
Object Recognition for Robotic Grasping
Applications

DIPLOMARBEIT

Conducted in partial fulfillment of the requirements for the degree of a

Diplom-Ingenieur (Dipl.-Ing.)

supervised by

Univ.-Prof. Dr. techn. M. Vincze
Dr. techn. J. Prankl

submitted at the

Vienna University of Technology
Faculty of Electrical Engineering and Information Technology

Automation and Control Institute

by
Thomas Muttenthaler
Sonnleithnergasse 9/26

1100 Vienna
Austria

Vienna, in October 2017

Vision for Robotics
A-1040 Wien, Gusshausstr. 27, Internet: http://www.acin.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/ 
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich. 
 

http://www.ub.tuwien.ac.at 
 
 
 
 

The approved original version of this diploma or 
master thesis is available at the main library of the 
Vienna University of Technology. 
 

http://www.ub.tuwien.ac.at/eng 
 



Preamble
Firstly, I want to thank my supervisors Markus Vincze and Johann Prankl
for sharing their knowledge and professional advice. Furthermore, I want to
express my acknowledgment to the PCL open source community for providing
useful libraries, which facilitated my work.
Finally, I want to thank my parents and friends for their support along the

whole way during the last years.

I



Abstract
Recent developments in modern robotics show that making robots more au-
tonomous is an important, but difficult task for the robotic industry. Imagine a
simple pick and place scenario from our daily life. For example, taking a cup of
coffee from the kitchen table and putting it in the sink. This seems like a fairly
simple task, at least for a human being. If we want to teach a robot to deal
with this situation autonomously, some advanced problems need to be solved.

First of all the robot needs to find the table and recognize the cup of coffee.
Furthermore, the robot needs to bring its arm and fingers in the right position
to grasp the object properly. The goal of this thesis is to integrate an object
recognition system into the framework of an existing robotic arm, which has
already smart grasping algorithms implemented. Combining the vision system
with these grasping algorithms enables the robotic arm to recognize and grasp
objects, like a cup of coffee, autonomously. Till now the user of the robot
needed to provide the location and orientation information of objects manually.
Typing in this data takes time and makes the robot less autonomous.

In this thesis, we tested and evaluated existing general purpose object
recognition algorithms and optimized the results with respect to speed and
accuracy for basic table top situations. The whole recognition process is divided
into different steps, from modeling real objects to extracting location and pose
of recognized objects in a given scene. Finally, we created simple interfaces of
the modeling and recognition system to make it easily operable for users who
are new to computer vision.
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Kurzzusammenfassung
Neueste Entwicklungen in der modernen Robotik zeigen, dass autonom arbei-
tende Roboter zusehends an Bedeutung gewinnen. Stellen Sie sich eine einfache
Tätigkeit aus ihrem Alltag vor. Zum Beispiel sie wollen eine Tasse Kaffee vom
Küchentisch in die Abwasch stellen. Das sollte keine große Herausforderung
darstellen, zumindest nicht für einen Menschen. Soll diese Tätigkeit aber
von einem Roboter erledigt werden, müssen einige Probleme gelöst werden.
Zuerst muss der Tisch gefunden werden und auch die Tasse auf dem Tisch
erkannt werden. Danach muss der Roboter noch eine passende Greiftrajektorie
berechnen, um die Tasse richtig greifen zu können. Das Ziel dieser Arbeit ist es,
ein Objekterkennungssystem in ein existierendes Robotersystem zu integrieren.
Der verwendete Roboterarm ist schon in der Lage selbstständig Objekte zu
greifen, aber derzeit müssen noch die Positionsdaten des zu greifenden Objektes
manuell übergeben werden. Das ist natürlich zeitaufwendig und stellt eine
Einschränkung dar. In dieser Arbeit habe ich verschiedene Objekterkennungs-
algorithmen untersucht und diese auf die Roboterumgebung angepasst. Die
ganze Objekterkennung beinhaltet auch die Modellierung von zu erkennenden
Objekten. Zu guter Letzt wurde die Benutzeroberfläche des Modellierungs-
und Erkennungssystems überarbeitet, um eine einfache Bedienung der Software
gewährleisten zu können.

III



Contents
1 Introduction 1

1.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Solution Statement . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Guideline through Work . . . . . . . . . . . . . . . . . . . . . . 4

2 State of the Art 5
2.1 Object Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 RGBD Camera Data based Modeling . . . . . . . . . . . 5
2.1.2 Laser Scan . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.3 In-Hand Scanner . . . . . . . . . . . . . . . . . . . . . . 8
2.1.4 Feature Based Modeling . . . . . . . . . . . . . . . . . . 9

2.2 Object Recognition . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.1 Global Feature Detection . . . . . . . . . . . . . . . . . . 10
2.2.2 Local Feature Detection . . . . . . . . . . . . . . . . . . 11
2.2.3 Feature Matching . . . . . . . . . . . . . . . . . . . . . . 13
2.2.4 Hypotheses Generation . . . . . . . . . . . . . . . . . . . 14
2.2.5 Hypotheses Verification . . . . . . . . . . . . . . . . . . . 14
2.2.6 Object Recognition Frameworks . . . . . . . . . . . . . . 15
2.2.7 Deep Learning . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Visual Programming Languages . . . . . . . . . . . . . . . . . . 17
2.3.1 Blockly . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.2 Scratch . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.3 Snap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.4 Waterbear . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 System Overview 20
3.1 Sensor Principe and Data Acquisition . . . . . . . . . . . . . . . 20
3.2 Implementation Overview . . . . . . . . . . . . . . . . . . . . . 23

4 Modeling 26
4.1 Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.2 Noise Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.3 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.4 Surface Reconstruction . . . . . . . . . . . . . . . . . . . . . . . 30

IV



Contents V

4.5 User Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5 Recognition System 34
5.1 Client/Server Architecture . . . . . . . . . . . . . . . . . . . . . 34
5.2 Recognition Client . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.3 Recognition Server . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.3.1 Parameter Mapping . . . . . . . . . . . . . . . . . . . . . 36
5.3.2 Initialize Empty Workspace . . . . . . . . . . . . . . . . 37
5.3.3 Object Change Detection . . . . . . . . . . . . . . . . . . 39

5.4 OpenNI Node . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.5 Visualization Node . . . . . . . . . . . . . . . . . . . . . . . . . 44

6 Evaluation 46
6.1 Parameter Mapping . . . . . . . . . . . . . . . . . . . . . . . . . 48
6.2 Initialize Empty Workspace . . . . . . . . . . . . . . . . . . . . 50
6.3 Object Change Detection . . . . . . . . . . . . . . . . . . . . . . 51
6.4 Evaluation of Demonstration Dataset . . . . . . . . . . . . . . . 51

7 Outlook 54

8 Conclusion 55

A Manual 56
A.1 Object Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . 56
A.2 Object Recognition . . . . . . . . . . . . . . . . . . . . . . . . . 58

B Recognition System Parameters 61
B.1 multipipeline_config.xml . . . . . . . . . . . . . . . . . . . . . . 61
B.2 sift_config.xml /shot_config.xml . . . . . . . . . . . . . . . . . 61
B.3 hv_config.xml . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
B.4 esf_config.xml . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65



List of Figures
1.1 Static robotic arm setup . . . . . . . . . . . . . . . . . . . . . . 2
1.2 System overview . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 V4R object modeling setup. . . . . . . . . . . . . . . . . . . . . 6
2.2 Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Laser Object Scanning Rig . . . . . . . . . . . . . . . . . . . . . 8
2.4 In-hand scanner . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.5 Example of a typical table top scene . . . . . . . . . . . . . . . 9
2.6 Example of a typical recognition pipeline . . . . . . . . . . . . . 10
2.7 ESF descriptor . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.8 Example of SIFT features . . . . . . . . . . . . . . . . . . . . . 12
2.9 SHOT descriptor . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.10 Feature matching result . . . . . . . . . . . . . . . . . . . . . . 13
2.11 Example of hypotheses generation and verification . . . . . . . . 15
2.12 Model of a single artificial neuron . . . . . . . . . . . . . . . . . 16
2.13 Example of a Blockly interface. . . . . . . . . . . . . . . . . . . 18
2.14 Example of the Blockly block factory. . . . . . . . . . . . . . . . 18

3.1 System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2 Microsoft Kinect . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.3 Principle of structured light method . . . . . . . . . . . . . . . . 23
3.4 Implementation Overview . . . . . . . . . . . . . . . . . . . . . 24

4.1 Visualization if the ICP algorithm . . . . . . . . . . . . . . . . . 29
4.2 Point cloud models of objects . . . . . . . . . . . . . . . . . . . 29
4.3 Illustration of Poisson reconstruction in 2D . . . . . . . . . . . . 31
4.4 Poinsson Surface Reconstruction . . . . . . . . . . . . . . . . . . 31
4.5 Simplified version of the RTM-tool . . . . . . . . . . . . . . . . 33
4.6 Original version of the RTM-tool . . . . . . . . . . . . . . . . . 33

5.1 Two simple Blockly programms . . . . . . . . . . . . . . . . . . 35
5.2 Working principle of empty work space removal. . . . . . . . . . 38
5.3 Example of scenes. . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.4 Flow chart of "Object Change Detection" algorithm. . . . . . . . 42
5.5 Visualization window. . . . . . . . . . . . . . . . . . . . . . . . 44

VI



List of Figures VII

6.1 Objects stored in the model database. . . . . . . . . . . . . . . . 47
6.2 Examples of the constant workspace dataset. . . . . . . . . . . . 47
6.3 ROC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
6.4 Objects tested for the demonstration. . . . . . . . . . . . . . . . 52
6.5 Examples of the demonstration dataset. . . . . . . . . . . . . . . 52

A.1 V4R object modeling setup. . . . . . . . . . . . . . . . . . . . . 56
A.2 Blockly Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . 59



List of Tables
4.1 Measurements of objects . . . . . . . . . . . . . . . . . . . . . . 30

6.1 Statistics of the datasets. . . . . . . . . . . . . . . . . . . . . . . 48
6.2 Evaluation of Parameter Mapping. . . . . . . . . . . . . . . . . 48
6.3 Examples of different parameters. . . . . . . . . . . . . . . . . . 50
6.4 Evaluation on Constant Work space data set. . . . . . . . . . . . 51
6.5 Evaluation on Change dataset. . . . . . . . . . . . . . . . . . . . 51
6.6 Extract of the demo parameter set. . . . . . . . . . . . . . . . . 53
6.7 Evaluation of demo set. . . . . . . . . . . . . . . . . . . . . . . . 53

VIII



1 Introduction
Developments during the last years in industrial automation and modern
robotics show, that making a robot more autonomous has become an important
issue. One reason for this development is that companies try to make their
factories more flexible. For example, lets take a look at one robotic arm inside
a factory. Think of a simple task like moving a work piece from place A to
place B. We need to program the exact trajectory of the robotic arm and the
end effector to fulfill this task. If we slightly change the object or the places
where we pick or place the object the robot needs to be reprogrammed. This is
tremendously time consuming especially if the factory consists of hundreds of
robots. One solution to avoid reprogramming all the robot is to give the robot
the abilities to recognize objects itself and to grasp such objects autonomously.
Consequently, the robots and the factory become more flexible, because they
can adapt to chances in the work process efficiently.

For another example of an application area for autonomous robots, lets
switch from highly automated factories to a more familiar environment, our
homes. Imagine we sit in our living room and we want to get our cup of tee,
which we forgot on the kitchen table. Luckily we don’t need to get it ourselves,
because we have a household service robot. After we gave the order, our robot
starts to go to the kitchen, picks up the cup of tea and carries it back to us
in the living room. This seems like a fairly simple task, at least for a human
being. If we want to teach a robot to deal with this situation autonomously,
some advanced problems need to be solved.
To find the kitchen some navigation algorithms are required. Inside the

kitchen the robot needs to find the table and the cup on the table, which
is done by computer vision algorithms. Finally, with the help of grasping
algorithms the robot can bring its arm and end effector in the right position to
grasp the cup of tea properly and carry it back to us.
One can see, a whole bandwidth of different engineering fields are required

to solve a seemingly easy task. In this thesis we are going to focus on just one
key part of the described task chain. We want to use a camera to give a robot
"eyesight", which allows it to recognize objects autonomously and fulfill tasks
on top of it. A more precise description of the goal of this thesis is given in the
next section.
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1.1 Problem Statement 2

1.1 Problem Statement
The initial setup consists of a robotic arm mounted on a table, similar to the
setup shown in Figure 1.1. The arm is capable of picking up objects which are
placed on the table next to it.

Figure 1.1: Static robotic arm setup[1]

The robot has smart grasping algorithms implemented already. But to
calculate a grasping trajectory in order to pick up an object from the table, the
location, the orientation and a shape model of the targeted object need to be
provided beforehand. My goal is to integrate a vision system into the robotic
arm setup, to make the whole process from object recognition to object grasping
fully autonomous. The setup is mainly used for demonstration and testing
purposes by engineers with little computer vision background. Consequently,
the vision system needs to be intuitively operable.

