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Abstract

This thesis deals with the coupling of fluid dynamics with elastic solid structure, namely
the Navier-Stokes equations and the nonlinear elastic wave equation, which is due to the
different types of these PDEs a challenging problem.
Two different discretizations for the Navier-Stokes equations are discussed: the pop-
ular Taylor-Hood elements and the H(div)-conforming Hybrid Discontinuous Galerkin
method, which ensures exact divergence-freeness.
For the elastic wave equation a standard Newmark method is used and a new H(curl)-
conforming method is introduced. Therefore, an additional variable is needed: the time
derivative of the momentum, which is in the dual space of H(curl).
The Arbitrary Lagrangian Eulerian description is well understood for H1-conforming
methods, where the mesh velocity appears in the Navier-Stokes equations. For H(div)-
conforming schemes, however, the ALE method is more involved and an additional term
appears, which plays a crucial role.
The methods are implemented in NGS-Py, which is based on the finite element library
Netgen/NGSolve and tested with proper examples.
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1 Introduction

Fluid-structure interaction (FSI) describes the interaction between an elastic, deformable,
solid structure and a fluid which flows internally or surrounding the elastic body. The
coupling of these completely different materials is of great interest in research and real-
life, because it can be observed often in nature and also in technology. Examples in
nature are the flow in blood vessels or surrounding the heart valves, while in technology
FSI has to be taken into account in aerodynamics, e.g. when constructing wings. One
of the most infamous example, where the effects of fluid-structure interaction were not
considered enough, is the Tacoma Narrows Bridge.

The problems arising from fluid-structure interaction are often very complex and can-
not be solved analytically. Thus, numerical simulations are important in this field. For
solving such problems two completely different kinds of partial differential equations
(PDEs) have to be coupled. On the one side solid structures are described by the non-
linear elastic wave equation and on the other side fluids by the Navier-Stokes equations.

It is common to use the Lagrangian (material) description for elasticity problems,
while in fluid dynamics the Eulerian (spatial) description is used more often. This will
lead to the so-called Arbitrary Lagrangian Eulerian description (ALE), where additional
nonlinear terms appear. At a mathematical point of view the unsteady Navier-Stokes
equation is of parabolic type, while the equation for describing elastic waves is of hyper-
bolic type.

One important thing both equations have in common is their nonlinearity, which
makes each one alone already interesting and not easy to handle. Thus, before combin-
ing them, we have to understand both independently and study how to discretize them
correctly to obtain an accurate, stable and efficient method.

Outline of this thesis

The first chapter gives a short introduction in the Eulerian and Lagrangian form of de-
scribing the change of position of particles at a domain and brings out the differences
and how these can be transformed into each other. In the following two sections the
Navier-Stokes equations and the elastic wave equation are going to be derived. After
that we discretize the Navier-Stokes equations in space and time where two different
types of spatial discretization are considered, one guaranteeing only discrete divergence
freeness, while the other ensures exact divergence freeness. In section 4 the discretization
of the elastic wave equation is treated. There, two completely different approaches for
the time discretization are introduced which affect the spatial discretization. Then, we
generalize section 2 by introducing the ALE method as preliminary work for coupling
the Navier-Stokes with the elastic wave equation. In section 8 a monolithic approach for
solving FSI problems with two different discretizations is given and in section 9 numer-
ical examples are discussed.
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1 Introduction

Implementations

For all numerical examples the open source software packages Netgen and NGSolve1, see
[Sch97] and [Sch14], are used.

Notation

u velocity
p pressure/time derivative of the momentum
ρ density
σf fluid stress tensor
Φ deformation
d displacement
F deformation gradient
J determinant of the deformation gradient (J = det(F ))
C Cauchy-Green strain tensor
E Green strain tensor

v, w, q test functions
σs 1st Piola-Kirchhoff stress tensor
Σ 2nd Piola-Kirchhoff stress tensor

M(n) set of all n× n matrices
M+(n) set of all n× n matrices with positive determinant
GL(n) set of all invertible n× n matrices
O(n) set of all orthogonal n× n matrices
SO(n) set of all special orthogonal n× n matrices (SO(n) = O+(n))
S(n) set of all symmetric n× n matrices
S2 unit sphere in R3

I identity matrix
P [σ] Piola transformation of σ
Th Triangulation of a domain

Πk(Th) Space of all polynomials on Th up to degree k
tr(·) trace of a matrix A: tr(A) :=

∑n
i=0Aii

sym(·) symmetric part of a matrix A, sym(A) := 1
2

(
A+ AT

)
skew(·) skew symmetric part of a matrix A, skew(A) := 1

2

(
A− AT

)
rot(·) rotation of a vector v in R2, rot(v) :=

(
v2

−v1

)
A(d)u an operator nonlinear in d and linear in u

1https://ngsolve.org/
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2 Eulerian and Lagrangian description

This section gives a brief introduction into two different types of describing the change of
position of particles. In section 7 we generalize these approaches by the ALE description
and is therefore a motivation. The results are already used in the next section.

Let Ω ⊂ Rn be a (bounded) domain, which means that it is open and connected. The
parameter for describing the movement of the particles is going to be identified with the
time t and an arbitrary choice of t = 0 defines an initial state.

We start by fixing an arbitrary particle, which has the coordinate X ∈ Rn at time
t = 0 and at t > 0 another position x. Let φ be the function describing the evolution of
the particle:

φ : Ω× [0, T ]→ Ω

(X, t) 7→ φ(X, t) = x.
(2.1)

We assume that for a fixed t the function φ(·, t) is invertible, which means in physical
sense that only one particle is allowed to be at one position

X = φ−1(x, t). (2.2)

The Lagrangian formulation uses the material coordinates X, where a particle is fixed
and we follow its trajectory. The Eulerian description, however, uses the spatial x
coordinates, so we sit at a fixed point at the domain and look at the particles moving
through it.

For both types of description PDEs can be formulated. It is important to mention
that each form can be transformed into the other one, which will be discussed below.

An arbitrary quantity b can be defined using material or spatial coordinates

b̂(X, t) b(x, t), (2.3)

where ·̂ is often neglected. Under the assumption that φ is “smooth enough” we define
the material (time) derivative for b as

Db

Dt
:=

∂b

∂t
(φ(X, t), t) =

∂b̂

∂t
(X, t)

∣∣
X=const

, (2.4)

which describes the change of the quantity with respect to time following the particles.
The spatial time derivative

∂b

∂t
:=

∂b

∂t
(x, t)

∣∣
x=const

, (2.5)

gives the change of the quantity at a fixed position x. As an important example we look
at the velocity of a particle named X, which is defined as

u(X, t) :=
∂φ

∂t
(X, t) =

∂x

∂t

∣∣
X=const

, (2.6)
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2 Eulerian and Lagrangian description

and the velocity at a point x denoted by

u = u(x, t). (2.7)

To compute the acceleration a in Eulerian description we use the relation u(X, t) =
u ◦ (φ× id) and the chain rule

Du

Dt
= a(x, t) =

d

dt
(u(x, t)) = ∇u ∂φ

∂t︸︷︷︸
=u

+
∂u

∂t
=
∂u

∂t
+ (u · ∇)u, (2.8)

where the components of the vector (u · ∇)u are given by
∑

i ui
∂uj
∂xi

.
More general, the following relation holds between the material and spatial time

derivative:

Db

Dt
=
∂b

∂t
+ (u · ∇)b. (2.9)
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3 Derivation of the Navier-Stokes equations

This section treats the derivation of the unsteady, incompressible, Newtonian Navier-
Stokes equations, which describe the flow of an incompressible fluid e.g. water or gas.

As mentioned before, the Eulerian description suits better for fluids than the La-
grangian formulation, as we consider a fixed and bounded reference domain Ω ⊂ R3

where the fluid flows through. At ∂Ω = ΓD∪̇ΓN we consider Dirichlet data on ΓD,
where the velocity uD is prescribed and Neumann data on ΓN , which defines the stresses
on the fluid.

One possible way to derive the Navier-Stokes equations is by starting at the Boltz-
mann equation, the most general transport equation (see Chapman-Enskog Expansion).
In this thesis, however, we use physical conservation laws, e.g. the conservation of mass
and momentum to model the equations and go ahead similarly like in [Bra16]. A good
introduction can also be found in [CM13].

We start by introducing some physical quantities used later on. Note that the velocity
and volume forces are vector fields, whereas the density and pressure are scalar fields.
The SI-Units used here are length [m] in meters, time [s] in seconds and mass [kg] in
kilogramme.

Quantity Description Unit
u(x, t) velocity m s−1

ρ(x, t) density field kg m−3

p(x, t) pressure field kg m−1s−2

f(x, t) external volume forces m s−2

ν kinematic viscosity m2 s−1

Table 3.1: Physical quantities used in the Navier-Stokes equations

3.1 Conservation of mass

Let V0 ⊂ Ω be an arbitrary control volume, which is mass fixed, i.e. whose evolution
V (t) of V0 follows the movement of the particles

V (t) := {φ(X, t) : X ∈ V0}, (3.1)

with φ defined as in (2.1). Then the total mass at time t is

m(t) :=

∫
V (t)

ρ(x, t) dx (3.2)

and the conservation of mass reads

Dm

Dt
=

D

Dt

∫
V (t)

ρ(x, t) dx = 0 . (3.3)

5



3 Derivation of the Navier-Stokes equations

We have to be careful when interchanging the integral with the derivative, because the
control volume V (t) itself depends on time t. The so-called Reynolds transport theorem
shows how this can be done.

3.1 Theorem (Reynolds transport theorem). Let V (t) ⊂ Ω be an arbitrary
mass fixed volume in a fluid transported with velocity u and b ∈ C1(Ω × (0, T )) an
arbitrary function. Then there holds

D

Dt

∫
V (t)

b(x, t) dx =

∫
V (t)

∂b

∂t
(x, t) dx+

∫
∂V (t)

n · ub ds. (3.4)

Using (3.4) and Gauß’ theorem for (3.3) yields

0
(3.3)
=

D

Dt

∫
V (t)

ρ dx =

∫
V (t)

∂ρ

∂t
dx+

∫
V (t)

div(uρ) dx, (3.5)

which holds for all control volumes V . Thus, we can rewrite it in differential form

∂ρ

∂t
+ div(uρ) = 0. (3.6)

In this thesis we always assume that the density ρ is constant in space and time and
so we can deduce the incompressibility constraint for the velocity

div(u) = 0. (3.7)

3.2 Conservation of momentum

The conservation of momentum equation follows from Newton’s second law

ma = f̂ , (3.8)

which claims that the change of momentum is caused by the sum of the external forces
f̂ , where m denotes the mass and a the acceleration. We use (3.4) on each component
of u which yields the vector-valued equation

D

Dt

∫
V (t)

ρu dx
(3.4)
=

∫
V (t)

ρ
∂u

∂t
+ ρ(u · ∇)u+ ρu div(u) dx

(2.9)
=

∫
V (t)

ρ
D

Dt
u+ ρu div(u) dx

(3.7)
=

∫
V (t)

ρ
D

Dt
u dx

(3.8)
= f̂ .

(3.9)
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3.2 Conservation of momentum

The external forces are going to be split into external volume forces acting on the control
volume V (t) ∫

V (t)

ρf dx (3.10)

and surface forces described by the stress vector τ = τ(x, n), where n denotes the outer
normal vector.
One can show that:

1. τ depends linearly on n and thus there exists a tensor σ such that τ(x, n) = σ(x) ·n

2. σ is symmetric (σ = σT )

The first point follows directly from conservation of momentum and the second from
conservation of angular momentum. σ is called the stress tensor. Using σ the surface
forces can be written in divergence form∫

∂V (t)

τ(x, n) ds =

∫
∂V (t)

σ · n ds =

∫
V (t)

div(σ) dx. (3.11)

The conservation of momentum in differential form now reads

ρ
D

Dt
u = ρf + div(σ). (3.12)

Exploiting the identity

(u · ∇)u
(3.7)
= (u · ∇)u+ u div(u) = u⊗ u, (3.13)

and using (2.9) yields

ρ
∂u

∂t
+ div(ρ(u⊗ u)− σ) = ρf. (3.14)

Here, u⊗ u denotes the outer (dyadic) product of two vectors

u⊗ u :=

u1u1 u1u2 u1u3

u2u1 u2u2 u2u3

u3u1 u3u2 u3u3

 = uuT (3.15)

and the divergence of a matrix A is taken row-wise

div(A) =

div(A1,:)
div(A2,:)
div(A3,:)

 . (3.16)

7



3 Derivation of the Navier-Stokes equations

3.3 Stokes fluid

The stress tensor σ is often split into the stress deviator tensor σ′, which is responsible
for the friction of the fluid, and a pressure part p

σ = σ′ − pI (3.17)

where I denotes the identity matrix. For a so-called perfect fluid the friction is neglected
and hence

σ = −pI and σ′ ≡ 0. (3.18)

In this theses we assume that every appearing fluid is a Stokes fluid, i.e. it has the
following properties:

1. σ = f(ε(u)) is a continuous function depending only on ε(u) := 1
2
(∇uT +∇u)

2. σ is isotropic

3. σ is homogeneous

4. If ε(u) = 0 then there holds σ = −pI

The tensor ε(u) is called the deformation tensor and is also sometimes denoted by D(u).
The mathematical translation of the second point reads

UσU−1 = f(Uε(u)U−1) for all orthogonal matrices U ∈ O3, (3.19)

which means that σ is invariant under rigid body rotations or in other words we have
uniformity in all directions. A function is called homogeneous if it does not depend
explicitly on the position x.

The Rivlin-Ericksen theorem (theorem 4.4), which is going to be treated in section 4,
guarantees under these assumptions that σ can be rewritten in a form which depends
only on three independent parameters.

By assuming additionally that we have a Newtonian fluid, i.e. the dependency σ =
f(ε(u)) is linear, one can show that there holds

σ = (−p+ λdiv(u))I + 2µε(u)
(3.7)
= −pI + 2µε(u) = −pI + µ(∇u+∇uT ), (3.20)

where λ is called the volume viscosity and µ the dynamic or shear viscosity. Examples
of Newtonian fluids are water and oil, while ketchup and blood are non-Newtonian.

Now, by plugging (3.20) into (3.14) we obtain

ρ
∂u

∂t
+ ρ(u · ∇)u− µ div(∇u+∇uT ) +∇p = ρf. (3.21)

8



3.4 Boundary and initial conditions

We divide the equation by ρ and define ν := µ
ρ

as the kinematic viscosity and the
scaled pressure p̃ := p

ρ
. Thus, we finally obtain the unsteady, incompressible, Newtonian

Navier-Stokes equations

∂u

∂t
+ (u · ∇)u− ν div(∇u+∇uT ) +∇p̃ =f (3.22a)

div(u) =0 (3.22b)

3.2 Remark. To simplify notation we will always write p for p̃. Another often used
scaling is by defining the negative pressure p̃ := −p

ρ
to improve the solvability for numer-

ical solvers.

Often, instead of the symmetric gradient of the velocity u, only the normal gradient is
used and the constant 2 is neglected, which yields for the Navier-Stokes equation (3.22a)

∂u

∂t
+ (u · ∇)u− 1

Re
∆u+∇p = f. (3.23)

These formulations (beside the factor 2) are equivalent if only Dirichlet data is prescribed
on the whole boundary. For simplicity we will use (3.23) for the analysis and derivations.

3.4 Boundary and initial conditions

As mentioned at the beginning of the section, the boundary is split into the Dirichlet
and Neumann boundary ∂Ω = ΓD∪̇ΓN . On ΓD the velocity is prescribed u = uD, which
is also called the no-slip condition if uD ≡ 0. The natural boundary conditions for
the Navier-Stokes equations are to prescribe the normal component of the stress tensor
σn = g.

As the Navier-Stokes equations are of parabolic type, initial data for the velocity have
to be prescribed as u(0) = u0, where u0 is divergence free. Note that the pressure p is not
prescribed directly, as it can be interpreted as a Lagrange parameter for the divergence
freeness of the velocity and must therefore be calculated, e.g. by the Stokes problem
(3.26).

By choosing characteristic (reference) parameters for the length and velocity, denoted
by L and U , (3.22) can be transformed into dimensionless form with the dimensionless
parameter

Re :=
LU

ν
(3.24)

called Reynolds number, which is a measure for the turbulences of a fluid. The complete
(dimensionless) Navier-Stokes problem in strong form reads:

9



3 Derivation of the Navier-Stokes equations

3.3 Problem (Navier-Stokes). For given f ∈ C(Ω,R3), g ∈ C(ΓN ,R3),
uD ∈ C(ΓD,R3) and u0 ∈ C2(Ω,R3) find u ∈ C1((0, T );C2(Ω,R3)) and p ∈
C((0, T );C1(Ω)) such that

∂u

∂t
+ (u · ∇)u− 1

Re
∆u+∇p = f in Ω× [0, T ], (3.25a)

div(u) = 0 in Ω× [0, T ], (3.25b)

σn = g, on ΓN × [0, T ], (3.25c)

u = uD on ΓD × [0, T ], (3.25d)

u = u0 in Ω, t = 0. (3.25e)

If we neglect the convection term (u · ∇)u and only look for steady solutions,∂u
∂t

= 0,
we obtain the Stokes problem.

3.4 Problem (Stokes). For given f ∈ C(Ω,R3), g ∈ C(ΓN ,R3) and uD ∈
C(ΓD,R3) find u ∈ C2(Ω,R3) and p ∈ C1(Ω) such that

− 1

Re
∆u+∇p = f in Ω, (3.26a)

div(u) = 0 in Ω, (3.26b)

σn = g, on ΓN , (3.26c)

u = uD on ΓD. (3.26d)

As we will see in section 5 the Stokes problem has the structure of a saddle-point
problem, which brings some difficulties in finding a stable discretization.

10



4 Derivation of the elastic wave equation

To derive the equation for elastic waves we start with the elasticity equation. First, we
use the Eulerian description, but then transform it to the Lagrangian form, which is
more common for elasticity problems.

The main quantities in elasticity are the deformation Φ and the displacement d. Fur-
thermore we will use the density ρ and two important parameters, namely Young’s mod-
ulus and Poisson’s ratio describing the material’s properties, which will be discussed in
the following sections.

Quantity Description Unit
Φ(x, t) deformation m
d(x, t) displacement m
ρ(x, t) density kg m−3

F (x, t) deformation gradient -
E Young’s modulus kg m−1s−2

ν Poisson’s ratio -

Table 4.1: Physical quantities used in the elastic wave equation

4.1 Derivation of the elasticity equation

In this subsection we proceed as in [Bra13, Kapitel VI]. For an introduction in continuum
mechanics we refer to [Wri13, Kapitel 3] and [MH12].

4.1.1 Strain tensors

Let Ω ⊂ R3 be an open and bounded domain and let the boundary ∂Ω of Ω be sufficiently
smooth. Then Ω describes a body, which is in a relaxed, undeformed state, called the
reference configuration. If some forces act on the body, it gets deformed. The current
configuration is described by the deformation

Φ : Ω× [0, T ]→ R3. (4.1)

For ease of presentation we will neglect the time dependency in this subsection. We
define

d(x) := Φ(x)− x ∀x ∈ Ω (4.2)

as the displacement of the body. Often it is assumed that the displacement is small
(Φ ≈ id), hence higher order terms are neglected which leads to linear elasticity.
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4 Derivation of the elastic wave equation

We assume that Φ is smooth enough. Then we can define

F := ∇Φ :=

∂Φ1

∂x1

∂Φ1

∂x2

∂Φ1

∂x3
∂Φ2

∂x1

∂Φ2

∂x2

∂Φ2

∂x3
∂Φ3

∂x1

∂Φ3

∂x2

∂Φ3

∂x3

 =

(
∂Φi

∂xj

)3

i,j=1

(4.3)

which is called the deformation gradient of Φ.
A deformation is called permissible if detF > 0, which means that the orientation

is preserved and the range of volume elements with positive measure have also positive
measure afterwards. The power of the deformation is measured by the ratio of Φ(x +
∆x)− Φ(x) to ∆x.

