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Kurzfassung
Eine Funktion Z, welche auf einem Funktionenraum S definiert ist und Werte in einer abelschen Halb-
gruppe annimmt, ist eine Bewertung, wenn

Z(u ∨ v) + Z(u ∧ v) = Z(u) + Z(v)

für alle u, v ∈ S erfüllt ist, für welche auch u∨v, u∧v ∈ S. Hierbei stellen u∨v und u∧v das punktweise
Maximum und Minimum von u, v ∈ S dar.

In dieser Arbeit werden Bewertungen auf dem Raum Conv(Rn) aller unterhalbstetigen, koerziven,
konvexen Funktionen u : Rn → (−∞,+∞], sodass u 6≡ +∞, studiert und klassifiziert. Weiters werden
Bewertungen auf dem dazugehörigen Raum logarithmisch konkaver Funktionen, LC(Rn), betrachtet.
Dabei werden aus dem Gebiet der Konvexgeometrie bekannte Operatoren von den konvexen Körpern
auf Conv(Rn) beziehungsweise LC(Rn) verallgemeinert. Insbesondere liegt der Fokus nicht nur auf
reellwertigen Bewertungen, sondern auch auf Bewertungen, welche einer Funktion ein Maß oder einen
konvexen Körper zuordnen.

Einige Resultate dieser Arbeit stammen aus gemeinsamen Arbeiten mit Andrea Colesanti und
Monika Ludwig.
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Abstract
A function Z defined on a function space S and taking values in an abelian semigroup is called a
valuation if

Z(u ∨ v) + Z(u ∧ v) = Z(u) + Z(v)

for all u, v ∈ S such that u ∨ v, u ∧ v ∈ S. Here, u ∨ v and u ∧ v denote the pointwise maximum and
minimum of u, v ∈ S.

In this thesis, valuations on the space Conv(Rn) of all lower semi-continuous, coercive, convex func-
tions u : Rn → (−∞,+∞] such that u 6≡ +∞ are studied and classified. Furthermore, valuations on
the corresponding space of log-concave functions, LC(Rn), are considered. Thereby, well-known opera-
tors from convex geometry are generalized from convex bodies to Conv(Rn) and LC(Rn), respectively.
In particular, the focus is not only on real-valued valuations, but also on valuations that assign to a
function a measure or a convex body.

Some results of this thesis are joint work with Andrea Colesanti and Monika Ludwig.
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Introduction
“I find your lack of faith
disturbing.”

Darth Vader

A function Z defined on a lattice (L,∨,∧) and taking values in an abelian semigroup is called a valuation
if

Z(u ∨ v) + Z(u ∧ v) = Z(u) + Z(v), (?)

for all u, v ∈ L. A function Z defined on a set S ⊂ L is called a valuation if (?) holds whenever
u, v, u ∨ v, u ∧ v ∈ S. In the classical theory, valuations on the set of convex bodies (non-empty, com-
pact, convex sets), Kn, in Rn are studied, where ∨ and ∧ denote union and intersection, respectively.
Valuations played a critical role in Dehn’s solution of Hilbert’s Third Problem in 1901 and have been a
central focus in convex geometric analysis. In many cases, well known functions in geometry could be
characterized as valuations. For example, a first classification of the Euler characteristic and volume
as continuous, SL(n) and translation invariant valuations on Kn was established by Blaschke [10] and
the celebrated Hadwiger classification theorem [25] provides a characterization of intrinsic volumes as
continuous, rotation and translation invariant valuations on Kn.

In addition to the ongoing research on real-valued valuations on convex bodies, valuations with
values in Kn have attracted interest. Such a map is called a Minkowski valuation if the addition in (?)
is given by Minkowski addition, that is K + L = {x + y : x ∈ K, y ∈ L} for K,L ∈ Kn. The first
results in this direction were established by Ludwig [32,33].

More recently, valuations were defined on function spaces. For a space S of real-valued functions we
denote by u ∨ v the pointwise maximum of u and v while u ∧ v denotes their pointwise minimum. For
Sobolev spaces [34,36,41] and Lp spaces [37,49,56,57] complete classifications of valuations intertwining
the SL(n) were established. For definable functions, an analog to Hadwiger’s theorem was proven [8].

In the following, let Conv(Rn) denote the space of all lower semi-continuous, convex functions
u : Rn → (−∞,+∞] such that u 6≡ +∞ and

lim
|x|→+∞

u(x) = +∞.

Valuations on Conv(Rn) and similar function spaces were already considered in [12, 13, 18]. For every
K ∈ Kn the convex indicator function

IK(x) =

{
0, if x ∈ K
+∞, if x /∈ K

is an element of Conv(Rn). If K,L ∈ Kn are such that K ∪ L,K ∩ L ∈ Kn, then

IK∪L = IK ∧ IL, IK∩L = IK ∨ IL.

Hence, valuations on Conv(Rn) can be understood as generalizations of valuations on Kn.
The aim of this thesis is to find and classify valuations on Conv(Rn) and the corresponding space

of log-concave functions, LC(Rn). Thereby, analogs of classical characterization results for valuations

1



INTRODUCTION

on Kn are extended to valuations on Conv(Rn) and LC(Rn), respectively. In particular, not only
real-valued valuations, but also Minkowski valuations and measure-valued valuations are studied.

In Chapter 1, some classical results from convex geometry are gathered and already established
classification results for valuations on Kn are recited.

The function spaces Conv(Rn) and LC(Rn) are studied in Chapter 2. In particular, Conv(Rn)
is equipped with the topology associated to epi-convergence and some simple properties are proven.
Similarly, LC(Rn) is equipped with a corresponding topology. Furthermore, intrinsic volumes and
projections of quasi-concave functions are considered.

In Chapter 3, valuations on Conv(Rn) and LC(Rn) are introduced. They can be seen as functional
analogs of the Euler characteristic, volume, surface area measure, projection body, identity, reflection,
difference body and moment vector, respectively. Apart from sufficing the valuation property, it is shown
that these operators are continuous and furthermore their behavior with respect to group actions is
considered.

In Chapter 4, the valuations from Chapter 3 are characterized. The proofs of all the main results are
based on two main ideas. First, every valuation on Conv(Rn) is uniquely determined by its behavior on
so-called cone functions, that are introduced in Chapter 2. Based on classical results for valuations on
Kn, which are stated in Chapter 1, the valuations on Conv(Rn) and LC(Rn) can therefore be described
by a number of continuous functions on the reals. Second, the relation between the values of a valuation
on cone functions and its values on indicator functions is investigated.

The results on real-valued valuations on Conv(Rn) can be found in [17], whereas the results on
measure-valued valuations and Minkowski valuations on Conv(Rn) are to appear in [16]. For the
classification of real-valued valuations and translation covariant Minkowski valuations on LC(Rn) see
[47].
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Chapter 1

Background on Convex Bodies
“Your weapons, you will not
need them.”

Yoda

In this chapter we will introduce the basic notation and collect some results on convex bodies. In
particular, valuations on convex bodies will be introduced and classification results will be recalled.

1.1 Basic Notation

We work in n-dimensional Euclidean space, Rn, and denote the canonical basis vectors by e1, . . . , en.
For x ∈ Rn we will write |x| for the Euclidean norm of x and τx for the translation y 7→ y + x on Rn.
Furthermore, for two elements x, y ∈ Rn, let x · y denote the usual inner product of x and y. We will
write Sn−1 for the unit sphere in Rn, that is

Sn−1 = {z ∈ Rn : |z| = 1}.

Furthermore, for x ∈ Rn and r > 0 let

B(x, r) = {y ∈ Rn : |y − x| ≤ r},

and Bn = B(0, 1). For the volume in Rn we write Vn. The k-dimensional Hausdorff measure will
be denoted by Hk and we write vk := Hk(Bk) for the volume of the unit ball in Rk. Moreover, for a
k-dimensional linear subspace E ⊆ Rn, we will denote by projE : Rn → E the orthogonal projection
onto E and we write

E⊥ = {y ∈ Rn : x · y = 0, ∀x ∈ E}

for the orthogonal complement of E in Rn. Furthermore, for a vector z ∈ Sn−1 we denote by
z⊥ = {x ∈ Rn : x · z = 0} the hyperplane orthogonal to z.

For a set A ⊂ Rn we denote by

linA =

{
m∑
i=1

λi xi : λi ∈ R, xi ∈ A,m ∈ N

}

its linear hull and by

aff A =

{
m∑
i=1

λi xi : λi ∈ R,
m∑
i=1

λi = 1, xi ∈ A,m ∈ N

}

3



CHAPTER 1. BACKGROUND ON CONVEX BODIES 1.2. THE SPACE OF CONVEX BODIES

its affine hull. The dimension of A, dimA, is now defined as the dimension of aff A. Moreover, we write
intA for the interior and relintA for the relative interior of A, that is the interior of A with respect
to its affine hull. The topological boundary of A will be denoted by ∂A. Furthermore,

convA =

{
m∑
i=1

λi xi : λi ≥ 0,
m∑
i=1

λi = 1, xi ∈ A,m ∈ N

}

and

posA =

{
m∑
i=1

λi xi : λi ≥ 0, xi ∈ A,m ∈ N

}
denote the convex hull and positive hull of A, respectively. Using this notation, we write
Tn = conv{0, e1, . . . , en} for the standard simplex in Rn.

We will need certain groups of linear transforms. Denoting by detφ the determinant of φ ∈ Rn×n,
we write

GL(n) = {φ ∈ Rn×n : detφ 6= 0}
SL(n) = {φ ∈ Rn×n : detφ = 1}
SO(n) = {φ ∈ Rn×n : detφ = 1, φ−1 = φt},

for the general linear group, special linear group and special orthogonal group, respectively. Here, φ−1

denotes the inverse and φt denotes the transpose of an n×n-matrix φ. Furthermore, we will sometimes
write φ−t instead of (φt)−1.

Lastly, we denote by C(R) the space of continuous real-valued functions on R and we write Ck(R) for
the subset of the k times continuously differentiable functions. The usual space of Lebesgue integrable
functions on Rn will be denoted by L1(Rn).

1.2 The Space of Convex Bodies

We will now collect some results from convex geometry. Standard references are the books by Schneider
[54] and Gruber [20].

In the following, we will denote by Kn the set of all non-empty, compact, convex subsets of Rn,
which are also called convex bodies. Furthermore, Kno denotes the subset of convex bodies that contain
the origin and Kn(o) denotes the subset of convex bodies that contain the origin in their interiors.
Accordingly, we will use Pn, Pno and Pn(o) for the corresponding sets of convex polytopes. Here, a
convex polytope is the convex hull of finitely many points in Rn. Clearly,

Pn ⊂ Kn, Pno ⊂ Kno , Pn(o) ⊂ K
n
(o),

as well as
Pn(o) ⊂ P

n
o ⊂ Pn, Kn(o) ⊂ K

n
o ⊂ Kn.

Each convex body K ∈ Kn is uniquely described by its support function

h(K,x) = max{y · x : y ∈ K}

for x ∈ Rn. It is easy to see that h(K, ·) ≥ 0 for every K ∈ Kno and furthermore h(K, ·) > 0 for every
K ∈ Kn(o). Moreover, it will be convenient to use h(∅, ·) ≡ 0. For z ∈ Sn−1, the convex body K ∈ Kn

4



CHAPTER 1. BACKGROUND ON CONVEX BODIES 1.2. THE SPACE OF CONVEX BODIES

o

h(K, z)
z

H(K, z)
K

x1

x2

M

L

L+M

Figure 1.1: The support function and supporting hyperplane of K ∈ Kn and the Minkowski sum of
L,M ∈ Kn.

is contained in the closed half space {x ∈ Rn : x · z ≤ h(K, z)} which is bounded by the supporting
hyperplane

H(K, z) = {x ∈ Rn : x · z = h(K, z)}.

Observe, that H(K, z) has non-empty intersection with K for every z ∈ Sn−1 and that the support
function h(K, z) gives the signed distance of H(K, z) from the origin. Furthermore, for x ∈ H(K, z)∩K
we say that z is an outer unit normal of K at x. See also Figure 1.1.

For p ≥ 0, a function h : Rn → R is p-homogeneous if h(t x) = tph(x) for t ≥ 0 and x ∈ Rn and it
is sublinear if it is 1-homogeneous and h(x + y) ≤ h(x) + h(y) for x, y ∈ Rn. It is well known, that a
function h : Rn → R is sublinear if and only if it is the support function of a unique convex body, that
is h = h(K, ·) for some K ∈ Kn. Also, since h(K, ·) is homogeneous of degree 1, it is uniquely described
by its values on Sn−1.

For elements of Kn the operation + will always denote the Minkowski sum, that is

K + L := {x+ y : x ∈ K, y ∈ L},

for every K,L ∈ Kn, which is depicted in Figure 1.1. It is easy to see, that for K,L ∈ Kn, also
K + L ∈ Kn. Furthermore, for the corresponding support functions we have

h(K + L, x) = h(K,x) + h(L, x), (1.1)

for all K,L ∈ Kn and x ∈ Rn. For any translation τx with x ∈ Rn and any linear transform φ ∈ GL(n),
we write

τxK = K + x = {y + x : y ∈ K} and φK = {φy : y ∈ K}.

Moreover, we denote by −K ∈ Kn the reflection of K, which is defined via

h(−K,x) = h(K,−x),

for every x ∈ Rn.

5



CHAPTER 1. BACKGROUND ON CONVEX BODIES 1.3. VALUATIONS ON CONVEX BODIES

The natural topology on Kn and its subspaces is induced by the Hausdorff metric, which is given
by

δ(K,L) = sup
z∈Sn−1

|h(K, z)− h(L, z)|,

for all K,L ∈ Kn. Throughout this thesis, continuity on Kn will always be understood with respect to
this metric. The next result gives another description of Hausdorff convergence.

Theorem 1.1 ( [54], Theorem 1.8.8). The convergence limi→∞Ki = K in Kn is equivalent to the
following conditions taken together:

(i) each point in K is the limit of a sequence (xi)i∈N with xi ∈ Ki for i ∈ N.

(ii) the limit of any convergent sequence (xij )j∈N with xij ∈ Kij for j ∈ N belongs to K.

Remark 1.2. It is easy to see that the first condition in Theorem 1.1 can be replaced by

(i∗) each point in relintK is the limit of a sequence (xi)i∈N with xi ∈ Ki for i ∈ N.

1.3 Valuations on Convex Bodies

In this section we introduce valuations on convex bodies. They played a critical role in Dehn’s solution
of Hilbert’s Third Problem and have been a central focus in convex geometric analysis. Several well
known operators in geometry not only have the valuation property, but can also be characterized as
valuations with certain additional properties.

Definition 1.3. A function Z defined on a subset Qn ⊂ Kn and taking values in an abelian semigroup
〈A,+〉 is called a valuation if

Z(K ∪ L) + Z(K ∩ L) = Z(K) + Z(L),

whenever K,L,K ∪ L,K ∩ L ∈ Qn.

We will see that in many cases valuations can be characterized by their behavior with respect to group
actions, especially translations. We say that a map Z : Qn → 〈A,+〉, defined on some subset Qn ⊆ Kn
is translation invariant if Z(τxK) = Z(K) for every x ∈ Rn and K ∈ Qn with τxK ∈ Qn.

1.3.1 Real-Valued Valuations

Let K ∈ Kn. By the well known Steiner formula (see, for example, [54, Section 4.2]) there exist
coefficients Vi(K) such that

Vn(K + rBn) =

n∑
i=0

rn−ivn−iVi(K),

for every r > 0. For 0 ≤ k ≤ n, the number Vk(K) is called the k-th intrinsic volume of K and coincides
with the (n − k)-th quermassintegral, up to a renormalization. It is easy to see, that for dimK ≤ k,
Vk(K) is just the k-dimensional volume of K. The 0-th intrinsic volume, V0, is also called the Euler
characteristic and V0(K) = 1 for every K ∈ Kn. Furthermore, we set Vk(∅) = 0 for every 0 ≤ k ≤ n.

We say that a valuation Z : Kn → R is rigid motion invariant if it is translation invariant and
rotation invariant, that is Z(φK) = Z(K) for every φ ∈ SO(n) and K ∈ Kn. We are now able to state
one of the most important results in the theory of valuations.

6



CHAPTER 1. BACKGROUND ON CONVEX BODIES 1.3. VALUATIONS ON CONVEX BODIES

K

ω ⊆ Sn−1

S(K,ω)

Figure 1.2: The surface area measure of K ∈ Kn.

Theorem 1.4 (Hadwiger’s characterization theorem, [25]). A map Z : Kn → R is a continuous, rigid
motion invariant valuation if and only if there exist constants c0, . . . , cn ∈ R such that

Z(K) =
n∑
i=0

ciVi(K),

for every K ∈ Kn.

Remark 1.5. A newer and shorter proof of Theorem 1.4 is given in [27].

We say that a map Z defined on some subset Qn ⊆ Kn is SL(n) invariant if Z(φK) = Z(K) for every
φ ∈ SL(n) and K ∈ Qn with φK ∈ Qn. A first classification of volume and the Euler characteristic
as continuous, SL(n) and translation invariant valuations on K3 was obtained by Blaschke [10]. We
remark, that this also follows from Theorem 1.4. We will need the following more general result, see
for example [39, Corollary 1.2].

Theorem 1.6. For n ≥ 2, a functional Z : Pno → R is an upper semicontinuous and SL(n) invariant
valuation if and only if there are constants c0, cn ∈ R such that

Z(P ) = c0V0(P ) + cnVn(P ),

for every P ∈ Pno .

For more information on the classical theory of (real-valued) valuations we refer to [25,28] and for some
recent results see [1–3,22,38].

1.3.2 Measure-Valued Valuations

Denote by M(Sn−1) the space of finite positive Borel measures on the sphere. An important operator
assigned to a convex body K ∈ Kn is its surface area measure, S(K, ·) ∈ M(Sn−1). For a Borel set
ω ⊆ Sn−1 and K ∈ Kn, the surface area measure S(K,ω) is the Hn−1 measure of all points x ∈ ∂K at
which there exists an outer unit normal vector belonging to ω, see also Figure 1.2, and furthermore∫

Sn−1

z dS(K, z) = 0,

for every K ∈ Kn. By the solution of the classical Minkowski problem, a full-dimensional convex
body K is - up to translations - uniquely described by its surface area measure. More precisely, a

7



CHAPTER 1. BACKGROUND ON CONVEX BODIES 1.3. VALUATIONS ON CONVEX BODIES

measure µ ∈ M(Sn−1) is the surface area of an n-dimensional convex body K if and only if µ is not
concentrated on a great subsphere and

∫
Sn−1 z dµ(z) = 0. In this case, K is unique up to translation.

See also [54, Section 8.2].
We say that a valuation µ : Qn →M(Sn−1) defined on some subset Qn ⊂ Kn is SL(n) contravariant

of degree p ∈ R if ∫
Sn−1

b(z) dµ(φP, z) =

∫
Sn−1

b(φ−t z) dµ(P, z),

for every map φ ∈ SL(n), every P ∈ Qn with φP ∈ Qn and every continuous, p-homogeneous function
b : Rn\{0} → R. The following result is due to Haberl and Parapatits.

Theorem 1.7 ( [23], Theorem 1). For n ≥ 3, a map µ : Pno → M(Sn−1) is a valuation that is
SL(n) contravariant of degree 1 if and only if there exist constants c1, c2, c3, c4 ∈ R with c1, c2 ≥ 0 and
c1 + c3 ≥ 0, c2 + c4 ≥ 0 such that

µ(P, ·) = c1S(P, ·) + c2S(−P, ·) + c3S
∗(P, ·) + c4S

∗(−P, ·),

for every P ∈ Pno .

Remark 1.8. For details on the measures S∗(P, ·), see [23]. They will not be of further interest for this
thesis.

A sequence µk in M(Sn−1) is said to converge weakly to a measure µ ∈M(Sn−1), if∫
Sn−1

b(z) dµk(z) −→
∫
Sn−1

b(z) dµ(z),

for every continuous function b : Sn−1 → R. If in Theorem 1.7 one additionally assumes weak continuity
(that is, if a sequence of convex bodies converges then their images converge weakly), then c3 = c4 = 0,
i.e. the measures S∗(P, ·) and S∗(−P, ·) do not appear anymore. Hence, we have the following corollary
of Theorem 1.7.

Corollary 1.9. For n ≥ 3, a map µ : Kno →M(Sn−1) is a weakly continuous valuation that is SL(n)
contravariant of degree 1 if and only if there exist constants c1, c2 ≥ 0 such that

µ(K) = c1S(K, ·) + c2S(−K, ·),

for every K ∈ Kno .

We say that a measure µ ∈M(Sn−1) is even, if µ(−ω) = µ(ω) for every Borel set ω ⊆ Sn−1 and denote
the set of all such measures by Me(Sn−1). Since 1√

n
(1, . . . , 1)t is always an outer unit normal of the

standard simplex Tn but never of −Tn, the following holds true.

Corollary 1.10. For n ≥ 3, a map µ : Kno →Me(Sn−1) is a weakly continuous valuation that is SL(n)
contravariant of degree 1 if and only if there exists a constant c ≥ 0 such that

µ(K, ·) = c(S(K, ·) + S(−K, ·)),

for every K ∈ Kno .
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1.3.3 Minkowski Valuations

A valuation Z : Qn → 〈Kn,+〉 defined on some subset Qn ⊂ Kn is also called Minkowski valuation. In
the following we will distinguish between the behavior of Minkowski valuations with respect to special
linear transforms.

Contravariant Minkowski Valuations

Definition 1.11. The projection body ΠK of a convex body K ∈ Kn is given by

h(ΠK, z) := Vn−1(projz⊥ K) = 1
2

∫
Sn−1

|y · z| dS(K, y),

for every z ∈ Sn−1.

More generally, for a finite Borel measure µ on Sn−1, we define its cosine transform Cµ : Rn → R by

Cµ(x) =

∫
Sn−1

|z · x|dµ(z) (1.2)

for x ∈ Rn. Since x 7→ Cµ(x) is easily seen to be sublinear and non-negative on Rn, the cosine transform
Cµ is the support function of a convex body that contains the origin.

We require the following result where the support function of certain projection bodies is calculated
for specific vectors. Let n ≥ 2.

Lemma 1.12. For the polytopes P = conv{0, 1
2(e1 + e2), e2, . . . , en} and Q = conv{0, e2, . . . , en} we

have
h(ΠP, e1) = 1

(n−1)! h(ΠQ, e1) = 1
(n−1)!

h(ΠP, e2) = 1
2(n−1)! h(ΠQ, e2) = 0

h(ΠP, e1 + e2) = 1
(n−1)! h(ΠQ, e1 + e2) = 1

(n−1)! .

Proof. We use induction on the dimension and start with n = 2. In this case, P is a triangle in the
plane with vertices 0, 1

2(e1 + e2) and e2 and Q is just the line segment connecting the origin with e2. It
is easy to see that h(ΠP, e2) = V1(proje⊥2

P ) = 1
2 and h(ΠQ, e2) = 0 while h(ΠP, e1) = h(ΠQ, e1) = 1.

It is also easy to see that

h(ΠP, e1 + e2) = h(ΠQ, e1 + e2) =
√

2
√

2
2 = 1.

Assume now that the statement holds for (n − 1). All the projections to be considered are simplices
that are the convex hull of en and a base in e⊥n which is just the projection as in the (n−1)-dimensional
case. Therefore, the corresponding (n−1)-dimensional volumes are just 1

n−1 multiplied with the (n−2)-
dimensional volumes from the previous case. To illustrate this, we will calculate h(ΠP, e1 + e2) and
remark that the other cases are similar. Note that proj(e1+e2)⊥ P = conv{en, proj(e1+e2)⊥ P

(n−1)},
where P (n−1) is the set in Rn−1 from the (n − 1)-dimensional case embedded via the identification of
Rn−1 and e⊥n ⊂ Rn. Using the induction hypothesis and |e1 + e2| =

√
2, we obtain

Vn−1(proj(e1+e2)⊥ P ) = 1
n−1 Vn−2(proj(e1+e2)⊥ P

(n−1)) = 1√
2(n−1)!

,

and therefore h(ΠP, e1 + e2) = 1
(n−1)! . �

9
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The projection body has some useful properties concerning SL(n) transforms and translations. For
every φ ∈ SL(n) and x ∈ Rn we have

Π(φK) = φ−t ΠK and Π(K + x) = Π(K), (1.3)

for all K ∈ Kn. Furthermore, the map K 7→ ΠK is continuous and the origin is an interior point of
ΠK, if K is n-dimensional. See also [54, Section 10.9].

We say that a Minkowski valuation Z : Qn → Kn defined on some subset Qn ⊆ Kn is SL(n)
contravariant if Z(φK) = φ−t Z(K) for every φ ∈ SL(n) and K ∈ Qn with φK ∈ Qn. The following
result is due to Haberl.

Theorem 1.13 ([21], Theorem 4). For n ≥ 3, a map Z : Kno → Kn is a continuous, SL(n) contravariant
Minkowski valuation if and only if there exists a constant c ≥ 0 such that

ZK = cΠK,

for every K ∈ Kno .

Remark 1.14. The first characterization of the projection body, due to Ludwig, can be found in [32].

Covariant Minkowski Valuations

Definition 1.15. The difference body DK of a convex body K ∈ Kn is given by

h(DK, z) := V1(projlin{z}K) = h(K, z) + h(−K, z)

for every z ∈ Sn−1. Equivalently, one writes

DK = K + (−K).