1.2 Solution Statement
The vision system is going to be realized in two stages. The first one is the
object modeling stage which allows scanning real-world objects with a RGBD
camera and creating a model database. We are going to introduce a simple GUI
based tool, which makes the modeling process fairly easy. Only a minimum of
hardware and little computer vision knowledge is necessary to operate the tool

2



1.2 Solution Statement 3

and to create highly accurate 3D models. The same tool calculates a surface
model which can be used directly for the grasping system.

The second stage is the object recognition stage. Using the models of the
model database and receiving an image of a scene with objects, the recognition
system calculates the location and orientation of objects found in the scene.
The recognition algorithms are going to be adjusted and optimized for table
top situations. Evaluating a variety of objects in different scenes showed the
efficiency of the chosen recognition approach. Moreover, the algorithm offers
a high flexibility to optimize the results for specific situations, like table top
scenes for robotic grasping applications.

The location information is passed on to the object grasping system, which
calculates a grasping trajectory in order to pick up an object. To keep the
usability of the recognition system simple a visual programming language is
going to be used. Moreover, the results are going to be visualized simply, which
provides a nice setup for demonstration purposes. An overview of the whole
system is given in Figure 1.2.

Figure 1.2: System overview

3



1.3 Guideline through Work 4

1.3 Guideline through Work
After the brief introduction this work continues with Chapter 2, which gives an
overview of the existing object recognition systems. It also covers the object
modeling stage, which is needed for the recognizer. The following Chapter 3 a
overview of the whole recognition system is given. In Chapter 4 my modeling
approach is explained. In Chapter 5 all parts of the recognizer are explained.
Finally in Chapter 6 the recognizer from the previous chapter is evaluated.

4



2 State of the Art
The whole recognition progress is generally dividable into two main parts, the
object modeling stage and the actual object recognition stage.
We start with a real-world object which we want to be recognized by the

robot. First we need to teach the robot how this object looks like in terms of
color and shape by creating a model. Possible approaches are scanning the
object with a camera or using a laser scanner. The specifications of the objects
can be stored in a model database. After modeling, the actual recognition step
can start. The recognizer takes a picture of an arbitrary scene which includes
known objects. The algorithm starts to compare the image of the scene with
the model database and tries to find all known objects in the scene.

2.1 Object Modeling
This section deals with the process of obtaining a model from the real-world
object which can be used for recognition purposes.

2.1.1 RGBD Camera Data based Modeling
A convenient approach to obtain spatial and color information of an object is to
use a RGBD camera. These cameras give us all necessary information in a single
step. They provide a color picture with depth information, a so called 2.5D
image. Usually the images are represented by point clouds. To obtain a full 3D
model of an real object basically three steps need to be done. Obtaining the raw
data by taking pictures of the object from several perspectives, transforming
the images to the same coordinate system and finally generating a model. A
framework for the described modeling approach is given by the RTM tool1 of
the V4R research group [2]. We are going to explain this tool in more detail,
because it builds the base of the object modeling step of my later work. The
setup consists of a turntable, an object which is placed on the turntable and a
RGBD camera as shown in Figure 2.1
Turning the turntable by hand allows the camera to take pictures from all

sides of the object. Additionally, the algorithm keeps track of the angle of the
1http://www.acin.tuwien.ac.at/forschung/v4r/software-tools/rtm
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2.1 Object Modeling 6

RGBD Camera

Turntable and Object

Figure 2.1: V4R object modeling setup.

object, which is needed for the registration of all images. An explanation of the
registration process is given later in this section. First of all the algorithm needs
to distinguish between points belonging to the object and points belonging to
the background. The RTM tool provides two approaches for the segmentation,
which are described in [2].

• an interactive segmentation approach, and

• segmentation based on a tracked region of interest (ROI).

The interactive segmentation relies on multi-plane detection and smooth seg-
mentation (Figure 2.2, left). The image is segmented into multiple parts by
clustering the planes and remaining areas depending on normal deviation of
neighboring image points. Interaction by the user is needed to manually select
all segments which belong to the modeled object. For the second segmentation
option, we need to select a planar surface before the camera tracking starts.
After clicking on the flat surface below the object, a ROI is calculated automat-
ically on top of this surface (Figure 2.2, right, blue grid box surrounding the
red mug.). The assumption the object is within the ROI allows the algorithm
to segment all points which belong to the object and filter the background.
Now all images which were accumulated need to be registered. During the

data acquisition the algorithm keeps track of the angle of the object by a local
feature based method. A local feature describes a distinct point which can be

6



2.1 Object Modeling 7

Figure 2.2: Labels of planes and smooth clusters (left) used for automatic
adjustment of region of interests (right) and for interactive object
segmentation ©[2015] IEEE[2].

easily detected on multiple images of an object from different perspectives. A
more detailed description of features is given in the next section. The transforms
between two images can be calculated, if we know the location and orientation
of(at least three) features, which exist in both images [2]. To improve the
tracking quality also the supporting surface is used to keep track of the angle.
This is the reason a textured pattern was chosen (Figure 2.2, right).

Due to concentration of several transformations during the registration stage
some drifting errors occur. Two methods to improve the registration result are
implemented. First of all the framework allows applying Bundle-Adjustment,
which directly reduces the re-projection error of correspondences used during
camera tracking. The second method is a multi-view Iterative Closest Point
algorithm [3] that globally reduces the registration error between overlapping
point clouds by iteratively adapting the transformation between camera poses.

2.1.2 Laser Scan
If the models created by RGBD cameras are not accurate enough, we can use
a laser scanner system instead. Laser based systems allow us to obtain precise
spatial data. As mentioned before the recognizer does not only need spatial
information, but color information as well. Laser scanners can’t extract colors,
therefore an additional camera is needed. An example setup of a laser scanner
plus a camera is shown in Figure 2.3.

As we can see the setup for this modeling system is quite complex. To acquire
data from all perspectives of the object the measurement system is moved on a
predefined trajectory over the object. Additionally, the object is placed on a
computer-controlled turntable [5].

7



2.1 Object Modeling 8

Figure 2.3: Laser Object Scanning Rig: the box contains a computer-controlled
turntable. ©[2015] IEEE [4]

2.1.3 In-Hand Scanner
The previous frameworks divided the object modeling into two stages. First, the
images are accumulation and then a post processing stage combines all data to a
full model. In here [6] a method was proposed which combines these two stages,
and calculates a model in real time. This allows the framework to visualize the
model throughout the whole modeling process. Since no prost-processing is
done artifacts and noise need to be detected and removed during recording.

Figure 2.4: In-hand scanner,©[2009] IEEE

8



2.2 Object Recognition 9

2.1.4 Feature Based Modeling
The object modeling approaches mentioned in the previous sections have the
goal to create a full 3D point cloud model. Depending on what we need
the model for a simpler representation of an object may be sufficient. The
framework called MOPED [7] uses a feature based model. The model does not
include every single point of the object, but only certain key points alongside
with SIFT descriptors, which describe the local area around a key point. To
improve the result of the final model bundle adjustment is used on all key
points. A more detailed description about this optimization algorithm is given
in Section 4.3.

This model can be used directly for object recognition based on SIFT. For a
more detailed explanation of SIFT, see Section 2.2.2.

2.2 Object Recognition
After a model database was created by the modeling tool, the actual recognition
algorithm can be used.
First we are going to explain the basic working principle of modern object

recognition algorithms. Figure 2.6 shows an example of a recognition pipeline.
The recognizer uses a RGBD camera to take an image of a scene which includes
known objects, as shown in Figure 2.5.

Figure 2.5: Example of a typical table top scene

The input data for the recognizer are the point cloud models from the model
database and the captured scene, which is also represented by a point cloud.
But the recognizer does not compare point clouds directly, it works on a more
abstract level. It finds features of the models of the database and also of the

9



2.2 Object Recognition 10

scene. As mentioned in Section 2.1.1, features describe distinct specification
of an object which can be easily detected on multiple images of an object.
For example, corners in a picture or some unique texture usually provide
good features. More details about different kind of features are given in the
next section. From now on the scene and the models are not represented by
point clouds anymore, but by lists of key points and features. Similar to the
representation mentioned in Section 2.1.4. Consequently, if an object from
the model database is present in the captured scene, the same features can be
found in the database and in the scene. Feature matching algorithms figure
out which features in the scene correspond to features in the model database.
Finally, from these correctly matched features the transformation between the
recognized objects and the scene coordinate system can be estimated. Finally,
this transformation found between features can be applied to the original
point clouds of the model database to transform them to the correct location
and orientation in the scene. Basically a recognition algorithm returns the
identification, location and orientation of recognized objects relatively to the
coordinate system of a given scene.

Figure 2.6: Example of a recognition pipeline [8]

2.2.1 Global Feature Detection
As mentioned before one way to identify objects is to find unique specifications
in shape or color, so called features. These features are described by descriptors
and are stored in the model database alongside the point cloud model of
the object. To measure specifications of the whole object, data needs to be
segmented. All points belonging to the same object need to be clustered

10



2.2 Object Recognition 11

together as a pre-processing step. For different features, different descriptors
are used. First we want to start with the class of global descriptors. They
give a description of the whole object. This can be color distribution, or some
information of the general shape of the object.
One example of a global shape descriptor is the ESF (Ensemble of Shape

Functions) descriptor.

IN OUT MIXED

Figure 2.7: ESF descriptor: Histograms over Distances ©[2011] IEEE [9].

This descriptor is based on the shape distribution of objects. The approach
is simple, just take two random points of the point cloud of our object model
and measure the distance. Repeat this process many times until we can build
a significant histogram from the distance data we collected. As shown in
Figure 2.7, multiple histograms of different categories can be made.
Green represents the connecting lines lying ON the surface of the object,

red represents the lines where only the endpoints are on the surface and the
connecting line is OFF surface and the blue colored line distances are classified
as MIXED as they are partly ON and OFF the surface [9]. Moreover, additional
histograms can be created, for example the ratio between IN and OUT distances.
Also, the area between three sampled points can be used to create a histogram.
All these obtained histograms together represent an ESF descriptor.

2.2.2 Local Feature Detection
Another type of features are the local features which are represented by local
descriptors. In contrast to global descriptors, local descriptors don’t describe
specifications of the whole object. They only describe small areas around
interest points of the object. An interest point or a key point is a discriminable
point in an image, for example a corner. Similar to global descriptors local
descriptors can represent shape or texture specifications, but restricted to local

11



2.2 Object Recognition 12

areas only. In the following paragraphs we are going to introduce one algorithm
which relies on local texture information and one on local shape information.

SIFT: Scale-invariant feature transform

SIFT is a popular algorithm to detect and describe local features of 2D images.
[10] The algorithm is patented by the University of British Columbia [11].
Examples of SIFT features are given in Figure 2.8.

Figure 2.8: Example of SIFT features of same object in different images marked
with yellow rectangles. Features are invariant to rotation and image
scale. Furthermore, they are fairly robust to illumination changes,
change of viewing angel and noise. [12]

To find interest points the difference of Gaussian (DoG)[13] function is used.
Extrema of the DoG function applied on multiple scales of the image represent
interest points. SIFT features are invariant to scale variation and rotation.
Moreover, SIFT is robust in change of illumination, noise and minor changes
of the viewing angle. The area around the key point is described by a SIFT
descriptor, which is calculated of the local image gradient around the key point
[10]. Finally, we want to single out that in contrast to ESF(Section 2.2.1) and
SHOT(which we are going to explain next) SIFT uses a gray scale 2D image to
find and describe features. This means a projection of the point cloud is used
and via back-projecting the 2D key point into the 3D space, the 3D locations
of key points are obtained.

SHOT: Unique Signatures of Histograms for Local Surface Description

SHOT descriptors [14] work on 3D point clouds and describe the local shape of
objects. It is based on eight histograms which describe the angular difference
between the surface normal and a local reference frame (LRF). The LRF
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2.2 Object Recognition 13

defines the orientation of a corresponding key point. As for the structure of
the descriptor, an isotropic spherical grid is used, that divides the sphere along
the radial, azimuth and elevation axes, as sketched in Figure 2.9.

Figure 2.9: SHOT descriptor. The smaller dark blue sphere in the center
contains eight sectors. The other eight sectors are located between
the surface of the dark blue sphere and the surface of the bigger
white sphere. Each of the sixteen sectors is described by its own
angle histogram. [14]

2.2.3 Feature Matching
Once the features in the scene are found and the descriptors calculated, they
need to be compared with the descriptors of the model database. If the same
descriptor appears in the scene and in the model database, they probably
belong to the same object. We want to single out, that the descriptors of the
objects in the model database only need to be calculated once. Then they are
stored alongside the models and can be reused later.

