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Abstract

This thesis is focused on a more general type of optimal stopping problems in dis-
crete time. Varying approaches of viewing this problem are discussed and introduced,
e.g. using a space of couplings under linear constraints or so-called adapted random
probability measures. A connection between these views is made and existence of an
optimal solution is shown. Further, a modified version of Monge-Kantorovich duality
is established. The final sections show a monotonicity principle with examples. For
a special class of cost functions, optimality (and uniqueness) of a "greedy strategy"
is established. In particular, the proof resembles the main idea behind a monotonic-
ity principle for discrete time, which in turn is based on a monotonicity principle for
continuous time. Finally, optimality of the "greedy strategy" is shown using mono-
tonicity.
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Zusammenfassung

Die vorliegende Arbeit hat eine verallgemeinerte Version eines "optimal stopping"-
Problems in diskreter Zeit als Hauptfokus. Unterschiedliche Herangehensweisen an
dieses Problem werden vorgezeigt und besprochen, wie das Verwenden von einem
Raum von "couplings", welche zusätzlich lineare Nebenbedingungen erfüllen, oder
jenes von sogenannten "adapted random probability measures". Weiters wird eine
Verbindung dieser Sichtweisen aufgezeigt und die Existenz einer optimalen Lösung
bewiesen. In den abschließenden Kapiteln wird ein Monotonie-Prinzip anhand eines
Beispiels vorgeführt. Für eine spezielle Klasse an Kostenfunktionen wird Optimalität
(und Eindeutigkeit) einer "greedy"-Strategy gezeigt. Der Beweis basiert stark auf jener
Idee, die hinter einem Monotonie-Prinzip in diskreter Zeit steckt, welche wiederum von
einem Monotonie-Prinzip in stetiger Zeit abgeleitet wurde. Zuletzt wird Optimalität
auch unter Verwendung dieses Monotonie-Prinzips gezeigt.
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CHAPTER 1

Introduction

In unit-linked life insurances - e.g. the life insurance of a married couple - the physical
and emotional health can strongly depend on one of the partners. As a consequence,
health can drastically deteriorate when one’s partner dies. Therefore, it is not rea-
sonable to assume independence of the times of death of either partner. An attempt
of modeling this dependency can be made by using measures related to a stochastic
process which mimick ordinary stopping times and are, in fact, a generalization of the
latter. An informal way of posing this problem is the following:

Given a payoff function c, which may depend on the values of the stochastic process
up to a point in time t, we seek to maximize

τ 7→ E[c((Zt)t≤τ , τ)]

where τ is not an ordinary stopping time in the filtration generated by Z, i.e., it does
not stop the process at one time τ(ω), but rather τ(ω) is a sub-probability measure on
the time domain by itself. Essentially this can be formalized in three different ways:

1. As an optimal stopping problem where adapted random probability measures
are used instead of ordinary stopping times.

2. As an optimal transport problem by reformulating it by means of randomized
stopping times.

3. As an ordinary optimal stopping problem on a larger probability space, cf. [7,
Lemma 3.11].

Outline of Thesis

In Chapter 2 the maximization problems (OptStopγ) and (OptStopπ) are formally
introduced. Section 2.2 introduces the notions of couplings (Cpl) and randomized
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14 CHAPTER 1. INTRODUCTION

stopping times (RST), and explores their relation. The subsequent Section 2.3 draws
the connection between (OptStopγ) and (OptStopπ). Existence of a maximizer of
(OptStopπ) is shown in Section 3.1 utilizing Prokhorov’s Theorem and [7, Lemma
2.3]. Based on the theory of optimal transport and recent results [12] in this area,
duality in the sense of Kantorovich is deduced. In Chapter 4 examples are investi-
gated and maxmizers are determined. Finally, Chapter 5 shortly sketches different
monotonicity principles and uses one to show optimality of the maximizer introduced
in the previous chapter.

Notational Conventions

• In this paper, we consider a discrete time domain. Its index set is denoted by I.
Typical examples are I := N for an infinite time horizon and I := {1, . . . , T}, T ∈
N for a finite index set. If the reader is interested in the time continuous case, they
may be referred to [2] and [6]. For t ∈ I we define the set I<t := {s ∈ I|s < t}
of all times before t, the set I≤t := {s ∈ I|s ≤ t} of all times up to t, the set
I≥t := {s ∈ I|s ≥ t} of all times from t on, and the set I>t := {s ∈ I|s > t} of
all times after t.

• Given a topological space (X, T ), we denote its Borel-σ-algebra with B(X) =
σ(T ), the interior of a set A ⊆ X with int(A) and its boundary with ∂(A). The
space of all Borel-measurable functions from X into R are denoted by B(X) and
its subspace of all bounded, Borel-measurable functions by Bb(X).

• Typically, we will work with (sub-)probability measures on the Polish space RI .
To facilitate the notation of projections onto particular subspace of RI , which
we may define as

RI =:
∏
i∈I
Xi,

and for instance call the projection of a measure µ on RI onto the first component
projX1(µ).

• Several different notations will be used to refer to elements of RI . For any vector
ω ∈ RI , its entries are denoted with

ω = (ωt)t∈I = (ω1, ω2, . . . ).

Parts of the vector (path) ω will be referred to by

(ωt)t∈I≤s = ω�[0,s], (ωt)t∈I>s = ω�(s,T ], s ∈ I,

where ω�J with J ⊆ I stands for the restriction of ω onto RJ .

• If ω ∈ RI , s ∈ I and θ ∈ RI>s , we may use ⊕ to indicate the concatenation of
the paths ω�[0,s] and θ, such that

ω�[0,s] ⊕ θ := (ω1, . . . , ωs, ωs + θ1, ωs + θ2, . . . ) ∈ RI .
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• In the following Z = (Zt)t∈I will denote a distinguished stochastic process. If
Z is assumed to have independent increments, i.e., for any t1, . . . , tn ∈ I with
t1 < · · · < tn the increments Zt1 , Zt2 −Zt1 , . . . , Ztn −Ztn−1 are independent, it is
convenient to define (pi)i∈I via

Zt = Z0 +
∑
i≤t

pi,

where Z0 is the initial distribution of the stochastic process Z. The measure
induced by the process starting in 0, Z̃t := ∑

i≤t pi, on RI is denote by P.

• For signed measures ξ there exists a Hahn-Jordan decomposition,

ξ = ξ+ − ξ−,

where ξ+ and ξ− are the positive and negative parts of ξ, respectively.
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CHAPTER 2

The Maximization Problem

Let (Ω,G,G := (Gt)t∈I ,P) be an abstract filtered probability space and Z := (Zt)t∈I be
the stochastic, real-valued and G-adapted process of interest. Further, let ν denote a
(discrete) probability measure on (I,B(I)). We assume that the process Z is uniformly
integrable, i.e.,

∀ε > 0, ∃δ > 0 :
∫
E
|Zt|dP < ε whenever Zt ∈ L1(P) for all t ∈ I and P(E) < δ.

Furthermore, by µ we denote the probability measure induced onto the measurable
space (RI ,B(RI)) by the stochastic process Z via

µ(B) := Z#P(B) ∀B ∈ B(RI),

and call the probability triplet (RI ,B(RI), µ) the path space of Z. The payoff function
c is assumed to be real-valued and Borel-measurable on S with

S := {(x, t) | x ∈ RI , t ∈ I}.

The space S is adequate for our purposes since for a given time t and path (Zs((ω))s≤t =:
x up to the time t, the function c returns the payoff c(x, t). Note that the space is
Polish as it is the direct sum of Polish spaces. For example, the topology induced on
S by the metric d : S × S → R defined as

((xi)i≤s, s), (yi)i≤t, t)) 7→ max
(
|t− s|, max

i≤min(s,t)
(|xi − yi|)

)
,

causes (S, d) to be Polish. Further, there exists a surjective, open, continuous map r
with

r : (RI × I,B(RI × I))→ (S, d),
((xs)s∈I , t) 7→ ((xs)s≤t, t), (2.1)

such that the topology on S is the final topology on S with respect to the map r. Note
that the map r is Borel-measurable.

