A)dS(−)+
poi nh ebarg

⊕u(1)2 ⊕u(1)2 ⊕cu(1)2

[ J , Ga ] εamGm εamGm εamGm εamGm
[ J , Pa ] εamPm εamPm εamPm εamPm
[ Ga , Gb ] −εab(J− H∗) −εab(J− H∗) εabH∗ εabH∗

[ Ga , H ] −εamPm −εamPm −εamPm −εamPm
[ Ga , Pb ] −εab(H− J∗) −εab(H− J∗) εabJ∗ εabJ∗

[ H , Pa ] ±εamGm 0 ±εamGm 0
[ Pa , Pb ] ∓εab(J− H∗) 0 ±εabH∗ 0
〈Pa , Gb〉 µ−δab µ−δab µ−δab µ−δab
〈J∗ , H∗〉 µ− µ− 0 0
〈J , J∗〉 µ− µ− µ− µ−

〈H , H∗〉 µ− µ− µ− µ−

Table 9.4: The central extended Lie algebras of (A)dS, Poincaré, Newton–
Hooke and Galilei and their invariant metrics. The central extension of
(A)dS and poi are trivial. For nh and ebarg they are nontrival and necessary
to permit an invariant metric. Nondegeneracy of the invariant metric
demands that µ− 6= 0.

9.3 Carroll Gravity
In this section we address whether there are interesting infinite extensions
of the algebras discussed above, in the same way that the global conformal
algebra in two dimensions gets extended to the Virasoro algebra by imposing
Brown–Henneaux boundary conditions [85]. We will focus here on a specific
simple example. In fact, as a first step we consider spin-2 Carroll gravity,
defined by a Chern–Simons gauge theory with the connection

A = τ H + ea Pa + ω J +Ba Ga (9.2)

takes values in the spin-2 Carroll algebra (a = 1, 2), whose non-vanishing
commutation relations read

[J, Pa] = εab Pb , (9.3a)
[J, Ga] = εab Gb , (9.3b)

[Pa, Gb] = −εab H , (9.3c)
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where we use the convention ε12 = +1 for the antisymmetric ε-symbol. The
invariant metric has the non-vanishing entries

〈H, J〉 = −1 〈Pa, Gb〉 = δab . (9.4)

Our main goal is not just to find some infinite extension of the algebra
(9.3) (this always exists at least in the form of the loop algebra of the
underlying gauge algebra, see e.g. [72]; for AdS3 gravity such boundary
conditions were investigated recently in [168]), but rather to find an ex-
tension that has a “nice” geometric interpretation along the lines of the
Brown–Henneaux boundary conditions. This means that we want to achieve
a suitable Drinfeld–Sokolov type of reduction where not all algebraic com-
ponents of the connection are allowed to fluctuate. The words “nice” and
“suitable” here mean that, in particular, we want that the appropriate Carroll
background geometry as part of our spectrum of physical states is allowed
by our boundary conditions, and that all additional states are fluctuations
around this background. First, we recall some basic aspects of Carroll
geometry.

The Carroll-zweibein for the flat background geometry in some Feffer-
man–Graham like coordinates should take the form

e1
ϕ = ρ e2

ρ = 1 e1
ρ = e2

ϕ = 0 (9.5)

so that the corresponding two-dimensional line-element reads

ds2
(2) = eaebδab = ρ2 dϕ2 + dρ2 . (9.6)

We shall refer to ρ as radial coordinate and to ϕ as angular coordinate,
assuming ϕ ∼ ϕ+ 2π. Moreover, on the background the time-component
should be fixed as

τ = dt . (9.7)

Below we shall allow subleading (in ρ) fluctuations in the two-dimensional
line-element (9.6) and leading fluctuations in the time-component (9.7).

We proceed now by stating the result for the boundary conditions that
define our example of Carroll gravity and discuss afterwards the rationale
behind our choices as well as the consistency of the boundary conditions
by proving the finiteness, integrability, non-triviality and conservation of
the canonical boundary charges. We follow the general recipe reviewed
e.g. in [103, 169]. First, we bring the connection (9.2) into a convenient
gauge [67]

A = b−1(ρ)
(
d+ a(t, ϕ)

)
b(ρ) (9.8)
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where the group element
b(ρ) = eρP2 (9.9)

is fixed as part of the specification of our boundary conditions, δb = 0. The
boundary connection a does not depend on the radial coordinate ρ and is
given by

aϕ = −J + h(t, ϕ) H + pa(t, ϕ) Pa + ga(t, ϕ) Ga , (9.10a)
at = µ(t, ϕ) H , (9.10b)

where µ is arbitrary but fixed, δµ = 0, while all other functions are arbitrary
and can vary. This means that the allowed variations of the boundary
connection are given by

δa = δaϕ dϕ =
(
δh H + δpa Pa + δga Ga

)
dϕ . (9.11)

The full connection in terms of the boundary connection is then given by

A = a+ P2 dρ+ ρ [a, P2] (9.12)

and acquires its non-trivial radial dependence through the last term,

ρ [a, P2] = ρ (P1 − g1(t, ϕ) H) dϕ. (9.13)

Only the ϕ-component of the connection is then allowed to vary.

δA = δa+ ρ [δa, P2] =
(
δh H + δpa Pa + δga Ga − ρ δg1 H

)
dϕ (9.14)

The above boundary conditions lead to Carroll-geometries of the form

ds2
(2) =

[(
ρ+ p1(t, ϕ)

)2
+ p2(t, ϕ)2

]
dϕ2 + 2p2(t, ϕ) dϕ dρ+ dρ2 (9.15)

and
τ = µ(t, ϕ) dt+

(
h(t, ϕ)− ρ g1(t, ϕ)

)
dϕ . (9.16)

Thus, we see that to leading order in ρ the background line-element (9.6)
is recovered from (9.15), plus subleading (state-dependent) fluctuations
captured by the functions pa(t, ϕ). As we shall see in the next paragraph
the functions pa and ga are t-independent on-shell. In the metric-formulation
our boundary conditions can be phrased as

ds2
(2) =

(
ρ2 + O(ρ)

)
dϕ2 + O(1) dρ dϕ+ dρ2 (9.17)

and
τ = µ(t, ϕ) dt+ O(ρ) dϕ . (9.18)
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Note that while the asymptotic form of the two-dimensional line-element
(9.17) may have been guessed easily, the specific form of the time-component
(9.18) is much harder to guess, particularly the existence of a shift-component
proportional to dϕ that grows linearly in ρ. Fortunately, the Chern–Simons
formulation together with the gauge choice (9.8) minimizes the amount of
guesswork needed to come up with meaningful boundary conditions.

We consider now the impact of the equations of motion on the free
functions in the boundary connection (9.10). Gauge-flatness F = 0 implies

∂taϕ − ∂ϕat + [at, aϕ] = ∂taϕ − ∂ϕat = 0 . (9.19)

As a consequence, we get the on-shell conditions (which also could be called
“holographic Ward identities”)

∂tpa = ∂tga = 0 ∂th = ∂ϕµ . (9.20)

Thus, most of the functions in the boundary connection (9.10) are time-
independent, with the possible exception of h and µ.

The boundary-condition preserving transformations, δλ̂A = dλ̂+[A, λ̂] =
O(δA), generated by λ̂ = b−1λb have to obey the relations

δλat = ∂tλ+ [at, λ] = ∂tλ = 0 , (9.21a)
δλaϕ = ∂ϕλ+ [aϕ, λ] = O(δaϕ) , (9.21b)

where O(δaϕ) denotes all the allowed variations displayed in (9.11). It is
useful to decompose λ with respect to the algebra (9.2).

λ = λH H + λPa Pa + λJ J + λGa Ga . (9.22)

The first line in (9.21) establishes the time-independence of λ, while the
second line yields the consistency condition

∂ϕλ
J = 0 (9.23)

as well as the transformations rules

δλh = ∂ϕλ
H −

(
p1λ

G2 − p2λ
G1 + g1λ

P2 − g2λ
P1
)
, (9.24a)

δλpa = ∂ϕλ
Pa − εab

(
λPb − pbλJ

)
, (9.24b)

δλga = ∂ϕλ
Ga − εab

(
λGb − gbλJ

)
. (9.24c)

Applying the Regge–Teitelboim approach [65] to Chern–Simons theories
yields the following background-independent result for the variation of the
canonical boundary charges

δQ[λ] = k

2π

∮
〈λ̂ δA〉 = k

2π

∮
〈λ δaϕ〉 dϕ (9.25)
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which in our case expands to

δQ[λ] = k

2π

∮ (
− λJδh+ λPaδga + λGaδpa

)
dϕ . (9.26)

The canonical boundary charges are manifestly finite since the ρ-dependence
drops out in (9.25); they are also integrable in field-space since our λ is
state-independent.

Q[λ] = k

2π

∮ (
− λJh+ λPaga + λGapa

)
dϕ . (9.27)

The result (9.27) clearly is non-trivial in general. To conclude the proof that
we have meaningful boundary conditions we finally check conservation in
time, using the on-shell relations (9.20) as well as the time-independence of
λ, see (9.21a):

∂tQ[λ]
∣∣∣
EOM

= − k

2π

∮
λJ∂th dϕ = − k

2π

∮
λJ∂ϕµ dϕ = k

2π

∮
µ∂ϕλ

J dϕ .

(9.28)
By virtue of (9.23) we see that the last integrand vanishes and thus we have
established charge conservation on-shell:

∂tQ[λ]
∣∣∣
EOM

= 0 . (9.29)

Since our canonical boundary charges (9.27) are finite, integrable in field
space, non-trivial and conserved in time the boundary conditions (9.8)-(9.14)
are consistent and lead to a non-trivial theory. For later purposes, it is useful
to note that due to the constancy of λJ only the zero mode charge associated
with the function h can be non-trivial. This means that we can gauge-fix
our connection using proper gauge transformations such that h = const.

We now introduce Fourier modes in order to be able to present the
asymptotic symmetry algebra in a convenient form.3

Pan := 1
2π

∮
dϕ einϕga(t, ϕ)

∣∣∣
EOM

, (9.30a)

Gan := 1
2π

∮
dϕ einϕpa(t, ϕ)

∣∣∣
EOM

, (9.30b)

J := − 1
2π

∮
dϕh(t, ϕ)

∣∣∣
EOM

. (9.30c)

3There is no meaning to the index positions in this section. The only reason why we
write Pan and Gan instead of corresponding quantities with lower indices is that our current
convention is easier to read.
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A few explanations are in order. Due to our off-diagonal bilinear form (9.4)
we associate the nth Fourier mode of the functions ga (pa) with the generator
Pan (Gan). For the same reason we associate J with minus the zero mode of h.
Finally, the subscript EOM means that all integrals are evaluated on-shell,
in which case all t-dependence drops out (and in the last integral also all
ϕ-dependence).

We make a similar Fourier decomposition of the gauge parameters λi,
where i refers to the generators Pa, Ga and J; the parameter λH is not needed
since it does not appear in the canonical boundary charges (9.27), so all
gauge transformations associated with it are proper ones and can be used
to make h constant.

λPa
n := 1

2π

∮
dϕ einϕλPa(ϕ) , (9.31a)

λGa
n := 1

2π

∮
dϕ einϕλGa(ϕ) . (9.31b)

Note that we have used (9.21) to eliminate all time-dependence and that λJ

is a constant according to (9.23) thus requiring no Fourier decomposition.
The variations (9.24) of the state-dependent functions then establish

corresponding variations in terms of the Fourier components (9.30), (9.31).

δPan = −inλGa
n − εabλGb

n + εabλ
JPbn , (9.32a)

δGan = −inλPa
n − εabλPb

n + εabλ
JGbn , (9.32b)

δJ =
∑
n∈Z

εab

(
Ganλ

Gb
−n + Panλ

Pb
−n

)
. (9.32c)

From the variations (9.32) we can read off the asymptotic symmetry algebra,
using the fact that the canonical generators generate gauge transformations
via the Dirac bracket δλ1Q[λ2] = {Q[λ1], Q[λ2]}.

Converting Dirac brackets into commutators then establishes the asymp-
totic symmetry algebra as the commutator algebra of the infinite set of
generators Pan, Gan and J. The central element of this algebra will be asso-
ciated with (minus) H, concurrent with the notation of (9.3). Evaluating
(9.32) yields4

[J, Pan] = εab Pbn , (9.33a)
[J, Gan] = εab Gbn , (9.33b)

[Pan, Gbm] = −
(
εab + inδab

)
H δn+m, 0 , (9.33c)

4Note that our definitions of Fourier-components (9.30), (9.31) require that we
associate the negative Fourier components of the λ with the positive Fourier components
of the generators so that, for instance, [Pbn, J] = δ

λ
Pb
−n

J.
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where all commutators not displayed vanish. We have thus succeeded in
providing an infinite lift of the Carroll algebra (9.3), which is contained as a
subalgebra of our asymptotic symmetry algebra (9.33) by restricting to the
zero-mode generators Pa = Pa0, Ga = Ga0 in addition to J and H. As a simple
consistency check one may verify that the Jacobi identities indeed hold. The
only non-trivial one to be checked is the identity [[J, Pan], Gbm] + cycl. = 0.

We conclude this section with a couple of remarks. The boundary
conditions (9.8)-(9.10) by no means are unique and can be either generalized
or specialized to looser or stricter ones, respectively. Another set of well
defined boundary condition has been proposed in [64]. In particular, we
have switched off nearly all chemical potentials in our specification of the
time-component of the connection (9.10b), and it could be of interest to
allow arbitrary chemical potentials. Apart from this issue there is only one
substantial generalization of our boundary conditions, namely to allow for a
state-dependent function in front of the generator J in the angular component
of the connection (9.10a). As mentioned in the opening paragraph of this
section, in that case the expected asymptotic symmetry algebra is the
loop algebra of the Carroll algebra (9.3). In principle, it is possible to
make our boundary conditions stricter, but that would potentially eliminate
interesting physical states like some of the Carroll geometries (9.15), (9.16).
Thus, while our choice (9.8)-(9.10) is not unique it provides an interesting set
of boundary conditions for spin-2 Carroll gravity. Using the same techniques
it should be straightforward to extend the discussion of this section to higher
spin Carroll gravity and related theories discussed in this thesis.



Chapter 10

Kinematical Spin-3 Theories

The reason for restricting ourselves to three spacetime dimensions stems
from the fact that, as far as higher spin gauge theory is concerned, this
case is a lot simpler than its higher-dimensional counterpart. For instance,
in three dimensions it is possible to consider higher spin gauge theory in
flat spacetimes [170–174], unlike the situation in higher dimensions where
a non-zero cosmological constant is required1. Moreover, and as already
discussed, in three dimensions higher spin gauge theories with only a finite
number of higher spin fields can be constructed [89]. In the relativistic case,
such theories assume the form of Chern–Simons theories, for a gauge group
that is a suitable finite-dimensional extension of the three-dimensional (A)dS
and Poincaré algebras. For theories with integer spins ranging from 2 to N
in AdS spacetime, the gauge algebra is given by sl(N,R)⊕ sl(N,R). Here,
we will restrict ourselves for simplicity to “spin-3 theory” for which N = 3,
although our analysis can straightforwardly be generalized to arbitrary N .

We will thus extend the discussion of kinematical algebras of [8] and
review in Section 9 to theories in three spacetime dimensions that include
a spin-3 field coupled to gravity. In particular, we will start from the
observation made in [8] that all kinematical algebras can be obtained by
taking sequential Inönü-Wigner (IW) contractions of the (A)dS algebras. We
will then classify all possible sIW contractions2 of the kinematical algebra of
spin-3 theory in (A)dS3, as well as all possible kinematical algebras that can
be obtained by sequential contractions. Some of the kinematical algebras
that are obtained in this way can be interpreted as spin-3 extensions of
the Galilei and Carroll algebras. We will show that one can construct

1See however [175–177] for recent progress concerning higher spin theories in four-
dimensional flat space.

