
Diplomarbeit

Improving MRSI Spectral Quality
using High-Resolution B0

Inhomogeneity Maps

Ausgeführt am Atominstitut

der Technischen Universität Wien

unter der Anleitung von
Em.Univ.Prof. Dipl.-Ing. Dr.techn. Gerald Badurek

Assoc. Prof. Priv.-Doz. Dipl.-Ing. Dr. Wolfgang Bogner

durch
Stanislav Motyka

Bennogasse 14A/3
1080 Wien

Datum Unterschrift

Die approbierte Originalversion dieser Diplom-/ 
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich. 
 

http://www.ub.tuwien.ac.at 
 
 
 
 

The approved original version of this diploma or 
master thesis is available at the main library of the 
Vienna University of Technology. 
 

http://www.ub.tuwien.ac.at/eng 
 





iii

Declaration of Authorship
I, Stanislav Motyka, declare that this thesis titled, “Improving MRSI Spec-
tral Quality using High-Resolution B0 Inhomogeneity Maps” and the work
presented in it are my own. I confirm that:
Signed:

Date:





v

Vienna University of Technology

Abstract
Faculty of Physics

Master of Science

Improving MRSI Spectral Quality using High-Resolution B0
Inhomogeneity Maps

by Stanislav Motyka



vi

English:
In Magnetic Resonance Spectroscopic Imaging (MRSI) inhomogeneities of

the static magnetic field (B0) cause degradation of spectral quality. The aim of
the thesis is to implement post processing methods to improve spectral qual-
ity by using additionally acquired high resolution B0 maps. For this purpose
two methods were implemented. The first method suggests B0 correction
in Overdiscrete MRSI (odMRSI) reconstruction in which the MRSI dataset is
interpolated by k-space zero filling to match the resolution of the B0 inhomo-
geneity map. After the B0 correction the subvoxels of the interpolated MRSI
data are averaged to reach the initial resolution.

The second method, called Spectral Resolution Amelioration by Deconvo-
lution (SPREAD), suggests to estimate lineshape profiles of each voxel from
the B0 inhomogeneities map and to simulate the acquisition of the lineshape
profiles at the resolution of the original MRSI dataset. Then spectral decon-
volution in time domain is performed between the measured MRSI data and
the simulated lineshape profiles. odMRSI reconstruction mainly increases
the signal-to-noise ratio (SNR) by decorrelating the spectral noise between
subspectra in the interpolation step. SPREAD increases spectral resolution
by reduction of linebroadening caused by B0 inhomogeneities.

Both methods were first validated in simulations and then applied on
phantom and in-vivo data. If the outputs of the two methods improve spec-
tral quality significantly they can be used as valuable part of the established
postprocessing pipeline. Ultimately, increased SNR can be traded for re-
duced acquisition time, higher spatial resolutions or to detect low abundant
metabolites more confidently.

Our results validated a previous report that odMRSI improved the spec-
tral properties (higher SNR). odMRSI reconstruction was robust against in-
fluences from low SNR and can be even based on the shifts maps obtained
from MRSI data themselves. This means that the odMRSI can be applied with
no additional acquisition time. However, this spectral quality improvement
was not translated into better metabolic maps as obtained via spectral quan-
tification. Rather this suggests that the improvement of the spectral proper-
ties is just “cosmetic”. In contrast, SPREAD was capable to improve spectral
properties only in a situation with high SNR, which is not present in clinical
reality.

Based on this we conclude that both SPREAD and odMRSI reconstruc-
tion are both not able to provide metabolic maps of improved quality in a
(clinical) in vivo setting.
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Deutsch:
In der Magnetresonanz-Spektroskopiebildgebung (MRSI) führen Inhomogen-

itäten im statischen Magnetfeld (B0) zu einer Verschlechterung der spek-
tralen Qualität. Das Ziel dieser Diplomarbeit war es deshalb eine Nachver-
arbeitungsmethode zu implementieren, welche die spektrale Qualität durch
zusätzlich akquirierte hochaufgelöste B0 Bilder verbessert.

Hierfür wurden zwei Methoden implementiert. Die erste Methode basiert
auf einer B0 Korrektur mittels Überdiskretisierter MRSI (odMRSI) Rekon-
struktion, in welcher die MRSI Datensätze im k-Raum durch Zerofilling in-
terpoliert werden, sodass sie der Auflösung der B0 Inhomogenitätsbilder
entsprechen. Nach der B0 Korrektur werden die Subvoxel der interpolierten
MRSI Daten gemittelt, sodass die ursprüngliche Auflösung wieder erreicht
wird.

Die zweite Methode, genannt Spectral Resolution Amelioration by De-
convolution (SPREAD), schlägt vor, dass die Profile der spektralen Reso-
nanzen in jedem Voxel durch eine zusätzliche B0 Map abgeschätzt werden
und die im orginalen MRSI Datensat gemessenen spektralen Resonanzlinien
simuliert werden können. Dann kann eine spektrale Entfaltung in der Time
Domain durchgeführt werden zwischen den gemessenen MRSI Daten und
den Simulierten Profilen der Resonanzen. odMRSI Rekonstruktion erhöht
hauptsächlich das Signal-zu-Rausch (SNR) Verhältnis durch Entkoppelung
des spektralen Rauschens zwischen den Subspektren wähend des Interpola-
tionschrittes. SPREAD erhöht die spektrale Auflösung durch Reduktion der
spektralen Linienbreite, welche durch B0 Inhomogenitäten verursacht wird.

Beide Methoden wurden zuerst in Simulationen validiert und dann auf
Phantom und in vivo Daten angewendet. Eine wesentliche Verbesserung der
spektralen Qualität wäre deshalb ein wertvoller Teil der bereits etablierten
Nachbearbeitungspipeline. Letztendlich, kann ein höheres SNR in eine Re-
duktion der Messzeit, höhere spektrale Auflösung oder für eine zuverläs-
sigere Detektierung von niedrig konzentrierten Metaboliten umgewandelt
werden.

Unsere Ergebnisse validieren frühere Ergebnisse die eine Verbesserung
der spektralen Eigenschaften (höheres SNR) durch odMRSI beobachtet haben.
odMRSI Rekonstruktion war robust gegen Einflüsse durch niedriges SNR
und kann ebenso auf Frequenzshiftmaps, welche aus den MRSI Daten selbst
gewonnen werden, basieren. Das heisst, dass odMRSI ohne zusätzliche Messzeit
angewendet werden kann. Allerdings konnte diese Verbesserung in der spek-
tralen Qualität nicht in bessere Metabolitenkarten , welche durch spktrale
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Quantifizierung gewonnen werden, umgewandelt werden. Stattdessen lässt
dies darauf schliessen, dass die Verbesserung der spektralen Eigenschaften
lediglich „kosmetisch“ sind. Im Gegensatz dazu war SPREAD in der Lage
die spektralen Eigenschaften nur dann zu verbessern, wenn bereits ein ho-
hes SNR vorhanden war, was in der klinischen Realität kaum der Fall ist.

Basierend darauf können wir rückschliessen, dass sowohl SPREAD als
auch odMRSI Rekonstruktion nicht in der Lage sind in einem (klinischen) In
vivo Setting Metbolitenkarten von höherer Qualität zu liefern.
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Chapter 1

Introduction

The first chapter describes theoretical background of the concepts used in the
thesis. It is focused on the basics of the Nuclear Magnetic Resonance (NMR),
the NMR Spectroscopy, Magnetic Resonance Spectroscopy Imaging (MRSI),
and the inhomogeneity of the main magnetic field. Last two sections describe
two post processing methods to improve the quality of the spectra obtained
by the MRSI.

The more detailed introduction can be found in books: "Spin dynamics"
by Levitt [1] or "in Vivo NMR Spectroscopy" by de Graff [2].

1.1 NMR basics

The NMR phenomenon depends on the particles with a non-zero spin num-
ber. If such particles are placed in the strong magnetic field, they exhibit the
Nuclear Zeeman splitting which yields to a magnetization of the sample. The
magnetization can be detected and its origin can be inspected.

1.1.1 Nuclear Zeeman Splitting

A particle, which rotates around some fixed point has the angular momen-
tum. In quantum mechanics, the angular momentum L of the particle is
quantized and its amplitude is given by equation 1.1

L =

(
h

2π

)√
J (J + 1) (1.1)

where J can have only integer values.
The second quantum number MJ specifies direction of rotation and can

have integer valuesMJ = −J,−J+1, ...,+J. Each state with the same J value
has the same energy. The degeneracy is broken in the presence of an external
magnetic field. This is called Zeeman effect.
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FIGURE 1.1: NMR splitting of a nuclei with S = 1/2.

The Spin angular momentum is the form of angular momentum, which
is not produced by a rotation but it is an intrinsic property of a particle [1].
A particle with spin S has (2S + 1) degenerate sublevels. The degeneracy
is canceled when the particle is placed in a strong magnetic field, which is
called Nuclear Zeeman Splitting.

Of major importance in NMR are nuclei with S = 1/2. The Nuclear Zee-
man Splitting of such nuclei is shown on figure 1.1 (e.g., proton nucleus).

1.1.2 Spin precession

The angular momentum of a particle with spin is a vector, same as the an-
gular momentum of rotating object. The direction of the spin angular mo-
mentum is called spin polarization axis and in the absence of an external
magnetic field can point in all possible direction. The situation is depicted
by figure 1.2. The magnetic moment of a particle has the same direction as
the spin polarization axis in case of positive gyromagnetic ratio or opposite
in the case of negative gyromagnetic ratio.

If we place a particle into a strong magnetic field, the spin polarization
axis starts to rotate around the magnetic field vector. The magnetic moment
of the spin moves on a cone, keeping a constant angle between the spin mag-
netic moment and the field. This motion is called precession. The angle of
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FIGURE 1.2: Left: Different spin polarization axis of particles.
Right: A large number of spin polarization axis form spherical

distribution.[3]

the cone depends purely on initial spin polarization. The angular frequency
of the precession is given by

ω0 = −γB0 (1.2)

where γ is the gyromagnetic ratio of a particle, B0 is the external magnetic
field and ω0 is the Larmor frequency.

1.1.3 Spin-Lattice Relaxation - Magnetization of Tissue

If we place a sample of water into the magnetic field an isotropic orienta-
tion of spin polarizations of 1H nuclei do not build net magnetization of the
sample immediately.

However, each water molecule experiences, additionally to the external
magnetic field, small magnetic fields from its surrounding. This small fields
rapidly vary in time because of thermal motion of the environment. There-
fore, each spin experiences magnetic field with tiny fluctuations in magni-
tude and direction, which disturbbs the constant angle of precession. The
angle of cone precession can wander in all possible direction. The wander-
ing is not completely isotropic because of the finite temperature of an envi-
ronment. The thermal wandering motion is driven towards spin orientation
with magnetization moment parallel to the magnetic field. This yields to
an anisotropic distribution of spins polarizations called thermal equilibrium
and built net magnetization of the sample, shown on figure 1.3.

The building of net magnetization begins when the sample is brought to
a magnetic field or magnetic field is suddenly turned on. The curve of this
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FIGURE 1.3: Anisotropic distribution of a large number of a
spin polarization axis in the presence of magnetic field.[3]

effect is usually exponential. If we consider magnetic field in z-direction the
curve is given by

Mz (t) = Meq

(
1− e−(t−ton))/T1

)
(1.3)

where Meq is magnetization in thermal equilibrium inside the magnetic
field, ton is time point in which the sample starts to experience a magnetiza-
tion field, T1 is the spin-lattice relaxation constant. The T1 constant depends
on the nuclear isotope and the sample. Typical T1 values are in the range of
milliseconds to seconds for biological tissue.