Figure 2.10: Feature matching result.
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For the feature matching process different algorithm are available, which
differ in speed and quality of the result . The simplest matching algorithm
is based on brute force. It just takes a descriptor of the model database and
compares it with every descriptor found in the scene one by one. Using some
distance measure, the two closest descriptors are defined as match. Of course the
simplicity of the algorithm comes with huge calculation costs. Therefore, some
more sophisticated methods were invented. For example the SIFT algorithm
uses a modification of the k-d tree algorithm, called the Best-bin-first search
method [15]. It can find the nearest neighbor (in terms of similarity of two
descriptors) with high probability efficiently. An example of a SIFT matching
result is shown in Figure 2.10.

2.2.4 Hypotheses Generation
After the matching process of local features, only pairwise connections between
models and the scene are known. In Figure 2.10 we see that several features of
the object are found in the scene, but we don’t know yet, that they belong to the
same object. Therefore, corresponding grouping is done to cluster all matched
features of an object together. One popular corresponding grouping algorithm
is based on a 3D Hough voting scheme described in [16]. Another example is
enforcing simple geometric constrains between pairwise correspondences which
is based on [17]. From each group of clustered features in the scene a hypothesis
can be generated. A hypothesis consists of an identifier according to the model
database and a 6DOF position. In the end all the generated hypotheses from
local features and hypotheses generated from global features are put together.
Not all of them are true, many hypotheses overlap, violate the table plane or
can’t explain many points from the scene. An example of generated hypotheses
is shown in Figure 2.11 center.

2.2.5 Hypotheses Verification
The hypothesis verification finds out, which set of the generated hypotheses
explains the scene the best and filters false positives. Basically this is done by
optimizing a cost function[18], which looks like this:

X∗ = min
X∈B
{fS(X) + λfM(X) + fC(X) + fE(X)} . (2.1)

Where X is a set of hypotheses which is part of the solution space B, which
contains all generated hypotheses. The scalar value λ is a regularizer aimed
at penalizing model outliers, fS and fM account, respectively, for geometrical
cues defined on scene points and model points. For example, the point cloud
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2.2 Object Recognition 15

model gets projected into the scene and it overlaps with a relatively high
number of points of the scene. This could be an indicator for a valid hypothesis
and consequently results in a relatively low value of fS and fM . fC evaluates
the color registration between model and scene. Finally, fE considers physical
constraints. For example, it evaluates if a hypothesis is in contact with the table
plane, which could be interpreted as an indicator for a valid hypothesis. The
solution X∗ of the optimization problem 2.1 is an optimum set of hypotheses
which explains the scene the best and is also the final output of the recognizer.
For a detailed description see [8], [18] and [19] and . An example result of a
hypotheses verification is shown in Figure 2.11.

Figure 2.11: Example of hypotheses generation and verification. left: input
scene, center: generated hypotheses, right: verified hypotheses
©[2013] IEEE [18]

2.2.6 Object Recognition Frameworks
To combine all the different stages explained in the previous section (feature
detection → feature matching → hypotheses generation → hypotheses veri-
fication) some frameworks were developed. The framework proposed in [8]
allows combining various descriptors, like SIFT, SHOT, ESF and more for
hypotheses generation. It is based on 3D point cloud models and automatically
calculates all necessary descriptors from the model. Originally, the framework
was developed for the STRANDS 2 project, which deals with mobile robotics,
but it is also useful for general purpose object recognition. Another framework
called MOPED, which was already mentioned in Section 2.1.4, is presented in
[7]. It works with 2D cameras and only uses SIFT for object recognition, which
limits the usability to textured objects. Moreover, the hypothesis verification
stage is less effective because only a feature based model (see Section 2.1.4) is
used.

2http://strands.acin.tuwien.ac.at
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2.2.7 Deep Learning
Just to present a full picture of modern object recognition methods, we shortly
mention deep learning as a different approach. Deep learning concerns with
artificial neural networks and other machine learning algorithms which use
several hidden layers for learning feature representations from large amounts of
data. [20]

As I am writing this thesis, especially ANN (Artificial Neural Network) is a
very popular method in machine learning and deserves a closer examination.

ANN: Artificial Neural Network

Artificial neural networks are computational models that consist of a number
of simple processing units (artificial neurons) that communicate by sending
signals to one another over numerous weighted connections. [21] The structure
is inspired by the human brain, which also consists of interacting units, called
neurons. The artificial neurons of an ANN are arranged in layers and connected
so that one layer receives input from the preceding layer of neurons and passes
the output on to the subsequent layer. Mathematically a single neuron can be
modeled as

f(xj) = f(αj +
k∑
i=1

wijyi) (2.2)

For the real function f usually the sigmoid (logistic or tangent hyperbolic)
function is chosen. The input (y1...yk) is weighted by the weighting factors wij .
A graphical interpretation is shown in Figure 2.12.

summation nonlinearity

∑∑∑

y1
...

yi
...

yk

w1j

wij

wkj

xj f(xj)

xj = ∑∑∑k
i=0wijyi

Figure 2.12: Model of a single artificial neuron.[21]

Combining and interconnecting numerous of these artificial neurons forms a
whole artificial neuronal network, which can be used to classify data. We start
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2.3 Visual Programming Languages 17

with a training stage, where known training data is used to adapt the weighting
factors wij to get the right relation between input and output. Afterwards,
the trained network can be used to classify unknown data. For example, as
input data we can use features(see Section 2.2.1 and Section 2.2.2) and as
classification result, we receive the object class the features belong to. This
allows identifying objects in a given scene.

In general, deep learning algorithms need a huge amount of training data,
compared to feature matching based methods. Moreover, it is very difficult
to estimate the exact pose of objects, therefore we did not use deep learning
algorithms for this thesis.

2.3 Visual Programming Languages
To provide a simple user interface, we decided to use a block based visual
programming language to operate the object recognition system. This section
provides an overview of some visual programming languages.

2.3.1 Blockly
Blockly3 is a library that adds a visual code editor to web and Android apps.
The Blockly editor uses interlocking, graphical blocks to represent code concepts
like variables, logical expressions, loops, and more. It allows users to apply
programming principles without having to worry about syntax. An example
Blockly program is given in Figure 2.13.
Blockly can be run on a local webserver and the programming can be done

in a normal web browser. The webserver is run as a ROS4 node which makes
the communication between Blockly blocks and the remaining ROS network
possible. ROS is a robot operating system which allows different software parts
of a robotic system to communicate. A more detailed explanation of ROS
is given in Section 3.2. Before the Blockly code is executed, it is going to
be translated into one of five programming languages of our choice. Blockly
supports Python, JavaScript, PHP, Lua and Dart. Moreover, it is possible to
create custom blocks. First we need to create a graphical block in JavaScript and
finally add the functional code of the block in one of the supported languages.
Examples of the blocks we created, are given in Section 5.2.

How the interface for creating a block, called block factory, looks like is shown
in Figure 2.14. If we use custom blocks, we can easily pass information from one

3https://developers.google.com/blockly
4http://www.ros.org/
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Figure 2.13: Example of a Blockly interface. On the left, the toolbar is shown
which contains all available blocks. In the center, some basic
blocks are combined which print the string "Hello World" three
times. Finally, on the right, the translation from Blockly blocks
to Python is given.

Figure 2.14: Example of the Blockly block factory. left: input, output and
color of the block is chosen. Language code: This is the automati-
cally generated code which corresponds to the blocks on the left.
Preview: This is how the block is going to look like. Generator
stub: In here the functionality of the block is written into the code
variable.

18



2.3 Visual Programming Languages 19

block to another block. This gives an simple communication interface between
two systems. For example, the recognition system which can be implemented
in one block passes recognition results to the grasping system which can be
implemented in another block.

The big advantage of Blockly over other visual programming languages is,
that it is not a new programming language. It translates Blocks to Python
in real time and runs Python code. Everything which can be programmed in
Python can be realized in a custom Blockly block too.

2.3.2 Scratch
To create a script in Scratch5 different blocks are put together in a visual editor,
similar to Blockly. It is mainly used for educational purposes, for creating
small games and visualizations. The options for creating custom blocks are
very limited. It is not possible to use our own functional source code for custom
blocks.

2.3.3 Snap
Snap6 is similar to Scratch. It offers more options for creating custom blocks,
but it is still not possible to use our own functional source code for a custom
block.

2.3.4 Waterbear
Waterbear7 offers a promising approach, since it is not a new programming
language, similar to Blockly. It translates blocks to common languages like
JavaScript. Moreover, it supports custom blocks using custom source code. As
I am writing this thesis, only a pre-alpha release is available.

5https://scratch.mit.edu/
6http://snap.berkeley.edu
7https://github.com/dethe/waterbear
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3 System Overview
Figure 3.1 shows a schematic drawing of the whole recognition system 1. First
of all the objects get modeled and stored in the model database. Then the
recognizer uses the model database to recognize objects from a captured scene.
For the whole data acquisition a regular RGBD camera is used. Finally, the
recognizer passes location and orientation information to the grasping system.
The model database provides the robotic arm with a surface model of the
recognized object. This work focuses on modeling, recognition and providing
the necessary data for the grasping system. The grasping algorithm and the
actual physical grasping process is not part of it.

3.1 Sensor Principe and Data Acquisition
As mentioned before, for modeling and recognition a RGBD camera is used
to obtain data to model objects and to capture an input scene for recognizing
objects. For all experiments described in Chapter 6 the Microsoft Kinect
(Figure 3.2) was used. In general this framework works with several RGBD
cameras like Asus Xtion2 or Astra Pro3. Only the intrinsic parameter and
the resolution of the camera need to be adjusted. The Microsoft Kinect is
an end user camera which was originally developed for the entertainment
electronics industry. The camera provides an RGB picture with additional dept
information. This allows the camera to detect arm and hand movements and
introduces a new way of communication between user and video game console.
A huge advantage of the Kinect is the simple data format. It provides an RGB
picture and the depth information for each pixel simultaneously. The data can
be interpreted as point clouds directly, which makes the Kinect also interesting
for computer vision [22]. The received point clouds represent so called 2.5D
data. This means only an image from a certain perspective is available. For
example if one object occludes another object in the scene, the occluded object

1The end effector shown in Figure 3.1 is only one example. The recognition system works
with various grasping systems. The picture of the end effector was provided by Shadow
Robot Company (http://www.shadowrobot.com)

2https://www.asus.com/us/3D-Sensor/Xtion_PRO_LIVE
3https://orbbec3d.com/product-astra-pro
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(C) Shadow Robot
Company 2014

Figure 3.1: System Overview [22]
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Figure 3.2: Microsoft Kinect ©[2012] IEEE [22]

is not visible in the point cloud. One advantage of 2.5D data is, that it can
be stored in organized point clouds4. An organized point clouds resembles an
organized image (or matrix) like structure, where the data is split into rows
and columns. Every entry in the matrix contains spatial and color information.
The advantages of a organized data set is that by knowing the relationship
between adjacent points (e.g. pixels), nearest neighbor operations are much
more efficient, thus speeding up the computation and lowering the costs of
certain algorithms.
Moreover, through high production numbers the price of the Kinect is

considerable low.5
The camera consists of a RGB sensor, a infrared projector and an infrared

sensor. The depth computation is all done by the PrimeSense hardware built
into Kinect and is not publicly available. Most likely depth was measured with
a method using structured light. The Kinect uses infrared laser light, with
a speckle pattern. Due to deformation of this pattern the distance of single
speckles can be estimated[23]. Figure 3.3 shows a simplified setup for a depth
measurement using structured light.
Using the intrinsic camera parameter as focal length f and the baseline b

between the projector and the observing camera, the depth d of the pixel (x,y)
can be calculated as

d = b ∗ f
m(x,y) (3.1)

Where m(x,y) describes the disparity value. The depth range and depth
accuracy directly relate to the baseline. Therefore, a longer baseline allows a
more robust depth measurement.