2 It should be emphasized that this does not classify the Lie algebras that result from
the contraction.
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Chern–Simons theories for (suitable extensions of) these algebras. These can
then be interpreted as non- and ultra-relativistic three-dimensional spin-3
theories. We will in particular argue that these theories can be viewed as
higher spin generalizations of Extended Bargmann gravity [45, 164,167,178]
and Carroll gravity [179], two examples of non- and ultra-relativistic gravity
theories that have been considered in the literature recently.

The kinematical algebras of spin-3 theories that we obtain are finite-
dimensional. Relativistic three-dimensional kinematical algebras have infinite-
dimensional extensions that are obtained as asymptotic symmetry algebras
upon imposing suitable boundary conditions on metric and higher spin
fields, such as the Virasoro algebra (for the AdS algebra) [85], the BMS
algebra (for the Poincaré algebra) [180,181] or W-algebras (for their higher
spin generalizations) [26, 27]. One such example for the Carroll algebra was
discussed in Section 9.3. It is interesting to ask whether the found non-
and ultra-relativistic algebras also have infinite-dimensional extensions that
correspond to asymptotic symmetry algebras of their corresponding higher
spin gravity theories.

This chapter is based on Section 2 and 3 of [5]. We will first, in section
10.1, classify all sIW contractions of the kinematical algebra of spin-3 theory
in (A)dS3. We then classify all kinematical algebras that can be obtained by
combining these various contractions. In section 10.2, we restrict ourselves
to the algebras that can be interpreted as non- and ultra-relativistic ones,
for zero cosmological constant. We argue that in the ultra-relativistic cases,
a Chern–Simons theory can be constructed in a straightforward manner.
This is due to the considerations of Section 5.3. This is not true for the
nonrelativistic cases. However, we demonstrate that the nonrelativistic
kinematical algebras can be suitably extended in such a way that a Chern–
Simons action can be written down. Here the knowledge of double extension
will be useful. We then show via a linearized analysis that the non- and
ultra-relativistic spin-3 Chern–Simons theories thus obtained can be viewed
as spin-3 generalizations of Extended Bargmann gravity and Carroll gravity,
respectively.

10.1 Kinematical Spin-3 Algebras
In this section, we will be concerned with three-dimensional kinematical
spin-3 algebras, i.e., generalized spacetime symmetry algebras of theories of
interacting, massless spin-2 and spin-3 fields. In particular, following Bacry
and Lévy–Leblond [8] we will classify all such algebras that can be obtained
by combining different sIW-contractions from the algebras that underlie
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spin-3 gravity in AdS3 and dS3. After recalling the latter, we will present all
possible ways of contracting them, such that non-trivial kinematical spin-3
algebras are obtained, via a classification theorem. Combining different of
these sIW-contractions leads to various kinematical spin-3 algebras, some of
which will be discussed in the next section as a starting point for considering
Carroll and Galilei spin-3 gravity Chern–Simons theories.

AdS3 and dS3 Spin-3 Algebras
Remember that Spin-3 gravity in (A)dS3 [26,27] can be written as a Chern–
Simons theory for the Lie algebra sl(3,R) ⊕ sl(3,R) for AdS3 or sl(3,C)
(viewed as a real Lie algebra) for dS3. In the following we will often denote
the higher spin algebra sl(3,R)⊕ sl(3,R), realizing Spin-3 gravity in AdS3,
by hs3AdS. Similarly, we indicate the higher spin algebra sl(3,C), realizing
Spin-3 gravity in dS3, by hs3dS. In both cases, the algebra consists of the
generators of Lorentz transformations ĴA and translations P̂A along with
“spin-3 rotations” ĴAB and “spin-3 translations” P̂AB, that are traceless-
symmetric in the (AB) indices (A = 0, 1, 2) 3:

ĴAB = ĴBA ηABĴAB = 0 (10.1)
P̂AB = P̂BA ηABP̂AB = 0 . (10.2)

Here, ηAB is the three-dimensional Minkowski metric. We will often refer
to {ĴA, P̂A} as the “spin-2 generators” or the “spin-2 part” and similarly to
{ĴAB, P̂AB} as the “spin-3 generators” or “spin-3 part”. Their commutation
relations are given by [26,27][

ĴA , ĴB
]

= εABC ĴC ,
[

ĴA , P̂B
]

= εABC P̂C ,[
P̂A , P̂B

]
= ±εABC ĴC ,[

ĴA , ĴBC
]

= εMA(B ĴC)M ,
[

P̂A , P̂BC
]

= ± εMA(B ĴC)M ,[
ĴA , P̂BC

]
= εMA(B P̂C)M ,

[
P̂A , ĴBC

]
= εMA(B P̂C)M ,[

ĴAB , ĴCD
]

= −η(A(CεD)B)M ĴM ,
[

ĴAB , P̂CD
]

= −η(A(CεD)B)M P̂M ,[
P̂AB , P̂CD

]
= ∓η(A(CεD)B)M ĴM , (10.3)

where the upper sign refers to hs3AdS and the lower sign to hs3dS. Note
that the first two lines constitute the isometry algebra of (A)dS3, i.e.,

3We refer to Appendix A for index and other conventions used in this and upcoming
sections.
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sl(2,R) ⊕ sl(2,R) for AdS3 and sl(2,C), viewed as a real Lie algebra, for
dS3.

The above mentioned algebra is (semi)simple and therefore has an
invariant metric. The most general one is given in Section D.7 but we will
restrict here to

〈P̂A , ĴB〉 = ηAB 〈P̂AB , ĴCD〉 = ηA(CηD)B −
2
3ηABηCD . (10.4)

Note that this represents an invariant metric for both hs3AdS and hs3dS.
The existence of this metric allows one to construct Chern–Simons actions
for the algebras hs3AdS and hs3dS, that correspond to the actions for
spin-3 gravity in (A)dS3 [26, 27].

In the following, it will prove convenient to introduce a time-space
splitting of the indices A = {0, a; a = 1, 2}. We will thereby use the
following notation:

J = Ĵ0 Ga = Ĵa H = P̂0 Pa = P̂a (10.5)
Ja = Ĵ0a Gab = Ĵab Ha = P̂0a Pab = P̂ab . (10.6)

Note that we have left out the generators P̂00 and Ĝ00 here. These generators
are not independent, due to the tracelessness constraint (10.1) and in
the following we will eliminate them in favor of Pab and Gab. After these
substitutions, the commutation relations of hs3(A)dS in this new basis are
given in the first column of Table D.3.

All Kinematical Spin-3 Algebras by Contracting
hs3(A)dS
We now consider the spin-3 case where, following the spin-2 case (see Section
9.1), we will obtain a classification of all possible contractions4 of hs3AdS

4 Here, we will classify different contractions, in the sense defined above as different
choices of subalgebra h, i.e., we restrict to sIW-contractions. This does not mean that all
these contractions lead to non-isomorphic Lie algebras. Indeed, in the analysis of [8], e.g.,
one can see that the space-time and speed-time contractions applied to the AdS3 isometry
algebra lead to two Lie algebras that are both isomorphic to the Poincaré algebra. We
should however mention that these algebras are isomorphic in the mathematical sense;
physically they can be regarded as non-equivalent as the isomorphism that relates them
corresponds to an interchange of boost and translation generators. Note also that the
different contractions that are classified here are not necessarily independent. As an
example, one can check that the general sIW-contraction of Table 9.1 can be obtained
by sequential space-time, speed-space and speed-time sIW-contractions in an arbitrary
order.
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and hs3dS by listing all their possible subalgebras. We start from hs3(A)dS
since these are semisimple algebras and can therefore not be viewed as a
result of a sIW-contraction (since proper sIW-contractions always lead to
algebras with an abelian ideal that are thus not semisimple). Now, in order
to obtain contractions that can be identified as interesting kinematical spin-3
algebras, we will impose two restrictions:

• When restricted to the spin-2 part of the algebra, the sIW-contraction
should correspond to those considered in Table 9.1. This ensures that
the spin-2 parts of the algebras obtained by various combinations of
these contractions correspond to the kinematical algebras of [8].

• Furthermore, we will also demand that in the resulting Lie algebra not
all commutators of the spin-3 part are vanishing. This requirement is
motivated by the fact that we are interested in using these contractions
to describe fully interacting theories of massless spin-2 and spin-3 fields.
Indeed, as we will show later on, for some of the algebras obtained here,
one can construct a Chern–Simons action for spin-2 and spin-3 fields.
Only when the commutators of the spin-3 part are not all vanishing,
do the spin-3 fields contribute to the equations of motion of the spin-2
fields.

All ways of sIW-contracting hs3AdS and hs3dS that obey these two restric-
tions can then be summarized by the following theorem:

Theorem 10.1. All possible sIW-contractions, that reduce to those consid-
ered in Table 9.1 when restricted to the spin-2 part and that are nonabelian on
the subspace spanned by the spin-3 generators {Ja, Ha, Gab, Pab}, are given by
10 “democratic” contractions that are specified in Table 10.1 and 7 “traceless”
contractions, given in Table 10.2. As in Table 9.1, we have specified these
contractions by indicating the subalgebra h with respect to which hs3(A)dS
is contracted, as well as by giving the resulting abelian ideal i.
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Contraction # h i

Space-time 1 {J, Ga, Ja, Gab} {H, Pa, Ha, Pab}
2 {J, Ga, Ha, Pab} {H, Pa, Ja, Gab}

Speed-space 3 {J, H, Ja, Ha} {Ga, Pa, Gab, Pab}
4 {J, H, Gab, Pab} {Ga, Pa, Ja, Ha}

Speed-time 5 {J, Pa, Ja, Pab} {Ga, H, Ha, Gab}
6 {J, Pa, Ha, Gab} {Ga, H, Ja, Pab}

7 {J, Ja} {H, Pa, Ga, Ha, Gab, Pab}
General 8 {J, Gab} {H, Pa, Ga, Ja, Ha, Pab}

9 {J, Ha} {H, Pa, Ga, Ja, Gab, Pab}
10 {J, Pab} {H, Pa, Ga, Ja, Ha, Gab}

Table 10.1: All democratic sIW-contractions.

Contr. # h i

Speed 4a {J, H, Gab, P12, P22 − P11} {P11 + P22}
-space 4b {J, H, G12, G22 − G11, Pab} {G11 + G22}

4c {J, H, G12, G22 − G11, P12, P22 − P11} {G11 + G22, P11 + P22}

8a {J, G12, G22 − G11} {G11 + G22, Pab}
General 10a {J, P12, P22 − P11} {Gab, P11 + P22}

8b {J, G12, G22 − G11, P11 + P22} {G11 + G22, P12, P22 − P11}
10b {J, P12, P22 − P11, G11 + G22} {G12, G22 − G11, P11 + P22}

Table 10.2: All traceless sIW-contractions, where we have to add in the
i column for the speed-space sIW-contractions {Ga, Pa, Ja, Ha} and for the
general sIW-contractions {H, Pa, Ga, Ja, Ha}.

The complete proof of this theorem is given in the Appendix of [5]. For
now, let us suffice by saying that the proof starts by noting that each of the
subalgebras h in Table 9.1 needs to be supplemented with spin-3 generators,
in order to have a contraction with a nonabelian spin-3 part. The proof
then proceeds by enumerating, for each of the contractions of Table 9.1,
all possibilities in which spin-3 generators can be added to h such that one
still obtains a subalgebra, that leads to a contraction with a nonabelian
spin-3 part. We refer to appendix D.7 for the explicit Lie algebras of the
contracted Lie algebra given in Table 10.1.
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Finally, let us comment on the terminology “democratic” and “traceless”.
This terminology stems from the fact that the three independent generators
contained in Pab (Gab) form a real, reducible representation of J, that can be
split into a tracefree symmetric part consisting of the generators {P12, P22 −
P11} ({G12, G22− G11}) and a trace part P11 + P11 (G11 + G22). The democratic
contractions are such that the subalgebra h contains both tracefree symmetric
and trace components of Pab (Gab), if present. In some cases, it is not necessary
to include the trace component in h in order to obtain a valid subalgebra.
This is the case for the democratic contractions , numbered 4, 8 and 10 in
Table 10.1. Moving the trace component from h to i leads to the traceless
cases 4a, 4b, 4c, 8a and 10a in Table 10.2. In the last two remaining cases
both the tracefree symmetric part of Gab (Pab) and the trace part of Pab (Gab)
belong to the subalgebra h. Doing this leads to the traceless cases 8b and
10b.

The democratic contractions can again be summarized as a cube, see
Figure 10.1.

10.2 Carroll, Galilei and Extended
Bargmann Theories

In the previous section, we have classified all possible (sIW-)contractions of
the spin-3 AdS3 and dS3 algebras. Combining some of these contractions
can lead to algebras whose spin-2 part corresponds to the Carroll or Galilei
algebra. Here, we will study these cases in more detail. In particular, we
will be concerned with constructing Chern–Simons theories for these spin-3
algebras, or suitable extensions thereof. This extends [179] where the case
of spin-2 Carroll and spin-2 Galilei gravity is discussed.

In order to construct Chern–Simons actions for Carroll and Galilei spin-3
algebras, one therefore needs to know whether these algebras can be equipped
with an invariant metric. We have already seen in Section 9 that this is not
even for the spin-2 algebras always possible. In this respect, it is useful to
remember that it is not always true that the contraction of a Lie algebra
equipped with an invariant metric, also admits one. A counter-example
was provided by the three-dimensional spin-2 Galilei algebra which arises
as sIW contractions of the Poincaré algebra, that in three dimensions has
an invariant metric. Naively, one can thus not construct a Chern–Simons
action for the Galilei algebra how ever as shown, there exists an extension
of the Galilei algebra, the so-called Extended Bargmann algebra, that can
be equipped with an invariant metric and for which a Chern–Simons action
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hs3(A)dS

hs3poi

hs3nh

hs3ppoi

hs3gal

hs3pgal

hs3car

hs3st

#3
#4

#5

#6

#1 #2

Figure 10.1: This figure summarizes the sequential democratic contractions
of Table 10.1. There are 2 space-time (blue; #1,#2), 2 speed-space (red;
#3,#4) and 2 speed-time (black; #5,#6) contractions and combining them
leads to the full cube. The commutators of the algebras corresponding to
the dots are given in Table D.3-D.13. In comparison to Figure 9.1, we have
for clarity omitted the double lines and the diagonal lines that indicate the
direct sIW-contractions to the static algebras.

can be constructed.
In this section, we will show that similar results hold in the spin-3 case.

In particular, we will see that the spin-3 versions of the Carroll algebra admit
an invariant metric and that a Chern–Simons action can be straightforwardly
constructed. The spin-3 versions of the Galilei algebra, like their spin-2
versions, do not have an invariant metric. However, using double extensions
we can extended them to Lie algebras with an invariant metric. In contrast
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to the spin-2 case this double extension is not just given by nontrivial central
extensions. We will explicitly construct these “spin-3 Extended Bargmann”
algebras and their associated Chern–Simons actions. In this way, we will
obtain spin-3 versions of Carroll gravity [149, 179] and Extended Bargmann
gravity [45,164,167,178].

We will first treat the case of spin-3 Carroll gravity, while the spin-3
Extended Bargmann gravity case will be discussed afterwards. In both cases,
we will also study the equations of motion, at the linearized level. This will
allow us to interpret the Chern-Simons actions for these theories as suitable
spin-3 generalizations of the actions of Carroll and Extended Bargmann
gravity, in a first order formulation. In particular, this linearized analysis
will show that some of the gauge fields appearing in these actions can be
interpreted as generalized vielbeine, while others can be viewed as generalized
spin connections. The latter in particular appear only algebraically in the
equations of motion and are therefore dependent fields that can be expressed
in terms of other fields. We will give these expressions. In some cases, we
will see that not all spin connection components become dependent. We
will argue that the remaining independent spin connection components can
be viewed as Lagrange multipliers that implement certain constraints on
the geometry. For simplicity, we will restrict ourselves to Carroll and Galilei
spin-3 gravity theories. The analysis provided here can be straightforwardly
extended to include a cosmological constant.