1.1.4 Transverse Relaxation - Signal Detection

In NMR experiments, instead of longitudinal magnetization, transverse mag-
netization is measured, which is perpendicular to the main magnetization
field. In order to rotate the net magnetization moment of a sample from the
z-axis to the xy-plane, we apply the oscillating magnetization field in the di-
rection perpendicular to the main magnetization field with appropriate fre-
quency and duration. This oscillating magnetization field is called RF-pulse.

The net magnetization moment consists of a large number of spins, which
precess around the main magnetization field, therefore the transverse mag-
netization moment also precesses with the same frequency. The transverse
magnetic moment slowly decays because of the T2 relaxation (or spin-spin
relaxation), characterized by the T2 relaxation constant. The T2 relaxation
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is an entropy-process, in which spins exchange the energy between them-
selves and cause a decrease in phase coherence. However in real experiment,
the tansverse magnetization decay is describe by the T?

2 relaxation constant,
which is defined as

1

T?
2

=
1

T2

+
1

T′2
(1.4)

where term 1/T′2 = γ∆B (~r), represents the contribution to the signal de-
cay from the magnetic field inhomogeneity. The components of the magnetic
moment after RF-pulse are given by

My = −Meq cos (ω0t) e−t/T
?
2 (1.5)

Mx = Meq sin (ω0t) e−t/T
?
2 (1.6)

The transverse magnetization moment can be detected by a wire coil in
close distance to a sample. The oscillating magnetic field induced the oscil-
lating electric current in the coil. The current is called Free Induction Decay
(FID) signal.

The oscillation of FID signal is in the range of many hundreds of mega-
hertz, which is faster than current analogue-to-digital converters (ADC). The
solution is to use a quadrature receiver. The quadrature receiver combines
the FID signal with the reference signal of frequency ωref to generate a new
signal with relative Larmor frequency, which is in order less than 1 MHz. The
relative Larmor frequency is given by

Ω0 = ω0 − ωref (1.7)

NMR signal has real and imaginary part, which are combined into com-
plex signal given by

sNMR (t) = e(iΩ0−1/T2)t (1.8)

In addition to the NMR signal the FID signal from quadrupole receiver
contains also noise. The noise is a random signal, which has the origin in
thermal motions of charged particles in the sample and in thermal motions
of electrons in the receiver coil. The FID signal can be seen as

s (t) = sNMR (t) + snoise (t) (1.9)
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The ratio between the power of these two parts gives the Signal-to-Noise
ratio (SNR), which describe the amount of detected information to the mean-
ingless random signal.

1.2 NMR Spectroscopy

1.2.1 Chemical Shift

According to the equation 1.2 all nuclei of the same element resonate with the
same frequency depending on its gyromagnetic ratio and the strength of the
external magnetic field. If we take a look at the submolecular distance, the ex-
ternal magnetic field induces currents in the electron clouds in the molecule.
The circulating molecular currents generate an induced magnetic field. The
magnetic field, which is experienced by the nuclei, is then the sum of the ex-
ternal magnetic field and the induced magnetic field from its environment.
This effect is called Chemical Shift and allows to inspect the enviroment in
which the nuclei resonate. The shielding of the nuclei by its environment can
be represented by scalar constant σ and the equation 1.2 is modified to

ω0 = −γB0 (1− σ) (1.10)

Chemical shift is commonly expressed in terms of parts per million (ppm)
and it is given by

δ =
ν − νref
νref

× 106 (1.11)

where ν is the frequency of compound in the sample and νref is the fre-
quency of reference compound. As the reference compound, tetramethylsi-
lane (TMS) is usually used because of its independence from external factor
as temperature, ionic strength, and shift reagents.

1.2.2 Fourier Transform of FID

The Fourier transform is a mathematical operation, which converts time-
domain signal, e.g. given by equation 1.9 into the frequency-domain spec-
trum. The graphical representation of Fourier transformation is in figure 1.4.
The mathematical definition is
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FIGURE 1.4: Left: The real part of the FID signal, decaying by
T?2 relaxation. Right: The magnitude of the spectra.

S (Ω) =

∞∫
0

s (t) e−iΩtdt (1.12)

Both the acquired FID signal and the spectrum of the signal are complex
data. The spectrum can be seen as a superposition of complex Lorenzians,
where each complex Lorentzian is equivalent to a single oscillating time do-
main component, in our case chemical compound. The real part of the com-
plex Lorentzian is called absorption Lorentzian, while the imaginary part is
called dispersion Lorentzian.

The full-with-at-half-maximum (FWHM) of the absorption Lorenzians is
equal to 2λ and λ = T−1

2 . Therefore, fast decaying signals give rise to broad
peaks while slow decaying signal result in narrow peaks.

1.2.3 Time-domain Filtering

Time domain filtering allows modifying properties of the spectra, derived
from the FID via Fourier transform, by multiplying detected time domain
signal by a filter function. The filtering changes the lineshapes of a resonance
and also influences SNR and FWHM. Two commonly used filter functions
are Exponential weighting and Lorentz-Gaussian transformation.
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Exponential weighting

In case that Tw is more than 0, the filter function is decreasing monoexponen-
tially, which is given by

ffilter (t) = e−t/Tw (1.13)

The filter improves SNR by apodization of the end of the FID, which con-
tains mainly noise. The first part of the FID persists relatively unaffected.
However, the resonance FWHM increases because of change in apparent
transverse relaxation

1

T2w

=
1

T ?2
+

1

Tw

(1.14)

In case that Tw is less than 0, the filter decreases the SNR but the T ?2 is
prolonged, which yields to a lower FWHM and enhancement of spectral res-
olution.

In general, the sensitivity of detection is traded for spectral resolution.
The optimal filter, so-called the Matched filter, is when T ?2 = Tw. For this the
optimum SNR is achieved by doubling of the FWHM.

Lorentz-Gaussian transformation

The transformation function is given by

ffilter = et/TLe−t
2/T 2

G (1.15)

The function converts the Lorentzian lineshape to Gaussian. In case of the
same FWHM, the gaussian lineshape decay faster to the baseline, therefore
the transformation enhances the spectral resolution. To achieve significant
improvement, a sufficiently long TG is used, while TL = T ?2 .

1.2.4 Signal Averaging

The FID signal detected by quadruple detector consists of two parts as de-
scribed by equation 1.9. The first part, which corresponds to the NMR signal
is reproducible and can be remeasured if the experiment is repeated. The
second part, which corresponds to the noise varies in an irreproducible way.
These two different features of measured FID can be used to improve SNR
by signal averaging.

If the measurement is repeated n times, the NMR signal is n-fold higher.
This rule is not valid for the noise.
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The suitable measure of noise amplitude is root-mean-square (RMS) of
noise, which is given by

σ1 = 〈s2
1〉1/2 (1.16)

The RMS of noise from repeated measurement is approximately the same
but the noise itself is uncorrelated between different measurements. If we
assume two different noise signals, s1 and s2, with approximately the same
RMS, σ1=̃σ2, the RMS of summed signal is given by

σ1+2 = 〈(s1 + s2)2〉1/2 (1.17)

= 〈s2
1 + 2s1s2 + s2

2〉1/2 (1.18)

= {〈s2
1}+ 〈s1s2〉+ 〈s2

2〉}1/2 (1.19)

The noise signals are uncorrelated so the term 〈s1s2〉 vanishes and because
the RMS of both signals are approximately equal, equation 1.19 becomes

σ1+2=̃
√

2σ1 (1.20)

The RMS of summed noise signals from n measurement is
√
n-fold larger.

Finally, if the measurement is repeated n times the SNR therefore increased
by the factor of

√
n.

1.3 Magnetic Resonance Imaging

Magnetic resonance imaging (MRI) provides valuable information about the
spatial distribution of nuclei under investigation. The contrast of the final
image can be sensitized to different properties of the nuclei such as proton
density, T1 or T2 relaxation constants.

1.3.1 Magnetic Field Gradients

The Larmor frequency given by equation 1.2 is proportional to the strength
of the magnetic field. If an additional linear gradient of the magnetic field
strength in one direction is introduced, the Larmor frequency of the nuclei
becomes dependent on the position along the gradient. The static magnetic
field of an MR scanner is directed along the z-direction and is independent
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of the direction of a magnetic gradient. The change is only in the strength of
the magnetic field.

The magnetic field gradient is produced in specially shaped coils by elec-
tric currents. Usually, three orthogonal gradients are present in the magnetic
field. The gradients are arranged in such manner that in the isocenter of the
magnetic field their strength is equal to zero.

The strength of the magnetic field with the gradients is given by

G (~r) = B0 + ~r ~G (1.21)

where ~r is a vector of position and ~G is a vector of the strength of magnetic
field produced by the gradients. Therefore the equation 1.2 is modified to

ω (~r) = γ
(
B0 + ~r ~G

)
(1.22)

This can be used for spatial encoding.

1.3.2 Slice selection

The goal of MRI is to image 3D objects. The encoding position in all three
dimension is time-consuming so often the imaging is reduced to several 2D
slices. For Slice selection a 2D slice is excited in the presence of a magnetic
field gradient by a simultaneously applied RF pulse. Thickness and posi-
tion of the slice are dependent on the strength of magnetic field gradient and
bandwidth of the RF pulse. If the slice selection gradient is in the z-direction,
the thickness is given by

∆z =
∆ω

γGz

(1.23)

where ∆z is the thickness of the slice, ∆ω represent the bandwidth of the
RF pulse and Gz is the strength of the magnetic field gradient.

According to equation 1.23, a stronger magnetic field gradient yields to
thinner slice because the same bandwidth covers less spatial distance, which
is depicted in the figure 1.5.

1.3.3 Frequency encoding

If the magnetic field gradient is applied during the data acquisition, the de-
tected signal contains a range of frequencies, which are dependent on the
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FIGURE 1.5: Relation between thickness of the slice, bandwith
of the RF pulse and the slope of the magnetic field gradient in

slice selection [4].

position along the gradient. The Fourier transform of the signal reveals these
positions.

Frequency encoding can be applied along any arbitrary direction, which
is characteristic for the projection acquisition. The more common way is to
use Fourier imaging, where the data are measured into the k-space. The im-
age of the object is then created by spatial Fourier transformation of kSpace.

The frequency encoding gradient typically consists of two lobes, a pre
phasing gradient lobe, and a readout gradient lobe applied in the same di-
rection. The pre phasing gradient lobe prepares the transverse magnetization
to encode spatial position during the readout gradient lobe.

In a gradient echo sequence, the pre phasing gradient lobe introduce the
spatial dependent phase given by

φ1 (~r) = γ~r

∫ t

0

~G (t) (1.24)

The readout gradient has opposite sign and it is twice as long as the pre
phasing gradient. The total applied gradient moment in the middle of the
second lobe is equal to zero and consequently, the acquire phase shift is also
equal to zero. The spatial dependent frequencies are given by
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FIGURE 1.6: Transformation of kSpace of an image to image
domain [4].

ω (~r) =
dφ (~r, t)

dt
(1.25)

and

φ (~r, t) = φ1 (~r, t1) + γ~r

∫ t

0

~G2 (t) dt (1.26)

where t1 is the length of the first gradient lobe and ~G2 is the amplitude of
the second gradient lobe. Maximum echo formation is when φ (~r) = 0 for all
position ~r, which occurs when φ1 (~r, t1) = −φ2 (~r, t2). Variable t2 is the half of
the duration of the second gradient lobe.

The spatial dependency of frequencies can be clearly seen in equation
1.25.