4http://www.pointclouds.org/documentation/tutorials/basic_structures.php
5The company PrimeSense, which produced one key component of the Kinect was bought
by Apple in 2013. Since then the Kinect and other cameras which used PrimeSense
components are not available anymore.
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Figure 3.3: Principle of structured light method ©[2017] IEEE[24]

3.2 Implementation Overview
Figure 3.1 shows the implementation structure of the modeling and recognition
system. Before I’ll explain the details, We give a short introduction into ROS6

(Robot Operation System). ROS is a framework which allows integrating
different components of a robotic system. For example an object recognition
system was developed by one research group and an object grasping system
by another group. With ROS these two systems can be encapsulated and
it provides a simple communication protocol. For example the recognition
algorithm publishes the position of a recognized object and the grasping system
receives this information. This means the grasping system does not need to
know how the whole recognition system works in order to use the recognition
results. The yellow boxes in Figure 3.1 represent encapsulated systems called
nodes. The arrows represent the communication channels between these nodes.
The whole recognizer is embedded into a ROS framework. The recognizer

is split up into different nodes to make the system more flexible. For detailed
explanation of the single nodes see Chapter 4 and 5. The recognition process
starts with a picture from the Kinect which is connected to the system by a
OpenNI Node. The Node receives data from the camera and provides the point
clouds to the visualization node and recognition server. The server waits for a
goal from the recognition client. As soon as the goal is received the recognition
server collects the scene in form of a point cloud from the OpenNI node and

6http://www.ros.org
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Figure 3.4: Implementation Overview, yellow: ROS nodes, blue: Blockly, green:
Blockly blocks, red: other [22]
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loads the models from the model database. Now the server recognizes objects in
the scene based on the models in the database. After the recognition progress is
finished the server sends the location and orientation information of recognized
objects back to the recognition client. As we can see, the client is implemented
into a Blockly block. An introduction into Blockly is given in Section 2.3.1.
Inside the Blockly framework the recognized object information is passed on
to the grasping system. Finally the robot can physically grasp the object and
solve further tasks.
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4 Modeling
The object recognizer and the grasping system need a model of every object
which needs to be recognized and grasped. An offline modeling stage is required
to create such a model database. We decided to modify and use the object
modeling framework introduced in Section 2.1.1 because it provides a GUI based
tool to model objects, simply by using a RGBD camera. Contrary to the other
frameworks mentioned in Section 2.1, no advanced modeling setup is necessary.
The modeling tool was mainly developed for scientific use. As we mentioned
before, several options need to be selected to adjust the modeling results. For
example the segmentation method and the post processing algorithms need to
be chosen in order to start the modeling process. To understand all options,
advanced knowledge of computer vision is required. Moreover, it requires some
training time in order to operate the tool correctly. Since one goal of this thesis
is to make the usage of the whole system as simple as possible, we predefined a
default set of options. We tried to find a good trade-off between accuracy of
the resulting model, speed of the algorithm and complexity of the graphical
interface of the tool.
The physical setup for the modeling process is the same as explained in

Section 2.1. The object is placed on a turntable and faces the RGBD camera.
Then the turntable is turned by hand to get an image from all sides of the
object.

4.1 Segmentation
During the data acquisition several key frames, which are represented by point
clouds, are recorded. The camera tracks the angle of the object by a feature
based method. If the same features (at least three) are found in two consecutive
key frames, the transform can be estimated.
Then, the segmentation algorithm which separates the object from the

background needs to be chosen. We compared the two available options,
the interactive method and the region of interest (ROI) method, which were
mentioned earlier in Section 2.1.

The interactive method models flat parts, larger than a certain threshold as
planes and the remaining areas are recursively clustered. To cluster the image
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into larger parts, the user is required to select seed points, by clicking on parts
which belong to the model. Starting from the selected points, the algorithm
clusters neighboring points together depending on the deviation of the surface
normals of neighboring image points.

For the region of interest (ROI) approach, before the recording session starts,
the supporting surface needs to be modeled to calculate a ROI automatically.
The user selects the supporting plane by clicking on a point on the plane. This
point is used as a seed point, similar to the interactive method explained before.
Again, the neighboring image points are clustered together depending on their
surface normals. The clustering stops if the plane constrictions are not fulfilled
anymore. Then, a ROI is calculated, which is located directly above the plane.
Every point, which is located inside the ROI is considered to be part of

the model. This reduces the segmentation process to a simple filter, which
removes all data located outside the ROI. It turned out that the segmentation
results are similar and both methods allow creating models which fulfill the
requirements of the recognizer. We decided to use the ROI method, where only
one single click is required to choose the supporting plane. This makes the tool
easier to use, compared to the interactive method, where manually all parts of
the object need to be selected.

4.2 Noise Model
After the turntable, with the object on top of it, was turned to acquire images
of all sides of the object, the post processing starts. All the key frames acquired
before need to be put together to form a full model. The key frames contain
redundant data. Let’s assume, roughly 20 pictures are taken during data
acquisition. This means in average every 18◦ one point cloud of the object
is recorded. Therefore, two consecutive frames contain quite a bit overlap.
Combining these redundant data means, we need a quality measure in order
to judge which points are finally used to create our model. Therefore, a noise
model[2] is introduced which assigns a noise measure to every single point.
We observed, that noise increased linearly with distance to the sensor. Since
we can choose the distance between model and sensor, this does not affect us
significantly. But more important, data quickly deteriorates when the angle
between the sensor and the surface gets above 60◦. Moreover, data close to
edges of objects, therefore close to depth discontinuity, are not reliable. These
points tent to jump between foreground and background. In other words, points
belonging to the foreground (i.e. objects) appear on the background (i.e. table
plane) and the other way around. Using the observations above, a simple noise
model can be formulated. Let P = {pi} represent a point cloud, N = {ni}
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represent the normal information of P and E = {ei}, where ei indicates, if
pi is located at a depth discontinuity or not. The quality measure wi can be
formulated as

wi = (1− θ − θmax
90− θmax

)(1− 1
2exp

−
d2
i
σ2
L ) . (4.1)

where θ represents the angle between ni and the sensor, θmax = 60◦, di =
||pi − pj||2 (pj being the closest point to depth discontinuity, where ej = true)
and σL = 0.002 represents the lateral noise sigma.[2]

Finally, the redundant data can be averaged and combined by using wi as a
weighting function.

4.3 Optimization
To improve the registration results two optimization algorithms are available.
First, the optimization algorithm Bundle-Adjustment (BA), which minimizes
the re-projection error of feature correspondences used during camera track-
ing.[25] This optimization problem is commonly formulated as a least-square
problem. The goal is to minimize the error between the observed feature
location and the projection of the corresponding 3D point on the image plane
of the camera. Let x be a vector of parameters and f(x) = [f1(x), . . . , fk(x)] be
the vector of reprojection errors for a 3D reconstruction. Then the optimization
problem can be formulated as the following non-linear least square problem:[26]

x∗ = min
x

k∑
i=1
||fi(x)||2 . (4.2)

To solve this problem the Levenberg-Marquardt [27] (LM) algorithm is a
popular choice. It solves a series of regularized linear approximations to the
original nonlinear problem.

The second optimization algorithm is based on a multi-view Iterative Closest
Point algorithm [28], that globally reduces the registration error between over-
lapping point clouds. The basic idea of ICP is to use a distance metric between
two point sets and iteratively minimize the distance. Let A = {a1, a2, . . . , an}
and B = {b1, b2, . . . , bn} be two corresponding sets of points, where ai and bi
represent single points. Solving the optimization problem

T ∗ = min
T

n∑
i=1
||Tai − bi||2 (4.3)
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gives us an optimum transformation T ∗, which minimizes the error between
A and B. T is composed of a translation vector t and a rotation matrix R.
Usually the correspondences between two sets of points are not known, therefore
pre-processing of the data is required. For example, the correspondence (ai,bi)
can be created by finding the nearest neighbors between each point of A and
B. Figure 4.1 1 visualizes the algorithm.

Figure 4.1: Visualization if the ICP algorithm. left: two input point clouds
A(green) and B(red). center: distances between two corresponding
points of A and B. right: optimum transformation T ∗ was applied
to align A and B.

This algorithm just explains the basic function of ICP, for dealing with
multiple point clouds ICP based algorithms as introduced in [28] can be used.
Both algorithms, BA and ICP generally improve the registration results,

but need some calculation time. To decide if these post processing steps are
necessary we took basic measures of the two objects shown in Figure 4.2 and
compared them with the model. The results are listed in Table 4.1.

Figure 4.2: Point cloud models of objects: left Pringles, right. tea.

As we can see, the post processing improves the size of the models by several
millimeters. Therefore, we decided to use Bundle-Adjustment and Iterative
Closest Point as default options in the modeling tool. Of course these measures
along the main axes only do not capture the full impact of the optimization
algorithms on the models. Since we only wanted to find out, if these post

1Figure 4.1 by Dirc Holz, http://www.pointclouds.org/assets/iros2011/registration.pdf, CC
BY 3.0
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object measures of object measures of model measures of model
without optimization with optimization

pringles Ø74 x 258 Ø88 x 256 Ø73 x 257
tea 151 x 82 x 71 156 x 78 x 77 Ø150 x 80 x 69

Table 4.1: Measurements of objects. Pringles: diameter x length, tea: length x
hight x depth

processing steps are necessary, comparing the main measures was sufficient.
Since the bottom of the objects can not be seen by the camera, the original
modeling tool offers a feature which combines multiple modeling session to
receive a fully defined model. As I am writing this thesis, this feature is not
working sufficiently. More specific the different sessions are not aligned perfectly
and produce an inaccurate model. Therefore, my simplified version does not
support the multi-session feature. More details about this feature can be found
here [2].

4.4 Surface Reconstruction
After post-processing, the final point cloud model is ready, but additionally,
the modeling tool needs to provide a surface model, which is necessary for the
grasping algorithm. To receive a dense surface model from the point cloud
the Poisson Surface Reconstruction algorithm, proposed in here [29], was used.
It finds a globally consistent surface model and finally creates a watertight
polygonal mesh.

The idea of Poisson Surface Reconstruction is to start with an oriented point
sample, computing a 3D indicator function χ (defined as 1 at points inside
the model, and 0 at points outside), and then obtaining the reconstructed
surface by extracting an appropriate isosurface. The oriented point samples
can be viewed as samples of the gradient of the model’s indicator function
(see Figure 4.3). Therefore, the problem of computing the indicator function
reduces to finding the scalar function χ whose gradient best approximates a
vector field #»

V defined by the samples, i.e.

χ∗ = min
χ
||∇χ− #»

V || . (4.4)

If we apply the divergence operator, this variational problem transforms into
a standard Poisson problem:
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∆χ ≡ ∇ · ∇χ = ∇ · #»

V (4.5)
This formulation has some advantages, it considers all data at once and gives

a global solution. Poisson reconstruction creates very smooth surfaces that
robustly approximates noisy data.
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Figure 4.3: Illustration of Poisson reconstruction in 2D [29]

One problem occurs if the algorithm is applied on data with incomplete
depth data. For example, if an object was modeled but a part (for example
the bottom) is missing. Poisson reconstruction tends to add extensions to the
undefined parts of the model (Figure 4.4, left).

Figure 4.4: Poisson surface mesh before and after cropping using the convex
hull ©[2015] IEEE [2]

One way to remove these extensions is to initially calculate the convex hull
of the point cloud. After applying Poisson reconstruction, all vertex which
lay outside the convex hull are projected on the hull. This ensures that the
resulting mesh model does not have any parts outside the hull (Figure 4.42,
right).

2Figure 4.4 shows a textured surface reconstruction. In this work we did not use texture,
because the mesh model is meant for grasping applications, where colors are not important.
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4.5 User Interface
Finally, we want to present the new simplified interface of the modeling tool
(Figure 4.5) compared to the original one (Figure 4.6). The following section
gives a short overview, how to operate the tool to receive a model. First we
have to select the surface under the model then a region of interest (ROI) is
created automatically. Everything within this region is considered to be part
of the model. After clicking the button "Start Modeling" we need to turn the
model for 360◦ and the tool records point clouds from all directions of the model.
Simultaneously, the tool takes track of the orientation of the objects, using
features of the supporting surface and the object itself. If one whole rotation
is finished, we need to click on "Finish Modeling". Now the post-processing
algorithms will create a consistent model using the data recorded before. First,
the ROI-segmentation will remove all points, which are outside the ROI (blue
grid box in Figure 4.5). Since the tool kept track of the orientation of the object
during recording session, transforms between all point clouds and a reference
coordinate system exist. This allows to transform all point clouds into this
reference coordinate system and create a model already. Since tracking errors
may occur during recording session, optimization algorithms may improve the
accuracy of the model. Therefore, Bundle-Adjustment (BA) is applied, which
directly reduces the re-projection error of correspondences used during camera
tracking. The second optimization method is a multi-view Iterative Closest
Point (ICP) algorithm that globally reduces the registration error between
overlapping point clouds by iteratively adapting the transformation between
camera poses. The outcome is a point cloud model, which can be used for
recognition purposes directly. Moreover, a surface mesh model is needed, which
can be calculated from the point cloud model by applying Poisson Surface
Reconstruction. It finds a globally consistent surface model and creates a
watertight polygonal mesh. Finally, we can store the point cloud model and
the mesh model and use it for further purposes, like object recognition and
object grasping applications.
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Figure 4.5: Simplified version of the RTM-tool

Figure 4.6: Original version of the RTM-tool
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5 Recognition System
Using the models created with the tool introduced in the previous chapter,
the actual object recognition can start. The main part of the recognition
system is the recognition server, which contains the algorithms for recognizing
objects. For details about the recognition server see Section 5.3. To create
a user friendly environment, we used a visual programming interface based
on Blockly (see Section 2.3.1). Also, some grasping algorithms of the robotic
setup implemented in Blockly. This provides a simple communication interface
between the grasping system and the recognition system.

5.1 Client/Server Architecture
As mentioned in Section 2.3.1, Blockly only support Python, Java Script, PHP,
Lua and Dart as source code languages for blocks. Due to performance reasons
the recognition algorithms are written in C++. Since C++ is not supported,
it is not possible to implement the recognizer directly into a Blockly block.
A delicate approach to solve this problem is to create an interface between
Blockly and the remaining ROS network, by implementing an client/server
architecture. More details are explained in the following section.