Furthermore, the moment body MK of K is defined by

h(MK, z) :=

∫
K
|x · z|dx

for every z ∈ Sn−1. Moreover, we define the moment vector m(K) of K as

h(m(K), z) :=

∫
K
x · z dx

for every z ∈ Sn−1. Note, that the moment vector is an element of Rn.

Observe, that for φ ∈ GL(n), we have

h(MφK, y) =

∫
φK
|x · y| dx

= | detφ|
∫
K
|φx · y|dx

= | detφ|
∫
K
|x · φty| dx

= | detφ|h(MK,φty) = h(| detφ|φMK, y)

and similarly m(φK) = | detφ|φm(K) for all K ∈ Kn and y ∈ Rn. See also [54, Sections 5.4 & 10.1].
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We require the following result where the support functions of certain moment bodies and moment
vectors are calculated for specific vectors. Let n ≥ 2.

Lemma 1.16. For r > 0 and Tr = conv{0, r e1, e2, . . . , en},

h(Tr, e1) = r h(−Tr, e1) = 0

h(m(Tr), e1) = r2

(n+1)! h(MTr, e1) = r2

(n+1)! .

Proof. It is easy to see that h(Tr, e1) = r and h(−Tr, e1) = 0. Let φr ∈ GL(n) be such that e1 7→ r e1

and ei 7→ ei for i = 2, . . . , n. Then Tr = φrT
n and therefore

h(m(Tr), e1) = h(m(φrT
n), e1) = | detφr|h(m(Tn), (φr)

te1) = r2 h(m(Tn), e1) = r2

(n+1)! .

Finally, since e1 · x ≥ 0 for every x ∈ Tr, we have h(MTr, e1) = h(m(Tr), e1). �

We say that a Minkowski valuation Z : Qn → Kn defined on some subset Qn ⊆ Kn is SL(n) covariant
if Z(φK) = φZ(K) for every φ ∈ SL(n) and K ∈ Qn with φK ∈ Qn. The following result is due to
Haberl.

Theorem 1.17 ([21], Theorem 6). For n ≥ 3, a map Z : Kno → Kn is a continuous, SL(n) covariant
Minkowski valuation if and only if there exist constants c1, c2, c3 ≥ 0 and c4 ∈ R such that

ZK = c1K + c2(−K) + c3 MK + c4 m(K),

for every K ∈ Kno .

Next, we state a characterization of the difference body by Ludwig.

Theorem 1.18 ([33], Corollary 1.2). For n ≥ 2, a map Z : Pn → Kn is a translation invariant and
SL(n) covariant Minkowski valuation if and only if there exists a constant c ≥ 0 such that

ZP = cDP,

for every P ∈ Pn.

We say that a Minkowski valuation Z : Kn → Kn is translation covariant if there exists a function
Z0 : Kn → R associated with Z such that

Z(K + x) = Z(K) + Z0(K)x,

for every K ∈ Kn and x ∈ Rn. Since several important geometric operators have this property,
translation covariant valuations have attracted considerable interest. For example, the identity on Kn
and the reflection K 7→ −K are translation covariant. Furthermore, for z ∈ Sn−1 we have

h(m(K + x), z) =

∫
K+x

z · y dy =

∫
K
z · (y + x) dy =

∫
K
z · y dy + Vn(K) z · x. (1.4)

Hence, m(K+x) = m(K)+Vn(K)x for everyK ∈ Kn and x ∈ Rn. Based on Schneider’s characterization
of the Steiner point [53], Hadwiger & Schneider [26] proved that the quermassvectors form a basis of
the space of continuous, rotation and translation covariant vector-valued valuations. In [42], McMullen
characterized weakly continuous and translation covariant vector-valued valuations on convex polytopes,
extending a previous result by Hadwiger [24]. In his result the intrinsic moment vectors of the faces of
a polytope appear. For further results on translation covariant valuations see [43,44].
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We derive the following simple consequence of Theorem 1.17.

Corollary 1.19. For n ≥ 3, a map Z : Kn → Kn is a continuous, SL(n) and translation covariant
Minkowski valuation if and only if there exist constants c1, c2 ≥ 0 and c3 ∈ R such that

ZK = c1K + c2(−K) + c3 m(K), (1.5)

for every K ∈ Kn.

Proof. We have already seen in Theorem 1.17 and (1.4) that (1.5) defines a continuous, SL(n) and
translation covariant valuation. Conversely, let Z be a continuous, SL(n) and translation covariant
valuation on Kn. Obviously, the restriction of Z to Kno is a continuous, SL(n) covariant valuation.
Hence, by Theorem 1.17 there exist constants c1, c2, c4 ≥ 0 and c3 ∈ R such that

ZK = c1K + c2(−K) + c3 m(K) + c4 MK, (1.6)

for every K ∈ Kno . Define the polytope P as P := [−e1, 2e1] + [0, e2] + · · · [0, en] and observe that
P, P + e1, P − e1 ∈ Kno . By the translation covariance of Z we obtain

Z(P ) + Z0(P )e1 = Z(P + e1) = c1P + c1e1 + c2(−P )− c2e1 + c3 m(P ) + Vn(P )e1 + c4 M(P + e1),

Z(P )− Z0(P )e1 = Z(P − e1) = c1P − c1e1 + c2(−P ) + c2e1 + c3 m(P )− Vn(P )e1 + c4 M(P − e1).

Adding these equations shows that

2 Z(P ) = Z(P + e1) + Z(P − e1) = 2c1P + 2c2(−P ) + 2c3 m(P ) + c4(M(P + e1) + M(P − e1)).

On the other hand by (1.6)

2 Z(P ) = 2c1P + 2c2(−P ) + 2c3 m(P ) + 2c4 MP.

Evaluating and comparing the support function of 2 Z(P ) at e1

2c4
5
2 = c4(9

2 + 5
2),

and therefore c4 = 0. Furthermore, this shows that Z0(K) = c1 − c2 + c3Vn(K) for every K ∈ Kno .
Now, fix an arbitrary K ∈ Kn. Then, there exist Ko ∈ Kno and x ∈ Rn such that K = Ko + x. By the
properties of Z this gives

Z(K) = Z(Ko + x)

= Z(Ko) + Z0(Ko)x

= c1Ko + c2(−Ko) + c3 m(Ko) + (c1 − c2 + Vn(Ko))x

= c1K + c2(−K) + c3 m(K).

�

Remark 1.20. For the valuation Z in Corollary 1.19 we see that Z0 is a linear combination of the Euler
characteristic and volume. Indeed, it is easy to show, that for a continuous, SL(n) and translation
covariant valuation Z on Kn, its associated function Z0 has to be a continuous, SL(n) and translation
invariant real-valued valuation. See also Lemma 4.27.
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Chapter 2

Convex, Log-Concave and Quasi-Concave
Functions

“Help me, Obi-Wan Kenobi.
You’re my only hope.”

Princess Leia

In order to extend valuations from convex bodies to convex functions and related function spaces, we
need to define a suitable space of convex functions first. Furthermore, we will equip said function space
with the topology associated to epi-convergence and discuss some important properties. Moreover,
we will see that geometric constructions, such as intrinsic volumes and projections, have already been
established for the related class of quasi-concave functions. The results of this chapter can be found
in [17].

2.1 A Suitable Space of Convex Functions

To every convex function u : Rn → (−∞,+∞] there can be assigned several convex sets. For any
t ∈ (−∞,+∞] we can consider the sublevel sets

{u < t} := {x ∈ Rn : u(x) < t}, {u ≤ t} := {x ∈ Rn : u(x) ≤ t},

which are convex sets. Then, the (effective) domain of u is defined as the set

domu := {u < +∞}.

Furthermore, the epigraph of u

epiu := {(x, y) ∈ Rn × R : u(x) ≤ y}

is a convex subset of Rn × R. See also [54, Section 1.5].
In the following, let Conv(Rn) denote the set of all convex functions u : Rn → (−∞,+∞] that are

lower semi-continuous, proper and coercive. Here we say that u is proper if domu is not empty or
equivalently u 6≡ +∞. Furthermore, u is called coercive if

lim
|x|→+∞

u(x) = +∞. (2.1)

The function space Conv(Rn) was already discussed by Cavallina & Colesanti in [12] with the slight
difference that they also included the function that is +∞ everywhere. We will see that the inclusion
of this function conflicts with epi-convergence and it is therefore not an element of the space Conv(Rn),
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CHAPTER 2. CONVEX FUNCTIONS 2.2. PIECEWISE AFFINE, CONE AND INDICATOR FUNCTIONS

that is discussed in this thesis. See also Remark 2.17. Furthermore, we remark that Colesanti & Fragalà
as well as Cordero-Erausquin & Klartag used similar spaces in [13] and [18], respectively.

Lower semi-continuity of a convex function u : Rn → (−∞,+∞] is equivalent to its epigraph epiu
being closed and to the closure of all sub-level sets {u ≤ t} for t ∈ R. Therefore, such a function is also
called closed. Furthermore, the growth condition (2.1) is equivalent to the boundedness of all sublevel
sets {u ≤ t}. Hence, for u ∈ Conv(Rn) we have

{u ≤ t} ∈ Kn, (2.2)

for all t ≥ minx∈Rn u(x). Note, that every function u ∈ Conv(Rn) attains its minimum.
It is easy to see, that for two convex functions u, v ∈ Conv(Rn) the pointwise minimum u ∧ v

corresponds to the union of their epigraphs and therefore to the union of their sublevel sets. Similarly,
the pointwise maximum u∨v corresponds to the intersection of the epigraphs and sublevel sets. Hence,
for all t ∈ R

{u ∧ v ≤ t} = {u ≤ t} ∪ {v ≤ t} and {u ∨ v ≤ t} = {u ≤ t} ∩ {v ≤ t}, (2.3)

where for u ∧ v ∈ Conv(Rn) all occurring sublevel sets are either empty or convex bodies.
We collect some basic results.

Lemma 2.1 ([12], Lemma 3.2). If u ∈ Conv(Rn), then

relint{u ≤ t} ⊆ {u < t},

for every t > minx∈Rn u(x).

The following result is also known as the cone property.

Lemma 2.2 ([13], Lemma 2.5). For u ∈ Conv(Rn) there exist constants a, b ∈ R with a > 0 such that

u(x) > a|x|+ b ∀x ∈ Rn.

Next, we define LC(Rn) as the set of all log-concave functions f that can be written as

f = e−u,

for some u ∈ Conv(Rn). Thus, LC(Rn) is the set of all upper semi-continuous, log-concave functions
f : Rn → [0,+∞) that have non-empty support supp f := {x ∈ Rn : f(x) 6= 0} and that vanish at
infinity,

lim
|x|→+∞

f(x) = 0.

Observe, that for f = e−u ∈ LC(Rn) the support of f is equal to the domain of u, supp f = domu, and
that the function that is 0 for every x ∈ Rn is not an element of LC(Rn).

2.2 Piecewise Affine, Cone and Indicator Functions

In this section we will restrict our attention to special elements of Conv(Rn). A function ` ∈ Conv(Rn)
is called piecewise affine, if there exist finitely many n-dimensional convex polyhedra C1, . . . , Cm with
pairwise disjoint interiors, such that

⋃m
i=1Ci = Rn and the restriction of ` to each Ci is affine. Here, a
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Rn

R

P

1

Rn

P

R

Figure 2.1: The function `P for P ∈ Pn(o).

convex polyhedron is the intersection of finitely many half-spaces. The set of piecewise affine elements
in Conv(Rn) will be denoted by Convp.a.(Rn). Furthermore, we call u ∈ Conv(Rn) a finite element
of Conv(Rn) if u(x) < +∞ for every x ∈ Rn. Note, that convex piecewise affine functions are finite
elements of Conv(Rn).

Next, for K ∈ Kno we define the convex function `K via

epi `K := pos(K × {1}).

This means that the epigraph of `K is a cone in Rn×R with apex at the origin and {`K ≤ t} = tK for
every t ≥ 0. A function of type `K + t with K ∈ Kno and t ∈ R is also called cone function. It is easy to
see that every K ∈ Kno the function `K is an element of Conv(Rn). Furthermore, dom `K = Rn if and
only if K contains the origin in its interior. Lastly, for P ∈ Pn(o) we can see that `P ∈ Convp.a.(Rn),
see also Figure 2.1. For P ∈ Pn(o) we can also describe `P as follows: Let P have facets F1, . . . , Fm and
denote by zi the outer unit normal vectors of P at Fi. Furthermore, let Ci denote the positive hull of
Fi. Now C1, . . . , Cm have pairwise disjoint interiors with

⋃m
i=1Ci = Rn and we have

`P (x) =
zi · x
h(P, zi)

,

for every x ∈ Ci.
Another important class of functions in Conv(Rn), that can be seen as generalizations of convex

bodies, are indicator functions. The (convex) indicator function of K ∈ Kn is given by

IK(x) =

{
0 if x ∈ K
+∞ if x /∈ K,

for every x ∈ Rn. Clearly, IK ∈ Conv(Rn) for every K ∈ Kn. Furthermore, it is easy to see that IK
corresponds to the characteristic function of K ∈ Kn, χK ∈ LC(Rn), via the relation

χK(x) = e−IK(x) =

{
1 if x ∈ K
0 if x /∈ K,

for every x ∈ Rn.
We will see in Chapter 4 that the relation between cone and indicator functions plays a key role in

the classification of valuations on Conv(Rn) and LC(Rn), respectively.
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2.3 Duality

In this section we discuss the convex conjugate and how it interacts with operations on the epigraph
of a convex function. For further details we refer to [54, Section 1.6.2].

The conjugate function u∗ of a convex function u : Rn → (−∞,+∞] is defined as

u∗(y) := sup
x∈Rn

(
y · x− u(x)

)
,

for every y ∈ Rn. If u is a closed convex function, then also u∗ is a closed convex function and
u∗∗ = u. Furthermore, we will consider the infimal convolution u1 �u2 of two closed convex functions
u1, u2 : Rn → (−∞,+∞], which is given by

(u1 �u2)(x) := inf
x=x1+x2

(
u1(x1) + u2(x2)

)
,

for every x ∈ Rn. We remark, that infimal convolution corresponds to Minkowski addition of epigraphs,
that is

epi(u1 �u2) = epiu1 + epiu2. (2.4)

Hence, another name for infimal convolution is also epi-addition. Furthermore, if u1 �u2 > −∞
pointwise, then

(u1 �u2)∗ = u∗1 + u∗2. (2.5)

Another operation is the so-called epi-multiplication. For λ > 0 and a closed convex function
u : Rn → (−∞,+∞] consider the convex function uλ which is defined by

uλ(x) := λu
(
x
λ

)
,

for every x ∈ Rn. Observe, that for the convex conjugate of uλ one has

u∗λ(y) = sup
x∈Rn

(
y · x− λu

(
x
λ

))
= sup

x∈Rn

(
y · λx− λu(x)

)
= λu∗(y), (2.6)

for every y ∈ Rn and λ > 0.

Remark 2.3. For two closed convex functions u1, u2 the infimal convolution u1 �u2 need not be closed,
even when it is convex.

2.4 Epi-Convergence

We will now introduce the topology on Conv(Rn) and collect some results.

Definition 2.4. A sequence uk : Rn → (−∞,+∞] is said to be epi-convergent to u : Rn → (−∞,+∞]
if for all x ∈ Rn the following conditions hold:

(i) For every sequence xk that converges to x

u(x) ≤ lim inf
k→∞

uk(xk). (2.7)

(ii) There exists a sequence xk that converges to x such that

u(x) = lim
k→∞

uk(xk). (2.8)
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In this case we write u = epi-limk→+∞ uk and uk
epi−→ u. Correspondingly, we say that a sequence fk

in LC(Rn) is hypo-convergent to f ∈ LC(Rn) if there exist uk, u ∈ Conv(Rn) such that fk = e−uk for

every k ∈ N, f = e−u and uk
epi−→ u. In this case we write f = hypo-limk→∞ fk and fk

hypo−→ f .

Remark 2.5. If uk
epi−→ u, then by equation (2.7) the function u is an asymptotic common lower bound

for the sequence uk. Consequently, (2.8) states that this bound is optimal.

Remark 2.6. The name epi-convergence is due to the fact, that this convergence is equivalent to the
convergence of the corresponding epigraphs in the Painlevé-Kuratowski sense. Another name for epi-
convergence is also Γ-convergence. See also [19, Theorem 4.16] and [51, Proposition 7.2] and especially
the commentary section of the same chapter.

Immediately from Definition 2.4 we obtain the following result.

Lemma 2.7 ( [19], Proposition 6.1). If uk : Rn → (−∞,+∞] is a sequence that epi-converges to
u : Rn → (−∞,+∞], then also every subsequence uki of uk epi-converges to u.

The next result shows some of the strong implications that follow from epi-convergence of convex
functions.

Theorem 2.8 ([51], Theorem 7.17). If uk is a sequence of convex functions that epi-converges to a
function u, then u is convex. Moreover, if domu has non-empty interior, then uk converges uniformly
to u on every compact set that does not contain a boundary point of domu.

From Theorem 2.8 we derive the following result that connects epi-convergence with pointwise conver-
gence, see also [19, Example 5.13].

Lemma 2.9. Let uk : Rn → R be a sequence of finite convex functions and let u : Rn → R be a finite
convex function. If uk is epi-convergent to u, then uk also converges pointwise to u.

Remark 2.10. The last statement is no longer true if the functions may attain the value +∞. In that
case

epi-limk→+∞ uk(x) ≤ limk→+∞ uk(x),

for all x ∈ Rn such that these limits exist. See also [19, Example 5.13].

Remark 2.11. In fact, also the reverse of Lemma 2.9 is true. Hence, for finite convex functions epi-
convergence and pointwise convergence coincide.

Each sublevel set of a function from Conv(Rn) is either empty or in Kn. We say that {uk ≤ t} → ∅ as
k → +∞ if there exists k0 ∈ N such that {uk ≤ t} = ∅ for k ≥ k0. The following simple result describes
one of the consequences of epi-convergence on Conv(Rn). See also [46, Lemma 3.1].

Lemma 2.12. Let uk, u ∈ Conv(Rn). If uk
epi−→ u, then {uk ≤ t} → {u ≤ t} as k → +∞ for every

t ∈ R with t 6= minx∈Rn u(x).

Proof. First, let t > umin := minx∈Rn u(x). For x ∈ relint{u ≤ t}, it follows from Lemma 2.1 that

s := u(x) < t. Since uk
epi−→ u there exists a sequence xk that converges to x such that uk(xk) converges

to u(x). Therefore, there exist ε > 0 and k0 ∈ N such that for all k ≥ k0

uk(xk) ≤ s+ ε ≤ t.
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Thus, xk ∈ {uk ≤ t}, which shows that x is a limit of a sequence of points from {uk ≤ t}. Obviously,
this implies (i∗) of Remark 1.2 and therefore (i) of Theorem 1.1.

Now, let (xij )j∈N be a convergent sequence in {uij ≤ t} with limit x ∈ Rn. By Lemma 2.7 the
subsequence uij epi-converges to u. Therefore

u(x) ≤ lim inf
j→∞

uij (xij ) ≤ t

which gives (ii) of Theorem 1.1.
Second, let t < umin. Since {u ≤ t} = ∅, we have to show that there exists k0 ∈ N such that for

every k ≥ k0 and x ∈ Rn,
uk(x) > t.

Assume that there does not exist such an index k0. Then there are infinitely many points xij such that
uij (xij ) ≤ t. Note, that

xij ∈ {uij ≤ t} ⊆ {uij ≤ umin + 1}.

By Lemma 2.7, we know that uij
epi−→ u and therefore we can apply the previous argument to obtain

that {uij ≤ umin + 1} → {u ≤ umin + 1}, which shows that xij is bounded. Hence, there exists a

convergent subsequence xijk with limit x ∈ Rn. Applying Lemma 2.7 again, we obtain that uijk
epi−→ u

and therefore
u(x) ≤ lim inf

k→∞
uijk (xijk ) ≤ t,

which is a contradiction. Hence {uk ≤ t} must be empty eventually. �

For the next result we use a characterization of epi-convergence, due to Beer, Rockafellar and Wets.
It uses Painlevé-Kuratowski convergence (PK-lim), which we are not going to define here. The only
important fact for our purposes is that Hausdorff convergence implies Painlevé-Kuratowski convergence.

Theorem 2.13 ( [9], Theorem 3.1). Let X be a separable metrizable space and let u, u1, u2, . . . be
extended real valued lower semi-continuous functions on X.

1. If u = epi-limk→+∞ uk, then for each t ∈ R there exists a sequence tk of reals convergent to t such
that {u ≤ t} = PK-lim{uk ≤ tk}.

2. If for each t ∈ R there exists a sequence tk of reals convergent to t such that
{u ≤ t} = PK-lim{uk ≤ tk}, then u = epi-limk→+∞ uk.

Lemma 2.14. Let Ki,K ∈ Kno . The sequence Ki converges to K in the Hausdorff metric, if and only
if `Ki epi-converges to `K . Furthermore, for Li, L ∈ Kn, Hausdorff convergence of Li to L is equivalent
to epi-convergence of ILi to IL.

Proof. Let Ki,K ∈ Kno be such that Ki → K. For t < 0 we have {`Ki ≤ t} = {`K ≤ t} = ∅, for all
i ∈ N and for t ≥ 0 we have

{`K ≤ t} = tK and {`Ki ≤ t} = tKi,

for every i ∈ N. Since Ki converges to K in the Hausdorff metric, also tKi converges to tK in the same
metric and furthermore in the Painlevé-Kuratowski sense. Therefore all sublevel sets are convergent

and `Ki
epi−→ `K by Theorem 2.13.

18
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Conversely, if Ki,K ∈ Kno are such that `Ki
epi−→ `K , then Lemma 2.12 shows that

Ki = {`Ki ≤ 1} → {`K ≤ 1} = K.

The proof for the second statement is analog. �

A fundamental relationship between convex functions and their conjugates in terms of epi-convergence
was established by Wijsman, see, for example, [51, Theorem 11.34]. In fact, it is one of the reasons why
epi-convergence was introduced.

Theorem 2.15 (Epi-continuity of the convex conjugate). If uk, u : Rn → (−∞,+∞] are closed, proper
and convex, then

uk
epi−→ u if and only if u∗k

epi−→ u∗.

Next, we extend Lemma 2.2 to an epi-convergent sequence of functions in Conv(Rn) and obtain a
uniform cone property.

Lemma 2.16. Let uk, u ∈ Conv(Rn). If uk
epi−→ u, then there exist constants a, b ∈ R with a > 0 such

that
uk(x) > a|x|+ b and u(x) > a|x|+ b

for every k ∈ N and x ∈ Rn.

Proof. By Lemma 2.2, there exist constants α > 0 and β ∈ R such that

u(x) > α|x|+ β := `(x).

Switching to conjugates gives u∗ < `∗. Observe, that

`∗(y) = sup
x∈Rn

(
y · x− (α|x|+ β)

)
=

(
sup
x∈Rn

(
y · x− α|x|

))
− β,

for every y ∈ Rn. Since

sup
x∈Rn

(
y · x− α|x|

)
=

{
0 if |y| ≤ α
+∞ if |y| > α,

we have `∗ = IαBn − β. Setting a := α/2 > 0, we see that aBn is a compact subset of int domu∗.
Therefore, Theorems 2.8 & 2.15 imply that that u∗k converges uniformly to u∗ on aBn. Since u∗ < −β
on aBn, there exists a constant b such that u∗k(y) < −b for every y ∈ aBn and k ∈ N and therefore

u∗k < IaBn − b,

for every k ∈ N. Consequently
uk(x) > a|x|+ b,

for every k ∈ N and x ∈ Rn. �

Remark 2.17. Note, that Lemmas 2.12 and 2.16 are no longer true if u ≡ +∞. For example, consider
uk(x) = IB(k2x0,kR) for some R > 0 and x0 ∈ Rn\{0}. Then epi-limk→+∞ uk = u but every set {uk ≤ t}
is a ball of radius kR for t ≥ 0 . In this case, the sublevel sets are not even bounded. Furthermore, it
is clear that there does not exist a uniform pointed cone that contains all the sets epiuk.
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2.5 Moreau-Yosida Envelopes

The aim of this section is to establish Lemma 2.21, which states that Convp.a.(Rn) is a dense sub-
set of Conv(Rn). We remark, that this can also be deduced from more general results (see for
example [7, Corollary 3.42]), however we will give a self-contained proof using Moreau-Yosida envelopes.
See also [51, Chapter 1, Section G].

Definition 2.18. Let u ∈ Conv(Rn) and λ > 0. Set q(x) = 1
2 |x|

2 and recall that qλ(x) = λq
(
x
λ

)
for

x ∈ Rn. The Moreau-Yosida envelope or Moreau-Yosida approximation eλu of u is defined as

eλu := u� qλ,

or equivalently
eλu(x) = inf

y∈Rn

(
u(y) + 1

2λ |x− y|
2
)

= inf
x1+x2=x

(
u(x1) + 1

2λ |x2|2
)
,

for every x ∈ Rn.

Lemma 2.19. For u ∈ Conv(Rn) and λ > 0, the Moreau-Yosida envelope eλu is a finite element of
Conv(Rn). Moreover, eλu(x) ≤ u(x) for every x ∈ Rn.