1.3.4 Phase encoding

In the standard cartesian Fourier imaging, the frequency encoding is per-
formed only in one dimension. The second dimension is encoded by phase.
Phase encoding is performed by repetition of the measurement with a gra-
dient magnetic field, gradient of different amplitude is applied, between the
excitation and the acquisition of the signal. This results in a variation of the
phase between acquired kSpace lines. Finally the image is revealed by per-
forming 2D Fourier transform, which is depicted in figure 1.6.
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FIGURE 1.7: Filling the kSpace during the measurement, using
the phase encoding and frequency encoding gradient [4].

Phase encoding can be solely used for signal localization, e.g. in the Mag-
netic Resonance Spectroscopic Imaging, but this is very slow.

1.3.5 Spatial Frequency Space - kSpace

In the presence of a time dependent magnetic field gradient ~G (t), the de-
tected signal has the form

Mxy

(
~G, t
)

=

∫ ∞
−∞

M0 (~r) eiγ~r
∫ t
0
~G(t)dtdr (1.27)

where M0 (~r) is the proton density at position ~r. By introducing a spatial
variable

~k (t) = γ

∫ t

0

~F (t) dt (1.28)

Equation 1.27 becomes

Mxy

(
~k (t)

)
=

∫ ∞
−∞

M0 (~r) eiγ
~k(t)~rd~r (1.29)

The process of measuring can be seen as the filling of kSpace with a finite
number of ~k (t) values, which is seen in figure 1.7.
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FIGURE 1.8: Spatial localization of FID by phase encoding in
both spatial direction. The measured kSpace is transformed to
image domain. Each voxel contains FID, which can be trans-

formed to its spectra [4].

1.3.6 Magnetic Resonance Spectroscopy Imaging

The spatial localization for simple phase encoded MRSI is very similar to
phase encoding in MRI. After slice selection, the phase encoding is performed
in both spatial dimensions and for each kSpace point, several FID time points
are measured. Therefore, an additional axis is introduced, in which a time
evolution of signal is recorded. The localized spectra can be obtained by the
Fourier transform of signal in time dimension, but first the spatial Fourier
transform has to be performed. This approach is depicted in figure 1.8

For the one dimension in x-direction, the total acquired time-domain sig-
nal is equal to the sum of the signals from elementary volume elements s (x, t)

from each point of the sample, which is described by

S (t) =

∫ +∞

−∞
s (x, t) dx (1.30)

The total spectrum of the sample F (ω) is given by the Fourier transform
of S (t) and is also equal to the sum of the spectra from each point of the
sample f (x, ω). After the application of phase encoding the phase of spectra
is shifted and it can be described by a phase modulation term eiγxGxt. The
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spectrum can be written as

F (Gx, ω) =

∫ +∞

−∞
f (x, ω) eiγxGxtdx (1.31)

By introduction of kSpace formalism, kx = γGxt, equation 1.31 can be
rewritten to

F (kx, ω) =

∫ +∞

−∞
f (x, ω) eikxxdx (1.32)

The phase modulated spectra of the entire sample F (kx, ω), represents the
inverse Fourier transformation of the spectra from the individual points of
the sample f (x, ω). Therefore these spectra can easily be obtained by Fourier
transformation of F (kx, ω)

f (x, ω) =

∫ +∞

−∞
F (kx, ω) eikxxdx (1.33)

The extension of this calculation to all three spatial dimensions yields

f (x, y, z, ω) =

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
F (kx, ky, kz, ω) ei(kxx+kyy+kzz)dxdydz (1.34)

In reality, it is impossible to continuously sample kSpace over an infinitely
long period so the kSpace is sampled at discrete positions of kSpace over
finite time points. Spatially resolved spectra are then obtained by a discrete
Fourier transformation.

Spatial Resolution in MRSI

The nominal spatial resolution depends on the FOV and the number of phase
gradient encoding increment.

∆V =
(FOV )

Np

(1.35)

Due to the Fourier transformation of discretely sampled kSpace, the ac-
tual resolution deviates from the equation above and it is defined as the full
width at half maxima (FWHM) of the point spread function (PSF). The PSF is
described as the Fourier transform of the sampling grid. Effects of the PSF are
the increase in actual resolution and the signal leakage. Signal leakage means
that the signal from the desired voxel volume is contaminated by signal from
the surrounding voxels.
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Spatial Filtering

The signal leakage of the PSF can be reduced by spatial apodization, which
are applied in the kSpace domain. The apodization functions need to be sym-
metrical around the origin of the kSpace. The most commonly used functions
are the cosine apodization function, the Gaussian function or the Hamming
function.

The cosine function is given by

W (k) = cos

(
πk

2kmax

)
for− kmax≤k≤kmax (1.36)

where kmax is the maximum sampled position in kSpace. The ripples are
significantly reduced but also traded with increased width of the main lobe.
The ripples can be reduced even more by the Gaussian function given by

W (k) = e−4(k/kmax)2for− kmax≤k≤kmax (1.37)

The reduction of signal bleeding is again traded by an increase of FHWM,
thus reducing spatial resolution. The optimal filter is given by the Hamming
function,

W (k) = 0.54 + 4.46 cos

(
πk

kmax

)
for− kmax≤k≤kmax (1.38)

In all three cases, the FWHM slightly increases. From the time efficiency
point of view using the spatial filters is not optimal. The apodization reduces
information obtained from high-frequency kSpace coordinates, which mea-
sured in same number of averages as the low-frequency coordinates. The
solution can be to mimic apodization function by a number of averages for
a different position in kSpace during the acquisition (i.e. introducing kSpace
weighting during acqusition).

1.4 Main Magnetic Field

Typically the main magnetic field is created by superconducting magnets in
almost all modern MR scanners. This type of magnets allows to produce
strong magnetic fields up to several Tesla. The superconduction is a prop-
erty of a superconducting material when the electric resistance is equal to
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zero. This condition is fulfilled when the temperature of the material is be-
low its critical temperature. The critical temperature for given material de-
pends on the strength of present magnetic field and the current, which flows
through the material. The most common material to produce the magnetic
fiels in superconducting magnets is niobium titanium alloy (NbTi) with the
critical temperature 10K. At the temperature 4.2K, the field up to 10T can
be produced. By lowering the temperature to 2.3K, the stregnt of the mag-
netic field can be maximaze to 12T. To produce even stronger magnetic field
the different materials must be used, such as compounds of niobium and tin
(Nb3Sn) or magnesium di-boride.

1.4.1 Inhomogeneity of Main Magnetic Field

The strenght of the main magnetic field is not the only important parameter.
Another crucial parameter of the main magnetic field is its spatial homogene-
ity. The homogeneity is given in units of ppm. For MRI the homogeneity of 5
ppm is required and for MRS to clearly distinguish between the choline and
total creatine peak a minimum homogeneity is 0.1 -0.2ppm [2]

The field homogeneity is optimized over a diameter of spherical volume
(DSV), which is approx. 40-50 % of the whole bore diameter. Theoretically
the homogeneity without any manufactural errors can be less than 1ppm
over the DSV, but in practice actual homogeneity of a bare superconducting
magnet is typically more than 20 ppm over DSV. The optimization of the ho-
mogeneity without sample or patient is usually done during the installation
of the MR scanner.

After this, the major origin of inhomogeneities of the main magnetic field
is introduced by the sample itself. Variations in the magnetic susceptibility
between different tissues types with different magnetic susceptibility lead to
disturbance of the main magnetic field. In the human head, the largest differ-
ences in the magnetic susceptibility appear at the border between the brain
and air in the nasal and auditory passages. The results are strong magnetic
field imperfections in the frontal cortex and temporal lobes.

The variation in magnetic field in MRI can cause image distortion and sig-
nal loss. In MRSI the inhomogeneities lead to loss of sensitivity and spectral
resolution, the misaligment of spectra from different voxels. Moreover the
variations inside the MRSI voxel cause the line broadening of spectra.
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1.4.2 Correction of Magnetic Field Inhomogeneity

The imperfection of the magnetic field inside the MR scanner can be balance
by additional magnetic fields, which consist of the variation described by
the spherical harmonics. The sum of these additional magnetic fields can be
quantitavely describe by

B (x, y, z) = B0 +
∞∑
n=1

+n∑
m=−n

Cn,mFn,m (x, y, z) (1.39)

the functions Fn,m (x, y, z) are given in table.
The correction of imperfections in the magnetic field is called B0 field

shimming. The additional magnetic fields can be produced by shim coils
(electromagnets) or by additional static magnets.

The shimming performed by additional static magnets is called passive
shimming. The magnets do not have to be permanent magnets but can be
in form of diamagnetic, paramagnetic or ferromagnetic and be magnetized
by the main magnetic field, e.g. a small piece of iron. The shimming is per-
formed by optimization of its spatial position. The disadvantage of passive
shimming is that the magnetic properties of the materials are temperature
dependent, which can lead to field drift and changes in homogeneity during
the measurement.

The shim coils can be placed in the bore of the magnet and operate at
room temperature. These shim coils are resistive coils and are wound from
copper wire or etched from copper sheet. They need a high-stability power
supply and in combination with the passive shimming can optimize the field
inhomogeneity introduced by the investigated sample.

Shim coils are also located in the helium vessel. These coils are wound
by superconducting wire. The current is optimize during the installation of
the magnet for correction of the inhomogeneity caused by the manufacturing
process.



TABLE 1.1: Spherical and Cartesian representation of low-order (n≤4) spherical harmonics functions.[5]

Order Degree
n m P (θ)a F (x, y, z)b Common name
0 0 1 1 Z0
1 0 cos θ z Z
1 +1/− 1 sin θ x/y X/Y
2 0 1/2 (3 cos2 θ − 1) z2 − 1/2R2 Z2
2 +1/− 1 3 sin θ cos θ 3zx/3zy ZX/ZY
2 +2/− 2 3 sin2 θ 3 (x2 − y2) /6xy X2Y2
3 0 1/2 (5 cos3 θ − 3 cos θ) z3 − 3/2zR2 Z3
3 +1/− 1 3/2 sin θ (5 cos2 θ − 1) 6x (z2 − 1/4R2) /6y (z2 − 1/4R2) Z2X/Z2Y
3 +2/− 2 15 sin2 θ cos θ 15z (x2 − y2) /30zxy ZX2Y2/ZXY
3 +3/− 3 15 sin3 θ 15x (x2 − 3y2) /15y (3x2 − y2) X3/Y3
4 0 1/8 (35 cos4 θ − 3o cos2 θ + 3) z4 − 3z2R2 + 3/8R4 Z4
4 +1/− 1 5/2 sin θ (7 cos3 θ − 3 cos θ) 10zx (z2 − 3/4R2) /10zy (z2 − 3/4R2) Z3X/Z3Y
4 +2/− 2 15/2 sin2 θ (7 cos2 θ − 1) 45 (x2 − y2) (z2 − 1/6R2) /90xy (z2 − 1/6R2) Z2C2/Z2S2
4 +3/− 3 105 sin3 θ cos θ 105zx (x2 − 3y2) /105zy (3x2 − y2) ZC3/ZS3
4 +4/− 4 105 sin4 θ 105 (x2 − y2)

2 − 420x2y2/420xy (x2 − y2) X4/Y4
a only the P (θ) is given. The complete spherical harmonics function requires multiplication with rn cos (m (ψ − ψ,)).
b R2 = x2 + y2
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FIGURE 1.9: Example of B0 map estimated by double spin echo
sequence.