4.1 Lemma. Assume that x, x + ∆x ∈ Ω. Then under the assumption of Φ ∈
C2(Ω,R3) there holds

||Φ(x+ ∆x)− Φ(x)||2

||∆x||2
=

∆xTF TF∆x

||∆x||2
+O(||∆x||) as ||∆x|| → 0.

Proof. Taylor.

The local, quadratic change of length at a point x in direction ∆x is described by the
the Cauchy Green strain tensor

C := F TF. (4.4)

If C = I then the body will not be deformed. This is called a rigid body motion. One
can expect that a body, which just rotates or gets translated, will not be deformed.

4.2 Theorem. Let Ω be a connected domain and Φ ∈ C1(Ω,R3). Then a deforma-
tion is a rigid body motion if and only if

Φ(x) = a+Qx

for all vectors a ∈ R3 and special orthogonal matrices Q ∈ SO(3).

Proof. See [Bra13, p. 277 f].

We define the Green strain tensor

E :=
1

2
(C − I) (4.5)

as the deviation from the rigid body motion, which is symmetric. Plugging (4.4) and
(4.2) into (4.5) yields

E =
1

2
(∇(d+ id)T∇(d+ id)− I) =

1

2
(∇dT∇d+∇dT +∇d). (4.6)
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4.1 Derivation of the elasticity equation

Discarding higher order terms, we obtain in first approximation the linearised strain
tensor

ε(d) =
1

2
(∇dT +∇d). (4.7)

4.1.2 Stress tensors

In the following we assume that all forces which act on the body are volume or surface
forces. A typical volume force is gravity, while a truck driving over a bridge produces a
surface force on it. The volume forces can be described by a function f : Ω → R3 and
the surface forces by t : Ω× S2 → R3, where S2 denotes the unit sphere in R3.

Let V ⊂ Ω be a subdomain with sufficiently smooth boundary and dA an according
surface element with the outer normal vector n. Hence, the element generates the force
t(x, n)dA. The vector t(x, n) is called the Cauchy stress vector.

The axiom of static equilibrium claims that all forces and moments at a point sum up
to zero if the body is in equilibrium.

Axiom of the static equilibrium: Assume that the body Ω is in equilibrium under
the volume forces f . Then there exists a vector field t on Ω×S2, such that for all subsets
V ⊂ Ω there holds ∫

V

f(x) dx+

∫
∂V

t(x, n(x)) ds = 0, (4.8a)∫
V

x× f(x) dx+

∫
∂V

x× t(x, n) ds = 0, (4.8b)

where × denotes the vector product in R3.

The following theorem says that the Cauchy stress vector depends linearly on the
outer normal vector n.

4.3 Theorem (of Cauchy). Let t(·, n) ∈ C1(Ω,R3), t(x, ·) ∈ C(S2,R3) for all
x ∈ Ω and n ∈ S2. Further assume that f ∈ C(Ω,R3) and the body Ω fulfils the
axiom of static equilibrium. Then there exists a symmetric tensor T ∈ C1(Ω,S3)
such that

t(x, n) = T (x)n, (4.9a)

div(T (x)) + f(x) = 0, (4.9b)

T (x) = T T (x). (4.9c)

The tensor T is called the Cauchy stress tensor.

The equations above are given in Eulerian form. Often the range Φ(Ω) = B is iden-
tified with Ω, due to the assumption of small displacement. Nevertheless, it is better
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4 Derivation of the elastic wave equation

to transform the equation in Lagrangian form at a fixed reference domain. During the
transformation the quantities on the reference configuration are signed with the sub-
script R.

The transformation of the volume forces follows directly from the integral transfor-
mation theorem ∫

φ(U)

f(v) dv =

∫
U

f(φ(u))| det(∇φ)| du (4.10)

and the conservation of mass:

fR = det(F )f. (4.11)

The transformation for the stress tensor is a bit more demanding but can be calculated
elementarily (see e.g. [Cia94]).

With the first Piola-Kirchhoff stress tensor (see Piola transformation (5.36))

σ := det(F )TF−T (4.12)

we obtain

divR(σ)
(5.37)
= det(F )div(T ) (4.13)

and thus

divR(σ) + fR = det(F )div(T ) + det(F )f
det(F )>0

= 0. (4.14)

Note that the first Piola-Kirchhoff stress tensor is not symmetric. Thus, we define the
second Piola-Kirchhoff stress tensor which is symmetric again

Σ := F−1σ = det(F )F−1TF−T . (4.15)

4.1.3 Material properties and material laws

Until now only the equilibrium conditions for a body have been mentioned. The material
laws also have to be considered as the deformation can depend heavily on the material
properties.
We call a material elastic, if the Cauchy stress tensor T is a function depending only on
the deformation gradient

T (x) = T̂ (F (x)), (4.16)

where the function T̂ is called the response function.

Further we demand that a material has the following properties:
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4.1 Derivation of the elasticity equation

1. The material is homogeneous.

2. The material is objective (frame indifferent), T̂ (QF ) = QT̂ (F )QT ∀Q ∈ SO(3).

3. The material is isotropic.

With this assumptions we can formulate an important and famous theorem in mechanics.

4.4 Theorem (Rivlin-Ericksen Theorem). A response function T̂ : M3
+ → S3

is isotropic and objective, if and only if it is of the form

T̂ = T (FF T ), (4.17)

where the mapping T : S3
+ → S3 has the following form

T (A) = γ(iA)I + γ1(iA)A+ γ2(iA)A2 (4.18)

for all A ∈ S3
+, where γ0, γ1, γ2 are real-valued functions of the invariants

iA = (i1(A), i2(A), i3(A)) with

• i1(A) = λ1 + λ2 + λ3

• i2(A) = λ1λ2 + λ2λ3 + λ1λ3

• i3(A) = λ1λ2λ3

and λ1, λ2, λ3 the eigenvalues of A.

Proof. See [Bra13, p. 283 f].

For the second Piola-Kirchhoff tensor we obtain the following result.

4.5 Theorem. Assume an isotropic and objective material is given and let γ0, γ1

and γ2 be differentiable functions of i1(E), i2(E) and i3(E) with E denoting the
Green strain tensor. Then there exist constants π, λ, µ with

Σ̃(I + 2E) = −π + tr(E)λI + 2µE +O(||E||2) as ||E|| → 0. (4.19)

Proof. See [Bra13, p. 285].

If there holds C = I, then the body is in a relaxed state and thus π = 0. The other
two parameters are called Lamé-constants.

Neglecting higher order terms, we obtain the so-called linearised material law of Hooke

Σ̃(C) = Σ̃(I + 2E) = λtr(E)I + 2µE. (4.20)
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4 Derivation of the elastic wave equation

4.6 Remark. If Hook’s law holds also for large deformations for a material, it is called
a St. Venant-Kirchhoff material. Hence, (4.20) is also often called the material law of
St. Venant-Kirchhoff.

4.7 Remark. Another material law, which describes the behaviour well for large defor-
mations, is the material law of Neo-Hook

N(C) :=
µ

2

(
tr(C − I) +

2µ

λ
(det(C))−

λ
2µ − 1

)
(4.21)

where big compressions of the elements get penalized.

4.1.4 Hyperelastic materials and boundary conditions

In solid mechanics hyperelastic materials are often used, where an energy function can be
introduced. Namely for a hyperelastic material it holds that a function W : Ω×M3

+ → R
exists such that

T̂ =
∂W

∂F
(x, F ). (4.22)

If the material is objective and isotropic, similar results hold for energy functions as
for response functions. These are listed in the following lemma.

4.8 Lemma. For an objective material W (x, ·) is a function of C = F TF

W (x, F ) = W̃ (x, F TF )

and especially for the second Piola-Kirchhoff tensor there holds

Σ̃(x,C) = 2
∂W̃

∂C
(x,C). (4.23)

Further, W̃ depends only on the invariants of C and for small deformations there
holds

W̃ (x,C) =
λ

2
(tr(E))2 + µE : E + o(E2) as ||E|| → 0.

The inner product A : B of two matrices is defined as

A : B :=
n∑

i,j=0

AijBij = tr(ABT ). (4.24)

Again, the boundary of the domain Ω is split into the Dirichlet and Neumann bound-
ary. On ΓD the displacement (deformation) is prescribed d = dD, while on ΓN the
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4.2 The elastic wave equation

normal component of the stress is given σn = (FΣ)n = g.

All together by combining the results from this section, we can formulate the elasticity
problem:

4.9 Problem (Elasticity). For given f ∈ C(Ω,R3), g ∈ C(ΓN ,R3) and dD ∈
C(ΓD,R3) find d ∈ C2(Ω,R3) with F = I +∇d, C = F TF , Σ = 2∂W

∂C
and σ = FΣ

such that

− div(σ) = f in Ω, (4.25a)

(FΣ)n = g on ΓN , (4.25b)

d = dD on ΓD. (4.25c)

The material law (4.20) uses the Lamé coefficients λ and µ. Other parameters to
describe the elasticity of a material are the Poisson’s ratio ν and Young’s modulus E.
The Young’s modulus describes the relation between the strain and the stress during
the deformation of a body, while Poisson’s ratio models the change of the signed ratio
of the transverse strain to the axial strain of the body.

Due to physical reasons there holds λ > 0, µ > 0 and E > 0, 0 < ν < 1
2
. The formulae

for the conversion read

ν =
λ

2(λ+ µ)
, E =

µ(3λ+ 2µ)

λ+ µ
, (4.26a)

λ =
Eν

(1 + ν)(1− 2ν)
, µ =

E

2(1 + ν)
. (4.26b)

4.2 The elastic wave equation

While the elasticity equation can be interpreted as a (nonlinear) elliptic PDE, the elastic
wave equation, as the name suggests, is of hyperbolic type.

We consider the hyperelastic elastic energy functional

J(d) :=

∫
Ω

W (C(d)) dx−
∫

Ω

f · d dx−
∫

ΓN

g · d ds, (4.27)

on the space V of all permissible displacements. On the Dirichlet boundary ΓD we pre-
scribe the deformation, whereas g describes the surface forces on the Neumann boundary
ΓN and f denotes the external volume forces.

If a body is in equilibrium, then J ′(d) = 0. Otherwise, J ′(d) acts as an accelerating
force according to Newton’s second law

ρ
D2d

Dt2
= −J ′(d). (4.28)
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4 Derivation of the elastic wave equation

We calculate the directional derivative in direction v, such that d+ v ∈ V ,

〈J ′(d), v〉 =

∫
Ω

dW

dC
(C(d))〈∂C

∂d
(d), v〉 dx−

∫
Ω

f · v dx−
∫

ΓN

g · v ds (4.29)

and therefore the directional derivative 〈∂C
∂d

(d), v〉 of C in direction v. We remember
that C is the Cauchy-Green tensor with C(d) = (I +∇d)T (I +∇d),

〈∂C
∂d

(d), v〉 = lim
t→0

1

t
(C(d+ tv)− C(d))

= lim
t→0

1

t
((I +∇d+ t∇v)T (I +∇d+ t∇v)− (I +∇d)T (I +∇d))

= (I +∇d)T∇v +∇vT (I +∇d)

= F T∇v +∇vTF
= 2 sym(F T∇v).

4.10 Remark. More precisely, 〈J ′(d), v〉 is the first variation δJ(d, v) in direction v,
which coincides with the Gâteaux derivative and the Fréchet derivative if the function is
smooth enough.

We plug (4.23) and the directional derivative in (4.29) yielding

〈J ′(d), v〉 =

∫
Ω

Σ : sym(F T∇v) dx−
∫

Ω

f · v dx−
∫

ΓN

g · v ds

Σ=ΣT
=

∫
Ω

FΣ : ∇v dx−
∫

Ω

f · v dx−
∫

ΓN

g · v ds,
(4.30)

where the symmetry of the 2nd Piola-Kirchhoff tensor Σ has been used.
With integration by parts and using (4.15) we obtain the elastic wave equation in weak

form. As relation (4.30) holds for all arbitrary directions v we can write it in differential
form

ρ
D2d

Dt2
= div(σ) + f. (4.31)

The boundary conditions on ΓD and ΓN are the same as for the elasticity equation
(4.25), but now additional initial conditions for the displacement d = d0 and the velocity
Dd
Dt

= d1 have to be prescribed. With them the elastic wave problem reads:
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4.2 The elastic wave equation

4.11 Problem (Elastic wave). For given f ∈ C(Ω,R3), g ∈ C(ΓN ,R3), dD ∈
C(ΓD,R3), d0 ∈ C2(Ω,R3) and d1 ∈ C1(Ω,R3) find d ∈ C2((0, T ), C2(Ω,R3)) with
F = I +∇d, C = F TF , Σ = 2∂W

∂C
and σ = FΣ such that

ρ
D2d

Dt2
− div(σ) = f in Ω× [0, T ], (4.32a)

(FΣ)n = g on ΓN × [0, T ], (4.32b)

d = dD on ΓD × [0, T ], (4.32c)

d = d0 on Ω, t = 0, (4.32d)

Dd

Dt
= d1 on Ω, t = 0. (4.32e)

4.12 Remark. This is another possibility of deriving the elasticity equation, if we
consider only hyperelastic materials. In nature the deformation d with the minimal
energy is taken

min
d
J(d). (4.33)

Thus, by calculating the first variation and setting it zero in all permissible directions v,
a candidate for the minimum can be found.

4.13 Remark. As the elastic wave equation is in Lagrangian form no additional terms
appear due to the time derivative, and derivatives and integrals can be changed without
Reynold’s transport theorem.

4.14 Remark. For ease of presentation we will write -not absolutely correct- ∂·
∂t

instead
of D·

Dt
if there are no possible misunderstandings.
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5 Discretization of the Navier-Stokes equation

In this section we look for a satisfactory discretization in space and time of the Navier-
Stokes equations. At first we consider the weak formulation and look for a condition
to find the appropriate spaces to obtain a stable method. Then we derive two different
(stable) discretizations and discuss them.

In the whole section we assume a bounded domain Ω with a sufficient smooth boundary
∂Ω = ΓN ∪̇ΓD, which is split into the Dirichlet boundary ΓD and the Neumann boundary
ΓN . We assume a (quasi-uniform) triangulation Th of the domain Ω where h denotes the
maximal mesh size. The space of all polynomials on the triangulation Th up to degree
k is denoted by Πk(Th).

5.1 Weak formulation of the Navier-Stokes equation

Before finite element spaces are considered we discuss the continuous problem. First, we
look at the Stokes problem (3.26), where we set 1

Re
= ν, e.g. the characteristic velocity

and length is 1.

− ν∆u+∇p = f (5.1a)

div(u) = 0. (5.1b)

It consists of two different physical quantities, the velocity and the pressure. Thus, we
have two different spaces for the solution and the test functions, where the space V is
going to represents the velocity, while the pressure will be in the space Q, which will be
specified later. For ease of presentation we assume in this subsection that homogeneous
Dirichlet boundary conditions, uD = 0, are prescribed on the whole boundary ∂Ω.

To obtain a weak formulation we multiply the Stokes equations (5.1) with test func-
tions v ∈ V and q ∈ Q, respectively, integrate over the whole domain Ω and integrate
by parts: ∫

Ω

ν∇u∇v dx−
∫

Ω

div(v)p dx =

∫
Ω

fv dx , (5.2a)

−
∫

Ω

div(u)q = 0 . (5.2b)

As preparation for the abstract theory we define the following (bi-)linear forms

a(u, v) :=

∫
Ω

ν∇u∇v dx b(u, q) := −
∫

Ω

div(u)q dx f(v) :=

∫
Ω

fv dx. (5.3)

Equation (5.2) should hold for all v ∈ V and q ∈ Q and thus, the variational problem
for the Stokes equations reads:
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5 Discretization of the Navier-Stokes equation

5.1 Problem. Find u ∈ V and p ∈ Q such that

a(u, v) + b(v, p) = f(v) ∀v ∈ V , (5.4a)

b(u, q) = 0 ∀q ∈ Q . (5.4b)

We define a huge bilinear form B(·, ·) by adding both equations

B((u, p), (v, q)) := a(u, v) + b(v, p) + b(u, q), (5.5)

hence the problem reads:

5.2 Problem. Find (u, p) ∈ V ×Q such that

B((u, p), (v, q)) = f(v) ∀(v, q) ∈ V ×Q. (5.6)

To prove the existence, uniqueness and stability we could prove the coercivity and
continuity for the huge bilinear form B(·, ·). Then the lemma of Lax-Milgram would
guarantee the unique solvability for all right-hand sides. Unfortunately, the coercivity
holds not for this kind of problems. Thus, we use the abstract theory for saddle-point
problems, namely Brezzi’s theorem for mixed methods.

A general mixed variational problem involves two Hilbert spaces V and Q, the bilinear
forms

a : V × V → R,
b : V ×Q→ R,

and the continuous linear forms

f : V → R,
g : Q→ R.

With these forms we define the following mixed problem:

5.3 Problem. Find u ∈ V and p ∈ Q such that

a(u, v) + b(v, p) = f(v) ∀v ∈ V, (5.7a)

b(u, q) = g(q) ∀q ∈ Q. (5.7b)

We denote with V0 the kernel of the bilinear form b(·, ·) in the first component

V0 := {v : b(v, q) = 0 ,∀q ∈ Q}. (5.8)
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5.1 Weak formulation of the Navier-Stokes equation

5.4 Theorem (Brezzi’s theorem). Assume that a(·, ·) and b(·, ·) are continuous
bilinear forms, i.e.

a(u, v) ≤ α2||u||V ||v||V ∀u, v ∈ V, (5.9)

b(u, q) ≤ β2||u||V ||q||Q ∀u ∈ V, ∀q ∈ Q. (5.10)

Assume there holds coercivity of a(·, ·) on the kernel, i.e.

a(u, u) ≥ α1||u||2V ∀u ∈ V0, (5.11)

and there holds the LBB (Ladyzhenskaya-Babuška-Brezzi) condition

sup
u∈V

b(u, q)

||u||V
≥ β1||q||Q ∀q ∈ Q. (5.12)

Then, the mixed problem is uniquely solvable. The solution fulfils the stability esti-
mate

||u||V + ||q||Q ≤ c{||f ||V ∗ + ||g||Q∗} (5.13)

with the constant c depending on α1, α2, β1, β2.

Proof. See [Sch14, p. 98 f].

Here, V ∗ denotes the topological dual space to V and || · ||V ∗ the according dual norm

||f ||V ∗ = sup
06=x∈V

|f(x)|
||x||V

. (5.14)

To apply Brezzi’s theorem to problem 5.1, it has to fulfil the assumptions. We only
mention that the continuity of the discrete bilinear forms follows directly from the con-
tinuous case, but the LBB condition has to be proven again, as the discrete forms do
not inherit this property.