Proof. Throughout the proof fix an arbitrary λ > 0. Since

inf
x1+x2=x

(
u(x1) + 1

2λ |x2|2
)
≤ u(x) + 1

2λ |0|
2,

we have eλu(x) ≤ u(x) for every x ∈ Rn. Since u is proper, there exists x0 ∈ Rn such that u(x0) < +∞.
This shows that

eλu(x) = inf
x1+x2=x

(
u(x1) + 1

2λ |x2|2
)
≤ u(x0) + 1

2λ |x− x0|2 < +∞,

for every x ∈ Rn, which shows that eλu is finite. Using (2.4) we obtain that

epi eλu = epiu+ epi qλ.

It is therefore easy to see, that eλu is a convex function such that lim|x|→+∞ eλu(x) = +∞. �

Lemma 2.20. For every u ∈ Conv(Rn), epi-limλ→0+ eλu = u.

Proof. By Theorem 2.15, eλu
epi−→ u if and only if (eλu)∗

epi−→ u∗. By the definition of eλ, (2.5) and
(2.6) we have

(eλu)∗ = (u� qλ)∗ = u∗ + λq∗.

Therefore, we need to show that u∗ + λq∗
epi−→ u∗. Observe, that for q(x) = 1

2 |x|
2 we have q =

q∗. Since epi-convergence is equivalent to pointwise convergent if the functions are finite, it follows
that epi-limλ→0+ λq

∗ = 0. It is now easy to see that epi-limλ→0+(u∗ + λq∗) = u∗ and therefore
epi-limλ→0+(eλu)∗ = u∗. �

Lemma 2.21. The piecewise affine functions Convp.a.(Rn) are dense in Conv(Rn), equipped with the
topology associated to epi-convergence.

Proof. By Lemma 2.9, epi-convergence coincides with pointwise convergence on finite functions in
Conv(Rn). Therefore, it is easy to see that Convp.a.(Rn) is epi-dense in the finite elements of Conv(Rn).
Now for arbitrary u ∈ Conv(Rn) if follows from Lemma 2.19 that eλu is a finite element of Conv(Rn).
Since Lemma 2.20 shows that epi-limλ→0+ eλu = u, the finite elements of Conv(Rn) are a dense subset
of Conv(Rn). Finally, since denseness is transitive, the piecewise affine functions are an epi-dense subset
of Conv(Rn). �
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2.6 Intrinsic Volumes and Projections

In this section we describe how log-concave and more generally quasi-concave functions can be seen
as direct extensions of Kn. Furthermore, extensions of intrinsic volumes and orthogonal projections to
these function spaces are discussed.

For K ∈ Kn, consider the characteristic function χK ∈ LC(Rn), which we will view as a natural
representative of K in LC(Rn). An intuitive way to generalize the volume on Rn to LC(Rn) is the
integral with respect to the Lebesgue measure,

I(f) :=

∫
Rn
f(x) dx,

for f ∈ LC(Rn). Clearly I(χK) = Vn(K) for every K ∈ Kn. Furthermore, by Lemma 2.2 it is easy to
see, that I(f) < ∞ for every f ∈ LC(Rn). Sometimes I(f) is also called the total mass of f , see for
example [13]. This notion for the volume of a (log-concave) function is commonly accepted and there
are several examples of functional counterparts of geometric inequalities, in which the volume Vn(K)
of a convex body K is replaced by the integral

∫
f of a function f . For example, the Prékopa-Leindler

inequality is the functional analog of the Brunn-Minkowski inequality [31,50].
Since the layer-cake principle yields

I(f) =

∫ +∞

0
Vn({f ≥ t}) dt,

one can analogously extend the intrinsic volumes Vi to LC(Rn) via

Vi(f) :=

∫ +∞

0
Vi({f ≥ t}) dt, (2.9)

for every f ∈ LC(Rn) and 0 ≤ i ≤ n. Again, this gives Vi(χK) = Vi(K) for every K ∈ Kn. These
functional versions of the intrinsic volumes where recently introduced for a more general class of quasi-
concave functions [11, 45]. A function f : Rn → [0,+∞) is said to be quasi-concave if the level sets
{f ≥ t} are convex for very t ≥ 0, which clearly holds for elements in LC(Rn). Furthermore, if
ζ : R→ [0,+∞) is non-increasing and continuous, then ζ ◦ u is quasi-concave for every u ∈ Conv(Rn)
and the level sets {ζ ◦ u ≥ t} are convex bodies for every 0 < t ≤ maxx∈Rn ζ(u(x)). Similar to (2.9) we
can therefore consider

Vi(ζ ◦ u) :=

∫ +∞

0
Vi({ζ ◦ u ≥ t}) dt, (2.10)

for every u ∈ Conv(Rn) and 0 ≤ i ≤ n. Note, that this expression might not be finite for every choice
of ζ and u. However, observe that for i = 0 we obtain

V0(ζ ◦ u) = maxx∈Rn ζ(u(x)) = ζ(minx∈Rn u(x)) (2.11)

for every u ∈ Conv(Rn).
Likewise, the projection of a convex set onto a subspace can be extended to quasi-concave func-

tions, see for example [11, 29, 55]. For this, let E be a linear subspace of Rn. The projection
projE f : E → [0,+∞) of a quasi-concave function f : Rn → [0,+∞) onto E is now defined as

projE f(x) := supy∈E⊥ f(x+ y), (2.12)
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Rn

projz⊥ f

f

z

z⊥

Figure 2.2: Projection of a log-concave function f ∈ LC(Rn) onto the hyperplane z⊥.

for every x ∈ E. If we furthermore assume that f is upper semi-continuous and lim|x|→+∞ f(x) = 0 we
can rewrite this as

projE f(x) = maxy∈E⊥ f(x+ y).

For such a function f and t ≥ 0, we have maxy∈E⊥ f(x+ y) ≥ t if and only if there exists y ∈ E⊥ such
that f(x+ y) ≥ t. Hence,

{projE f ≥ t} = projE{f ≥ t}, (2.13)

for every t ≥ 0, where projE on the right side denotes the usual orthogonal projection onto E in Rn.
Consequently projE χK = χprojE K

and moreover

hypo projE f = projE×R hypo f,

where hypo f = {(x, y) ∈ Rn×R : 0 ≤ y ≤ f(x)} denotes the hypograph of f . See also [11, Lemma 5.2]
and Figure 2.2.

Again, let ζ : R → [0,+∞) be a non-increasing, continuous function. For f = ζ ◦ u with
u ∈ Conv(Rn) we can rewrite (2.12) as

projE(ζ ◦ u)(x) = ζ
(

miny∈E⊥ u(x+ y)
)
,

for every x ∈ E. Hence, it makes sense to also define the projection of a convex function u ∈ Conv(Rn)
as

projE u(x) := miny∈E⊥ u(x+ y),

for every x ∈ E. Similarly, we obtain

{projE u ≤ t} = projE{u ≤ t},

for every u ∈ Conv(Rn) and t ∈ R and furthermore

epi projE u = projE×R epiu.

We remark that since the orthogonal projection of a convex body is again a convex body, it is easy to
see that for dimE = k, the function projE u is an element of Conv(E).
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Chapter 3

Valuations on Convex and Log-Concave
Functions

“These aren’t the droids you’re
looking for.”

Obi-Wan Kenobi

In this chapter, we study valuations on convex and log-concave functions. In addition to introducing
some real-valued, measure-valued and Minkowski valuations, we will prove important properties such
as continuity and consider the behavior with respect to group actions. Furthermore, we will see that
studying valuations on Conv(Rn) is equivalent to studying valuations on LC(Rn).

3.1 Basic Observations

Let K,L ∈ Kn be such that K ∪ L ∈ Kn. It is easy to see that

h(K ∪ L, ·) = h(K, ·) ∨ h(L, ·) and h(K ∩ L, ·) = h(K, ·) ∧ h(L, ·),

where ∨ and ∧ denote the pointwise maximum and minimum, respectively. Moreover, we have for the
convex indicator functions

IK∩L = IK ∨ IL and IK∪L = IK ∧ IL, (3.1)

and similarly for the characteristic functions

χK∩L = χK ∧χL and χK∪L = χK ∨χL . (3.2)

Hence, the following definition can be seen as a generalization of Definition 1.3.

Definition 3.1. A map Z defined on a space of real-valued functions S and taking values in an abelian
semigroup 〈A,+〉 is called a valuation if

Z(u ∨ v) + Z(u ∧ v) = Z(u) + Z(v),

whenever u, v, u ∨ v, u ∧ v ∈ S.

For Sobolev spaces [34,36,41] and Lp spaces [37,49,56,57] complete classifications of valuations intertwin-
ing the SL(n) were established. For definable functions, an analog to Hadwiger’s theorem was proven [8]
and for quasi-concave functions, valuations were introduced and classified in [14,15]. A first classifica-
tion of valuations on Conv(Rn) was obtained by Cavallina & Colesanti [12]. See also [4, 30,35,59].
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If Z is a valuation on Conv(Rn), then (3.1) shows that

K 7→ Z(IK) (3.3)

defines a valuation on Kn and using (3.2), an analog statement can be made for valuations on LC(Rn).
Note, that for u, v ∈ Conv(Rn) we always have u∨v ∈ Conv(Rn) but not necessarily u∧v ∈ Conv(Rn).
In the same way f ∧ g ∈ LC(Rn) for every f, g ∈ LC(Rn) but we need not have f ∨ g ∈ LC(Rn).
Furthermore, if K,L ∈ Kno are such that K ∪ L ∈ Kno , then (2.3) shows that

`K∩L = `K ∨ `L and `K∪L = `K ∧ `L.

Consequently,
K 7→ Z(`K) (3.4)

defines a valuation on Kno . In Chapter 4 we will see that studying these connections between valuations
on Conv(Rn) and valuations on Kn and Kno , respectively, will be crucial in order to classify the former.
Moreover, we make the following observations on actions of affine transformations. For every K ∈ Kn
and x ∈ Rn we have

IτxK = IK ◦ τ−1
x and χτxK = χK ◦τ−1

x (3.5)

and for every φ ∈ GL(n)

IφK = IK ◦ φ−1 and χφK = χK ◦φ−1. (3.6)

If K ∈ Kno , then
`φK = `K ◦ φ−1. (3.7)

Hence, we have the following analogs of the properties that were studied in Section 1.3. Let S denote
a space of real-valued functions defined on Rn. A map Z defined on S is called translation invariant if
Z(u ◦ τ−1

x ) = Z(u) for every x ∈ Rn and u ∈ S with u ◦ τ−1
x ∈ S. Furthermore, Z is said to be SL(n)

invariant if Z(u ◦ φ−1) = Z(u) for every φ ∈ SL(n) and u ∈ S with u ◦ φ−1 ∈ S.
We say that a measure-valued map µ : S →M(Sn−1) is SL(n) contravariant of degree p ∈ R if∫

Sn−1

b(z) dµ(u ◦ φ−1, z) =

∫
Sn−1

b(φ−t z) dµ(u, z),

for every φ ∈ SL(n), every u ∈ S with u ◦ φ−1 ∈ S and every continuous, p-homogeneous function
b : Rn\{0} → R.

Moreover, an operator Z : S → Kn is said to be SL(n) covariant if Z(u ◦ φ−1) = φZ(u) for every
φ ∈ SL(n) and u ∈ S with u ◦ φ−1 ∈ S and it is called SL(n) contravariant if Z(u ◦ φ−1) = φ−t Z(u).
Furthermore, Z is translation covariant if there exists a function Z0 : S → R associated with Z such
that

Z(u ◦ τ−1
x ) = Z(u) + Z0(u)x,

for every x ∈ Rn and u ∈ S with u ◦ τ−1
x ∈ S.

Lastly, for a map Y : LC(Rn)→ R we say that Y is homogeneous of degree q ∈ R if Y(sf) = sq Y(f)
for every s > 0 and f ∈ LC(Rn). Similarly, one defines homogeneity for an operator defined on LC(Rn)
and taking values in M(Sn−1) or Kn.
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Remark 3.2. Let Z : Conv(Rn) → 〈A,+〉 be a valuation where 〈A,+〉 is an abelian semigroup. Let
u, v ∈ Conv(Rn) be such that u ∨ v ∈ Conv(Rn) and let f, g ∈ LC(Rn) be such that f = e−u and
g = e−v. Since

f ∨ g = e−(u∧v) and f ∧ g = e−(u∨v),

the map Z is a valuation if and only if Y : LC(Rn)→ 〈A,+〉 is a valuation, where

Y(f) = Z(− log f),

for every f ∈ LC(Rn). Furthermore, for uk, u ∈ Conv(Rn) we have uk
epi−→ u if and only if e−uk

hypo−→ e−u.
Hence, if 〈A,+〉 is a topological semigroup, then Z is continuous if and only if Y is continuous. Moreover,

for x ∈ Rn we have f◦τ−1
x = e−u◦τ

−1
x and therefore Z is translation invariant if and only if Y is translation

invariant. Similarly, translation covariance, SL(n) invariance and SL(n) covariance are equivalent for
valuations on LC(Rn) and their counterparts on Conv(Rn). Therefore, studying valuations on LC(Rn)
is equivalent to studying valuations on Conv(Rn) and it will be convenient for us to switch between
these points of view. Lastly, we want to point out that u 7→ qu is continuous for all u ∈ Conv(Rn) and
q > 0, and therefore f 7→ f q is a continuous map from LC(Rn) to LC(Rn).

For k ≥ 0, we say that a non-negative function ζ ∈ C(R) has finite k-th moment if∫ ∞
0

tkζ(t) dt <∞.

Furthermore, we define

Dk(R) :=
{
ζ ∈ C(R) : ζ ≥ 0, ζ is decreasing and has finite k-th moment

}
.

We conclude this section with two lemmas that will be needed in order to define measure-valued
valuations and Minkowski valuations on Conv(Rn) and LC(Rn) respectively.

Lemma 3.3. For k ≥ 0 and ζ ∈ Dk(R) there exists ξ ∈ Dk(R) such that ξ is smooth, strictly decreasing
and ξ(t) > ζ(t) for every t ∈ R.

Proof. Fix ε > 0 and let ρε ∈ C∞(R) denote a standard mollifying kernel such that
∫
Rn ρε dx = 1 and

ρε(x) ≥ 0 for all x ∈ Rn while the support of ρε is contained in [−ε, ε]. Write τε for the translation
t 7→ t+ ε on R and define ξ(t) for t ∈ R by

ξ(t) = (ρε ? (ζ ◦ τ−1
ε ))(t) + e−t =

∫ +ε

−ε
ζ(t− ε− s)ρε(s) ds+ e−t.

It is easy to see, that ξ is non-negative and smooth. Since t 7→
∫ +ε
−ε ζ(t− ε− s)ρε(s) ds is decreasing, ξ

is strictly decreasing. Since∫ +ε

−ε
ζ(t− ε− s)ρε(s) ds ≥

∫ +ε

−ε
ζ(t)ρε(s) ds = ζ(t),

we get ξ(t) > ζ(t) for every t ∈ R. Finally, ξ has finite k-th moment, since t 7→ e−t has finite k-th
moment and∫ +∞

0
tk
∫ +ε

−ε
ζ(t− ε− s)ρε(s) dsdt =

∫ +ε

−ε
ρε(s)

∫ +∞

0
tkζ(t− ε− s) dtds

≤
∫ +ε

−ε
ρε(s) ds

∫ +∞

0
tkζ(t− 2ε) dt < +∞.

�
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Lemma 3.4. For k ≥ 0 let ξ ∈ Dk(R). If ξ is smooth and strictly decreasing, then∫ ξ(b)

0
(ξ−1(t)− b)k+1 dt < +∞,

for every b ∈ R.

Proof. Using the substitution t = ξ(s) and integration by parts, we obtain∫ ξ(b)

0
(ξ−1(t)− b)k+1 dt = −

∫ +∞

b
(s− b)k+1ξ′(s)︸ ︷︷ ︸

<0

ds

≤ − lim inf
s→+∞

(s− b)k+1ξ(s)︸ ︷︷ ︸
∈[0,+∞]

+(k + 1)

∫ +∞

b
(s− b)kξ(s) ds︸ ︷︷ ︸
<+∞

< +∞.

�

3.2 Real-Valued Valuations

The aim of this section is to find analogs of the Euler characteristic and volume on Conv(Rn) and
LC(Rn), respectively. Furthermore, we study their properties, such as their behavior with respect to
the SL(n) and translations.

Section 3.2.1 is original to this thesis. The results of Sections 3.2.2 and 3.2.3 for valuations on
Conv(Rn) can be found in [17] whereas the corresponding results on LC(Rn) are proved in [47].

3.2.1 A Simple Approach

Before we consider general dimensions, we start with some basic observations in the 1-dimensional
case. Let Z : Conv(R)→ R be a continuous and translation invariant valuation. By Lemma 2.14, (3.3)
and (3.5), the map K 7→ Z(IK + t) defines a continuous and translation invariant valuation on K1 for
every t ∈ R and therefore has to be a linear combination of the Euler characteristic V0 and volume
V1 (see, for example, [28, p. 39]). Similarly, by (3.4), the map K 7→ Z(`K + t) defines a continuous
valuation on K1

o for every t ∈ R. However, there exist infinitely many valuations of this type, e.g. if
K = [−a, b] ∈ K1

o with a, b ≥ 0, then [−a, b] 7→ α(a) + β(b) defines a continuous valuation for every
continuous α, β : R≥0 → R. Having said this, we will see in Section 4.2 that in the higher-dimensional
setting with the additional assumption of SL(n) invariance only linear combinations of the Euler char-
acteristic and volume will remain. Hence, in the following we consider the two cases that K 7→ Z(`K+t)
is either a multiple of the Euler characteristic or volume and in both cases we want to find an explicit
representation of Z.

We begin with the case of the Euler characteristic, that is we assume that there exists a constant
ct such that Z(`K + t) = ctV0(K) = ct for every K ∈ K1

o. Obviously, by the continuity of Z the map
t 7→ ct is continuous. Hence, there exists a continuous function ψ : R→ R such that

Z(`K + t) = ψ(t), (3.8)

for every K ∈ K1
o and t ∈ R.
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x

u+,X(x)

x0 x1 x2 x3

u(x0)

u(x1)

u(x2)

u(x3)

Figure 3.1: Illustration of of u+,X .

Fix an arbitrary u ∈ Conv(R). Without loss of generality let u(0) = minx∈Rn u(x) and let
u+ := u+ I[0,+∞). Observe, that u+ is increasing on its domain. Similarly, u− := u + I(−∞,0] is
decreasing on its domain and by the valuation property of Z we have

Z(u+) + Z(u−) = Z(u) + Z(u+ I{0})

and therefore
Z(u) = Z(u+) + Z(u−)− ψ(u(0)). (3.9)

We will now calculate Z(u+), provided that domu+ 6= ∅. First, assume that domu+ is bounded, that
is domu+ = [0, b] with b ∈ R and furthermore that u(b) < +∞. Let

X := {0 = x0 < x1 < · · · < xn = b}

denote a partition of [0, b] and let u+,X denote the piecewise affine approximation of u+ that arises
from X,

u+,X(x) =

{
u(xi) + x−xi

xi+1−xi (u(xi+1)− u(xi)), xi ≤ x ≤ xi+1

+∞, x /∈ domu+.

See also Figure 3.1. It is easy to see, that u+,X
epi−→ u+ as the norm |X| = max1≤i≤n(xi − xi−1) of X

approaches zero and by the valuation property

Z(u+,X) =

n−1∑
i=0

Z(u+,X + I[xi,xi+1])−
n−1∑
i=1

Z(u+,X + I{xi}).

Note, that for 0 ≤ i ≤ n− 1 we have

Z(u+,X + I[xi,xi+1]) = Z

(
`[

0,
xi+1−xi

u(xi+1)−u(xi)

] ◦ τ−1
xi + u(xi)

)
− Z

(
`[

0,
xi+1−xi

u(xi+1)−u(xi)

] ◦ τ−1
xi+1

+ u(xi+1)

)
+ Z(u+ I{xi+1}),

see also Figure 3.2. By (3.8) and the translation invariance of Z this reduces to
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x

u+,X(x) + I[xi,xi+1]
`[

0,
xi+1−xi

u(xi+1)−u(xi)

] ◦ τ−1
xi+1

+ u(xi+1)

xi xi+1

u(xi)

u(xi+1)

Figure 3.2: Inclusion-exclusion principle for u+,X + I[xi,xi+1].

Z(u+,X + I[xi,xi+1]) = ψ(u(xi))− ψ(u(xi+1)) + ψ(u(xi+1)) = ψ(u(xi)),

for every 0 ≤ i ≤ n− 1. Therefore,

Z(u+,X) =
n−1∑
i=0

ψ(u(xi))−
n−1∑
i=1

ψ(u(xi)) = ψ(u(x0)) = ψ(u(0)),

and furthermore by continuity
Z(u+) = ψ(u(0)).

In the case limx→b− u(x) = +∞, consider the sequence u+,k := u+ +I[0,b−1/k], k ∈ N. Since u+,k
epi−→ u+

and by the continuity of Z, we obtain again Z(u+) = ψ(u(0)). Similarly, if domu+ is unbounded,
consider the sequence u+ + I[0,k] to obtain Z(u+) = ψ(u(0)).

In the same way, one shows that Z(u−) = ψ(u(0)). Therefore, it follows from (3.9) that

Z(u) = ψ(u(0)) + ψ(u(0))− ψ(u(0)) = ψ(u(0)) = ψ(minx∈Rn u(x)).

We will see in Lemma 3.5 that for general dimensions any continuous function composed with the
minimum of a convex function is a continuous, SL(n) and translation invariant valuation that can be
understood as a functional analog of the Euler characteristic.

Next, we want to find an analog for the volume (or length) in the 1-dimensional case. Therefore,
let Z : Conv(R) → R be again a continuous and translation invariant valuation but this time there
exists a continuous function ψ : R→ R such that

Z(`K + t) = ψ(t)V1(K), (3.10)

for every K ∈ K1
o and t ∈ R. Consider the function uh = `[0,1/h] + I[0,1] for h > 0. Note, that by (3.10)

and translation invariance, Z vanishes on functions with 0-dimensional domain. Thus, by translation
invariance and the valuation property,

Z(uh + t) = Z(`[0,1/h] + t)− Z(`[0,1/h] ◦ τ−1
1 + t+ h) =

ψ(t)− ψ(t+ h)

h
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for every t ∈ R. Since uh + t
epi−→ I[0,1] + t as h↘ 0, it follows that also uh + t+ k

epi−→ I[0,1] + t whenever
h↘ 0, k → 0 and therefore by the continuity of Z

Z(I[0,1] + t) = lim
h→0+,k→0

ψ(t+ k)− ψ(t+ h+ k)

h
= −ψ′(t).

In particular, ψ is continuously differentiable. Moreover, consider the function ub = `[0,1] + I[0,b] for any
b > 0. Again, since Z is translation invariant and vanishes on functions with 0-dimensional domain, we
have

Z(ub + t) = Z(`[0,1] + t)− Z(`[0,1] ◦ τ−1
b + t+ b) = ψ(t)− ψ(t+ b),

for every t ∈ R. Since ub
epi−→ `[0,1] as b→ +∞, it follows that ψ(t)→ 0 as t→ +∞. Therefore∫ +∞

0
ψ′(t) dt = lim

t→+∞
ψ(t)− ψ(0) = −ψ(0).

Fix an arbitrary u ∈ Conv(R) and let u+ and u− be defined as before. Assume first that domu+ = [0, b]
with b ∈ R and u(b) < +∞. Denote the piecewise affine approximation of u+ that arises from the
partition X by u+,X . Since Z vanishes on functions with 0-dimensional domain and by translation
invariance we have

Z(u+,X) =
n−1∑
i=0

Z(u+,X + I[xi,xi+1]),

with

Z(u+,X + I[xi,xi+1]) = Z

(
`[

0,
xi+1−xi

u(xi+1)−u(xi)

] ◦ τ−1
xi + u(xi)

)
− Z

(
`[

0,
xi+1−xi

u(xi+1)−u(xi)

] ◦ τ−1
xi+1

+ u(xi+1)

)
.

By (3.10) and the translation invariance of Z this reduces to

Z(u+,X + I[xi,xi+1]) = xi+1−xi
u(xi+1)−u(xi)

(ψ(u(xi))− ψ(u(xi+1)).

Hence,

Z(u+,X) =
n−1∑
i=0

−ψ(u(xi+1))− ψ(u(xi))

u(xi+1)− u(xi)
(xi+1 − xi) −→ −

∫
domu+

ψ′(u(x)) dx = Z(u+),

as |X| approaches zero. Using continuity arguments, one can show that this representation also holds
for unbounded domains and unbounded functions u. Moreover, a similar representation can be obtained
for u−. Thus,

Z(u) = −
∫

domu
ψ′(u(x)) dx.

In Section 2.6 we saw that the integral of a quasi-concave function can be interpreted as a generalization
of the n-dimensional volume. In Section 3.2.3 we will introduce the integral of a non-negative function
composed with a convex function as a functional analog of the n-dimensional volume on Conv(Rn).
Furthermore, these examples show that under certain circumstances a valuation Z on Conv(R) is
uniquely determined by its values on the functions `K + t with K ∈ K1

o and t ∈ R. We will prove a
more general version of this observation in Lemma 4.1.
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3.2.2 The Euler Characteristic

We show that the previously discussed functional analog of the Euler characteristic for quasi-concave
functions, (2.11), can be generalized to a more general class of functions.