17



18 CHAPTER 2. THE MAXIMIZATION PROBLEM

Adapted Random Probability Measures

Instead of restricting ourselves to G-stopping times on (Ω,G,G,P), we introduce a
generalization of the notion of G-stopping times. Assume τ to be a G-stopping time,
then it can be naturally identified with a G-adapted stochastic process γ := (γt)t∈I
such that

γt(ω) := 1{t}(τ(ω)), ω ∈ Ω, t ∈ I.
Thus, for a.e. ω the stochastic process γ defines a probability measure on I, which in
turn tells us the probability of having already stopped at time t. This leads us to the
notion of adapted random probability measures.

Definition 2.1 (Adapted Random Probability Measure).
We call a real-valued, stochastic process γ := (γt)t∈I on (Ω,G,G,P) an adapted random
probability measure, if

1. γt ≥ 0 a.s. for all t ∈ I,

2. ∑t∈I γt = 1 a.s.,

3. γ is F-adapted.

The space of all these adapted random probability measures is denoted byMI .
Given a probability measure ν on I, we might be interested in all adapted random
probability measures γ such that

4. E[γt] = ν(t) for all t ∈ I.

The restriction ofMI to all adapted random probability measures which additionally
satisfy (4) is denoted byMν

I .

As explained in the introduction, we want to maximize the expected payoff given a
cost function c : S → R and a stochastic process Z where the maximization is now
taken over all adapted random probability measures, which continue along a given
probability measure.

Problem (OptStopγ). Given a Borel-measurable payoff function c : S → R and a
probability measure ν on I, we seek to find a maximizer of

γ 7→ E
[∑
t∈I

c((Zs)s≤t, t)γt
]
, γ ∈Mν

I .

Remark 2.2. Note that this is an enlargement of the standard optimal stopping problem
τ 7→ E[c((Zs)s≤τ , τ)]

where τ is a G-stopping time and P([τ = t]) = ν(t) for all t ∈ I. We denote the
space of all G-stopping times by TI and its restriction to all stopping times τ such that
L(τ) = ν with T νI . Obviously it holds that

sup
γ∈Mν

I

E
[∑
t∈I

c((Zs)s≤t, t)γt
]
≥ sup

τ∈T νI
E[c((Zs)s≤τ , τ)],

because T νI is embedded inMν
I .
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Randomized Stopping Times and Couplings

Rather than working with an abstract filtered probability space, it is possible to work
on the path space of the stochastic process Z, (RI ,F ,F := (Ft)t∈I , µ), where F is the
natural filtration of Z and F the Borel-σ-algebra on RI . If T < ∞ the space RI ,
equipped with the product topology, is a complete metric space, where the metric can
be chosen as

max
t∈I
|xt − yt|.

If we admit T = ∞, i.e., an infinite time horizon, the path space with the product
topology remains Polish as a countable product of Polish spaces. Furthermore, a
possible metric which induces the product topology is

ρ(x, y) : RI × RI → R

(x, y) 7→
∑
t∈I

1
2t
|xt − yt|

1 + |xt − yt|
.

As stated in the introduction, instead using stopping times which stop at one point
in time, it is possible to generalize this with so-called randomized stopping times. A
randomized stopping time π tries to mimic stopping times by assigning almost every
path ω a probability measure πω on I which again tells us the probability with which
we stop at time t.

Definition 2.3 (Randomized Stopping Time).
A probability measure π on RI × I is called randomized stopping time, if

1. projRI (π) = µ,

2. the mapping ω 7→ πω(t) is Ft-measurable for all t ∈ I, where (πω)ω∈RI is a
disintegration of π. Or equivalently, the with π associated process A := (At)t∈I ,
where At(ω) := ∑

s≤t πω(s) is Ft-measurable.

Again, the space of all randomized stopping times on RI × I which satisfy (1) and
(2) are denoted by RST(µ). Given a probability measure ν on I, we are interested in
random stopping times π such that

3. projI(π) = ν.

The restriction of RST(µ) to all probability measures which in addition satisfy (3) is
denoted by RST(µ, ν).

Remark 2.4. The marginal of the random stopping time π is assumed have the dis-
tribution of µ. This can be understood as that the probabilities of the paths are
preserved. Since we are working on Polish spaces, the (unique) disintegration (πω)ω∈RI
exists and assigns µ-almost every path ω a probability measure on I.

In the setting of optimal transport it is more convenient to work with so-called cou-
plings, which are product probability measures such that the marginals satisfy a certain
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law. For our case it is reasonable, to consider all couplings on RI × I between µ and
ν.

Definition 2.5 (Couplings).
A coupling on RI × I with marginals µ and ν is a product probability measure π on
RI × I such that

1. projRI (π) = µ,

2. projI(π) = ν.

The space of all product measures on RI × I satisfying (1) and (2) is denoted by
Cpl(µ, ν).

3.
∫
1{t}(s)(g − E[g|Ft])(ω)dπ(ω, s) = 0 ∀g ∈ Bb(RI), t ∈ I.

The restriction of Cpl(µ, ν) to all couplings satisfying (3) is denoted by Cplad(µ, ν).

For a coupling π property (3) corresponds to property (2) in the Definition 2.3 of
randomized stopping times. In fact, Cplad(µ, ν) coincides with RST(µ, ν). This follows
from Lemma 2.6 which is an adaptation of [2, Theorem 3.8], where also a proof for
the more complex time continuous case can be found.

Lemma 2.6. Let π ∈ Cpl(µ, ν). Then the following are equivalent:

1. π ∈ Cplad(µ, ν),

2. Given a disintegration (πω)ω∈RI of π, the random variable ω 7→ πω(t) is Ft-
measurable for all t ∈ I.

Proof. To show the equivalence we use a different characterization of measurability of
integrable random variables, see e.g. in [9]:

An integrable random variable X on RI is Ft-measurable iff

E[X(Y − E[Y |Ft])] = 0 ∀Y integrable and Borel-measurable.

Instead of working with all integrable random variables, we can restrict us to bounded,
Borel-measurable random variables. Thus, by a monotone class argument and setting
X := πω(t), this is equivalent to

E[1{t}(s)(g − E[g|Ft])] =
∫
RI
πω(t)(g − E[g|Ft])(ω)µ(dω) = 0 ∀g ∈ Bb(RI).

As explained in the introduction, we want to maximize the expected payoff given a
cost function c : S → R and the paths ω of a stochastic process Z where now the
maximization is taken over all randomized stopping times which are in RST(µ, ν).
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Problem (OptStopπ). Let c̃ : S → R be Borel-measurable, then we can define the
Borel-measurable function c := c̃ ◦ r, with r given by (2.1), by

c : RI × I → R
(ω, t) 7→ c̃((ω)s≤t, t).

We want to find a maximizer of

π 7→
∫
RI×I

c(ω, t)dπ(ω, t), π ∈ RST(µ, ν).

Remark 2.7. By Lemma 2.6 the problem 2.2 is equivalent to

π 7→
∫
RI×I

c(ω, t)dπ(ω, t), π ∈ Cplad(µ, ν).

Connection Between The Views

The next theorem gives us the connection between the different ways of formalizing
our considered problem.

Theorem 2.8. If the filtration G of the abstract probability space (Ω,G,G,P) coincides
with the natural filtration of the stochastic process Z, then there is a bijection between
MI and RST(µ).
Given a probability measure ν on I, then there is a bijection fromMν

I into RST(µ, ν).

Proof. Since G coincides with the natural filtration of the stochastic process Z, there
is a Borel-measurable functions hγ for every γ ∈MI such that

hγ : S → R,
γt(ω̄) = hγ(Zs(ω̄)s≤t, t) P-a.e., t ∈ I.

We already know that the mapping r : RI × I → S is Borel-measurable. Thus,

Φγ := hγ ◦ r : RI × I → R

is Borel-measurable, Φγ(·, t) is Ft-measurable and

γt(ω̄) = Φγ(Z(ω̄), t) P-a.e.