For the full Navier-Stokes equations the convection term is added in a natural way

c(u,w, v) :=

∫
Ω

(w · ∇)u · v dx. (5.15)

Note that c(·, ·, ·) is a trilinear form, where w can be interpreted as the wind of the
convection, which plays a crucial role for upwinding schemes. For the Navier-Stokes
equations the solution is also its own wind and thus the final variational formulation is:

23



5 Discretization of the Navier-Stokes equation

5.5 Problem. Find (u, p) ∈ V ×Q such that

a(u, v) + b(v, p) + c(u, u, v) = f(v) ∀v ∈ V, (5.16a)

b(u, q) = 0 ∀q ∈ Q. (5.16b)

5.2 Taylor-Hood discretization

For the first discretization of the Navier-Stokes equations, polynomials of the same or-
der for the velocity and the pressure were used, which gave “good looking” solutions.
Nevertheless, rather soon it was discovered that this pair was not stable. The first stable
pair was discovered by Taylor and Hood in [HT73] where they made the ansatz of using
polynomials of one degree lower for the pressure than the velocity. These elements are
quite easy to implement, as for both spaces H1-conforming finite elements can be used.

For ease of presentation we only consider the pair P2 − P1 in two dimensions, where
quadratic polynomials are used for approximating the velocity and linear ones for the
pressure, but we mention that pairs of the form Pk − Pk−1 are also stable. The finite
element spaces can be chosen as follows:

Vh := [Π2(Th)]n ∩ [C0(Ω)]n and Qh := Π1(Th) ∩ C0(Ω). (5.17)

If only Dirichlet data is prescribed on the boundary, ΓN = ∅, then the space Qh must
be chosen as

Qh := Π1(Th) ∩ C0(Ω) ∩ L2
0(Ω),

where L2
0(Ω) denotes all functions with zero mean

L2
0(Ω) := {q ∈ L2(Ω) :

∫
Ω

q dx = 0}.

The claim of zero mean value is needed to ensure an unique solution which can be seen
as following. If we integrate by parts in the bilinear form b(·, ·) from (5.3) we get

b(v, p) = −
∫

Ω

div(v)p dx =

∫
Ω

v · ∇p dx.

Due to the derivative one can add a constant to the pressure p without changing the
solution.

As usual, the test functions for the velocity live in the space

Vh,ΓD := {uh ∈ Vh : uh = 0 on ΓD}.

Due to the continuity of the velocity and pressure, system (5.16) has not to be changed
a lot, only the Neumann boundary has to be considered, and we immediately obtain the
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5.2 Taylor-Hood discretization

discrete variational formulation for the Navier-Stokes equations with Taylor-Hood ele-
ments:

5.6 Problem. Find (uh, ph) ∈ Vh ×Qh such that

a(uh, vh) + c(uh, uh, vh) + b(vh, ph) = f(vh) +

∫
ΓN

σn · vh ds ∀vh ∈ Vh,ΓD , (5.18a)

b(uh, qh) = 0 ∀qh ∈ Qh . (5.18b)

As we will see in section 8, the boundary term
∫

ΓN
σn · vh ds will play a crucial role

for fluid-structure interaction. We remember that σ represents the stress tensor of the
fluid. To distinguish it from the first Piola-Kirchhoff tensor (4.12) we define

σf := σ. (5.19)

The discrete LBB-condition for Taylor-Hood elements can be proven (e.g. in [MSW13]),
but some assumptions on the mesh Th of the domain have to be made.

The Taylor-Hood elements are quite popular and often used, but the method has
the drawback that it only provides so-called discrete divergence-free solutions, as the
solution for the velocity uh fulfils∫

Ω

div(uh)qh dx = 0 ∀qh ∈ Qh, (5.20)

and thus we cannot conclude div(uh) = 0, because it does not hold in general.

If we could guarantee that the divergence of the velocity is an element in the pressure
space Qh

div(Vh) ⊂ Qh, (5.21)

which does not hold for Taylor-Hood elements, then exact divergence-freeness follows
directly from discrete divergence-freeness, i.e.∫

Ω

div(uh)qh dx = 0 ∀qh ∈ Qh ⇒ div(uh) = 0. (5.22)

Thus, the solution would also be exact divergence-free.

5.7 Remark. The Taylor-Hood P2−P1 discretization has a quadratic convergence rate,
assuming the solution is stable and smooth enough

||u− uh||H1(Ω) + ||p− ph||L2(Ω) ≤ h2|u|H3(Ω) + h2|p|H2(Ω). (5.23)

Another type of pairing for the velocity and the pressure is to use a complete discon-
tinuous pressure and two additional polynomial degrees for the velocity, P2 − P dc

0 . For
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5 Discretization of the Navier-Stokes equation

this pairing the LBB-condition can be proven in an easy way, but the convergence rate
is only linear due to the poor approximation of the pressure

||p− ph||L2(Ω) ≤ h|p|H1(Ω). (5.24)

5.3 Hybrid discontinuous Galerkin method for the Navier-Stokes
equations

A big drawback of the Taylor-Hood discretization is the divergence-free constraint, which
ensures only that the velocity is discrete divergence-free, but not exact. This leads to a
variety of problems from slower convergence rates and bad looking solutions up to insta-
bility. One possible way to repair this is to use a reconstruction operator, see for detailed
information [Led16] and [LLMS17], or to use another type of discretization where this
problem does not appear at all.

The approach to use finite element spaces where the solution is locally exact divergence-
free on each element overcomes this problems. For the Navier-Stokes equations Discon-
tinuous Galerkin (DG) methods were developed as they provide good stability and con-
servation properties (see e.g. [CKS05], [CKS07]). A drawback of DG schemes is the high
number of degree of freedoms. Thus, additional unknowns were added on the element
interfaces to apply static condensation to reduce the size of the linear system, which
yields to Hybrid Discontinuous Galerkin (HDG) methods (see e.g. [CCNP13]). The
following method introduced by Joachim Schöberl and Christoph Lehrenfeld in [Leh10]
and [LS16] uses a HDG approach, where only the tangential continuity of the velocity
is broken and a completely discontinuous pressure is used. This yields to an H(div)-
conforming discretization, which ensures the continuity of the normal component over
element boundaries and the additional facet variables are introduced to approximate the
tangential trace of the velocity. We will call this method H(div)-conforming HDG (see
figure 5.1 on the facing page for the different methods).

5.3.1 H(div)-conforming elements

The Sobolev space used for H(div)-conforming functions on Ω is defined as

H(div,Ω) := {u ∈ [L2(Ω)]n : div(u) ∈ L2(Ω)}. (5.25)

As we work with piecewise polynomial functions on each element the normal continuity
is trivially fulfilled on each triangle. To obtain a global function which lies in H(div,Ω),
a compatibility condition has to be fulfilled. Like in H1(Ω), where the discrete functions
have to be continuous over elements, the normal component has to be continuous.

We introduce the finite element space

Wh := {uh ∈ [Πk(Th)]2 : Juh · nKE = 0 ,∀E ∈ Fh}, (5.26)
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5.3 Hybrid discontinuous Galerkin method for the Navier-Stokes equations

Figure 5.1: Normal and tangential continuity for different methods

where Fh denotes the skeleton of Th, or in other words, the set of all edges in two
dimensions and faces in three dimensions of Th, and n the outer normal vector. The
jump over the interface E of two neighboured elements T1 and T2 is defined as

Juh · nKE := (uh|T1 − uh|T2)
∣∣
E
· n1, (5.27)

which is also called the normal jump JuKn of u.

The following lemma guarantees thatWh is a (finite dimensional) subspace ofH(div,Ω).

5.8 Lemma. Let Th be a triangulation of a domain Ω. A function u is in H(div,Ω)
if and only if u ∈ H(div, T ) for all triangles T ∈ Th and the normal jump JuKn
vanishes on all inner facets E.

Proof. See [Sch09b, p. 103].

The facet variables, which are used to enforce the tangential continuity of the velocity
weakly, can be interpreted as an interior penalty. To avoid full coupling between the
elements they are introduced in a hybrid fashion. Thus, the facet variables live only on
the skeleton of Th in the vector-facet finite element space

Fh := {ûh ∈ [Πk(Fh)]n : ûh · n = 0}. (5.28)

We define the velocity space as

Vh := Wh × Fh (5.29)

and write u := (u, û) for the velocity.
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5 Discretization of the Navier-Stokes equation

To ensure the exact divergence-free property of the velocity, div(Wh) = Qh, the pres-
sure space has to be of a polynomial order less than the velocity

Qh := Πk−1(Th), (5.30)

which is obviously a finite dimensional subspace of L2(Ω).

Figure 5.2: Lowest order Raviart-Thomas and BDM element in two and three dimensions

Examples for H(div)-conforming elements are the Raviart-Thomas (RT), introduced
in [RT77], and Brezzi-Douglas-Marini (BDM) elements, see [BDM85]. While BDM
elements use polynomial spaces of complete order, i.e.

VBDMk
:= {σ ∈ [Πk(Th)]n : σ · n continuous across edges}, (5.31)

the RT elements of order k lie exactly between the polynomial spaces of order k− 1 and
k (see figure 5.2)

[Πk−1(Th)]n ( VRTk ( [Πk(Th)]n, (5.32)

VRTk(T ) = [Πk(Th)]n ⊕ ~x · Πk,∗(Th), (5.33)

where Πk,∗ denotes all polynomials of exactly degree k and ~x = (x1, · · · , xn)T . For
example the lowest order Raviart-Thomas elements RT0 consist of all constant functions
and some linear ones

VRT0 =

{(
a
b

)
+ c

(
x
y

)
: a, b, c ∈ R

}
. (5.34)
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5.3 Hybrid discontinuous Galerkin method for the Navier-Stokes equations

For the construction of higher order H(div)-conforming elements we refer to [Zag06].

To ensure the normal continuity also on physical elements and not only on the refer-
ence element the Piola transformation is used.

5.9 Theorem (Piola transformation). Let Φ : T̂ → T be a diffeomorphic map-
ping from the reference element T̂ to the physical element T and Ψ a diffeomorphic
mapping from T to another physical element T̃ . Let σ̂ ∈ H(div, T̂ ). Then, the Piola
transformation

σ := PΦ[σ̂] (5.35)

defined by

σ = PΦ[σ̂] := (J−1Fσ̂) ◦ Φ−1, (5.36)

where F denotes the gradient of Φ, F := ∇Φ, and J := det(F ) has the following
properties:

1. σ is in the space H(div, T ) with

div(σ) = (J−1div(σ̂)) ◦ Φ−1. (5.37)

2. Let furthermore ê be an edge of the reference element and e = Φ(ê). Then∫
e

σ · ne ds =

∫
ê

σ̂ · nê dŝ. (5.38)

3. With ϕ := Ψ ◦ Φ there holds

PΨ◦Φ[σ̂] = Pϕ[σ̂] = PΨ[PΦ[σ̂]]. (5.39)

Proof. 1. & 2. : See [Sch09b, p. 106].
3. : We start from the right-hand side:

PΨ[PΦ[σ̂]] = PΨ[σ] =

(
1

det(∇Ψ)
∇Ψσ

)
◦Ψ−1

=

(
1

det(∇Ψ)
∇Ψ

(
1

det(∇Φ)
∇Φσ̂

)
◦ Φ−1

)
◦Ψ−1

=

(
1

det((∇Ψ ◦ Φ)∇Φ)
(∇Ψ ◦ Φ)∇Φσ̂

)
◦ Φ−1 ◦Ψ−1

=

(
1

det(∇ϕ)
∇ϕσ̂

)
◦ ϕ−1

= Pϕ[σ̂]
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5 Discretization of the Navier-Stokes equation

5.10 Remark. If the mapping Φ is obvious we will neglect the subscript for the Piola
transformation and only write P [σ].

5.3.2 Derivation of the discrete H(div)-conforming HDG Navier-Stokes equations

Due to the discontinuity of the velocity the discrete form of the variational problem 5.5
cannot be used without bigger changes. Thus, we quickly derive the formula, where we
use a similar approach as for HDG methods like in [Leh10].

We start the derivation of the method with the viscous part. As usual we multiply
with a test function and integrate over the domain, but now we integrate by parts on
each triangle T , because of the broken continuity of the velocity u. We neglect the
subscript h during the derivation.∫

Ω

div(−ν∇u)v dx =
∑
T∈Th

{∫
T

ν∇u : ∇v dx−
∫
∂T

ν
∂u

∂n
v ds

}
(5.40)

Now the facet variables û are introduced by adding the consistency term∑
T∈Th

∫
∂T

ν
∂u

∂n
ṽ ds =

∫
ΓN

ν
∂u

∂n
ṽ ds, (5.41)

where ṽ := vn + v̂τ denotes the sum of the normal component of the H(div,Ω) function
and the tangential component of the facet function which yields∑

T∈Th

∫
T

ν∇u : ∇v dx−
∫
∂T

ν
∂u

∂n
(v − ṽ)︸ ︷︷ ︸

=Jvτ K

−
∫

ΓN

ν
∂u

∂n
ṽ (5.42)

where we used

v − ṽ = vτ − v̂τ =: JvτK.

The boundary integral over the Neumann boundary can be used for prescribing an
outflow condition and will be neglected for now. We use the fact that JuτK is zero for the
true solution and add terms for symmetry and stability to define the following bilinear
form

ah(ū, v̄) :=
∑
T∈Th

∫
T

ν∇u : ∇v dx−
∫
∂T

(
ν
∂u

∂n
JvτK + ν

∂v

∂n
JuτK− νβJuτKJvτK

)
ds, (5.43)

where β denotes the stability factor (see remark 5.13).

30



5.3 Hybrid discontinuous Galerkin method for the Navier-Stokes equations

For the pressure part we also integrate by parts∫
Ω

v · ∇p dx =
∑
T∈Th

∫
T

v · ∇p dx = −
∑
T∈Th

∫
T

div(v)p dx+

∫
ΓN

pvn ds. (5.44)

The boundary integral is part of the boundary conditions and will be neglected for the
definition of the following bilinear form

bh(v̄, p) := −
∑
T∈Th

∫
T

div(v)p dx. (5.45)

The Stokes problem with H(div)-conforming elements now reads:

5.11 Problem. Find ūh ∈ Vh and ph ∈ Qh such that

ah(ūh, v̄h) + bh(v̄h, ph) = f(v̄h) ∀v̄h ∈ Vh, (5.46a)

bh(ūh, qh) = 0 ∀qh ∈ Qh. (5.46b)

For the convection part we use a kind of upwinding technique. We only have to
treat the tangential part in the upwind fashion because of the normal continuity of the
velocity. The upwind function uup is defined as

uup := un +

{
ûτ , wn < 0

uτ , wn ≥ 0
(5.47)

where wn denotes the normal component of the wind of the convection in div(u⊗w) =
(w · ∇)u.

Figure 5.3: The facet is glued to the outflow boundary

The facet variables are glued to the upwind triangle in the following way∫
∂Tout

wn(ûτ − uτ )v̂τ ds , (5.48)
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5 Discretization of the Navier-Stokes equation

where ∂Tout denotes the element edges where the upwind value wn > 0 is positive (see
figure 5.3 on the preceding page).
The convection trilinear form reads

ch(w, ū, v̄) =
∑
T∈Th

{
−
∫
T

u⊗ w : ∇v dx+

∫
∂T

wnu
upv ds+

∫
∂Tout

wn(û− u)τ v̂τ ds

}
.

(5.49)

Finally we obtain the spatial discretization of the Navier-Stokes equations by setting the
wind as the velocity itself:

5.12 Problem. Find ūh ∈ Vh and ph ∈ Qh such that

ah(ūh, v̄h) + ch(ūh, ūh, v̄h) + bh(v̄h, ph) = f(v̄h) ∀v̄h ∈ Vh, (5.50a)

bh(ūh, qh) = 0 ∀qh ∈ Qh. (5.50b)

5.13 Remark. For a rigorous analysis of H(div)-conforming HDG we refer to [Leh10],
but mention that it is stable if the stability parameter β is chosen sufficiently large. It
depends quadratically on the polynomial order k and linearly on the mesh size h. The
factor α depends heavily on the mesh. Numerical experiments showed that values between
5 and 10 are satisfactory for most situations:

β =
αk2

h
.

5.4 Time discretization of the unsteady Navier-Stokes equation

After the spatial discretizations have been introduced, the time discretization has to be
considered to derive the complete discretization. The methods discussed in this section
can be applied to both, the Taylor-Hood and the H(div)-conforming HDG discretiza-
tion. In this subsection we will assume homogeneous Dirichlet boundary conditions on
the whole boundary for ease of presentation.

For the time discretization of the unsteady Navier-Stokes equation we will use the
method of lines, where the spatial discretization is given and then the discretization in
time is done at each mesh node. Another possibility would be to discretize first in time
and so the spatial domain can be changed at each step (see figure 5.4 on the next page).
This approach, however, will not be discussed here.

For the method of lines we make the ansatz of time dependent constants for the
velocity and the pressure

uh(x, t) =

NV∑
i=0

αi(t)ϕi(x) ph(x, t) =

NQ∑
j=0

βj(t)ψj(x), (5.51)
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5.4 Time discretization of the unsteady Navier-Stokes equation

Figure 5.4: Method of lines and space-time discretization

where {ϕi}NVi=0 and {ψj}
NQ
j=0 denote the shape functions of the finite element spaces Vh

and Qh, respectively.

After the spatial discretization we obtain with the matrices M ∈ RNV ×NV , A ∈
RNV ×NV and B ∈ RNV ×NQ

Mij :=

∫
Ω

ϕi · ϕj dx ∀i, j = 0, . . . , NV ,

Aij :=

∫
Ω

ν∇ϕi : ∇ϕj dx ∀i, j = 0, · · · , NV ,

Bij := −
∫

Ω

div(ϕi)ψj dx ∀i = 0, . . . , NV , ∀j = 0, . . . , NQ,

the vector C(uh)uh

Ci(uh)uh :=

∫
Ω

(uh · ∇uh)ϕi dx ∀i = 0, . . . , NV

and the following problem:

5.14 Problem. Given the initial data u0 find (u, p) ∈ RNV ×NQ such that

M
∂u

∂t
+ Au+Bp+ C(u)u = f in [0, T ], (5.52a)

BTu = 0 in [0, T ], (5.52b)

u(0) = u0. (5.52c)

Next, the interval [0, T ] is divided in equidistant steps

0 = t0 < · · · < ti < · · · < tN = T,

with the step size τ = ti+1− ti for all i = 1, . . . , N − 1. We use the notation un := u(tn)
and pn := p(tn).

By integrating (5.52) over time and using some kind of integration schemes we obtain
the complete discretization. Therefore we will use two different approaches: IMEX
schemes and the Crank-Nicolson method.
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5 Discretization of the Navier-Stokes equation

5.4.1 Implicit-Explicit splitting schemes

For the Navier-Stokes equations we will first consider lowest order time integration
schemes, namely the explicit and implicit Euler scheme.

Explicit schemes are very cheap and fast due to avoiding solving difficult nonlinear and
nonsymmetric systems. Unfortunately the Navier-Stokes equations cannot be handled
completely in an explicit way, because it is not a pure differential equation, but has the
type of a differential algebraic equation (DAE) due to the incompressible constraint.
Thus, the pressure and the constraint have to be treated implicitly to guarantee that
the solution is (discrete) divergence free after each step.

The drawback of explicit methods is that they are not unconditionally stable and so
a time restriction must be kept. The convection step size restriction scales linearly with
the spatial discretization parameter h, whereas the diffusion has a quadratic dependency.
Such terms as the diffusion are therefore called to be stiff and should be handled implic-
itly.