Lemma 3.5. For ζ ∈ C(R), the map

u 7→ ζ
(

minx∈Rn u(x)
)

(3.11)

is a continuous, SL(n) and translation invariant valuation on Conv(Rn).

Proof. Let u ∈ Conv(Rn). Since

minx∈Rn u(x) = minx∈Rn u(τx) = minx∈Rn u(φ−1x),

for every φ ∈ SL(n) and translation τ : Rn → Rn, (3.11) defines an SL(n) and translation invariant
map. It is easy to see that

e−minx∈Rn u(x) =

∫
R
V0({u ≤ t})e−t dt.

If u, v ∈ Conv(Rn) are such that u ∧ v ∈ Conv(Rn), then the valuation property of V0 implies that

e−minx∈Rn (u∨v)(x) + e−minx∈Rn (u∧v)(x) =

∫
R

(
V0({u ∨ v ≤ t}) + V0({u ∧ v ≤ t})

)
e−t dt

=

∫
R

(
V0({u ≤ t} ∩ {v ≤ t}) + V0({u ≤ t} ∪ {v ≤ t})

)
e−t dt

=

∫
R

(
V0({u ≤ t}) + V0({v ≤ t})

)
e−t dt

= e−minx∈Rn u(x) + e−minx∈Rn v(x).

Therefore, since
minx∈Rn(u ∧ v)(x) = min{minx∈Rn u(x),minx∈Rn v(x)},

we obtain that
minx∈Rn(u ∨ v)(x) = max{minx∈Rn u(x),minx∈Rn v(x)}.

Hence, a function ζ ∈ C(R) composed with the minimum of a function u ∈ Conv(Rn) defines a valuation
on Conv(Rn). The continuity of (3.11) follows from Lemma 2.12. �

Remark 3.6. For an alternative proof of the valuation property see [12, Lemma 3.7].

Lemma 3.7. For every q ∈ R, the map

f 7→ V0(f)q =
(

maxx∈Rn f(x)
)q

is a continuous, SL(n) and translation invariant valuation on LC(Rn) that is homogeneous of degree q.

Proof. Since (
maxx∈Rn s f(x)

)q
= sq

(
maxx∈Rn f(x)

)q
,

for every f ∈ LC(Rn) and s > 0, the map f 7→ V0(f)q is homogeneous of degree q. By Remark 3.2 and
Lemma 3.5 it is a continuous, SL(n) and translation invariant valuation. �
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3.2.3 Volume

Let ζ ∈ C(R) be non-negative. For u ∈ Conv(Rn), define

Zζ(u) :=

∫
domu

ζ(u(x)) dx.

We want to investigate conditions on ζ such that Zζ defines a continuous valuation on Conv(Rn).
It is easy to see, that in order for Zζ(u) to be finite for every u ∈ Conv(Rn), it is necessary for ζ to

have finite (n− 1)-st moment. Indeed, if u(x) = |x|, then

Zζ(u) =

∫
Rn
ζ(|x|) dx = n vn

∫ +∞

0
tn−1ζ(t) dt. (3.12)

We will see in Lemma 3.9 that this condition is also sufficient. First, we require the following result.

Lemma 3.8. Let uk be a sequence in Conv(Rn) with epi-limit u ∈ Conv(Rn). If ζ ∈ C(R) is non-
negative with finite (n − 1)-st moment, then, for every ε > 0, there exist t0 ∈ R and k0 ∈ N such
that ∫

domu∩{u>t}
ζ(u(x)) dx < ε and

∫
domuk∩{uk>t}

ζ(uk(x)) dx < ε

for every t ≥ t0 and k ≥ k0.

Proof. Without loss of generality, let minx∈Rn u(x) = u(0). By the definition of epi-convergence, there
exists a sequence xk in Rn such that xk → 0 and uk(xk) → u(0). Therefore, there exists k0 ∈ N such
that |xk| < 1 and uk(xk) < u(0) + 1 for every k ≥ k0. By Lemma 2.16, there exist constants a > 0 and
b̄ ∈ R, such that

u(x), uk(x) > a|x|+ b̄,

for every x ∈ Rn and k ∈ N. Setting ũk(x) = uk(x− xk), we have

ũk(x) > a|x− xk|+ b̄ ≥ a|x| − a|xk|+ b̄ ≥ a|x|+ (b̄− a),

for every k ≥ k0. Hence, with b = b̄− a, we have

u(x), ũk(x) > a|x|+ b, (3.13)

for every x ∈ Rn and k ≥ k0.
For x ∈ Rn we use polar coordinates, that is x = rω with r ∈ [0,+∞) and ω ∈ Sn−1. For u(rω) ≥ 1,

we obtain from (3.13) that

rn−1 <

(
u(rω)

a
− b

a

)n−1

≤ c u(rω)n−1 and similarly rn−1 < c ũk(rω)n−1, (3.14)

for every r ∈ [0,+∞), ω ∈ Sn−1 and k ≥ k0, where c only depends on a, b and the dimension n. Now
choose t̄0 ≥ max{1, 2(u(0) + 1)− b}. Then for all t ≥ t̄0

t− u(0)

t− b
≥ 1

2
and

t− (u(0) + 1)

t− b
≥ 1

2
. (3.15)
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For ω ∈ Sn−1, let vω(r) := u(rω). The function vω is non-decreasing and convex on [0,+∞). In
particular, the left and right derivatives, v′ω,l, v

′
ω,r of vω exist and for the subgradient ∂vω(r) = [v′ω,l, v

′
ω,r].

Furthermore, it follows from r < r̄ that η ≤ η̄ for η ∈ ∂vω(r) and η̄ ∈ ∂vω(r̄).
For t ≥ t̄0, set

Dω(t) := {r ∈ [0,+∞) : t < u(rω) < +∞}.

For every ω ∈ Sn−1, the set Dω(t) is either empty or there exists

rω(t) = inf Dω(t) ≤ t−b
a (3.16)

and vω(rω(t)) = t. Therefore, if Dω(t) is non-empty, we have

t− u(0) ≤ ξ rω(t)

for ξ ∈ ∂vω(rω(t)). Hence, it follows from (3.16) and (3.15) that

ϑ ≥ ξ ≥ t− u(0)

rω(t)
≥ a(t− u(0))

t− b
≥ a

2
, (3.17)

for all r ∈ Dω(t), ϑ ∈ ∂vω(r) and ξ ∈ ∂vω(rω(t)). Similarly, setting ṽk,ω(r) = ũk(rω) and

D̃k,ω(t) = {r ∈ [0,+∞) : t < uk(rω) < +∞},

it is easy to see that ṽk,ω is convex on [0,+∞) and monotone increasing on D̃k,ω(t) for all k ≥ k0. By
the choice of t̄0 and (3.15) we have

ϑ ≥ a

2
,

for every t ≥ t̄0, r ∈ Dk,ω(t), k ≥ k0 and ϑ ∈ ∂ṽk,ω(r). Recall, that as a convex function vω is locally
Lipschitz and differentiable almost everywhere on the interior of its domain. Using polar coordinates,
(3.14) and the substitution vω(r) = s, we obtain from (3.17) that∫

domu∩{u>t}
ζ(u(x)) dx =

∫
Sn−1

∫
Dω(t)

rn−1ζ(vω(r)) dr dω

≤ c
∫
Sn−1

∫
Dω(t)

vω(r)n−1ζ(vω(r)) dr dω

≤ 2n vn c

a

∫ +∞

t
sn−1ζ(s) ds

(3.18)

for every t ≥ t̄0. In the same way,∫
domuk∩{uk>t}

ζ(uk(x)) dx =

∫
dom ũk∩{ũk>t}

ζ(ũk(x)) dx ≤ 2n vn c

a

∫ +∞

t
sn−1ζ(s) ds,

for every t ≥ t̄0 and k ≥ k0 with the same constant c as in (3.18). The statement now follows, since ζ
is non-negative and has finite (n− 1)-st moment. �
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Lemma 3.9. Let ζ ∈ C(R) be non-negative. Then Zζ(u) < +∞ for every u ∈ Conv(Rn) if and only if
ζ has finite (n− 1)-st moment.

Proof. As already pointed out in (3.12), it is necessary for ζ to have finite (n− 1)-st moment in order
for Zζ to be finite.

Now let u ∈ Conv(Rn) be arbitrary, let ζ have finite (n−1)-st moment and let umin = minx∈Rn u(x).
By Lemma 3.8, there exists t ∈ R such that∫

domu∩{u>t}
ζ(u(x)) dx ≤ 1.

It follows that

Zζ(u) =

∫
domu

ζ(u(x)) dx =

∫
{u≤t}

ζ(u(x)) dx+

∫
domu∩{u>t}

ζ(u(x)) dx ≤ max
s∈[umin,t]

ζ(s)Vn({u ≤ t}) + 1

and hence Zζ(u) <∞. �

Lemma 3.10. For ζ ∈ C(R) non-negative and with finite (n − 1)-st moment, the functional Zζ is
continuous on Conv(Rn).

Proof. Let u ∈ Conv(Rn) and let uk be a sequence in Conv(Rn) such that uk
epi−→ u. Set

umin = minx∈Rn u(x). By Lemma 3.8, it is enough to show that∫
{uk≤t}

ζ(uk(x)) dx→
∫
{u≤t}

ζ(u(x)) dx

for every fixed t > umin. Lemma 2.12 implies that {uk ≤ t} → {u ≤ t} in the Hausdorff metric.
Furthermore, by Lemma 2.16, there exists b ∈ R such that u(x), uk(x) > b for x ∈ Rn and k ∈ N. Set
c = maxs∈[b,t] ζ(s) ≥ 0. We distinguish the following cases.

• dim(domu) < n:
In this case Vn({u ≤ t}) = 0 and since volume is continuous on convex sets, Vn({uk ≤ t})→ 0.
Hence,

0 ≤
∫
{uk≤t}

ζ(uk(x)) dx ≤ c Vn({uk ≤ t})→ 0.

• dim(domu) = n:
In this case, {u ≤ t} is a set in Kn with non-empty interior. Therefore, for ε > 0 there exist
k0 ∈ N and C ∈ Kn such that for every k ≥ k0 the following hold:

C ⊂ int({u ≤ t}) ∩ {uk ≤ t},

Vn({u ≤ t} ∩ Cc) ≤ ε

3c
,

Vn({uk ≤ t} ∩ Cc) ≤
ε

3c
,

where Cc is the complement of C. Note, that u(x), uk(x) ∈ [b, t] for x ∈ C and k ≥ k0. Since
C ⊂ int domu, Theorem 2.8 implies that uk converges to u uniformly on C. Since ζ is continuous,
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the restriction of ζ to [b, t] is uniformly continuous. Hence, ζ ◦ uk converges uniformly to ζ ◦ u on
C. Therefore, there exists k1 ≥ k0 such that

|ζ(u(x))− ζ(uk(x))| ≤ ε

3Vn(C)
,

for all x ∈ C and k ≥ k1. This gives∣∣∣ ∫
{u≤t}

ζ(u(x)) dx−
∫
{uk≤t}

ζ(uk(x)) dx
∣∣∣

≤
∫
C
|ζ(u(x))− ζ(uk(x))| dx+

∫
{u≤t}∩Cc

ζ(u(x)) dx+

∫
{uk≤t}∩Cc

ζ(uk(x)) dx

≤ Vn(C)
ε

3Vn(C)
+ c

ε

3c
+ c

ε

3c
= ε,

for k ≥ k1. The statement now follows, since ε > 0 was arbitrary. �

Lemma 3.11. For ζ ∈ C(R) non-negative and with finite (n − 1)-st moment, the functional Zζ is a
continuous, SL(n) and translation invariant valuation on Conv(Rn).

Proof. By Lemma 3.10, the map Zζ is continuous. Furthermore, it is easy to see that Zζ is SL(n) and
translation invariant. It remains to show the valuation property. Therefore, let u, v ∈ Conv(Rn) be
such that u ∧ v ∈ Conv(Rn). We have

Zζ(u ∧ v) =

∫
dom v∩{v<u}

ζ(v(x)) dx+

∫
dom v∩{u=v}

ζ(v(x)) dx+

∫
domu∩{u<v}

ζ(u(x)) dx,

Zζ(u ∨ v) =

∫
domu∩{v<u}

ζ(u(x)) dx+

∫
domu∩{u=v}

ζ(u(x)) dx+

∫
dom v∩{u<v}

ζ(v(x)) dx.

Hence,
Zζ(u ∧ v) + Zζ(u ∨ v) = Zζ(u) + Zζ(v)

which proves the valuation property. �

In the following we consider the special case ζ(t) = e−qt with q > 0, to obtain a valuation on log-concave
functions.

Lemma 3.12. For every q > 0, the map

f 7→ Vn(f q) =

∫
Rn
f q(x) dx,

is a continuous, SL(n) and translation invariant valuation on LC(Rn) that is homogeneous of degree q.

Proof. By Remark 3.2 and Lemma 3.11, the map f 7→ Vn(f q) is a well-defined, continuous, SL(n) and
translation invariant valuation on LC(Rn). Since∫

Rn
(sf)q(x) dx = sq

∫
Rn
f q(x) dx,

for every f ∈ LC(Rn) and s > 0, it is homogeneous of degree q. �
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We need the following calculation of the volume of a specific function.

Lemma 3.13. For r > 0, q > 0 and Tr = conv{0, r e1, e2, . . . , en},

Vn(e−q`Tr ) = r
qn .

Proof. By definition we have

Vn(e−q`Tr ) =

∫ 1

0
Vn({e−q`Tr ≤ t}) dt =

∫ 1

0
Vn({`Tr ≤ −

log t
q }) dt.

Using the substitution s = − log t
q we have dt = −qe−qs ds and therefore

Vn(e−q`Tr ) = q

∫ +∞

0
Vn({`Tr ≤ s}) e−qs ds.

By definition, {`Tr ≤ s} = s Tr for every s ≥ 0. Hence,

Vn({`Tr ≤ s}) = snVn(Tr) = sn r
n! .

This gives

Vn(e−q`Tr ) = r
n!

∫ +∞

0
sne−qsq ds = 1

qn
r
n!

∫ +∞

0
(qs)ne−qsq ds = 1

qn
r
n!

∫ +∞

0
pne−p dp = r

qn .

�

3.3 Measure-Valued Valuations

On the Sobolev space W 1,1(Rn) (that is, the space of functions f ∈ L1(Rn) with weak gradient
∇f ∈ L1(Rn)), Gaoyong Zhang [60] defined the projection body Π 〈f〉, given by

h(Π 〈f〉, y) =

∫
Rn
|y · ∇f(x)| dx,

for y ∈ Rn. The operator that associates to f the convex body Π 〈f〉 is easily seen to be SL(n)
contravariant. The projection body of f turned out to be critical in Zhang’s affine Sobolev inequality
[60], which is a sharp affine isoperimetric inequality essentially stronger than the L1 Sobolev inequality.
The convex body Π 〈f〉 is the classical projection body of another convex body 〈f〉, which is the unit
ball of the so-called optimal Sobolev norm of f and was introduced by Lutwak, Yang and Zhang [40].
The operator f 7→ 〈f〉 is called the LYZ operator and it is SL(n) covariant. Furthermore, in [36], a
characterization of the operators f 7→ Π 〈f〉 and f 7→ 〈f〉 as SL(n) contravariant and SL(n) covariant
valuations was established.

In this section, we extend the LYZ measure, that is, the surface area measure of the image of the
LYZ operator, to functions ζ ◦ u, where ζ ∈ Dn−2(R) and u ∈ Conv(Rn). Following [40], for W 1,1(Rn)
not vanishing a.e., we define the Borel measure S(〈f〉, ·) on Sn−1 (using the Riesz-Markov-Kakutani
representation theorem) by the condition that∫

Sn−1

b(z) dS(〈f〉, z) =

∫
Rn
b(−∇f(x)) dx (3.19)
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for every b : Rn → R that is continuous and positively 1-homogeneous. Since the LYZ measure S(〈f〉, ·)
is not concentrated on a great subsphere of Sn−1 (see [40]), the solution to the Minkowski problem
implies that there is a unique convex body 〈f〉 whose surface area measure is S(〈f〉, ·). See also
Section 1.3.2 and [54, Section 8.2].

By the co-area formula, we may rewrite (3.19) if, in addition, f = ζ ◦ u with ζ ∈ Dn−2(R) and
u ∈ Conv(Rn), as ∫

Sn−1

b(z) dS(〈f〉, z) =

∫ +∞

0

∫
Sn−1

b(z) dS({f ≥ t}, z) dt.

This formula provides the motivation of our extension. The results of this section will appear in [16].

Lemma 3.14. If ζ ∈ Dn−2(R), then∫ +∞

0
Hn−1(∂{ζ ◦ u ≥ t}) dt < +∞

for every u ∈ Conv(Rn).

Proof. Fix u ∈ Conv(Rn). By Lemma 3.3 there exists ξ ∈ Dn−2(R) such that ξ is smooth, strictly
decreasing and ξ > ζ pointwise. Thus, {ζ ◦ u ≥ t} ⊆ {ξ ◦ u ≥ t} for every t ∈ R. Since those are
compact convex sets for every t ≥ 0, we obtain Hn−1(∂{ζ ◦ u ≥ t}) ≤ Hn−1(∂{ξ ◦ u ≥ t}) for every
t ∈ R. Hence, it is enough to show that∫ +∞

0
Hn−1(∂{ξ ◦ u ≥ t}) dt < +∞.

By Lemma 2.2, there exist constants a, b ∈ R with a > 0 such that u(x) > v(x) = a|x| + b for all
x ∈ Rn. Therefore ξ ◦ u < ξ ◦ v, which implies that {ξ ◦ u ≥ t} ⊂ {ξ ◦ v ≥ t} for every t > 0. Hence,∫ +∞

0
Hn−1(∂{ξ ◦ u ≥ t}) dt <

∫ +∞

0
Hn−1(∂{ξ ◦ v ≥ t}) dt = n vn

an−1

∫ ξ(b)

0
(ξ−1(t)− b)n−1 dt,

which is finite by Lemma 3.4. �

Lemma and Definition 3.15. For u ∈ Conv(Rn) and ζ ∈ Dn−2(R), a finite Borel measure S(〈ζ ◦ u〉, ·)
on Sn−1 is defined by the condition that∫

Sn−1

b(z) dS(〈ζ ◦ u〉, z) =

∫ +∞

0

∫
Sn−1

b(z) dS({ζ ◦ u ≥ t}, z) dt (3.20)

for every continuous function b : Sn−1 → R. Moreover, if uk, u ∈ Conv(Rn) are such that uk
epi−→ u,

then the measures S(〈ζ ◦ uk〉, ·) converge weakly to S(〈ζ ◦ u〉, ·).

Proof. For fixed u ∈ Conv(Rn) and ζ ∈ Dn−2(R), we have∣∣∣∣∫ +∞

0

∫
Sn−1

b(z) dS({ζ ◦ u ≥ t}, z) dt

∣∣∣∣ ≤ max
z∈Sn−1

|b(z)|
∫ +∞

0
Hn−1(∂{ζ ◦ u ≥ t}) dt

for every continuous function b : Sn−1 → R. Hence Lemma 3.14 shows that

b 7→
∫ +∞

0

∫
Sn−1

b(z) dS({ζ ◦ u ≥ t}, z) dt
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defines a non-negative, bounded, linear functional on the space of continuous functions on Sn−1. It
follows from the Riesz-Markov-Kakutani representation theorem (see, for example, [52]), that there
exists a unique Borel measure S(〈ζ ◦ u〉, ·) on Sn−1 such that (3.20) holds. Moreover, the measure is
finite.

Next, let uk, u ∈ Conv(Rn) with uk
epi−→ u and fix a continuous function b : Sn−1 → R. By

Lemma 2.14, the convex sets {uk ≤ t} converge in the Hausdorff metric to {u ≤ t} for every
t 6= minx∈Rn u(x), which implies the convergence of {ζ ◦ uk ≥ t} → {ζ ◦ u ≥ t} for every
t 6= maxx∈Rn ζ(u(x)). Since the map K 7→ S(K, ·) is weakly continuous on the space of convex bodies,
we obtain ∫

Sn−1

b(z) dS({ζ ◦ uk ≥ t}, z)→
∫
Sn−1

b(z) dS({ζ ◦ u ≥ t}, z),

for a.e. t ≥ 0. By Lemma 2.16, there exist a, d ∈ R with a > 0 such that uk(x) > v(x) = a|x|+ d and
therefore ζ ◦ uk(x) < ζ ◦ v(x) for x ∈ Rn and k ∈ N. By convexity,

Hn−1(∂{ζ ◦ uk ≥ t}) < Hn−1(∂{ζ ◦ v ≥ t})

for every k ∈ N and t > 0 and therefore∣∣∣ ∫
Sn−1

b(z) dS({ζ ◦ uk ≥ t}, z)
∣∣∣ ≤ max

z∈Sn−1
|b(z)| Hn−1(∂{ζ ◦ uk ≥ t})

< max
z∈Sn−1

|b(z)| Hn−1(∂{ζ ◦ v ≥ t}).

By Lemma 3.14, the function t 7→
∫
Sn−1 |b(z)| dS({ζ ◦ v ≥ t}, z) is integrable. Hence, we can apply the

dominated convergence theorem to conclude the proof. �

We say that an operator µ : Conv(Rn) → M(Sn−1) is decreasing, if the real-valued function
u 7→ µ(u,Sn−1) is decreasing on Conv(Rn), that is, if u ≥ v, then

µ(u,Sn−1) ≤ µ(v,Sn−1). (3.21)

Similarly, we define increasing and we say that µ is monotone if it is decreasing or increasing.

Remark 3.16. Another attempt to define a decreasing valuation µ : Conv(Rn)→M(Sn−1) would be

µ(u, ω) ≤ µ(v, ω), (3.22)

whenever u, v ∈ Conv(Rn) such that u ≥ v and for all Borel sets ω ⊂ Sn−1. Clearly, every µ that
satisfies (3.22) also satisfies (3.21). However, such a property would fail for any non-trivial measure-
valued valuation µ that attempts to generalize the surface area measure of a convex body, e.g. that
there exists c ∈ R such that µ(IK , ·) = cS(K, ·) for every K ∈ Kn. Since I√nBn ≤ I[−1,1]n and

0 = S(
√
nBn, {e1}) ≤ S([−1, 1]n, {e1}) = 2n−1,

c can not be positive. On the other hand, I[−1,1]n ≤ I[0,1]n but

2n−1 = S([−1, 1]n, {e1}) ≥ S([0, 1]n, {e1}) = 1.

Hence, µ must vanish on indicator functions. Similarly, if there exists c̃ ∈ R such that µ(`K , ·) = c̃S(K, ·)
for every K ∈ Kno , then c̃ = 0. We will see in Lemma 4.1 that under the additional assumptions
of translation invariance and continuity, this implies that µ(u, ω) = 0 for every u ∈ Conv(Rn) and
ω ⊂ Sn−1.
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For u ∈ Conv(Rn), we write u− ∈ Conv(Rn) for the function that is defined via u−(x) = u(−x) for
every x ∈ Rn. Similarly, for f ∈ LC(Rn) we write f−(x) = f(−x) for every x ∈ Rn. Observe, that

{u− ≤ t} = −{u ≤ t} and {f− ≥ s} = −{f ≥ s}

for every u ∈ Conv(Rn), f ∈ LC(Rn), t ∈ R and s > 0.

Lemma 3.17. For ζ1, ζ2 ∈ Dn−2(R), the map

u 7→ S(〈ζ1 ◦ u〉, ·) + S(〈ζ2 ◦ u−〉, ·)

defines a weakly continuous, decreasing, translation invariant valuation on Conv(Rn) that is SL(n)
contravariant of degree 1.