1.4.3 Magnetic Field Mapping

The correction of the main magnetic field inhomogeneity is based on its pre-
cise measurement. The field mapping of inhomogeneities introduced by pa-
tients or samples is usually based on a gradient-echo imaging method, which
is fast, easy to use and is inherently sensitive to B0 offset. Two GE images are
acquired with different echo times separated by a constant τ . The phase dif-
ference ∆φ between two images is directly proportional to the magnetic field
distribution

∆φ (~r) = 2π∆v (~r) τ (1.40)

The location dependent phase difference between the two images is cal-
culated by complex division

∆φ = arctan

(
R1I2 − I1R2

R1R2 + I1I2

)
(1.41)

where R and I refer to the real and imaginary part of the complex MRI
signals acquire at τ = 0 and τ > 0. The additional delay τ is in range of a few
ms. A sample B0 map can be found in figure 1.9.
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FIGURE 1.10: Left: The spectrum of the MRSI voxel. Right: The
subvoxel spectra created by zerofilling interpolation in kSpace

domain by factor of 4.

1.5 Post-processing methods based on high reso-

lution B0 maps

Despite the advanced shimming techniques, a certain amout of imperfection
in the homogeneity of the main magnetic field still remains. In MRSI, these
imperfections cause, besides the effects mentioned above, also the spectral
misaligment of the spectra from different voxels. This effect can be corrected
by frequency shifting of the spectra during postprocessing. This shifting can
be based on a reference peeks inside the spectra or the B0 map, which sample
the continous nature of the variation just on the grid of the MRSI. However
the discrete values of the B0 inhomogeneities are not able to reflect the in-
travoxel variation.

1.5.1 Overdiscrete MRSI reconstruction

Overdiscrete MRSI reconstruction (odMRSI), proposed by Kirchner et al.[6],
uses the high resolution B0 map to improve the SNR and spectral line shape.
kSpace zerofilling is used to interpolate the MRSI to the resolution of the B0
map. In case of 4-fold larger B0 map’s resolution, the inhomogeneity inside
the voxel is represented by 16 subvoxel. After the MRSI interpolation, each
subvoxel contains the spectrum, which is depicted in figure 1.10
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FIGURE 1.11: Left: The real parts of the spectra of the subvox-
els. Before (blue) and after (orange) application of the postpro-
cessing frequency shift. Right: The correlation of noise part of
the spectra of subvoxel 3 and 4 before (blue) and after (red) the

postprocessing frequency shift.

The subvoxel spectra are then alligned by the postprocesing frequency
shift. Then the subvoxels inside the main MRSI voxel are averaged together.
The alignment of subvoxel spectra has also the side effect of decorrelation of
its spectral noise part. This step is depicted in figure 1.11.

Thefore, averaging of the signals with decorrelated noise parts yield higher
SNR. Kirchner et al. found an increase of the SNR by factor 3.7 compared to
the reconstruction without any filtering and by factor of 3.1 compared to the
case of a spatial Hamming filter.

1.5.2 Spectral Resolution Amelioration by Deconvolution

The main goal of the Spectral Resolution Amelioration by Deconvolution
(SPREAD) method proposed by Dong and Peterson [7], is to improve spec-
tral resolution of the MRSI by deconvolution of the measured signal with
its lineshape profile. The lineshape profile represents the distortions of the
spectra, which have the origin in the B0 inhomogeneity.

The method is based on the model of phase encoded MRSI signal given
by

S
(
~kn, td

)
=

∫ SW/2

−SW/2

∫
R

ρ (~r, f) ei2π(~kn+ftd)ei2π∆f(~r)tdd~rdf (1.42)
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The measured MRSI signal is given by

sV (td) = s0
V (td)

∫
V

ei2π∆f(~r)tdd~r (1.43)

where s0
V (td) is the actual signal, which is being measured, and ei2π∆f(~r)tdd~r

is the phase term, which represent the distortion from B0 inhomogeneity.
The lineshape profile is then given by

LV (td) = ei2π∆f(~r) (1.44)

and the original signal is recover by complex division

s0
V (td) = sV (td) /LSV (td) (1.45)

In the SPREAD method, a high resolution B0 map is obtained and the
freqeuncy offsets are computed in similiar way as mentioned above. The
frequency offsets are used to simulate the linebroadening and lineshape dis-
tortions by equation 1.44. The spatial resolution of the lineshape profile’s
dataset is as high as the resolution of the B0 map. To lower its resolution, the
simulation of real world MRSI acqusition is performed. The measured MRSI
signals can then be divided by the lineshape profiles, which is described by
equation 1.45. The result should be undistorted an MRSI dataset.

Moreover Dong and Peterson recommend a few post processing steps be-
fore the deconvolution. The first is the spatial filtering with a Hamming filter.
The next recommendation is to remove the water residua from the spectra.
Finally, because of the presence of noise in MRSI data they recommend to use
a Wiener-Gaussian filter to suppress the spike artifacts and reduce the noise
amplification of their method.

The Wiener-Gaussian filter is given by

w (td) = G (td)
|LV (td) |2

|LV (td) |2 + αKV (td)
(1.46)

where G is the Gaussian function, α is a scaling constant, and KV is de-
fined as

KV (td) =
σ2

|sV (td) |2
(1.47)

while the σ2 is the noise power, calculated as

σ2 =
∑
δ

|sV (tδ) |2 (1.48)
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where tδ is the last part of the signal which contains just noise.
The scaling constant α is calculated as

α = LV,max/sV,max (1.49)

Due to the Wiener-Gaussian filtering the equation 1.45 is modified to

s0
V (td) = sV (td)w (td) /LV (td) (1.50)
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Materials and Methods

This chapter describes the implementation and validation of MRSI methods
used for the improvement of spectral quality. The implementation of post
processing method was written in MATLAB [8]. The methods were initially
tested on a simulation model, written also in MATLAB [8] and validated on
phantom data and in vivo data. The spectral quantification of measured data
was performed by LCModel [9]. The statistical analysis was again performed
in MATLAB [8].

2.1 Implementation of odMRSI

Overdiscrete MRSI reconstruction was implemented in function overdisceteMR-
SIrecon.m. As input the function needed an MRSI dataset, a high-resolution
B0 map and a time vector, which specified the time points at which FIDs had
been sampled. The output of the function was a corrected MRSI dataset with
the same spatial and time resolution as the input dataset.

The function first estimated the factor between the spatial resolution of
the MRSI dataset and the B0 map. In case that the factor between the resolu-
tions was not an integer, the B0 map was interpolated to the closest integer
factor of the MRSI resolution. The input MRSI dataset was transformed into
the spatial kSpace domain, spatially zero-filled into the high resolution of the
B0 map and then transformed back into the iSpace. The result was a high-
resolution MRSI dataset with same spatial resolution as the B0 map. The
next step was the alignment of the spectra based on the B0 map. Frequency
shifting was performed by

scorr (~r, t) = smes (~r, t) e−2πi∆ν(~r)t (2.1)
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where smes (~r, t) was measuered/interpolated FID signal, term ∆ν (~r) rep-
resents frequency offset caused by the B0 inhomogeneities and t was a time
vector.

Finally, the subvoxel’s FID signals of the corrected MRSI dataset, which
belong to the same low-resolution MRSI voxel, were averaged in the iSpace
domain.

2.2 Implementation of SPREAD

Spectral amelioration by deconvolution was implemented in function SPREAD.m.
As inputs, the function needs a MRSI dataset, a high-resolution B0 map, a
time vector, which specified the time points at which FIDs had been sam-
pled and a filter function. The filter function was a decay function with the
Gaussian shape and was given by

g = e
−t2
2σ2 (2.2)

where t was a time vector corresponding to the same time points as the
FID signal. The σ was the standard deviation of the Gaussian distribution
which influenced the width of the gaussian window. The output of the func-
tion was the corrected MRSI dataset.

The function first estimated the lineshape profiles based on the high-
resolution B0 map according to equation 1.44. The lineshape profile dataset
had the same resolution as the B0 map and the same number of time points as
the FID. The simulation of the MRSI acquisition was performed in the kSpace
domain. The kSpace of the Lineshape dataset was cut to match the spatial
resolution of the input MRSI dataset. Then, the spatial Hamming filter was
applied and the lineshape profile dataset was transferred to the iSpace do-
main. The Gaussian-Wiener filter was estimated according to equation 1.46
and finally the deconvolution was performed.

2.3 Simulations

2.3.1 Simulation model

A simulation model was thought as a MRSI slice with a square object in the
middle. The matrix size of the slice was 128× 128 while the size of the object
was 64 × 64 and was centered in the middle of the slice. The B0 map of
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FIGURE 2.1: B0 map for the simulation model. The red square
defined the region used for the MRSI simulation.

size 128 × 128 was used from a phantom measurement, which is specified
in section 2.4. Before the MRSI simulation, the B0 map had been smoothed
to remove noise variations by a Gaussian filter with standard deviation σ =

2. The smoothed B0 map is depicted in figure 2.1. To create the model for
the MRSI simulation, each voxel, which belongs to the object contained FID
signal defined as

hsim (~r, t) = a1e2πi(ν1+∆v(~r)t)e−t/T2 (2.3)

The amplidute was a1 = 1, the frequency was f1 = 1500 Hz and the ac-
qusition duration was 512 ms sampled by 2048 time points. The term ∆v (~r)

represented the magnetic field inhomogeneity in units of hertz. The simula-
tion model is depicted in figure 2.2

2.3.2 Simulation of MRSI acqusition

The MRSI acquisition was simulated in the kSpace domain by cutting the
kSpace of the simulation model to low MRSI resolution of size 32× 32. Then
a noise matrix was added to the kSpace dataset with the spatial size of 32×32

and 2048 time points. The noise matrix was generated by MatLab’s randn.m
function. Because the FID signal consists of complex numbers, two matrices
with zero mean and non-zero standard deviation were used to represent the
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FIGURE 2.2: Left: The image of the first FID point of the sim-
ulated MRSI slice. Right: The spectrum of each voxel of the

object in the MRSI simulation.

imaginary and the real part of the FID. The standard deviation of the noise
matrices was modified to match the desired SNR. After transition back to the
iSpace domain, the MRSI dataset was in size 32× 32 and 2048 time points, so
the spatial resolution decrease by factor of 4. However the voxel size increase
by the same factor and the spectrum of each voxel was influence by the B0
inhomogeneities from the 4×4 larger space. The situation after the simulated
MRSI acquisition is depicted in figure 2.3.

The B0 map acquisition was simulated by adding noise to the smoothed
B0 map used in the simulation. The standard deviation of simulated noise
matrix was estimated as the standard deviation of the difference between the
measured B0 map and its smoothed version from the region where MRSI
slice was simulated.

2.3.3 Validation of odMRSI on simulated data

The odMRSI was expected to improve the spectral quality. The spectral qual-
ity was represented by the SNR and the FWHM of the spectra. For estimation
of both parameters, the two Matlab’s function, SNR_est.m and FWHM_est.m,
were written.

The spectral quality, mainly in terms of the SNR, can be also enhanced by
investmenting more acquisition time in form of signal averaging, which is
described in section 1.2.4. This method does not influence the FWHM. There-
fore in the validation of odMRSI, the average of four measurements was used
for comparison. In theory, N averages should bring the SNR improvement
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FIGURE 2.3: Left: The image of the first FID point of the sim-
ulated MRSI slice. Right: The spectrum of a voxel from the

middle of the object.

around factor of
√
N , so in our case the SNR improvement should be around

factor of 2. In the simulation, the repetition of measurement was simulated
by generating a new noise matrix.