Implicit schemes overcome this problem and are unconditionally stable. The disad-
vantage of them is that at each step a (nonlinear) system has to be solved, which can
change at every new step and thus, are quite slow and inefficient.

The idea of so called semi-implicit methods is to try to mix both schemes and combine
them in the following way:

• Nonlinear terms and external forces are treated explicitly to avoid difficult, non-
symmetric equations which would be too expensive to solve at every time step.

• Linear and stiff parts are handled implicitly to avoid the quadratic dependency of
the time step τ on the mesh size h.

The system involves not only the mass matrix, but due to the linearity of the additional
terms, it has to be solved only once and can then be used in every time step.

Such additive decomposition methods are called Implicit-Explicit (short IMEX) split-
ting schemes. For the construction of IMEX schemes we refer to [ARS97].

By applying the first order IMEX method on (5.52) we obtain

M
un+1 − un

τ
+ Aun+1 +Bpn+1 = fn − C(un)un, (5.53a)

BTun+1 = 0, (5.53b)

which can be written compactly in matrix form(
M + τA τBT

τB 0

)(
un+1 − un
pn+1

)
= τ

(
fn − Aun − C(un)

0

)
. (5.54)
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5.4 Time discretization of the unsteady Navier-Stokes equation

Note that there holds Bun = 0 because the constraint Bu = 0 is treated implicitly.
We would like to rewrite the equations in residual (update) form, so by adding ±pn we
obtain the following system(

M + τA τBT

τB 0

)(
un+1 − un
pn+1 − pn

)
= τ

(
fn − Aun − C(un)−Bun

−BTpn

)
. (5.55)

By defining the left matrix as M? and putting A, BT and B together as the Stokes

operator D, f̃ :=

(
f
0

)
and C̃ :=

(
C
0

)
, (5.55) transforms to

(
un+1

pn+1

)
=

(
un

pn

)
− τ(M?)−1

(
D(un, pn) + C̃(un)− f̃n

)
. (5.56)

One disadvantage of an IMEX splitting is that the same time step τ is used for the
explicit and implicit part. With more advanced splitting methods this restriction can be
overcome so that a small step size τc for the convection and a larger one τD for the stiff
part, which is again stable, but faster as the linear system must be solved less often. In
this thesis, however, we will not use such splitting techniques.

5.4.2 Crank-Nicolson method for the Navier-Stokes equations

A different approach to splitting methods is to discretize everything with an appropriate
integration scheme and then solve the arising nonlinear system with Newton’s method:

Algorithm 5.1 Newton(x0, ε, maxit, F )

1: for i = 0 to maxit do
2: r = F (x0)
3: M = F ′(x0)
4: Solve M∆x = r
5: x0 = x0 −∆x
6: if |∆x · r| < ε then
7: break
8: end if
9: end for

10: return x0

An often used scheme is the trapezoidal rule, also called Crank-Nicolson method (CN)∫ b

a

f(x) dx ≈ τ

2
(f(a) + f(b)) , (5.57)

which has better properties in conserving the total energy than the explicit or implicit
Euler scheme.
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5 Discretization of the Navier-Stokes equation

Only the pressure and the incompressible constraint are treated completely implicit.
The arising scheme reads:

M(un+1 − un) +
τ

2
A(un+1 + un) + τBpn+1 +

τ

2
(C(un+1) + C(un))− fn = 0 (5.58)

τBTun+1 = 0 (5.59)

To solve this system with Newton’s method is slower as an IMEX scheme, but the step
size can be chosen larger, as the convection is treated also implicit. Another advantage
is the second order accuracy of the CN scheme.

5.15 Remark. The CN method is not A-stable, so for large computation times oscil-
lations may appear and the system can get unstable. Thus, the so-called shifted CN or
one-step-theta scheme can be used with θ := 1

2
+ ε.

Given the differential equation b(u)∂u
∂t

+ Au = 0 it reads

(θb(un+1) + (1− θ)b(un))(un+1 − un) + τθAun+1 + τ(1− θ)Aun = 0. (5.60)

With this choice of θ it is still of second order, but now also strictly A-stable.
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6 Discretization of the elastic wave equation

The discretization of the elastic wave equation is treated differently as the Navier-Stokes
equations, due to the hyperbolic type of the equation. It can be written as a system of
PDEs of first order

∂d

∂t
= u, (6.1a)

ρ
∂u

∂t
= f −K(d), (6.1b)

with the displacement d, the velocity u and a nonlinear operator K(·).

Here, the time discretization influences the spatial one heavily, which will be seen
later. We introduce two different methods for the time discretization. For the first one,
we assume that the displacement and the velocity are both continuous and are approx-
imated with H1-conforming elements. The displacement for the second method is also
assumed to be in H1(Ω), but the velocity gets approximated with H(curl)-conforming
elements. This approach will be extended by the introduction of a new variable: the
time derivative of the momentum which lives in the dual space of H(curl).

As for the Navier-Stokes equations we assume in the whole section a bounded domain
Ω ⊂ Rn with smooth boundary ∂Ω = ΓN ∪̇ΓD, divided into its Dirichlet and Neumann
part. The triangulation of Ω is again denoted by Th.

6.1 Spatial discretization of the elasticity equation

As the natural space of the displacement d is [H1(Ω)]n, we will treat first only the elastic-
ity problem 4.9. As before, we start by considering the continuous problem, but specify
immediately the according Sobolev spaces.

We multiply (4.25a) with a test function w ∈ [H1
ΓD

(Ω)]n, integrate over Ω and use
integration by parts on the left-hand side to obtain

−
∫

Ω

div(FΣ) · w dx =

∫
Ω

(FΣ) : ∇w dx−
∫

ΓN

(FΣ)n · w ds, (6.2)

and the variational formulation reads:

37



6 Discretization of the elastic wave equation

6.1 Problem. For a given f ∈ L2(Ω) and dD ∈ H
1
2 (ΓD) find d ∈ [H1(Ω)]n such

that ∫
Ω

(FΣ) : ∇w dx =

∫
Ω

f · w dx+

∫
ΓN

(FΣ)n · w ds ∀w ∈ [H1
ΓD

(Ω)]n, (6.3a)

d = dD on ΓD. (6.3b)

We define the nonlinear and nonsymmetric “bilinear from”

k(d, w) :=

∫
Ω

(FΣ) : ∇w dx. (6.4)

The existence and uniqueness of a solution of problem 6.1 is more advanced than for
the Stokes problem. One can use the poly-convexity to minimize the energy functional
(see [Tal94]), but with this approach the continuous dependency on the given data is
missing.

Another possibility is to use the implicit function theorem (see [Cia94]), which has
the disadvantage that very high regularity assumptions have to be made.

For a given triangulation Th of Ω, we choose for the finite element space for the
displacement

Dh := [Πk(Th)]n ∩ [C0(Ω)]n (6.5)

and

Dh,ΓD := {dh ∈ Dh : dh = 0 on ΓD}. (6.6)

Hence, the discrete problem is:

6.2 Problem. Find dh ∈ Dh such that

k(dh, wh) = f(wh) +

∫
ΓN

σn · wh ds ∀wh ∈ Dh,ΓD . (6.7)

As already mentioned in the previous section, the remaining boundary term will play
a crucial rule. Later on we will use the notation

σs := σ = FΣ (6.8)

for the first Piola-Kirchhoff stress tensor.

We define the vector K(dh) and the operator K(·) as preparation for the time dis-
cretization

Ki(dh) :=

∫
Ω

(FΣ) : ∇ϕi dx ∀i = 0, . . . , ND, (6.9)

where {ϕi}NDi=0 denote the shape functions of the space Dh.
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6.2 H1-conforming time discretization

6.2 H1-conforming time discretization

This method approximates both quantities with elements in H1(Ω). For the linear wave
equation

∂2d

∂t2
−∆d = f (6.10)

two different methods with good properties were developed, symplectic Runge Kutta
methods and the Newmark method (see [New59]). In this thesis, however, we will
consider only the Newmark method as it fits better in the fluid-structure setting.

6.2.1 Newmark methods

Newmark methods were constructed for conserving the total energy in wave equations.
For linear operators K one can show that the energy is preserved exactly and the implicit
methods are unconditionally stable, whereas explicit ones are only conditionally stable.
The dependency in the time parameter τ is only linear to the spatial discretization pa-
rameter h compared with parabolic equations with a dependency of h2, which makes
explicit methods a bit more popular for wave equations.

To use a kind of a Newmark scheme we start with (6.1). As in the last section, the
interval [0, T ] is divided in equidistant steps with the step size τ . We integrate both
equations with respect to time and use the midpoint rule∫ tn+1

tn

f(s) ds ≈ τf

(
tn+1 + tn

2

)
(6.11)

as an integration scheme for the right-hand side of (6.1a) and for the operator K(·),
whereas the explicit Euler scheme for the external forces f is used

dn+1 = dn +
τ

2
(un+1 + un), (6.12a)

un+1 = un + τM−1

(
fn −K

(
dn+1 + dn

2

))
. (6.12b)

With the mass matrix M arising from the spatial discretization of ρ∂u
∂t

Mij :=

∫
Ω

ρϕi · ϕj dx ∀i, j = 0, . . . , ND,

where {ϕi} are again the shape functions of Dh.

We can eliminate the displacement by plugging the first into the second equation,
which yields

un+1 = un + τM−1
(
fn −K

(
dn +

τ

4
(un+1 + un)

))
. (6.13)
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6 Discretization of the elastic wave equation

Here, only un+1 is unknown and can be calculated. After the new velocity has been
computed, the displacement for the next step can be reconstructed by (6.12a).

The drawback of this method is that for nonlinear solid mechanics a nonlinear system
has to be solved in every step which is quite expensive and slow. On the other hand just
using the explicit Euler scheme in (6.1) and solving the explicit system

dn+1 = dn + τun, (6.14a)

un+1 = un + τM−1
(
fn −K

(
dn +

τ

2
un
))

, (6.14b)

is cheap but rather unstable due to the nonlinearity of K(·) and therefore not suited for
our needs.

6.2.2 Linear-implicit Runge-Kutta methods

A good compromise is to use so called linear-implicit Runge-Kutta methods. The idea
is to construct a scheme which is implicit in the linear case, but explicit in the nonlinear
terms, while guaranteeing stability. Such methods are also called Rosenbrock methods
or Rosenbrock-Wanner-methods (short ROW-methods). For detailed informations to
linear-implicit Runge-Kutta methods we refer to [DB13].

For a short derivation we assume an autonomous ordinary differential equation (ODE)
with a nonlinear right-hand side f ∈ C1(Ω,Rn)

x′(t) = f(x). (6.15)

The idea is to add and subtract the gradient of f , Jx = J(x) := Df(x), which is
obviously linear

x′(t) = Jx(t) + (f(x(t))− Jx(t)). (6.16)

Now the first term is treated implicitly and the second and last one explicitly, which
yields

xn+1 − xn

τ
≈ Jxn+1 + (f(xn)− Jxn). (6.17)

6.3 Remark. If the right-hand side f is linear, then J = Df(x) = f and the last two
terms cancel. Then the equation is treated only implicit

xn+1 − xn

τ
≈ f(xn+1)

and thus the name linear-implicit.
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6.2 H1-conforming time discretization

More general, similar to Runge-Kutta methods, the discrete evolution can be described
by the following system

xn+1 = xn + τ
s∑
j=1

bjkj, (6.18a)

kj = J(x+ τ

i∑
j=1

βijkj) + (f(x+ τ

i−1∑
j=1

αiikj)− J(x+ τ

i−1∑
j=1

βijkj)) (6.18b)

which are called linear-implicit methods of order s.

We will use only the first-order ROW-method where we set

b1 = 1, β11 = 1, α11 = 0, (6.19)

to obtain the following scheme

xn+1 = xn + τ(I − τJ)−1f(xn). (6.20)

6.4 Remark. By adding the gradient evaluated at xn we obtain a linear operator, which,
if combined with an implicit term Jxn+1, increases the region of absolute stability ex-
tremely.

The ROW-method for the elastic wave equation (6.1) reads

Jn = K ′(dn), (6.21a)

un+1 = un + τ

(
M +

τ 2

2
Jn
)−1

(fn −K(dn)− τJnun) , (6.21b)

dn+1 = dn +
τ

2
(un+1 + un). (6.21c)

With this a linear system has to be solved at every time step, which is much more
efficient and avoids Newton-like methods.

6.2.3 Crank-Nicolson method for the elastic wave equation

Again, like for the IMEX scheme for the Navier-Stokes equations, the ROW method is
only of first order accuracy. It is also possible to use the Crank-Nicolson scheme directly
for the elastic wave equation and use Newton’s method (algorithm 5.1) to solve the
nonlinear system, which is of second order and a bit simpler to implement. The arising
system reads:

M(un+1 − un)− τfn + τK(dn +
τ

4
(un+1 + un)) = 0, (6.22a)

dn+1 = dn +
τ

2
(un+1 + un), (6.22b)
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6 Discretization of the elastic wave equation

or, if everything is put into a huge bilinear form and use the trapezoidal rule

MI(
τ

2
(un+1 + un)− dn+1 + dn) +M(un+1 − un)− τfn+

τ

2
(K(dn+1) +K(dn)) = 0,

(6.23)

with the according trivial mass bilinear form to the operator MI

mI(u, v) :=

∫
Ω

d · w dx. (6.24)

6.3 H(curl)-conforming time discretization

For the second method we use different spaces for the displacement and the velocity,
which will be motivated in this section.

6.3.1 Motivation

The displacement is going to be in [H1(Ω)]n again, but the velocity lives now in the
space H(curl,Ω) defined as

H(curl,Ω) := {u ∈ [L2(Ω)]n : curl(u) ∈ [L2(Ω)]n}. (6.25)

Another huge difference is that the velocity is going to be treated in material coordinates
and not in deformed coordinates, which can be seen as following. If the displacement
of a material point X ∈ Rn is d0 at time t0 and d1 at t1 then the velocity in deformed
coordinates is approximatively d1−d0

t1−t0 ≈ u.

For the situation in figure 6.1 on the facing page the velocity in the reference config-
uration points left, but in material coordinates it should point upwards, which can be
reached by using the covariant transformation

u := F−TuR (6.26)

with the deformation gradient F . Now, the material velocity uR points in the correct
direction in the reference configuration ΩR.

The choice of H(curl)-conforming elements ensures that the material velocity uR is in
H(curl,ΩR) if and only if the global velocity u is in H(curl,Ω), like the Piola transfor-
mation for H(div)-conforming elements.

Furthermore, the use of H(curl)-conforming elements yields to the exact conservation
of rigid body rotations. Assume the deformation Φ is described by a rotation R ∈ SO(2)
in two dimensions

Φ(x, y) =

(
cos(t) sin(t)
− sin(t) cos(t)

)(
x
y

)
=: R~x, (6.27)
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6.3 H(curl)-conforming time discretization

Figure 6.1: Left: global velocity in deformed configuration, right top: global veloc-
ity in reference configuration, right bottom: material velocity in reference
configuration

with t ∈ [0, 2π]. Then the deformation gradient F is R. By defining the velocity as

u =
∂ (R~x)

∂t
= Ṙ~x

and using the covariant transformation yields

uR = F Tu = RT Ṙ~x. (6.28)

By differentiating the identity RTR = I we immediately deduce that RT Ṙ = −ṘTR
is skew symmetric and thus, RT Ṙ~x lies exactly in the lowest order Nédélec space of
1st-kind (see section below).

6.3.2 H(curl)-conforming elements

Like for H(div) we give a short overview about the Sobolev space H(curl).
To obtain a global function uh in H(curl,Ω) the tangential component has to be

continuous over the interfaces

Nh := {uh ∈ [Πk(Th)]2 : Juh · τK = 0, ∀E ∈ Fh}, (6.29)

where τ denotes the tangent vector in two dimensions. In three dimensions the tangen-
tial component of uh has to be continuous over the faces.
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6 Discretization of the elastic wave equation

6.5 Lemma. Let Th be a triangulation of a domain Ω. A function u is in H(curl,Ω)
if and only if u ∈ H(curl, T ) for all triangles T ∈ Th and the tangential jump JuKτ
vanishes on all interior interfaces γij := Ti ∩ Tj, i 6= j.

Similar to the H(div)-conforming elements there are two common H(curl)-conforming
elements, the Nédélec elements of 1st- and 2nd-kind, see [Néd80] and [Néd86].

Figure 6.2: Lowest order Nédélec elements of 1st- and 2nd-kind in two and three
dimensions

The Nédélec elements of 1st-kind of order k lie between the polynomial spaces of order
k − 1 and k, whereas the other uses the whole polynomial degree (see figure 6.2). For
example the lowest order Nédélec space of 1st-kind in three dimensions is

N1,0 = {a+ b× x : a, b ∈ R3}. (6.30)

In two dimensions the Nédélec elements are the Raviart-Thomas and BDM-elements,
only rotated by 90 degrees, but in three dimensions they are different (compare figure
5.2 and figure 6.2). For details about the construction of high order Nédélec elements
we refer to [Zag06] and [SZ05].

As mentioned before the covariant transformation ensures the tangential continuity on
physical elements. Moreover, the covariant transformation has the following properties:
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6.3 H(curl)-conforming time discretization

6.6 Theorem (Covariant transformation). Let Φ : T̂ → T be a diffeomorphic
mapping from the reference element T̂ to a physical element T . Let û ∈ H(curl, Ω̂).
Then, the covariant transformation defined by

u := F−T û ◦ Φ−1, (6.31)

where F denotes the gradient of Φ and J = detF , has the following properties:

1. Let Ω ⊂ R3. Then u is in H(curl,Ω) with

curlx(u) = P [curlx̂(û)] =
1

J
F curlx̂(û) ◦ Φ−1. (6.32)

2. Let Ω ⊂ R2. Then u is in H(curl,Ω) with

curlx(u) =
1

J
curlx̂(û) ◦ Φ−1. (6.33)

3. Let furthermore ê be an edge of the reference element and e = Φ(ê). Then∫
e

u · τe ds =

∫
ê

û · τê dŝ. (6.34)

Proof. Direct calculations, see e.g. [Sch09a, p. 18 f].

6.7 Remark. At first, the factor 1
J
F in (6.32) seems strange, but with it the following

identity holds

div(curl(u)) = div(P [curl(û)]) =
1

J
div(curl(û)) ◦ Φ−1 = 0, (6.35)

i.e. the exact sequence from the continuous level is inherited by the discrete one if the
H(div)- and H(curl)-conforming elements are chosen. This is reflected in the de Rham
complex in three dimensions:

H1 ∇−−−→ H(curl)
curl−−−→ H(div)

div−−−→ L2⋃ ⋃ ⋃ ⋃
Qh

∇h−−−→ Vh
curlh−−−→ Wh

divh−−−→ Sh

6.3.3 Complete discretization

Let ΩR be the reference configuration of the solid domain and Φ(ΩR) =: Ω the deformed
state. For simplicity we assume homogeneous Dirichlet and Neumann data. In this
subsection we will write D·

Dt
instead of ∂·

∂t
for the material time derivative (see remark
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6 Discretization of the elastic wave equation

4.14).