Proof. It is easy to see, that it suffices to proof the desired properties for the map

u 7→ S(〈ζ ◦ u〉, ·), (3.23)

with ζ ∈ Dn−2(R). As K 7→ S(K, ·) is translation invariant, it follows from the definition that also
S(〈ζ ◦ u〉, ·) is translation invariant. Lemma and Definition 3.15 gives weak continuity. If u, v ∈
Conv(Rn) are such that u ≥ v, then

{u ≤ s} ⊆ {v ≤ s}, {ζ ◦ u ≥ t} ⊆ {ζ ◦ v ≥ t}

and consequently by convexity

S({ζ ◦ u ≥ t}, Sn−1) ≤ S({ζ ◦ v ≥ t},Sn−1),

for all s ∈ R and t ≥ 0. For φ ∈ SL(n),

{ζ ◦ u ◦ φ−1 ≥ t} = φ {ζ ◦ u ≥ t},

and hence by the properties of surface area measure, we obtain∫
Sn−1

b(z) dS(〈ζ ◦ u ◦ φ−1〉, z) =

∫ +∞

0

∫
Sn−1

b(z) dS(φ{ζ ◦ u ≥ t}, z) dt

=

∫ +∞

0

∫
Sn−1

b(φ−t z) dS({ζ ◦ u ≥ t}, z) dt

=

∫
Sn−1

b(φ−t z) dS(〈ζ ◦ u〉, z)

for every continuous, 1-homogeneous function b : Rn\{0} → R. Finally, let u, v ∈ Conv(Rn) be such
that u∧v ∈ Conv(Rn). Since ζ ∈ Dn−2(R) is decreasing, we obtain by (2.3) and the valuation property
of surface area measure that∫

Sn−1

b(z) d
(
S(〈ζ ◦ (u ∨ v)〉, z) + S(〈ζ ◦ (u ∧ v)〉, z)

)
=

∫ +∞

0

∫
Sn−1

b(z) d
(
S({ζ ◦ u ∧ ζ ◦ v ≥ t}, z) + S({ζ ◦ u ∨ ζ ◦ v ≥ t}, z)

)
dt

=

∫ +∞

0

∫
Sn−1

b(z) d
(
S({ζ ◦ u ≥ t} ∩ {ζ ◦ v ≥ t}, z) + S({ζ ◦ u ≥ t} ∪ {ζ ◦ v ≥ t}, z)

)
dt

=

∫ +∞

0

∫
Sn−1

b(z) d
(
S({ζ ◦ u ≥ t}, z) + S({ζ ◦ v ≥ t}, z)

)
dt

=

∫
Sn−1

b(z) d
(
S(〈ζ ◦ u〉, z) + dS(〈ζ ◦ v〉, z)

)
.
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Hence (3.23) defines a valuation. �

Remark 3.18. Since for every u ∈ Conv(Rn) and ζ ∈ Dn−2(R) the measure S(〈ζ ◦ u〉, ·) is the
surface area measure of a (not necessarily unique) convex body, a simple calculation shows that
S(〈ζ ◦ u−〉, ·) = S(−〈ζ ◦ u〉, ·).
Lemma 3.19. For every q > 0 and c1, c2 ≥ 0, the map

f 7→ c1S(〈f q〉, ·) + c2S(〈(f−)q〉, ·),

is a weakly continuous, translation invariant valuation on LC(Rn) that is SL(n) contravariant of degree
1 and homogeneous of degree q.

Proof. By Remark 3.2 and Lemma 3.17, the map f 7→ c1S(〈f q〉, ·) + c2S(〈(f−)q〉, ·) is a weakly con-
tinuous, translation invariant valuation that is SL(n) contravariant of degree 1. It remains to show
homogeneity. Therefore, let s > 0 and b : Sn−1 → R be continuous. Using the substitution r = t/sq we
have ∫

Sn−1

b(z) dS(〈(sf)q〉, z) =

∫ +∞

0

∫
Sn−1

b(z) dS({sqf q ≥ t}, z) dt

=

∫ +∞

0

∫
Sn−1

b(z) dS({f q ≥ t
sq }, z) dt

= sq
∫ +∞

0

∫
Sn−1

b(z) dS({f q ≥ r}, z) dr

= sq
∫
Sn−1

b(z) dS(〈f q〉, z),

for every f ∈ LC(Rn). Similarly, one shows that f 7→ S(〈(f−)q〉, ·) is homogeneous of degree q. �

We need the following result where the LYZ measure of a specific function is calculated.

Lemma 3.20. For q > 0, t ∈ R and K ∈ Kno ,

S(〈e−q(`K+t)〉, ·) = (n−1)!
qn−1 e

−qtS(K, ·).

Proof. Observe, that by Lemma 3.19 it is enough to show that S(〈e−q `K 〉, ·) = (n−1)!
qn−1 S(K, ·). By Lemma

and Definition 3.15 we have

S(〈e−q `K 〉, ·) =

∫ 1

0
S({e−q `K ≥ s}, ·) ds) =

∫ 1

0
S({`K ≤ − log s

q }, ·) ds.

Using the substitution r = − log s/q we have ds = −qe−qr dr and therefore

S(〈e−q `K 〉, ·) = q

∫ +∞

0
S({`K ≤ r}, ·)e−qr dr.

By definition, {`K ≤ r} = rK for every r ≥ 0. Hence,

S({`K ≤ r}, ·) = rn−1S(K, ·).

This gives

S(〈e−q `K 〉, ·) = S(K, ·) 1
qn−1

∫ +∞

0
(qr)n−1e−qrq dr = S(K, ·) 1

qn−1

∫ +∞

0
sn−1e−s ds = (n−1)!

qn−1 S(K, ·).

�
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In [58], Tuo Wang extended the definition of the LYZ operator and the LYZ measure from W 1,1(Rn)
to the space of functions of bounded variation, BV(Rn). For a function f ∈ L1(Rn), the total variation
of f is given by

V (f,Rn) = sup

{∫
Rn
f div ψ : ψ ∈ C∞c (Rn,Rn), ‖ψ‖L∞(Rn) ≤ 1

}
,

where C∞c (Rn,Rn) denotes the set of smooth functions from Rn to Rn with compact support, divψ is
the divergence of ψ ∈ C∞c (Rn,Rn) and ‖ · ‖L∞(Rn) is the essential supremum norm. We say that f is
of bounded variation, f ∈ BV(Rn), if V (f,Rn) <∞. For such a f , there exists a vector valued Radon
measure Df = (D1f, . . . ,Dnf) on Rn with∫

Rn
f ∂φ
∂xi

dx = −
∫
Rn
φ dDif,

for every continuously differentiable function φ : Rn → R with compact support. Furthermore, we write
|Df | for the total variation of Df and σf for the corresponding Radon-Nikodým derivative. We can
now state Wang’s definition.

Definition 3.21. For f ∈ BV (Rn) which is not 0 a.e. with respect to the n-dimensional Lebesgue
measure, the LYZ body is defined to be the unique convex body 〈f〉 with centroid at the origin, such
that ∫

Sn−1

b(z) dS(〈f〉, z) =

∫
Rn
b(−σf ) d|Df |,

for every b : Rn → R that is continuous and 1-homogeneous.

Remark 3.22. In [58], it is furthermore assumed that b is an even function. Hence, S(〈f〉, ·) is considered
to be an even measure which determines an origin-symmetric convex body 〈f〉. The so obtained body
is a symmetrization of the body given in Definition 3.21.

By the co-area formula [6, Theorem 3.40]

V (f,Rn) =

∫ +∞

−∞
Per({f > t},Rn) dt = |Df |(Rn),

where Per(A,Rn) denotes the perimeter of A ⊆ Rn. Since Per(K,Rn) = Hn−1(K) for every K ∈ Kn
and Per(∅,Rn) = 0, Lemma 3.14 shows that V (ζ ◦ u,Rn) < +∞ for for every ζ ∈ Dn−2(R) and
u ∈ Conv(Rn). Together with Lemma 3.9 this gives ζ ◦ u ∈ BV(Rn) for every ζ ∈ Dn−1(R). Thus,
Definition 3.21 gives a different definition of S(〈ζ ◦ u〉, ·) with ζ ∈ Dn−1(R) and u ∈ Conv(Rn) with
dim domu = n and it can be shown that in this case both definitions coincide. However, we also assign
a non-trivial measure to functions whose support is (n− 1)-dimensional and furthermore to functions
ζ ◦ u with ζ ∈ Dn−2(R), which are not necessarily in BV(Rn).

Remark 3.23. Wang’s definition allows to extend the LYZ operator to BV(Rn) with values in the space
of n-dimensional convex bodies. However, Wang’s extended operators f 7→ S(〈f〉, ·) and f 7→ 〈f〉 are
only semi-valuations (see [59] for the definition) but no longer valuations on BV(Rn) and Wang [59]
characterizes f 7→ 〈f〉 as a Blaschke semi-valuation.
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3.4 Minkowski Valuations

In this section we study functional analogs the projection body, the difference body and the moment
vector on Conv(Rn). Furthermore we find functional representations of the identity and the reflection
on Kn.

In the following, an operator Z : Conv(Rn) → Kn is called decreasing if Z(u) ⊆ Z(v) for all
u, v ∈ Conv(Rn) such that u ≥ v and it is said to be increasing if Z(v) ⊆ Z(u) for all u, v ∈ Conv(Rn)
such that u ≥ v. Moreover, Z is monotone if it is decreasing or increasing.

The results for the projection body and the level set body of a convex function u ∈ Conv(Rn) can be
found in [16]. Most of the results for log-concave functions, especially the moment vector of a function
f ∈ LC(Rn), are to appear in [47].

3.4.1 Projection Body

By Definition 1.11 and the definition of the cosine transform in (1.2), the support function of the classical
projection body is the cosine transform of the surface area measure. Since the measure S(〈ζ ◦ u〉, ·),
defined in Lemma and Definition 3.15, is finite for all ζ ∈ Dn−2(R) and u ∈ Conv(Rn), its cosine
transform is finite as well. Hence, setting

h(Π 〈ζ ◦ u〉, z) = 1
2 CS(〈ζ ◦ u〉, ·)(z)

for z ∈ Sn−1, defines a convex body Π 〈ζ ◦ u〉 for ζ ∈ Dn−2(R) and u ∈ Conv(Rn). Here we use that
the cosine transform of a measure gives a non-negative and sublinear function, which also shows that
Π 〈ζ ◦ u〉 contains the origin. By the definition of the cosine transform and the definition of the LYZ
measure S(〈ζ ◦ u〉, ·), we have

h(Π 〈ζ ◦ u〉, z) = 1
2

∫
Sn−1

|y · z|dS(〈ζ ◦ u〉, y)

= 1
2

∫ +∞

0

∫
Sn−1

|y · z|dS({ζ ◦ u ≥ t}, y) dt

=

∫ +∞

0
h(Π{ζ ◦ u ≥ t}, z) dt

(3.24)

for ζ ∈ Dn−2(R), u ∈ Conv(Rn) and z ∈ Sn−1. Hence the projection body of ζ ◦ u is a Minkowski
average of the classical projection bodies of the level sets of ζ ◦ u.

Using the definition of the classical projection body (Definition 1.11), the definitions (2.10) and
(2.12) of intrinsic volumes and projections of quasi-concave functions respectively and (2.13), we also
obtain for z ∈ Sn−1,

h(Π 〈ζ ◦ u〉, z) =

∫ +∞

0
h(Π{ζ ◦ u ≥ t}, z) dt

=

∫ +∞

0
Vn−1(projz⊥{ζ ◦ u ≥ t}) dt

=

∫ +∞

0
Vn−1({projz⊥(ζ ◦ u) ≥ t}) dt

= Vn−1(projz⊥(ζ ◦ u)).

(3.25)
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Thus, the definition of the projection body of the function ζ ◦ u is analog to the definition of the
projection body of a convex body. In [5], this connection was established for functions that are log-
concave and in W 1,1(Rn).

Lemma 3.24. For ζ ∈ Dn−2(R), the map

u 7→ Π 〈ζ ◦ u〉 (3.26)

defines a continuous, decreasing, SL(n) contravariant and translation invariant Minkowski valuation
on Conv(Rn).

Proof. Let ζ ∈ Dn−2(R) and u ∈ Conv(Rn). By (1.3) and (3.24), we get for every φ ∈ SL(n) and
z ∈ Sn−1,

h(Π 〈ζ ◦ u ◦ φ−1〉, z) =

∫ ∞
0

h(Π{ζ ◦ u ◦ φ−1 ≥ t}, z) dt

=

∫ ∞
0

h(Πφ{ζ ◦ u ≥ t}, z) dt

=

∫ ∞
0

h(φ−t Π{ζ ◦ u ≥ t}, z) dt

=

∫ ∞
0

h(Π{ζ ◦ u ≥ t}, φ−1z) dt = h(Π 〈ζ ◦ u,〉φ−1z).

Similarly, we get for every x ∈ Rn and z ∈ Sn−1,

h(Π 〈ζ ◦ u ◦ τ−1
x 〉, z) = h(Π 〈ζ ◦ u〉, z).

Thus for every φ ∈ SL(n) and every x ∈ Rn,

Π 〈ζ ◦ u ◦ φ−1〉 = φ−t Π 〈ζ ◦ u〉 and Π 〈ζ ◦ u ◦ τ−1
x 〉 = Π 〈ζ ◦ u〉

and the map defined in (3.26) is translation invariant and SL(n) contravariant. By Lemma 3.17, the
map u 7→ S(〈ζ ◦ u〉, ·) is a weakly continuous valuation. Hence, the definition of Π 〈ζ ◦ u〉 via the cosine
transform and (1.1) imply that (3.26) is a continuous Minkowski valuation. Finally, let ζ ∈ Dn−2(R)
and u, v ∈ Conv(Rn) be such that u ≥ v. Then {ζ ◦ u ≥ t} ⊆ {ζ ◦ v ≥ t} for every t ≥ 0 and
consequently, h(Π{ζ ◦ u ≥ t}, z) ≤ h(Π{ζ ◦ v ≥ t}, z) for every z ∈ Sn−1 and t ≥ 0. Hence, for every
z ∈ Sn−1,

h(Π 〈ζ ◦ u〉, z) =

∫ +∞

0
h(Π{ζ ◦ u ≥ t}, z) dt ≤

∫ +∞

0
h(Π{ζ ◦ v ≥ t}, z) dt = h(Π 〈ζ ◦ v〉, z),

or equivalently Π 〈ζ ◦ u〉 ⊆ Π 〈ζ ◦ v〉. Thus, the map defined in (3.26) is decreasing. �

In the following we consider the homogeneous case for log-concave functions.

Lemma 3.25. For every q > 0, the map

f 7→ Π 〈f q〉 (3.27)

is a continuous, SL(n) contravariant and translation invariant Minkowski valuation on LC(Rn) that is
homogeneous of degree q.

Proof. Remark 3.2 and Lemma 3.24 imply that (3.27) defines a continuous, SL(n) contravariant and
translation invariant Minkowski valuation on LC(Rn). By Lemma 3.19 and (3.24) we have homogeneity
of degree q. �
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3.4.2 Identity, Reflection and Difference Body

Similar to the definition of the projection body of a convex function in (3.24) we want to define the
difference body of a convex function. In order to do so, we will assign to each convex function a body
that can be interpreted as a weighted Minkowski average of the level sets.

Lemma 3.26. For ζ ∈ D0(R), ∣∣∣∣∫ +∞

0
h({ζ ◦ u ≥ t}, z) dt

∣∣∣∣ < +∞

for every u ∈ Conv(Rn) and z ∈ Sn−1.

Proof. Fix u ∈ Conv(Rn). By Lemma 3.3 there exists ξ ∈ D0(R) such that ξ is smooth, strictly
decreasing and ξ > ζ pointwise. Hence, {ζ ◦u ≥ t} ⊆ {ξ ◦u ≥ t} for every t ≥ 0 and therefore it suffices
to show that ∣∣∣∣∫ +∞

0
h({ξ ◦ u ≥ t}, z) dt

∣∣∣∣ < +∞

for every z ∈ Sn−1. By Lemma 2.2, there exist constants a, b ∈ R with a > 0 such that
u(x) > v(x) = a|x|+ b for all x ∈ Rn. Hence,∣∣∣∣∫ +∞

0
h({ξ ◦ u ≥ t}, z) dt

∣∣∣∣ ≤ ∫ +∞

0
h({ξ ◦ v ≥ t}, z) dt = 1

a

∫ ξ(b)

0
(ξ−1(t)− b) dt,

which is finite by Lemma 3.4. �

Lemma and Definition 3.27. For ζ ∈ D0(R) and u ∈ Conv(Rn), the level set body [ζ ◦ u] is defined
by

h([ζ ◦ u], z) =

+∞∫
0

h({ζ ◦ u ≥ t}, z) dt,

for every z ∈ Sn−1. Furthermore, the map u 7→ [ζ ◦ u] from Conv(Rn) to Kn is a continuous, decreasing,
SL(n) and translation covariant Minkowski valuation.

Proof. Let u, v ∈ Conv(Rn) be such that u ≥ v. Then

{ζ ◦ u ≥ t} ⊆ {ζ ◦ v ≥ t}

for every t ≥ 0 and consequently,

h({ζ ◦ u ≥ t}, z) ≤ h({ζ ◦ v ≥ t}, z)

for every z ∈ Sn−1. Since the integral in the definition of [ζ ◦ u] converges by Lemma 3.26, this shows
that u 7→ [ζ ◦ u] is well-defined and decreasing on Conv(Rn).

Now, let u ∈ Conv(Rn) and uk ∈ Conv(Rn) be such that epi-limk→∞ uk = u. By Lemma 2.14,
the sets {uk ≤ t} converge in the Hausdorff metric to {u ≤ t} for every t 6= minx∈Rn u(x), which is
equivalent to the convergence {ζ◦uk ≥ t} → {ζ◦u ≥ t} for every t 6= maxx∈Rn ζ(u(x)). By Lemma 2.16,
there exist constants a, b ∈ R with a > 0 such that for every k ∈ N and x ∈ Rn

uk(x) > v(x) = a|x|+ b
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and therefore ζ(uk(x)) < ζ(v(x)) for every x ∈ Rn and k ∈ N and hence also

|h({ζ ◦ uk ≥ t}, z)| ≤ h({ζ ◦ v ≥ t}, z)

for every t ≥ 0, k ∈ N and z ∈ Sn−1 where we have used the symmetry of v. By Lemma 3.26, we can
apply the dominated convergence theorem, which shows that u 7→ [ζ ◦ u] is continuous.

Finally, since
u 7→ {ζ ◦ u ≥ t}

defines an SL(n) and translation covariant Minkowski valuation for every t ≥ 0, it is easy to see that
also u 7→ [ζ ◦ u] has these properties. �

Let f = ζ ◦ u with ζ ∈ D0(R) and u ∈ Conv(Rn). By the definition of the level set body it is easy
to see that [f−] = − [f ]. Furthermore, by the definition of the difference body, the projection of a
quasi-concave function (2.12) and (2.13) we have

h(D [f ], z) = h([f ], z) + h(− [f ], z)

=

∫ +∞

0
h({f ≥ t}, z) + h(−{f ≥ t}, z) dt

=

∫ +∞

0
h(D{f ≥ t}, z) dt

=

∫ +∞

0
V1(projlin{z}{f ≥ t}) dt

= V1(projlin{z} f),

for every z ∈ Sn−1. This corresponds to the geometric interpretation of the projection body from (3.25).

Lemma 3.28. For ζ ∈ D0(R), the map u 7→ D [ζ ◦ u] from Conv(Rn) to Kn is a continuous, decreasing,
SL(n) covariant and translation invariant Minkowski valuation.

Proof. For every x ∈ Rn, z ∈ Sn−1 and u ∈ Conv(Rn), we have

h(D [ζ ◦ u ◦ τ−1
x ], z) =

+∞∫
0

h(D{ζ ◦ u ◦ τ−1
x ≥ t}, z) dt =

+∞∫
0

h(D{ζ ◦ u ≥ t}, z) dt = h(D [ζ ◦ u], z),

since the difference body operator is translation invariant. The further properties follow immediately
from the properties of the level set body proved in Lemma and Definition 3.27. �

Lemma 3.29. For every q > 0, the map
f 7→ [f q] (3.28)

is a continuous, SL(n) and translation covariant Minkowski valuation on LC(Rn) that is homogeneous
of degree q. Moreover, the map

f 7→ D [f q]

is a continuous, SL(n) covariant and translation invariant Minkowski valuation on LC(Rn) that is
homogeneous of degree q.
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Proof. By Remark 3.2 and Lemma and Definition 3.27, the map f 7→ [f q] is a well-defined, continuous,
SL(n) and translation covariant Minkowski valuation on LC(Rn). Furthermore, for s > 0, z ∈ Sn−1

and f ∈ LC(Rn), we have

h([(s f)q], z) =

∫ +∞

0
h({(s f)q ≥ t}, z) dt

=

∫ +∞

0
h({f q ≥ t

sq }, z) dt

= sq
∫ +∞

0
h({f q ≥ r}, z) dr = sq h([f q], z),

where we used the substitution r = t/sq. Hence, (3.28) is homogeneous of degree q. The properties for
the second map follow immediately from the properties of the difference body. �

3.4.3 Moment Vectors

The following lemma will allow us to give a definition for the moment vector of functions ζ ◦ u, where
ζ ∈ Dn(R) and u ∈ Conv(Rn).

Lemma 3.30. For ζ ∈ Dn(R), ∫ +∞

0
|h(m({ζ ◦ u ≥ t}, z)|dt < +∞

for every u ∈ Conv(Rn) and z ∈ Sn−1.

Proof. Fix u ∈ Conv(Rn) and observe, that for K ∈ Kn and z ∈ Sn−1,

|h(m(K), z)| =
∣∣∣∣∫
K
x · z dx

∣∣∣∣ ≤ Vn(K) max
y∈Sn−1

|h(K, y)|.

By Lemma 3.3 there exists ξ ∈ Dn(R) such that ξ is smooth, strictly decreasing and ξ > ζ pointwise.
Moreover, Lemma 2.2 shows that there exist constants a, b ∈ R with a > 0 such that

u(x) > v(x) = a|x|+ b,

for every x ∈ Rn. Hence, ζ ◦ u < ξ ◦ u < ξ ◦ v pointwise and therefore

{ζ ◦ u ≥ t} ⊂ {ξ ◦ v ≥ t} =
{
x : |x| ≤ ξ−1(t)−b

a

}
for every 0 < t ≤ ξ(b). This gives

|h(m({ζ ◦ u ≥ t}), z)| ≤ Vn({ξ ◦ v ≥ t}) max
y∈Sn−1

|h({ξ ◦ v ≥ t}, y)| = vn
an+1

(
ξ−1(t)− b

)n+1
,

for every 0 < t ≤ ξ(b) and z ∈ Sn−1. Thus,∫ +∞

0
|h(m({ζ ◦ u ≥ t}), z)|dt ≤ vn

an+1

∫ ξ(b)

0
(ξ−1(t)− b)n+1 dt,

for every z ∈ Sn−1, which is finite by Lemma 3.4. �
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By Lemma 3.30, the integral ∫ +∞

0
h(m({ζ ◦ u ≥ t}), y) dt (3.29)

converges for every ζ ∈ Dn(R), u ∈ Conv(Rn) and y ∈ Rn. Since each of the support functions

y 7→ h(m({ζ ◦ u ≥ t}), y)

is sublinear, it is easy to see that (3.29) defines a sublinear function in y and thus is the support function
of a convex body m(ζ ◦u) ∈ Kn. Using the definition of the moment vector and the layer-cake principle,
we obtain

h(m(ζ ◦ u), y) =

∫ +∞

0

∫
{ζ◦u≥t}

x · y dx dt =

∫ +∞

0

∫
Rn
χ{ζ◦u≥t}(x) (x · y) dx dt =

∫
Rn
ζ(u(x)) (x · y) dx.

Hence,

m(ζ ◦ u) =

∫
Rn
ζ(u(x))x dx

is an element of Rn and will be called the moment vector of ζ ◦ u.

Lemma 3.31. For ζ ∈ Dn(R), the map u 7→ m(ζ ◦ u) from Conv(Rn) to Rn is a continuous, SL(n)
and translation covariant valuation.

Proof. Fix ζ ∈ Dn(R). For φ ∈ SL(n) we have

m(ζ ◦ u ◦ φ−1) =

∫
Rn
ζ(u(φ−1x))x dx =

∫
Rn
ζ(u(x))φx dx = φm(ζ ◦ u),

for every u ∈ Conv(Rn), which shows SL(n) covariance. Furthermore, for x ∈ Rn we obtain

m(ζ ◦ u ◦ τ−1
x ) =

∫
Rn
ζ(u(y − x)) y dy =

∫
Rn
ζ(u(y)) y dy + x

∫
Rn
ζ(u(y)) dy = m(ζ ◦ u) + Vn(ζ ◦ u)x,

which proves translation covariance. In order to show the valuation property, let u, v ∈ Conv(Rn) such
that u ∧ v ∈ Conv(Rn). We have

m(ζ(u ∨ v)) =

∫
{u≥v}

ζ(u(x))x dx+

∫
{u<v}

ζ(v(x))x dx

m(ζ(u ∧ v)) =

∫
{u≥v}

ζ(v(x))x dx+

∫
{u<v}

ζ(u(x))x dx.

Hence,
m(ζ(u ∨ v)) + m(ζ(u ∧ v)) = m(ζ(u)) + m(ζ(v)).

It remains to show continuity. Let uk, u ∈ Conv(Rn) such that uk
epi−→ u. By Lemma 2.16, there exist

a > 0 and b ∈ R such that uk(x) > a|x| + b for every k ∈ N and x ∈ Rn. Similar as in the proof of
Lemma 3.30, this gives

|h(m({ζ ◦ uk ≥ t}), ·)| ≤ Vn({ζ ◦ v ≥ t}) max
y∈Sn−1

|h({ζ ◦ v ≥ t}, y)|,
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which shows that these functions are dominated by an integrable function. Furthermore, Lemma 2.12
and the continuity of the moment vector on Kn imply that h(m({ζ ◦ uk ≥ t}), ·)→ h(m({ζ ◦ u ≥ t}), ·)
pointwise for every t 6= maxx∈Rn ζ(u(x)). Hence, by the dominated convergence theorem, we have

h(m(ζ ◦ uk), ·) =

∫ +∞

0
h(m({ζ ◦ uk ≥ t}, ·) dt −→

∫ +∞

0
h(m({ζ ◦ u ≥ t}, ·) dt = h(m(ζ ◦ u), ·),

pointwise, which implies Hausdorff convergence of m(ζ ◦ uk) to m(ζ ◦ u). �

Lemma 3.32. For every q > 0, the map
f 7→ m(f q)

is a continuous, SL(n) and translation covariant Minkowski valuation on LC(Rn) that is homogeneous
of degree q.