5.2 Recognition Client
ROS allows running nodes in Python and in C++ within the same ROS network.
For example, it is possible to run a server in C++ and a client in Python.
This gives us the necessary interface to communicate between a Blockly block
written in Python and another node written in C++. We implemented the
client into a Blockly block and the corresponding server is implemented as a
C++ node, which contains the recognition algorithms (see Section 5.3). In
short, the Blockly block gives an order to start the object recognition task and
to return the results. Based on this method, we created two custom blocks
in Blockly. One of them does not have any input parameter and returns the
name, position and orientation of all recognized objects. The second one needs
one input parameter, the name of an object which needs to be recognized. This
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(a) A Blockly program which rec-
ognizes a specific object in a
given scene and prints the out-
put "transform" which includes
the position and orientation of
the recognized object.

(b) A Blockly program which recognizes
all objects in a given scene and prints
the names of the recognized objects.

Figure 5.1: Two simple Blockly programs, which use costume blocks to control
the recognizer.

block returns just the position and orientation of the object which was given as
input parameter and all other objects in the scene are ignored. In Figure 5.1 an
easy example is given how these recognition blocks can be used. Of course, in
order to recognize objects from a given scene, these objects need to be modeled
first and stored in the model database before, as described in Chapter 4.

5.3 Recognition Server
The recognition server is the main node of the recognition system. It has
implemented all the actual recognition algorithms which were described in
Section 2.2. Additionally, features were implemented to optimize the recognition
process with respect to speed. Details about these features are presented in
the following sections.

After running the recognition server node, the recognizer is initialized auto-
matically. All user defined parameters, which are stored in configuration files
are loaded into the recognizer. For an overview of available parameters, see
Appendix B. Then the models from the database are loaded. Is there a new
model, which were never used for recognition before, all necessary descriptors
for this model are calculated. Depending on which recognition algorithms are
in use, descriptors for SIFT, SHOT and/or ESF are calculated and stored in
the model database. As mentioned in Section 2.2.3, the descriptors for the
models only need to be calculated once. For every following recognition task the
descriptors are simply loaded from the database. Now the recognition server is
ready for orders from the client. After an order was received, the recognizer
starts working. First an image of the Kinect is loaded via the openNI node.
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Next, the key points and descriptors of the image are calculated. As described
in Section 2.2.3 SIFT uses a modified k-d tree algorithm to match features
between the scene and the features stored in the model database. Based on the
correctly matched features, hypotheses are generated (Section 2.2.4). Enforcing
simple geometric constrains between pairwise correspondences allows grouping
matched features together and assign them to a certain model of the database.
In other words, all groups of pairwise matched features in a scene represent a
model of the model database. To improve the quality of the results a verification
stage was introduced in Section 2.2.5. It finds out which set of the generated
hypotheses explains the scene the best and filters false positives. Finally, the
recognizer sends back the results to the client, which contain the identifications,
positions and orientations of the recognized objects represented by the matrix
T . It transforms the model coordinate system into the scene coordinate system
which gives a distinct location of every recognized model in the scene.

T =


r00 r01 r02 t1
r10 r11 r12 t2
r20 r21 r22 t3
0 0 0 1

 (5.1)

Where the matrix entries rij describe the rotation and the entries tk describe
the translation.

In order to visualizes the results, they are also sent to the visualization node,
see Section 5.5.

5.3.1 Parameter Mapping
As mentioned in the previous section, the user needs to define parameters before
the recognizer can be used. The configuration files contain about 80 parameters,
see Appendix B. Some of them are simple to understand. For example the
parameters "do_sift" and "do_shot" are activating or deactivating recognition
pipelines. If each of these two parameters are set to "0" or "1" the recognizer
uses SIFT and/or SHOT for object recognition. But for interpreting most of the
other parameters, an advanced knowledge in computer vision is required. Since
one goal of my theses is to make the recognizer available for users without such
knowledge, we implemented a feature which simplifies the configuration process.
The user does not need to define all parameters by himself or herself, he or she
can choose between a number of different parameter settings. These predefined
settings give the recognizer certain specifications. The following descriptions
of available settings are qualitative, for a quantitative evaluation, see Chapter 6.
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fast: If the recognizer is initialized with this parameter setting, low cal-
culation effort is needed. On the other hand the results are not as accurate
compared to the other settings.

accurate: This parameter setting makes the recognizer slower than the
previous one. But the results are more accurate. This is the default setting of
the recognizer because it gives a balanced trade-off between accuracy and speed.

high recall: The third option has the best results in terms of recall, but also
takes the longest time for the recognition process. A high recall means, many
objects were recognized (many true positives) without taking into account false
positives, see Chapter 6.

These three parameter sets are just examples, the number of sets could be
scaled up arbitrarily.

5.3.2 Initialize Empty Workspace
As we mentioned before, every time a recognition task is started, a new image
of the scene needs to be processed. This is necessary to keep the results up
to date, because something could have changed in the scene. For example an
object could have been removed or maybe a new object could have been added.
This is time consuming, because the recognizer starts a whole new recognition
process on the new scene. In the following section we propose an algorithm
to speed up the recognizer while maintaining the accuracy of the recognition
results. We assumed that at least the work space around the objects does not
change. Even if some objects are moved, the table top, or the floor beneath the
objects does not move. If we know how our empty work space looks like, we
can subtract the picture of the empty work space from the picture of the new
scene. Afterwards the input picture of the recognizer only consists of relevant
data, namely the objects without any background.

An example of a scene where the empty work space was removed is given in
Figure 5.2

In order to make the algorithm fast, we assumed, that the camera is mounted
on a fixed position. It does not move during the whole time the recognizer
is used. With this assumption an efficient algorithm can be written, because
these two scenes can be compared pixel by pixel and no cost intensive difference
segmentation algorithm 1 needs to be used.

1http://docs.pointclouds.org/trunk/classpcl_1_1_segment_differences.html
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Figure 5.2: Working principle of empty work space removal. left: point cloud
A of empty work space, center: point cloud B of the scene, right:
point cloud C of a scene where the empty work space was removed.

To understand the problems which comes with the difference segmentation
we give an overview on the implementation.

As we said before, the algorithm compares the two scenes pixel by pixel.
This is possible because the two scenes are represented by an organized point
cloud. As described in Section 3.1, organized point clouds are represented by a
matrix like structure.

A =


a00 a01 . . . a0M
a10 a11 . . . a1M
... ... . . . ...
aN0 aN1 . . . aNM


Every entry of A represents a pixel of the point cloud, which contains color

and spatial information aij = {x, y, z, rgb}. The indices i and j represent the
x- and y- axes of the image. The indices N and M represent the resolution of
the image in the respective direction.

Therefore, the algorithm just needs to compare the depth information stored
in the two matrices A and B to detect spatial differences ∆zij,

∆zij = z(aij)− z(bij) (5.2)
where z(aij) and z(bij) represents the depth values of the pixels aij and bij

of the point clouds A and B. If

∆zij > c ∗ z2(bij) (5.3)
where c is a constant value, the pixels aij and bij are considered to be different

and stored in a point cloud C. On the right side of 5.3 we chose a threshold
which is proportional to z2(bij) in order to model the noise behavior of the
RGBD camera. The point clouds A and B were acquired by a RGBD camera.
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The further the scene is away from the camera, the higher the noise level of the
respective pixels gets. The output of the algorithm is a point cloud C which
only contains the differences between a point cloud A and a point cloud B An
example is given in Figure 5.2.
Since only spatial information is used, some errors can occur which are

explained in more detail in the following Section 5.3.3.
Using this algorithm speeds up the process, because all irrelevant data is

removed from the scene before the recognition process is started. First of all,
only descriptors of the remaining data need to be calculated. Moreover, no false
positive hypotheses are provoked by misleading key points on the work space.
This leads to a faster hypothesis verification too, because fewer hypotheses
need to be validated.

One drawback of this method is, that we need to acquire a point cloud of the
empty work space. This is done automatically during the initialization of the
recognizer. Therefore, the work space needs to be empty during the start up of
the recognizer. This could be inconvenient, because we need to remove all the
objects from the work space before we can start the recognizer. Moreover, if
we forget to empty the work space, the recognizer considers all objects, which
are present during initialization as part of the empty work space. This means
these objects are not going to be recognized during the following recognizer
calls. One way around this problem is offered in the next section.

5.3.3 Object Change Detection
The algorithm in the previous section only filters the empty work space of the
scene. We still need to run a whole new recognition process on the remaining
objects in the scene. For example, if we add objects to the scene, the recognizer
needs to re-recognize all the objects, even if most of the objects were recognized
in the last recognizer call already. Now the idea is to reuse the information
from previous recognition results to reduce calculation effort. Figure 5.3 shows
the scenes and the recognition results of two consecutive recognizer calls. As
we can see, the only difference between the two scenes is the Pringles can.
Nevertheless, for the second recognizer call all objects need to be re-recognized.
We propose a method which re-uses the results from the first scene for the

recognition of the second scene.
To explain the working principle of the algorithm, we use the example shown

in Figure 5.3.
A represents the point cloud of the old scene, B represents the point cloud

of the new scene and C = diff(A,B) represents the output of the difference
segmentation, the difference scene.
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(a) old scene. (b) new scene. (c) difference scene.

(d) verified hypotheses of
the old scene.

(e) verified hypotheses of
the new scene.

(f) generated hypotheses of
the difference scene.

Figure 5.3: Example of scenes.

Moreover, the old scene A contains the objects OA = {o1, o2, ...oN} like shown
in Figure 5.3d, where oi represents the objects in the scene and N = |OA| is
the total number of objects in A. In our example N = 5. The point cloud B,
the new scene, (Figure 5.3b) contains the objects OB = {o1, o2, . . . oM}, where
M = |OB| is the total number of object in B. In our example M = 6.
Let’s assume we did object recognition on the old scene A and recognized

all objects OA, then we alter the scene to the new scene B, and we want to
do object recognition on B to get OB. One solution is to run a new object
recognition on B, which gives us directly OB, but takes a lot of calculation
effort. To speed up the process we can reuse recognized objects from OA from
the previous object recognition of A. Therefore, we only need to extract objects
which obey:

OA∩B = OA ∩OB , (5.4)
and only recognize the new objects, which are element of OB but not element
of OA. In order to do so, we first apply difference segmentation, similar to the
"Initalize Empty Work Space" algorithm, which gives us

C = diff(A,B) . (5.5)
For example in Figure 5.3 only one object was added. Consequently, the

algorithm removes the whole scene except one object. In other words, the
point cloud C only contains points which belong to the Pringles can, because
it describes the difference between the point clouds A and B (see Figure 5.3c).
Object recognition on the difference scene C gives us OC = {o1, o2, ...oR}, where
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R = |OC |, the total number of objects in the difference scene C, in our example,
only the Pringles can is present, therefore R = 1. It holds

OC = OB \OA∩B = OB \OA . (5.6)
To get all objects OB we need to apply hypotheses verification of the new

scene B on
OA∪C = OA ∪OC . (5.7)

For clarification, we should mention, that usually hypotheses verification is
the last step of object recognition and is used to verify generated hypotheses.
Hypotheses which can’t explain enough points of the scene are removed, as
explained in Section 2.2.5. But in this algorithm, we use hypotheses verification
also to verify, if verified hypotheses OA of the point cloud A are also valid
hypotheses OB of the point cloud B.
Therefore, hypotheses verification removes all objects OD = OA \OB from

the set OA∪C which results in OB because

OB = OA∪C \OD . (5.8)
This seems unnecessary complicated, because in our example OB = OA ∪OC ,

but in general, this is not valid. For example, if in the scene B (Figure 5.3b) not
only the Pringles can was added, but also the coffee can was removed, then the
coffee can is element of OA but not element of OB, therefore OB 6= OA ∪OC .

The flow chart shown in Figure 5.4 gives an overview of the implementation
of the algorithm described above.

General Conditions

Finally, we want to discuss some general conditions of the algorithm to ensure
a correct functionality. Similar to the "Initialize Empty Work Space" algorithm
explained in Section 5.3.2, the first task of the "Object Change Detection"
algorithm is the difference segmentation. As explained before the difference
between two scenes is found only by spatial differences, or more precise, by
differences in depth data between two point clouds. This can lead to wrong
segmentation results if symmetrical or spatial similar objects are involved. For
example, if the peanuts can shown in Figure 5.3b is turned by 180◦ around
its symmetry axis and the "Object Change Detection" algorithm is run. The
algorithm is going to remove the peanuts can and the difference scene is going to
look exactly like shown in Figure 5.3f. After the following hypotheses verification
stage, two outcomes are possible. One outcome is that the hypotheses of the
peanuts can passes the hypotheses verification, because it is still spatially
consistent with the scene. Since the results are used for grasping applications
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Figure 5.4: Flow chart of "Object Change Detection" algorithm.
The names old scene, new scene, difference scene, generated hy-
potheses and verified hypotheses refer to the examples given in
Figure 5.3.
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spatial consistent changes of an object can be neglected and the results can be
considered as true. The other outcome is that the hypotheses of the peanuts can
fails the verification, because the color of the scene is not consistent with the
color of the hypotheses anymore. This means the peanuts can is not recognized
anymore and consequently no position or orientation information is available.
The actual outcome depends on the configuration of the recognizer. Another
problem occurs, if two spatially similar objects are exchanged. For example, if
the coffee can in Figure 5.3b is removed and the peanuts can is moved to the
exact same position as the coffee can has been before. Then the "Object Change
Detection" algorithm filters the peanuts can from the scene. This happens,
because it is spatially very similar to the coffee can. After the hypotheses
verification step the hypotheses from the coffee can is going to be removed,
because it is not there anymore. Moreover, the peanuts can on the new position
will not be recognized, because it was filtered from the scene before. As we
are going to show in Chapter 6, these errors cause a slight reduction of the
recognition accuracy.