Spin-3 Carroll Gravity
There are four distinct ways of contracting hs3(A)dS, such that a spin-3
algebra whose spin-2 part coincides with the Carroll algebra is obtained.
These four ways correspond to combining the contractions 1 and 5, 1 and
6, 2 and 5 or 2 and 6 of Table 10.1, respectively. We will denote the
resulting algebras as hs3car1, hs3car2, hs3car3 and hs3car4. Their structure
constants are summarized in Table D.6. Note that hs3car3 and hs3car4 each
come in two versions, since we apply the sIW-contractions to AdS and dS
simultaneously. These versions differ in the signs of some of their structure
constants, as can be seen from Table D.6. The existence of these different
versions when applying the contractions 2 and 5 (or 2 and 6) stems from the
fact that the combination of these contractions leads to different algebras,
depending on whether one starts from hs3AdS or from hs3dS. By contrast,
applying contraction 1 and 5 (or 1 and 6) on hs3AdS and hs3dS leads to
the same result, namely hs3car1 (or hs3car2).

All these spin-3 algebras have an invariant metric. This can either be
seen using the just mentioned contractions or using the invariant metric
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preserving contractions discussed in Section 5.3. The invariant metric
preserving contractions are specified by just a subalgebra h of the original
algebra and for these cases are given by:

• hs3poi1→ hs3car1: h = {J, Ja},

• hs3poi1→ hs3car2: h = {J, Gab},

• hs3poi2→ hs3car3: h = {J, Pab},

• hs3poi2→ hs3car4: h = {J, Ha}.

By examining the structure constants of Table D.6 and D.7, one can see
that hs3car1 (hs3car2) and hs3car3 (hs3car4) are related via the following
interchange of generators

Ha ↔ Ja Pab ↔ Gab (10.7)

plus potentially some sign changes in structure constants, as mentioned in
the previous paragraph. The structure of the Chern–Simons theories will
therefore be very similar for hs3car1 (hs3car2) and hs3car3 (hs3car4). In the
following, we will restrict to the case of hs3car1. The CS theory based on
hs3car2 is explicitly treated in [5].

Chern–Simons Theory for hs3car1

The commutation relations of hs3car1 are summarized in the first column of
Table D.6. This algebra admits the following invariant metric

〈H , J〉 = −1 〈PaGb〉 = δab (10.8)

〈Ha , Jb〉 = −δab 〈Pab , Gcd〉 = δa(cδd)b −
2
3δabδcd . (10.9)

Using the commutation relations of hs3car1 and the invariant metric (10.8),
the Chern–Simons action ( (2.4)) and its equations of motion can be explicitly
written down. Here, we will be interested in studying the action and
equations of motion, linearized around a flat background solution5 given by

Āµ = δ0
µ H + δaµ Pa . (10.10)

5For fields in this flat background solution, the curved µ index becomes equivalent to
a flat one. In the following, we will therefore denote the time-like and spatial values of
the µ index by 0 and a. The a index can moreover be freely raised and lowered using a
Kronecker delta. We will often raise or lower spatial a indices on field components (even if
it leads to equations with non-matching index positions on the left- and right-hand-sides),
to make more clear which field components are being meant.
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We will therefore assume that the gauge field is given by this background
solution Āµ, plus fluctuations around this background

Aµ =
(
δ0
µ + τµ

)
H +

(
δaµ + eµ

a
)

Pa + ωµ J +Bµ
a Ga

+ τµ
a Ha + eµ

ab Pab + ωµ
a Ja +Bµ

ab Gab . (10.11)

Here, τµ can be interpreted as a linearized time-like vielbein, eµa as a
linearized spatial vielbein, while ωµ and Bµ

a can be viewed as linearized
spin connections for spatial rotations and boosts respectively. Similarly, τµa,
eµ
ab, ωµa and Bµ

ab can be interpreted as spin-3 versions of these linearized
vielbeine and spin connections.

Using the expansion (10.11) in the Chern–Simons action and keeping only
the terms quadratic in the fluctuations, one finds the following linearized
action:

Shs3car1 =
∫
d3x εµνρ

(
− 2τµ∂νωρ + 2eµa∂νBρ

a − 2τµa∂νωρa + 4eµab∂νBρ
ab

− 4
3eµ

aa∂νBρ
bb − δ0

µων
aωρ

bεab − 2δaµωνBρ
bεab − 4δaµωνcBρ

cbεab

)
.

(10.12)

The linearized equations of motion corresponding to this action are given by

0 = Rµν(H) ≡ ∂µτν − ∂ντµ − δaµBν
bεab + δaνBµ

bεab

0 = Rµν(Pa) ≡ ∂µeν
a − ∂νeµa + εabδbµων − εabδbνωµ

0 = Rµν(J) ≡ ∂µων − ∂νωµ
0 = Rµν(Ga) ≡ ∂µBν

a − ∂νBµ
a

0 = Rµν(Ha) ≡ ∂[µτν]
a − εabδ0

µων
b + εabδ0

νωµ
b − 2δbµBν

acεbc + 2δbνBµ
acεbc

0 = Rµν(Pab) ≡ ∂[µeν]
ab + 1

2δ
c
[µων]

(aεb)c − δcµωνdεcdδab + δcνωµ
dεcdδ

ab

0 = Rµν(Ja) ≡ ∂µων
a − ∂νωµa

0 = Rµν(Gab) ≡ ∂µBν
ab − ∂νBµ

ab (10.13)

The equations

Rµν(H) = 0 Rµν(Pa) = 0 Rµν(Ha) = 0 Rµν(Pab) = 0 (10.14)

contain the spin connections ωµ, Bµ
a, ωµa and Bµ

ab only in an algebraic
way. These equations can thus be solved to yield expressions for some of the
spin connection components in terms of the vielbeine and their derivatives.
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Let us first see how this works for the spin-2 spin connections ωµ and
Bµ

a. The equation R0a(H) = 0 can be straightforwardly solved for B0
a:

B0
a = εab(∂0τb − ∂bτ0) . (10.15)

Similarly, the equation Rab(H) = 0 (or equivalently εabRab(H) = 0) can be
solved for Bc

c (the spatial trace of Bµ
a):

Bc
c = 1

2ε
ab(∂aτb − ∂bτa) . (10.16)

From Rab(Pc) = 0 (or equivalently εabRab(Pc) = 0) one finds the spatial part
of ωµ:

ωa = 1
2ε

bc(∂beca − ∂ceba) . (10.17)

Finally, let us consider the equation R0a(Pb) = 0. The anti-symmetric part
of this equation εabR0a(Pb) = 0 can be solved for the time-like part of ωµ:

ω0 = 1
2ε

ab(∂ae0b − ∂0eab) . (10.18)

The symmetric part R0(a(Pb)) = 0 does not contain any spin connection and
can be viewed as a constraint on the geometry

∂0e(ab) − ∂(ae|0|b) = 0 . (10.19)

In summary, we find that Rµν(H) = 0 and Rµν(Pa) = 0 lead to the constraint
(10.19) as well as the following solutions for ωµ and Bµ

a

ωµ = 1
2δ

0
µ ε

ab(∂ae0b − ∂0eab) + 1
2δ

a
µ ε

bc(∂beca − ∂ceba) ,

Bµ
a = δ0

µ ε
ab(∂0τb − ∂bτ0) + 1

4δ
a
µ ε

bc(∂bτc − ∂cτb) + δbµ B̃b
a , (10.20)

where B̃b
a is an undetermined traceless tensor. The boost connection Bµ

a is
thus not fully determined in terms of τµ and eµa.

A similar reasoning allows one to solve for certain components of the
spin-3 connections ωµa and Bµ

ab. In particular, the equation Rab(Hc) = 0
can be solved for Bd

da, a spatial trace of Bµ
ab:

Bd
da = 1

4ε
bc(∂bτca − ∂cτba) . (10.21)

The equation Rab(Pcd) = 0 can be solved for the symmetric, spatial part of
ωµ

a:

ω(ab) = εcd
(
∂ced

ab − ∂decab
)
− 1

3δ
abεcd(∂cedee − ∂decee) . (10.22)
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The anti-symmetric, spatial part of ωµa can be found from R0a(Ha) = 0:

εabωab = ∂0τa
a − ∂aτ0

a . (10.23)

From the other equations contained in R0b(Ha) = 0 one then finds

B0
ab = 1

4ε
(a|c|

(
∂0τc

b) − ∂cτ0
b)
)

+ 1
4ε

cd∂[ced]
ab − 1

6δ
abεcd(∂cedee − ∂decee) .

(10.24)
The equation R0a(Pbc) = 0 can be divided into a part that is fully symmetric
in the indices a, b, c and a part that is of mixed symmetry:

R0a(Pbc) = 0 ⇔ RS
0a(Pbc) = 0 and RMS

0a (Pbc) = 0 , (10.25)

where

RS
0a(Pbc) = 1

3(R0a(Pbc) +R0c(Pab) +R0b(Pca)) ,

RMS
0a (Pbc) = 1

3(2R0a(Pbc)−R0c(Pab)−R0b(Pca)) . (10.26)

The equation RMS
0a (Pbc) = 0 can be solved for ω0

a, by noting that

RMS
0a (Pbc) = 0 ⇔ εabR0a(Pbc) = 0 . (10.27)

The solution one finds is given by

ω0
a = 2

5ε
bc(∂be0

ca − ∂0eb
ca) . (10.28)

The fully symmetric part RS
0a(Pbc) = 0 can not be used to solve for other

spin connection components. Rather, it should be viewed as a constraint on
the geometry:

∂0eb
ac − ∂be0

ac + ∂0ea
bc − ∂ae0

bc + ∂0ec
ab − ∂ce0

ab

+ 2
5δac

(
∂be0

dd − ∂de0
bd + ∂0ed

bd − ∂0eb
dd
)

+ 2
5δbc

(
∂ae0

dd − ∂de0
ad + ∂0ed

ad − ∂0ea
dd
)

+ 2
5δab

(
∂ce0

dd − ∂de0
cd + ∂0ed

cd − ∂0ec
dd
)

= 0 . (10.29)

This constraint can be slightly simplified. By contracting it with δbc, one
finds that

∂ae0
bb − ∂0ea

bb = 6
(
∂be0

ab − ∂0eb
ab
)
. (10.30)
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Using this, one finds that (10.29) simplifies to

∂0eb
ac − ∂be0

ac + ∂0ea
bc − ∂ae0

bc + ∂0ec
ab − ∂ce0

ab + 1
3δbc

(
∂ae0

dd − ∂0ea
dd
)

+ 1
3δac

(
∂be0

dd − ∂0eb
dd
)

+ 1
3δab

(
∂ce0

dd − ∂0ec
dd
)

= 0 . (10.31)

One thus finds for the spin-3 sector, that the equations Rµν(Ha) = 0 and
Rµν(Pab) = 0 lead to the constraint (10.31) and the following solutions for
ωµ

a and Bµ
ab:

ωµ
a = 2

5δ
0
µε
bc(∂be0

ca − ∂0eb
ca) + 1

2δ
b
µ

(
εcd
(
∂ced

ba − ∂decba
)

− 1
3δ

a
b ε
cd(∂cedee − ∂decee) + εba(∂0τc

c − ∂cτ0
c)
)
,

Bµ
ab = 1

4δ
0
µ

(
ε(a|c|

(
∂0τc

b) − ∂cτ0
b)
)

+ εcd∂[ced]
ab − 2

3δ
abεcd(∂cedee − ∂decee)

)
+ 1

12δ
(a
µ ε
|de|
(
∂dτe

b) − ∂eτdb)
)

+ δcµB̃c
ab , (10.32)

where B̃c
ab is an arbitrary tensor obeying B̃b

ba = 0. As for the spin-2
sector, one thus finds that the spin-3 boost connection Bµ

ab can not be fully
determined in terms of τµa and eµab.

It is interesting to see what role the undetermined components B̃b
a and

B̃c
ab play. In particular, one can check how these components appear in the

Lagrangian and what their equations of motion are. Upon partial integration
in the action (10.12), one finds that the terms in the Lagrangian involving
Bµ

a can be written as
εµνρRµν(Pa)Bρ

a . (10.33)

The traceless spatial components B̃b
a of Bρ

a thus couple to

εcbR0c(Pa)−
1
2δ

b
aε
cdR0c(Pd) . (10.34)

This can however be rewritten as

−1
2ε

cbR0(a(Pb)) . (10.35)

One thus sees that B̃b
a acts as a Lagrange multiplier for R0(a(Pb)) = 0, which

led to the constraint (10.19). Similarly, one can check that B̃c
ab plays the

role of Lagrange multiplier for the constraint (10.31).
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Spin-3 Galilei and Extended Bargmann Gravity
In the previous section, we have studied Carroll spin-3 algebras, whose
spin-2 part corresponds to the Carroll algebra. Using the contractions of
Table 10.1, one can also obtain nonrelativistic spin-3 algebras, that contain
the Galilei algebra. As in the Carroll case, there are four distinct ways of
doing this, namely by successively applying the contractions 1 and 3, 1 and
4, 2 and 3 or 2 and 4 of Table 10.1. We have called the resulting algebras
hs3gal1, hs3gal2, hs3gal3 and hs3gal4 respectively and summarized their
commutation relations in Table D.8 and D.9. As in the Carroll case, hs3gal3
and hs3gal4 each come in two different versions, depending on whether one
applies the combination of contraction on hs3AdS or hs3dS. They are again
structurally similar to hs3gal1 and hs3gal2. We will therefore restrict our
discussion here to these two cases.

In contrast to the spin-3 Carroll algebras, whose invariant metrics arose
from applying the relevant contraction on (10.4), a similar reasoning for
the spin-3 Galilei algebras leads to degenerate bilinear forms. One can in
fact show by direct computation that they can not be equipped with a
nondegenerate symmetric invariant bilinear form. This is even true when
one allows nontrivial central extensions. One algebra admits no nontrivial
central extensions (the second cohomology group is trivial), whereas the
other does admit three nontrivial extensions of which no combination of
them can be used to define an invariant metric. In this sense the spin-3
version differs from the spin-2 one, see Section 9. It could be interesting to
investigate these algebras, given explicitly in Table D.8, and their degenerate
bilinear forms. For the spin-2 case, this has been done in [179]. Due to
the degeneracy of the bilinear form, some of the fields appear without
kinetic term in the action (see the discussion in Section 2.2 concerning
non-degeneracy) and are therefore not dynamical. In the spin-2 case, one
can nevertheless interpret these non-dynamical fields as Lagrange multipliers
for geometrical constraints, similarly to what happens in the Carroll cases of
the previous section. Although it would be interesting to see whether similar
results hold for the higher spin case, we will not do this here and instead
we will look at Chern–Simons theories where each field has a kinetic term.
These can not be based on the spin-3 Galilei algebras, but interestingly,
double extensions help to find Lie algebras that admit an invariant metric,
i.e. a nondegenerate invariant symmetric bilinear form. Remarkably, in this
way one ends up with a spin-3 version of the Extended Bargmann algebra,
it the sense that the spin-2 subalgebra is the ebarg discussed in Section 10.

Double extensions applied to the ordinary Galilei algebra in three dimen-
sions and yields the so-called Extended Bargmann algebra [45,164,167,178],
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that extends the Galilei algebra with two central extensions. Applying
the theorem to hs3gal1 and hs3gal2 yields two spin-3 algebras, that we
will denote, in hindsight, by hs3ebarg1 and hs3ebarg2 (since they have an
Extended Bargmann spin-2 subalgebra).