The starting point is again (6.1), where we look for d ∈ L2((0, T ), H1(ΩR)) and u ∈
L2((0, T ), H(curl,Ω)) such that

Dd

Dt
= u, (6.36a)

ρ
Du

Dt
= div(FΣ). (6.36b)

We differentiate the velocity in local body frame uR ∈ L2((0, T ), H(curl,ΩR))

uR = F Tu ◦ Φ (6.37)

with respect to time and obtain

DuR
Dt

=
DF T

Dt
u+ F TDu

Dt

⇔F−TDuR
Dt

= F−T
DF T

Dt
F−TuR +

Du

Dt
(6.38)

6.8 Remark. We remember that there holds u(xR, t) = u(Φ(xR, t), t) = u(x, t) (see
section 2).

Now, we multiply the first equation (6.36a) with F−T and the test function vR ∈
H(curl,ΩR) and integrate over the domain ΩR∫

ΩR

Dd

Dt
F−TvR dxR =

∫
ΩR

(F−TuR)(F−TvR) dxR =

∫
ΩR

C−1uRvR dxR. (6.39)

For the second equation (6.36b) we use (6.38), multiply with w ∈ [H1(ΩR)]n and inte-
grate over ΩR∫

ΩR

ρF−T
DuR
Dt

w dxR =

∫
ΩR

(
ρF−T

DF T

Dt
F−TuR + div(FΣ)

)
w dxR (6.40)

Summing up, the continuous problem reads:
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6.3 H(curl)-conforming time discretization

6.9 Problem. Find d ∈ L2((0, T ), [H1
ΓD

(ΩR)]n) and uR ∈ L2((0, T ), H(curl,ΩR))
such that for all t ∈ [0, T ]∫

ΩR

Dd

Dt
F−TvR dxR =

∫
ΩR

C−1uRvR dxR ∀vR ∈ H(curl,ΩR), (6.41a)∫
ΩR

ρF−T
DuR
Dt

w dxR =

∫
ΩR

(ρF−T
DF T

Dt
F−TuR

+ div(FΣ)) dxR ∀w ∈ [H1
ΓD

(ΩR)]n. (6.41b)

After the spatial discretization of (6.41) with the finite element spaces D and N for
the displacement and velocity, respectively, the time discretization is done using a mix
of the midpoint and trapezoidal rule. With the notation

fn+ 1
2
(x(t)) := f

(
xn+1 + xn

2

)
(6.42)

we obtain:

6.10 Problem. Find (dn+1, un+1
R ) ∈ D ×N such that∫

ΩR

dn+1 − dn

τ
F−T
n+ 1

2

vR dxR =

∫
ΩR

C−1
n+ 1

2

uR,n+ 1
2
vR dxR ∀vR ∈ N,

(6.43a)∫
ΩR

ρF−T
n+ 1

2

un+1
R − unR

τ
w dxR =

∫
ΩR

(ρF−T
n+ 1

2

(F T )n+1 − (F T )n

τ
F−T
n+ 1

2

uR,n+ 1
2

+ div(Fn+ 1
2
Σ(Cn+ 1

2
)))w dxR ∀d ∈ D.

(6.43b)

6.11 Remark. For a complete midpoint rule discretization we would obtain terms of
the form

F T
n+ 1

2
Fn+ 1

2

instead of

Cn+ 1
2
.

This has the drawback that rigid body motions, which would lead to C = 0, are not
discretized correctly. Using Cn+ 1

2
overcomes this problem as the rigid body motions then

get interpolated.
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6 Discretization of the elastic wave equation

6.3.4 Further discretization in 3d

Instead of discretizing DFT

Dt
directly with the difference quotient, we can rewrite the term

F−T DF
T

Dt
F−TuR as following:

F−T
DF T

Dt
F−TuR = F−T (∇xRu)T F−TuR

= (∇xu)Tu

= sym(∇xu)u− skew(∇xu)u

= sym(∇xu)u− 1

2
curlx(u)× u

(6.32)
= sym(F−T Ḟ T )F−TuR −

1

2
J−1F curlxR(uR)× F−TuR,

where we used the transformation rule for gradients, i.e. ∇xRu = ∇xuF , split ∇xu into
its symmetric and skew-symmetric part and used the following identity

skew(∇xu)v =
1

2

 0 ∂u1
∂y
− ∂u2

∂x
∂u1
∂z
− ∂u3

∂x
∂u2
∂x
− ∂u1

∂y
0 ∂u2

∂z
− ∂u3

∂y
∂u3
∂x
− ∂u1

∂z
∂u3
∂y
− ∂u2

∂z
0

 v =
1

2
curlx(u)× v, (6.44)

which holds for all u ∈ C1(R3,R3) and v ∈ R3. In the last step we used the property of
the covariant transformation.

Thus, the new problem reads:

6.12 Problem (H(curl)-dynamics 3d). For Ω ⊂ R3, find d ∈ L2((0, T ), [H1
ΓD

(ΩR)]n)
and uR ∈ L2((0, T ), H(curl,ΩR)) such that for all t ∈ [0, T ]∫

ΩR

Dd

Dt
· F−TvR dxR =

∫
ΩR

C−1uR · vR dxR ∀vR ∈ H(curl,ΩR),

(6.45a)∫
ΩR

ρF−T
DuR
Dt
· w dxR =

∫
ΩR

ρ sym(F−T Ḟ T )F−TuR · w dxR

−
∫

ΩR

ρ

2
J−1F curlxR(uR)× F−TuR · w dxR

−
∫

ΩR

FΣ : ∇w dxR ∀w ∈ [H1
ΓD

(ΩR)]n.

(6.45b)

For this problem, a time discretization similar to (6.43) can be applied.
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6.3 H(curl)-conforming time discretization

6.3.5 Further discretization in 2d

Identity (6.32) holds only if Ω ⊂ R3, but in two dimensions (6.33) can be used instead.
Relation (6.44) has to be replaced by

skew(∇xu)v =
1

2

(
0 ∂u1

∂y
− ∂u2

∂x
∂u2
∂x
− ∂u1

∂y
0

)
v

=
1

2
(
∂u1

∂y
− ∂u2

∂x
)

(
v2

−v1

)
= −1

2
curlx(u)

(
v2

−v1

)
= −1

2
curlx(u) rot(v).

(6.46)

We compute rot(u) = rot(F−TuR)

rot(F−TuR) =
1

J
rot(

(
F22 −F21

−F12 F11

)(
uR1

uR2

)
)

=
1

J
rot(

(
F22uR1 − F21uR2

−F12uR1 + F11uR2

)
)

=
1

J

(
F11uR2 − F12uR1

F21uR2 − F22uR1

)
=

1

J
F rot(uR),

(6.47)

which yields

F−T
DF T

Dt
F−TuR = sym(∇xu)u− skew(∇xu)u

= sym(F−T Ḟ T )F−TuR +
1

2
curlx(u)rot(u)

(6.33)
= sym(F−T Ḟ T )F−TuR +

1

2J
curlxR(uR)rot(F−TuR)

(6.47)
= sym(F−T Ḟ T )F−TuR +

1

2J2
curlxR(uR)(F rot(uR)).

6.13 Remark. Note that there holds

J2 = det(F ) det(F ) = det(F TF ) = det(C) (6.48)

and thus, it can be discretized with det(Cn+ 1
2
).
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6 Discretization of the elastic wave equation

6.14 Problem (H(curl)-dynamics 2d). For Ω ⊂ R2, find
d ∈ L2((0, T ), [H1

ΓD
(ΩR)]n) and uR ∈ L2((0, T ), H(curl,ΩR)) such that

for all t ∈ [0, T ]∫
ΩR

Dd

Dt
· F−TvR dxR =

∫
ΩR

C−1uR · vR dxR ∀vR ∈ H(curl,ΩR),

(6.49a)∫
ΩR

ρF−T
DuR
Dt
· w dxR =

∫
ΩR

ρ sym(F−T Ḟ T )F−TuR · w dxR

−
∫

ΩR

ρ

2J2
curlxR(uR)(F rot(uR)) · w dxR

−
∫

ΩR

FΣ : ∇w dxR ∀w ∈ [H1
ΓD

(ΩR)]n.

(6.49b)

6.4 H(curl)-velocity-momentum discretization

The discretization method from above works well for pure solid problems, but the cou-
pling with the fluid does not work in this way (see section 8.4.2). Thus, we will introduce
another method, where a new variable is used: the time derivative of the momentum.
For the sake of simplifying the presentation we assume homogeneous Dirichlet data on
the whole boundary ∂ΩR.

6.4.1 Appropriate space for the time derivative of the momentum

System (6.36) can be rewritten as

Dd

Dt
= u, (6.50a)

ρ
Du

Dt
= p, (6.50b)

p = div(FΣ). (6.50c)

The according weak formulation reads:
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6.4 H(curl)-velocity-momentum discretization

6.15 Problem. Find (d, u, p) ∈ L2((0, T ), D)× L2((0, T ), N)× L2((0, T ), H) such
that for all t ∈ [0, T ]∫

ΩR

Dd

Dt
· q dxR =

∫
ΩR

u · q dxR ∀q ∈ H, (6.51a)∫
ΩR

ρ
Du

Dt
· v dxR =

∫
ΩR

Dp

Dt
· v dxR ∀v ∈ N, (6.51b)∫

ΩR

Dp

Dt
· w dxR = −

∫
ΩR

FΣ : ∇w dxR ∀w ∈ D, (6.51c)

with the [H1
ΓD

(Ω)]n and H(curl,Ω) finite element spaces for D and N , respectively.

The question now is what finite element space H should be used for the new unknown
p, which can physically be interpreted as the time derivative of the momentum?

We make the ansatz of choosing the finite element space for p in such a way that it is
bi-orthogonal to the H(curl)-space. If we take a closer look to the variational formula-
tion (6.51), we recognize that with the choice of these spaces the right-hand sides of the
first and second equation become block diagonal matrices after the spatial discretization.

This motivates us to use the topological dual space of H(curl) as the appropriate space
for the variable p, H := H(curl)∗.

The dual space consists for example of functionals of the form

f :H → R

u 7→
∫
E

u · τ ds,
(6.52)

i.e. the evaluation of the tangential component of u over an edge E. Nevertheless, by
using Riesz’s representation theorem we can identify the dual space with H(curl) again.

6.16 Remark. Moreover, by using complete discontinuous elements for the velocity and
the time derivative of the momentum, we can apply static condensation to eliminate both
of them, such that a small system involving only the displacement has to be solved, like
for the Newmark method (6.13).

Next, we discuss the time discretization of system (6.51). Again, we use the covariant
transformation to obtain the material velocity and also the variable p gets transformed
in material coordinates. As it is dual to the velocity the appropriate transformation is
given by

p = FpR. (6.53)

6.17 Remark. With these transformation rules there holds

u · p = (F−TuR) · (FpR) = uTRF
−1FpR = uR · pR. (6.54)
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6 Discretization of the elastic wave equation

6.18 Lemma. Let A,B,C ∈ GL(n) and C differentiable. Then there holds

a) skew(ABAT ) = A skew(B)AT .

b) ∂C−1

∂t
= −C−1 ∂C

∂t
C−1.

Proof. a) Direct calculation shows

skew(ABAT ) =
1

2

(
ABAT − ABTAT

)
=

1

2
A
(
B −BT

)
AT = A skew(B)AT .

b) Differentiating the identity C−1C = I yields

∂C−1

∂t
C + C−1∂C

∂t
= 0.

We start with the first equation of (6.51) using the notation from above and (6.54)∫
ΩR

Dd

Dt
FqR dxR =

∫
ΩR

uRqR dxR. (6.55)

The third equation is also easy to transform∫
ΩR

FpR · w dxR = −
∫

ΩR

FΣ : ∇w dxR. (6.56)

For the second one we use (6.38) and (6.18b)∫
ΩR

ρ(F−T
DuR
Dt

+
DF−T

Dt
uR) · F−TvR dxR =

∫
ΩR

pR · vR dxR. (6.57)

The left-hand side can be rewritten with

(Ḟ−TuR) · (F−TvR) = (F−1Ḟ−TuR) · vR
= ((sym(F−1Ḟ−T ) + skew(F−1Ḟ−T ))uR) · vR
(6.18b)

= ((sym(F−1Ḟ−T )− skew(F−1F−T Ḟ TF−T ))uR) · vR
= ((sym(F−1Ḟ−T )− skew(F−1 F−TF T︸ ︷︷ ︸

=I

(∇xu)TF−T ))uR) · vR

(6.18a)
= ((

1

2
Ċ−1 − F−1skew((∇xu)T )F−T )uR) · vR

= ((
1

2
Ċ−1 + F−1skew(∇xu)F−T )uR) · vR.
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6.4 H(curl)-velocity-momentum discretization

6.4.2 Further discretization in 3d

The left part of the scalar product can be further simplified

1

2
Ċ−1uR + F−1skew(∇xu)F−TuR

(6.18a)
= −1

2
C−1ĊC−1uR + F−1skew(∇xu)F−TuR

(6.44)
= −1

2
C−1ĊC−1uR +

1

2
F−1curlx(u)× F−TuR

(6.32)
= −1

2
C−1ĊC−1uR +

1

2
F−1J−1F curlxR(uR)× F−TuR

= −1

2
C−1ĊC−1uR +

1

2
J−1curlxR(uR)× F−TuR.

All together, we obtain the following problem:

6.19 Problem (velocity-momentum method 3d). For Ω ⊂ R3, find (d, u, p) ∈
L2((0, T ), D)× L2((0, T ), N)× L2((0, T ), H) such that for all t ∈ [0, T ]∫

ΩR

Dd

Dt
FqR dxR =

∫
Ω

uRqR dxR ∀q ∈ H, (6.58a)∫
ΩR

ρ(F−T
DuR
Dt

F−TvR −
1

2
C−1ĊC−1uRvR

+
1

2
J−1curlxR(uR)× F−TuRvR) dxR =

∫
ΩR

pR · vR dxR ∀v ∈ N, (6.58b)∫
ΩR

FpR · w dxR = −
∫

ΩR

FΣ : ∇w ∀w ∈ D. (6.58c)

6.4.3 Further discretization in 2d

In two dimensions, the curl operator and the cross product have to be replaced by (6.33)
and (6.46), respectively, to obtain

1

2
Ċ−1uR + F−1skew(∇xu)F−TuR

(6.18a)
= −1

2
C−1ĊC−1uR + F−1skew(∇xu)F−TuR

(6.46)
= −1

2
C−1ĊC−1uR −

1

2
F−1curlx(u)rot(F−TuR)

(6.47)
= −1

2
C−1ĊC−1uR −

1

2J
F−1F curlx(u)rot(uR)

(6.33)
= −1

2
C−1ĊC−1uR −

1

2J2
curlxR(uR)rot(uR)

and the according problem:
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6 Discretization of the elastic wave equation

6.20 Problem (velocity-momentum method 2d). For Ω ⊂ R2, find (d, u, p) ∈
L2((0, T ), D)× L2((0, T ), N)× L2((0, T ), H) such that for all t ∈ [0, T ]∫

ΩR

Dd

Dt
FqR dxR =

∫
Ω

uRqR dxR ∀q ∈ H, (6.59a)∫
ΩR

ρ(F−T
DuR
Dt

F−TvR −
1

2
C−1ĊC−1uRvR

− 1

2J2
curlxR(uR)rot(uR)vR) dxR =

∫
ΩR

pR · vR dxR ∀v ∈ N, (6.59b)∫
ΩR

FpR · w dxR = −
∫

ΩR

FΣ : ∇w ∀w ∈ D. (6.59c)

6.5 Numerical example

To compare the Newmark, velocity-dynamics and velocity-momentum method, we give
a numerical example in this section.

Parameter Value
ρ 1
E 2000
ν 0.2
fg −5

Table 6.1: Parameters for the elastic wave example

We assume an elastic beam in two dimensions with a length of 10 units and a height
of 1 unit. The according physical quantities can be seen in table 6.1.

Figure 6.3: Initial mesh with coordinate system

On the left side we prescribe homogeneous Dirichlet data, dD = 0, and on the re-
maining boundaries the do-nothing condition, σsn = 0. The right-hand side will be a
constant force fg to simulate gravity and we use the material law of Neo-Hook (4.21),
as the deformations are expected to be critical.
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6.5 Numerical example

We fix the triangulation Th of the mesh (see figure 6.3 on the preceding page), use the
polynomial order k = 2 for all finite element spaces and compute until T = 10.

For the Newmark scheme we use (6.22), whereas for the H(curl)-dynamics method
(6.41), which we will name dynamicsstart (see figure 6.4 on the following page and fig-
ure 6.5 on page 57), and (6.49), which is called just dynamics, are used to show the
differences between numerical differentiation and further discretization. The velocity-
momentum scheme is (6.59) and the complete discretization for one time step reads reads:

6.21 Problem. Find (dn+1, un+1, pn+1) ∈ (D,N,H) such that∫
Ωs

dn+1 − dn

τ
Fn+ 1

2
q dx =

∫
Ωs
un+ 1

2
q dx ∀q ∈ H,

(6.60a)∫
Ωs
ρ(F−T

n+ 1
2

un+1 − un

τ
v − 1

2
C−1
n+ 1

2

Cn+1 − Cn

τ
C−1
n+ 1

2

un+ 1
2
v

− 1

2 det(Cn+ 1
2
)
curl(un+ 1

2
)rot(un+ 1

2
)v) dx =

∫
Ωs
pn+ 1

2
v dx ∀v ∈ N,

(6.60b)∫
Ωs
Fn+ 1

2
pn+ 1

2
w dx+

∫
Ωs
Fn+ 1

2
Σ(Cn+ 1

2
) : ∇w dx = 0 ∀w ∈ D.

(6.60c)

6.22 Remark. In numerical experiments we did not find any differences, if we use the
implicit Euler instead of the midpoint scheme for the variable p in (6.60).

The first quantity of comparison is the displacement of the beam over time. Therefore,
we use the following discrete norm

||d||2B := τ

n∑
i=1

(∫
Th
|1
2

(d(x, ti) + d(x, ti−1)) |2 dx
)
, (6.61)

which is a discretization of the following norm

||d||2L2(0,T ;L2(Ω)) :=

∫ T

0

||d(·, t)||2L2(Ω) dt. (6.62)

This is a Lebesgue integral of functions that take values in a Banach space (in our case
L2(Ω)). For more details we refer to the theory of Bochner integrals.

Additionally, we compare the property of conserving the total energy

Etot = Ekin + Epot, (6.63)

55



6 Discretization of the elastic wave equation

with the kinetic energy measured over time is given by

Ekin := τ

n∑
i=1

∫
Th

ρ

2
|u(x, ti)|2 dx = τ

n∑
i=1

∫
Th

ρ

2
|F−TuR(x, ti)|2 dx (6.64)

and

Epot := τ

n∑
i=1

(∫
Th
N(C(d(x, ti))) dx+

∫
Th
d(x, ti) ·

(
0
−fg

)
dx

)
(6.65)

the potential energy, which is the sum of the internal stresses of the beam and the effect
of the position in the gravity field.

6.23 Remark. With (6.65) as the definition for the potential energy and the chosen
coordinate system in figure 6.3 on page 54 the beam has zero energy at the beginning
t = 0. Thus, we can calculate the exact energy error as the norm of the total energy
|Etot|.