Proof. By Remark 3.2 and Lemma 3.31, the map f 7→ m(f q) is a continuous, SL(n) and translation
covariant Minkowski valuation. Furthermore, it is homogeneous of degree q since

m((sf)q) =

∫
Rn

(sf)q(x)x dx = sq
∫
Rn
f q(x)x dx = sq m(f q),

for every s > 0 and f ∈ LC(Rn). �
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Chapter 4

Classification of Valuations on Convex
and Log-Concave Functions

“Never tell me the odds.”

Han Solo

We characterize the valuations that were introduced and described in Chapter 3. The principle that
is used for all our results is roughly the same. In Lemma 4.1 we will see that valuations on Conv(Rn)
are uniquely described by their behavior on cone functions. By (3.4) and the classification results
for valuations on Kno , which were stated in Section 1.3, the valuations on Conv(Rn) and LC(Rn) are
then described by a number of continuous functions on the reals. Furthermore, there exist continuous
functions that describe the behavior on indicator functions. It will turn out, that in many cases the
latter are derivatives of the former, see for example Lemma 4.2. Based on this, a classification can be
established.

The results from Section 4.1 and the classification of real-valued valuations on Conv(Rn) will be
published in [17]. The classification results for Minkowski valuations and measure-valued valuations on
Conv(Rn) can be found in [16]. Lastly, the proofs of Theorems 4.10 and 4.34 are to appear in [47].

4.1 General Considerations

The next result shows that in order to classify continuous and translation invariant or covariant valua-
tions on Conv(Rn), it is enough to know the behavior of these valuations on cone functions. The main
argument of the following lemma is due to [36, Lemma 8], where it was used for functions on Sobolev
spaces. For another recent application see [41, Lemma 8].

Lemma 4.1. Let 〈A,+〉 be a topological abelian semigroup with cancellation law and
let Z1,Z2 : Conv(Rn)→ 〈A,+〉 be continuous. If Z1(` ◦ τ−1) = Z2(` ◦ τ−1) for every
` ∈ {`P + t : P ∈ Pn(o), t ∈ R} and every translation τ on Rn, then Z1 ≡ Z2 on Conv(Rn).

Proof. By Lemma 2.21 and the continuity of Z1 and Z2, it suffices to show that Z1 and Z2 coincide
on Convp.a.(Rn). So let u ∈ Convp.a.(Rn) and set U = epiu. Note, that U is a convex polyhedron in
Rn+1 and that none of the facet hyperplanes of U is parallel to the xn+1-axis. Here, we say that a
hyperplane H in Rn+1 is a facet hyperplane of U if its intersection with the boundary of U has positive
n-dimensional Hausdorff measure. Furthermore, we call U singular if U has n facet hyperplanes whose
intersection contains a line parallel to {xn+1 = 0}. Since Z1 and Z2 are continuous, we can assume that
U is not singular.

Since U is not singular and u ∈ Convp.a.(Rn), there exists a unique vertex, p̄ of U with smallest
xn+1 coordinate. We use induction on the number m of facet hyperplanes of U that are not passing
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Rn

R

u ū`

P

p0

x0

Figure 4.1: Illustration of u, ū and `.

through p̄. If m = 0, then there exist P ∈ Pn(o) and t ∈ R such that u is a translate of `P + t and

therefore Z1(u) = Z2(u).
Now let U have m > 0 facet hyperplanes that are not passing through p̄ and assume that Z1 and Z2

coincide for all functions with at most (m−1) such facet hyperplanes. Let p0 = (x0, u(x0)) ∈ Rn+1 where
x0 ∈ Rn is a vertex of U with maximal xn+1-coordinate and let H1, . . . ,Hj be the facet hyperplanes
of U through p0 such that the corresponding facets of U have infinite n-dimensional volume. Note,
that H1, . . . ,Hj do not contain p̄ and therefore there is at least one such hyperplane. Define Ū as the
polyhedron bounded by the intersection of all facet hyperplanes of U with the exception of H1, . . . ,Hj .
Since U is not singular, there exists a function ū ∈ Convp.a.(Rn) with dom ū = Rn such that Ū = epi ū.
Note, that Ū has at most (m−1) facet hyperplanes not containing p̄. Hence, by the induction hypothesis

Z1(ū) = Z2(ū).

Let H1, . . . ,H i be the facet hyperplanes of Ū that contain p0 such that the corresponding facets of
Ū have infinite n-dimensional volume. Choose suitable hyperplanes H i+1, . . . ,Hk not parallel to the
xn+1-axis and containing p0 so that the hyperplanes H1, . . . ,Hk bound a polyhedral cone with apex p0

that is contained in Ū , has H1, . . . ,H i among its facet hyperplanes and contains {x0} × [u(x0),+∞).
Define ` as the piecewise affine function determined by this polyhedral cone. Notice, that ` is a translate
of `P + u(x0), where P ∈ Pn(o) is the projection onto the first n coordinates of the intersection of the

polyhedral cone with {xn+1 = u(x0) + 1}, see also Figure 4.1. Hence, Z1 and Z2 coincide on `. Set
¯̀= u∨`. The epigraph of ¯̀ is again a polyhedral cone with apex p0. Hence ¯̀ is a translate of `P̄ +u(x0)
with P̄ ∈ Pn(o) since it is bounded by hyperplanes containing p0 that are not parallel to the xn+1-axis.

Therefore, Z1 and Z2 also coincide on ¯̀. We now have

u ∧ ` = ū, u ∨ ` = ¯̀.

From the valuation property of Zi, i = 1, 2, we obtain

Z1(u) + Z1(`) = Z1(ū) + Z1(¯̀) = Z2(ū) + Z2(¯̀) = Z2(u) + Z2(`),

which completes the proof. �
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The next result establishes a connection between the behavior of a valuation on cone functions and its
behavior on indicator functions.

Lemma 4.2. For k ≥ 1, let Z : Conv(Rk) → R be a continuous, translation invariant valuation and
let ψ ∈ C(R). If

Z(`P + t) = ψ(t)Vk(P ) (4.1)

for every P ∈ Pko and t ∈ R, then

Z(I[0,1]k + t) =
(−1)k

k!

dk

dtk
ψ(t)

for every t ∈ R. In particular, ψ is k-times differentiable.

Proof. To explain the idea of the proof, we first consider the case k = 1. For h > 0, let uh = `[0,1/h],

that is, uh(x) = +∞ for x < 0 and uh(x) = hx for x ≥ 0. Define vh : R→ [0,+∞] by vh = uh + I[0,1].
Since Z is a translation invariant valuation and by (4.1), we obtain

Z(vh + t) = Z(uh + t)− Z(uh + h+ t) =
1

h

(
ψ(t)− ψ(t+ h)

)
for t ∈ R. As h→ 0, the epi-limit of vh + t is I[0,1] + t. Since Z is continuous, we thus obtain

Z(I[0,1] + t) = lim
h→0+

1

h

(
ψ(t)− ψ(t+ h)

)
for t ∈ R. Hence, ψ is differentiable from the right at every t ∈ R. Since vh + t − h epi−→ I[0,1] + t as
h→ 0, we also obtain

Z(I[0,1] + t) = lim
h→0+

(
Z(uh + t− h)− Z(uh + t)

)
= lim

h→0+

1

h

(
ψ(t− h)− ψ(t)

)
.

Hence, ψ is also differentiable from the left at every t ∈ R and Z(I[0,1] + t) = −ψ′(t). This concludes
the proof for k = 1.

Next, let {e1, . . . , ek} denote the standard basis of Rk and set e0 = 0. For h = (h1, . . . , hk) with
0 < h1 ≤ · · · ≤ hk and 0 ≤ i < k, define the function uhi through its sublevel sets as

{uhi < 0} = ∅, {uhi ≤ s} = [0, e0] + · · ·+ [0, ei] + conv{0, s ei+1/hi+1, . . . , s ek/hk},

for every s ≥ 0. Let uhk = I[0,1]k . Note, that uhi does not depend on hj for 0 ≤ j ≤ i. We use induction

on i to show that uhi ∈ Conv(Rk) and that

Z(uhi + t) =
(−1)i

k!hi+1 · · ·hk
ψ(i)(t),

for every t ∈ R and 0 ≤ i ≤ k, where ψ(i)(t) = di

dti
ψ(t).

For i = 0, set Ph = conv{0, e1/h1, . . . , ek/hk} ∈ Pko and note that uh0 = `Ph ∈ Conv(Rk). Hence, by
the assumption on Z, we have

Z(uh0 + t) = Z(`Ph + t) = ψ(t)Vk(Ph) =
1

k!h1 · · ·hk
ψ(t).
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x1R2

R

s

1

h1

vh1

uh0 ◦ τ−1
e1 + h1

Figure 4.2: The functions vh1 , uh0 and uh0 ◦ τ−1
e1 + h1 in R2.

Now assume that the statement holds true for i ≥ 0. Define the function vhi+1 by

{vhi+1 ≤ s} = {uhi ≤ s} ∩ {xi+1 ≤ 1},

for every s ∈ R, see also Figure 4.2. Since epi vhi+1 = epiuhi ∩ {xi+1 ≤ 1}, it is easy to see that
vhi+1 ∈ Conv(Rk). As hi+1 → 0, we have epi-convergence of vhi+1 to uhi+1. Theorem 2.8 implies that
uhi+1 is a convex function and hence uhi+1 ∈ Conv(Rk). Now, let τi+1 be the translation x 7→ x + ei+1.
Note that

{vhi+1 ≤ s} ∪ {(uhi ◦ τ−1
ei+1

+ hi+1) ≤ s} = {uhi ≤ s},

{vhi+1 ≤ s} ∩ {(uhi ◦ τ−1
ei+1

+ hi+1) ≤ s} ⊂ {xi+1 = 1},

for every s ∈ R. Since Z is a continuous, translation invariant valuation and Z(`P + t) = 0 for P ∈ Pko
with dim(P ) < k, Lemma 4.1 and its proof imply that Z vanishes on all functions u ∈ Conv(Rk) with
domu ⊂ H, where H is a hyperplane in Rk. Hence,

Z(vhi+1 ∨ (uhi ◦ τ−1
ei+1

+ hi+1)) = 0.

Thus, by the valuation property

Z(uhi + t) = Z((vhi+1 + t) ∧ (uhi ◦ τ−1
ei+1

+ hi+1 + t)) = Z(vhi+1 + t) + Z(uhi ◦ τ−1
ei+1

+ hi+1 + t).

Using the induction assumption and the translation invariance of Z, we obtain

Z(vhi+1 + t) =
(−1)i+1

k!hi+2 · · ·hk
ψ(i)(t+ hi+1)− ψ(i)(t)

hi+1
.

As hi+1 → 0, the continuity of Z shows that

Z(uhi+1 + t) =
(−1)i+1

k!hi+2 · · ·hk
lim

hi+1→0+

ψ(i)(t+ hi+1)− ψ(i)(t)

hi+1
.
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Hence ψ(i) is differentiable from the right. Similarly, we have vhi+1 + t− hi+1
epi−→ uhi+1 as hi+1 → 0 and

thus

Z(uhi+1 + t) = lim
hi+1→0+

Z(vhi+1 + t− hi+1) =
(−1)i+1

k!hi+2 · · ·hk
lim

hi+1→0+

ψ(i)(t)− ψ(i)(t− hi+1)

hi+1
,

which shows that ψ(i) is differentiable from the left and therefore,

Z(uhi+1 + t) =
(−1)i+1

k!hi+2 · · ·hk
ψ(i+1)(t),

for every t ∈ R. �

The next lemma gives us a sufficient condition such that a function has finite moment.

Lemma 4.3. Let ζ ∈ C(R) have constant sign on [t0,∞) for some t0 ∈ R. If there exist k ∈ N, ck ∈ R
and ψ ∈ Ck(R) with limt→+∞ ψ(t) = 0 such that

ζ(t) = ck
dk

dtk
ψ(t)

for t ≥ t0, then ∣∣∣∣∫ +∞

0
tk−1ζ(t) dt

∣∣∣∣ < +∞.

Proof. Since we can always consider ψ̃(t) = ±ck ψ(t) instead of ψ(t), we assume that ck = 1 and ζ ≥ 0.
To prove the statement, we use induction on k and start with the case k = 1. For t1 > t0,∫ t1

t0

ζ(t) dt =

∫ t1

t0

ψ′(t) dt = ψ(t1)− ψ(t0).

Hence, it follows from the assumption for ψ that∫ +∞

t0

ζ(t) dt = lim
t1→+∞

ψ(t1)− ψ(t0) = −ψ(t0) < +∞.

This proves the statement for k = 1.
Let k ≥ 2 and assume that the statement holds true for k − 1. Since ζ ≥ 0, the function ψ(k−1) is

increasing. Therefore, the limit

c = lim
t→+∞

ψ(k−1)(t) ∈ (−∞,+∞]

exists. Moreover, ψ(k−1) has constant sign on [t̄0,+∞) for some t̄0 ≥ t0. By the induction hypothesis,∣∣∣∣∫ +∞

0
tk−2ψ(k−1)(t) dt

∣∣∣∣ < +∞,

which is only possible if c = 0. In particular, ψ(k−1)(t) ≤ 0 for all t ≥ t̄0.
Using integration by parts, we obtain∫ t1

t0

tk−1ψ(k)(t) dt = tk−1
1 ψ(k−1)(t1)− tk−1

0 ψ(k−1)(t0)− (k − 1)

∫ t1

t0

tk−2ψ(k−1)(t) dt. (4.2)
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Since tk−1ψ(k)(t) ≥ 0 for t ≥ max{0, t0}, we have

d =

∫ +∞

t0

tk−1ψ(k)(t) dt ∈ (−∞,+∞].

Hence, (4.2) implies that tk−1
1 ψ(k−1)(t1) converges to

d+ tk−1
0 ψ(k−1)(t0) + (k − 1)

∫ +∞

t0

t(k−2)ψ(k−1)(t) dt.

Since tk−1
1 ψ(k−1)(t1) ≤ 0 for t1 ≥ max{t̄0, 0}, we conclude that d is not +∞. �

4.2 Classification of Real-Valued Valuations

The aim of this section is to give a classification of continuous, SL(n) and translation invariant valuation
on Conv(Rn) and LC(Rn) and thereby characterizing the operators studied in Section 3.2.

Lemma 4.4. If Z : Conv(Rn) → R is a continuous and SL(n) invariant valuation, then there exist
continuous functions ψ0, ψn, ζ0, ζn : R→ R such that

Z(`P + t) = ψ0(t) + ψn(t)Vn(P ),

Z(IP + t) = ζ0(t) + ζn(t)Vn(P )

for every P ∈ Pno and t ∈ R.

Proof. For t ∈ R, define Zt : Pno → R as

Zt(P ) = Z(`P + t).

By Lemma 2.14, (3.4) and (3.7), it is easy to see that Zt defines a continuous, SL(n) invariant valuation
on Pno for every t ∈ R. Therefore, by Theorem 1.6, for every t ∈ R there exist constants c0,t, cn,t ∈ R
such that

Z(`P + t) = Zt(P ) = c0,t + cn,tVn(P ),

for every P ∈ Pno . This defines two functions ψ0(t) = c0,t and ψn(t) = cn,t. Taking P ∈ Pno with
dimP < n, we have Vn(P ) = 0. By the continuity of Z,

t 7→ Z(`P + t) = ψ0(t)

is continuous, which implies that ψ0 is a continuous function. Similarly, taking Q ∈ Pno with Vn(Q) > 0,
we see that

t 7→ ψn(t) =
Z(`Q + t)− ψ0(t)

Vn(Q)
,

can be expressed as the difference of two continuous functions and is therefore continuous itself. Using
P 7→ Z(IP + t) we get the corresponding results for the functions ζ0 and ζn. �

For a continuous and SL(n) invariant valuation Z : Conv(Rn) → R, we call the functions ψ0 and ψn
from Lemma 4.4 the cone growth functions of Z. The functions ζ0 and ζn are its indicator growth
functions. By Lemma 4.1, we immediately get the following result.
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Lemma 4.5. Every continuous, SL(n) and translation invariant valuation Z : Conv(Rn) → R is
uniquely determined by its cone growth functions.

Next, we study the relation between the cone and indicator growth functions.

Lemma 4.6. If Z : Conv(Rn) → R is a continuous, SL(n) and translation invariant valuation, then
the growth functions ψ0 and ζ0 coincide and

ζn(t) =
(−1)n

n!

dn

dtn
ψn(t),

for every t ∈ R.

Proof. Since `{0} = I{0}, Lemma 4.4 implies that

ψ0(t) = Z(`{0} + t) = Z(I{0} + t) = ζ0(t),

for every t ∈ R.
Now define Z : Conv(Rn)→ R as

Z(u) = Z(u)− ζ0

(
minx∈Rn u(x)

)
.

By Lemma 3.5, the functional Z is a continuous, SL(n) and translation invariant valuation that satisfies

Z(`P + t) = ψn(t)Vn(P )

and
Z(IP + t) = ζn(t)Vn(P ),

for every P ∈ Pno and t ∈ R. Hence, by Lemma 4.2,

ζn(t) = ζn(t)Vn([0, 1]n) = Z(I[0,1]n + t) =
(−1)n

n!

dn

dtn
ψn(t),

for every t ∈ R. �

Lemma 4.7. If Z : Conv(Rn) → R is a continuous, SL(n) and translation invariant valuation, then
its cone growth function ψn satisfies

lim
t→∞

ψn(t) = 0.

Proof. Let

P = conv{0, e1+e2
2 , e2, e3, . . . , en} and Q = conv{0, e2, e3, . . . , en}.

For s > 0, define us ∈ Conv(Rn) by its epigraph as epius = epi `P ∩{x1 ≤ s
2}. Note, that for t ≥ 0 this

gives {us ≤ t} = tP ∩{x1 ≤ s
2}. Define `P,s = `P ◦τ−1

s(e1+e2)/2 +s and similarly `Q,s = `Q ◦τ−1
s(e1+e2)/2 +s.

We will now show that
us ∧ `P,s = `P us ∨ `P,s = `Q,s,

or equivalently
epius ∪ epi `P,s = epi `P epius ∩ epi `P,s = epi `Q,s,
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which is the same as

{us ≤ t} ∪ {`P,s ≤ t} = {`P ≤ t} {us ≤ t} ∩ {`P,s ≤ t} = {`Q,s ≤ t} (4.3)

for every t ∈ R. Indeed, it is easy to see, that (4.3) holds for all t < s. Therefore, fix an arbitrary t ≥ s.
We have

{`P,s ≤ t} = {`P + s ≤ t}+ s e1+e2
2 = (t− s)P + s e1+e2

2 .

This can be rewritten as
{`P,s ≤ t} = tP ∩ {x1 ≥ s

2}.

Hence
{us ≤ t} ∪ {`P,s ≤ t} =

(
tP ∩ {x1 ≤ s

2}
)
∪
(
tP ∩ {x1 ≥ s

2}
)

= tP = {`P ≤ t},

and

{us ≤ t} ∩ {`P,s ≤ t} = tP ∩ {x1 = s
2} =

(
(t− s)P ∩ {x1 = 0}

)
+ s e1+e2

2

= (t− s)Q+ s e1+e2
2 = {`Q + s ≤ t}+ s e1+e2

2 = {`Q,s ≤ t}.

From the valuation property of Z we now get

Z(us) + Z(`P,s) = Z(`P ) + Z(`Q,s).

By Lemma 4.4 and since Vn(Q) = 0, we have

Z(us) + ψn(s)Vn(P ) + ψ0(s) = ψn(0)Vn(P ) + ψ0(0) + ψ0(s).

As s→∞, we obtain us
epi−→ `P and therefore

ψn(0)Vn(P ) + ψ0(0)− ψn(s)Vn(P ) = Z(us)
s→∞−−−→ Z(`P ) = ψn(0)Vn(P ) + ψ0(0).

Since Vn(P ) > 0, this shows that ψn(s)→ 0. �

Lemma 4.6 shows that for a continuous, SL(n) and translation invariant valuation Z the indicator
growth functions ζ0 and ζn coincide with its cone growth function ψ0 and up to a constant factor
with the n-th derivative of its cone growth function ψn, respectively. Since Lemma 4.7 shows that
limt→∞ ψn(t) = 0, the cone growth functions ψ0 and ψn are completely determined by the indicator
growth functions of Z. Hence Lemma 4.5 immediately implies the following result.

Lemma 4.8. Every continuous, SL(n) and translation invariant valuation Z : Conv(Rn) → R is
uniquely determined by its indicator growth functions.

Theorem 4.9. A functional Z : Conv(Rn) → [0,∞) is a continuous, SL(n) and translation invariant
valuation if and only if there exist a continuous function ζ0 : R → [0,∞) and a continuous function
ζn : R→ [0,∞) with finite (n− 1)-st moment such that

Z(u) = ζ0

(
minx∈Rn u(x)

)
+

∫
domu

ζn
(
u(x)

)
dx (4.4)

for every u ∈ Conv(Rn).
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Proof. If ζ0 : R→ [0,∞) is continuous and ζn : R→ [0,∞) is continuous with finite (n−1)-st moment,
then Lemmas 3.5 and 3.11 show that (4.4) defines a non-negative, continuous, SL(n) and translation
invariant valuation on Conv(Rn).

Conversely, let Z : Conv(Rn) → [0,∞) be a continuous, SL(n) and translation invariant valuation
on Conv(Rn) with indicator growth functions ζ0 and ζn. For a polytope P ∈ Pno with dimP < n,
Lemma 4.4 implies that

0 ≤ Z(IP + t) = ζ0(t)

for every t ∈ R. Hence, ζ0 is a non-negative and continuous function. Similarly, for Q ∈ Pno with
Vn(Q) > 0, we have

0 ≤ Z(IsQ + t) = ζ0(t) + snζn(t)Vn(Q),

for every t ∈ R and s > 0. Therefore, also ζn is a non-negative and continuous function. By Lemmas 4.3,
4.6 and 4.7, the growth function ζn has finite (n− 1)-st moment. Finally, for u = IP + t with P ∈ Pno
and t ∈ R, we obtain that

Z(u) = ζ0(t) + ζnVn(P ) = ζ0

(
minx∈Rn u(x)

)
+

∫
domu

ζn(u(x)) dx.

By the first part of the proof,

u 7→ ζ0

(
minx∈Rn u(x)

)
+

∫
domu

ζn(u(x)) dx

defines a non-negative, continuous, SL(n) and translation invariant valuation on Conv(Rn). Thus
Lemma 4.8 completes the proof of the theorem. �

Theorem 4.10. An operator Y : LC(Rn) → R is a continuous, homogeneous, SL(n) and translation
invariant valuation if and only if there exist constants c0, cn ∈ R and q ∈ R, with q > 0 if cn 6= 0, such
that

Y(f) = c0

(
maxx∈Rn f(x)

)q
+ cn

∫
Rn
f q(x) dx, (4.5)

for every f ∈ LC(Rn).

Proof. Lemmas 3.7 and 3.12 show that (4.5) defines a continuous, homogeneous, SL(n) and translation
invariant valuation on LC(Rn) for every c0, cn ∈ R and q ∈ R, with q > 0 if cn 6= 0.

Conversely, let Y : LC(Rn) → R be a continuous, homogeneous, SL(n) and translation invariant
valuation and let Z be the corresponding valuation on Conv(Rn), that is Z(u) = Y(e−u) for every
u ∈ Conv(Rn). Then Z is continuous, SL(n) and translation invariant, see also Remark 3.2. Further-
more,

Z(u+ t) = Y(e−(u+t)) = (e−t)q Y(e−u) = e−qt Z(u),

for every u ∈ Conv(Rn) and t ∈ R, where q ∈ R denotes the degree of homogeneity of Y. Let
ψ0, ψn, ζ0, ζn denote the growth functions of Z. By Lemma 4.6 the functions ψ0 and ζ0 coincide. We
have,

ζ0(t) = Z(I{0} + t) = e−qt Z(I{0}),

for every t ∈ R. Hence, there exists a constant c0 ∈ R such that ζ0(t) = c0e
−qt for every t ∈ R.

Furthermore, let K ∈ Kno such that Vn(K) > 0. Then,

e−qt Z(`K) = Z(`K + t) = ζ0(t) + ψn(t)Vn(K) = c0e
−qt + ψn(t)Vn(K),
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for every t ∈ R. Hence, there exists a constant c̃n ∈ R such that ψn(t) = c̃n e
−qt for every t ∈ R.

Lemma 4.7 shows that limt→+∞ ψn(t) = 0 and therefore q > 0 or c̃n = 0. Moreover, by Lemma 4.6,

ζn(t) =
(−1)n

n!

dn

dtn
ψn(t) =

c̃n q
n

n!
e−qt =: cn e

−qt,

for every t ∈ R. For t ∈ R, let s = e−t. We have

Y(s χK) = Z(IK + t) = c0 e
−qt + cn e

−qtVn(K)

= c0 s
q + cn s

qVn(K)

= c0

(∫ +∞

0
V0({s χK ≥ r}) dr

)q
+ cn

∫ +∞

0
Vn({(s χK)q ≥ r}) dr

= c0V0(s χK)q + cnVn((s χK)q),

for every K ∈ Kn. By Lemma 4.8 the valuation Z is uniquely determined by its values on indicator
functions. Since

f 7→ c0V0(f)q + cnVn(f q),

defines a continuous, homogeneous, SL(n) and translation invariant valuation, the proof is complete. �

4.3 Classification of Minkowski Valuations

The Minkowski valuations that were introduced in Section 3.4 are classified. Again, we distinguish
between SL(n) contravariance and SL(n) covariance.