For validation of odMRSI 5 dataset were used:

• csi_LD_1mes - one measurement, which was used as input

• csi_LD_4mes - average of four measurement

• csi_LD_1me_odMRSI_N - one measurement corrected by odMRSI with
a measured B0 map

• csi_LD_1me_odMRSI_R - one measurement corrected by odMRSI with
a random B0 map

• csi_LD_1me_odMRSI_S - one measurement corrected by odMRSI with
a modified B0 map

The validation was performed only in the voxels which belong to the sim-
ulated object. The maps of the SNR and the FWHM were estimated for all
five datasets. The dataset csi_LD_1mes was used as a reference, so the im-
provement in the SNR and the FWHM were represented as a ratio between
an improved dataset and an input dataset instead of using absolute values.
In case of the SNR, the ratios were estimated as SNR of the improved dataset
divided by the SNR of the reference dataset. The ratios of the FWHM were es-
timated in the same way as for the SNR. The ratio maps of the improvement
for the SNR and the FWHM were plotted to inspect spatial dependencies.
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Basic statistical properties of the ratios were presented in form of boxplots
and compared to the case with 4 simulated measurements.

Because of the additional information, which should improve the spectral
properties, using high-resolution B0 maps, the statistical parameters of in-
travoxel B0 inhomogeneities, mean and standard deviation, were estimated
for each MRSI voxel. Maps of means and standard deviations were then cor-
related with the factor of improvement.

However, the standard deviation of subvoxel inhomogeneities and their
mean value can be correlated themselves. Therefore, to reveal the causality
of improvement, a modified B0 map was applied in odMRSI, which should
represent only the deviation between subvoxel. The modified B0 map was
a subtraction between the "measured" B0 map and the mean values of B0
inhomogeneities between intravoxel values.

To prove that the improvement in the odMRSI comes from the intravoxel
deviation of B0 map, a random B0 map was applied with zero mean and
standard deviation equal to 0.8 Hz.

2.3.4 Validation of SPREAD on simulated data

The SPREAD method reduces the FWHM by deconvolution between the
measured FID signal and the biased signal, which has the origin in the in-
travoxel B0 inhomogeneities. Based on the post processing recommenda-
tion mentioned in section 1.5.2, for the validation of SPREAD method four
datasets were used:

• csi_LD_1mes - one measurement, which was used as input

• csi_LD_4mes - average of four measurement, which was used as refer-
ence

• csi_LD_1me_SPREAD - one measurement corrected by SPREAD

• csi_LD_1me_GWfilter - one measurement corrected by Wiener-Gaussian
filter

In the same way as in the validation of the odMRSI, the SNR and the
FWHM improvement were determined via ratios and plotted as ratio maps
to inspect the spatial dependency. The basic statistical parameters were pre-
sented in form of boxplot. Also for the comparison, the signal averaging of
four measurements was used. The dataset filtered by the Wiener-Gaussian
window represented the improvement by the time domain filter and the state
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directly before the deconvolution. The standard deviation for the Gaussian
filter was 0.5 sec.

2.3.5 Statistical analysis of the results from the simulations

Statistical analysis was performed to find out if the odMRSI and the SPREAD
improve the spectral quality. For comaparison two cases, before and after
applying a post processing method, a paried test is suitable. In case of the
normality of differences between paired data, the paired t-test was used. If
the condition of the normality was not fullfilled the Wilcoxon signed-rank
test was used. The normality was tested by the Anderson-Darling test. All
statistical tests were carried out on the 5 % level of significance.

2.4 Phantom Validations

Phantom validation was performed on the 3T whole body MR scanner (Prisma-
fit, Siemens Healthcare, Erlangen, Germany) with a 32 channel head coil. The
spherical phantom was used which contains common brain metabolites: N-
Acetyl-Aspartate (NAA), Choline (Cho), Kreatin (Cr), Glutamine(Gln) and
Laktat (Lac) and a buffer. The metabolite concentrations are stated in table
2.1 and composition of the buffer is stated in table 2.2.

The phantom was scanned by a Stimulated Echo Acquisition Mode (STEAM)
MRSI sequence with parameters: echo time (TE) 20 ms, mixing time (TM) 10

ms, flip angle 90 degrees, repetition time 1.97 s, field-of-view (FOV) 200×200

mm, slice thickness 10 mm, bandwith 1200 Hz, vector size 2048. Two matrix
sizes, 16× 16× 1 and 32× 32× 1, were scanned. B0 maps were obtained via
double echo gradient echo sequence with parameters: FOV 200 × 200 mm,

TABLE 2.1: The concentration of metabolites of metabolites
used in the phantom.

Metabolit Molar Mass Concentration
[g/Mol] [mM/l] [g/l]

NAA 175.1 15.0 2.63
Cr 131.1 10.0 1.31
Cho 139.6 3.0 0.42
Lac 96.0 5.0 0.48
Gln 146.2 12.5 1.83
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TABLE 2.2: The composition of the buffer inside the phantom
and concentration of used compound.

Compound Molar Mass Concentration
[g/Mol] [mM/l] [g/l]

K2HPO2 · 3H2O 228.2 72 16.43
KH2PO4 136.1 28 3.81
KH2 68.0 200 13.60

slice thickness 10 mm, TEs were 4.92 and 7.38 ms, flip angle 10 degree and
TR 15 ms. Two different matrix sizes 64× 64 and 128× 128 were scanned.

For validation of odMRSI and SPREAD, the resolution of B0 maps were 4
and 8 fold higher compared to the MRSI dataset of matrix size 16× 16 and 2
and 4 fold higher for the case with 32× 32 matrix size.

2.4.1 Phantom Validation of odMRSI

The post processing of the data was performed with in-house-developed
software, written in Matlab, Bash and MINC [10] and extended by the odMRSI
algorithm. Coil combination of MRSI datasets was performed on the scanner
using the Brown method [11]. The MRSI data were first filtered by spatial
Hamming filter and odMRSI was applied. The corrected datasets were fit
by LCmodel. The quality of fitting was represented by Cramer-Rao lower
bounds (CRLBs) for each metabolite from a basis set. The output of LCModel
was converted to metabolic maps and maps of spectra quality parameters,
such as SNR, FWHM, and CRLBs of metabolites.

However, the SNR estimation of LCModel for large SNR values is bi-
ased by fitting residua, so the SNR was computed in Matlab by function
SNR_phantom_est.m. The function estimates the SNR as the ratio between
the amplitude of the NAA peak in the magnitude spectrum to the standard
deviation of noise in the real spectrum. The magnitude version of the spec-
trum is used with the assumption that the amplitude of a peak in the mag-
nitude mode is the same as the amplitude of the peak in the real mode of
the perfectly phased spectrum, but does not require phasing. The standard
deviation was estimated from the part of the spectrum where no signal was
visible.
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Statistical analysis

Statistical tests were used to test the hypothesis that the odMRSI improves
the quality of LCModel fitting. The comparison of the CRLBs of fitted metabo-
lites and spectral quality properties, the SNR and the FWHM, was performed.
Based on the used basis set for the fitting, LCModel fitted all metabolites
from table 2.1, except the lactate. For the statistical analysis only randomly
selected voxels were chosen. The comparison of two cases, before and af-
ter applying the odMRSI, suggested using a paired test. Depending on the
normality of the difference between these two cases the Student t-test or the
Wilcoxon signed-rank test was used. All statistical tests were performed on
the 5 % statistical level of significance.

2.4.2 Phantom Validation of SPREAD

The MRSI datasets were the first spatially filtered by the Hamming filter.
Dong and Peterson [7] recommend to remove water residua from the spectra,
so it was the next step, which was done in JMRUI by The Hankel Lanczos
Squares Singular Values Decomposition (HLSVD) [12]. The parameters for
HLSVD were: 25 components, 2048 rows in Hankel matrix, 4096 points in
SVD and 4096 points to correct. The spectral region of water residue was
defined by hand, which is shown on the figure 2.4.

The datasets were loaded to Matlab and the SPREAD method was ap-
plied. Each MRSI dataset was corrected with two different B0 maps. The
results were compared and evaluated only qualitatively, because the poor
performance of the method was immediately apparent. The example of the
spectra from phantom dataset corrected by SPREAD method is shown in fig-
ure 2.5.
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FIGURE 2.4: Definition of parameters for HLSVD with defined
region of water residue in JMRUI.
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FIGURE 2.5: The MRSI spectra of one voxel before (blue) and
after (orange) SPREAD.
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2.5 In vivo Validation

Based on the results from the simulations and the phantom validation, only
the odMRSI was tested on in vivo datasets. Six healthy volunteers were
scanned on a 7T whole body MR scanner (Magnetom, Siemens Healthcare,
Erlangen, Germany) with a 32-channel receive coil array combined with a
volume transmit coil (NovaMedical, Wilmington, Massachusetts, USA).

2.5.1 Data acqusition

For localization purposes a 3D T1-weighted, magnetization-prepared, rapid
acqusition gradient echo sequence (MP2RAGE) was acquired [13]. To ad-
just the intended flip angle a B+

1 map was acquired with a presaturation
turboFLASH-based B1 mapping sequence [14].

MRSI datasets were acquired with a two-dimensional, FID-based MRSI
sequence [15]. For the first five volunteers, two different matrix sizes, 64× 64

and 100×100 were acquired, while the other parameters were: FOV, 220×220

mm; slice thickness, 8 mm; TE, 1.3 ms; TR, 450 ms; flip angle, 42◦; vector size,
2048 oversampled FID points; bandwidth,6000 Hz; elliptical phase encoding.
For matrix size 64× 64 CAIPIRINHA parallel imaging [16] with acceleration
factor R = 9 was used, acquisition time was 6 : 26 min. For matrix size
100 × 100 CAIPIRINHA parallel imaging [16] with acceleration factor R = 4

was used and acquisition time was 2 : 38 min. For volunteer number six,
six averages of MRSI data of matrix size 100× 100 were acquired to compare
improvements in spectral quality obtained by odMRSI against the improve-
ment achieved by averaging.

B0 maps were obtained via the double echo gradient echo sequence with
three different matrix sizes, 200×200, 300×300, 400×400. The others param-
eters: FOV, 220 × 220; slice thickness, 10 mm; TR ,34 ms; TEs, 5.10 and 6.12

ms; flip angle 20◦

2.5.2 Data Processing

MRSI data processing was performed offline with an in-house-developed
tool [10] based on Matlab, Bash, and MINC, which was extended by the
odMRSI algorithm, written in Matlab. Processing pipeline is depicted in fig-
ure 2.6. Multichannel spectroscopic data combined by matching image cali-
bration data (MUSICAL) coil combination [17], CAIPIRINHA reconstruction
[16] and spatial Hamming filter were applied. Lipid contamination of the
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odMRSI

FIGURE 2.6: The pipeline of post-processing of the in vivo
MRSI data. [10]

spectra was removed by L2-regularisation [18] and the odMRSI was applied
with a high-resolution B0 map. The spectral fitting was performed voxel-
wise by LCModel in the range between 1.8 ppm and 4.2 ppm. The qual-
ity of the fitting process was represented by the Cramer-Rao lower bounds
(CRLBs) for each metabolite from the basis sets. Results from the LCModel fit
were used to create metabolite maps and maps of spectral quality parameters
such as SNR, FWHM, and CRLBs of the metabolites.

2.5.3 Statistical analysis

After data processing, the maps of quality parameters were loaded into Mat-
lab, where statistical analysis was performed to prove that the odMRSI im-
proves spectral properties and the quality of LCModel fit, represented by
CRLBs. The statistical analysis was performed on five metabolites: inositol,
glutamate, creatine, choline, N-acetyl aspartic acid. Because the odMRSI is a
voxelwise method, paired tests can prove if the difference between the cases
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FIGURE 2.7: Metabolic map of total creatine with randomly
sampled mask for statistical analysis.

before and after odMRSI is equal to zero or not. Paired t-tests or Wilcoxon
sign rank tests were used for this purpose. Paired t-test requires normally
distributed differences between the pairs, which was tested by the Anderson-
Darling test. If this was not the case, the Wilcoxon sign test was performed.