Therefore, we deduce that for any C ∈ Gt

E[1Cγt] = E[1CΦγ(Z, t)] = E[1C̃(ω)Φγ(ω, t)]

where C̃ is the with C associated set in Ft. We define π such that π(dω, t) :=
Φγ(ω, t)µ(dω) which indeed defines a probability measure on RI × I, and π ∈ RST(µ).
As a result, the map Ψ

Ψ : MI → RST(µ) : γ 7→ π
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is well-defined and one-to-one.

For any π ∈ RST(µ), the map ω 7→ πω(t) is Ft-measurable. Hence, ω̄ 7→ πZ(ω̄) is
Gt-measurable. Therefore, we may define γ̃t(ω̄) = πZ(ω̄)(t) and conclude

Ψ((γ̃t)t∈I) = π(Z(ω̄), t) P-a.e, t ∈ I,

which proofs the first part of the assertion. Using Lemma 2.6 the second part follows
analogously.
Remark 2.9. If the probability space (Ω,G,G,P) coincides with (RI ,F ,F, µ) then the
bijection of Theorem 2.8 follows due to the relation of disintegration and product
measure on Polish spaces.

Corollary 2.10. Under the assumptions of Theorem 2.8, we find that the optimization
problems (OptStopγ) and (OptStopπ) are equivalent.

Proof. For any γ ∈ Mν
I , we define a product measure on Ω × I via γ̃(dω̄, t) =

γt(ω̄)P(dω̄). Following the proof of Theorem 2.8 we see that (Z, id)#γ̃ = π, where
π is the associated product measure on RI × I.∫

Ω

∑
t∈I

c̃((Zs(ω̄)s≤t, t)dP(ω̄) =
∫

Ω×I
c̃((Zs(ω̄)s≤t, t)dγ̃(ω̄, t)∫

RI×I
c̃((Zs(ω̄)s≤t, t)dπ(ω̄, t) =

∫
RI×I

c(ω, t)dπ(ω, t)

Following the second part of the proof of Theorem 2.8, we may define for any π ∈
Cplad(µ, ν) an adapted random probability measure γ ∈Mν

I via

γt(ω̄) := πZ(ω̄)(t),

where πω is the disintegration of π. Then∫
RI×I

c(ω, t)dπ(ω, t) =
∫
RI

∑
t∈I

c̃((ωs)s≤t, t)dπω(t)dµ(ω) =
∫

Ω

∑
t∈I

c̃((Zs(ω̄)s≤t, t)γt(ω̄)P(dω̄).

Hence, we have shown the connection between the approaches of Section 2.1 and 2.2.
However, from now on we will restrict ourselves to the view described in Section 2.2,
namely to reformulate it as an optimal transport problem.



CHAPTER 3

Existence and Duality

Existence of a Maximizer

Proposition 3.1. For every b : RI × I → R, bounded and Borel-measurable, the
functional

F : Cpl(µ, ν)→ R : π 7→
∫
b(ω, t)dπ(ω, t) =: π(b)

is continuous wrt. the weak topology on Cpl(µ, ν).

Proof. Given a sequence πn ∈ Cpl(µ, ν), n ∈ N such that πn ⇀ π, we know by [7,
Lemma 2.3] that for all A ∈ B(RI) and t ∈ I

πn(A× {t})→ π(A× {t}).

Since b is bounded and measurable, there exists a sequence of simple functions bm such
that |b− bm| < 1

m
µ-a.e. Therefore

∀ε > 0 ∀n ∈ N ∃mε : |π(b− bm)| < ε and |πn(b− bm)| < ε, m ≥ mε,

and

∀ε > 0 ∀m ∈ N ∃nε : |πn(bm)− π(bm)| < ε, n ≥ nε.

We conclude

|π(b)− πn(b)| ≤ |π(b− bm)|+ |π(bm)− πn(bm)|+ |πn(b− bm)| < 3ε, n ≥ nε, m ≥ mε.

23
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Corollary 3.2. For every h : RI × I → R ∪ {−∞}, bounded from above and Borel-
measurable, the functional

H : Cpl(µ, ν)→ R : π 7→
∫
h(ω, t)dπ(ω, t)

is upper semi-continuous wrt. the weak topology on Cpl(µ, ν).

Proof. We define hn := max(h,−n), n ∈ N, which are bounded, measurable and hn ↘
h pointwise. By Proposition 3.1, we can define a sequence of continuous functionals

Hn : Cpl(µ, ν)→ R : π 7→ π(hn), where inf
n
Hn(π) = H(π).

Let πm ⇀ π in Cpl(µ, ν), then

H(π) = inf
n
H(π) = inf

n
lim sup

m
Hn(πm) ≥ lim sup

m
inf
n
Hn(πm) = lim sup

m
H(πm).

For the sake of completeness, we want to state the notable Prokhorov’s Theorem, see
[11, Lemma 4.4].

Theorem 3.3 (Prokhorov). If X is a Polish space, then a set P ⊂ P(X) is precompact
for the weak topology if and only if it is tight, i.e., for any ε > 0 there is a compact set
Kε such that π(X\Kε) ≤ ε for all π ∈ P .

The strategy behind showing existence is the following:

1. Show that the set, over which the supremum is taken, is compact.

2. Show that the functional is upper semi-continuous.

Note that Cplad(µ, ν) is non-empty, since the product measure µ ⊗ ν satisfies the
marginal properties of Definition 2.5 and it holds that∫

RI×I
1{t}(s)(g − E[g|Ft])(ω) dµ⊗ ν(ω, s)

=
∫
I
1{t}(s) dν(s)

∫
RI

(g − E[g|Ft])(ω) dµ(ω) = ν({t})Eµ[g − E[g|Ft]] = 0.

Thus, a maximizing sequence exists and the compactness provides a maximizer.

Theorem 3.4 (Existence of a Maximizer). Let c : S → R ∪ {−∞} be bounded from
above and Borel-measurable, then there exists a solution to (OptStopπ).

Proof. As a direct consequence of Prokhorov’s Theorem, see Theorem 3.3, we get
that Cpl(µ, ν) is relatively compact. By [7, Lemma 2.3], we obtain in addition that
Cpl(µ, ν) is closed, hence compact in the weak topology. To see the compactness of
Cplad(µ, ν), we consider

b(ω, s) := 1{t}(s)(g − E[g|Ft])(ω)
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for a bounded and Borel-measurable function g on RI and t ∈ I. Let πn ⇀ π in
Cpl(µ, ν) and πn ∈ Cplad(µ, ν), n ∈ N, by applying Proposition 3.1, we obtain

0 = πn(b)→ π(b).

Since s and g were arbitrary, we conclude π ∈ Cplad(µ, ν) signifying the compactness
of Cplad(µ, ν).

Now, choose a sequence πn ∈ Cplad(µ, ν) such that

lim
n
πn(c) = sup

π̃∈Cplad(µ,ν)

∫
RI×I

c(ω, s)dπ̃(ω, s) =: C.

Due to the compactness of Cplad(µ, ν), we can extract a convergent subsequence πnk ⇀
π ∈ Cplad(µ, ν) such that π possesses the desired property by Corollary 3.2

C = lim sup
nk

πnk(c) ≤ π(c) ≤ C.

Duality

The classical Monge-Kantorovich problem deals with the topic of minimizing the ex-
pected loss given a cost function c : X×Y → R∪{∞} when iterating over all couplings
π ∈ Cpl(µ, ν), where µ and ν are probability measures on X and Y , respectively,

Cpl(µ, ν) 3 π 7→
∫
cdπ.

The function c can be interpreted as the cost of moving mass from X which is dis-
tributed according to µ to Y , which shall be distributed according to ν. The cou-
plings π ∈ Cpl(µ, ν) are called transport plans; and the coupling, which minimizes
the expected loss, is called an optimal transport plan. We want to state the usual
Kantorovich duality Theorem, see [11, Theorem 5.10].