The algebra hs3ebarg1 can be obtained by looking for double extension
for hs3gal1. Indeed, with the choices g = {Pa, Ga, Pab, Gab}, h = {H, J, Ha, Ja}
and

〈Pa , Gb〉g = δab , 〈Pab , Gcd〉g = δa(cδd)b −
2
3δabδcd , (10.36)

the assumptions of a double extension theorem are fulfilled and the al-
gebra hs3ebarg1 can be constructed. Denoting the generators of h∗ by
{H∗, J∗, H∗a, J∗a}, the commutation relations of hs3ebarg1 are given in Table
10.3. The invariant metric of hs3ebarg1 is explicitly given by

〈Pa , Gb〉 = δab , 〈Pab , Gcd〉 = δa(cδd)b −
2
3δabδcd ,

〈H , H∗〉 = 1 , 〈J , J∗〉 = 1 ,
〈Ha , H∗b〉 = δab , 〈Ja , J∗b〉 = δab . (10.37)

Similarly, starting from hs3gal2 and double extending g = {Pa, Ga, Ha, Ja}
by h = {H, J, Pab, Gab} and

〈Pa , Gb〉g = δab , 〈Ha , Jb〉g = −δab , (10.38)

the algebra hs3ebarg2 can be constructed. Denoting the generators of h∗ by
{H∗, J∗, P∗ab, G∗ab}, its commutation relations are given in Table 10.3.

This algebra admits the following invariant metric

〈Pa, Gb〉 = δab , 〈Ha, Jb〉 = −δab ,
〈H, H∗〉 = 1 , 〈J, J∗〉 = 1 ,

〈Pab, P∗cd〉 = δa(cδd)b , 〈Gab, G∗cd〉 = δa(cδd)b . (10.39)

Note that for both hs3ebarg1 and hs3ebarg2 the generators {H, J, Pa, Ga, H∗, J∗}
form a subalgebra that coincides with the Extended Bargmann algebra. The
Chern–Simons theories based on these algebras can therefore be viewed as
spin-3 extensions of Extended Bargmann gravity, studied in [45,164,167,178].
In [5] these spin-3 Extended Bargmann gravity theories were studied in
detail at the linearized level.
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hs3ebarg1 hs3ebarg2

[ J , Ga ] εamGm [ J , Ga ] εamGm
[ J , Pa ] εamPm [ J , Pa ] εamPm
[ Ga , H ] −εamPm [ Ga , H ] −εamPm
[ Ga , Gb ] εabH∗ [ Ga , Gb ] εabH∗

[ Pa , Gb ] εabJ∗ [ Ga , Pb ] εabJ∗

[ J , Ja ] εamJm [ J , Ja ] εamJm
[ J , Gab ] −εm(aGb)m [ J , Gab ] −εm(aGb)m
[ J , Ha ] εamHm [ J , Ha ] εamHm
[ J , Pab ] −εm(aPb)m [ J , Pab ] −εm(aPb)m
[ Ga , Jb ] −(εamGbm + εabGmm) [ Ga , Gbc ] −εa(bJc)
[ Ga , Hb ] −(εamPbm + εabPmm) [ Ga , Pbc ] −εa(bHc)
[ H , Ja ] εamHm [ H , Ja ] εamHm
[ H , Gab ] −εm(aPb)m [ H , Gab ] −εm(aPb)m
[ Pa , Jb ] −(εamPbm + εabPmm) [ Pa , Gbc ] −εa(bHc)

[ Ja , Jb ] εabJ [ Ja , Gbc ] δa(bεc)mGm
[ Ja , Gbc ] δa(bεc)mGm [ Ja , Pbc ] δa(bεc)mPm
[ Ja , Hb ] εabH [ Gab , Gcd ] δ(a(cεd)b)J
[ Ja , Pbc ] δa(bεc)mPm [ Gab , Hc ] −δc(aεb)mPm
[ Gab , Hc ] −δc(aεb)mPm [ Gab , Pcd ] δ(a(cεd)b)H

[ Gab , Gcd ] ε(a(cδd)b)H∗ [ Ga , Jb ] −εamP∗mb
[ Pab , Gcd ] ε(a(cδd)b)J∗ [ Ga , Hb ] −εamG∗mb
[ Pa , Gbc ] εa(bJ∗c) [ Pa , Jb ] −εamG∗mb
[ Ga , Gbc ] εa(bH∗c) [ Ja , Jb ] −εabH∗
[ Ga , Pbc ] εa(bJ∗c) [ Ja , Hb ] −εabJ∗

[ J , H∗a ] εamH∗m [ J , P∗ab ] −εm(aP∗b)m
[ J , J∗a ] εamJ∗m [ J , G∗ab ] −εm(aG∗b)m
[ H , H∗a ] εamJ∗m [ H , P∗ab ] −εm(aG∗b)m
[ Ja , J∗ ] −εamJ∗m [ Gab , J∗ ] −εm(aG∗b)m
[ Ja , H∗ ] −εamH∗m [ Gab , H∗ ] −εm(aP∗b)m
[ Ja , J∗b ] εabJ∗ [ Gab , G∗cd ] ε(a(cδd)b)J∗

[ Ja , H∗b ] εabH∗ [ Gab , P∗cd ] ε(a(cδd)b)H∗

[ Ha , H∗ ] −εamJ∗m [ Pab , H∗ ] −εm(aG∗b)m
[ Ha , H∗b ] εabJ∗ [ Pab , P∗cd ] ε(a(cδd)b)J∗

Table 10.3: Nonzero commutators of hs3ebarg1 and hs3ebarg2. This al-
gebras admit an invariant metric, given by equation (10.37) and (10.39),
respectively.



Chapter 11

Conclusions

We will summarize the accomplished results and highlight areas that permit
further investigations.

Algebraic Tools for CS Theories
In Chapter 2 we established that the natural set-up for CS theories is
based on gauge algebras admitting an invariant metric. Besides the well
known direct sum of abelian and simple Lie algebras which lead to reductive
Lie algebras another construction needs to be added. With the addition
of double extensions, see Definition 3.4, one fully exhausts the possible
symmetric self-dual Lie algebras. This is due to the remarkable Theorem
3.5 of Medina and Revoy which states how every such indecomposable Lie
algebra has to look like.

With this knowledge we reviewed Lie algebra contractions whose physical
interpretation is that of an approximation. Therefore not only a lot can
be learned from the original algebra, but they can also be used to classify
possible physical systems in various limits.

The combination of invariant metrics with contractions, see Chapter
5, paired with the knowledge of double extensions is the ideal set-up for
investigations of approximate CS theories. A new type of invariant metric
preserving contraction, see Theorem 5.1, tailor made for double extensions,
explains why (higher spin) Carroll algebras in 2+1 dimensions stay equipped
with an invariant metric in the limit from Poincaré.

The generalization to Lie superalgebras seems like a fruitful endeavor.
Double extensions generalize [53] but the analog of the Medina and Revoy
theorem is unproven.

Even for the Lie algebras a more systematic study of contractions of the
various types of symmetric self-dual Lie algebras seems of interest. Especially

85
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since the importance of invariant metrics are not restricted to CS gauge
theories.

From an algebraic point of view it might be of interest which (simple)
Lie algebra contract to Lie algebras that are double extensions. This could
for example explain from which (simple) Lie algebra one could arrive at the
spin-3 Extended Bargmann algebras. Notice that this is different to the
spin-2 case since we needed more than just central extensions. Another point
for why this might be of importance is that the “inverse” of a contraction
might lead, analog to the deformation from Galilei to Poincaré algebras, to
more fundamental theories.

Boundary Conditions
In Chapter 6 the concepts of global charge and boundary conditions was
reviewed, and afterwards applied to AdS (Chapter 7), in the form of the u(1)
boundary conditions, as well as to Lifshitz and null warped AdS (Chapter
8).

It might be interesting to re-investigate possibilities to consistently break
the boundary conditions or the W algebras. Maybe contractions are useful
for this task. On the more speculative side one might try to restrict boundary
conditions mode wise.

In Section 10.2 consistent boundary conditions for Carroll Gravity were
found but the generalization to the spin-3 versions has not been done. Actu-
ally, even for the extended kinematical spin-2 algebras consistent boundary
conditions have not been established. See also the algebras proposed in [45].
Extended Newton–Hooke might provide an interesting intermediate step
since it might have more “box-like” properties due to non-vanishing cosmo-
logical constant. This means it might be closer to AdS than, e.g., Poincaré,
and for AdS/CFT generalizations better suited.

Kinematical Chern–Simons Theories
In Chapter 10 we have extended the work of Bacry and Lévy-Leblond [8]
by classifying all possible kinematical algebras of three-dimensional theories
of a spin-3 field coupled to gravity, that can be obtained via (sequential)
simple Inönü-Wigner contractions of the algebras of spin-3 gravity in (A)dS.
This classification can be found in Section 10.1 and the resulting possible
kinematical algebras, along with their origin via contraction, are summarized
in Figure 10.1. We have summarized the commutation relations of the
algebras in Tables D.3-D.15. The algebras of Tables D.6 and D.8 are
suitable generalizations of the Carroll and Galilei algebras, that correspond



CHAPTER 11. CONCLUSIONS 87

to the ultra-relativistic and nonrelativistic limits of the Poincaré algebra.
We have argued that one can easily construct a Chern-Simons action for the
spin-3 Carroll algebras (here invariant metric preserving contractions were
useful), that leads to a spin-3 generalization of Carroll gravity. We have
moreover shown that Chern-Simons actions can be written down for suitable
extensions of the spin-3 Galilei algebras, that lead to spin-3 generalizations
of Extended Bargmann gravity.

The constructed kinematical algebras are finite-dimensional. We have
shown in Section 9.3 that the three-dimensional Carroll algebra admits an
infinite-dimensional extension, that is the asymptotic symmetry algebra of
Carroll gravity with suitable boundary conditions. This can be taken as a hint
that similar results hold for the higher spin non- and ultra-relativistic algebras
as well as for the spin-2 algebras whose infinite-dimensional extensions have
not been addressed in the literature yet.

There are several questions that are worthwhile for future study. The
non- and ultra-relativistic spin-3 gravity theories constructed here, are
given in the Chern-Simons (i.e. first order ‘zuvielbein’) formulation. It is
interesting to see whether a metric-like [182] formulation can be constructed
and whether the linearized field equations can be rewritten as Fronsdal-like
equations. The results for the linearized spin connections given in Section
10.2 and more exhaustively in [5] should be useful in this regard.

We have restricted our investigations to spin-3 theories. This analysis
can be extended to theories with fields up to spin N , by considering sIW-
contractions of sl(N,R) ⊕ sl(N,R) or sl(N,C) [29]. One can then study
the non- and ultra-relativistic gravity theories that arise in this way and in
particular investigate the types of boundary conditions that lead to interest-
ing asymptotic symmetry algebras. It would be particularly interesting to
see whether it is possible to construct non- and ultra-relativistic versions of
non-linear W-algebras.

Another research direction concerns the inclusion of fermionic fields
with spins higher than or equal to 3/2. This will require a classification of
contractions of Lie superalgebras and can lead to higher spin generalizations
of three-dimensional Extended Bargmann supergravity [167].

Some of the results presented in this thesis are also useful for studies
of Hořava–Lifshitz gravity, that has been proposed as a new framework for
Lifshitz holography [45, 118, 134, 183–187]. Extended Bargmann gravity has
been argued to correspond to a special case of Hořava–Lifshitz gravity [45]. In
this paper, we have constructed spin-3 generalizations of Extended Bargmann
gravity. It is conceivable that these can be interpreted as suitable spin-3
generalizations of Hořava–Lifshitz gravity. It would be interesting to check
whether this is indeed the case and whether the construction presented here
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can be generalized to yield spin-3 generalizations of generic Hořava–Lifshitz
gravity theories.

Finally, higher spin theory has recently been argued to describe some
of the excitations in fractional quantum Hall liquids [188]. Newton–Cartan
geometry and gravity, that are based on extensions of the Galilei algebra,
have been very useful in constructing effective actions that can capture
transport properties in studies of the fractional quantum Hall effect. It
would be interesting to investigate whether the nonrelativistic higher spin
gravity theories that can be constructed using the results of this paper, can
play a similar role.



Appendix A

Conventions

A.1 Symmetrization and Indices
We adopt the convention that the symmetrization of a pair of indices a, b are
denoted with parentheses (ab), while anti-symmetrization is denoted with
square brackets [ab]. Symmetrization and anti-symmetrization is performed
without normalization factor, i.e.,

T(ab) = Tab + Tba T[ab] = Tab − Tba . (A.1)

Nested (anti-)symmetrizations are understood to be taken from the outer-
most ones to the innermost ones, e.g.

T(a(bc)d) = Ta(bc)d + Td(bc)a = Tabcd + Tacbd + Tdbca + Tdcba . (A.2)

Vertical bars denote that the (anti-)symmetrization does not affect the
enclosed indices, e.g.,

T[a|bc|d] = Tabcd − Tdbca . (A.3)

With our conventions this means that T(a|(bc)|d) = T(a(bc)d).
Upper case Latin indices denote spacetime indices, while lower case ones

denote spatial indices:

A,B,C,M, . . . = 0, 1, 2 , a, b, c,m, . . . = 1, 2 . (A.4)

We take the following conventions for the metric

ηAB = diag(−,+,+) ηab = δab = diag(+,+) . (A.5)

For the Levi-Civita symbol, we adopt the following convention:

ε012 = ε12 = 1 , ε0ab = εab , εab = εab . (A.6)
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Any convention concerning Lie algebras and vector spaces is given in
Appendix B. Definitions of various symbols can also be found using the
Index at the end of the document.

A.2 Differential Forms
These useful identities for the a-form α and the b-form β with the normal-
ization

α = 1
a! αµ1···µa dx

µ1 ∧ · · · ∧ dxµa (A.7)

dxµ ∧ dxν = dxµ ⊗ dxν − dxν ⊗ dxµ (A.8)

are taken from [189], [190] and [191]. We denote the exterior product by
α ∧ β, the Lie derivative by LXα and the contraction of the vector field X
with α by iXα.

α ∧ β = (−1)abβ ∧ α (A.9)

d(α ∧ β) = dα ∧ β + (−1)aα ∧ dβ (A.10)
d2 = 0 (A.11)

dLX = LX d (A.12)

iX(α ∧ β) = iXα ∧ β + (−1)aα ∧ iXβ (A.13)
i2X = 0 (A.14)

iX LX = LX iX (A.15)

LX(α ∧ β) = LXα ∧ β + α ∧LXβ (A.16)
LX = d ◦ iX + iX ◦ d (A.17)

[LX , iY ]α = i[X,Y ]α (A.18)
[LX ,LY ]α = L[X,Y ]α (A.19)

A.3 2 + 1 Decomposition

A = AN + Ã = At dt+ Ai dx
i (A.20)

d = dN + d̃ (A.21)

F̃ = d̃Ã+ Ã ∧ Ã = 1
2Fij dx

i ∧ dxj (A.22)
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A2
N = Ã3 = 0 (A.23)

d(AN + Ã) = dN Ã+ d̃AN + d̃Ã (A.24)
d̃(AN ∧ Ã) = d̃AN ∧ Ã− AN ∧ d̃Ã (A.25)



Appendix B

Lie Algebras

This appendix provides further introductory material for Lie algebras and
fixes the notation that is used in the main sections. Since it is standard
material this section is neither complete nor are all necessary details pro-
vided. The following references where used and provide further information
concerning Lie algebra concepts [192–194], cohomology [195], abelian [195]
and nonabelian extensions [196].

Any Lie algebra, if not mentioned otherwise is assumed to be real and
finite-dimensional. Furthermore, if Lie algebra brackets or invariant metric
components are not explicitly mentioned they are vanishing.

B.1 Basic Concepts of Lie Algebras
Definition B.1. A real or complex Lie algebra is a real or complex vector
space with a map [·, ·] : g× g→ g with the following properties:

1. [·, ·] is bilinear.

2. [·, ·] is skew-symmetric: [X, Y ] = −[Y,X] for all X, Y ∈ g.