For the computation of the displacement error we need a reference solution. Unfortu-
nately, there does not exist an analytical solution for this problem, so we use a solution
of the Newmark method with a smaller time step as an approximative reference solution
dref . This yields the error estimator

e(d) := ||d− dref ||B. (6.66)

10−310−2
10−5

10−3

10−1

101

Time step τ

E
rr
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Dynamicsstart

Dynamics
Velocity-momentum

τ 2

τ 3

Figure 6.4: Displacement error

As can be seen in figure 6.4 and in table 6.2 on the facing page and 6.3 on page 58
all methods converge to the same solution, where the convergence rate of the dynamic-
sstart method is the slowest with an order a bit less than 1.5. The dynamics method has
an improved second order convergence rate and the velocity-momentum and Newmark
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Figure 6.5: Energy error

Timestep k error order
4.00e-2 2 8.99 -
2.00e-2 2.35 3.83
1.00e-2 5.11e-1 4.59
5.00e-3 9.42e-2 5.42
2.50e-3 1.67e-2 5.63
1.25e-3 2.88e-3 5.81
6.25e-4 4.16e-4 6.91

Timestep k error order
4.00e-2 2 24.03 -
2.00e-2 9.28 2.59
1.00e-2 3.46 2.68
5.00e-3 1.27 2.72
2.50e-3 4.60e-1 2.77
1.25e-3 1.64e-1 2.80
6.25e-4 5.84e-2 2.81

Table 6.2: Displacement error of the Newmark and dynamicsstart method

method are the fastest with a rate about 2.5.

For the property of conserving the total energy Etot listed in table 6.4 on the following
page and 6.5 on the next page the dynamicsstart method is again worse than all other
methods and has a linear convergence rate. The Newmark method provides a linear
order in conserving the energy, but starts with a lower error as dynamicsstart. The
dynamics method gives a little improvement, but the velocity momentum method has
obviously the best conservation property as it is of second order accuracy in time.
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6 Discretization of the elastic wave equation

Timestep k error order
4.00e-2 2 10.23 -
2.00e-2 2.35 4.01
1.00e-2 5.93e-1 4.31
5.00e-3 1.29e-1 4.59
2.50e-3 3.27e-2 3.95
1.25e-3 9.80e-3 3.34
6.25e-4 3.22e-3 3.05

Timestep k error order
4.00e-2 2 8.35 -
2.00e-2 2.21 3.77
1.00e-2 4.98e-1 4.44
5.00e-3 9.29e-2 5.36
2.50e-3 1.70e-2 5.46
1.25e-3 3.38e-3 5.03
6.25e-4 9.17e-4 3.69

Table 6.3: Displacement error of the dynamics and velocity-momentum method

Time step k error order
4.00e-2 2 75.36 -
2.00e-2 26.51 2.84
1.00e-2 11.12 2.38
5.00e-3 5.07 2.19
2.50e-3 2.42 2.10
1.25e-3 1.18 2.05
6.25e-4 8.21e-1 1.44

Time step k error order
4.00e-2 2 133.20 -
2.00e-2 68.96 1.93
1.00e-2 36.44 1.89
5.00e-3 18.93 1.93
2.50e-3 9.65 1.96
1.25e-3 4.87 1.98
6.25e-4 2.45 1.99

Table 6.4: Energy error of the Newmark and dynamicsstart method

Time step k error order
4.00e-2 2 6.06 -
2.00e-2 5.33 1.14
1.00e-2 2.95 1.81
5.00e-3 1.43 2.06
2.50e-3 7.13e-1 2.01
1.25e-3 3.56e-1 2.00
6.25e-4 1.78e-1 2.00

Time step k error order
4.00e-2 2 1.86 -
2.00e-2 4.48e-1 4.16
1.00e-2 8.17e-2 5.48
5.00e-3 2.30e-2 3.54
2.50e-3 5.52e-3 4.17
1.25e-3 1.51e-3 3.66
6.25e-4 8.78e-4 1.72

Table 6.5: Energy error of the dynamics and velocity-momentum method
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7 Arbitrary Lagrangian Eulerian description

As mentioned at the start of this thesis, the problems in fluid dynamics and nonlinear
solid mechanics require different descriptions of the motion of the particles. We discuss
the advantages and drawbacks of these forms and motivate the usage of a new form,
which combines the advantages of both and gives more freedom. For a detailed intro-
duction we refer to [DHPRF04] and [DH03].

7.1 Introduction into ALE

In Lagrangian form each mesh node is identified with a material particle. Using this,
the history of a particle can easily be reconstructed. A problem that appears is the
instability of the mesh if the deformation is huge as the elements can get extremely
stretched, rotated and pressed. Mostly, two domains are used, the material domain Ω̂
which describes the reference domain corresponding to the initial configuration, and the
spatial domain Ω corresponding to the current configuration. The deformation function

Φ : Ω̂× [0, T ]→ Ω× [0, T ]

(X, t) 7→ Φ(X, t) = (x, t)
(7.1)

establishes the relation between the material particles X and the spatial points x.
The gradient of Φ with respect to space and time of Φ reads in matrix form

∂Φ

∂(X, t)
=

(
∂x
∂X

u
0T 1

)
, (7.2)

with the material velocity u

u(X, t) =
∂x

∂t

∣∣
X=const

, (7.3)

where the material coordinate X is fixed.

With the Eulerian description the problems are overcome when large deformations
occur. Here, the mesh is fixed and the nodes describe the velocity without any reference
to the initial state of the continuum

u = u(x, t). (7.4)

The drawback of the separation of the nodes and the particles is that convective effects
appear due to the relative motion of the grid and the material points and thus, the
equations become non symmetric and more difficult to solve. Another difficulty occurs
if more than one material with different behaviour is used, e.g. a solid beam in a fluid.
With a fixed mesh it is nearly impossible to resolve the interface.
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7 Arbitrary Lagrangian Eulerian description

Figure 7.1: ALE domains with the corresponding mappings

Figure 7.2: Lagrangian, Eulerian and ALE description

The Arbitrary Lagrangian Eulerian (ALE) description is a kind of generalization of
the descriptions above. Here, neither the material configuration Ω̂ nor the spatial config-
uration Ω is taken as the reference configuration. Therefore, a new reference domain ΩR

is introduced where the reference coordinates are identified with the mesh nodes. Now
we have three transformations connecting the different configurations. The mapping ϕ
from the reference to the spatial domain is defined by

ϕ : ΩR × [0, T ]→ Ω× [0, T ]

(XR, t) 7→ ϕ(XR, t) = (x, t)
(7.5)

with the gradient

∂ϕ

∂(XR, t)
=

(
∂x
∂XR

û

0T 1

)
(7.6)
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7.1 Introduction into ALE

where û denotes the mesh velocity

û(XR, t) =
∂x

∂t

∣∣
XR=const

. (7.7)

Instead of Ψ, the inverse mapping Ψ−1 from the material to the reference domain (see
figure 7.1)

Ψ−1 : Ω̂× [0, T ]→ ΩR × [0, T ]

(X, t) 7→ Ψ−1(X, t) = (XR, t)
(7.8)

is used with its gradient

∂Ψ−1

∂(X, t)
=

(
∂XR
∂X

w
0T 1

)
. (7.9)

Here the velocity w is

w =
∂XR

∂t

∣∣
XR=const

. (7.10)

To obtain a relation between the velocities u, û and w we differentiate Φ = ϕ ◦Ψ−1

∂Φ

∂(X, t)
(X, t) =

∂ϕ

∂(XR, t)
(Ψ−1(X, t))

∂Ψ−1

∂(X, t)
(X, t)

=
∂ϕ

∂(XR, t)
(XR, t)

∂Ψ−1

∂(X, t)
(X, t).

(7.11)

The according matrix equation is(
∂x
∂X

u
0T 1

)
=

(
∂x
∂XR

û

0T 1

)(
∂XR
∂X

w
0T 1

)
, (7.12)

which yields the relation

u = û+
∂x

∂XR

w (7.13)

or by defining the convective velocity c

c := u− û =
∂x

∂XR

w (7.14)

which gives the relative velocity between the continuum and the mesh.

We note that the Eulerian and Lagrangian description can both be obtained from the
ALE formulation by selecting Ψ = id and Φ = id, respectively.

The obtained freedom of moving the mesh independently of the particles is not without
costs. The mesh deformation must be included in the equations and discretizations,
which will be the topic of the rest of this chapter.
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7 Arbitrary Lagrangian Eulerian description

7.2 Relations between the different forms of description

A physical quantity can be described in the reference, material and spatial domain:

f(x, t), fR(XR, t), f̂(X, t).

With the mappings defined above we can relate these quantities. We start with the
material and spatial description

f̂ = f ◦ Φ. (7.15)

By differentiating both sides with respect to (X, t) we obtain the following two equations

∂f̂

∂t
=
∂f

∂t
+
∂f

∂x
· u, (7.16a)

∂f̂

∂X
=
∂f

∂x

∂x

∂X
, (7.16b)

where (7.16a) is exactly the equation (2.9) from section 2, connecting the material and
spatial time derivative. By dropping the different indications for f and using the material
and spatial time derivation introduced in section (2.9) we get

Df

Dt
=
∂f

∂t
+ (u · ∇)f. (7.17)

Next, we investigate the relation between the reference and material configuration.
There holds

f̂ = fR ◦Ψ−1 (7.18)

and with (7.9) and similar calculations as before we obtain

∂f̂

∂t
=
∂fR
∂t

+
∂fR
∂XR

· w, (7.19a)

∂f̂

∂X
=

∂fR
∂XR

∂XR

∂X
. (7.19b)

Working with (7.19) requires the computation of the gradient ∂fR
∂XR

in the reference do-
main, but it is easier to work in the other domains (spatial or material). By using (7.14)
and the chain rule equation (7.19a) can be rewritten as

∂f̂

∂t
=
∂fR
∂t

+
∂f

∂x
· c. (7.20)

The third pairing involve the spatial and reference configuration by

fR = f ◦ ϕ, (7.21)

and differentiating both sides yields

∂fR
∂t

=
∂f

∂t
+
∂f

∂x
û, (7.22a)

∂fR
∂XR

=
∂f

∂x

∂x

∂XR

. (7.22b)
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7.3 ALE for H1-conforming discretization

For applying the techniques above to the FSI problem we first have to specify the func-
tions between the different configurations. In our case, we identify the reference and
material state of the solid domain, Ψ = id, as the deformation is expected to be small
enough for a pure Lagrangian description. Thus, only the fluid domain with the Navier-
Stokes equations has to be adjusted in this setting.

7.1 Remark. To avoid misunderstandings: we will always work on a fixed initial mesh,
which does not move during the computations. Thus, only the Eulerian description must
be adjusted.

If we choose the Taylor-Hood discretization for the Navier-Stokes equations, the re-
sults can be employed without bigger changes. As in the Navier-Stokes equations a
physical quantity representing the deformation or displacement does not appear, we
have to add an artificial displacement in the fluid domain, which we will denote, as for
the solid, with d. In literature the artificial deformation function is often denoted by A.
The displacement d will also be discretized with H1-conforming elements.

We start by integrating the weak formulation of the Navier-Stokes equations on the
spatial domain over Ω. For simplicity we set f ≡ 0 and ν = 1.∫

Ω

∂u

∂t
· v + (u · ∇)u · v +∇u : ∇v − div(v)p dx = 0,

−
∫

Ω

div(u)q dx = 0

We use the integral transformation theorem and (7.22b) to transform the equations to
the reference domain∫

ΩR

J(
∂u

∂t
◦ ϕ · vR + (∇uRF−1uR) · vR +∇uRF−1 : ∇vRF−1 − tr(∇vRF−1)pR) dxR = 0,

−
∫

ΩR

tr(∇uRF−1)qR dxR = 0,

with F = ∇ϕ = ∂x
∂XR

, J = det(F ), vR = v ◦ ϕ, pR = p ◦ ϕ, qR = q ◦ ϕ and uR = u ◦ ϕ,
and use (7.22a) to obtain the ALE description for the fluid part∫

ΩR

J(
∂uR
∂t
· vR +∇uRF−1(uR − û) · vR +∇uRF−1 : ∇vRF−1

− tr(∇vRF−1)pR) dxR = 0, (7.23a)

−
∫

ΩR

tr(∇uRF−1)qR dxR = 0. (7.23b)

7.2 Remark. We will denote the mesh velocity û in the following with ∂d
∂t

or, more

shortly, with ḋ, where the mapping ϕ is of the form ϕ = id + d, which helps simplifying
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7 Arbitrary Lagrangian Eulerian description

the notation in section 8.

Therefore, we define the following forms for the Navier-Stokes equations

a(d, u, v) :=

∫
ΩR

νJ∇uRF−1 : ∇vRF−1 dxR (7.24a)

c(d, u, v) :=

∫
ΩR

J
(
∇uRF−1(uR − ḋ)

)
· vR dxR (7.24b)

b(d, u, q) := −
∫

ΩR

Jtr(∇uRF−1)qR dxR (7.24c)

m(d, u, v) :=

∫
ΩR

J
∂uR
∂t
· vR dxR (7.24d)

and the according discrete forms for the Taylor-Hood discretization on the triangulation
Th.

7.3 Remark. We derived the ALE description of the Navier-Stokes equations by using
the weak form. It is also possible to deduce them in strong form by using appropriate
transformation rules, which yields to the same result.

We again interpret the forms in (7.24) as the operators M , A, B and C introduced in
section 5.4 by adding the additional nonlinear dependency on the artificial displacement

M(d)
∂u

∂t
+ A(d)u+ C(d, ḋ, u) +B(d)p = 0,

BT (d)u = 0.
(7.25)

To use standard (IMEX) Runge-Kutta methods, the ODE has to be of the following
form

u′(t) = f(u(t), t) . (7.26)

Unfortunately, the mass matrix M is now also time-dependent. One possibility is to
invert it and define M−1(t)f(u(t), t) =: F (u(t), t) as a new right-hand side. With this
method the discretization does have the disadvantage of inverting more than one matrix,
which we would like to avoid.

Another idea is to define M(t)u(t) = y(t) as a new unknown y and use the product
rule to rewrite (7.26) as

(M(t)u(t))′ −M ′(t)u(t) = f(u(t), t). (7.27)

With this substitution we obtain

y′(t)−M ′(t)M−1(t)y(t) = f(M−1(t)y(t), t)
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7.3 ALE for H1-conforming discretization

and with a new right-hand side the ODE

y′(t) = F (y(t), t) := f(M−1(t)y(t), t) +M ′(t)M−1(t)y(t), (7.28)

where we can apply the Runge-Kutta methods and, after that, we replace y(t) with
M(t)u(t) again.

As before, the stiffness matrix and the pressure terms are treated implicitly and the
convection explicitly. The additional term M ′M−1y will be discretized later.

To simplify the notation we write a subscript on the operator which refers to the
displacement dependency, e.g. An+1=̂A(dn+1), and we will neglect the pressure variable
p. Additionally, we use the Stokes operator D from (5.56). This yields

yn+1 − yn

τ
=

1

τ

∫
M ′M−1y dt−Dn+1(M−1

n+1y
n+1)− Cn(M−1

n yn). (7.29)

After substituting back we get

Mn+1u
n+1 −Mnu

n

τ
=

1

τ

∫
M ′u dt−Dn+1u

n+1 − Cn(un), (7.30)

and simple rearranging yields

(Mn+1 + τDn+1)(un+1 − un) = (Mn −Mn+1)un +

∫
M ′u dt− τ (Dn+1u

n + Cn(un)) .

(7.31)

In a last step we have to approximate the integral
∫ tn+1

tn
M ′u dt. The derivative can

be approximated with the forward, backwards or central differential quotient and u
explicitly or implicitly, where every choice leads to a bit different discretization. We list
three combinations below with the resulting systems:

• Forward difference quotient M ′ ≈ Mn+1−Mn

τ
and explicit

∫
u dt ≈ τun

(Mn+1 + τDn+1)(un+1 − un) = −τ (Dn+1u
n + Cn(un)) (7.32)

• Forward difference quotient M ′ ≈ Mn+1−Mn

τ
and implicit

∫
u dt ≈ τun+1

(Mn + τDn+1)(un+1 − un) = −τ (Dn+1u
n + Cn(un)) (7.33)

• Central difference quotient M ′ ≈ Mn+1−Mn−1

2τ
and explicit

∫
u dt ≈ τun

(Mn+1 + τDn+1)(un+1 − un) =
−Mn+1 + 2Mn −Mn−1

2
un − τ (Dn+1u

n + Cn(un))

(7.34)

65



7 Arbitrary Lagrangian Eulerian description

The first approach simplifies the equation as some terms cancel out. If u is treated
implicitly also some terms cancel. Note that on the left-hand side now the term Mn

appears instead of Mn+1 and thus, the mass matrix is completely explicit. By using the
central difference quotient the mass matrix must be known also from the last step. The
fraction remembers on the second derivative of M : 1

2
(−Mn+1 + 2Mn −Mn−1) ≈ −M ′′.

7.4 Remark. The convection part depends also on the mesh velocity ḋ. As the con-
vection is treated explicitly, we will approximate the mesh velocity with the backward
difference quotient

ḋn ≈ dn − dn−1

τ
. (7.35)

7.5 Remark. To obtain a second order scheme a second order IMEX method and the
central difference quotient (7.34) must be used.

7.4 ALE for H(div)-conforming discretization

For the H(div)-conforming elements the situation is a bit more tangled. The velocity
gets transformed with the Piola-transformation (5.36), which depends also on time t.
Therefore, we have to calculate the ALE transformation precisely.

With the notation of this section, we relate the velocities u and uR by

u ◦ ϕ = P [uR] :=
1

J
FuR. (7.36)

The time derivative of the determinant J = det(F ) = det(∇xRϕ) = det( ∂x
∂XR

) can be
calculated elementary, which is

J̇ = Jdivx(ϕ̇) = Jdivx(ḋ). (7.37)

Note that the divergence is taken with respect to the spatial derivative x and not to the
reference coordinates xR.

We differentiate both sides of (7.36) with respect to time t and use the product and
chain rule

(∇xu) ◦ ϕ ḋ+
∂u

∂t
◦ ϕ = − J̇

J2
+

1

J
ḞuR + P [u̇R]

(7.37)⇔ (∇xu) ◦ ϕ ḋ+
∂u

∂t
◦ ϕ =

1

J

(
∇xR ḋ uR − divx(ḋ)

)
+ P [u̇R],

where we used the Schwarz theorem

∂F

∂t
=
∂∇xRϕ

∂t
= ∇xRϕ̇ = ∇xR ḋ.
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7.4 ALE for H(div)-conforming discretization

With this and the transformation rule for gradients ∇xb = ∇xRbF
−1 we obtain

∂u

∂t
◦ ϕ =

1

J

(
∇xR ḋ− divx(ḋ)F

)
uR + P [u̇R]− (∇xRu)F−1ḋ

(7.36)
=

1

J

(
∇xR ḋ− divx(ḋ)F

)
uR + P [u̇R]− (∇xRP [uR])F−1ḋ. (7.38)

Now we integrate over the spatial domain Ω, multiply with a test function v, use the
integral transformation theorem, plug in (7.38) and note that v ◦ ϕ = P [vR]:∫

Ω

u̇v dx =

∫
ΩR

Ju̇ ◦ ϕ · v ◦ ϕdxR

=

∫
ΩR

J(
1

J
(∇xR ḋ− divx(ḋ)F )F−1F︸ ︷︷ ︸

=I

uR + P [u̇R]−∇xRP [uR]F−1ḋ)P [vR] dxR

=

∫
ΩR

J((∇xR ḋF
−1 − divx(ḋ))P [uR] + P [u̇R]−∇xRP [uR]F−1ḋ)P [vR] dxR.