5.4 OpenNI Node
The recognizer uses the point clouds provided by the Kinect or any other
connected RGBD camera. We decided to use a separate node which handles the
communication between the ROS network and the Kinect, shown in Chapter 3.
Since we use a Kinect, we implemented a node based on ROS OpenNI 2, which
is an open source project focused on the integration of the PrimeSense sensors
with ROS.

The node supports the standard ROS point cloud format which makes the
data transfer within the network easy. For example point clouds can be sent to
the recognition server and the visualization server simultaneously. The main
advantage of a stand-alone camera node is, that it makes the system more
flexible. If a different camera for the recognizer needs to be used, just the
camera node needs to be adapted to the new camera. The other nodes in the
recognition system don’t need to be changed. Another advantage is, that the
Kinect data is available throughout the whole ROS network. For example if
another node is implemented later, it can easily access the Kinect without
interfering with other nodes.

2http://wiki.ros.org/openni_kinect
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5.5 Visualization Node
To make the whole recognition system more appealing for users, an easy to
understand visualization of the recognition process is desirable. Moreover,
visualized object recognition results are convenient for debugging, because users
can judge immediately if objects were recognized correctly. An example of the
visualization window is given in Figure 5.5.

Figure 5.5: Visualization window.

The top picture is a live stream from the Kinect camera directly. The
picture on the left-bottom is the input cloud of the recognizer during the
last recognizer call. This is especially useful if the algorithms described in
Section 5.3.2 or Section 5.3.3 are used, because the user can directly see the
working principle of these algorithms. If the "Initialize Empty Work space"
algorithm is used the input cloud consists only of the objects without any
background as described in Section 5.3.2. If the "Object Change Detection"
algorithm is used the input cloud consists only of the new, or moved objects
compared to the previous recognizer call. More details of the algorithm are
given in Section 5.3.3. And finally the picture in the bottom-right corner are
the point clouds of the recognized objects projected into the scene.

As we can see, for the visualization data from the OpenNI node and the results
from the recognition server are needed. Therefore, we decided to implement a
separate visualization node as shown in Figure 3.4. Another advantage of a
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separate node is, that the visualization window is available during the whole
recognition process.
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6 Evaluation
The algorithms we described in the last chapter are based on the recognizer
proposed in this PhD thesis [30] Therefore we decided to use the same evaluation
criteria for the recognition results. Moreover, these criteria are commonly used
in the computer vision community. One measure to judge the performance
of an algorithm is the recall. It gives an objective number on how well all
objects in a scene were recovered. It gives a measure if the present objects were
explained by an appropriate verified hypotheses. The recall is defined as

recall = true positives
true positives + false negatives . (6.1)

Another measure is the precession. At this point we are more interested
if the algorithm produces a fair amount of false positives alongside the true
positives, which was not taken into account by the recall measure. Precession
is defined as

precession = true positives
true positives + false positives . (6.2)

The third measure we used is the F-score. It is convenient, because the whole
recognition system is judged by a single number. The F-score is defined as

F = 2 ∗ precision ∗ recall
precision + recall . (6.3)

An object is counted as a true positive if the proposed verified object hypothe-
ses is sufficiently close to the ground truth-object in the scene. In particular the
hypothesis needs to align the ground truth object in a way that the centroids
are within 5cm. Furthermore, the maximum in-plane and out-of-plane rotation
needs to be less than 30◦. For a more detailed explanation of the evaluation
criteria see [30].

For the evaluation we used an object set consisting of nine objects shown in
Figure 6.1. Since the recognition results are used for grasping tasks we were
restricted on the size and form of the objects. The requirements were, that the
objects should be in similar size and shape as objects used in the ycb data set
[5]. Moreover, we used mostly objects with a fair amount of texture to improve

46



6 Evaluation 47

pringles race mug tea

cleaning agent coffee rauch ketchup peanuts
Figure 6.1: Objects stored in the model database.

Figure 6.2: Examples of the constant workspace dataset.

recognition results. All models were created by the modeling tool proposed in
Chapter 4.

We created a test set of scenes which share the same work space. Moreover,
the location and orientation of the camera was not altered during recording
the scenes. This was necessary to properly test the "Initialize Empty Work
space" algorithm proposed in Section 5.3.2. Some examples of test scenes are
given in Figure 6.2. To test the algorithm "Object Change Detection" proposed
in Section 5.3.3 no requirements like a constant work space are necessary for
the test set. In order to give an example of the full potential of the algorithm
we created a test set where from one scene to another only few changes occur.
Two examples of this data set are shown in Figure 5.3. In Table 6.1 statistics
of the used data sets are listed.
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dataset objects sequences object instances
in all sequences

Const. Workspace 9 17 98
Change 7 4 22

Table 6.1: Statistics of the datasets.

6.1 Parameter Mapping
In Section 5.3.1 a system was proposed to simplify the configuration process for
the recognizer. Three different parameter settings were created which change
the recognition results and the computational time of the recognizer. The
statistics of the results of different settings are shown in Table 6.2. Moreover,
a ROC of the recognizer is given in Figure 6.3. The three configurations, fast,
accurate and high recall only use the algorithm SIFT for object hypotheses
generation. It turned out, additional recognition pipelines like SHOT or ESF
do not improve the recognition results, see Table 6.2 last two lines. SHOT and
ESF decreased the performance of the recognition system and also increased
the median calculation times. This dominance of SIFT is mainly due to my
choice of objects (see Figure 6.1) we used for evaluation. As mentioned before,
we purposely used objects which have textured surfaces in order to increase
recognition results.

parameter set P(TP) P(FP) recall precision fscore median time
fast 0.67 0.03 0.67 0.96 0.79 3.1 s
accurate 0.85 0.07 0.84 0.92 0.88 5.5 s
high recall 0.90 0.14 0.87 0.89 0.86 11.9 s
high recall + SHOT 0.93 0.63 0.92 0.59 0.72 48.9 s
high recall + ESF 0.88 0.18 0.87 0.83 0.85 14.7 s

Table 6.2: Evaluation of Parameter Mapping.

For all three configuration we used a basic parameter set and adjusted some
parameter to influence the results of the recognizer and the calculation time.
An overview of all parameter available in the configuration files is given in
Appendix B.

Some examples of different parameters of different parameter sets are given
in Table 6.3.
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Figure 6.3: ROC

knn:
Is the number of nearest neighbors a feature of the scene is matched to features
of the model database. It influences the SIFT hypotheses generation stage.
The higher the value of parameter is chosen, the more hypotheses are generated.
In general increasing the value of this parameter increases the calculation effort
but also improves performance of the recognition results.
distance metric:
Two different distance metrics were used to define the similarity between two
SIFT descriptors. For the fast setting the Hellinger distance metric was used,
which gives a measure on the similarity between two probability distributions.
For the accurate and high recall settings the standard L1 norm was used.
Defining the distance between two features is not trivial, therefore it is hardly
possible to predict which distance metric is optimal for certain scenes or objects.
min. fitness:
This is a measure between zero and one for the general confidence of a generated
object hypotheses. This parameter influences the hypotheses verification stage.
If an object hypotheses has a fitness lower than the value of min. fitness, it
gets rejected. The higher this number is chosen the more wrong hypotheses get
filtered, but also more right positive hypotheses get rejected too.
resolution:
The resolution of models and scene used to verify hypotheses. Before the
hypotheses verification starts the point clouds of the scene and the object
models get down sampled. In general a smaller resolution slows down the
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verification stage, but increases the accuracy of the recognition results.
inlier threshold:
It describes the inlier distance in meters between model and scene points during
the verification stage. One measure to judge the confidence of a generated
hypotheses is the number of points in a scene are explained by a hypothesis.
In general the rejection rate of hypotheses gets higher if we decrease the value
of the inlier threshold.
filter boarder points:
With this parameter the boundary point filter is chosen. It filters key points
close to the boundary of the point clouds within the scene. In general, activating
the filter speeds up the calculation process because less key points are used for
recognition. On the other hand sometimes valid key points are filtered which
decreases the quality of the results.

parameter knn distance min. resolution inliers filter
set metric fitness in mm threshold border points
fast 1 Hellinger 0.3 20 0.03 1
accurate 2 L1 norm 0.5 12 0.02 0
high recall 4 L1 norm 0.3 5 0.01 0

Table 6.3: Examples of different parameters.

6.2 Initialize Empty Workspace
In Section 5.3.2 an algorithm was introduced to speed up the recognition
process while maintaining the quality of the recognition results. In Table 6.4
the evaluation results are listed. All three algorithms were initialized with the
same parameter set. The evaluation was done on the Constant Work space data
set. As we can see, the median time could be reduced by roughly 20%. The
precission was increased by 6%. Occasionally the background provokes false
positive hypotheses. Since the background was removed the false positive rate
got lower and leads to a higher precision. Also, the recall got slightly reduced.
One explanation is, that the difference segmentation does not work perfectly.
Occasionally, not only the background, but also small parts of an object gets
filtered too, which makes it more difficult to recognize an object.
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Algorithm recall precision fscore median time
Original 0.87 0.90 0.88 10.5 s
Initialize Work space 0.82 0.96 0.88 8.5 s
Change Detection 0.78 0.88 0.83 5.6 s

Table 6.4: Evaluation on Constant Work space data set.

6.3 Object Change Detection
In Section 5.3.3 an algorithm was proposed to speed up the calculation time of
the recognizer. Especially if small changes in the scene between two consecutive
recognizer calls occur, we expect a significant improvement of the results with
respect to speed. In Table 6.5 the evaluation results are shown. The median
calculation time could be reduced by more than a factor of three. The Change
data set was created to show the full potential of the "Object Change Detection"
algorithm. As explained earlier, in this chapter a set of different test scenes
were used where only one object was added between two scenes (see Figure 5.3).
Moreover, we tested the algorithm on the Constant Workspace data set. The
results are listed in Table 6.4. Compared to the original algorithm, the median
calculation time could be reduced significantly. But on the other hand also
recall and precision were reduced slightly. This can be explained by the issues
which occur when spatially similar objects are involved, see Section 5.3.3.

Algorithm recall precision fscore median time
Original 0.91 0.91 0.91 9.4 s
Change Detection 0.95 0.95 0.95 2.9 s

Table 6.5: Evaluation on Change dataset.

6.4 Evaluation of Demonstration Dataset
In this section we are going to evaluate the recognizer for certain model database
and set of scenes. These models are going to be used for grasping purposes
during demonstrations of the whole pipeline. The demonstration includes
object recognition, synchronizing the camera coordinate system and robot
coordinate system and finally physically grasping the object. The objects were
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placed on a table within the reach of a robotic arm, which autonomously can
grasp recognized objects. The tested model database is shown in Figure 6.4.
Examples of the demonstration scenes set is given in Figure 6.5.

tea black box 1 spray paint tuc box

black box 2 brown box soap soda can pringles

Figure 6.4: Objects tested for the demonstration.

Figure 6.5: Examples of the demonstration dataset. Objects from the demon-
stration dataset were placed on a table in reach of a robotic arm.

If an object is recognized and the robot tries to grasp it, the position and
location information need to be correct. Otherwise, the robotic arm may cause
physical damage due to collision with falsely recognized objects or the table
plane. Therefore, we chose a parameter set which ensures a low false positive
rate and a high precession. An extract of the used parameters is given in
Table 6.6. Since calculation time was not restricted for the demo we chose a
high value for knn, which increases the number of generated hypotheses. On
the other hand, to maintain a low false positive rate we chose a small resolution
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parameter set knn resolution remove inlier
in mm planes threshold

demo set 5 5 1 30000

Table 6.6: Extract of the demo parameter set.

for hypotheses verification. The table plane had some texture and therefore
added many interest points to the scene. This caused a high false positive rate.
To solve this problem, we removed planes from the scene to filter all these
unnecessary interest points. We chose a quite high inlier threshold for removing
planes to ensure only the dominant table plane is filtered. The results of the
evaluation is shown in Table 6.7.
As expected some objects with little texture are difficult to recognize. For

example the two small black boxes or the brown box shown in Figure 6.4.
Also, the large yellow box was difficult to recognize, even if it appears to
have sufficient texture. The surface of the box is quite shiny, which led to
bright reflections due to the given illumination situation (Figure 6.5, left). The
Pringles and the small soda can were easy to recognize and therefore good
candidates for initial demonstrations.

parameter set recall precision fscore median time
demo set 0.62 0.93 0.75 13.2 s

Table 6.7: Evaluation of demo set.
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7 Outlook
The implemented single-view object recognition approach provides useful results
for textured objects, if the parameters are chosen wisely. But even used in
optimal condition the possible outcome is limited.