3. The Jacobi identity holds

	
XY Z

[X, [Y, Z]] ≡ [X, [Y, Z]] + [Z, [X, Y ]] + [Y, [Z,X]] = 0 (B.1)

for all X, Y, Z ∈ g.

If we choose a basis Ta ∈ g, where a = 1, . . . , dim g, and use bilinearity
the Lie algebra can be written as

[Ta, Tb] = f c
ab Tc (B.2)
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where f c
ab are the structure constants of the Lie algebra g. They fully

specify a Lie algebra. Skew-symmetry and the Jacobi identity yield
f c
ab = −f c

ba (B.3)
	
abc
f d
ab f

e
cd = 0 . (B.4)

A homomorphism is a linear map φ : g→ h with
φ([X, Y ]g) = [φ(X), φ(Y )]h for all X, Y ∈ g . (B.5)

An isomorphism between the two Lie algebras is an injective and surjective
homomorphism. For explicit calculations we fix for the Lie algebra g the basis
and the structure constants by [Ga, Gb] = g c

ab Gc and for h by [Hi, Hj ] = h k
ij Hk.

The linear map φ(Ga) = T i
a Hi is then a homomorphism if
g c
ab T

k
c = T i

a T
j
b h

k
ij . (B.6)

For an isomorphism invertibility leads to (T−1) ai T j
a = δji and therefore

h k
ij = (T−1) ai (T−1) b

j g
c

ab T
k
c . (B.7)

When a and b are subsets of g, we write
[a, b] ≡ span{[X, Y ] |X ∈ a, Y ∈ b} . (B.8)

Given a Lie algebra g a subspace h is a subalgebra, if [h, h] ⊂ h, and an
ideal if [g, h] ⊂ h. If the commutator of all elements of the Lie algebra
vanishes, [g, g] = 0, then it is called abelian. The maximal ideal z for which
[g, z] = 0 is called the center of the Lie algebra.

Given an ideal h of the Lie algebra g the quotient algebra g/h is the
vector space quotient g/h with the definition

[X + h, Y + h] = [X, Y ] + h for all X, Y ∈ g . (B.9)
A Lie algebra g is a direct sum of Lie algebras, denoted by g = g1⊕ g2,

if it is a direct sum of vector spaces, denoted by g = g1 +̇ g2 and fulfills
[gi, gi] ⊂ gi and [gi, gj] = 0 for i, j = 1, 2 . (B.10)

Semidirect sums are denoted by i B g where i is an ideal and g is a
subalgebra, see Appendix B.4.

A Lie algebra is semisimple if it has no non-zero commutative ideals
and simple if it has dimension bigger than one and no ideals other than
{0} and the Lie algebra itself. Semisimple Lie algebras are direct sums of
simple ones. They are perfect, which means that they obey [g, g] = g. Not
all perfect Lie algebras are semisimple, e.g., there exist semidirect sums that
are perfect.

The adjoint representation is given by ad : X ∈ g 7→ adX ∈ End(g)1

1End(V ) denote the endomorphisms of V .
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where adX Y ≡ [X, Y ] or in a basis (adTa)cb = f c
ab . On the vector space

dual g∗ the coadjoint representation is defined by

〈ad∗X α, Y 〉 ≡ −〈α, adX Y 〉 (B.11)

where α ∈ g∗ and X ∈ g and 〈α,X〉 is the value of the linear functional α
evaluated on the vector X. The representation can be written in a basis as
(ad∗Ta

)cb = −f c
ab .

Any linear mapping D : g→ g for which

D[X, Y ] = [DX, Y ] + [X,DY ] (B.12)

is a derivation and is an element of the space of derivations der(g). An
example of a derivation is adX . An inner derivation can be written in
this form, i.e., D = adX for some X ∈ g. Derivations for which this is not
possible are called outer derivations.

B.2 Sequences
A sequence consists of objects On and homomorphisms fn between them

· · · → On
fn→ On+1

fn+1→ On+2 → · · · . (B.13)

The sequence is exact if the image of each homomorphism is equal to the
kernel of the next, i.e.,

im(fn) = ker(fn+1) for all n . (B.14)

A short exact sequence is an exact sequence with

0→ A→ B → C → 0 . (B.15)

B.3 Lie Algebra Cohomology
Suppose we have a Lie algebra g and a vector space V which is an αg-module2.
An n-dimensional V -cochain ωn for the Lie algebra g is a skew-symmetric
n-linear mapping

ωn : g× · · · × g︸ ︷︷ ︸
n

→ V . (B.16)

2 This means g×V → V : (X, v) 7→ αXv which satisfies αX(v1 + v2) = αXv1 +αXv2;
αX1+X2v = αX1v + αX2v and α[X1,X2]v = [αX1 , αX2 ]v.
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The (abelian) group of all n-cochains will be denoted Cn(g, V ).
The coboundary operator δn : Cn(g, V ) → Cn+1(g, V ) is defined by

its action on the cochains by

(δωn)(X1, . . . , Xn+1) ≡
n+1∑
i=1

(−)i+1αXi
(ω(X1, . . . , X̂i, . . . Xn+1))

+
n+1∑
j,k=1
j<k

(−)j+kω([Xj, Xk], X1, . . . , X̂j, . . . , X̂k, . . . , Xn+1) (B.17)

where the hat above the Lie algebra elements means that this element should
be omitted. The coboundary operator has the property that δ2 = 0. This
can be checked explicitly for the first few cases

(δω0)(X) = αXω0 (B.18)
(δω1)(X1, X2) = αX1ω1(X2)− αX2ω1(X1)− ω1([X1, X2]) (B.19)

(δω2)(X1, X2, X3) = αX1ω2(X2, X3) + αX3ω2(X1, X2) + αX2ω2(X3, X1)
− ω2([X1, X2], X3)− ω2([X3, X1], X2)− ω2([X2, X3], X1)
= 	
X1X2X3

(αX1ω2(X2, X3)− ω2([X1, X2], X3)) . (B.20)

Using the coboundary operator one can define the following sequence

0 δ−1→ C0(g, V ) δ0→ C1(g, V ) δ1→ · · · (B.21)

and furthermore the quotient group Hn
α(g, V ), called the n-th cohomology

group, by

Hn
α(g, V ) ≡ ker δn

im δn−1
= {n− cocycles}
{n− coboundarys} . (B.22)

The cohomology group “measures” the amount at which the sequence fails to
be exact. When α is trivial we will sometimes omit it and write Hn ≡ Hn

0 .

B.4 A Sketch of Lie Algebra Extensions
We now use sequences between Lie algebras to define Lie algebra extensions.

Definition B.2. The Lie algebra e is a Lie algebra extension of g by h if

0→ h
i→ e

π→ g→ 0 (B.23)
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is a short exact sequence. Two extensions are equivalent if there exists a Lie
algebra isomorphism φ and the following diagram commutes

e

0 h g 0

e′

φ .

Since the homomorphism i has a trivial kernel it is an injective map.
Furthermore, is the image isomorphic to the original algebra, so im(i) ' h.
When the context is clear and since they are isomorphic we will often use h
instead of im(i). Another consequence of the definition is that π is surjective
and therefore (the image of) h is an ideal in e. On the other hand there
might not exist a subalgebra of e that is isomorphic to g. But there exists
a quotient that leads to e/h ' g. The linear mapping τ : g → e with
π ◦ τ = idg induces the mappings

α : g→ der(h) , αX(H) = [τ(X), H] (B.24)
ω : g× g→ h , ω(X, Y ) = [τ(X), τ(Y )]− τ([X, Y ]) (B.25)

where ω is skew-symmetric and which satisfy

[αX , αY ]− α[X,Y ] = adω(X,Y ) (B.26)
	

XY Z
(αXω(Y, Z)− ω([X, Y ], Z)) = 0 . (B.27)

They describe the Lie algebra structure on e = h +̇ τ(g) as

[H1 + τ(X1), H2 + τ(X2)] = [H1, H2] + αX1H2 − αX2H1

+ τ([X1, X2]) + ω(X1, X2) . (B.28)

On the other hand, we can start with two Lie algebras g and h and maps
α : g → der(h) and skew-symmetric ω : g × g → h fulfilling (B.26) and
(B.27). Then on the vector space e = h +̇ g a Lie algebra structure is given
by

[H1 +X1, H2 +X2]e = [H1, H2]h + αX1H2 − αX2H1

+ [X1, X2]g + ω(X1, X2) . (B.29)

So a general Lie algebra extension schematically has the form

[g, g] ⊂ g +̇ h [h, h] ⊂ h [g, h] ⊂ h . (B.30)
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An extension is trivial if e ' h⊕ g, which means that it is just the direct
sum discussed in Section B.1,

[g, g] ⊂ g [h, h] ⊂ h [g, h] = 0 . (B.31)

Equivalently, this means that α = ω = 0. A split extension is a Lie algebra
extension with a homomorphism τ : g → e and π ◦ τ = idg. Since τ is a
homomorphism it follows from (B.25) that ω = 0, so this extension can be
written as

[g, g] ⊂ g [h, h] ⊂ h [g, h] ⊂ h . (B.32)

Since it is a semidirect sum it will be denoted by e ' h B g. The follow-
ing theorem characterizes the extensions of simple or one-dimensional Lie
algebras.

Theorem B.3. If g is simple or one-dimensional, every Lie algebra exten-
sion

0→ h→ e→ g→ 0 (B.33)
splits [53, Prop. A.1].

A central extension is a Lie algebra extension where h is in the center
of e. It follows that h is abelian and that α = 0 (see equation (B.24)). It
can be written as

[g, g] ⊂ g+̇h [h, h] = 0 [g, h] = 0 (B.34)

and we will denote it by g⊕c h. By definition a split central extension is a
trivial extension. Therefore, as a consequence of Theorem B.3, we have the
well known result (part of Whitehead’s lemma) that a simple Lie algebra
has no nontrivial central extension.

B.5 Abelian Lie Algebra Extension
For a Lie algebra extension by an abelian Lie algebra a, i.e., for the short
exact sequence

0→ a
i→ e

π→ g→ 0 (B.35)
we can make contact with Lie algebra cohomology discussed in Appendix
B.3. Because for abelian extensions a is an αg-module and therefore

[αX , αY ]H = α[X,Y ]H . (B.36)

The coboundary operator acting on ω vanishes (δω = 0) and therefore
ω is a 2-cocylce. Inequivalent extensions differ by 2-coboundaries and we
obtain the following theorem.
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Theorem B.4. For a given α, the classes of equivalent extensions e of g
by the abelian algebra a are in one-to-one correspondence with the elements
of the second cohomology group H2

α(g, a).

B.6 Central Extensions
A special class of Lie algebra extensions are the central extensions. For
central extensions the Lie algebra structure simplifies, and can be written as

[H1 +X1, H2 +X2]e = [X1, X2]g + ω(X1, X2) . (B.37)

Choosing the basis Ta for g and the basis Zα for a we can write the commu-
tation relations in form

[Ta, Tb] = f c
ab Tc + ω α

ab Zα [Ta, Zα] = [Zα, Zβ] = 0 (B.38)

The inequivalent central extensions are given by the second cohomology group
H2

0 (g, a). Therefore, ω is a 2-cocylce which means that it is antisymmetric

ω(X, Y ) = −ω(Y,X) ω α
ab = −ω α

ba (B.39)

and that δω = 0, which leads to

	
XY Z

ω([X, Y ], Z) = 0 	
abc
f d
ab ω

α
dc = 0 . (B.40)

The last condition also ensures that the Jacobi identities of the whole Lie
algebra are satisfied.

Central extensions are seen as equivalent if they differ by a 2-coboundary
which is given by

δη(X, Y ) = −η([X, Y ]) δη α
ab = −f c

ab η
α
c . (B.41)

So for a nontrivial central extension necessarily the cocycle should not be
given by a cobounday, i.e., ω 6= δη.

Example: Canonical Commutation Relations
We start with an abelian algebra gd with the basis

Ta = (q1, . . . , qd, p1, . . . , pd). (B.42)

So we have the commutation relations

[qi, pj] = [qi, qj] = [pi, pj] = 0 (B.43)



APPENDIX B. LIE ALGEBRAS 99

or equivalently f c
ab = 0. This means that every skew-symmetric ω leads to

a 2-cocylce, see equation (B.40). Since all the 2-coboundarys are trivial, see
equation (B.41), they are all inequivalent.

For the case of d = 1, spanned by q and p, the cohomology group is
one-dimensional, dimH2

0 (g1,R) = 1. And the commutation relations of the
nontrivial central extension are the canonical commutation relations

[q, p] = ωZ [q, q] = [p, p] = 0 (B.44)

where ω 6= 0. For arbitrary dimension d every skew symmetric ω α
ab is

possible. So dimH2
0 (gd,R) = d(2d− 1).



Appendix C

Useful Formulas

C.1 Details: Solutions of F = 0
To show that F = dA + A ∧ A = 0 is solved by A = g−1 dg one uses
d(g−1g) = dg−1g + g−1 dg = d(1) = 0 to derive

dg−1 = −g−1 dgg−1 . (C.1)

Then we just insert it in the third line of

dA = d(g−1 dg) (C.2)
= dg−1 ∧ dg (C.3)
= −g−1 dg ∧ g−1 dg (C.4)
= −A ∧ A (C.5)

from which the flatness condition on the connection can be read of.

C.2 Finite Gauge Transformation
For finite gauge transformations

A→ g−1Ag + g−1 dg (C.6)

the action transforms as

CS[A]→ CS[A]− 1
3〈(g

−1 dg)3〉 − d〈A ∧ g dg−1〉 . (C.7)

This can be seen using the following useful formulas. As already seen in
Section 2.1 we define

〈A ∧B ∧ C∧〉 ≡ 1
2〈[A,B] ∧ C〉 (C.8)
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Since (C.8) is symmetric under any permutation of A, B and C we will, if
convenient, omit the wedge product. Using

d(gg−1) = dgg−1 + g dg−1 = 0 (C.9)
α = dgg−1 = −g dg−1 (C.10)
dg = αg dg−1 = −g−1α (C.11)

and

A→ g−1(A+ d)g = g−1(A+ α)g (C.12)
dA→ g−1(dA− α2 − αA− Aα)g (C.13)

〈dA ∧ A〉 → 〈dAA+ dAα− α3 − 3Aα2 − 2A2α〉 (C.14)
〈A3〉 → 〈A3 + α3 + 3Aα2 + 3A2α〉 (C.15)

leads to (C.7).
Equivalently, one can express the CS Lagrangian in terms of its curvature

CS[A] = 〈F ∧ A− 1
6[A,A] ∧ A〉 (C.16)

where one can use that curvature transforms as

F → g−1Fg . (C.17)

C.3 Infinitesimal Gauge Transformations
The infinitesimal gauge (like) transformation

δλA = Dλ ≡ dλ+ [A, λ] (C.18)

is an infinitesimal divergence symmetry of ICS

δλCS[A] = d〈λ ∧ dA〉 . (C.19)

The explicitly calculations is given by

δλCS[A] = 〈dDλ ∧ A+ dA ∧Dλ+ 2A ∧ A ∧Dλ〉 (C.20)
= 〈([dA, λ]− [A, dλ]) ∧ A+ dA ∧ dλ+ dA ∧ [A, λ]

+ [A,A] ∧ dλ+ [A,A] ∧ [A, λ]〉 (C.21)
= 〈− dA ∧ [A, λ]− [A,A] ∧ dλ+ dA ∧ dλ+ dA ∧ [A, λ]

+ [A,A] ∧ dλ− λ ∧ [A, [A,A]]〉 (C.22)
= d〈λ ∧ dA〉 (C.23)

where [A, [A,A]] = 0 using the Jacobi identity.
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C.4 Infinitesimal Diffeomorphisms
That the CS action is invariant under diffeomorphisms is evident from the
fact that it is a (covariant) differential form. Infinitesimal diffeomorphisms
are given by the Lie derivative

δξA = LξA = iξ(dA) + d(iξA) (C.24)

and lead to an infinitesimal divergence symmetry

δξCS[A] = LξCS[A] = d(iξCS[A]) . (C.25)

C.5 Diffeomorphisms as Gauge
Transformations

On-shell an infinitesimal diffeomorphism generated by ξ can be written as a
gauge transformations defined by [24]

δλA = Dλ ≡ dλ+ [A, λ] (C.26)

since with the gauge parameter given by λ = iξA = ξµAµ we get

δξA = d iξA+ iξ dA (C.27)
= d iξA− iξ(A ∧ A) + iξF (C.28)
= d iξA+ [A, iξA] + iξF (C.29)
o.s.= D(iξA) . (C.30)

Or said differently, gauge transformations with the gauge parameter λ = iξA
should be regarded as diffeomorphisms.