Theorem 3.5 (Kantorovich Duality). Let (X,µ) and (Y, ν) be two Polish probability
spaces and let c : X×Y → R∪{+∞} be a lower semi-continuous cost function, such
that

∀(x, y) ∈ X × Y, c(x, y) ≥ a(x) + b(y)

for some real-valued upper semi-continuous functions a ∈ L1(µ) and b ∈ L1(ν). Then
there is duality

inf
π∈Cpl(µ,ν)

π(c) = sup
(f,g)∈Cb(X)×Cb(Y )

f1+f2≤c

∫
X
f1dµ+

∫
Y
f2dν.
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We are interested in maximizing (OptStopπ), which is an maximization problem over
the space Cplad(µ, ν). In fact, this space is a restriction of Cpl(µ, ν). We may define
a space W as the linear span of

{w(ω, s) := 1{t}(s)(g − E[g|Ft])(ω) | g ∈ C(RI) ∩ L1(µ), t ∈ I}. (3.1)

Evidently Cplad(µ, ν) coincides with the restriction of Cpl(µ, ν) to all couplings π
satisfying the additional linear constraints

π(w) = 0 ∀w ∈ W. (3.2)

Obviously, we can switch from a maximization problem to a minimization problem,
simply by multiplying the payoff function c with −1, and hence call it cost function.
Thus the Kantorovich Duality Theorem has to be extended to the case, where linear
constraints are posed to Cpl(µ, ν). A generalized version of this problem was shown
by Zaev in [12]. Following the proof of [12, Theorem 2.1] and using Theorem 3.5 yields
the following Theorem:

Theorem 3.6 (Duality). If the cost function c satisfies the assumptions of Theorem
3.5 with X := RI and Y := I. Then there is duality

inf
π∈Cplad(µ,ν)

π(c) = sup
(f1,f2,w)∈Cb(RI)×Cb(I)×W

f1+f2+w≤c

∫
RI
f1dµ+

∑
t∈I

f2(t)ν(t).

Proof. The inequality

inf
π∈Cplad(µ,ν)

π(c) ≥ sup
f1+f2+w≤c

µ(f1) + ν(f2)

follows immediately

inf
π∈Cplad(µ,ν)

π(c) ≥ inf
π∈Cplad(µ,ν)

sup
f1+f2+w≤c

µ(f1) + ν(f2) = sup
f1+f2+w≤c

µ(f1) + ν(f2).

For the reverse inequality we consider

sup
f1+f2+w≤c

µ(f1) + ν(f2) = sup
w∈W

sup
f1+f2≤c−w

µ(f1) + ν(f2).

Note that W ⊆ Cb(RI × I), thus, c−w is again lower semi-continuous on RI × I. We
may choose aw(x) := a(x)−‖w‖∞ and bw(x) := b(x)−‖w‖∞ which in turn satisfy the
assumption of Theorem 3.5. Thereby, we obtain that

sup
f1+f2+w≤c

µ(f1) + ν(f2) = sup
w∈W

inf
π∈Cplad(µ,ν)

π(c− w).

For any π /∈ Cplad(µ, ν) there exists a w ∈ W such that π(w) < 0, and

sup
α>0

π(c− αw) = +∞.

Since Cplad(µ, ν) is not empty, we conclude that

inf
π∈Cplad(µ,ν)

π(c) = sup
(f1,f2,w)∈Cb(RI)×Cb(I)×W

f1+f2+w≤c

µ(f1) + ν(f2).
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Examples

First, we want to consider a stochastic process (Zt)t∈I with independent increments
on the time domain I := {1, 2} and maximize the following functional on RST(µ, ν)

π 7→
∫
R2×{1,2}

c(ω, t) dπ(ω, t), (4.1)

as in (OptStopπ). To facilitate notations, we will denote by ξ(·, t) for t ∈ I and
ξ ∈ RST(µ, ν) the (sub-)probability measure on RI induced by

A 7→ π(B, t) B ∈ B(RI).

Given a randomized stopping time π, we may consider the measure m on X1 = R such
that

m(A) := π(A× R× {1}) = projX1(π(·, 1))(A) ∀A ∈ B(R).

Remember that ω 7→ πω(t) is Ft-adapted, in particular for t = 1, we find a Z1-
measurable function h : RI → R such that

πω(1) = h(ω) µ-a.e. ω ∈ RI , (4.2)
h(ω) = h(ω̃) =: h(ω1) ω, ω̃ ∈ RI , ω1 = ω̃1. (4.3)

Therefore, we deduce that

m(A) =
∫
1A×R(ω) πω(1)dµ(ω) =

∫
1A(ω1)h(ω1)d projX1(µ)(ω), (4.4)

which implies m ≤ projX1(µ) and let us define a measure n on R satisfying

n := projX1(µ)−m.

Using the measures m and n in the maximization problem (4.1) yields to

27
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∫
RI×I

c(ω, t)dπ(ω, t) =
∫
RI
c(ω, 1)dπ(ω, 1) +

∫
RI
c(ω, 2)dπ(ω, 2)

=
∫
X1
c̃((ω1), 1)dm(ω1) +

∫
RI
c(ω, 2)(1− h(ω))µ(dω)

=
∫
X1
c̃((ω1), 1)dm(ω1) +

∫
X1

(1− h(ω1))
∫
R
c((ω1, ω1 + z), 2)dp(z) projX1(µ)(dω1)

=
∫
X1
c̃((ω1), 1)dm(ω1) +

∫
X1

∫
R
c((ω1, ω1 + z), 2)dp(z)dn(ω1).

(4.5)

This equality can be interpreted in the following way: The measures m and n describe
with which probability a path is stopped at time 1 or continues to time 2, respectively.
Therefore the first integral in Line (4.5) describes the expected payoff if the process is
stopped at time 1, whereas the second integral describes the expected payoff at time
2. Note that ∫

R
c((x, x+ z), 2)dp(z)

is the expected payoff when we stop at time 2, conditioned on ω1 = x.

For any path ω := (ω1, ω2) ∈ RI and the corresponding probability measure πω on I,
we see that

(c(ω, 1)πω(1) + c(ω, 2)πω(t))− c(ω, 1) = (c(ω, 2)− c(ω, 1))πω(2).

Without loss of generality we may assume that

c(ω, 1) = 0. (4.6)

If c(ω, 1) 6= 0, than we might define c̄(ω, t) := c(ω, t) − c(ω, 1). Clearly, it hold that
c̄(ω, 1) = 0. Because subtracting a constant from the functional (4.1) doesn’t change
the property of being a maximizer of it, we will instead maximize

π 7→
∫
RI×I

c̄(ω, t) dπ(ω, t) =
∫
RI×I

c(ω, t)dπ(ω, t)−
∫
RI
c(ω, 1)dµ(ω),

where the last equality holds due to projRI (π) = µ. Note that both maximization
problems are equivalent, but c̄(ω, 1) = 0.

Using the reformulation (4.5) and assumption (4.6) our problem given in (4.1) is re-
duced to the following maximization problem:

Among all measures n on X1 = R satisfying

n ≤ projX1(µ) and n(R) = n(X1) = ν(2)

find the maximizer of

n 7→
∫
X1

∫
R
c((x, x+ z), 2)dp(z)dn(x).

These considerations lead to the following Theorem:
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Theorem 4.1. Let I = {1, 2}, RI = X1 ×X2.
Given an optimal π∗ ∈ RST(µ, ν) such that

π∗(c) = sup
π∈RST(µ,ν)

π(c). (4.7)

Then,
nπ∗ := projX1(µ− π∗(·, 1))

is a measure on X1 = R satisfying

nπ∗ ≤ projX1(µ), nπ∗(R) = nπ∗(X1) = ν(2), (4.8)

and maximizes under all measures satisfying (4.8)

nπ∗(k) = sup
n
n(k), k(x) :=

∫
R
c((x, x+ z), 2)dP(z), (4.9)

where Z2 − Z1 ∼ P. Vice versa, let n∗ be a measure on R satisfying (4.8) and maxi-
mizing (4.9).

Then,

πn∗((dx, dy), t) =

(projX1(µ)− n∗)(dx)P(dy) for t = 1,
n∗(dx)P(dy) for t = 2,

defines a RST which maximizes (4.7).

Remark 4.2. Note the overlaps of the definitions with regard to the arguments c and
(ω, t) or ω1.