First of all a good parameter set for the recognizer needs to be found. Even
if a feature was introduced, which simplifies this process, certain parameter sets
need to be predefined. A calibration tool could be implemented, which finds a
parameter set for certain test data automatically. Since many parameters are
involved, correlations between single parameters and recognition results could
be determined to achieve feasible calculation times.

In general for grasping tasks the recognizer knows which object needs to be
found beforehand. Therefore, the parameter set and the recognition algorithm
could be optimized to find one single object in the scene.

One efficient general purpose approach to improve the results is to up-great to
a multi-view recognition system. Multiple RGBD cameras could be positioned
around the scene, which allows to get a complete view on targeted objects.
Moreover, a camera could be mounted on the robotic arm directly, which could
be used to verify the proposed object location during the grasping process.

Finally, one highly restricting factor is the sensor itself. The RGBD cameras
available nowadays provide relatively low resolution images with noisy depth
data. If in near future better sensors are released, recognition results are going
to be more accurate. Especially methods relying on local geometrical features,
like SHOT, could benefit significantly.
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8 Conclusion
In this thesis a state-of-the-art object modeling and object recognition system
was integrated into an existing robotic system. The whole setup consists of a
RGBD camera and a robotic arm which can fulfill a "smart grasping" task. My
work is the final peace to make the pipeline from object recognition to object
grasping completely autonomous. Now, providing the location of objects is not
necessary anymore.

Also, the object modeling tool was modified to make it compatible to the
grasping system. Moreover, the interface were simplified to ensure an easy
usability of the tool. The recognition system was integrated into ROS and
Blockly. This block based graphical programming language allows connecting
different custom blocks, for example a recognition block and a grasping block.
This provides a delicate communication interface between these two systems.
The recognition block passes on a list of recognized objects with correspond-
ing location information to the grasping block. Throughout the process the
recognition results are visualized, which offers a convenient way for the user to
judge the accuracy of the results subjectively. The object recognition system
was adjusted in order to fulfill the requirements of the robotic grasping system.
Since up to 80 parameters are available to adjust the recognizer, a parameter
mapping feature was introduced. The user simply chooses between predefined
settings which give the recognizer certain properties, like low calculation effort
or high accuracy. The setup, which includes a RGBD camera mounted on a
fixed position, gave the opportunity to optimize the recognition algorithm to
this situation. The algorithm "Initialize Empty Work space" was proposed.
Before the recognition starts, the empty work space of the scene is captured,
and filtered afterwards during recognition tasks. Since fewer data need to be
processed, the calculation effort decreases. The algorithm "Object Change
Detection" takes the idea of filtering the empty work space one step further.
Additionally, information of previous recognition tasks are used to reduce cal-
culation effort. Finally, the proposed algorithms were evaluated and tested on
the robotic system.
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A Manual
The following sections give a short manual, how the proposed modeling and
recognition framework can be used. We need a Kinect and for simplifying
the modeling process a turntable, as shown in Figure A.1 is recommended.
Moreover, we need to install the V4R Toolbox, the sr_vision ROS Package
and the Blockly web server on our Ubuntu 16.04 computer.

RGBD camera

turntable and object

Figure A.1: V4R object modeling setup.

A.1 Object Modeling
First we have to model all the objects we want to recognize later. We use an
offline tool for this, the RTM Toolbox 1.
Place the object on a flat surface on a newspaper or something similar.

This allows us to rotate the object without touching it. The texture on the
1The manual for the RTM Tool is based on the tutorial given in here:
https://github.com/strands-project/lamor15/wiki/Tutorial-materials-3
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A.1 Object Modeling 57

newspaper also helps to keep track of the orientation of the object. The pictures
below were taken with the object on a turn table, which is the most convenient
way of rotating the object.

Start the modeling tool:

~/somewhere/v4r/bin/RTMT_simple

• Click on the flat surface next to the object to generate a ROI (region of
interest). The tool considers everything inside the blue grid box as part
of the model.

• Rotate 360 degrees, the program will generate a number of key frames.
IMPORTANT: Do not violate the ROI (e.g. with our hand) during the
modeling process.

• Press "Finnish modeling" (be patient! All post-processing is done after
clicking this button.)

• Finally, choose a model name and store the created point cloud and mesh
files.
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A.2 Object Recognition 58

Configuration options:

• Set data folder and model name:
(File -> Preferences -> Settings -> Path and model name)

• Configure number of key frames to be selected using a camera rotation
and a camera translation threshold:
(File -> Preferences -> Settings -> Min. delta angle, Min. delta camera
distance)

• Configure the level of detail of the mesh model:
(File -> Preferences -> Postprocessing -> Poisson depth)

A.2 Object Recognition
After all objects are stored in the model database, the actual recognition stage
can start. The recognizer itself is implemented in a ROS action server. The
action client is implemented as a Blockly block.

Configuration Options:

Before starting the recognizer, some ROS launch parameters may be set. All
parameter have default values and it is not necessary to set values manually.
Path to the launch file:

~/somewhere/sr_recognizer/launch/recognition_demo.launch

(m) We can choose a different path to our model database.
(t) If we additionally specify a path to a point cloud file the recognizer uses
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A.2 Object Recognition 59

this file instead of acquiring a point cloud from the Kinect.
(cfg) We can choose a different path to our configuration files folder.
(recParam) We can choose a parameter set which changes the accuracy and
calculation effort of the recognizer: 1: low calculation effort, but inaccurate
results, 2: balanced between calculation effort and accuracy. 3: high calculation
effort, but high accuracy of the results.
(arg) additional parameters for the recognizer can be chosen, mainly used for
testing/debugging purposes.

Starting the recognizer:

$ roslaunch sr_recognizer recognition_demo.launch

The launch file runs all necessary ROS nodes, including the Blockly web server.
Open this link in a web browser.
http://localhost:8000/pages/blockly.html

Figure A.2: Blockly Interface.

We should see the Blockly interface. Click on the toolbox on the left side, choose
Vision and drag a vision block into the editor (see Figure A.2). Launch the
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A.2 Object Recognition 60

Blockly code and wait till the recognizer has finished the calculations. Finally,
the visualization window shows the object recognition results.
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B Recognition System Parameters
The following sections give an overview of the data type and functionality
of parameters which can be found in the configuration files of the recognizer.
These explanations are just a short summary to give an idea how certain
parameters influence the results of the recognizer. The descriptions are mainly
summaries from comments in the source code of this PhD thesis [8].

B.1 multipipeline_config.xml
float cg_size_: size for correspondence grouping.
int cg_thresh_: threshold for correspondence grouping. The lower the
more hypotheses are generated, the higher the more confident and accurate.
Minimum 3.
bool use_graph_based_gc_grouping_: if true, uses graph-based geo-
metric consistency grouping

B.2 sift_config.xml /shot_config.xml
parameters for feature matching:
int kdtree_splits_: kdtree splits
int kdtree_num_trees_: number of trees for FLANN approximate nearest
neighbor search
size_t knn_: nearest neighbors to search for when checking feature descrip-
tions of the scene
float max_descriptor_distance_: maximum distance of the descriptor in
the respective norm (L1 or L2) to create a correspondence
float correspondence_distance_weight_: weight factor for correspon-
dences distances This is done to favor correspondences from different pipelines
that are more reliable than others (SIFT and SHOT correspondences simulta-
neously fed into CG)
int distance_metric_: defines the norm used for feature matching (1... L1
norm, 2... L2 norm, 3... ChiSquare, 4... Hellinger)
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B.3 hv_config.xml 62

float max_keypoint_distance_z_: Maximum distance of an extracted
key point to be accepted

parameters for plane filter:
bool filter_planar_: Filters key points with a planar surface
int min_plane_size_: Minimum number of points for a plane to be checked
if filter only points above table plane
int planar_computation_method_: Defines the method used to check
for planar points. 0... based on curvature value after normalestimationomp, 1...
with eigenvalue check of scatter matrix
float planar_support_radius_: Radius used to check key points for pla-
narity.
float threshold_planar_: Threshold ratio used for deciding if patch is pla-
nar. Ratio defined as largest eigenvalue to all others.

parameters for depth-discontinuity filter:
int filter_border_pts_: Filters key points at the boundary (value according
to the edge types defined in pcl::OrganizedEdgeBase:
EDGELABEL_NAN_BOUNDARY = 1, EDGELABEL_OCCLUDING = 2,
EDGELABEL_OCCLUDED = 4.
int boundary_width_: Width in pixel of the depth discontinuity
float required_viewpoint_change_deg_: required viewpoint change in
degree for a new training view to be used for feature extraction. Training views
will be sorted incrementally by their file name and if the camera pose of a
training view is close to the camera pose of an already existing training view,
it will be discarded for training.
bool train_on_individual_views_: if true, extracts features from each
view of the object model. Otherwise, will use the full 3D cloud

B.3 hv_config.xml
int resolution_mm_: The resolution of models and scene used to verify
hypotheses (in millimeters)
float inliers_threshold_: inlier distance in meters between model and scene
point
float inliers_surface_angle_thres_: inlier distance in radiant between
model and scene surface normal
float occlusion_thres_: Threshold for a point to be considered occluded
when model points are back-projected to the scene ( depends e.g. on sensor
noise)
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B.3 hv_config.xml 63

int smoothing_radius_: radius in pixel used for smoothing the visible
image mask of an object hypotheses (used for computing pairwise intersection)
bool do_smoothing_: if true, smoothes the silhouette of the re-project
object hypotheses (used for computing pairwise intersection)
bool do_erosion_: if true, performs erosion on the silhouette of the re-
project object hypotheses. This should avoid a pairwise cost for touching
objects (used for computing pairwise intersection)
int erosion_radius_: erosion radius in px (used for computing pairwise
intersection)
int icp_iterations_: number of icp iterations for pose refinement
float w_normals_: weighting factor for normal fitness
float w_color_: weighting factor for color fitness
float w_3D_: weighting factor for 3D fitness
float color_sigma_l_: allowed illumination (L channel of LAB color space)
variance for a point of an object hypotheses to be considered explained by a
corresponding scene point (between 0 and 1, the higher the fewer objects get
rejected)
float color_sigma_ab_: allowed chrominance (AB channel of LAB color
space) variance for a point of an object hypotheses to be considered explained
by a corresponding scene point (between 0 and 1, the higher the fewer objects
get rejected)
float sigma_normals_deg_: variance for normals between model and scene
float regularizer_: represents a penalty multiplier for model outliers. In
particular, each model outlier associated with an active hypothesis increases
the global cost function.
int normal_method_: method used for computing the normals of the down
sampled scene point cloud (defined by the V4R Library)
bool ignore_color_even_if_exists_: if true, only checks 3D Euclidean
distance of neighboring points
int max_iterations_: max iterations the optimization strategy explores
local neighborhoods before stopping because the cost does not decrease.
float clutter_regularizer_: The penalty multiplier used to penalize unex-
plained scene points within the clutter influence radius
radius_neighborhood_clutter_ of an explained scene point when they belong
to the same smooth segment.
bool use_replace_moves_: parameter for optimization. If true, local
search uses replace moves (deactivates one hypothesis and activates another
one). Otherwise, it only searches locally by enabling/disabling hypotheses one
at a time.
int opt_type_: defines the optimization method. 0: Local search (converges
quickly, but can easily get trapped in local minima), 1: Tabu Search, 2:

63



B.3 hv_config.xml 64

Tabu Search + Local Search (Replace active hypotheses moves), 3: Simulated
Annealing
bool use_histogram_specification_: if true, tries to globally match bright-
ness (L channel of LAB color space) of visible hypothesis cloud to brightness
of nearby scene points. It does so by computing the L channel histograms for
both clouds and shifting it to maximize histogram intersection.
bool initial_status_: sets the initial activation status of each hypothesis
to this value before starting optimization. E.g. If true, all hypotheses will be
active and the cost will be optimized from that initial status.
int color_comparison_method_: method used for color comparison (0...
CIE76, 1... CIE94, 2... CIEDE2000)
float min_visible_ratio_: defines how much of the object has to be visible
in order to be included in the verification stage
bool check_smooth_clusters_: Euclidean smooth segmentation. Ff true,
checks if hypotheses explain whole smooth regions of input cloud (if they only
partially explain one smooth region, the solution is rejected)
float eps_angle_threshold_deg_: angle threshold in degree to cluster
two neighboring points together
float curvature_threshold_: curvature threshold to allow clustering of two
points (points with surface curvatures higher than this threshold are skipped)
float cluster_tolerance_: cluster tolerance in meters for point to be clus-
tered together
int min_points_: minimum number of points for a smooth region to be
extracted
float min_ratio_cluster_explained_: defines the minimum ratio a smooth
cluster has to be explained by the visible points (given there are at least 100
points)
bool z_adaptive_: if true, scales the smooth segmentation parameters linear
with distance (constant till 1m at the given parameters)
size_t min_pts_smooth_cluster_to_be_explained_: minimum num-
ber of points a cluster need to be explained by model points to be considered
for a check (avoids the fact that boundary points of a smooth region can be
close to an object)
float min_fitness_: hypotheses which have a lower fitness score will be
defined as "outlier"
float min_dotproduct_model_normal_to_viewray_: surfaces which
point are oriented away from the view ray will be discarded if the absolute
dot product between the surface normal and the view ray is smaller than this
threshold. This should ignore points for further fitness check which are very
sensitive to small rotation changes.
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B.4 esf_config.xml 65

float min_px_distance_to_image_boundary_: minimum distance in
pixel a re-projected point needs to have to the image boundary