Appendix D

Explicit Lie Algebra Relations

D.1 sl(2,R) ' so(2, 1)
The simple real Lie algebra sl(2,R) is given by the commutation relations

[La, Lb] = (a− b)La+b (D.1)

where a, b = −1, 0,+1. A defining representation are tracefree 2×2 matrices

L−1 =
(

0 1
0 0

)
L0 = 1

2

(
1 0
0 −1

)
L+1 =

(
0 0
−1 0

)
(D.2)

for which the trace defines an invariant metric

tr(La Lb) =


L−1 L0 L+1

L−1 0 0 −1
L0 0 1

2 0
L+1 −1 0 0

 . (D.3)

This metric is, like every invariant metric of a simple Lie algebra, proportional
to the Killing form, κab = 4 tr(La Lb). This can be verified by using the
adjoint representation

adL−1 =

0 −1 0
0 0 −2
0 0 0

 adL0 =

1 0 0
0 0 0
0 0 −1

 adL+1 =

0 0 0
2 0 0
0 1 0

 (D.4)

and the definition of the Killing form κab = tr(adLa adLb
). Since the Killing

form is nondegenerate this algebra is simple.
The Lie algebra so(2, 1) is defined by 3× 3 matrices M , which have to

satisfy M = −η ·MT · η where the superscript T denotes transpose and
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η = diag(−1, 1, 1). We use η = diag(−1, 1, 1) and ε012 = 1 and simplify the
above expressions to get

[JA, JB] = εABCη
CDJD = ε C

AB JC (D.5)

J0 =

0 0 0
0 0 −1
0 1 0

 J1 =

 0 0 −1
0 0 0
−1 0 0

 J2 =

0 1 0
1 0 0
0 0 0

 . (D.6)

Again the Lie algebra permits an invariant metric given by

〈JA, JB〉 = ηAB (D.7)

which is related to the trace and the Killing form by

〈JA, JB〉 = 2 tr(JA, JB) = 2κAB . (D.8)

The isomorphism between sl(2,R) and so(2, 1) is given by

J0 = −1
2(L+1 + L−1) J1 = −1

2(L+1 − L−1) J2 = −L0 . (D.9)

We should note that the invariant metric given using the isomorphism and
the invariant metric (D.3) are related by 〈Ja, Jb〉 = 2〈Ja, Jb〉iso.

D.2 sl(3,R)

[Li, Lj] = (i− j)Li+j (D.10)
[Li, Wm] = (2i−m)Wi+m (D.11)

[Wm, Wn] = −σ3 (m− n)
(
2m2 + 2n2 −mn− 8

)
Lm+n. (D.12)

with i, j = −1, 0, 1 and m,n = −2,−1, 0, 1, 2. With our conventions The
constant σ is restricted to be positive for sl(3,R) while negative σ would lead
to su(1, 2). With our conventions σ = 1 for [4,5,7,34,93], and σhere = −σthere
for [27].

A matrix representation for is given by

L−1 =

0
√

2 0
0 0

√
2

0 0 0

 L0 =

1 0 0
0 0 0
0 0 −1

 L1 =

 0 0 0
−
√

2 0 0
0 −

√
2 0

 (D.13)
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and

W−2 =
√

4σ

0 0 2
0 0 0
0 0 0

 W−1 =
√

4σ√
2

0 1 0
0 0 −1
0 0 0

 W0 =
√

4σ
3

1 0 0
0 −2 0
0 0 1



W1 =
√

4σ√
2

 0 0 0
−1 0 0
0 1 0

 W2 =
√

4σ

0 0 0
0 0 0
2 0 0

 . (D.14)

〈TaTb〉 =



L−1 L0 L1 W−2 W−1 W0 W1 W2
L−1 0 0 −1 0 0 0 0 0
L0 0 1

2 0 0 0 0 0 0
L1 −1 0 0 0 0 0 0 0
W−2 0 0 0 0 0 0 0 4σ
W−1 0 0 0 0 0 0 −σ 0
W0 0 0 0 0 0 2

3σ 0 0
W1 0 0 0 0 −σ 0 0 0
W2 0 0 0 4σ 0 0 0 0


(D.15)

The invariant metric is proportional to the trace and the Killing form in
the following form 〈TaTb〉 = 1

4 tr(TaTb) = 1
24κab.

There is another useful form to write sl(3,R) which makes its interpreta-
tion as spin-2 and spin-3 fields more obvious [27]. One introduces symmetric
and traceless generators JAB, i.e.,

JAB = JBA , ηABJAB = 0 (D.16)

and defines the Lie algebra

[JA, JB] = ε C
AB Jc (D.17)

[JA, JBC ] = εMA(B JC)M (D.18)
[JAB, JCD] = −ση(A(CεD)B)M JM , (D.19)

It permits the invariant metric

〈JA, JB〉 = ηAB (D.20)
〈JA, JBC〉 = 0 (D.21)
〈JAB, JCD〉 = σ(ηA(CηD)B − 2

3ηABηCD) . (D.22)
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The isomorphism to the basis given by (D.10) to (D.12) is given by (D.9)
combined with

J00 = 1
4(W2 + W−2 + 2 W0) , J01 = 1

4(W2 − W−2) (D.23)

J11 = 1
4(W2 + W−2 − 2 W0) , J02 = 1

2(W1 + W−1) (D.24)

J22 = W0 , J12 = 1
2(W1 − W−1) . (D.25)

This transformation shows explicitly that Wm automatically satisfies the
traceless condition

−J00 + J11 + J22 = 0 . (D.26)

The invariant metric given by (D.20) to (D.22) is rescaled by two with
respect to the invariant metric given by the isomorphism and using (D.15),
e.g., 〈JAB, JCD〉 = 2〈JAB, JCD〉iso.

D.3 Principal sl(N,R)
The conventions are the ones used in [197] with the difference that a con-
ventional positive constant σ is introduced.

The sl(N,R) with a principally embedded sl(2,R) have generators of spin
s = 2, 3, . . . , N . The generators {L0, L±1} label the sl(2,R) subalgebra, while
the higher spin generators are denoted by W(s)

m form = −(s−1), . . . , 0, . . . , s−
1. The algebra in this representation is

[Li, Lj] = (i− j)Li+j , (D.27)
[Li, W(s)

m ] = (i(s− 1)−m)W(s)
i+m . (D.28)

and additional commutators for [W(s)
m , W(t)

n ]. We take the N -dimensional
generators of the principally embedded sl(2,R), denoted as Li to be

(L1)jk = −
√
j(N − j)δj+1,k (D.29)

(L−1)jk =
√
k(N − k)δj,k+1 (D.30)

(L0)jk = 1
2(N + 1− 2j)δj,k , (D.31)
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or explicitly

L1 = −



0 · · · 0√
N − 1 0

0
√

2(N − 2) 0
. . . . . . ...

...
√
k(N − k) 0

. . . . . .
0 · · ·

√
N − 1 0


,

(D.32)

L−1 =



0
√
N − 1 · · · 0

0
√

2(N − 2)
. . . . . .

... 0
√
k(N − k) ...

. . . . . .
0
√
N − 1

0 · · · 0


,

(D.33)

L0 = 1
2



(N − 1) 0 · · · 0
0 (N − 3)

. . .
... (N + 1− 2k) ...

. . .
−(N − 3) 0

0 · · · 0 −(N − 1)


.

(D.34)
The normalization from this choice of generators is

tr(L0L0) = 1
12N(N2 − 1) . (D.35)

The representation for the higher spin generators follows from

L(s)
m = (

√
4σ)1−δs,2(−1)s+m−1 (s+m− 1)!

(2s− 2)! [L−1, [L−1, . . . [L−1︸ ︷︷ ︸
s−m− 1 terms

, (L1)s−1] . . .]] .

(D.36)

= (
√

4σ)1−δs,2(−1)s+m−1 (s+m− 1)!
(2s− 2)! (adL−1)s−m−1(L1)s−1 . (D.37)
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where the (
√

4σ)1−δs,2 term is added such that the definitions are still true
for s = 2. The matrices obey the hermiticity property

L†i = (−1)iL−i, (D.38)
(L(s)
m )† = (−1)mL(s)

−m. (D.39)
The trace of the matrix representation given above is given by1

tr(L(s)
m L(t)

n ) = (4σ)1−δs,2t(s)m δs,tδm,−n , (D.40)
with

t(s)m = (−1)m (s− 1)!2(s+m− 1)!(s−m− 1)!
(2s− 1)!(2s− 2)! N

s−1∏
i=1

(N2 − i2) . (D.41)

The relationship between the Killing form κ and the invariant metric given
by the trace in the fundamental n× n matrix representation for sl(N,R) is

κ(x, y) = 2N tr(xy) . (D.42)
A normalization where the sl(2,R) sector is in agreement with (D.3) is given
by

〈L(s)
m L(t)

n 〉 = 24
N(N2 − 1) tr(L(s)

m L(t)
n ) (D.43)

D.4 hs[λ]
We define here the infinite-dimensional Lie algebra hs[λ]. The finite-
dimensional algebra sl(N,R) is then given by a Lie algebra quotient thereof.
We will provide an invariant metric for both algebras as well as the commu-
tators for spins s ≤ 4 of hs[λ].

The generators of hs[λ] are given by
L(s)
n , s ≥ 2, |n| < s . (D.44)

With the notation used in the previous sections L(2)
n = Ln and L(3)

n = Wn.
Using the contraction described in the preceding subsection we can use the
commutation relations of hs[λ] [198–202]2

[L(s)
n , L(t)

m ] =
s+t−1∑

u=2even

gstu (n,m;λ) L(s+t−u)
n+m (D.45)

1 It is called “Killing Cartan form” in [197], but this is not the Killing form as defined
here.

2The commutation relations were explicitly given in [201]. Our structure constants are
divided by four with respect to the ones given in [28], but we otherwise closely follow [28]
(see also [26,29,203]).
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where

gstu (n,m;λ) = qu−2

2(u− 1)!φ
st
u (λ)N st

u (n,m) (D.46a)

N st
u (n,m) =

u−1∑
k=0

(−1)k
(
u− 1
k

)
[s− 1 + n]u−1−k[s− 1− n]k

× [t− 1 +m]k[t− 1−m]u−1−k (D.46b)

φstu (λ) = 4F3

[
1
2 + λ , 1

2 − λ ,
2−u

2 , 1−u
2

3
2 − s ,

3
2 − t ,

1
2 + s+ t− u 1

]
. (D.46c)

The number q is a normalization factor that can be set to any fixed value (for
more details see Appendix A in [28]). The falling factorial or Pochhammer
symbol is given by

[a]n = a(a− 1)(a− 2) · · · (a− n+ 1) = a!
(a− n)! = Γ(a+ 1)

Γ(a+ 1− n) (D.47)

the rising factorial or Pochhammer symbol is given by

(a)n = a(a+ 1) · · · (a+ n− 1) = (a+ n− 1)!
(a− 1)! = Γ(a+ n)

Γ(a) (D.48)

with (a)0 = [a]0 = 1. The generalized hypergeometric function mFn(z) is
defined by

mFn

[
a1, . . . , am
b1, . . . , bn

z

]
=
∞∑
k=0

(a1)k(a2)k . . . (am)k
(b1)k(b2)k . . . (bn)k

zk

k! . (D.49)

The infinite-dimensional Lie algebra hs[λ] possesses an invariant metric given
by

〈L(s)
n L(t)

m 〉 ≡
3

4q(λ2 − 1)g
st
s+t−1(n,m, λ) (D.50a)

= Ns
(−1)s−n−1

4(2s− 2)! Γ(s+ n)Γ(s− n)δstδn,−m

with

Ns ≡
3 · 4s−3√πq2s−4Γ(s)

(λ2 − 1)Γ(s+ 1
2) (1− λ)s−1(1 + λ)s−1 . (D.51)

The overall constant has been chosen so that

〈L(2)
0 L(2)

0 〉 = 1
2 (D.52)

which ensures that the sl(2,R) sector agrees with (D.3).
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From hs[λ] to sl(N,R)
Using hs[λ] one can define sl(N,R) as a Lie algebra quotient. This is only
possible for λ = N since this leads to an ideal χN [198,204,205] spanned by
L(s)
n with s > N . Using this ideal we can then define the finite-dimensional

algebra sl(N,R) by the quotient

sl(N,R) = hs[N ]/χN . (D.53)

The invariant metric, equation (D.50) with λ = N , stays an invariant metric
for sl(N,R). It is zero for higher spins. In the next section this can be seen
explicitly.

Commutators of hs[λ] for s ≤ 4
We list here the commutators for s ≤ 4 of hs[λ] (with q = 1/4)3

[L(2)
n , L(2)

m ] = (n−m)L(2)
n+m (D.54a)

[L(2)
n , L(3)

m ] = (2n−m)L(3)
n+m (D.54b)

[L(3)
n , L(3)

m ] = − 1
60(λ2 − 4)(n−m)(2n2 − nm+ 2m2 − 8)L(2)

n+m

+ 2(n−m)L(4)
n+m (D.54c)

[L(2)
n , L(4)

m ] = (3n−m)L(4)
n+m (D.54d)

[L(3)
n , L(4)

m ] = − 1
70(λ2 − 9)(5n3 − 5n2m− 17n+ 3nm2 + 9m−m3)L(3)

n+m

+ (3n− 2m)L(5)
n+m (D.54e)

[L(4)
n , L(4)

m ] = (λ2 − 4)(λ2 − 9)(n−m)f(n,m)L(2)
n+m

− 1
30(λ2 − 19)(n−m)(n2 − nm+m2 − 7)L(4)

n+m

+ 3(n−m)L(6)
n+m (D.54f)

with

f(n,m) = 1
8400

[
3n4 + 3m4 − 2nm(n−m)2 − 39(n2 +m2) + 20nm+ 108

]
.

(D.55)
3A Mathematica workbook that reproduces the commutation relations and might be

useful for further checks is uploaded with [7] as an ancillary file on the arxiv server.
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The invariant metric for s ≤ 4 is given by the anti-diagonal matrices

〈L(2)
n L(2)

m 〉 = adiag(−1, 1
2 ,−1) (D.56a)

〈L(3)
n L(3)

m 〉 = 1
20(λ2 − 4) · adiag(4,−1, 2

3 ,−1, 4) (D.56b)

〈L(4)
n L(4)

m 〉 = 1
140(λ2 − 4)(λ2 − 9) · adiag(−6, 1, 2

5 ,
3
10 ,

2
5 , 1,−6) . (D.56c)

So the quotient agrees with sl(2,R) and sl(3,R) with σ = 1/4.

D.5 Virasoro and W3 Algebra
The W3 algebra at finite central charge, first introduced in [206] and reviewed
in [90], is explicitly given by

[Ln, Lm] = (n−m)Ln+m + c

12 (n3 − n) δn+m, 0 (D.57a)

[Ln, Wm] = (2n−m)Wn+m (D.57b)
[Wn, Wm] = (n−m)(2n2 + 2m2 − nm− 8)Ln+m (D.57c)

+ c

12 (n2 − 4)(n3 − n) δn+m, 0 + 96
c+ 22

5
(n−m) Λn+m

where
Λn =

∑
p∈Z

: (Ln−pLp) : − 3
10(n+ 3)(n+ 2)Ln . (D.58)

The generators split into the Virasoro generators Ln and of spin-3 generators
Wn both with integer n.