To prove that the odMRSI improves the spectral parameters and CRLBs,
the statistical analysis was performed on the data of five volunteers. Approx-
imately 100 voxels were randomly chosen from each volunteer. The voxels
were chosen only from the regions were CRLBs of metabolites were under 20
%. For the comparison of the odMRSI with the Signal averaging approach,
the data of volunteer number six were used. The statistical analysis was per-
formed only on randomly sampled voxels, which were chosen in the same
way as in the previous case.

The data were presented via boxplots. For SNR and FWHM, the data
were depicted in the absolute numbers and also in ratios of improvement
when comparing with a single measurement without odMRSI reconstruction
or the Signal averaging.





39

Chapter 3

Results

3.1 Results of Simulations

3.1.1 Simulation results for odMRSI

The result of the simulation of the odMRSI reconstruction are presented in
the table 3.1, in form of a mean and standard deviation. The first part of
table 3.2 contains the result of the statistical comparison of the dataset from
the simulation of odMRSI reconstruction. Figure 3.1 depicts the boxplots
of the SNR increase after applying the odMRSI or the Signal averaging in
percentage. In the same way, the boxplots of the FWHM are depicted in
figure 3.3. Maps of the SNR increase and the FWHM change are shown in
figure 3.2 and 3.4.

The SNR increased after the odMRSI and also after the Signal averaging.
However the increase of the SNR is higher for the Signal averaging compar-
ing with odMRSI with the measured B0 map (p-value < 0.001). In terms
of the SNR, there is no difference between the odMRSI with the measured
B0 map versus the odMRSI with the modified B0 map (p-value 0.82). The
odMRSI with random B0 map brought the higher SNR as the odMRSI with
the measured B0 map(p-value < 0.001). In figure 3.2 the spatial dependency
in cases of odMRSI with the measured and modified B0 map can be seen.
Also in these two cases, the strong correlation of the increase of the SNR and
standard deviation between the subvoxels of the B0 map was found, which
is depicted in figure 3.5.

Comparing the odMRSI with the Signal averaging, the FWHM increased
more in cases of odMRSI with the modified and random B0 map(p-values
0.0175 and < 0.001). There was no change in case of the measured B0 map
(p-value 0.2020). Also, there were no change in the FWHM comparing the
odMRSI with measured B0 map against the odMRSI with the modified and
random B0 map (p-values 0.0316 and < 0.001).
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FIGURE 3.1: Boxplots of the SNR increase in percentage for the
odMRSI simulation against the reference case (no averaging, no

odMRSI reconstruction).
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FIGURE 3.2: Maps of the SNR increase in percentage for the
odMRSI simulation against the reference case (no averaging, no

odMRSI reconstruction).
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FIGURE 3.3: Boxplots of the FWHM increase in percentage for
the odMRSI simulation against the reference case.
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FIGURE 3.4: Maps of the FWHM increase in percentage for the
odMRSI simulation against the reference case.
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FIGURE 3.5: Plot of the standard deviation of subvoxel against
the increase of the SNR after odMRSI. Left: The odMRSI with
measured B0 map. Right: The odMRSI with modified B0 map.

3.1.2 Simulation results for SPREAD

The results of the simulation of the SPREAD method are presented in the
last part of table 3.1, in form of a mean and standard deviation. The second
part of table 3.2 contains the result of the statistical comparison of the dataset
from the simulation of the SPREAD method. Figure 3.6 depicts the boxplots
of the incerase of the SNR in percentage after applying the SPREAD method,
the Signal averaging and the Wiener-Gaussian filter. In the same way, the
boxplots of the FWHM are depicted in figure 3.8. Maps of the increase of the
SNR and the FWHM are in figure 3.7 and 3.9.

The SNR increased in both cases, after applying the SPREAD method and
after appyling the Wiener-Gaussian filter. Comparing the 4 averages with
these two methods, the 4 averages yielded higher SNR values (p-value <

0.001), but there was no difference between the 4 averages and the Wiener-
Gaussian filter (p-value 0.5697). The SNR after the Wiener-Gaussian filter
was higher than in case of SPREAD method (p-value < 0.001). The SPREAD
method increased the FWHM more than the 4 averages (p-value < 0.001)
but after the Wiener-Gaussian filter the FWHM was even higher (p-value
< 0.001). The spatial depedency can be seen only in case of the SNR in figure
3.7 for the SPREAD method and also for the Wiener-Gaussian filter.
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FIGURE 3.6: Boxplots of the SNR increase in percentage for the
SPREAD simulation against the reference case.

Ref. 4 Averages

5 10 15 20 25 30

5

10

15

20

25

30 20

40

60

80

100

120

140

160

SPREAD

5 10 15 20 25 30

5

10

15

20

25

30 20

40

60

80

100

120

140

160

Wiener-Gaussian �lter

5 10 15 20 25 30

5

10

15

20

25

30 20

40

60

80

100

120

140

160

FIGURE 3.7: Maps of the SNR increase in percentage for the
SPREAD simulation against the reference case.
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FIGURE 3.8: Boxplots of the FWHM increase in percentage for
the SPREAD simulation against the reference case.
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FIGURE 3.9: Maps of the FWHM increase in percentage for the
SPREAD simulation against the reference case.



TABLE 3.1: The data for the statistical analysis of the simulations. The table contains the mean and the standard deviation
of the SNR and the FWHM.

odMRSI
Spectral

properties
no odMRSI 4 averages measured

B0 map
modified
B0 map

random
B0 map

SPREAD Wiener-
Gaussian

filter
SNR 12.28 (±0.94) 23.32 (±1.44) 17.40 (±1.88) 17.39 (±1.86) 22.97 (±1.92) 17.06 (±3.27) 23.10 (±4.60)

FWHM 15.19 (±2.48) 15.52 (±1.11) 15.71 (±1.46) 15.84 (±1.63) 16.05 (±1.08) 18.19 (±1.83) 18.92 (±1.41)

TABLE 3.2: The result of the statistical analysis of the data from the simulations. The table contains the p-values of the
Wilcoxon sign-rank.

Wilcoxon sign-rank test
4 averages vs odMRSI with 4 averages vs SPREAD

vs.
Spectral

properties
measured

B0 map
modified
B0 map

random
B0 map

measured vs
modified
B0 map

measured vs
random
B0 map

SPREAD Wiener-
Gaussian

filter

Wiener-
Gaussian

filter
SNR < 0.001 < 0.001 0.0287 0.8229 < 0.001 < 0.001 0.5697 < 0.001

FWHM 0.2020 0.0175 < 0.001 0.0316 < 0.001 < 0.001 < 0.001 < 0.001
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3.2 The results of Phantom Validation of odMRSI

The results of the phantom validation of the odMRSI as mean and standard
deviation of the data before and after applying the odMRSI together with the
results of the statistical comparison are presented in table 3.3. The Wilcoxon
sign rank test was used for comparison, because of non-normality of the dif-
ference between the parameters before and after applying the odMRSI. Fig-
ure 3.10 depicts boxplots of the SNR and figure 3.11 depicts boxplots of the
FWHM for the phantom validation. Figure 3.12 and figure 3.13 depict box-
plots of the CRLBs of four fitted metabolites for the 16 × 16 and the 32 × 32

MRSI resolution, before and after applying the odMRSI.
The CRLBs of all fitted metabolites decreased after applying the odMRSI

for both MRSI datasets (p-values < 0.001). However for the 16 × 16 MRSI
dataset, there were no difference between the odMRSI with 64 × 64 B0 map
and 128 × 128 B0 map. For the 32 × 32 MRSI dataset, the odMRSI with the
128 × 128 B0 map yielded lower CRLBS of Cr and GPC+PCh (p-values <
0.001). In the same case, CRLBs of Gln and NAA+NAAG were the same for
both odMRSI cases (p-values 0.19 and 0.22).

For 16 × 16 MRSI datasets the SNR inceased after applying the odMRSI
with both 64 × 64 and 128 × 128 resolution B0 maps, from 70.09 (±34.8) to
157.51 (±44.32) and 175.60 (±55.40) (p-values < 0.001). For the 32× 32 MRSI
dataset the SNR after applying the odMRSI with the same B0 maps increased
from 58.08 (±21.91) to 91.67 (±23.57) and 115.04 (±31.74) (p-values < 0.001).
The increase after the odMRSI with 128× 128 was higher (p-value < 0.001).

The FWHM increased after applying the odMRSI in all cases. For the
16 × 16 MRSI dataset the FWHM increased after applying the odMRSI with
the 64× 64 B0 map from 0.061 (±0.0029) to 0.062 (±0.027) (p-value 0.019) and
after applying the odMRSI with the 32 × 32 B0 map to 0.063 (0.026) (p-value
< 0.001). For the 32 × 32 MRSI dataset the FWHM increased after applying
the odMRSI with the 64 × 64 B0 map from 0.036 (±0.019) to (0.037± 0.020)

(p-value 0.003) and after applying the odMRSI with the 32 × 32 B0 map to
0.037 (±0.020) (p-value < 0.001). There was no difference in the FWHM be-
tween odMRSI with 64× 64 and 128× 128 B0 map (p-value 0.33).



TABLE 3.3: The results of the statistical analysis for phantom validation. The left part of the table contains the mean and
the standard deviation of the CRLBs of fitted metabolites, the SNR and the FWHM. The right part contains the p-values of

the Wilcoxon sign-rank.

odMRSI Wilcoxon sign-rank test
no odMRSI B0 map 64res. B0 map 128res. noOD vs OD64 noOD vs OD128 OD64 vs OD128

MRSI 16x16 resolution
metabolite mean± SD
CLRB Cr [%] 3.39± 0.83 2.72± 0.74 2.66± 0.87 < 0.001 < 0.001 0.1349
CLRB Gln [%] 11.53± 3.50 8.93± 4.71 8.83± 4.85 < 0.001 < 0.001 0.3861
CLRB GPC+PCh [%] 3.41± 0.70 2.90± 0.86 2.87± 0.97 < 0.001 < 0.001 0.3742
CLRB NAA+NAAG [%] 2.47± 0.56 2.17± 0.59 2.15± 0.72 < 0.001 < 0.001 0.6367
spectral properties
SNR 70.09± 34.38 157.51± 44.32 175.60± 55.40 < 0.001 < 0.001 < 0.001
FWHM [ppm] 0.061± 0.029 0.062± 0.027 0.063± 0.026 0.019 < 0.001 0.0324

MRSI 32x32 resolution
metabolite
CLRB Cr [%] 3.28± 0.45 2.95± 0.28 2.73± 0.48 < 0.001 < 0.001 < 0.001
CLRB Gln [%] 17.09± 1.38 12.55± 2.46 12.27± 2.76 < 0.001 < 0.001 0.1902
CLRB GPC+PCh [%] 3.50± 0.56 2.88± 0.47 2.66± 0.56 < 0.001 < 0.001 < 0.001
CLRB NAA+NAAG [%] 2.53± 0.50 2.08± 0.28 2.05± 0.23 < 0.001 < 0.001 0.2188
spectral properties
SNR 58.08± 21.91 91.67± 23.57 115.04± 31.74 < 0.001 < 0.001 < 0.001
FWHM [ppm] 0.036± 0.019 0.037± 0.020 0.037± 0.020 0.003 < 0.001 0.3311
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FIGURE 3.10: Boxplots of the SNR for the phantom validation
of the odMRSI. Left: Boxplots of the absolute values of the SNR.
Right: Boxplots of the SNR increase in percentage after apply-

ing the odMRSI reconstruction.
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FIGURE 3.11: Boxplots of the FWHM for the phantom valida-
tion of the odMRSI. Left: Boxplots of the absolute values of the
FWHM. Right: Boxplots of the FWHM increase in percentage

after applying the odMRSI reconstruction.
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FIGURE 3.12: Boxplots of the CRLBs of the fitted metabolites
for phantom validation of odMRSI, performed on the 16 × 16

resolution MRSI data.
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FIGURE 3.13: Boxplots of the CRLBs of the fitted metabolites
for phantom validation of odMRSI, performed on the 32 × 32

resolution MRSI data.
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3.3 The results of inVivo validation

Table 3.4 contains data for inVivo validation of odMRSI. In the first part of
the table are means and standard deviations of CRLBs of the fitted metabo-
lites, the SNR and the FWHM for the cases before and after applying the
odMRSI. The second part of the table contains the results of the statistical
comparison of the parameters before and after applying the odMRSI recon-
struction. The right part of the table 3.7 contains the results from comparising
the odMRSI with different resolution of B0 map. The Wilcoxon sign rank test
was used because of non-normality of differences between tested data. Fig-
ure 3.14 depicts the boxplots of the absolute values of the SNR before and
after the odMRSI and of the SNR increase after applying the odMRSI. In the
same manner, figure 3.15 depicts the results for the FWHM. Figure 3.16 and
figure 3.17 depict the boxplots of the CRLBs of the fitted metabolites for the
MRSI resolution of 64× 64 and 100× 100.