Note that for the numerical implementations all derivatives with respect to x have to
be rewritten as derivatives with respect to xR. For the divergence the following relation
holds

divx(ḋ) = tr(∇xR ḋF
−1). (7.39)

For the derivation of the convection part (5.49) integration by parts and the divergence-
freeness of the velocity and the wind were used. Now the wind is the convective velocity
u− ḋ, which is not divergence-free, as d is only in H1(Ω) and not a H(div,Ω) function.
Thus, we get the additional term

tr(∇xR ḋF
−1)P [u]P [v], (7.40)

which cancels with (7.39).

The transformation of the other terms of the H(div)-conforming HDG formulation of
the Navier-Stokes equations can be calculated in a straight-forward fashion using the
integral transformation theorem and the transformation rule for gradients and the di-
vergence rule for H(div)-conforming elements (5.37).

The facet variables û do not get transformed with the Piola-transformation, as they
live in another finite element space. This vector-facet space can be interpreted as an
H(curl)-space without its inner degrees of freedom. Thus, to preserve the tangential
continuity, we use the covariant transformation (6.31), i.e. û◦ϕ = F−T ûR, and the same
holds for the according test function v̂.

7.6 Remark. In the following we will neglect xR and the subscripts R to simplify the
notation.
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7 Arbitrary Lagrangian Eulerian description

As before, we define the following forms on the triangulation Th on the reference
domain Ω, where k denotes the polynomial order and uup the upwind function defined
in (5.47):

a(d, ū, v̄) :=
∑
T∈Th

∫
T

J∇P [u]F−1 : ∇P [v]F−1 dx+

∫
∂T

J
∂P [u]

∂n
(F−T v̂ − P [v])τ ds

+

∫
∂T

J
∂v

∂n
(F−T û− P [u])τ +

αk2

h
J(F−T û− P [u])τ (F

−T v̂ − P [v])τ ds

(7.41a)

c(d, ū, v̄) := −
∑
T∈Th

∫
T

J
(
∇P [v]F−1(P [u]− ḋ)

)
· P [u] dx+

∫
∂T

P [u]nu
upP [v] ds

+

∫
∂Tout

P [u]n(F−T û− P [u])τ (F
−T v̂)τ ds (7.41b)

b(d, ū, q) := −
∫
Th

div(u)q dx (7.41c)

m(d, ū, v̄) :=

∫
Th
JP [u̇] · P [v] dx (7.41d)

r(d, ū, v̄) :=

∫
Th
J∇ḋF−1P [u] · P [v] dx (7.41e)

Like in the case of continuous elements, the mesh velocity part appears and is put into
the convection (7.41b), as the terms fit good together. We mention that due to (5.37)
the Piola-transformation of u vanishes in (7.41c). A huge difference to the Taylor-Hood
discretization is the additional form (7.41e) which appears due to the time dependency
of the Piola-transformation.

For the time discretization we will approximate again the mesh velocity with a dif-
ference quotient (see (7.35)). To calculate the gradient of it, we will take the difference
quotient of the gradients

∇ḋn ≈ 1

τ

(
∇dn −∇dn−1

)
. (7.42)

7.7 Remark. Due to (5.39) the compositions of Piola-transformations is a Piola-
transformation again. Thus the normal continuity of the velocity is ensured.

7.5 Numerical experiment of the additional term

To discuss the additional term (7.41e) from the H(div)-conforming ALE formulation, we
will prepare a simple numerical experiment.
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7.5 Numerical experiment of the additional term

We consider a rectangular channel with a parabolic inflow, u = uD, on the left side
and the outflow boundary on the right with the do-nothing condition, σfn = 0. On the
top and bottom wall we prescribe homogeneous Dirichlet data u = 0.

By setting the height to 1 and the width to 2 and the maximal inflow velocity to 0.25
the exact solution for the velocity u is given by

u(x, y, t) =

(
y(1− y)

0

)
in the whole channel.

Figure 7.3: Exact solution u(x, y, t)

The deformation is given by the following function

d(x, y, t) :=

(
0

t sin(πt)x(2− x)y(1− y) sin(5πx
2

)

)
, (7.43)

which produces quite strong oscillations. These cannot be resolved exactly with a poly-
nomial spatial discretization.

Figure 7.4: Reference and deformed mesh at t = 0.4

We use (7.41) once with (7.41e), which solution will be denoted by u1, and one time
without the additional term, u2. For the time discretization we will take (7.33) and
the backward difference quotient (7.42) and thus, the method should be of first order
accuracy in time.
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7 Arbitrary Lagrangian Eulerian description

τ ||u− u1||L2(Ω) order ||u− u2||L2(Ω) order
0.02 6.69e-3 - 8.77e-2 -
0.01 3.31e-3 2.02 8.72e-2 1.01
0.005 1.64e-3 2.02 8.70e-2 1.00
0.0025 8.21e-4 1.99 8.69e-2 1.00
0.00125 4.09e-4 2.00 8.69e-2 1.00

Table 7.1: L2-error of the solutions at t = 0.4

The comparison between the two solutions u1, u2 is done at time t = 0.4, where the
L2-error is measured

ei := ||u(x, y, 0.4)− ui(x, y, 0.4)||L2(Ω) i = 1, 2. (7.44)

In table 7.1 the results are listed for different time steps τ and, as already can be seen
in figure 7.5, the method u2 without the additional term (7.41e) fails completely, as the
artificial deformation can directly be seen. Thus, it cannot be neglected and must be
implemented to achieve good results.

Figure 7.5: Correct solution u1 and incorrect solution u2 at t = 0.4
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Figure 7.6: L2-error of the solutions at t = 0.4
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8 Fluid-structure interaction formulation

After the Navier-Stokes and the elastic wave equations have been prepared and the ALE
description has been introduced, we are now able to start deriving the complete FSI
description.

We start by discussing the interface conditions between the fluid and solid domain
and how the quantities are coupled. Another important topic is the uniform description
of the equations and how they can be solved sufficiently and efficiently. First, a gen-
eral approach will be introduced and then we specialize to two different discretization
techniques, one consisting of completely H1-conforming elements and the other using
H(div)-conforming elements for the fluid part and the mixed version of the elastic wave
equation with elements in H1(Ω) for the displacement, H(curl)-conforming elements for
the velocity and the dual space H(curl)∗ for the time derivative of the momentum.

8.1 General description

There are two different general approaches for describing FSI problems, the monolithic
and the partitioned approach.

• For a monolithic approach the equations for the fluid and solid are solved together
at once with a single solver. Therefore, the arising system is larger and the solver
must be able to handle both types of equations. An advantage is that the interface
conditions can be treated quite easy in a natural way.

• The partitioned approach uses two different solvers and the equations are split
to solve them separately. Here, the solver can be optimized for each equation or
existing solvers can be used. The drawback of these methods is that the interface
conditions must be treated also separately which can be complicated.

In this thesis, however, only the monolithic description is used and thus, we build a
huge system which is then solved at once.

Figure 8.1: FSI model problem

As a model problem, we assume a bounded domain Ω which is divided into two disjoint
subdomains: Ωf ⊂ Ω, which is occupied by the fluid, and the solid domain Ωs ⊂ Ω,
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8 Fluid-structure interaction formulation

Ωf ∩ Ωs = ∅ (see figure 8.1 on the preceding page). We denote with Γin ⊂ ∂Ω and
Γout ⊂ ∂Ω the inflow and outflow boundary of the fluid domain, respectively. The
interface boundary ΓI, where the fluid and solid interact with each other, is defined by

ΓI := Ω
f ∩ Ω

s
. (8.1)

For the remaining fluid boundaries we write ΓF and for the solid boundaries ΓS.

The two main quantities are the displacement and the velocity, which appear in both
domains. Therefore, we split the global displacement d into the solid and fluid displace-
ment and use the following notation

ds : Ωs × [0, T ]→ R3, (8.2a)

df : Ωf × [0, T ]→ R3, (8.2b)

for the solid and fluid, respectively.

The global velocity u is split in the same way

us : Ωs × [0, T ]→ R3, (8.3a)

uf : Ωf × [0, T ]→ R3. (8.3b)

We will always construct the displacement in such a way that it is globally continuous
and thus, it is in [H1(Ω)]n. Then we are able to define the deformation gradient and its
determinant globally:

F = I +∇d, J = detF. (8.4)

The boundary conditions for the boundaries involving only one of the domains are han-
dled in the usual way. For the inflow boundary Γin the inflow velocity, which can depend
on time t, is prescribed and we use the do-nothing condition for the outflow boundary
Γout. On the remaining fluid boundaries the no-slip condition is prescribed

uf = uD(t) on Γin, σfn = 0 on Γout, uf = 0 on ΓF. (8.5)

We remember that σf denotes the fluid stress tensor and n the outer normal vector.

The solid boundaries which are not part of the interface can be set to be fixed, i.e.
homogeneous Dirichlet data is prescribed for the displacement, or they should be stress
free, which is exactly the do-nothing condition

ds = 0 or σsn = 0 on ΓS. (8.6)

Here, σs is the first Piola-Kirchhoff stress tensor.
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8.2 Deformation extension

For the interface boundary ΓI the situation is a bit more involved. First, the velocity
of the fluid and solid has to be continuous on the interface, otherwise the domain would
break up. In other words, a no-slip condition for the fluid is prescribed on the interface.
With this the fluid velocity is the same as the solid one. Another important thing
is the transportation of the forces between the two domains, as the interface is the
only possibility to exchange information from the fluid to the solid and vice versa in a
monolithic sense

σfn = σsn and uf = us on ΓI. (8.7)

8.2 Deformation extension

Until now, the displacement of the fluid domain has not been mentioned, which plays
a crucial role in FSI. The deformation d is only calculated directly in the solid part,
as it appears in the elastic wave equation and the interface conditions ensure just the
continuity of the velocity u. Thus, a method has to be used to ”extend” the information
of the deformation of the solid to the whole domain Ω. For different approaches we refer
to [Wic11].

A first simple approach is to solve a Poisson problem in the fluid domain with the
Dirichlet data as the deformation of the solid on the interface and homogeneous Dirichlet
data on all other fluid boundaries:

8.1 Problem (Poisson extension). Find df such that

−∆df = 0 in Ωf , (8.8a)

df = ds on ΓI, (8.8b)

df = 0 on ∂Ωf\ΓI. (8.8c)

This works fine as long as the deformation is small because the values of the solution
of the Poisson problem decrease very fast. If large deformations occur, it is possible
that elements are pressed through others, which is neither realistic nor desirable and the
system can become unstable (see figure 8.2 on the next page).

Solving a biharmonic instead of a Poisson problem improves the situation as it is
a stiffer problem, but with large deformations also this approach fails without further
treatment.

To avoid such effects we can add a kind of penalty term to the problem, more precisely
we divide through the determinant J of the deformation gradient (see (8.4)), which gets
small if a volume element gets pressed and compressed:
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8 Fluid-structure interaction formulation

Figure 8.2: Left side: Poisson extension, right side: Poisson extension with determinant
as penalty term

8.2 Problem (Poisson extension with penalty term). Find df such that

− 1

J
∆df = 0 in Ωf , (8.9a)

df = ds on ΓI, (8.9b)

df = 0 on ∂Ωf\ΓI. (8.9c)

This ensures the stability of the solution in the sense that elements are not pressed so
their volume gets zero, but now the problem is nonlinear. Treating it explicitly is not
recommended as it can get unstable and therefore an implicit system has to be solved
in every time step, for example with Newton’s method.

There are two possible ways to include the deformation extension to an existing FSI
problem. One is to solve the system first without it and thus, the new deformation is
only known in the solid part. If information of the deformation is needed in the fluid
equations, e.g. they are treated implicitly, an extrapolated deformation has to be used.
Then (8.9) is solved alone on the fluid domain. The drawback of the extrapolation in the
fluid domain gets balanced by the advantage that the FSI system can be solved without
a Newton’s method, if the discretization method of the other equations allow this, and
the smaller nonlinear system involving only the displacement must be calculated in such
a way, which is more efficient and faster.

However, if the original system is already solved as a nonlinear problem, then adding
(8.9) to it is a more natural way. A subtle detail has then to be considered. The weak
form of (8.9) reads:
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8.2 Deformation extension

8.3 Problem. Find d ∈ [H1
∂Ωf\ΓI

(Ωf )]n such that∫
Ωf

1

J
∇d : ∇w dx−

∫
ΓI

1

J
∇dn · w ds = 0 ∀w ∈ [H1

∂Ωf\ΓI
(Ωf )]n, (8.10)

where the test function w only vanishes on the outer boundary ∂Ωf\ΓI, but not on the
interface. We would like to just neglect the additional boundary integral, but this would
effect the solid displacement. A compromise is to multiply (8.10) with a small factor
ε which reduces this effect, but not the stability as the factor 1

J
dominates for strong

compressions of the elements.

8.4 Problem. Find d ∈ [H1
∂Ωf\ΓI

(Ωf )]n such that∫
Ωf

ε

J
∇d : ∇w dx−

∫
ΓI

ε

J
∇dn · w ds︸ ︷︷ ︸
≈0

= 0 ∀w ∈ [H1
∂Ωf\ΓI

(Ωf )]n. (8.11)

8.5 Remark. The argument that the boundary term in (8.11) can be neglected if ε is
chosen small enough, requires that the term 1

J
is bounded from below for all t ∈ [0, T ] on

ΓI . This holds as we always assume that the edges on ΓI connecting the fluid and solid
domain do not get strongly compressed.

Although (8.11) does a good job, the elements can get deformed quite heavily, which
can have poor consequences for the stability.

Using an elasticity problem instead of the Poisson problem helps, as the elements
rotate more to preserve the triangle structure. Another approach is to use position-
dependent coefficients to increase the stiffness, e.g. near edges where the deformation
is expected to be high. We combine all three methods, which yields the material law of
Neo-Hook (4.21) with a position-dependent function h(x), which must be chosen appro-
priate to the actual problem (see e.g. section 9).

The new method can be described by the following minimization problem:

8.6 Problem (Neo-Hook extension with position-weighted function). Find
d ∈ [H1

∂Ωf\ΓI
(Ωf )]n such that

N(C(d)) :=

∫
Ω

h(x)
µ

2

(
tr(C − I) +

2µ

λ
(det(C))−

λ
2µ − 1

)
dx→ min!, (8.12)

where C denotes the Cauchy-Green strain tensor (4.4) and µ and λ the Lamé-constants
(see (4.26)).
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8 Fluid-structure interaction formulation

Figure 8.3: Left side: Poisson with determinant, right side: Neo-Hook with position-
weighted function

This energy functional induces the following variational formulation, where again the
small parameter ε is used, if the big solving is solved at once.

8.7 Problem. Find d ∈ [H1
∂Ωf\ΓI

(Ωf )]n such that

nhε(d, w) :=

∫
Ω

εh(x)µF (I − det(C)−
λ
2µC−1) : ∇w dx = 0 ∀w ∈ [H1

∂Ωf\ΓI
(Ωf )]n.

(8.13)

In figure 8.3 the different extensions between (8.11) and (8.12) can be seen.

8.3 FSI description for H1-conforming discretization

We use the Taylor-Hood discretization for the Navier-Stokes equations in the ALE setting
(7.24) together with the H1-conforming discretization of the elastic wave equation. As
both of them use continuous elements, we can combine them to a FSI description without
bigger changes. We recall the two equations

mf (
∂uf

∂t
, v) + a(uf , v) + b(v, p) + b(uf , q) + c(uf , uf , v) =

∫
ΓI

σfnv ds, (8.14)

ms(
∂2ds

∂t2
, w) + ks(ds, w) =

∫
ΓI

σsnw ds. (8.15)

Due to the continuity of all quantities and the interface conditions (8.7) we can add both
equations and the boundary integrals cancel out, because the outer normal vector n has
a different sign on the fluid and solid domain. This yields in operator form

M f ∂u
f

∂t
+Dfuf + Cf (uf ) +M s∂u

s

∂t
+K(ds) = 0, (8.16)
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8.3 FSI description for H1-conforming discretization

where D denotes again the Stokes operator and the (nonlinear) dependency of the dis-
placement df and the pressure pf have been neglected. The superscripts on the operators
help to remember on which domains they are defined, but sometimes we neglect them
for ease of presentation. The same holds for the superscripts for the velocity u and
displacement d.

For the spatial discretization an IMEX scheme can be used. Another approach is
to use the Crank-Nicolson method, write everything into a huge bilinear form and use
Newton’s method to solve the resulting system (see section (8.3.2)), which is done for
example in [HT06]. A different approach is used in [Wic13], where the Rothe method is
used, discretizing first in time and then in space.

8.3.1 IMEX scheme for H1-conforming FSI

Here, we combine the results from the ALE time discretization of the Navier-Stokes
equations in section 7.3 and the time discretization of the elastic wave equation in
section 6.2.2. This leads to the following IMEX time discretization for the FSI problem:

(M s +M f
n+1 + τDn+1)(un+1 − un) = −τ

(
Dn+1u

n + Cn(un) +
τ

2
K ′n(un + un+1) +Kn

)
.

8.8 Remark. The dependency on the displacement will be denoted by a subscript again,
e.g. Dn+1=̂D(dn+1).

We bring all terms with un+1 on the left-hand side and add terms such that the
equation is again in update form

(M s +M f
n+1 + τDn+1 +

τ 2

2
K ′n)(un+1 − un) = −τ (Dn+1u

n + Cn(un) + τK ′nu
n +Kn) .

(8.17)

8.9 Remark. For the Navier-Stokes equations we used (7.32), but (7.33) or (7.34)
can also be taken. In the numerical experiments we did not find significant differences
between these schemes.

We note that Kn depend only on dn and not on the velocity u. Thus, it appears on
right-hand side.

As mentioned before, we have to decide if we calculate the deformation extension af-
ter the system has been solved or at the same time. In (8.17), all the nonlinear terms,
despite the displacement in M f

n+1 and Dn+1, are treated explicitly and so, we can avoid
solving a nonlinear system if we extrapolate the needed displacement at least linearly
and expand the deformation afterwards.

The FSI algorithm for one time step with H1-conforming elements in pseudo code
reads:
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8 Fluid-structure interaction formulation

Algorithm 8.1 FSI-IMEX-H1(un, pn, dn)

1: Extrapolate dn

2: Calculate K ′n
3: Solve the linear system (8.17) → un+1, pn+1

4: Use (6.21c) → dn+1
s

5: Expand the deformation by solving (8.12) with Newton’s method → dn+1

8.3.2 Crank-Nicolson method for H1-conforming FSI

To use Crank-Nicolson we combine the time discretization in section 5.4.2 for the Navier-
Stokes equations and (6.23) for the elastic wave equation. These can be added together
without any changes.

Now, we take (8.13) for the deformation extension and the arising system for one time
step is:

8.10 Problem. Find (un+1, dn+1) such that

1

2
(M f

n+1 +M f
n )(un+1 − un) +

τ

2
(An+1u

n+1 + Anu
n) + τ(Bn+1p

n+1 +BT
n+1u

n+1)+

τ

2
(Cn+1(un+1) + Cn(un)) +M s(un+1 − un) +

τ

2
(K(dn+1) +K(dn))+

M s
I (
τ

2
(un+1 + un)− dn+1 + dn) +NHε(d

n+1) = 0,

(8.18)

where NHε is the operator according to (8.13).