APPENDIX D. EXPLICIT LIE ALGEBRA RELATIONS 112

D.6 Kinematical Spin-2 Algebras

(A)dS(−)+
poi nh ppoi

[ J , J ] 0 0 0 0
[ J , Ga ] εamGm εamGm εamGm εamGm
[ J , H ] 0 0 0 0
[ J , Pa ] εamPm εamPm εamPm εamPm
[ Ga , Gb ] −εabJ −εabJ 0 0
[ Ga , H ] −εamPm −εamPm −εamPm 0
[ Ga , Pb ] −εabH −εabH 0 −εabH
[ H , Pa ] ±εamGm 0 ±εamGm ±εamGm
[ Pa , Pb ] ∓εabJ 0 0 ∓εabJ

Table D.1: (Anti-)de Sitter, Poincaré, Newton–Hooke and para-Poincaré
algebras. The upper sign is for AdS (and contractions thereof) and the lower
sign for dS (and contractions thereof).

car gal pgal st

[ J , J ] 0 0 0 0
[ J , Ga ] εamGm εamGm εamGm εamGm
[ J , H ] 0 0 0 0
[ J , Pa ] εamPm εamPm εamPm εamPm
[ Ga , Gb ] 0 0 0 0
[ Ga , H ] 0 −εamPm 0 0
[ Ga , Pb ] −εabH 0 0 0
[ H , Pa ] 0 0 ±εamGm 0
[ Pa , Pb ] 0 0 0 0

Table D.2: Carroll, Galilei, para-Galilei and static algebra. The upper
sign is for AdS (and contractions thereof) and the lower sign for dS (and
contractions thereof).

The most general invariant metric for the (A)dS(−)+
algebra is given by

〈H , J〉 = −µ− 〈Pa , Gb〉 = µ−δab (D.59)
〈J , J〉 = −µ+ 〈Ga , Gb〉 = µ+δab (D.60)
〈H , H〉 = ∓µ+ 〈Pa , Pb〉 = ±µ+δab . (D.61)
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The two real constants need to satisfy µ+ 6= ±µ− for the metric to be
nondegenerate, see Section 5.2.

D.7 Democratic Spin-3 Algebras
This appendix contains tables with all the commutation relations of the spin-
3 algebras that can be obtained via sequential application of the “democratic”
sIW-contractions. We start each table with the spin-2 commutation relations,
then proceed with the mixed spin commutation relations and conclude with
the spin-3 commutation relations. The table caption contains information
about what type of higher spin version we are dealing with (e.g. higher spin
version of Poincaré, Galilei or Carroll). Under the heading ‘Contraction #’,
we have indicated one possibility of obtaining the corresponding algebra as
a sequential application of IW contraction procedures. The numbers in this
heading refer to the contraction procedures of Table 10.1.
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hs3(A)dS(−)+
hs3poi1 hs3poi2

Contr. # 1 2
[ J , Ga ] εamGm εamGm εamGm
[ J , H ] 0 0 0
[ J , Pa ] εamPm εamPm εamPm
[ Ga , Gb ] −εabJ −εabJ −εabJ
[ Ga , H ] −εamPm −εamPm −εamPm
[ Ga , Pb ] −εabH −εabH −εabH
[ H , Pa ] ±εamGm 0 0
[ Pa , Pb ] ∓εabJ 0 0
[ J , Ja ] εamJm εamJm εamJm
[ J , Gab ] −εm(aGb)m −εm(aGb)m −εm(aGb)m
[ J , Ha ] εamHm εamHm εamHm
[ J , Pab ] −εm(aPb)m −εm(aPb)m −εm(aPb)m
[ Ga , Jb ] −(εamGbm + εabGmm) −(εamGbm + εabGmm) −(εamGbm + εabGmm)
[ Ga , Gbc ] −εa(bJc) −εa(bJc) −εa(bJc)
[ Ga , Hb ] −(εamPbm + εabPmm) −(εamPbm + εabPmm) −(εamPbm + εabPmm)
[ Ga , Pbc ] −εa(bHc) −εa(bHc) −εa(bHc)
[ H , Ja ] εamHm εamHm 0
[ H , Gab ] −εm(aPb)m −εm(aPb)m 0
[ H , Ha ] ±εamJm 0 ±εamJm
[ H , Pab ] ∓εm(aGb)m 0 ∓εm(aGb)m
[ Pa , Jb ] −(εamPbm + εabPmm) −(εamPbm + εabPmm) 0
[ Pa , Gbc ] −εa(bHc) −εa(bHc) 0
[ Pa , Hb ] ∓(εamGbm + εabGmm) 0 ∓(εamGbm + εabGmm)
[ Pa , Pbc ] ∓εa(bJc) 0 ∓εa(bJc)

[ Ja , Jb ] εabJ εabJ 0
[ Ja , Gbc ] δa(bεc)mGm δa(bεc)mGm 0
[ Ja , Hb ] εabH εabH εabH
[ Ja , Pbc ] δa(bεc)mPm δa(bεc)mPm δa(bεc)mPm
[ Gab , Gcd ] δ(a(cεd)b)J δ(a(cεd)b)J 0
[ Gab , Hc ] −δc(aεb)mPm −δc(aεb)mPm −δc(aεb)mPm
[ Gab , Pcd ] δ(a(cεd)b)H δ(a(cεd)b)H δ(a(cεd)b)H
[ Ha , Hb ] ±εabJ 0 ±εabJ
[ Ha , Pbc ] ±δa(bεc)mGm 0 ±δa(bεc)mGm
[ Pab , Pcd ] ±δ(a(cεd)b)J 0 ±δ(a(cεd)b)J

Table D.3: Higher spin versions of the (A)dS and Poincaré algebra. The
upper sign is for AdS (and contractions thereof) and the lower sign for dS
(and contractions thereof).
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hs3nh1 hs3nh2
Contraction # 3 4
[ J , Ga ] εamGm εamGm
[ J , H ] 0 0
[ J , Pa ] εamPm εamPm
[ Ga , Gb ] 0 0
[ Ga , H ] −εamPm −εamPm
[ Ga , Pb ] 0 0
[ H , Pa ] ±εamGm ±εamGm
[ Pa , Pb ] 0 0
[ J , Ja ] εamJm εamJm
[ J , Gab ] −εm(aGb)m −εm(aGb)m
[ J , Ha ] εamHm εamHm
[ J , Pab ] −εm(aPb)m −εm(aPb)m
[ Ga , Jb ] −(εamGbm + εabGmm) 0
[ Ga , Gbc ] 0 −εa(bJc)
[ Ga , Hb ] −(εamPbm + εabPmm) 0
[ Ga , Pbc ] 0 −εa(bHc)
[ H , Ja ] εamHm εamHm
[ H , Gab ] −εm(aPb)m −εm(aPb)m
[ H , Ha ] ±εamJm ±εamJm
[ H , Pab ] ∓εm(aGb)m ∓εm(aGb)m
[ Pa , Jb ] −(εamPbm + εabPmm) 0
[ Pa , Gbc ] 0 −εa(bHc)
[ Pa , Hb ] ∓(εamGbm + εabGmm) 0
[ Pa , Pbc ] 0 ∓εa(bJc)

[ Ja , Jb ] εabJ 0
[ Ja , Gbc ] δa(bεc)mGm δa(bεc)mGm
[ Ja , Hb ] εabH 0
[ Ja , Pbc ] δa(bεc)mPm δa(bεc)mPm
[ Gab , Gcd ] 0 δ(a(cεd)b)J
[ Gab , Hc ] −δc(aεb)mPm −δc(aεb)mPm
[ Gab , Pcd ] 0 δ(a(cεd)b)H
[ Ha , Hb ] ±εabJ 0
[ Ha , Pbc ] ±δa(bεc)mGm ±δa(bεc)mGm
[ Pab , Pcd ] 0 ±δ(a(cεd)b)J

Table D.4: Higher spin versions of the Newton–Hooke algebra. The upper
sign is for contractions of AdS and the lower sign for contractions of dS.
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hs3ppoi1 hs3ppoi2
Contraction # 5 6
[ J , Ga ] εamGm εamGm
[ J , H ] 0 0
[ J , Pa ] εamPm εamPm
[ Ga , Gb ] 0 0
[ Ga , H ] 0 0
[ Ga , Pb ] −εabH −εabH
[ H , Pa ] ±εamGm ±εamGm
[ Pa , Pb ] ∓εabJ ∓εabJ

[ J , Ja ] εamJm εamJm
[ J , Gab ] −εm(aGb)m −εm(aGb)m
[ J , Ha ] εamHm εamHm
[ J , Pab ] −εm(aPb)m −εm(aPb)m
[ Ga , Jb ] −(εamGbm + εabGmm) 0
[ Ga , Gbc ] 0 −εa(bJc)
[ Ga , Hb ] 0 −(εamPbm + εabPmm)
[ Ga , Pbc ] −εa(bHc) 0
[ H , Ja ] εamHm 0
[ H , Gab ] 0 −εm(aPb)m
[ H , Ha ] 0 ±εamJm
[ H , Pab ] ∓εm(aGb)m 0
[ Pa , Jb ] −(εamPbm + εabPmm) −(εamPbm + εabPmm)
[ Pa , Gbc ] −εa(bHc) −εa(bHc)
[ Pa , Hb ] ∓(εamGbm + εabGmm) ∓(εamGbm + εabGmm)
[ Pa , Pbc ] ∓εa(bJc) ∓εa(bJc)

[ Ja , Jb ] εabJ 0
[ Ja , Gbc ] δa(bεc)mGm δa(bεc)mGm
[ Ja , Hb ] εabH εabH
[ Ja , Pbc ] δa(bεc)mPm 0
[ Gab , Gcd ] 0 δ(a(cεd)b)J
[ Gab , Hc ] 0 −δc(aεb)mPm
[ Gab , Pcd ] δ(a(cεd)b)H δ(a(cεd)b)H
[ Ha , Hb ] 0 ±εabJ
[ Ha , Pbc ] ±δa(bεc)mGm ±δa(bεc)mGm
[ Pab , Pcd ] ±δ(a(cεd)b)J 0

Table D.5: Higher spin versions of para-Poincaré algebra. The upper sign is
for contractions of AdS and the lower sign for contractions of dS.
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hs3car1 hs3car2
Contraction # 1, 5 1, 6
[ J , Ga ] εamGm εamGm
[ J , H ] 0 0
[ J , Pa ] εamPm εamPm
[ Ga , Gb ] 0 0
[ Ga , H ] 0 0
[ Ga , Pb ] −εabH −εabH
[ H , Pa ] 0 0
[ Pa , Pb ] 0 0
[ J , Ja ] εamJm εamJm
[ J , Gab ] −εm(aGb)m −εm(aGb)m
[ J , Ha ] εamHm εamHm
[ J , Pab ] −εm(aPb)m −εm(aPb)m
[ Ga , Jb ] −(εamGbm + εabGmm) 0
[ Ga , Gbc ] 0 −εa(bJc)
[ Ga , Hb ] 0 −(εamPbm + εabPmm)
[ Ga , Pbc ] −εa(bHc) 0
[ H , Ja ] εamHm 0
[ H , Gab ] 0 −εm(aPb)m
[ H , Ha ] 0 0
[ H , Pab ] 0 0
[ Pa , Jb ] −(εamPbm + εabPmm) −(εamPbm + εabPmm)
[ Pa , Gbc ] −εa(bHc) −εa(bHc)
[ Pa , Hb ] 0 0
[ Pa , Pbc ] 0 0
[ Ja , Jb ] εabJ 0
[ Ja , Gbc ] δa(bεc)mGm δa(bεc)mGm
[ Ja , Hb ] εabH εabH
[ Ja , Pbc ] δa(bεc)mPm 0
[ Gab , Gcd ] 0 δ(a(cεd)b)J
[ Gab , Hc ] 0 −δc(aεb)mPm
[ Gab , Pcd ] δ(a(cεd)b)H δ(a(cεd)b)H
[ Ha , Hb ] 0 0
[ Ha , Pbc ] 0 0
[ Pab , Pcd ] 0 0

Table D.6: Higher spin versions of the Carroll algebra.



APPENDIX D. EXPLICIT LIE ALGEBRA RELATIONS 118

hs3car3 hs3car4
Contraction # 5, 2 6, 2
[ J , Ga ] εamGm εamGm
[ J , H ] 0 0
[ J , Pa ] εamPm εamPm
[ Ga , Gb ] 0 0
[ Ga , H ] 0 0
[ Ga , Pb ] −εabH −εabH
[ H , Pa ] 0 0
[ Pa , Pb ] 0 0
[ J , Ja ] εamJm εamJm
[ J , Gab ] −εm(aGb)m −εm(aGb)m
[ J , Ha ] εamHm εamHm
[ J , Pab ] −εm(aPb)m −εm(aPb)m
[ Ga , Jb ] −(εamGbm + εabGmm) 0
[ Ga , Gbc ] 0 −εa(bJc)
[ Ga , Hb ] 0 −(εamPbm + εabPmm)
[ Ga , Pbc ] −εa(bHc) 0
[ H , Ja ] 0 0
[ H , Gab ] 0 0
[ H , Ha ] 0 ±εamJm
[ H , Pab ] ∓εm(aGb)m 0
[ Pa , Jb ] 0 0
[ Pa , Gbc ] 0 0
[ Pa , Hb ] ∓(εamGbm + εabGmm) ∓(εamGbm + εabGmm)
[ Pa , Pbc ] ∓εa(bJc) ∓εa(bJc)

[ Ja , Jb ] 0 0
[ Ja , Gbc ] 0 0
[ Ja , Hb ] εabH εabH
[ Ja , Pbc ] δa(bεc)mPm 0
[ Gab , Gcd ] 0 0
[ Gab , Hc ] 0 −δc(aεb)mPm
[ Gab , Pcd ] δ(a(cεd)b)H δ(a(cεd)b)H
[ Ha , Hb ] 0 ±εabJ
[ Ha , Pbc ] ±δa(bεc)mGm ±δa(bεc)mGm
[ Pab , Pcd ] ±δ(a(cεd)b)J 0

Table D.7: Higher spin versions of the Carroll algebra. The upper sign is
for contractions of AdS and the lower sign for contractions of dS.
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hs3gal1 hs3gal2
Contraction # 1, 3 1, 4
[ J , Ga ] εamGm εamGm
[ J , H ] 0 0
[ J , Pa ] εamPm εamPm
[ Ga , Gb ] 0 0
[ Ga , H ] −εamPm −εamPm
[ Ga , Pb ] 0 0
[ H , Pa ] 0 0
[ Pa , Pb ] 0 0
[ J , Ja ] εamJm εamJm
[ J , Gab ] −εm(aGb)m −εm(aGb)m
[ J , Ha ] εamHm εamHm
[ J , Pab ] −εm(aPb)m −εm(aPb)m
[ Ga , Jb ] −(εamGbm + εabGmm) 0
[ Ga , Gbc ] 0 −εa(bJc)
[ Ga , Hb ] −(εamPbm + εabPmm) 0
[ Ga , Pbc ] 0 −εa(bHc)
[ H , Ja ] εamHm εamHm
[ H , Gab ] −εm(aPb)m −εm(aPb)m
[ H , Ha ] 0 0
[ H , Pab ] 0 0
[ Pa , Jb ] −(εamPbm + εabPmm) 0
[ Pa , Gbc ] 0 −εa(bHc)
[ Pa , Hb ] 0 0
[ Pa , Pbc ] 0 0
[ Ja , Jb ] εabJ 0
[ Ja , Gbc ] δa(bεc)mGm δa(bεc)mGm
[ Ja , Hb ] εabH 0
[ Ja , Pbc ] δa(bεc)mPm δa(bεc)mPm
[ Gab , Gcd ] 0 δ(a(cεd)b)J
[ Gab , Hc ] −δc(aεb)mPm −δc(aεb)mPm
[ Gab , Pcd ] 0 δ(a(cεd)b)H
[ Ha , Hb ] 0 0
[ Ha , Pbc ] 0 0
[ Pab , Pcd ] 0 0