4.3.1 Contravariant Minkowski Valuations

In this section, we classify the functional analogs of the projection body from Lemmas 3.24 and 3.25.
In the following, let n ≥ 3.

Lemma 4.11. If Z : Conv(Rn) → Kn is a continuous and SL(n) contravariant Minkowski valuation,
then there exist continuous functions ψ, ζ : R→ [0,∞) such that

Z(`K + t) = ψ(t) ΠK,

Z(IK + t) = ζ(t) ΠK,

for every K ∈ Kno and t ∈ R.

Proof. For t ∈ R, define Zt : Kno → Kn as

ZtK = Z(`K + t).

As in the proof of Lemma 4.4 it follows from Lemma 2.14, (3.4) and (3.7), that Zt defines a continuous,
SL(n) contravariant Minkowski valuation on Kno for every t ∈ R. By Theorem 1.13, there exists a
non-negative constant ct such that

Z(`K + t) = ZtK = ct ΠK

for all K ∈ Kno . This defines a function ψ(t) = ct, which is continuous due to the continuity of Z.
Similarly, using Zt(K) = Z(IK + t), we obtain the function ζ. �
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For a continuous, SL(n) contravariant Minkowski valuation Z : Conv(Rn)→ Kn, we call the function ψ
from Lemma 4.11 the cone growth function of Z. The function ζ is called its indicator growth function.
By Lemma 4.1, we immediately get the following result.

Lemma 4.12. Every continuous, SL(n) contravariant and translation invariant Minkowski valuation
Z : Conv(Rn)→ Kn is uniquely determined by its cone growth function.

Next, we establish an important connection between cone and indicator growth functions.

Lemma 4.13. Let Z : Conv(Rn)→ Kn be a continuous, SL(n) contravariant and translation invariant
Minkowski valuation. The growth functions satisfy

ζ(t) =
(−1)n−1

(n− 1)!

dn−1

dtn−1
ψ(t)

for every t ∈ R.

Proof. We fix the (n− 1)-dimensional linear subspace E = e⊥n of Rn. Since E is of dimension (n− 1),
we can identify the set of functions u ∈ Conv(Rn) such that domu ⊆ E with Conv(Rn−1) = Conv(E).
We define Y : Conv(E)→ R by

Y(u) = h(Z(u), en).

Since Z is a Minkowski valuation, Y is a real-valued valuation. Moreover, Y is continuous and translation
invariant, since Z has these properties. By the definition of the growth functions we now get

Y(`P + t) = h(Z(`P + t), en) = ψ(t)h(ΠP, en) = ψ(t)Vn−1(P )

and
Y(IP + t) = h(Z(IP + t), en) = ζ(t)h(ΠP, en) = ζ(t)Vn−1(P )

for every P ∈ Pn−1
o (E) = {P ∈ Pno : P ⊂ E} and t ∈ R. Hence, by Lemma 4.2,

ζ(t) = ζ(t)Vn−1([0, 1]n−1) = Y(I[0,1]n−1 + t) =
(−1)n−1

(n− 1)!

dn−1

dtn−1
ψ(t)

for every t ∈ R, where [0, 1]n−1 = [0, 1]n ∩ E. �

Next, we establish important properties of the cone growth function.

Lemma 4.14. If Z : Conv(Rn) → Kn is a continuous, SL(n) contravariant and translation invariant
Minkowski valuation, then its cone growth function ψ is decreasing and satisfies

lim
t→∞

ψ(t) = 0. (4.6)

Proof. In order to prove that ψ is decreasing, we have to show that ψ(t) ≥ ψ(s) for all t < s. Without
loss of generality, we assume that t = 0, since for arbitrary t we can consider Z̃(u) = Z(u+ t) with cone
growth function ψ̃ and ψ̃(0) = ψ(t). Hence, for the remainder of the proof we fix an arbitrary s > 0
and we have to show that ψ(s) ≤ ψ(0).

Let
P = conv{0, e1+e2

2 , e2, e3, . . . , en} and Q = conv{0, e2, e3, . . . , en}.

58



CHAPTER 4. CLASSIFICATION OF VALUATIONS 4.3. CLASSIFICATION OF MINKOWSKI VALUATIONS

For s > 0, choose us ∈ Conv(Rn) such that epius = epi `P ∩{x1 ≤ s
2}. Define `P,s = `P ◦ τ−1

s(e1+e2)/2 + s

and similarly `Q,s = `Q ◦ τ−1
s(e1+e2)/2 + s. As we have already seen in the proof of Lemma 4.7, we have

us ∧ `P,s = `P and us ∨ `P,s = `Q,s.

Thus, the valuation property of Z gives

Z(us) + Z(`P,s) = Z(us ∧ `P,s) + Z(us ∨ `P,s) = Z(`P ) + Z(`Q,s).

Using the translation invariance of Z and the definition of the cone growth function, this gives for the
support functions

h(Z(us), ·) = (ψ(0)− ψ(s))h(ΠP, ·) + ψ(s)h(ΠQ, ·). (4.7)

Since Z(us) is a convex body, its support function is sublinear. This yields

h(Z(us), e1 + e2) ≤ h(Z(us), e1) + h(Z(us), e2)

and

(ψ(0)− ψ(s))h(ΠP, e1 + e2) + ψ(s)h(ΠQ, e1 + e2)

≤ (ψ(0)− ψ(s))
(
h(ΠP, e1) + h(ΠP, e2)

)
+ ψ(s)

(
h(ΠQ, e1) + h(ΠQ, e2)

)
.

Using Lemma 1.12, we obtain

(ψ(0)− ψ(s)) 1
(n−1)! + ψ(s) 1

(n−1)! ≤ (ψ(0)− ψ(s))
(

1
(n−1)! + 1

2(n−1)!

)
+ ψ(s)

(
1

(n−1)! + 0
)
,

0 ≤ (ψ(0)− ψ(s)) 1
2(n−1)! ,

which holds if and only if ψ(s) ≤ ψ(0).
In order to show (4.6), let s in the construction above go to +∞. It is easy to see, that in this case

us is epi-convergent to `P . Since ψ is decreasing and non-negative, lims→+∞ ψ(s) = ψ∞ exists. Taking
limits in (4.7) therefore yields

ψ(0)h(ΠP, ·) = h(Z(`P ), ·) = (ψ(0)− ψ∞)h(ΠP, ·) + ψ∞ h(ΠQ, ·).

Evaluating at e2 now gives ψ∞ = 0. �

By Lemma 4.1, we obtain the following result as an immediate corollary from the last result. We call
a Minkowski valuation on Conv(Rn) trivial if Z(u) = {0} for u ∈ Conv(Rn).

Lemma 4.15. Every continuous, increasing, SL(n) contravariant and translation invariant Minkowski
valuation on Conv(Rn) is trivial.

Lemma 4.13 shows that the indicator growth function ζ of a continuous, SL(n) contravariant and trans-
lation invariant Minkowski valuation Z determines its cone growth function ψ up to a polynomial of
degree less than n−1. By Lemma 4.14, limt→∞ ψ(t) = 0 and hence the polynomial is also determined by
ζ. Thus ψ is completely determined by the indicator growth function of Z and Lemma 4.12 immediately
implies the following result.

Lemma 4.16. Every continuous, SL(n) contravariant and translation invariant Minkowski valuation
Z : Conv(Rn)→ Kn is uniquely determined by its indicator growth function.
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Theorem 4.17. A function Z : Conv(Rn)→ Kn is a continuous, monotone, SL(n) contravariant and
translation invariant Minkowski valuation if and only if there exists ζ ∈ Dn−2(R) such that

Z(u) = Π 〈ζ ◦ u〉 (4.8)

for every u ∈ Conv(Rn).

Proof. If ζ ∈ Dn−2(R), then Lemma 3.24 shows that (4.8) defines a continuous, decreasing, SL(n)
contravariant and translation invariant Minkowski valuation on Conv(Rn).

Conversely, let a continuous, monotone, SL(n) contravariant and translation invariant Minkowski
valuation Z be given and let ζ be its indicator growth function. Lemma 4.15 implies that we may
assume that Z is decreasing. It follows from the definition of ζ in Lemma 4.11 that ζ is non-negative
and continuous. To see that ζ is decreasing, note that by the definition of ζ in in Lemma 4.11,

h(Z(I[0,1]n + t), e1) = ζ(t)h(Π[0, 1]n, e1) = ζ(t)

for every t ∈ R and that Z is decreasing. By Lemma 4.13 combined with Lemma 4.3, the function ζ
has finite (n− 2)-nd moment. Thus ζ ∈ Dn−2(R).

For u = IP + t with P ∈ Pno and t ∈ R, we obtain by (3.24) that

h(Π 〈ζ ◦ u〉, z) =

∫ +∞

0
h(Π{ζ ◦ u ≥ s}, z) ds = ζ(t)h(ΠP, z)

for every z ∈ Sn−1. Hence Π 〈ζ ◦ (IP + t)〉 = ζ(t) ΠP for P ∈ Pno and t ∈ R. By Lemma 3.24,

u 7→ Π 〈ζ ◦ u〉

defines a continuous, decreasing, SL(n) contravariant and translation invariant Minkowski valuation
on Conv(Rn) and ζ is its indicator growth function. Thus Lemma 4.16 completes the proof of the
theorem. �

Theorem 4.18. A function Y : LC(Rn)→ Kn is a continuous, homogeneous, SL(n) contravariant and
translation invariant Minkowski valuation if and only if there exist c ≥ 0 and q > 0 such that

Y(f) = cΠ 〈f q〉 (4.9)

for every f ∈ LC(Rn).

Proof. For c ≥ 0 and q > 0 it follow from Lemma 3.25 that (4.9) defines a continuous, homogeneous,
SL(n) contravariant and translation invariant Minkowski valuation on LC(Rn).

Conversely, let a continuous, SL(n) contravariant and translation invariant Minkowski valuation Y
be given that is homogeneous of degree q ∈ R. Assume without loss of generality that Y is non-trivial.
If Z denotes the corresponding valuation on Conv(Rn), that is Z(u) = Y(e−u) for every u ∈ Conv(Rn),
then Z is continuous, SL(n) contravariant and translation invariant, see also Remark 3.2. Furthermore,

Z(u+ t) = Y(e−(u+t)) = (e−t)q Y(e−u) = e−qt Z(u),

for every u ∈ Conv(Rn) and t ∈ R. In particular, this gives for the cone growth function ψ of Z

e−qt Z(`K) = Z(`K + t) = ψ(t) ΠK,
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for every K ∈ Kno and t ∈ R. Thus, by Lemmas 4.12 and 4.14 we have q > 0, since we assumed
that Y was non-trivial. Furthermore, Lemma 4.13 implies that there exists a constant c ≥ 0 such that
ζ(t) = ce−qt, where ζ is the indicator growth function of Z. For t ∈ R let s = e−t. We have

h(Y(s χK), z) = h(Z(IK + t), z) = ce−qth(ΠK, z)

= csqh(ΠK, z)

= c

∫ +∞

0
h(Π{(s χK)q ≥ r}, z) dr

= h(cΠ 〈(s χK)q〉, z),

for every K ∈ Kn and z ∈ Sn−1. By Lemma 4.16 the valuation Z is uniquely determined by its values
on indicator functions. Since

f 7→ cΠ 〈f q〉

defines a continuous, homogeneous, SL(n) contravariant and translation invariant Minkowski valuation,
the proof is complete. �

4.3.2 Covariant Minkowski Valuations

In this section we establish classification results for the operators discussed in Sections 3.4.2 and 3.4.3.
Let n ≥ 3.

Lemma 4.19. If Z : Conv(Rn) → Kn is a continuous, SL(n) covariant Minkowski valuation, then
there exist continuous functions ψ1, ψ2, ψ3 : R→ [0,∞) and ψ4 : R→ R such that

Z(`K + t) = ψ1(t)K + ψ2(t)(−K) + ψ3(t) MK + ψ4(t) m(K)

for every K ∈ Kno and t ∈ R. If Z is also translation invariant, then there exists a continuous function
ζ : R→ [0,∞) such that

Z(IK + t) = ζ(t) DK

for every K ∈ Kn and t ∈ R.

Proof. For t ∈ R, define Zt : Kno → Kn as

ZtK = Z(`K + t).

Similar to the proof of Lemma 4.11 it follows from Lemma 2.14, (3.4) and (3.7), that Zt defines a
continuous, SL(n) covariant Minkowski valuation on Kno for every t ∈ R. Therefore, by Theorem 1.17,
for every t ∈ R there exist constants c1,t, c2,t, c3,t ≥ 0 and c4,t ∈ R such that

Z(`K + t) = ZtK = c1,tK + c2,t(−K) + c3,t MK + c4,t m(K)

for every K ∈ Kno . This defines functions ψi(t) = ci,t for 1 ≤ i ≤ 4. By the continuity of Z,

t 7→ h(Z(`Tr + t), e1) = r ψ1(t) +
r2

(n+ 1)!
(ψ3(t) + ψ4(t))
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is continuous for every r > 0, where Tr is defined as in Lemma 1.16. Setting r = 1 and r = 2 shows
that

t 7→ ψ1(t) +
1

(n+ 1)!
(ψ3(t) + ψ4(t))

and

t 7→ 2ψ1(t) +
4

(n+ 1)!
(ψ3(t) + ψ4(t))

are continuous functions. Hence ψ3 + ψ4 and ψ1 are continuous functions. The continuity of the map
t 7→ h(Z(`Tr + t),−e1) shows that ψ3−ψ4 and ψ2 are continuous. Hence, also ψ3 and ψ4 are continuous
functions.

Similarly, if Z is also translation invariant, we consider Yt(K) = Z(IK + t), which defines a contin-
uous, translation invariant and SL(n) covariant Minkowski valuation on Kn for every t ∈ R, see also
(3.3), (3.5) and (3.6). Therefore, by Theorem 1.18, there exists a non-negative constant dt such that

Z(IK + t) = Yt(K) = dt DK

for every t ∈ R and K ∈ Kno . This defines a function ζ(t) = dt, which is continuous due to the continuity
of Z. �

Lemma 4.20. If Z : Conv(Rn)→ Kn is a continuous, SL(n) covariant Minkowski valuation, then, for
e ∈ Sn−1,

h(Z(v), e) = 0

for every v ∈ Conv(Rn) such that dom v lies in an affine subspace orthogonal to e. Moreover, if ϑ is
the orthogonal reflection at e⊥, then

h(Z(u), e) = h(Z(u ◦ ϑ−1),−e)

for every u ∈ Conv(Rn).

Proof. By Lemma 4.19, we have h(Z(`K), e) = 0 for everyK ∈ Kno such thatK ⊂ e⊥. Hence, Lemma 4.1
implies that h(Z(v), e) = 0 for every u ∈ Conv(Rn) such that dom v ⊂ e⊥. By the translation invariance
of Z, this also holds for v ∈ Conv(Rn) whose dom v lies in an affine subspace orthogonal to e.

Similarly, for every K ∈ Kno , we have h(K, e) = h(ϑK,−e) and h(−K, e) = h(−ϑK,−e) while
h(m(K), e) = h(m(ϑK),−e) and h(MK, e) = h(M(ϑK),−e). Hence Lemma 4.19 implies that
h(Z(`K), e) = h(Z(`K ◦ ϑ−1),−e). The claim follows again from Lemma 4.1. �

In the proof of the next lemma, we use the following classical result due to H.A. Schwarz (cf. [48, p. 37]).
Suppose a real valued function ψ is defined and continuous on the closed interval I. If

lim
h→0

ψ(t+ h)− 2ψ(t) + ψ(t− h)

h2
= 0

for every t in the interior of I, then ψ is an affine function.

Lemma 4.21. Let Z : Conv(Rn) → Kn be a continuous, SL(n) covariant and translation invariant
Minkowski valuation and let ψ1, ψ2, ψ3 and ψ4 be the functions from Lemma 4.19. Then ψ1 and ψ2 are
continuously differentiable, ψ′1 = ψ′2 and both ψ3 and ψ4 are constant.
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Proof. For a closed interval I in the span of e1, let the function uI ∈ Conv(Rn) be defined by

{uI < 0} = ∅, {uI ≤ s} = I + conv{0, s e2, . . . , s en}

for every s ≥ 0. By the properties of Z it is easy to see that the map I 7→ h(Z(uI + t), e1) is a real
valued, continuous, translation invariant valuation on K1 for every t ∈ R. Hence, it is easy to see that
there exist functions ζ0, ζ1 : R→ R such that

h(Z(uI + t), e1) = ζ0(t) + ζ1(t)V1(I) (4.10)

for every I ∈ K1 and t ∈ R (see, for example, [28, p. 39]). Note, that by the continuity of Z, the
functions ζ0 and ζ1 are continuous.

For r, h > 0, let Tr/h = conv{0, rh e1, e2, . . . , en}. Define the function uhr by

{uhr ≤ s} = {`Tr/h ≤ s} ∩ {x1 ≤ r}

for every s ∈ R. It is easy to see that uhr ∈ Conv(Rn) and that

{uhr ≤ s} ∪ {`Tr/h ◦ τ
−1
r e1 + h ≤ s} = {`Tr/h ≤ s},

{uhr ≤ s} ∩ {`Tr/h ◦ τ
−1
r e1 + h ≤ s} ⊂ {x1 = r}

for every s ∈ R. By translation invariance, the valuation property and Lemma 4.20, this gives

h(Z(uhr + t), e1) = h(Z(`Tr/h + t), e1)− h(Z(`Tr/h + t+ h), e1)

for every t ∈ R. Note, that by Theorem 2.13 we have uhr
epi−→ u[0,r] as h→ 0. Hence, using the continuity

of Z, Lemma 4.19 and Lemma 1.16, we obtain

h(Z(u[0,r] + t), e1) = lim
h→0+

h(Z(uhr + t), e1)

= lim
h→0+

(
r
ψ1(t)− ψ1(t+ h)

h
+

r2

(n+ 1)!

(ψ3 + ψ4)(t)− (ψ3 + ψ4)(t+ h)

h2

)
for every t ∈ R and r > 0. Comparison with (4.10) now gives

ζ1(t) = lim
h→0+

ψ1(t)− ψ1(t+ h)

h
, 0 = lim

h→0+

(ψ3 + ψ4)(t)− (ψ3 + ψ4)(t+ h)

h2
. (4.11)

Similarly, since also uhr − h
epi−→ u[0,r] as h→ 0, we obtain

ζ1(t) = lim
h→0+

ψ1(t− h)− ψ1(t)

h
, 0 = lim

h→0+

(ψ3 + ψ4)(t− h)− (ψ3 + ψ4)(t)

h2
.

Hence, ψ1 is continuously differentiable with −ψ′1 = ζ1. In addition, by H.A. Schwarz’s result, the
function ψ3 + ψ4 is affine and hence by (4.11) it must be constant.

Now, let ϑ denote the reflection at {x1 = 0} = e⊥1 . Lemma 4.20 and the translation invariance of Z
give

h(Z(u[0,r] + t), e1) = h(Z(u[0,r] ◦ ϑ−1 + t),−e1)

= h(Z(u[−r,0] + t),−e1) = h(Z(u[0,r] + t),−e1)

for every t ∈ R. Repeating the arguments from above, but evaluating at −e1, shows that −ψ′2 = ζ1 and
ψ3 − ψ4 is constant. Hence, both ψ3 and ψ4 are constant. �
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Lemma 4.22. If the operator Z : Conv(Rn) → Kn is a continuous, SL(n) covariant and translation
invariant Minkowski valuation, then there exists a non-negative ψ ∈ C1(R) such that

Z(`K + t) = ψ(t) DK

for every t ∈ R and K ∈ Kno . Moreover, limt→+∞ ψ(t) = 0.

Proof. Let ψ1, . . . , ψ4 be as in Lemma 4.19. By Lemma 4.21, there exist constants c3, c4 such that
ψ3(t) ≡ c3 and ψ4(t) ≡ c4. Moreover, ψ1 and ψ2 are non-negative and only differ by a constant. Hence,
it suffices to show that limt→+∞ ψ1(t) = limt→+∞ ψ2(t) = 0 and c3 = c4 = 0. To show this, let r, b > 0
and let vbr ∈ Conv(Rn) be defined by epi vbr = epi `Tr ∩ {x1 ≤ b}, where Tr is defined as in Lemma 1.16.
Note, that epi-limb→+∞ v

b
r = `Tr . Set `br := `Tr ◦ τ−1

b e1
+ b

r and observe that

vbr ∧ `br = `Tr , dom(vbr ∨ `br) ⊂ {x1 = b}.

Thus, by the valuation property and Lemma 4.20, we obtain

h(Z(vbr), e1) = h(Z(`Tr), e1)− h(Z(`br), e1).

Using the translation invariance and continuity of Z now gives

r ψ1(0) + r2 c3 + c4

(n+ 1)!
= h(Z(`Tr), e1) = lim

b→+∞
h(Z(vbr), e1) = lim

b+∞
r (ψ1(0)− ψ1( br ))

for every r > 0. Hence, limt→+∞ ψ1(t) = 0 and c3 + c4 = 0. Similarly, evaluating the support functions
at −e1 gives limt→+∞ ψ2(t) = 0 and c3 − c4 = 0. Consequently, c3 = c4 = 0. �

By Lemma 4.1, we obtain the following result as an immediate corollary of the last result.

Lemma 4.23. Every continuous, increasing, SL(n) covariant, translation invariant Minkowski valua-
tion on Conv(Rn) is trivial.

For a given continuous, SL(n) covariant and translation invariant Minkowski valuation
Z : Conv(Rn)→ Kn, we call the function ψ from Lemma 4.22 the cone growth function of Z.

Lemma 4.24. If the operator Z : Conv(Rn) → Kn is a continuous, SL(n) covariant and translation
invariant Minkowski valuation with cone growth function ψ, then ψ is decreasing and

Z(IK + t) = −ψ′(t) DK

for every t ∈ R and K ∈ Kno .

Proof. Let ζ be as in Lemma 4.19. Since ζ ≥ 0, it suffices to show that ζ = −ψ′. Therefore, for
h > 0 let uh ∈ Conv(Rn) be defined by epiuh = epi `[0,e1/h] ∩ {x1 ≤ 1}. By Theorem 2.13, we have
epi-limh→0 uh = I[0,e1]. Define `h = `[0,e1/h] ◦ τ−1

e1 + h and observe that

uh ∧ `h = `[0,e1/h] and uh ∨ `h = I{e1} + h.

Hence, by the properties of Z and the definitions of ψ and ζ this gives

ζ(t) = h(Z(I[0,e1] + t), e1) = lim
h→0+

h(Z(uh + t), e1) = lim
h→0+

ψ(t)− ψ(t+ h)

h

for every t ∈ R. The claim follows, since ψ is differentiable. �
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The function ζ = −ψ′ appearing in the above Lemma is called the indicator growth function of Z.
Lemma 4.21 shows that the indicator growth function ζ of a continuous, SL(n) covariant and trans-
lation invariant Minkowski valuation Z determines its cone growth function ψ up to a constant. Since
limt→∞ ψ(t) = 0, the constant is also determined by ζ. Thus ψ is completely determined by the
indicator growth function of Z and Lemma 4.1 implies the following result.

Lemma 4.25. Every continuous, SL(n) covariant, translation invariant Minkowski valuation on Conv(Rn)
is uniquely determined by its indicator growth function.

Theorem 4.26. A function Z : Conv(Rn) → Kn is a continuous, monotone, SL(n) covariant and
translation invariant Minkowski valuation if and only if there exists ζ ∈ D0(R) such that

Z(u) = D [ζ ◦ u] (4.12)

for every u ∈ Conv(Rn).

Proof. If ζ ∈ D0(R), then Lemma 3.28 shows that (4.12) defines a continuous, decreasing, SL(n)
covariant and translation invariant Minkowski valuation on Conv(Rn).

Conversely, let a continuous, monotone, SL(n) covariant and translation invariant Minkowski valua-
tion Z be given and let ζ be its indicator growth function. Lemma 4.23 implies that we may assume that
Z is decreasing. By Lemma 4.25, the valuation Z is uniquely determined by ζ. For P = [0, e1] ∈ Pno ,
we have

h(Z(IP + t), e1) = ζ(t)h(DP, e1) = ζ(t)

for every t ∈ R. Since Z is decreasing, also ζ is decreasing. Since ζ = −ψ′, it follows from Lemma 4.21
that ∫ ∞

0
ζ(t) dt = ψ(0)− lim

t→∞
ψ(t) = ψ(0).

Thus ζ ∈ D0(R).
For u = IP + t with arbitrary P ∈ Pno and t ∈ R, we have

h(D [ζ ◦ u], z) =

∫ +∞

0
h(D{ζ ◦ u ≥ s}, z) ds = ζ(t)h(DP, z)

for every z ∈ Sn−1. Hence D [ζ ◦ (IP + t)] = ζ(t) DP for P ∈ Pno and t ∈ R. By Lemma 3.28,

u 7→ D [ζ ◦ u]

defines a continuous, decreasing, SL(n) covariant and translation invariant Minkowski valuation on
Conv(Rn) with indicator growth function ζ. Thus Lemma 4.25 completes the proof of the theorem. �

In the remainder of this section we will study valuations on LC(Rn). However, instead of translation
invariance we will consider translation covariance and monotonicity will be replaced by homogeneity.