Proof. First, we take a closer look at nπ∗ and note that it satisfies (4.8) and, due to
Lemma 2.6 and (4.2),

nπ∗(dx) = projX1(µ− π∗(·, 1))(dx)(1− h(x)) projX1(µ)(dx),

implying

π∗(c) =
∫
X1×R

c((ω1, ω1 + z), 2)π∗(ω1,ω1+z)(2)dµ((ω1, ω1 + z)) =
∫
R
k(ω1)dnπ∗(ω1).

(4.10)

On the other hand, πn∗ defines a measure on RI × I such that projI(πn∗) = ν and

πn∗(c) =
∫
R
k(ω1)dn∗(ω1). (4.11)

For any bounded, Borel-measurable function g on RI , the function

f(x) :=
∫
R
g(x, x+ z)dP(z)
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is Borel-measurable and

f(Z1) = E[f(Z1)|F1] =
∫
R
E[g(Z1, Z1 + z)|F1]dP(z) a.e.,

which particularly yields for t ∈ I∫
X1

∫
R
(g − E[g|Ft])(ω1, ω1 + z)dP(z)d projX1(µ)(ω1) = 0,

implying that πn∗ ∈ RST(µ, ν). Due to (4.10) and (4.11) the optimality of nπ∗ and
πn∗ , respectively, follow, and thus the assertion.

Remark 4.3. By Theorem 4.1, it becomes obvious that for two time steps, it is sufficient
to consider a quantile q of k such that q is maximal in R with the property ν(2) ≤
projX1(Uq), where Uq := {x ∈ X1 : k(x) ≥ q}.

n(dx) :=


projX1(µ)(dx) k(x) > q,

α · projX1(µ)(dx) k(x) = q,

0 else,
(4.12)

where α ∈ [0, 1] is chosen such that n(R) = ν(2). It is apparent that n maximizes
(4.7), since for any other measure ñ satisfying (4.8), it holds

n(k)− ñ(k) =
∫
R
k(x)(n− ñ)(dx) ≥

∫
R
q − k(x)(ñ− n)+(dx) ≥ 0.

The second part of Theorem 4.1 yields the maximizer πn. As already mentioned, this
method can be interpreted as not-stopping those paths, which have a higher expected
payoff in the next turn. Instead of interpreting it this way, we can view it as stopping all
paths with a lower expected payoff – indeed, this is would result in the same quantiles.

For a special class of cost functions, we will be able to extend the idea of using quantiles
of the corresponding k for each time step inductively, to construct an optimizer for an
arbitrary amount of time steps.

Example: Symmetric Random Walk

For I := {1, . . . , T}, T ∈ N, we consider a symmetric random walk (Zt)t∈I on Z starting
at 0, where the increments Zs − Zs−1 are independent and uniformly distributed on
{−1, 1}. Let the payoff function c be

c : RI × I → R : (ω, t) 7→ t · ωt

which is indeed Ft-adapted and bounded, if the time horizon is finite.
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Figure 4.1: Paths of the process (Zt)t∈I starting at 0 for I := {1, 2, 3, 4}.

We want to find an optimal π ∈ RST. Note that for ω, η ∈ RI and t ∈ I∫
c̃
(
(ω0, . . . , ωt−1, ωt−1 + z), t

)
dpt(z) ≥

∫
c̃
(
(η0, . . . , ηt−1, ηt−1 + z), t

)
dpt(z)

⇐⇒
∫
t · (ωt−1 + z) dpt(z) ≥

∫
t · (ηt−1 + z) dpt(z)

⇐⇒ ωt−1 ≥ ηt−1.

(4.13)

By using Theorem 4.1 we are able to solve the problem restricted to two time steps.
By skillful projection of the path space, we may consider a case with exactly two time
steps. For the marginal of π to satisfy the constraint ν, we have to define π(ω, 1) =
ν(1). For every step of our recursion i ≥ 2 we consider the two dimensional space
Xti × Xti+1 . Note that for I := {1, . . . , T}, T ∈ N, we consider Xt × Xt+1, and
the recursion step i corresponds to the time step t. Therefore we define measures
µi := projXt×Xt+1(µ−∑s<t π(·, s)) and νi such that

νi(1) = ν(t), νi(2) =
∑
s∈I>t

ν(s).

Then we have to solve the problem to find the maximizer of

n 7→
∫
Xt

∫
R
c((x, x+ z), 2)dpt(z)dn(x),

among all measures ni on Xt = R satisfying

ni ≤ projXt(µi) and ni(R) = νi(2),

which can be done according to Remark 4.3, particularly (4.12). Thus, by applying
Theorem 4.1 recursively, we obtain a randomized stopping time πi ∈ RST(µi, νi), i ∈ I
- which can be naturally merged into π ∈ RST(µ, ν) via π(ω, t) := (µ(ω)−∑s<t π(ω, s))·
πt(ωt,ωt+1)(t). Optimality can be shown in the following way: Starting with another arbi-
trary ξ ∈ RST(µ, ν) we assume that there exists a minimal t such that ξ(·, t) 6= π(·, t).
Therefore, there exist ζ, η ∈ RI such that

α1 := ξη(t)− πη(t) > 0, α2 := πζ(t)− ξζ(t) > 0.

The overall mass of all paths ω ∈ RI such that the initial segments ω�[0,t] coincide with
that of η or ζ, is 2−t. Hence, it is possible to swap 2−tα mass from {ω ∈ RI : ω�[0,t] =
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η�[0,t]} to {ω ∈ RI : ω�[0,t] = ζ�[0,t]}, where α := min(α1, α2). A new measure is
gradually defined by

ξ̃(ω, s) = ξ(ω, s) ω ∈ RI , s < t

and

ξ̃ω(t) :=


ξω(t)− α ∀ω ∈ RI such that ω�[0,t] = η�[0,t],

ξω(t) + α ∀ω ∈ RI such that ω�[0,t] = ζ�[0,t],

ξω(t) otherwise

So far, ν(s) = projI(ξ̃) still holds as long as s ≤ t. To fully preserve the marginals,
i.e., ξ̃ ∈ RST(µ, ν), mass is carefully added to the remaining paths ω ∈ RI where
ω�[0,t] ∈ {η�[0,t], ζ�[0,t]}. Let ω ∈ RI such that ω�[0,t] = η�[0,t], then there exists θ ∈ RI

such that θ�[0,t] = ζ�[0,t] and (θ − ω)(r) = 0 for all r > t. We may set

ξ̃ω(s) := ξω(s) + α

1−∑r≤t ξθ(r)
· ξθ(s), ξ̃θ(s) := ξθ(s)−

α

1−∑r≤t ξθ(r)
· ξθ(s),

which yields the correct marginals for ξ̃. Clearly, ξ̃ ∈ RST(µ, ν) and due to Theorem
4.1 together with equation (4.13) it holds that ηt ≥ ζt, yielding

ξ̃(c)− ξ(c) =
∫
{ω∈RI : ω�[0,t]=η�[0,t]}×I>t

(ηt − ζt)(s− t)(ξ̃ − ξ)+(dω, s) ≥ 0. (4.14)

Hence, continuing this construction recursively leads in a finite amount of steps to

ξ̃(ω, s) = π(ω, s) s ≤ t, ω ∈ RI .

By equation (4.14), π(c) is an upper bound for the payoff of any constructed ξ̃, and
as a consequence an upper bound for ξ(c).
Remark 4.4. The method shown in Example 4.1 can be used to show optimality for
the introduced "greedy" strategy π for a larger class of optimization problems. In the
setting of Example 4.1, we cannot expect uniqueness of the optimizer π, since for any
η, ζ ∈ RI , ηt = ζt and t ∈ I such that

πη(t) > 0, πζ(t) < 1,

it is possible to swap some mass analogously as described above, creating a new ran-
domized stopping time, but preserving marginals and payoff.