Table D.8: Higher spin versions of the Galilei algebra.
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hs3gal3 hs3gal4
Contraction # 3, 2 4, 2
[ J , Ga ] εamGm εamGm
[ J , H ] 0 0
[ J , Pa ] εamPm εamPm
[ Ga , Gb ] 0 0
[ Ga , H ] −εamPm −εamPm
[ Ga , Pb ] 0 0
[ H , Pa ] 0 0
[ Pa , Pb ] 0 0
[ J , Ja ] εamJm εamJm
[ J , Gab ] −εm(aGb)m −εm(aGb)m
[ J , Ha ] εamHm εamHm
[ J , Pab ] −εm(aPb)m −εm(aPb)m
[ Ga , Jb ] −(εamGbm + εabGmm) 0
[ Ga , Gbc ] 0 −εa(bJc)
[ Ga , Hb ] −(εamPbm + εabPmm) 0
[ Ga , Pbc ] 0 −εa(bHc)
[ H , Ja ] 0 0
[ H , Gab ] 0 0
[ H , Ha ] ±εamJm ±εamJm
[ H , Pab ] ∓εm(aGb)m ∓εm(aGb)m
[ Pa , Jb ] 0 0
[ Pa , Gbc ] 0 0
[ Pa , Hb ] ∓(εamGbm + εabGmm) 0
[ Pa , Pbc ] 0 ∓εa(bJc)

[ Ja , Jb ] 0 0
[ Ja , Gbc ] 0 0
[ Ja , Hb ] εabH 0
[ Ja , Pbc ] δa(bεc)mPm δa(bεc)mPm
[ Gab , Gcd ] 0 0
[ Gab , Hc ] −δc(aεb)mPm −δc(aεb)mPm
[ Gab , Pcd ] 0 δ(a(cεd)b)H
[ Ha , Hb ] ±εabJ 0
[ Ha , Pbc ] ±δa(bεc)mGm ±δa(bεc)mGm
[ Pab , Pcd ] 0 ±δ(a(cεd)b)J

Table D.9: Higher spin versions of the Galilei algebra. The upper sign is for
contractions of AdS and the lower sign for contractions of dS.
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hs3pgal1 hs3pgal2
Contraction # 3, 5 3, 6
[ J , Ga ] εamGm εamGm
[ J , H ] 0 0
[ J , Pa ] εamPm εamPm
[ Ga , Gb ] 0 0
[ Ga , H ] 0 0
[ Ga , Pb ] 0 0
[ H , Pa ] ±εamGm ±εamGm
[ Pa , Pb ] 0 0
[ J , Ja ] εamJm εamJm
[ J , Gab ] −εm(aGb)m −εm(aGb)m
[ J , Ha ] εamHm εamHm
[ J , Pab ] −εm(aPb)m −εm(aPb)m
[ Ga , Jb ] −(εamGbm + εabGmm) 0
[ Ga , Gbc ] 0 0
[ Ga , Hb ] 0 −(εamPbm + εabPmm)
[ Ga , Pbc ] 0 0
[ H , Ja ] εamHm 0
[ H , Gab ] 0 −εm(aPb)m
[ H , Ha ] 0 ±εamJm
[ H , Pab ] ∓εm(aGb)m 0
[ Pa , Jb ] −(εamPbm + εabPmm) −(εamPbm + εabPmm)
[ Pa , Gbc ] 0 0
[ Pa , Hb ] ∓(εamGbm + εabGmm) ∓(εamGbm + εabGmm)
[ Pa , Pbc ] 0 0
[ Ja , Jb ] εabJ 0
[ Ja , Gbc ] δa(bεc)mGm δa(bεc)mGm
[ Ja , Hb ] εabH εabH
[ Ja , Pbc ] δa(bεc)mPm 0
[ Gab , Gcd ] 0 0
[ Gab , Hc ] 0 −δc(aεb)mPm
[ Gab , Pcd ] 0 0
[ Ha , Hb ] 0 ±εabJ
[ Ha , Pbc ] ±δa(bεc)mGm ±δa(bεc)mGm
[ Pab , Pcd ] 0 0

Table D.10: Higher spin versions of the para-Galilei algebra. The upper sign
is for contractions of AdS and the lower sign for contractions of dS.
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hs3pgal3 hs3pgal4
Contraction # 4, 5 4, 6
[ J , Ga ] εamGm εamGm
[ J , H ] 0 0
[ J , Pa ] εamPm εamPm
[ Ga , Gb ] 0 0
[ Ga , H ] 0 0
[ Ga , Pb ] 0 0
[ H , Pa ] ±εamGm ±εamGm
[ Pa , Pb ] 0 0
[ J , Ja ] εamJm εamJm
[ J , Gab ] −εm(aGb)m −εm(aGb)m
[ J , Ha ] εamHm εamHm
[ J , Pab ] −εm(aPb)m −εm(aPb)m
[ Ga , Jb ] 0 0
[ Ga , Gbc ] 0 −εa(bJc)
[ Ga , Hb ] 0 0
[ Ga , Pbc ] −εa(bHc) 0
[ H , Ja ] εamHm 0
[ H , Gab ] 0 −εm(aPb)m
[ H , Ha ] 0 ±εamJm
[ H , Pab ] ∓εm(aGb)m 0
[ Pa , Jb ] 0 0
[ Pa , Gbc ] −εa(bHc) −εa(bHc)
[ Pa , Hb ] 0 0
[ Pa , Pbc ] ∓εa(bJc) ∓εa(bJc)

[ Ja , Jb ] 0 0
[ Ja , Gbc ] δa(bεc)mGm δa(bεc)mGm
[ Ja , Hb ] 0 0
[ Ja , Pbc ] δa(bεc)mPm 0
[ Gab , Gcd ] 0 δ(a(cεd)b)J
[ Gab , Hc ] 0 −δc(aεb)mPm
[ Gab , Pcd ] δ(a(cεd)b)H δ(a(cεd)b)H
[ Ha , Hb ] 0 0
[ Ha , Pbc ] ±δa(bεc)mGm ±δa(bεc)mGm
[ Pab , Pcd ] ±δ(a(cεd)b)J 0

Table D.11: Higher spin versions of the para-Galilei algebra. The upper sign
is for contractions of AdS and the lower sign for contractions of dS.
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hs3st1 hs3st2
Contraction # 1, 3, 5 = 7 1, 4, 6 = 8
[ J , Ga ] εamGm εamGm
[ J , H ] 0 0
[ J , Pa ] 0 0
[ Ga , Gb ] 0 0
[ Ga , H ] 0 0
[ Ga , Pb ] 0 0
[ H , Pa ] 0 0
[ Pa , Pb ] 0 0
[ J , Ja ] εamJm εamJm
[ J , Gab ] −εm(aGb)m −εm(aGb)m
[ J , Ha ] εamHm εamHm
[ J , Pab ] −εm(aPb)m −εm(aPb)m
[ Ga , Jb ] −(εamGbm + εabGmm) 0
[ Ga , Gbc ] 0 −εa(bJc)
[ Ga , Hb ] 0 0
[ Ga , Pbc ] 0 0
[ H , Ja ] εamHm 0
[ H , Gab ] 0 −εm(aPb)m
[ H , Ha ] 0 0
[ H , Pab ] 0 0
[ Pa , Jb ] −(εamPbm + εabPmm) 0
[ Pa , Gbc ] 0 −εa(bHc)
[ Pa , Hb ] 0 0
[ Pa , Pbc ] 0 0
[ Ja , Jb ] εabJ 0
[ Ja , Gbc ] δa(bεc)mGm δa(bεc)mGm
[ Ja , Hb ] εabH 0
[ Ja , Pbc ] δa(bεc)mPm 0
[ Gab , Gcd ] 0 δ(a(cεd)b)J
[ Gab , Hc ] 0 −δc(aεb)mPm
[ Gab , Pcd ] 0 δ(a(cεd)b)H
[ Ha , Hb ] 0 0
[ Ha , Pbc ] 0 0
[ Pab , Pcd ] 0 0

Table D.12: Higher spin versions of the static algebra. The upper sign is for
contractions of AdS and the lower sign for contractions of dS.
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hs3st3 hs3st4
Contraction # 2, 3, 6 = 9 2, 4, 5 = 10
[ J , Ga ] εamGm εamGm
[ J , H ] 0 0
[ J , Pa ] 0 0
[ Ga , Gb ] 0 0
[ Ga , H ] 0 0
[ Ga , Pb ] 0 0
[ H , Pa ] 0 0
[ Pa , Pb ] 0 0
[ J , Ja ] εamJm εamJm
[ J , Gab ] −εm(aGb)m −εm(aGb)m
[ J , Ha ] εamHm εamHm
[ J , Pab ] −εm(aPb)m −εm(aPb)m
[ Ga , Jb ] 0 0
[ Ga , Gbc ] 0 0
[ Ga , Hb ] −(εamPbm + εabPmm) 0
[ Ga , Pbc ] 0 −εa(bHc)
[ H , Ja ] 0 0
[ H , Gab ] 0 0
[ H , Ha ] ±εamJm 0
[ H , Pab ] 0 ∓εm(aGb)m
[ Pa , Jb ] 0 0
[ Pa , Gbc ] 0 0
[ Pa , Hb ] ∓(εamGbm + εabGmm) 0
[ Pa , Pbc ] 0 ∓εa(bJc)

[ Ja , Jb ] 0 0
[ Ja , Gbc ] 0 0
[ Ja , Hb ] εabH 0
[ Ja , Pbc ] 0 δa(bεc)mPm
[ Gab , Gcd ] 0 0
[ Gab , Hc ] −δc(aεb)mPm 0
[ Gab , Pcd ] 0 δ(a(cεd)b)H
[ Ha , Hb ] ±εabJ 0
[ Ha , Pbc ] ±δa(bεc)mGm ±δa(bεc)mGm
[ Pab , Pcd ] 0 ±δ(a(cεd)b)J

Table D.13: Higher spin versions of the static algebra. The upper sign is for
contractions of AdS and the lower sign for contractions of dS.
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hs3st5 hs3st6
Contraction # 3, 1, 6 1, 4, 5
[ J , Ga ] εamGm εamGm
[ J , H ] 0 0
[ J , Pa ] εamPm εamPm
[ Ga , Gb ] 0 0
[ Ga , H ] 0 0
[ Ga , Pb ] 0 0
[ H , Pa ] 0 0
[ Pa , Pb ] 0 0
[ J , Ja ] εamJm εamJm
[ J , Gab ] −εm(aGb)m −εm(aGb)m
[ J , Ha ] εamHm εamHm
[ J , Pab ] −εm(aPb)m −εm(aPb)m
[ Ga , Jb ] 0 0
[ Ga , Gbc ] 0 0
[ Ga , Hb ] −(εamPbm + εabPmm) 0
[ Ga , Pbc ] 0 −εa(bHc)
[ H , Ja ] 0 εamHm
[ H , Gab ] −εm(aPb)m 0
[ H , Ha ] 0 0
[ H , Pab ] 0 0
[ Pa , Jb ] −(εamPbm + εabPmm) 0
[ Pa , Gbc ] 0 −εa(bHc)
[ Pa , Hb ] 0 0
[ Pa , Pbc ] 0 0
[ Ja , Jb ] 0 0
[ Ja , Gbc ] δa(bεc)mGm δa(bεc)mGm
[ Ja , Hb ] εabH 0
[ Ja , Pbc ] 0 δa(bεc)mPm
[ Gab , Gcd ] 0 0
[ Gab , Hc ] −δc(aεb)mPm 0
[ Gab , Pcd ] 0 δ(a(cεd)b)H
[ Ha , Hb ] 0 0
[ Ha , Pbc ] 0 0
[ Pab , Pcd ] 0 0

Table D.14: Higher spin versions of the static algebra which can not be
directly contracted.
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hs3st7 hs3st8
Contraction # 3, 2, 5 4, 2, 6
[ J , Ga ] εamGm εamGm
[ J , H ] 0 0
[ J , Pa ] εamPm εamPm
[ Ga , Gb ] 0 0
[ Ga , H ] 0 0
[ Ga , Pb ] 0 0
[ H , Pa ] 0 0
[ Pa , Pb ] 0 0
[ J , Ja ] εamJm εamJm
[ J , Gab ] −εm(aGb)m −εm(aGb)m
[ J , Ha ] εamHm εamHm
[ J , Pab ] −εm(aPb)m −εm(aPb)m
[ Ga , Jb ] −(εamGbm + εabGmm) 0
[ Ga , Gbc ] 0 −εa(bJc)
[ Ga , Hb ] 0 0
[ Ga , Pbc ] 0 0
[ H , Ja ] 0 0
[ H , Gab ] 0 0
[ H , Ha ] 0 ±εamJm
[ H , Pab ] ∓εm(aGb)m 0
[ Pa , Jb ] 0 0
[ Pa , Gbc ] 0 0
[ Pa , Hb ] ∓(εamGbm + εabGmm) 0
[ Pa , Pbc ] 0 ∓εa(bJc)

[ Ja , Jb ] 0 0
[ Ja , Gbc ] 0 0
[ Ja , Hb ] εabH 0
[ Ja , Pbc ] δa(bεc)mPm 0
[ Gab , Gcd ] 0 0
[ Gab , Hc ] 0 −δc(aεb)mPm
[ Gab , Pcd ] 0 δ(a(cεd)b)H
[ Ha , Hb ] 0 0
[ Ha , Pbc ] ±δa(bεc)mGm ±δa(bεc)mGm
[ Pab , Pcd ] 0 0

Table D.15: Higher spin versions of the static algebra which can not be
directly contracted. The upper sign is for contractions of AdS and the lower
sign for contractions of dS.
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Invariant Metric of hs3(A)dS
The most general invariant metric for both hs3AdS and hs3dS, as well as
their subalgebras AdS and dS in the notation given in (10.3) is

〈P̂A , ĴB〉 = µ−ηAB 〈P̂AB , ĴCD〉 = µ−(ηA(CηD)B − 2
3ηABηCD) (D.62)

and additionally

〈ĴA , ĴB〉 = µ+ηAB 〈ĴAB , ĴCD〉 = µ+(ηA(CηD)B − 2
3ηABηCD) (D.63)

〈P̂A , P̂B〉 = ±µ+ηAB 〈P̂AB , P̂CD〉 = ±µ+(ηA(CηD)B − 2
3ηABηCD) . (D.64)

where the upper sign is for the AdS case. While for AdS non-degeneracy
requires µ+ 6= ±µ− the dS case requires only that not both µ± vanish,. The
remaining products like, e.g., 〈P̂A , ĴBC〉 are vanishing.

Using the decomposition (10.5) leads to

〈H , J〉 = −µ− 〈Ha , Jb〉 = −µ−δab (D.65)
〈Pa , Gb〉 = µ−δab 〈Pab , Gcd〉 = µ−(δa(cδd)b − 2

3δabδcd) (D.66)
〈J , J〉 = −µ+ 〈Ja , Jb〉 = −µ+δab (D.67)
〈Ga , Gb〉 = µ+δab 〈Gab , Gcd〉 = µ+(δa(cδd)b − 2

3δabδcd) (D.68)
〈H , H〉 = ∓µ+ 〈Ha , Hb〉 = ∓µ+δab (D.69)
〈Pa , Pb〉 = ±µ+δab 〈Pab , Pcd〉 = ±µ+(δa(cδd)b − 2

3δabδcd) (D.70)

Again, only nonzero elements are displayed.
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