The next result extends the basic observation that the associated function Z0 : Kn → Rn of a
translation covariant Minkowski valuation Z : Kn → Kn is a translation invariant real-valued valuation.
See for example [44, Lemma 10.5] for a corresponding result on vector-valued valuations. Similarly,
SL(n) covariance of Z implies SL(n) invariance of Z0. Hence, it is no coincidence that the associated
function of the Minkowski valuation described in Corollary 1.19 is a linear combination of the Euler
characteristic and volume.
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Lemma 4.27. If Y : LC(Rn) → Kn is a continuous, homogeneous, SL(n) and translation covariant
Minkowski valuation, then its associated function Y0 : LC(Rn) → R is a continuous, homogeneous,
SL(n) and translation invariant valuation. Furthermore, Y and Y0 have the same degree of homogene-
ity.

Proof. Let x ∈ Rn\{0} and f, g ∈ LC(Rn) be such that f ∨ g ∈ LC(Rn). Since

(f ◦ τ−1
x ) ∨ (g ◦ τ−1

x ) = (f ∨ g) ◦ τ−1
x and (f ◦ τ−1

x ) ∧ (g ◦ τ−1
x ) = (f ∧ g) ◦ τ−1

x ,

it follows from the translation covariance and the valuation property of Y that

Y(f ◦ τ−1
x ) + Y(g ◦ τ−1

x ) = Y((f ∨ g) ◦ τ−1
x ) + Y((f ∧ g) ◦ τ−1

x )

= Y(f ∨ g) + Y(f ∧ g) + Y0(f ∨ g)x+ Y0(f ∧ g)x.

On the other hand,

Y(f ◦ τ−1
x ) + Y(g ◦ τ−1

x ) = Y(f) + Y0(f)x+ Y(g) + Y0(g)x

= Y(f ∨ g) + Y(f ∧ g) + Y0(f)x+ Y0(g)x.

Hence, Y0 is a valuation. Now, for arbitrary y ∈ Rn, we have

Y(f) + Y0(f)x+ Y0(f)y = Y(f ◦ τ−1
x+y)

= Y(f ◦ τ−1
y ◦ τ−1

x )

= Y(f ◦ τ−1
y ) + Y0(f ◦ τ−1

y )x

= Y(f) + Y0(f)y + Y0(f ◦ τ−1
y )x,

and therefore Y0(f) = Y0(f ◦ τ−1
y ). For φ ∈ SL(n) observe that

(τ−1
x ◦ φ−1)(y) = φ−1y − x = φ−1(y − φx) = (φ−1 ◦ τ−1

φx )(y)

for every y ∈ Rn and therefore

φY(f) + Y0(f)φx = φY(f ◦ τ−1
x )

= Y(f ◦ τ−1
x ◦ φ−1)

= Y(f ◦ φ−1 ◦ τ−1
φx )

= Y(f ◦ φ−1) + Y0(f ◦ φ−1)φx

= φY(f) + Y0(f ◦ φ−1)φx.

Hence, Y0 is SL(n) invariant. Moreover, for s > 0 we have

sq Y(f) + sq Y0(f)x = sq Y(f ◦ τ−1
x ) = Y(s(f ◦ τ−1

x )) = Y((sf) ◦ τ−1
x ) = sq Y(f) + Y0(sf)x.

Lastly, if fk, f ∈ LC(Rn) are such that hypo-limk→∞ fk = f , then also hypo-limk→∞ fk ◦ τ−1
x = f ◦ τ−1

x .
Hence, by the continuity of Y,

Y(fk) + Y0(fk)x = Y(fk ◦ τ−1
x ) −→ Y(f ◦ τ−1

x ) = Y(f) + Y0(f)x.

�
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Lemma 4.28. Let Y : LC(Rn) → Kn be a continuous, SL(n) and translation covariant Minkowski
valuation that is homogeneous of degree q. There exist constants c1, c2, d1, d2, d4 ≥ 0, and c3, d3 ∈ R
such that

Y(s e−`K ) = sq(d1K + d2(−K) + d4 m(K) + d3 M(K)),

for every K ∈ Kno and s > 0 and

Y(s χK) = sq(c1K + c2(−K) + c3 m(K)),

for every K ∈ Kn and s > 0. Furthermore, q > 0 if c3 6= 0 and

Y0(f) = (c1 − c2)V0(f)q + c3Vn(f q),

for every f ∈ LC(Rn).

Proof. Similar to the proof of Lemma 4.19 it follows from Lemma 2.14, (3.4), (3.7) and Remark 3.2,
that the map

K 7→ Y(e−`K )

defines a continuous, SL(n) covariant Minkowski valuation on Kno . By Theorem 1.17 there exist con-
stants d1, d2, d4 ≥ 0 and d3 ∈ R such that

Y(s e−`K ) = sq Y(e−`K ) = sq(d1K + d2(−K) + d3 m(K) + d4 M(K))

for every K ∈ Kno and s > 0, where q ∈ R denotes the degree of homogeneity of Y. Similarly,
K 7→ Y(χK) defines a continuous, SL(n) and translation covariant Minkowski valuation on Kn. Hence,
by Corollary 1.19 there exist constants c1, c2 ≥ 0 and c3 ∈ R such that

Y(s χK) = sq(c1K + c2(−K) + c3 m(K)),

for every K ∈ Kn and s > 0.
For K ∈ Kn, x ∈ Rn\{0} and s > 0 let f := s χK ∈ LC(Rn) and observe that

Y(f) + Y0(f)x = Y(f ◦ τ−1
x )

= Y(s χK+x)

= sq(c1K + c2(−K) + c3 m(K) + (c1 − c2 + c3Vn(K))x)

= Y(f) + sq(c1 − c2 + c3Vn(K))x.

On the other hand, by Theorem 4.10 and Lemma 4.27, there exist c̃0, c̃n ∈ R and q̃ ∈ R, with q̃ > 0 if
c̃n 6= 0, such that

Y0(g) = c̃0V0(g)q̃ + c̃nVn(gq̃),

for every g ∈ LC(Rn). Noting, that V0(f)q = sq and Vn(f q) = sqVn(K), a comparison shows that

(c1 − c2)sqV0(K) + c3s
qVn(K) = Y0(s χK) = c̃0s

q̃V0(K) + c̃ns
q̃Vn(K),

for every s > 0 and K ∈ Kn. Choosing K = {0} and s = 1 gives c1 − c2 = c̃0. With the same K and
arbitrary s > 0 we have q = q̃ and with any full-dimensional K ∈ Kn we obtain c̃n = c3. �
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Lemma 4.29. Let Y : LC(Rn) → Kn be a continuous, SL(n) and translation covariant Minkowski
valuation that is homogeneous of degree q. If c1, c2, d1, d2 denote the constants from Lemma 4.28, then
c1 = q d1 and c2 = q d2.

Proof. For h > 0 let uh ∈ Conv(Rn) be defined via epiuh = epi `[0,e1/h] ∩ {x1 ≤ 1}. As in the proof of

Lemma 4.24, we have uh
epi−→ I[0,e1] as h→ 0 and furthermore

uh ∧ `h = `[0,e1/h] and uh ∨ `h = I{e1} + h,

where `h = `[0,e1/h] ◦ τ−1
e1 + h. Let Z be the valuation on Conv(Rn) that corresponds to Y, that is

Z(u) = Y(e−u) for every u ∈ Conv(Rn). By Remark 3.2, the valuation Z is continuous, SL(n) and
translation covariant and furthermore Z(u+ t) = e−qt Z(u) for every u ∈ Conv(Rn) and t ∈ R. We now
have

Z(`h) = e−qh Z(`[0,e1/h]) + (c1 − c2)e−qhe1

and furthermore

c1 = h(Z(I[0,e1]), e1) = lim
h→0+

h(Z(uh), e1)

= lim
h→0+

(h(Z(`[0,e1/h]), e1) + h(Z(I{e1} + h), e1)− h(Z(`h), e1))

= lim
h→0+

(d1h + (c1 − c2)e−qh − e−qh d1h − (c1 − c2)e−qh)

= lim
h→0+

d1
1−e−qh

h = q d1.

Similarly, evaluating the support functions at −e1 shows that c2 = q d2. �

Lemma 4.30. Every continuous, homogeneous, SL(n) and translation covariant Minkowski valuation
Y : LC(Rn)→ Kn is either trivial or has a positive degree of homogeneity.

Proof. Let d1, d2, c1, c2, c3 and q denote the constants from Lemma 4.28 and suppose that q ≤ 0.
Lemma 4.28 shows that c3 = 0. Furthermore, since c1, c2, d1 and d2 are non-negative, Lemma 4.29
yields that also c1 = c2 = 0. Hence, Y0 ≡ 0 and Y is translation invariant. Moreover, Y(s χK) = {0}
for every s > 0 and K ∈ Kn. Thus, Remark 3.2 and Lemma 4.25 show that Y is trivial. �

Lemma 4.31. For a, b ∈ R and q > 0 the following holds:

lim
h→0+

(
a

1− e−qh

h2
− be

−qh

h

)
=

{
q
2b if b = q a

+∞ else.

Proof. Since,

a
1− e−qh

h2
− be

−qh

h
=
a (1− e−qh)− b h e−qh

h2
,

and
lim
h→0+

(
a (1− e−qh)− b h e−qh

)
= 0,

we can apply L’Hospital’s rule to obtain

lim
h→0+

a (1− e−qh)− b he−qh

h2
= lim

h→0+

q a e−q h − b e−qh + q b he−qh

2h
= lim

h→0+
e−qh

2h (q a− b) + q
2b.

The claim now follows since e−qh

2h → +∞ as h→ 0+. �
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Lemma 4.32. Let Y : LC(Rn) → Kn be a continuous, SL(n) and translation covariant Minkowski
valuation that is homogeneous of degree q. If c3, d3, d4 denote the constants from Lemma 4.28, then

c3 = qn+1

(n+1)!d3 and d4 = 0.

Proof. By Lemma 4.30, we can assume without loss of generality that q > 0. Define v ∈ Conv(Rn) via

{v < 0} = ∅, {v ≤ s} = [0, e1] + conv{0, s e2, . . . , s en},

for every s ≥ 0. Now, for h > 0 let T1/h be defined as in Lemmas 1.16 and define the function uh via

{uh ≤ s} = {`T1/h ≤ s} ∩ {x1 ≤ 1},

for every s ∈ R. Similar to the proof of Lemma 4.21 we have uh ∈ Conv(Rn) and furthermore

{uh ≤ s} ∪ {`T1/h ◦ τ
−1
e1 + h ≤ s} = {`T1/h ≤ s}

{uh ≤ s} ∩ {`T1/h ◦ τ
−1
e1 + h ≤ s} = {`conv{0,e2,...,en} ◦ τ

−1
e1 + h ≤ s},

for every s ∈ R. Thus, denoting Z(u) = Y(e−u) for u ∈ Conv(Rn), this gives

Z(uh) + Z(`T1/h ◦ τ
−1
e1 + h) = Z(`T1/h) + Z(`conv{0,e2,...,en} ◦ τ

−1
e1 + h). (4.13)

By Lemmas 3.13 and 4.28 we have

Z(`T1/h ◦ τ
−1
e1 + h) = e−qh Z(`T1/h) + e−qh((c1 − c2) + c3

h qn )e1

Z(`conv{0,e2,...,en} ◦ τ
−1
e1 + h) = e−qh Z(`conv{0,e2,...,en}) + e−qh(c1 − c2)e1.

Furthermore, using Lemma 1.16 we obtain for the support functions

h(Z(`T1/h), e1) = d1
h + d3+d4

h2 (n+1)!
,

h(Z(`T1/h ◦ τ
−1
e1 + h), e1) = e−qh

(
d1
h + d3+d4

h2 (n+1)!
+ (c1 − c2) + c3

h qn

)
,

h(Z(`conv{0,e2,...,en}), e1) = e−qh(c1 − c2).

Observe, that for h→ 0+ we have uh
epi−→ v. Hence, by the continuity of Z and (4.13), we have

h(Z(v), e1) = lim
h→0+

h(Z(uh), e1)

= lim
h→0+

(
d1
h (1− e−qh) + d3+d4

h2 (n+1)!
(1− e−qh)− c3

h qn e
−qh)

= q d1 + lim
h→0+

(
d3+d4
(n+1)!

1−e−qh
h2

− c3
qn

e−qh

h

)
.

Since this expression must be finite, it follows from Lemma 4.31 that

c3

qn
= q

d3 + d4

(n+ 1)!
.

Similarly, repeating the calculations above but evaluating the support functions at −e1 gives

c3

qn
= q

d3 − d4

(n+ 1)!
.

Hence, d4 = 0 and c3 = qn+1

(n+1)!d3. �
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By Lemma 4.1, every continuous, homogeneous, SL(n) and translation covariant Minkowski valuation
Y on LC(Rn) is uniquely determined by the constants c1, c2, c3, d1, d2, d3, d4 and q from Lemma 4.28.

By Lemmas 4.29 and 4.32 we have d1 = c1
q , d2 = c2

q , d3 = (n+1)!
qn+1 c3 and d4 = 0. Hence, Y is completely

determined by the constants c1, c2, c3 and q. Thus, we have the following result.

Lemma 4.33. Every continuous, homogeneous, SL(n) and translation covariant Minkowski valuation
Y : LC(Rn)→ Kn is uniquely determined by the values Y(s χK) with s > 0 and K ∈ Kn.

Theorem 4.34. A function Y : LC(Rn) → Kn is a continuous, homogeneous, SL(n) and translation
covariant Minkowski valuation if and only if there exist constants c1, c2 ≥ 0, c3 ∈ R and q > 0 such
that

Y(f) = c1[f q] + c2(−[f q]) + c3 m(f q) (4.14)

for every f ∈ LC(Rn).

Proof. Lemmas 3.29 and 3.32 show that (4.14) defines a continuous, homogeneous, SL(n) and transla-
tion covariant Minkowski valuation on LC(Rn) for every c1, c2 ≥ 0, c3 ∈ R and q > 0.

Conversely, let Y : LC(Rn) → R be a continuous, homogeneous, SL(n) and translation covariant
Minkowski valuation. For arbitrary K ∈ Kn and s > 0, let f = s χK . By Lemma 4.28, there exist
constants c1, c2 ≥ 0 and c3, q ∈ R such that

Y(f) = sq(c1K + c2(−K) + c3 m(K))

and by Lemma 4.30 we may assume that q > 0. Since

h([f q], z) =

∫ +∞

0
h({sq χK ≥ t}, z) dt = sq h(K, z)

h(m(f q), z) =

∫
Rn
sq χK(x)(x · z) dx = sq h(m(K), z)

for every z ∈ Sn−1, we have Y(f) = c1[f q] + c2(−[f q]) + c3 m(f q). Thus, Lemma 4.33 completes the
proof of the theorem. �

The next result is a corollary of both Theorem 4.26 and Theorem 4.34.

Corollary 4.35. A function Y : LC(Rn) → Kn is a continuous, homogeneous, SL(n) covariant and
translation invariant Minkowski valuation if and only if there exist c ≥ 0 and q > 0 such that

Y(f) = cD [f q]

for every f ∈ LC(Rn).
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4.4 Classification of Measure-Valued Valuations

The aim of this section is to give a classification of the surface area measure that generates the operator
from Theorem 4.17. Let n ≥ 3.

Lemma 4.36. If µ : Conv(Rn)→M(Sn−1) is a weakly continuous valuation that is SL(n) contravari-
ant of degree 1, then there exist continuous functions ψ1, ψ2, ζ1, ζ2 : R→ [0,∞) such that

µ(`K + t, ·) = ψ1(t)S(K, ·) + ψ2S(−K, ·),
µ(IK + t, ·) = ζ1(t)S(K, ·) + ζ2S(−K, ·),

for every K ∈ Kno and t ∈ R.

Proof. For t ∈ R, define µt : Kno →M(Sn−1) as

µt(K, ·) = µ(`K + t, ·).

As in the proof of Lemma 4.11, we see that µt is a weakly continuous valuation that is SL(n) contra-
variant of degree 1 for every t ∈ R. By Corollary 1.9, for t ∈ R, there exist c1,t, c2,t ≥ 0 such that

µ(`K + t, ·) = µt(K, ·) = c1,tS(K, ·) + c2,tS(−K, ·)

for all K ∈ Kno . This defines non-negative functions ψ1(t) = c1,t and ψ2(t) = c2,t. To see that those
functions are continuous let b : Sn−1 → [0,∞) be a continuous function such that

b
({

1√
n

(1, . . . , 1)t
})

> 0

and such that b vanishes on all other outer unit normals of Tn and −Tn. Since 1√
n

(1, . . . , 1)t is an outer

unit normal of Tn but not of −Tn, we have

t 7→
∫
Sn−1

b(z) dµ(`Tn + t, z)

= ψ1(t)

∫
Sn−1

b(z) dS(Tn, z) + ψ2(t)

∫
Sn−1

b(z) dS(−Tn, z) = ψ1(t) d+ 0,

with some constant d 6= 0. Hence, ψ1 is continuous. Similarly, one shows that ψ2 is a continuous
function. The result for indicator functions and ζ1, ζ2 follows along similar lines. �

For a weakly continuous valuation µ : Conv(Rn) → M(Sn−1) that is SL(n) contravariant of degree
1, we call the functions ψ1 and ψ2 from Lemma 4.36, the cone growth functions of µ and we call the
functions ζ1 and ζ2 its indicator growth functions. By Lemma 4.1 we have the following result.

Lemma 4.37. Every weakly continuous valuation µ : Conv(Rn)→M(Sn−1) that is SL(n) contravari-
ant of degree 1 and translation invariant is uniquely determined by its cone growth functions.

Lemma 4.38. Let µ : Conv(Rn) → M(Sn−1) be a weakly continuous valuation that is SL(n) con-
travariant of degree 1 and translation invariant. If ψ = ψ1 + ψ2 and ζ = ζ1 + ζ2, then

ζ(t) =
(−1)n−1

(n− 1)!

dn−1

dtn−1
ψ(t).

Moreover, ψ is decreasing and limt→+∞ ψ(t) = 0.
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Proof. Recall that the cosine transform Cµ(u, ·) is the support function of a convex body that contains
the origin for every u ∈ Conv(Rn). By the properties of µ, this induces a continuous, SL(n) contravariant
and translation invariant Minkowski valuation Z : Conv(Rn)→ Kn via

h(Z(u), z) = 1
2 Cµ(u, ·)(z)

for z ∈ Sn−1. By Lemma 4.36, we have

h(Z(`K + t), z) = 1
2 C
(
ψ1(t)S(K, ·) + ψ2(t)S(−K, ·)

)
(z) = ψ(t)h(ΠK, z)

for every K ∈ Kno , t ∈ R and z ∈ Sn−1. Hence, by Lemma 4.11, the function ψ is the cone growth
function of Z. Similarly, it can be seen, that ζ is the indicator growth function of Z. The result now
follows from Lemma 4.13 and Lemma 4.14. �

Lemma 4.39. Every weakly continuous, increasing valuation µ : Conv(Rn)→M(Sn−1) that is SL(n)
contravariant of degree 1 and translation invariant is trivial.

Proof. Since µ is increasing, Lemma 4.36 implies that for s < t

µ(`K + s, Sn−1) ≤ µ(`K + t,Sn−1),

ψ1(s)S(K,Sn−1) + ψ2(s)S(−K,Sn−1) ≤ ψ1(t)S(K,Sn−1) + ψ2(t)S(−K,Sn−1),

for every K ∈ Kno . Hence, ψ = ψ1 +ψ2 is an increasing function. By Lemma 4.38, ψ ≡ 0 and therefore
ψ1 ≡ 0 ≡ ψ2, since those are non-negative functions. Lemma 4.37 implies that µ is trivial. �

Lemma 4.40. Every weakly continuous valuation µ : Conv(Rn) →Me(Sn−1) that is SL(n) covariant
of degree 1 and translation invariant is uniquely determined by its indicator growth functions.

Proof. Since µ is an even measure the cone growth functions ψ1 and ψ2 coincide and similarly the
indicator growth functions ζ1 and ζ2 coincide. By Lemma 4.38, we have limt→+∞ ψ(t) = 0 and

ζ(t) = (−1)n−1

(n−1)!
dn−1

dtn−1ψ(t), where ψ = ψ1 + ψ2 and ζ = ζ1 + ζ2. This shows that ζ uniquely deter-
mines ψ and therefore the indicator growth functions uniquely determine the cone growth functions.
Since Lemma 4.37 implies that µ is determined by its cone growth functions, this implies the statement
of the lemma. �

Theorem 4.41. An operator µ : Conv(Rn) →Me(Sn−1) is a weakly continuous, monotone valuation
that is SL(n) contravariant of degree 1 and translation invariant if and only if there exists ζ ∈ Dn−2(R)
such that

µ(u, ·) = S(〈ζ ◦ u〉, ·) + S(〈ζ ◦ u−〉, ·) (4.15)

for every u ∈ Conv(Rn).

Proof. By Lemma 3.17, the map defined in (4.15) is a weakly continuous, decreasing valuation that is
SL(n) contravariant of degree 1 and translation invariant. Furthermore, it is easy to see µ(u, ·) is an
even measure for every u ∈ Conv(Rn).

Conversely, let µ : Conv(Rn) → Me(Sn−1) be a weakly continuous, monotone valuation that is
SL(n) contravariant of degree 1 and translation invariant. Let ζ1, ζ2 : R → [0,∞) be its indicator
growth functions. If µ is increasing, then Lemma 4.39 shows that µ is trivial. Hence we may assume
that µ is decreasing. Since µ is even, the cone growth functions coincide and similarly the indicator
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growth functions coincide. Therefore, let ζ = ζ1 = ζ2. Thus, Lemma 4.38 combined with Lemma 4.3
implies that ζ ∈ Dn−2(R).

Now, for u = IK + t with K ∈ Kno and t ∈ R we obtain by Lemma 4.36 and by the definition of
S(〈ζ ◦ u〉, ·) in Lemma and Definition 3.15 that

µ(u, ·) = ζ(t)(S(K, ·) + S(−K, ·)) = S(〈ζ ◦ u〉, ·) + S(〈ζ ◦ u−〉, ·).

By Lemma 3.17,
u 7→ S(〈ζ ◦ u〉, ·) + S(〈ζ ◦ u−〉, ·)

defines a weakly continuous, decreasing valuation on Conv(Rn) that is SL(n) contravariant of degree 1,
translation invariant and even and both indicator growth functions are given by ζ. Thus, Lemma 4.40
completes the proof of the theorem. �

For a classification of the homogeneous case on LC(Rn), the measure does not need to be even.

Theorem 4.42. An operator ν : LC(Rn) →M(Sn−1) is a weakly continuous, homogeneous valuation
that is SL(n) contravariant of degree 1 and translation invariant if and only if there exist c1, c2 ≥ 0 and
q > 0 such that

ν(f, ·) = c1S(〈f q〉, ·) + c2S(〈(f−)q〉, ·) (4.16)

for every f ∈ LC(Rn).

Proof. If c1, c2 ≥ 0 and q > 0, then Lemma 3.19 shows that (4.16) is a weakly continuous, homogeneous
valuation that is SL(n) contravariant of degree 1 and translation invariant.

Conversely, let a weakly continuous, homogeneous valuation ν be given that is SL(n) contravariant
of degree 1 and translation invariant and let µ be the corresponding valuation on Conv(Rn), that is
µ(u) = ν(e−u) for every u ∈ Conv(Rn). Then µ is weakly continuous, SL(n) contravariant of degree 1
and translation invariant, see also Remark 3.2. Furthermore,

µ(u+ t) = ν(e−(u+t)) = (e−t)qν(e−u) = e−qtµ(u),

for every u ∈ Conv(Rn) and t ∈ R, where q ∈ R denotes the degree of homogeneity of ν. Let ψ1 and
ψ2 denote the cone growth functions of µ. Since e = 1√

n
(1, . . . , 1)t is an outer unit normal of Tn but

not of −Tn, we have by Lemma 4.36

ψ1(t)S(Tn, e) = µ(`Tn + t, e) = e−qtµ(`Tn , e) = e−qtψ1(0)S(Tn, e),

for every t ∈ R. Since S(Tn, e) 6= 0, this implies that

ψ1(t) = ψ1(0)e−qt = d1 e
−qt

for some constant d1 ≥ 0. Similarly, there exists a constant d2 ≥ 0 such that ψ2(t) = d2 e
−qt. By

Lemma 3.20
S(〈e−q(`K+t)〉, ·) = (n−1)!

qn−1 e
−qtS(K, ·),

for every t ∈ R and K ∈ Kno . Hence, it is easy to see that for u = `K + t with t ∈ R and K ∈ Kno and
f = e−u

ν(f) = µ(u, ·) = d1e
−qtS(K, ·) + d2e

−qtS(−K, ·)

= c1S(〈e−qu〉, ·) + c2S(〈e−q(u−)〉, ·) = c1S(〈f q〉, ·) + c2S(〈(f−)q〉, ·),
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with ci = di q
n−1

(n−1)! , i = 1, 2. By Lemma 3.19,

f 7→ S(〈f q〉, ·) + c2S(〈(f−)q〉, ·)

defines a weakly continuous, homogeneous valuation on LC(Rn) that is SL(n) contravariant of degree
1 and translation invariant. Thus, Lemma 4.37 completes the proof of the theorem. �
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