Example: Generalized Setting

Let the stochastic process (Zt)t∈I have independent increments and the payoff function
c be of the form

c(ω, t) = ωtf(t),
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where f : I → R+ is monotonously increasing. Motivated by Theorem 4.1 and
Example 4.1, we want to show that a greedy algorithm is optimal here, cf. Theorem
4.8. Analogous to (4.13), we obtain for the expected payoff∫

c̃((ω1, . . . , ωt, ωt + z), t+ 1)dpt+1(z) =
∫
f(t+ 1)zdpt+1(z) + f(t+ 1)ωt

>
(=)

∫
c̃((η1, . . . , ηt, ηt + z), t+ 1)dpt+1(z) (4.15)

⇐⇒ ωt >
(=)

ηt.

We construct a randomized stopping time π by defining a quantile qt for any t ∈ I
such that

qt := inf{q ∈ R : projXt(µ−
∑
s<t

π(·, s))((−∞, q]) ≥ ν(t)},

where π(ω, t) can be defined as

π(ω, t) := projXt(µ−
∑
s<t

π(·, s))�(−∞,qt](ωt), (4.16)

if the quantile qt is exact, else it can be defined similar to Remark 4.3.

As in Example 4.1, we will show optimality of this strategy by transforming any
randomized stopping time iteratively into the proposed one, without lowering the
payoff. But, before we can show optimality we need some preparations to conduct the
swapping of mass.

Lemma 4.5. Let m, n be finite measures on [0, 1] such that m([0, 1]) = n([0, 1]). Then
there exists a Borel-measurable maps U = (U1, U2) from [0, 1]× [0, 1] onto [0, 1]× [0, 1]
such that

m([0, x)) + u ·m({x}) = n([0, U1(x, u))) + U2(x, u) · n({U1(x, u)}).

In addition, the map U1 is surjective onto supp(n).

Proof. We can easily extend the measures m and n to measures M and N on [0, 1]×
[0, 1] by defining them via

M(dx, du) = m(dx), N(dy, dv) = n(dy).

For a given pair (x, u) ∈ [0, 1]× [0, 1] we may define the first component of U as

U1(x, u) := inf{y ∈ [0, 1] |
M([0, x)× [0, 1]) +M({x}×[0, u]) ≤ n([0, y])} ∈ supp(n).

(4.17)

The corresponding second component of U can be defined as follows

U2(x, u) := inf {v ∈ [0, 1] : M([0, x)× [0, 1]) +M({x} × [0, u])
= N([0, U1(x, u))× [0, 1]) +N({U1(x, u)} × [0, v])} .

(4.18)
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By construction, U(x, u) = (U1(x, u), U2(x, u)) is well-defined and Borel-measurable.
Further,

m([0, x)) + u ·m({x}) = M([0, x)× [0, 1]) +M({x} × [0, u])
= N([0, U1(x, u))× [0, 1]) +N({U1(x)} × [0, U2(x, u)])
= n([0, U1(x, u))) + U2(x, u) · n({U1(x, u)}),

where the second equality follows from (4.18).

Assume that there exist (x, u) ∈ [0, 1]× [0, 1] with U1(x, u) =: y /∈ supp(n), then there
exists a δ > 0 such that n([y − δ, y + δ]) = 0, and hence

M([0, x)× [0, 1]) +M({x} × [0, u]) ≤ n([0, y − δ]),

which contradicts the definition of U1(x, u), see (4.17). Furthermore, for any y ∈
supp(n) there exist (x, u) ∈ [0, 1]× [0, 1] with

m([0, x)) ≤ n([0, y]) ≤ m([0, x]),

M([0, x)× [0, 1]) +M({x} × [0, u]) = n([0, y]).
z ∈ supp(n), z < y implies n([0, z]) < n([0, y]), which yields U1(x, u) = y and surjec-
tivity.

Lemma 4.6. Under the assumptions of Lemma 4.5, we may define a map Vy : [0, 1]→
[0, 1] for fixed y ∈ supp(n) by

Vy(x) :=


1 x ∈ int(γy), n({y}) 6= 0,
sup(x,u)∈U−1

1 ({y}) u− inf(x,v)∈U−1
1 ({y}) v x ∈ ∂γy, n({y}) 6= 0,

0 else.

The map Vy is well-defined, where γy := {x : ∃u ∈ [0, 1] s.t. U1(x, u) = y}. The set
γy is a closed interval and the maps y 7→ inf(x,t)∈U−1

1 ({y}) x =: xl(y) and (x, y) 7→ Vy(x)
are Borel-measurable.

Proof. Let y ∈ supp(n). Note that for any (x1, u1), (x2, u2) ∈ U−1
1 ({y}) holds

(x1, u1) ≤ (x, u) ≤ (x2, u2) =⇒ (x, t) ∈ U−1
1 ({y}),

where ≤ refers to the lexicographical order. Hence,

γy = {x ∈ [0, 1] : ∃u ∈ [0, 1] s.t. (x, u) ∈ U−1
1 ({y})}.

Especially, γy is an interval with left and right boundary points xl and xr. When
n({y}) 6= 0, for any point x ∈ (xl, xr) follows Vy(x) = 1. Further, γy contains its
boundary points, since (xl, 1), (xr, 0) ∈ U−1

1 ({y}). If y1, y2 ∈ supp(n), y1 < y2 with

γy1 = [al, ar], γy2 = [bl, br],

implies that ar ≤ bl. Therefore, the map y 7→ xl(y) is monotonously increasing, and
hence Borel-measurable. As a matter of fact there can only be a countable amount of
point masses of n, which shows measurability of (x, y) 7→ Vy(x).
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To simplify notation, for any starting point x ∈ R we set

~x := [x, 0, . . . , 0] ∈ RI .

Given the starting distribution projX1(µ) = 1
2(δx+δy) for x 6= y and ξ ∈ RST(µ, ν). By

virtue of Z’s independent increments, we can construct another probability measure
ξ̃ ∈ RST(µ, ν) such that

ξ̃ω+~x = ξω+~y, ξ̃ω+~y = ξω+~x, ω ∈ RI .

In the following Lemma, we construct another randomized stopping time by following
the idea of "swapping branches" when the starting distributions are arbitrary
(sub-)probability measures.

Lemma 4.7. Under the assumptions of Lemma 4.5, let ξ ∈ RST(µ, ν) where m and
n satisfy

m = projX1(µ), n = projX1(µ̃),

and are the starting distributions of the (sub-)probability measures µ and µ̃ associated
with Z. Then, for fixed y ∈ supp(n) the measure

my(dx) =

δxl(y)(dx) n({y}) = 0,
Vy(x)m(dx)
n({y}) else,

is well-defined. Furthermore, there exists ξ̃ ∈ RST(µ̃, ν) with disintegration (ξ̃ω)ω∈RI
such that for t ∈ I and ω ∈ RI

ξ̃ω(t) :=


∫
ξω+~x− ~ω1(t)mω1(dx) ω1 ∈ supp(n),

1{1}(t) else.
(4.19)

Proof. According to Lemma 4.6 the measure my is well-defined and y 7→ my measur-
able. Following the proof of Lemma 4.5, there exist ul, ur ∈ [0, 1] such that

m([0, xl)) + ul ·m({xl}) = n([0, y)),
m([0, xr)) + ur ·m({xr}) = n([0, y]),

where [xl, xr] = γy. We will only discuss the case that xl < xr, since the other case
can be dealt with in similar fashion. If n({y}) > 0, it holds that ul = 1 − Vy(xl) and
ur = Vy(xr).

m(Vy) = m([xl, xr)) + ur ·m({xr})− (1− ul) ·m({xl}) = n({y})

Thus my is a probability measure on [0, 1]. As a composition of measurable func-
tions, ω 7→ ξ̃ω is measurable. By construction, ξ̃ is F-adapted, therefore it remains to
establish the marginal properties. Let ω ∈ RI and ω1 ∈ supp(n).