The CRLBs of all fitted metabolites decreased after applying the odMRSI
with three different resolution of B0 map for the 64 × 64 resolution of MRSI
dataset and also for the 100 × 100 resolution of MRSI dataset (p-values <
0.001). The lowest CRLBs values were achieved with the odMRSI with 400×
400 B0 map for both MRSI datasets (p-values < 0.001).

For 64 × 64 MRSI dataset, the SNR 7.78 ± 2.86 increased after applying
the odMRSI with 200 × 200 B0 map to 11.68 ± 3.81 (p-value < 0.001), after
applying the odMRSI with 300× 300 B0 map to 13.10± 4.00 (p-value < 0.001)
and after applying the odMRSI with 400 × 400 B0 map to 14.15 ± 4.07 (p-
value < 0.001). For 100 × 100 MRSI dataset, the SNR 5.17 ± 2.57 increased
after applying the odMRSI with 200 × 200 B0 map to 7.50 ± 3.48 (p-value
< 0.001) and after applying the odMRSI with 300× 300 B0 map to 8.75± 4.03

(p-value < 0.001). The odMRSI with 400× 400 B0 map increased the SNR to
10.03 ± 4.36 (p-value < 0.001), which was the highest SNR value (p-values
< 0.001).

For 64× 64 MRSI dataset, the FWHM 0.05± 0.02 increased after applying
the odMRSI in all three cases with different resolution of B0 map to 0.05 ±
0.03 (p-values < 0.001). For 100 × 100 MRSI dataset, the FWHM 0.06 ± 0.04

increased after applying the odMRSI with 200× 200 and 300× 300 resolution
of B0 map to 0.07 ± 0.04 (p-values < 0.001). However, after applying the
odMRSI with 200× 200 B0 map the FWHM was not changed (p-value 0.44).
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TABLE 3.4: The results of the statistical analysis for in vivo validation of odMRSI reconstruction. The left part of the table
contains the mean and the standard deviation of the CRLBs of fitted metabolites, the SNR and the FWHM. The right part

contains the p-values of the Wilcoxon sign-rank from the comparing the data before and after odMRSI reconstruction.

odMRSI Wilcoxon sign-rank test
no odMRSI B0 map

200res.
B0 map
300res.

B0 map
400res.

no
odMRSI vs
odMRSI200

no
odMRSI vs
odMRSI300

no
odMRSI vs
odMRSI400

MRSI 64x64 res. mean± SD
CRBL Ins [%] 12.21± 3.69 7.83± 2.44 6.99± 2.02 6.41± 1.70 < 0.001 < 0.001 < 0.001
CRBL Glu [%] 7.07± 2.74 5.11± 2.07 4.63± 1.86 4.30± 1.61 < 0.001 < 0.001 < 0.001
CRBL GPC+PCh [%] 5.86± 1.95 4.49± 1.47 4.18± 1.48 3.98± 1.40 < 0.001 < 0.001 < 0.001
CRBL NAA+NAAG [%] 4.16± 1.59 3.07± 1.39 2.82± 1.31 2.69± 1.06 < 0.001 < 0.001 < 0.001
CRBL Cr+PCr [%] 5.63± 1.71 4.25± 1.33 3.89± 1.14 3.71± 1.29 < 0.001 < 0.001 < 0.001
SNR 7.78± 2.86 11.68± 3.81 13.10± 4.00 14.15± 4.07 < 0.001 < 0.001 < 0.001
FWHM [ppm] 0.05± 0.02 0.05± 0.03 0.05± 0.03 0.05± 0.03 < 0.001 < 0.001 < 0.001

MRSI 100x100 res.
CRBL Ins [%] 14.65± 3.71 10.39± 3.10) 8.79± 2.56 7.75± 2.24 < 0.001 < 0.001 < 0.001
CRBL Glu [%] 9.57± 3.75 7.21± 3.07 6.40± 2.64 5.83± 2.55 < 0.001 < 0.001 < 0.001
CRBL GPC+PCh [%] 8.08± 2.75 6.31± 2.17 5.69± 2.06 5.22± 1.98 < 0.001 < 0.001 < 0.001
CRBL NAA+NAAG [%] 6.30± 2.56 4.78± 2.02 4.22± 1.73 3.82± 1.70 < 0.001 < 0.001 < 0.001
CRBL Cr+PCr [%] 7.68± 2.45 6.10± 2.09 5.47± 1.87 5.07± 2.06 < 0.001 < 0.001 < 0.001
SNR 5.17± 2.57 7.50± 3.48 8.75± 4.03 10.03± 4.36 < 0.001 < 0.001 < 0.001
FWHM [ppm] 0.06± 0.04 0.06± 0.04 0.07± 0.04 0.07± 0.04 0.4386 < 0.001 < 0.001



TABLE 3.5: The results of the statistical analysis for in vivo validation of odMRSI reconstruction. The left part of the table
contains the mean and the standard deviation of the CRLBs of fitted metabolites, the SNR and the FWHM. The right part

contains the p-values of the Wilcoxon sign-rank from the comparing the odMRSI with different resolution of B0 map .

odMRSI Wilcoxon sign-rank test
no odMRSI B0 map

200res.
B0 map
300res.

B0 map
400res.

odMRSI200
vs

odMRSI300

odMRSI200
vs

odMRSI400

odMRSI300
vs

odMRSI400
MRSI 64x64 res. mean± SD
CRBL Ins [%] 12.21± 3.69 7.83± 2.44 6.99± 2.02 6.41± 1.70 < 0.001 < 0.001 < 0.001
CRBL Glu [%] 7.07± 2.74 5.11± 2.07 4.63± 1.86 4.30± 1.61 < 0.001 < 0.001 < 0.001
CRBL GPC+PCh [%] 5.86± 1.95 4.49± 1.47 4.18± 1.48 3.98± 1.40 < 0.001 < 0.001 < 0.001
CRBL NAA+NAAG [%] 4.16± 1.59 3.07± 1.39 2.82± 1.31 2.69± 1.06 < 0.001 < 0.001 < 0.001
CRBL Cr+PCr [%] 5.63± 1.71 4.25± 1.33 3.89± 1.14 3.71± 1.29 < 0.001 < 0.001 < 0.001
SNR 7.78± 2.86 11.68± 3.81 13.10± 4.00 14.15± 4.07 < 0.001 < 0.001 < 0.001
FWHM [ppm] 0.05± 0.02 0.05± 0.03 0.05± 0.03 0.05± 0.03 < 0.001 < 0.001 < 0.001

MRSI 100x100 res.
CRBL Ins [%] 14.65± 3.71 10.39± 3.10 8.79± 2.56 7.75± 2.24 < 0.001 < 0.001 < 0.001
CRBL Glu [%] 9.57± 3.75 7.21± 3.07 6.40± 2.64 5.83± 2.55 < 0.001 < 0.001 < 0.001
CRBL GPC+PCh [%] 8.08± 2.75 6.31± 2.17 5.69± 2.06 5.22± 1.98 < 0.001 < 0.001 < 0.001
CRBL NAA+NAAG [%] 6.30± 2.56 4.78± 2.02 4.22± 1.73 3.82± 1.70 < 0.001 < 0.001 < 0.001
CRBL Cr+PCr [%] 7.68± 2.45 6.10± 2.09 5.47± 1.87 5.07± 2.06 < 0.001 < 0.001 < 0.001
SNR 5.17± 2.57 7.50± 3.48 8.75± 4.03 10.03± 4.36 < 0.001 < 0.001 < 0.001
FWHM [ppm] 0.06± 0.04 0.06± 0.04 0.07± 0.04 0.07± 0.04 < 0.001 < 0.001 < 0.001
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FIGURE 3.14: Boxplots of the SNR from the in vivo validation of the odMRSI. Left: Boxplots of the absolute values of the
SNR. Right: Boxplots of the SNR increase after applying the odMRSI reconstruction.
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FIGURE 3.15: Boxplots of the FWHM from the in vivo validation of the odMRSI. Left: Boxplots of the absolute values of
the FWHM. Right: Boxplots of the FWHM increase after applying the odMRSI reconstruction.
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FIGURE 3.16: Boxplots of the CRLBs of the fitted metabolites for in vivo validation of odMRSI, performed on the 64 × 64
resolution MRSI data.
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FIGURE 3.17: Boxplots of the CRLBs of the fitted metabolites for in vivo validation of odMRSI, performed on the 100× 100
resolution MRSI data.
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3.4 The result of validation of odMRSI against sig-

nal averaging

The result of comparison between the odMRSI and the Signal averaging in
the in vivo data are presented in table 3.6 for 4 averages and 5 averages and
in table 3.7 for 6 averages Figure 3.18 depicts the boxplots of the SNR for
the visual comparison of the odMRSI and the Signal averaging in absolute
values and as the increase of the SNR after applying the odMRSI or the Signal
averaging. The results of the FWHM are presented in the same way in figure
3.19. Figure 3.20 depicts the boxplots of the CRLBs of the fitted metabolites
before applying the odMRSI or the Signal averaging and after applying these
two methods.

Comparing the results after the Signal averaging with the results after the
odMRSI, the odMRSI with 400 × 400 B0 map yielded lower CRLBs of the
fitted metabolites than 4 averages and 5 averages (p-values < 0.001). Also,
the SNR after the 4 averages was lower than after the odMRSI with 300× 300

B0 map (p-value < 0.001). The SNR after the 5 averages was overcome with
the odMRSI with 400 × 400 B0 map (p-value < 0.001). Hovewer, the CRLBs
of the fitted metabolites after the odMRSI with 400 × 400 B0 map was lower
than after the 6 averages only for Ins, GPC+PCh and NAA+NAAG (p-value
< 0.001) and for Glu and Cr+PCr there was no difference (p-values 0.84 and
0.05). Additionally, the SNR after the odMRSI wit 400 × 400 B0 map and
the 6 averages was the same (p-value 0.07). The Signal averaging yielded
consistently to the lower FHWM (p-values < 0.001).