B.4 esf_config.xml
bool check_elongations_: if true, checks if the elongation of the segmented
cluster fits approximately the elongation of the matched object hypothesis
float max_elongation_ratio_: if the elongation of the segment w.r.t. to
the matched hypotheses is above this threshold, it will be rejected (used only
if check_elongations_ is true.
float min_elongation_ratio_: if the elongation of the segment w.r.t. to
the matched hypotheses is below this threshold, it will be rejected (used only
if check_elongations_ is true).
bool use_table_plane_for_alignment_: if true, aligns the matched ob-
ject model such that the centroid corresponds to the centroid of the segmented
cluster downprojected onto the found table plane. The z-axis corresponds to
the normal axis of the table plane and the remaining axis build an orthonormal
system. Rotation is then sampled in equidistant angles around the z-axis.
ATTENTION: This assumes the models are in a coordinate system with the
z-axis aligning with the typical upright position of the object.
float z_angle_sampling_density_degree_: if
use_table_plane_for_alignment_, this value will generate object hypotheses
at each multiple of this value.
float required_viewpoint_change_deg_: required viewpoint change in
degree for a new training view to be used for feature extraction. Training views
will be sorted incrementally by their file name and if the camera pose of a
training view is close to the camera pose of an already existing training view,
it will be discarded for training.
bool estimate_pose_: if true, tries to estimate a coarse pose of the object
based on the other parameters
bool classify_instances_: if true, classifier learns to distinguish between
model instances instead of categories

65



Bibliography
[1] D. Fischinger, Enabling autonomous robotic grasping based on topographic

features, Parallelt. [Ãœbers. des Autors] Enabling Autonomous Robotic
Grasping based on Topographic Features; Wien, Techn. Univ., Diss., 2014,
2014.

[2] J. Prankl, A. Aldoma, A. Svejda, and M. Vincze, „Rgb-d object modelling
for object recognition and tracking,“ in 2015 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2015, pp. 96–103.

[3] J. Prankl, T. Mörwald, M. Zillich, and M. Vincze, „Probabilistic cue inte-
gration for real-time object pose tracking,“ in Computer Vision Systems:
9th International Conference, ICVS 2013, St. Petersburg, Russia, July 16-
18, 2013. Proceedings, M. Chen, B. Leibe, and B. Neumann, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2013, pp. 254–263, isbn: 978-3-
642-39402-7. [Online]. Available: http://dx.doi.org/10.1007/978-3-
642-39402-7_26.

[4] B. Calli, A. Walsman, A. Singh, S. Srinivasa, P. Abbeel, A. Dollar,
„Benchmarking in manipulation research,“ IEEE Robotics and Automation
Magazine, vol. 22, no. 3, pp. 36–52, 2015.

[5] ——, „The ycb object and model set towards common benchmarks for
manipulation research,“ in International Conference on Advanced Robotics
(ICAR), 2015.

[6] T. Weise, T. Wismer, B. Leibe, and L. V. Gool, „In-hand scanning with
online loop closure,“ in 2009 IEEE 12th International Conference on
Computer Vision Workshops, ICCV Workshops, 2009, pp. 1630–1637.

[7] M. M. Torres, A. C. Romea, and S. Srinivasa, „Moped: A scalable and low
latency object recognition and pose estimation system,“ in Proceedings
of ICRA 2010, Pittsburgh, PA, 2010.

[8] T. Fäulhammer, M. Zillich, J. Prankl, and M. Vincze, „A multi-modal
rgb-d object recognizer,“ in Pattern Recognition (ICPR), 2016 23rd
International Conference on, IEEE, 2016, pp. 733–738.

66

http://dx.doi.org/10.1007/978-3-642-39402-7_26
http://dx.doi.org/10.1007/978-3-642-39402-7_26


Bibliography 67

[9] W. Wohlkinger and M. Vincze, „Ensemble of shape functions for 3d object
classification,“ in 2011 IEEE International Conference on Robotics and
Biomimetics, 2011, pp. 2987–2992.

[10] D. G. Lowe, „Distinctive image features from scale-invariant keypoints,“
International journal of computer vision, vol. 60, no. 2, pp. 91–110, 2004.

[11] D. Lowe, Method and apparatus for identifying scale invariant features
in an image and use of same for locating an object in an image, US
Patent 6,711,293, 2004. [Online]. Available: https://www.google.com/
patents/US6711293.

[12] D. G. Lowe, „Object recognition from local scale-invariant features,“
in International Conference on Computer Vision, 1999, IEEE, 1999,
pp. 1150–1157.

[13] L. Assirati N. Silva L. Berton A. Lopes O.Bruno, „Performing edge
detection by difference of gaussians using q-gaussian kernels,“ in 2nd
International Conference on Mathematical Modeling in Physical Sciences,
2013.

[14] F. Tombari, S. Salti, L. Di Stefano, „Unique signatures of histograms
for local surface description,“ in 11th European Conference on Computer
Vision (ECCV), 2010.

[15] J. Beis, D. Lowe, „Shape indexing using approximate nearest-neighbour
search in high-dimensional spaces,“ in Conference on Computer Vision
and Pattern Recognition, 1997, pp. 1000–1006.

[16] F. Tombari and L. D. Stefano, „Object recognition in 3d scenes with
occlusions and clutter by hough voting,“ in 2010 Fourth Pacific-Rim
Symposium on Image and Video Technology, 2010, pp. 349–355.

[17] H. Chen and B. Bhanu, „3d free-form object recognition in range images
using local surface patches,“ in Proceedings of the 17th International
Conference on Pattern Recognition, 2004. ICPR 2004., vol. 3, 2004, 136–
139 Vol.3.

[18] A. Aldoma Buchaca, F. Tombari, J. Prankl, A. Richtsfeld, L. di Stefano, M.
Vincze, „Multimodal cue integration through hypotheses verification for
rgb-d object recognition and 6dof pose estimation,“ in IEEE International
Conference on Robotics and Automation (ICRA), 2013.

67

https://www.google.com/patents/US6711293
https://www.google.com/patents/US6711293


Bibliography 68

[19] A. Aldoma, F. Tombari, L. Di Stefano, and M. Vincze, „A global hypothe-
ses verification method for 3d object recognition,“ in Computer Vision –
ECCV 2012: 12th European Conference on Computer Vision, Florence,
Italy, October 7-13, 2012, Proceedings, Part III, A. Fitzgibbon, S. Lazeb-
nik, P. Perona, Y. Sato, and C. Schmid, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2012, pp. 511–524, isbn: 978-3-642-33712-3. [Online].
Available: https://doi.org/10.1007/978-3-642-33712-3_37.

[20] J. Schmidhuber, „Deep learning in neural networks: An overview,“ Neural
Networks, vol. 61, pp. 85 –117, 2015, issn: 0893-6080. [Online]. Avail-
able: http : / / www . sciencedirect . com / science / article / pii /
S0893608014002135.

[21] A. Kumar, „Artificial neural networks,“ 2012.
[22] Z. Zhang, in Microsoft Kinect sensor and its effect. 19th ed. IEEE Multi-

Media, 2012, pp. 4–10.
[23] H. Sarbolandi, D. Lefloch, and A. Kolb, „Kinect range sensing: Structured-

light versus time-of-flight kinect,“ May 2015.
[24] I. Anwar and S. Lee, „High performance stand-alone structured light 3d

camera for smart manipulators,“ in 2017 14th International Conference
on Ubiquitous Robots and Ambient Intelligence (URAI), 2017, pp. 192–
195.

[25] B. Triggs, P. F. McLauchlan, R. I. Hartley, and A. W. Fitzgibbon, „Bundle
adjustmentâ€”a modern synthesis,“ in International workshop on vision
algorithms, Springer, 1999, pp. 298–372.

[26] C. Wu, S. Agarwal, B. Curless, and S. M. Seitz, „Multicore bundle
adjustment,“ in CVPR 2011, 2011, pp. 3057–3064.

[27] J. Nocedal and S. J. Wright, Numerical Optimization, 2nd. New York:
Springer, 2006.

[28] P. J. Besl, N. D. McKay, et al., „A method for registration of 3-d shapes,“
[29] M. B. M. Kazhdan and H. Hoppe, „Poisson surface reconstruction,“ in

Proceedings of the 4th Eurographics Symposium on Geometry Processing,
2006, pp. 61–70.

[30] T. Fäulhammer, „From the lab to the wild: learning and recognizing
objects in cluttered environments on a mobile robot,“ PhD thesis, TU
Wien (TUW), 2017.

[31] M. Vincze, M. Zillich, D. Wolf, „Machine vision and cognitive robotics,“
in Lecture on Machine Vision and Cognitive Robotics, 2015.

68

https://doi.org/10.1007/978-3-642-33712-3_37
http://www.sciencedirect.com/science/article/pii/S0893608014002135
http://www.sciencedirect.com/science/article/pii/S0893608014002135


Bibliography 69

[32] K. Khoshelham, S. Elberink, „Accuracy and resolution of kinect depth
data for indoor mapping applications,“ Sensors, no. 12, pp. 1437–1454,
2012.

[33] K. Khoshelham and S. O. Elberink, „Accuracy and resolution of kinect
depth data for indoor mapping applications,“ Sensors, vol. 12, no. 2,
pp. 1437–1454, 2012, issn: 1424-8220. [Online]. Available: http://www.
mdpi.com/1424-8220/12/2/1437.

[34] T. Rabbania, F. A. van den Heuvelb, and G. Vosselmanc, „Segmentation
of point clouds using smoothness constraint,“ 2006.

69

http://www.mdpi.com/1424-8220/12/2/1437
http://www.mdpi.com/1424-8220/12/2/1437


Erklärung
Hiermit erkläre ich, dass die vorliegende Arbeit ohne unzulässige Hilfe Dritter
und ohne Benutzung anderer als der angegebenen Hilfsmittel angefertigt wurde.
Die aus anderen Quellen oder indirekt übernommenen Daten und Konzepte
sind unter Angabe der Quelle gekennzeichnet.
Die Arbeit wurde bisher weder im In- noch im Ausland in gleicher oder in

ähnlicher Form in anderen Prüfungsverfahren vorgelegt.

Wien, September 26, 2017 ____________
Thomas Muttenthaler


	1 Introduction
	1.1 Problem Statement
	1.2 Solution Statement
	1.3 Guideline through Work

	2 State of the Art
	2.1 Object Modeling
	2.1.1 RGBD Camera Data based Modeling
	2.1.2 Laser Scan
	2.1.3 In-Hand Scanner
	2.1.4 Feature Based Modeling

	2.2 Object Recognition
	2.2.1 Global Feature Detection
	2.2.2 Local Feature Detection
	2.2.3 Feature Matching
	2.2.4 Hypotheses Generation
	2.2.5 Hypotheses Verification
	2.2.6 Object Recognition Frameworks
	2.2.7 Deep Learning

	2.3 Visual Programming Languages
	2.3.1 Blockly
	2.3.2 Scratch
	2.3.3 Snap
	2.3.4 Waterbear


	3 System Overview
	3.1 Sensor Principe and Data Acquisition
	3.2 Implementation Overview

	4 Modeling
	4.1 Segmentation
	4.2 Noise Model
	4.3 Optimization
	4.4 Surface Reconstruction
	4.5 User Interface

	5 Recognition System
	5.1 Client/Server Architecture
	5.2 Recognition Client
	5.3 Recognition Server
	5.3.1 Parameter Mapping
	5.3.2 Initialize Empty Workspace
	5.3.3 Object Change Detection

	5.4 OpenNI Node
	5.5 Visualization Node

	6 Evaluation
	6.1 Parameter Mapping
	6.2 Initialize Empty Workspace
	6.3 Object Change Detection
	6.4 Evaluation of Demonstration Dataset

	7 Outlook
	8 Conclusion
	A Manual
	A.1 Object Modeling
	A.2 Object Recognition

	B Recognition System Parameters
	B.1 multipipeline_config.xml
	B.2 sift_config.xml /shot_config.xml
	B.3 hv_config.xml
	B.4 esf_config.xml