8.4 FSI description for H(div)- and H(curl)-conforming
discretization

For the second pairing we use the H(div)-conforming HDG method from section 5.3 for
the Navier-Stokes equations and the new discretization method for the elastic wave equa-
tion derived in section 6.3. Now, the continuity of the velocity in the fluid domain Ωf is
split into the normal continuous H(div)-conforming elements u and the facet variables
û, which consider only the tangential part. The velocity of the solid gets approximated
by H(curl)-conforming elements and thus, is only tangential continuous. Therefore, the
implementation of the interface conditions need more treatment than for the first pair-
ing. The displacement d is continuous again, so that the deformation extension into the
fluid domain can be handled in the same manner as before.
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8.4 FSI description for H(div)- and H(curl)-conforming discretization

Figure 8.4: H(curl) and vector-facet combined

8.4.1 General approach

First, the facet variables which live only on the skeleton of the triangulation Th can be
interpreted as H(curl) elements without the inner degrees of freedom. Exploiting this
we can define a global H(curl) finite element space where the inner degrees of freedom
are only used on the solid domain (see figure 8.4).

Now the interface condition for the velocity is split into its tangential and normal
components

usτ = ufτ and usn = ufn on ΓI. (8.19)

Due to the tangential continuity of the facet variables and the solid velocity the first
equation is already fulfilled. Unfortunately, for the normal component we have to use a
new approach as the normal trace of the solid velocity is not well-defined on the interface
ΓI, as it is in H(curl).

Figure 8.5: L2-surface element

Therefore, we introduce a new unknown λ ∈ L2(F) and the corresponding test func-
tion µ ∈ L2(F) as a Lagrange parameter for the normal velocity. The L2-surface finite
element space consists of polynomials, which live only on the skeleton of the triangula-
tion Th (see figure 8.5). To enforce the normal continuity of the velocity on the interface
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8 Fluid-structure interaction formulation

we define

s(ds, uf , µ) :=

∫
ΓI

(
ḋs − uf

)
n
µ ds. (8.20)

The velocity ḋs will be approximated by the difference quotient ḋs ≈ dn+1−dn
τ

. By using
λ as a Lagrange parameter, the following term is added to the existing forms∫

ΓI

(w − vf )nλ ds, (8.21)

where w ∈ [H1
ΓD

(Ω)]n denotes the test function corresponding to the displacement d and
v the test function to the velocity u living in H(div,Ωf ).

Figure 8.6: Rotated outer normal vector

The outer normal vector n and thus the coupling of the normal component of the
velocity changes, if the solid gets transformed (see figure 8.6). To enforce the correct
continuity condition we have to transform also (8.20) and (8.21):∫

ΓI

(
ḋs − P [uf ]

)
(F−Tn)µ ds, (8.22a)∫

ΓI

(w − vf )(F−Tn)λ ds, (8.22b)

where P [·] denotes the Piola-Transformation (5.36).

For the time discretization we use the Crank-Nicolson method as it gives a bit more
freedom than the implicit Euler scheme

1

2

∫
ΓI

(
dn+1 − dn

τ
− P [ufn+1])(F−Tn+1n)µ ds+

1

2

∫
ΓI

(
dn+1 − dn

τ
− P [ufn])(F−Tn n)µ ds,

(8.23a)

1

2

∫
ΓI

(w − vf )(F−Tn+1n)λn+1 ds+
1

2

∫
ΓI

(w − vf )(F−Tn n)λn ds.

(8.23b)
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After the global continuity of the velocity is recovered, the boundary integrals∫
ΓI

σfn ds and

∫
ΓI

σsn ds

cancel out again, when we add both equations.

8.4.2 H(div)-conforming HDG with H(curl)-dynamics

The first approach is to couple the H(div)-conforming HDG method from section 5.3
with the H(curl)-dynamics method (6.45) or (6.49). Unfortunately, this does not work
appropriately, which can be seen as following.

The first equation in (6.45) enforces the coupling of the time derivative of the dis-
placement with the velocity ∫

Ωs
(F−1ḋ− C−1û) · v̂ dx = 0. (8.24)

The velocity test function v̂ appears also on the fluid domain in the Navier-Stokes
equations ∫

∂T f
νf (

∂u

∂n
+
αk2

h
(û− u)τ ) · v̂τ ds = 0, (8.25)

where k denotes the polynomial degree, h the mesh size and α the stability parameter.

Thus, if we add both equations, they interact on the interface ΓI . If we look on the
physical quantities on the left side, we obtain with [û] = [v̂] = m

s
, [C−1] = [F−1] = 1 and

[
∫

Ωs
· dx] = m2

[

∫
Ωs

(F−1ḋ− C−1û) · v̂ dx] =
m4

s2
, (8.26)

but on the left side with [νf ] = m2

s
, [∂u

∂n
] = 1

s
and [ 1

h
] = 1

m

[

∫
ΓI

νf (
∂u

∂n
+
αk2

h
(û− u)τ ) · v̂τ ds] =

m4

s3
, (8.27)

e.i, the quantities (8.26) and (8.27) do not fit together.

8.11 Remark. Another problem is that on the interface ΓI we cannot ensure that the
time derivative of the displacement coincides with the velocity in the solid anymore.
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8 Fluid-structure interaction formulation

8.4.3 H(div)-conforming HDG with velocity-momentum method

In this section we try to couple the H(div)-conforming HDG method with the velocity-
momentum method (6.59) (or (6.58) in three dimensions) instead of the H(curl)-dynamics
method. Now, the test function of the equation coupling the time derivative of the dis-
placement with the velocity of the solid is in the dual space H = H(curl,Ωs)∗, which
does not appear in the Navier-Stokes equations∫

Ωs
(ḋ− û) · q dx = 0. (8.28)

The H(curl) test function v̂ appears in the second equation of the velocity-momentum
method ∫

Ωs
(ρs

∂

∂t
(F−T û)− p) · v̂ dx = 0, (8.29)

which has the physical quantity

[

∫
Ωs

(ρs
∂

∂t
(F−T û)− p) · v̂ dx] = [ρs]

m4

s3
=
kg m

s3
. (8.30)

The units fit together with (8.27) if we add ρf to it, which is done in section 9, or divide
(8.30) through ρs. This makes also physically sense, as the forces get exchanged over
the interface ΓI .

Figure 8.7: Correct and wrong force coupling

We have to be careful when adding the two equations. If we change the sign in (8.29),
the equation itself is still fulfilled, but the forces might get transported in the wrong way
in the tangential direction (see figure 8.7).

In our case we want the time derivative of the momentum in the solid and the forces
in the fluid domain to have the same sign

p · v̂ + · · · = ∂u

∂n
· v̂ + · · · , (8.31)

to enforce the correct coupling.
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8.4.4 Complete discretization

Now, we are able to finish the discretization for the H(div)-conforming HDG coupled
with the velocity-momentum method.

We use (7.41) for the Navier-Stokes equations and the discretization (6.59) in two
dimensions, with its complete discretization (6.60). For ease of presentation we will set
all appearing parameters to 1.

For the Navier-Stokes equations we use the Crank-Nicolson method for the time dis-
cretization, only the pressure and incompressibility constraint are treated completely
implicit, and for the elasticity part a mix of the midpoint and CN scheme (see remark
6.11). The deformation extension into the fluid domain is done again with (8.13).

Note that we used the variable p for the pressure in the fluid domain and the time
derivative of the momentum in the solid domain, which live in different spaces. This
should not yield into confusion as in the context of the bilinear forms the appropriate
variable, and thus the appropriate space should be obvious.

Altogether, the huge bilinear form F reads:

F (


ū
d
p
λ

 ,


v̄
w
q
µ

) :=
1

2

(
a(dn+1, ūn+1, v̄) + a(dn, ūn, v̄) +m(dn+1, ūn+1, v̄) +m(dn, ūn, v̄)+

c(dn+1, ūn+1, v̄) + c(dn, ūn, v̄) + r(dn+1, ūn+1, v̄) + r(dn, ūn, v̄)
)
+

b(dn+1, ūn+1, q) + b(dn+1, v̄, pn+1) + nhε(d
n+1, w)+∫

Ωs

dn+1 − dn

τ
Fn+ 1

2
q − ûn+ 1

2
q − pn+ 1

2
v̂ + F−T

n+ 1
2

ûn+1 − un

τ
v̂−

1

2
C−1
n+ 1

2

Cn+1 − Cn

τ
C−1
n+ 1

2

− 1

2 det(Cn+ 1
2
)
curl(ûn+ 1

2
)rot(ûn+ 1

2
)v̂+

Fn+ 1
2
pn+ 1

2
w + Fn+ 1

2
Σ(Cn+ 1

2
) : ∇w dx+

1

2

∫
ΓI

(
dn+1 − dn

τ
− P [ufn+1])F−Tn+1nµ+ (

dn+1 − dn

τ
− P [ufn])F−Tn nµ+

(w − vf )(F−Tn+1n)λn+1 + (w − vf )(F−Tn n)λn ds.

(8.32)

8.12 Remark. In the bilinear forms (7.41) some time derivatives appear, which are
replaced by the backwards difference quotient

ḋ ≈ dn+1 − dn

τ
and u̇ ≈ un+1 − un

τ
. (8.33)
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9 Numerical examples

The following benchmark was purposed by Turek and Hron in [TH06] and [THM+10],
which is based on the configurations of the classical flow around cylinder CFD bench-
mark in [STD+96].

9.1 Equations and geometry

As in the last chapter, the domain Ω consists of the fluid Ωf and the solid domain Ωs.

The interface boundary is again denoted by ΓI = Ω
f ∩ Ω

s
.

The incompressible Newtonian fluid is described by the Navier-Stokes equations (sim-
ilar to (3.22)):

ρf
∂uf

∂t
+ ρf (uf · ∇)uf − ρfνf div(∇uf +∇uT ) +∇pf =0, (9.1a)

div(uf ) =0, (9.1b)

with the fluid density ρf and the dynamic viscosity νf .

The constitutive equation for the elastic solid is (see (4.32))

ρs
∂2ds

∂t2
− div(FΣs) = 0, (9.2)

where ρs denotes the solid density. We assume the constitutive law of the St. Venant-
Kirchhoff material

Σs = λstr(E)I + 2µsE,

with the Lamé coefficients λs and µs. As in section 4, we will also use the Poisson’s ratio
νs.

Figure 9.1: Complete channel

The configuration is based on the CFD benchmark in [STD+96], which consists of a
channel with a cylinder, which is set non-symmetric. For the FSI benchmark there is
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9 Numerical examples

Figure 9.2: Cylinder and structure part

additionally an elastic flag attached at the end of this cylinder (see figure 9.1 on the
previous page). The exact values of the channel, cylinder and elastic structure can be
seen in table 9.1.

Parameter value [m]
channel length L 2.5
channel width H 0.41
cylinder position C (0.2, 0.2)
cylinder radius r 0.05
solid structure length l 0.35
solid structure height h 0.02
reference point (at t = 0) A (0.6, 0.2)
reference point B (0.15, 0.2)

Table 9.1: Geometry parameters

9.2 Boundary data, initial condition and quantities of interest

We prescribe a parabolic inflow profile at the left channel by the function

uf (0, y) = 1.5U
y(H − y)(

H
2

)2 = 1.5U
4

0.1681
y(0.41− y), (9.3)

which is chosen in such a way that U is the mean value of the velocity and the maximal
velocity is 1.5U . Together with the geometry data, the Reynolds number is then defined
by Re = 2rU

νf
.

For the outflow boundary we choose the do-nothing condition, σfn = 0, and on the
other boundaries the no-slip condition, ufD = 0, is prescribed for the fluid.

The following smooth function is used as inflow data for the non-steady tests

uf (0, y, t) =

{
uf (0, y)

1−cos(π
2
t)

2
if t < 2,

uf (0, y) otherwise,
(9.4)
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9.3 Mesh and used methods

with the velocity profile uf (0, y) from (9.3).

The most reasonable quantity for comparison is the displacement of the beam which
is measured at the point A(t) on the right end at the middle of the flag (see figure 9.2
on the preceding page).

In the non-steady cases the frequency of the oscillation can also be computed.

Parameter FSI1 FSI2 FSI3
ρs [103] 1 10 1
νs 0.4 0.4 0.4
µs [103] 0.5 0.5 2
ρf [103] 1 1 1
νf [10−3] 1 1 1

U 0.2 1 2

Table 9.2: Parameters for the FSI tests

For the tests three different configurations of the parameters are used, which are listed
in table 9.2. The first one leads to a steady solution, while for the others the beam starts
bending periodically. We mention that in all cases we are in the situation of a laminar
flow without turbulences.

9.3 Mesh and used methods

Figure 9.3: Mesh on the coarsest level

level k TH-H1 HDG-VM
0 3 3980 7698

4 7668 11840
5 12527 16966

Table 9.3: Total number of degree of freedom for H1-conforming and H(div)-conforming
HDG-velocity-momentum FSI method

For the computations the mesh in figure 9.3 is used, which represents the coarsest
level. Normally, the mesh gets refined to increase the number of degrees of freedom
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9 Numerical examples

and to obtain a better spatial accuracy. In this thesis, however, we choose a differ-
ent approach and increase the polynomial degree k for the velocity and displacement
from three to five. We remember that for Taylor-Hood elements the pressure has one
polynomial degree less as the velocity, whereas the polynomial degree of the pressure in
the H(div)-conforming HDG setting can be set to zero, if all basis functions Ψ, which
are not divergence free, div(Ψ) 6= 0, are neglected (see reduced spaces in [LS16]). The
total amount of degrees of freedom at each polynomial level is listed in table 9.3 on the
preceding page.

The linear system arising in Newton’s method or directly from the equations in the
case an IMEX scheme is used, is solved directly. For symmetric and positive definite
(spd) matrices a Sparse Cholesky solver is used, whereas for non spd matrices we use
the direct solver UMFPACK2.

Figure 9.4: Position-dependent function dist(x)

For the deformation extension (8.13) we need to specify the position-dependent func-
tion h(x). As the beam will bend up and down, we expect very strong deformations of
the mesh triangulation Th near the corners on the right of the flag. Thus, we define the
function as

h(x) :=
1√

|dist(x)|2 + ε̄
, (9.5)

with

dist(x) := min
(
|x− p1|2, |x− p2|2

)
, p1 =

(
0.6
0.19

)
, p2 =

(
0.6
0.21

)
, (9.6)

where p1 and p2 are the corners and ε̄ a small regularisation parameter to avoid singu-
larities. This will make the elements stiffer, if they are near the corners (see figure 9.4).

For the material law of Neo-Hook in (8.13) we will set the parameters µ and λ simply
to one.

We will use two different discretization schemes for this benchmark. The first one
is the H1-conforming FSI method (8.18), where we use the CN method and Newton’s

2http://faculty.cse.tamu.edu/davis/suitesparse.html
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9.4 Numerical results

method to solve the huge arising system. For the second one, the H(div)-conforming
HDG combined with the velocity-momentum method (8.32) is used, which is also solved
by CN and Newton’s method.

9.1 Remark. For the H1-conforming method, also the FSI problem involving the IMEX
scheme (algorithm (8.1)) could be used. With it one time step is faster as one with the
CN method, but the time step τ must be chosen smaller, as the convection is treated
only explicitly. Thus, for easier comparison to the H(div)-conforming HDG velocity-
momentum method, we use (8.18).

9.4 Numerical results

In the following tables the displacement of the control point A in the stationary solution
for the FSI 1 benchmark and the maximal/minimal displacement of A in the FSI 2 and
FSI 3 examples are given.

We can observe that both discretization schemes give the same qualitative results for
all benchmark problems, which coincide also with the qualitative observation in [Wic13]
and [TH06].

level k ux [10−5] uy [10−4]
0 3 2.296 8.22

4 2.294 8.16
5 2.290 8.21

Table 9.4: FSI 1 with H(div)-conforming HDG velocity-momentum method and time
step τ = 0.001

level k ux [10−5] uy [10−4]
0 3 2.269 8.17

4 2.269 8.14
5 2.270 8.18

Table 9.5: FSI 1 with Taylor-Hood-H1 method and time step τ = 0.001

For a quantitative comparison of the H(div)-conforming HDG velocity-momentum
with the H1-conforming method the number of degrees of freedom is too little and thus,
the spatial accuracy is not high enough.
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level k ux [10−2] uy [10−2]
0 3 -1.39±1.18 0.15±7.97

4 -1.42±1.22 0.11±8.00
5 -1.46±1.26 0.12±8.11

Table 9.6: FSI 2 with H(div)-conforming HDG velocity-momentum method and time
step τ = 0.002

level k ux [10−2] uy [10−2]
0 3 -1.44±1.28 0.15±8.25

4 -1.51±1.26 0.12±8.13
5 -1.52±1.27 0.12±8.22

Table 9.7: FSI 2 with Taylor-Hood-H1 method and time step τ = 0.002

level k ux [10−3] uy [10−2]
0 3 -2.28±2.16 0.03±3.20

4 -2.87±2.68 0.09±3.75
5 -3.29±3.11 0.13±3.53

Table 9.8: FSI 3 with H(div)-conforming HDG velocity-momentum method and time
step τ = 0.0005

level k ux [10−3] uy [10−2]
0 3 -1.95±1.83 0.13±3.02

4 -3.30±3.15 0.12±3.78
5 -3.10±2.94 0.14±3.63

Table 9.9: FSI 3 with Taylor-Hood-H1 method and time step τ = 0.0005

Figure 9.5: FSI 2 with H(div)-conforming HDG velocity-momentum method
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Figure 9.6: FSI 3 with H(div)-conforming HDG velocity-momentum method
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Figure 9.7: Y-displacement of control point A with H(div)-conforming HDG velocity-
momentum method for FSI 1, 2 and 3
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10 Conclusion

10.1 Summary

In this thesis we presented a new discretization method for the elastic wave equation,
where the velocity is in H(curl) and the time derivative of the momentum, which lives in
the topological dual space H(curl)∗, was introduced. With this scheme the total energy
is conserved in space.

Together with the H(div)-conforming HDG method for the Navier-Stokes equations,
which ensures exact divergence-free and more robust solutions as for the Taylor-Hood el-
ements, a new discretization scheme for fluid-structure interaction was introduced. This
method combines the advantages of the discretizations on the fluid and solid part. Nu-
merical experiments showed that the method works well and produces qualitatively very
similar results as the standard method consisting of Taylor-Hood and H1-conforming
elements for the Navier-Stokes equations and the elastic wave equation, respectively.
For a quantitative comparison of the methods a higher spatial resolution is needed.

10.2 Future work

The presented spatial discretization for the elastic wave equation has very good proper-
ties in conserving the total energy, but the time discretization with the Crank-Nicolson
scheme or the midpoint rule does not preserve the energy exactly. Thus, a new time
discretization, motivated by the Discrete Gradient method and Poisson Systems (see
[HLW13]), is needed to guarantee the conservation of the total energy also in time.

The system of equations arising in the fluid-structure interaction problem is now
quite large. By using static condensation the size could be reduced, which needs more
treatment. Another improvement in computational time would be to use appropriate
preconditioners, which have to be developed.

IMEX schemes avoid solving a nonlinear system, which is much cheaper and well
understood for the Navier-Stokes equations, but the time step is very restrictive. With
more advanced spitting methods this problem can be overcome. Furthermore, the new
discretization of the elastic wave equation must be adjusted in this setting.
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[Sch97] Schöberl, Joachim: NETGEN An advancing front 2D/3D-mesh genera-
tor based on abstract rules. In: Computing and Visualization in Science 1
(1997), Nr. 1, S. 41–52
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