TABLE 3.6: The results of statistical analysis for comparison of the odMRSI against the Signal averaging on in vivo dataset
(4 averages and 5 averages). The left part of the table contains the mean and the standard deviation of the CRLBs of fitted

metabolites, the SNR and the FWHM. The right part contains the p-values of the Wilcoxon sign-rank.

odMRSI Wilcoxon sign-rank test
4 averages B0map 200res. B0map 300res. B0map 400res. 4aver. vs

odMRSI200
4aver. vs
odMRSI300

4aver. vs
odMRSI400

metabolite mean± SD
CRLB Ins [%] 10.09± 2.24 10.25± 2.22 8.39± 1.83 7.07± 1.35 0.6187 < 0.001 < 0.001
CRLB Glu [%] 7.43± 2.37 8.35± 2.63 7.28± 2.38 6.51± 2.05 < 0.001 0.1801 < 0.001
CRLB GPC+PCh [%] 5.60± 1.57 6.11± 1.54 5.25± 1.21 4.80± 1.49 < 0.001 < 0.001 < 0.001
CRLB NAA+NAAG [%] 4.41± 1.20 4.90± 1.24 4.10± 0.89 3.71± 0.87 < 0.001 < 0.001 < 0.001
CRLB Cr+PCr [%] 5.55± 1.43 6.26± 1.86 5.48± 1.59 4.94± 1.36 < 0.001 0.2205 < 0.001
spectral properties
SNR 7.29± 2.30 6.29± 2.05 7.54± 2.36 8.70± 2.88 < 0.001 < 0.001 < 0.001
FWHM [ppm] 0.04± 0.02 0.05± 0.03 0.05± 0.03 0.05± 0.03 < 0.001 < 0.001 < 0.001

5 averages B0map 200res. B0map 300res. B0map 400res. 5aver. vs
odMRSI200

5aver. vs
odMRSI300

5aver. vs
odMRSI400

metabolite
CRLB Ins [%] 8.81± 1.43 10.25± 2.22 8.39± 1.83 7.07± 1.35 < 0.001 < 0.001 < 0.001
CRLB Glu [%] 6.86± 1.79 8.35± 2.63 7.28± 2.38 6.51± 2.05 < 0.001 < 0.001 < 0.001
CRLB GPC+PCh [%] 5.18± 1.18 6.11± 1.54 5.25± 1.21 4.80± 1.49 < 0.001 0.2829 < 0.001
CRLB NAA+NAAG [%] 4.05± 0.97 4.90± 1.24 4.10± 0.89 3.71± 0.87 < 0.001 0.4005 < 0.001
CRLB Cr+PCr [%] 5.26± 1.34 6.26± 1.86 5.48± 1.59 4.94± 1.36 < 0.001 < 0.001 < 0.001
spectral properties
SNR 7.94± 2.16 6.29± 2.05 7.54± 2.36 8.70± 2.88 < 0.001 < 0.001 < 0.001
FWHM [ppm] 0.04± 0.02 0.05± 0.03 0.05± 0.03 0.05± 0.03 < 0.001 < 0.001 < 0.001



TABLE 3.7: The results of statistical analysis for comparison of the odMRSI against the Signal averaging on in vivo dataset
(6 averages). The left part of the table contains the mean and the standard deviation of the CRLBs of fitted metabolites, the

SNR and the FWHM. The right part contains the p-values of the Wilcoxon sign-rank.

odMRSI Wilcoxon sign-rank test
6 averages B0map 200res. B0map 300res. B0map 400res. 6aver. vs

odMRSI200
6aver. vs
odMRSI300

6aver. vs
odMRSI400

metabolite mean± SD
CRLB Ins [%] 8.20± 1.39 10.25± 2.22 8.39± 1.83 7.07± 1.35 < 0.001 0.3972 < 0.001
CRLB Glu [%] 6.46± 1.73 8.35± 2.63 7.28± 2.38 6.51± 2.05 < 0.001 < 0.001 0.8404
CRLB GPC+PCh [%] 4.91± 1.15 6.11± 1.54 5.25± 1.21 4.80± 1.49 < 0.001 < 0.001 < 0.001
CRLB NAA+NAAG [%] 3.83± 0.90 4.90± 1.24 4.10± 0.89 3.71± 0.87 < 0.001 < 0.001 < 0.001
CRLB Cr+PCr [%] 5.00± 1.14 6.26± 1.86 5.48± 1.59 4.94± 1.36 < 0.001 < 0.001 0.0516
spectral properties
SNR 8.53± 2.40 6.29± 2.05 7.54± 2.36 8.70± 2.88 < 0.001 < 0.001 0.0710
FWHM [ppm] 0.04± 0.02 0.05± 0.03 0.05± 0.03 0.05± 0.03 < 0.001 < 0.001 < 0.001
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FIGURE 3.18: Boxplots of the SNR from the comparison of the odMRSI against the Signal averaging. Left: Boxplots of the
absolute values of the SNR before and after applying the odMRSI and from the Signal averaging. Right: Boxplots of the

SNR increase after applying the odMRSI or the Signal averaging.
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the FWHM increase after applying the odMRSI or the Signal averaging.
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FIGURE 3.21: Comparison of metabolic maps of the Glu+Gln between the Signal averaging and the odMRSI reconstruction.
Averages show visual improvement, but the odMRSI does not.
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FIGURE 3.22: Ratio of the Ins to the NAA+NAAG metabolic map plotted over the flair image shows metabolic changes
even in normal appearing white matter without apparent changes on conventional MRI (e.g. Flair).
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Chapter 4

Discussion

The goal of the thesis was to improve spectral properties of MRSI datasets
with use of the high-resolution B0 map during postprocessing. The Overdis-
crete MRSI reconstruction and the Spectral resolution amelioration by spec-
tral deconvolution were implemented in Matlab. Validation of the methods
was performed on the simulation model, phantom data and in vivo data.
The performance of the methods was also compared with Signal averaging.
Finally, the Overdiscrete MRSI (odMRSI) reconstruction was applied on the
clinical data of multiple sclerosis patients.

The odMRSI requires to interpolate MRSI data to a high resolution B0
map and then, the high-resolution B0 map specify how much the sub-voxel
spectra should be frequency shifted. The key point of this method is the fact
that after the interpolation, the noise is correlated and the different shift of
the sub-voxel spectra, which belong to the same MRSI voxel, destroy noise
correlation and after the averaging of the sub-voxel spectra, increase the SNR.
To destroy noise correlation the B0 map can be replaced by random numbers,
which also brings the increase of the SNR and high-resolution B0 map is not
necessary. Another way is using the shift map generated by the LCmodel,
interpolate it to a higher resolution and use this information in the odMRSI.

SPREAD uses the high-resolution B0 map to simulate the distortion sig-
nals, called the lineshape profiles, which caused line broadening and line-
shape distortions. The high resolution of the lineshape profiles is lower by
the simulated MRSI acquisition to the resolution of the MRSI dataset. Then
spectral deconvolution can be performed.

After applying the odMRSI a significant SNR increase and a negligible
FWHM change was found. For the simulation model, the SNR increase was
in the range between +40% up to +100%. For the phantom data the increase
was between +50% and +150%. For the in vivo data, the increase of the
SNR was around +100%. Kirchner et al. [6] reported the SNR increase after
odMRSI depending on the vector size from +40% up to +210%. The increase
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of the FWHM was in all three cases around 5%, while Kirchner et al reported
a decrease of the FWHM.

The performance of SPREAD was quantitatively evaluated only on the
simulated data. The presence of the noise in the data limits the performance
of the SPREAD which was shown on the phantom data, where poor perfor-
mance was immediately apparent. The results from simulations showed that
the Wiener-Gaussian filter increases the SNR (+90%) and the FWHM (+25%)
while the following deconvolution lowers the increase for both parameters,
the SNR (to +40%) and the FWHM (to +20%). Dong and Peterson [7] reported
the change of the FWHM -20% for the phantom measurement, however, the
data had much higher SNR. This is a very unusal situation and hence these
results can not be translated into clinical reality.

4.1 Validation of methods on the simulated data

The results of the odMRSI from the simulated data showed that the increase
of the SNR came from the non-homogeneity of the B0 map. There was no
difference in terms of the SNR between the odMRSI with the measured and
modified B0 map, while the mean of sub-voxels of the modified B0 map was
zero, so the modified B0 map represented just the relative shift between the
sub-voxels. The highest SNR increase was thus achieved by the odMRSI,
with the random B0 map, however, this case had also the highest FWHM
values, which lowers spectral resolution. For the SPREAD method, the re-
sults showed that the increase of the parameters is strongly influenced by
the Wiener-Gaussian filter, but the deconvolution was not able to decrease
the FWHM under the initial values.

4.2 Validation of methods on the phantom data

The results from the phantom validation allowed quantitative validation only
on the results from the odMRSI reconstruction. The poor performance of the
SPREAD was immediately apparent from the results. The results showed for
the odMRSI that, the higher resolution of the B0 map does not yield a higher
SNR increase. For 16×16 and 32×32 MRSI resolutions, the SNR increase was
higher in case of 64 × 64 resolution of B0 maps than in case of 128 × 128 B0
maps. Also for the FWHM, the increase was higher in the same cases, which
suggests that the FWHM is traded for the SNR. The decrease of the CRLBS
of the fitted metabolite was the same for the both resolution of B0 map in
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case of the 16 × 16 MRSI resolution, while in case of the 32 × 32 MRSI reso-
lution was different only in two metabolites. These findings suggest that the
improvement in the SNR does not automatically mean improvement in the
CRLBs but the initially low values of CRLBs and relatively high values of the
SNR have to be taken in to account.

4.3 Validation of methods on the in vivo data

The statistical comparison confirmed that odMRSI increases the SNR and the
FWHM and decreases the CRLBs of the fitted metabolites. The result also
confirmed that the highest improvement was brought by the odMRSI with
400× 400 resolution of B0 map.

The comparison of the odMRSI with the Signal averaging shown that the
odMRSI with the 400×400 B0 map is superior to the Signal averaging of 5 av-
erages in terms of the SNR and CRLBs. However, the improvement of these
two parameters is not directly related to the improvement of the metabolic
maps, which was demonstrated on the metabolic map of Glu+Gln.

Finally, it was demonstrated that the odMRSI can be also based on a shift
map, which is one of the output from the LCModel fit. In this case the
LCModel is run twice, once to generate a shift map and the second run is
performed together with the odMRSI reconstruction. For such an approach
no B0 map is needed so it does not cost any extra acqusition time.

4.4 Limitations and Outlook

The use of the SPREAD is limited by the low SNR. The deconvolution step in
the SPREAD method enhance noise in MRSI data. It was shown that in the
MRSI data with the low SNR, not even Wiener-Gaussian filtering was able
to ensure a desired level of noise for deconvolution. Moreover, the Wiener-
Gaussian filtering decrease the spectral resolution in the MRSI data, which is
the main aim of SPREAD.

The odMRSI reconstruction increases the spectral SNR but the improve-
ment in the metabolic maps is questionable. Futher investigation is necessary
if the odMRSI increases the information content of the data or the improve-
ment is just cosmetic. The statistical comparison between odMRSI and Sig-
nal averaging was not performed in term of concentration of metabolites in
voxels. However, it is possible to match the improvement of the spectral pa-
rameters of the Signal averaging and the odMRSI, so comparison in terms
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of the metabolic concentrations could be reasonbale. Unfortunately this was
not carried out because of lack of time. The next step could be to investigate
the improvemnt of the odMRSI based on the shift maps.

The high resolution B0 map are used also in others methods to improve
spectral properties such as BSLIM [19] or in the Reconstruction of MRSI used
as the high resolution priors [20]. These methods could be implemented and
compared with the odMRSI and SPREAD.



69

Chapter 5

Conclusion

Based on the results from simulations, both methods, the odMRSI and SPREAD,
are capable to improve the spectral properties. However, the way, how the
information from the high-resolution B0 map is used, is specific for each of
them and defined the limits of these methods. The odMRSI is more robust
against the low SNR and was tested also on phantom and in vivo data. Fi-
nally the odMRSI was applied on the data of a multiple sclerosis patient, but
in this case the shift of the spectra was based on the shifts maps from the
LCModel, which means that the odMRSI can be applied with no additional
acqusition time.
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