∑
t∈I

ξ̃ω(t) (4.19)=
∫ ∑

t∈I
ξ̃ω+~x−~ω1mω1(dx) = 1,
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which implies

projRI (ξ̃)(dω) = µ̃(dω).

projI(ξ̃)(t) =
∫
RI
ξ̃(ω, t)µ̃(dω) =

∫
ξ̃θ+~y(t)P(dθ)n(dy)

=
∫ ∫

ξθ+~xmy(dx)n(dy)P(dθ)

To prove projI(ξ̃) = ν(t) it is sufficient to show that for any interval A := [a, b] ⊆ [0, 1]

m(A) =
∫

[0,1]2
1A(x)my(dx)n(dy). (4.20)

since the assertion follows then by the Monotone Class Theorem. With Lemma 4.5 we
obtain for U(a, 0) =: (y1, v1) and U(b, 1) =: (y2, v2). As above, we assume that y1 < y2
which yields

m([0, a)) = n([0, y1)) + v1 · n({y1}),
m([0, b]) = n([0, y2)) + v2 · n({y2}),

cf. (4.17) and (4.18). And hence

m([a, b]) = (1− v1) · n({y1}) + n((y1, y2)) + v2 · n({y2}),
m([0, a)) ≤ n([0, y]) ≤ m([0, b]) ∀y ∈ (y1, y2) ∩ supp(n).

For any y ∈ (y1, y2) ∩ supp(n), x ∈ γy and v ∈ [0, 1], we note that

m([0, a]) ≤ n([0, y1]) ≤ m([0, x)) + v ·m({x}) ≤ n([0, y2)) ≤ m([0, b]),

which implies that γy ⊆ A and my(γy ∩ A) = 1, and thus

n((y1, y2)) =
∫

(y1,y2)

∫
[0,1]

1A(x)my(dx)n(dy).

In the case that n({y1, y2}) = 0, the assertion follows. If y1 or y2 are point masses, we
have to show that (1− v1) = my1(A) and v2 = my2(A), respectively. We only consider
the case that yl is a point mass, since the other cases (y3 or y1 = y2 is a point mass)
follow analogously. We know that γy1 ∩ A = [a, c] ⊆ [a, b] and

m([0, a)) = n([0, y1)) + v1 · n({y1}),
n([0, y1]) = m([0, c)) + u ·m({c}).

Based on these two equations, the assertion follows.

1− v1 = 1
n({y1})

(m([a, c]) + u ·m({c})) = my1(A)
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Theorem 4.8. The greedy strategy π is optimal, i.e.,

π(c) ≥ ξ(c), ∀ξ ∈ RST(µ, ν).

If f is strictly increasing π is the unique optimizer in the following sense:

Any π̃ ∈ RST(µ, ν) with π̃(c) = π(c) satisfies for all t ∈ I, t < T

projXt×Xt+1(π(·, t)− π̃(·, t)) = 0 projXt×Xt+1(µ)-a.e.

Proof. Let t ∈ I be fixed and assume that π(·, s) = ξ(·, s) µ-a.s. for all s < t. Hence,
there exists a Ft-measurable set B ⊆ RI with full measure such that πω(s) = ξω(s)
holds pointwise for all ω ∈ B, s < t.

A+ := {ω : (π − ξ)ω(t) > 0} ∩B, A− := {ω : (ξ − π)ω(t) > 0} ∩B.

A := A+ ∪ A−

In view of the (quantile) structure of π, cf. (4.16), it follows that

ωt ≤ ηt ∀ω ∈ A+, ∀η ∈ A−. (4.21)

Let us consider the finite measures φ+ and φ− on A× I

φ+ := (π − ξ)+
�A×I , φ− := (ξ − π)+

�A×I .

Note that projRI (φ+) = projRI (φ−), which implies

0 < φ+(A+, t) =: α ≤ φ+(A+ × I≥t) = φ−(A+ × I>t) =: β.

The second marginal property of π and ξ, i.e., projI(π)(t) = ν(t) = projI(ξ(t)), yields

α = φ+(A+, t) = φ−(A−, t).

We may define two F-adapted measures ψ and χ via

ψ(dω, s) := α

β
·

φ−(dω, s) (ω, s) ∈ A+ × I,
0 else.

,

χ(dω, s) :=

φ−(dω, s) (ω, s) ∈ A− × {t},
0 else.

Due the scaling factor of α
β
, we obtain ψ(A+ × I) = χ(A− × I). Therefore, we can

define m and n as the starting distributions of

ψ̄ := projRI≥t (ψ), χ̄ := projRI≥t (χ),

m := projXt(ψ̄), n := projXt(χ̄).
Let C ⊆ A be a Fs-measurable set for s ≥ t and C ′ its projection onto RI≥t , then

ψ(C) = ψ̄(C ′), χ(C) = χ̄(C ′).



38 CHAPTER 4. EXAMPLES

Again by a monotone class argument it follows that

ψ(c) = ψ̄(c′), χ(c) = χ̄(c′),

where c′ is the natural restriction of c onto RI≥t × I≥t. Applying Lemma 4.7 to m,
n, ψ̄ and χ̄ results in two measures ψ̃ and χ̃, preserving the marginals of ψ̄ and χ̄,
respectively. In the final step, we want to extend χ̃ and ψ̃ to measures ψ̂ and χ̂ on
RI × I.

ψ̂(dω, s) :=

ψ̃ω�[t,T ](s) projRI (ψ)(dω) ω ∈ A+, s ≥ t,

0 else.

χ̂(dω, s) :=

χ̃ω�[t,T ](s) projRI (χ)(dω) ω ∈ A−, s ≥ t,

0 else.

For s ≥ t we obtain

projI(ψ + χ)(s) = projI≥t(ψ̄ + χ̄)(s) = projI≥t(ψ̂ + χ̂)(s) = projI(ψ̃ + χ̃)(s).

projRI (ψ + χ) = projRI≥t (ψ̃ + χ̃) = projRI≥t (ψ̃ + χ̃) = projRI (ψ̂ + χ̂),

holds µ-a.e. Hence, we are able to define ξ̃ ∈ RST(µ, ν) via

ξ̃ := ξ − ψ − χ+ ψ̂ + χ̂.

ψ(c) + χ(c) = ψ̄(c′) + χ̄(c′) =∫
c′(θ + ~y, 1)ψ̄θ+~y(1)P(dθ)n(dy)

+
∫
c′(θ + ~x, s))χ̄θ+~x(s)P(dθ)m(dx)

≤
∫
c′(θ + ~y, s)χ̄θ+~x(s)P(dθ)my(dx)n(dy)

+
∫
c′(θ + ~x, 1)ψ̄θ+~y(1)P(dθ)nx(dy)m(dx)

= ψ̃(c′) + χ̃(c′) = ψ̂(c) + χ̂(c),

where the inequality holds due to (4.21), which implies

x ≥ y ∀x ∈ supp(m), y ∈ supp(n),

together with the explicit form of c′ and (4.20). We see that we can exchange ξ
with ξ̃ without lowering the payoff. Further, ξ̃(ω, s) = π(ω, s) ω-a.e. for all s ≤ t.
By continuing this procedure iteratively over t, we can transform the initial ξ into
π without lowering the payoff. Hence, π is optimal. If f is monotonously strictly
increasing, this inequality holds strictly iff

projXt×Xt+1(π(·, t)− ξ(·, t)) 6= 0 projXt×Xt+1(µ)− a.e.

Thus, π is the unique optimizer in the sense described above.



CHAPTER 5

Monotonicity Principles in an Example

To test if a randomized stopping time is a possible candidate for optimality in problem
(OptStopπ), different monotonicity criterions were developed. In this context, the
so-called c-cyclical monotonicity as in [11] deserves a special mention, which is in
fact a geometric property of the support of an optimal transport plan. In the initial
form the monotonicity was shown only for couplings which do not have to satisfy
additional adaptivity constraints. Zaev introduced (c,W )-cyclical monotonicity in
[12, Theorem 3.6], which enhances the notion with constraints, denoted by W . In our
considerations, randomized stopping times are couplings satisfying additional linear
constraints given through (3.2) and (3.1). Thus, Zaev’s monotonicity principle can be
applied naturally. Contrary to the classical c-monotonicity, the (c,W )-monotonicity
of a support of a randomized stopping time is a necessary optimality condition, but in
general not sufficient. In independent work, Beiglböck and Griessler found a closely
related monotonicity principle which includes the result [12, Theorem 3.6] as a special
case, see [3, Theorem 1.4].

Inspired by the classical c-monotonicity which shows that optimality is an attribute of
the support of a coupling, other different monotonicity principles have been developed
in the area of martingale optimal transport problems, cf. [2, 6]. The approach of the
previous section for showing optimality is strongly inspired by the latter article which
deals with time-continuous distribution-constrained optimal stopping problems where
the underlying stochastic process is a Brownian motion. Analogously, it is possible to
find a monotonicity principle for the time-discrete case. Again, we assume that (Zt)t∈I
is a stochastic process in discrete time with independent increments.

Definition 5.1. The set RSTt
κ of randomized stopping times (of a stochastic process

Z with initial distribution κ) is defined as the set of all Z-adapted probability measures
π on RI≥t × I≥t such that Z ∼ projRI≥t (π).

Definition 5.2 (Conditional randomized stopping times). For π ∈ RST(µ, ν) and
(ω, t) ∈ S, we define π(ω,t) ∈ RSTt by defining a disintegration (π(ω,t)

θ )
θ∈RI≥t with

39
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respect to Z̃ as

π
(ω,t)
θ :=


1

1−π(ω,t)(I≤t)
(π(ω,t)◦θ)�I≥t for π(ω,t)(I≤t) < 1,

δt for π(ω,t)(I≤t) = 1,

where δt is the Dirac measure concentrated at t and θ ∈ RI≥t with θ1 = 0.

Definition 5.3 (Relative Stop-Go pairs). For ξ ∈ RST(µ, ν) define SGξ ⊆ (RI × I)×
(RI × I) as the set of all pairs (ω, t), (η, t) ∈ RI × I such that there exist ξ̃1 ∈ RSTt

δω(t)

and ξ̃2 ∈ RSTt
δη(t)

such that

• proj{t,...,T}(ξ(ω,t) + ξ(η,t)) = proj{t,...,T}(ξ̃1 + ξ̃2),

• ξ(ω,t)(c) + ξ(η,t)(c) < ξ1(c) + ξ2(c).

Theorem 5.4 (Monotonicity Principle). Assume that π is a solution of (OptStopπ),
then there is a measurable, F-adapted set Γ ⊆ RI × I such that

π(Γ) = 1

and

SG ∩ (Γ< × Γ) = ∅,

where Γ< := {(ω, s) ∈ RI × I : (ω, t) ∈ Γ for some t > s}.

Equipped with this general result, we can easily show optimality of the greedy strategy
introduced in the last section. For this class of payoff functions in particular, it can
be shown that monotonicity is already a sufficient condition for being an optimizer.

Corollary 5.5. Let the payoff function c be given as

c(ω, t) = f(t)ωt ω ∈ RI , t ∈ I,

where f : I → R+ is monotonously increasing. Then the greedy strategy π ∈
RST(µ, ν) is a maximizer of (OptStopπ). If ξ ∈ RST(µ, ν) satisfies the assertions
of 5.4, then

projXt×Xt+1(ξ(·, t)) = projXt×Xt+1(π(·, t)) projXt×Xt+1(µ)-a.e., t ∈ I.

Proof. From the construction of π via quantiles, see Example 4.2, there exist At :=
(−∞, at] ⊆ R, t ∈ I such that Mt = ∏

s<t[as,∞) × At ×
∏
r>tR, each at is minimal

with

µ

∑
s≤t

Ms

 ≥∑
s≤t

ν(s).

Let ξ ∈ RST(µ, ν) be optimal, then we denote the set of Theorem 5.4 with Γ. Assume
that

projXs×Xs+1(ξ(·, s)− π(·, s)) = 0 projXs×Xs+1(µ)-a.s., s < t < T,
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projXt×Xt+1(ξ(·, t)− π(·, t)) 6= 0 projXt×Xt+1(µ)-a.e..

Then there exists ω ∈ Γ such that

ωs ∈ (as,∞) s < t, ω(t) ∈ [at,∞) and ξω(t) > 0.

Since ξ has to preserve the marginals, there exists η ∈ Mt ∩ Γ such that ξη(s) > 0
for an s > t, which yields ηt < ωt. We want to show that ((η, t), (ω, t)) ∈ SGξ which
would lead to a contradiction. Therefore, we construct ξ1 ∈ RSTt

δωt
and ξ2 ∈ RSTt

δηt
by defining two disintegrations

ξ1
θ(s) := ξ

(ω,t)
θ (t) · ξ(η,t)

θ (s) +

0 s = t,

ξ
(ω,t)
θ (s) s > t.

ξ2
θ(s) := (1− ξ(ω,t)

θ (t)) · ξ(η,t)
θ (s) +

ξ
(ω,t)
θ (t) s = t,

0 s > t.

Computing the payoff yields

ξ1(c)− ξ(ω,t)(c) + ξ2(c)− ξ(η,t)(c) =

−
∫
f(t)ωtξ(ω,t)

θ (t) · (1− ξ(η,t)
θ (t))P(dθ) +

∑
t>s

∫
f(s)(ωt + θs)ξ(ω,t)

θ (t) · ξ(η,t)
θ (s)P(dθ)

+
∫
f(t)ηtξ(ω,t)

θ (t) · (1− ξ(η,t)
θ (t))P(dθ)−

∑
t>s

∫
f(s)(ηt + θs)ξ(ω,t)

θ (t) · ξ(η,t)
θ (s)P(dθ)

=
∑
s>t

∫
(f(s)− f(t))(ωt − ηt)ξ(ω,t)

θ (t)ξ(η,t)(dω, s) > 0.

Therefore, ((η, t), (ω, t)) ∈ SGξ ∩Γ< × Γ which is a contradiction.

Corollary 5.6. Under the assumption of Corollary 5.5, the support of the greedy
strategy π ∈ RST(µ, ν) introduced in Example 4.2 satisfies the assertions of Theorem
5.4.

Proof. Let ((η, t), (ω, t)) ∈ Γ< × Γ and κ := 1
2(δηt + δωt), then 1

2(π(η,t) + π(ω,t)) =: π̃ ∈
RSTt

κ can be viewed as a greedy strategy to the auxiliary problem:

Maximize ξ 7→ ξ(c) under

ξ ∈ RSTt
κ s.t. projI≥t(ξ − π̃) = 0.

By applying Corollary 5.5 we obtain optimality of π̃, and hence

SGπ ∩Γ< × Γ = ∅.
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CHAPTER 6

Conclusions

In this thesis, a more general class of optimal stopping problems, see (OptStopγ)
and (OptStopπ), was examined. This type of problems naturally arises from ordi-
nary optimal stopping problems, e.g., in financial and actuarial mathematics, where
additional dependencies have to be modeled. Even though scientific literature con-
cerning distribution-constrained optimal stopping problems is scarce, recent research
proves an increasing interest in this topic as in [1, 6, 5, 4, 10].

In Chapter 2, the optimization problems (OptStopγ) and (OptStopπ) were formally
introduced and a link between them was made. Based on the theory of optimal trans-
port, existence of optimizers was shown in Chapter 3. In addition, a Kantorovich-type
duality theorem was developed, inspired by recent work of Zaev [12]. Chapter 4 deals
with the optimization of a class of payoff functions. For this, an optimal strategy was
found in Theorem 4.8. Finally, in Chapter 5 different geometric optimality criteria –
so-called monotonicity principles – are formulated, which have their roots in the theory
of optimal transport. It is shown how they can be adapted for (OptStopπ) and are
applied to show optimality of the strategy introduced in Section 4.2.

We close with an outlook on future research possibilities. Efforts were made by Cox
and Källblad [8, 10] in the area of time-continuous distribution-constrained optimal
stopping problems to reformulate the problem using so-called measure-valued martin-
gales. Hence, they were able to view it as a stochastic control problem, establishing a
dynamic programming principle and deducing Hamilton-Jacobi-Bellman equations for
it. In the time-discrete case, it would be interesting to further address the measure-
valued martingale approach, since it is apriori not clear if it is adequate and/or if there
is a more suitable alternative.
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