
Standard and Auxiliary-based Algebraic
Multigrid Methods for elliptic PDEs

Master Thesis

Klaus Roppert

 m

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

ausgeführt zum Zwecke der Erlangung
des akademischen Grades eines Diplom-Ingenieurs
unter der Leitung von

Univ.-Prof. Dipl.-Ing. Dr.techn. Manfred Kaltenbacher
Mitwirkung Projekt.Ass. Dipl.-Ing. Stefan Schoder
Institut für Mechanik und Mechatronik, E325 A4

eingereicht an der Technischen Univeristät Wien
Fakultät für Maschinenwesen und Betriebswissenschaften
von

Klaus Roppert
Matrikelnummer 1226189
Viktor Kaplangasse 15
2603 Felixdorf

Wien, am 12.07.2017 Unterschrift

 m

Master Thesis

Standard and Auxiliary-based Algebraic Multigrid
Methods for elliptic PDEs

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

Eidesstattliche Erklärung

Ich erkläre an Eides Statt, dass ich meine Diplomarbeit mit dem Titel Standard and Auxiliary-
based Algebraic Multigrid Methods for elliptic PDEs selbständig und ohne Benutzung anderer
als der angegebenen Hilfsmittel angefertigt habe und dass ich alle Stellen, die ich wörtlich oder
sinngemäß aus Veröffentlichungen entnommen habe, als solche kenntlich gemacht habe. Die
Arbeit hat bisher in gleicher oder ähnlicher Form oder auszugsweise noch keiner Prüfungsbehörde
vorgelegen.
Wien, den 12.07.2017

(Name Nachname)

i

Contents

Table of Contents ii

Notation iv

1 Introduction 1
1.1 Multigrid Method . 2
1.2 Introduction to Algebraic Multigrid . 3

2 Preliminaries 5
2.1 Smoothing Property of Iterative Solvers . 6

2.1.1 Damped Jacobi Method . 6
2.1.2 Gauss Seidel Method . 7
2.1.3 High- and Low-frequency errors . 9

2.2 Coarse Grid Correction . 11
2.3 Multigrid Methods . 14

2.3.0.1 Two-Grid Cycle . 14
2.3.0.2 V- and W-Cycle . 14

3 General Approach to Algebraic Multigrid 17
3.1 Smooth error in an algebraic sense . 18
3.2 Coarsening . 20

3.2.1 Standard/Ruge-Stüben coarsening . 21
3.2.2 Agglomeration . 22

3.3 AMG as Preconditioner . 23

4 Auxiliary-based Algebraic Multigrid Methods 25
4.1 Auxiliary Matrix . 26

4.1.1 Function spaces and variational formulation 27
4.2 H1(Ω) elliptic problems . 28
4.3 (H1(Ω))p elliptic problems . 30

4.3.1 Convergence Comparisons . 32
4.4 H(curl,Ω) elliptic problems . 33

4.4.1 Convergence Comparisons . 35

ii

5 Application Examples 37
5.1 Electric potential: Capacitor . 37

5.1.1 Physical Description . 38
5.1.2 Weak Formulation . 38
5.1.3 Computational Setup and Results . 39

5.2 Mechanical Field: Loaded Beam . 40
5.2.1 Physical Description . 41
5.2.2 Weak Formulation . 42
5.2.3 Computational Setup and Results . 43

5.3 Electromagnetic Field: Current Loaded Coil . 44
5.3.1 Physical Description . 45
5.3.2 Weak Formulation . 46
5.3.3 Computational Setup and Results . 47

6 Implementation Details 50
6.1 Sparse Matrix Storage . 50

6.1.1 Construction of auxiliary matrix for H(curl,Ω) problems 51
6.2 Smoother Algorithms . 53

6.2.1 Damped Jacobi . 53
6.2.2 Arnold-Falk-Winther . 54

7 Summary 57

Literature 59

List of Figures 61

List of Tables 63

List of Algorithms 64

iii

Notation

R - Set of real numbers
Rd - Set of real valued components of vector x = (xi)i=1,...,d with xi ∈ R
u - Scalar unknown
u - Vector-valued unknown
uh - Scalar unknown in the discretized system
uh - Vector of unknowns in the discretized system
A - Bounded, linear and continuous operator
Ω - Computational domain
∂Ω - Boundary of Ω

L2(Ω) - Function space of square integrable functions on Ω

(L2(Ω))d - Function space of d-dimensional vector-valued square integrable functions on Ω

H1(Ω) - Sobolev Space H1(Ω) := {u ∈ L2(Ω) : ∇u ∈ (L2(Ω))d}
H1

0 (Ω) - H1
0 (Ω) := {u ∈ H1(Ω) : u = 0 on Ω}

(H1(Ω))d - Sobolev Space (H1(Ω))d := {u ∈ (L2(Ω))d : ∇ · u ∈ L2(Ω)}
H(curl,Ω) - Sobolev Space H(curl,Ω) := {u ∈ (L2(Ω))3 : curl(u) ∈ (L2(Ω))3}
H0(curl,Ω) - H0(curl,Ω) := {u ∈ H(curl,Ω) : u× n = 0 on ∂Ω}
V - Function space
V∗ - Dual space to V
E - Electric field intensity in V

m

D - Electric flux density in As
m2

H - Magnetic field intensity in A
m

B - Magnetic flux density in T
J - Current density in A

m2

qe - Charge density in As
m3

Ve - Electric scalar potential in V
v - Velocity of volume charge qe in m

s

[σ] - Cauchy stress tensor with [σij] = MPa

σ - Vector of Cauchy stress tensor-components (Voigt-notation)
[c] - Linear strain tensor
[S] - Tensor of elasticity with [Sij] = MPa

ρ - Mass-density in kg
m3

fv - Volumetric force in N
m3

a - Acceleration in m
s2

BC - Boundary Condition
MG - Multi Grid
AMG - Algebraic Multi Grid
GMG - Geometric Multi Grid

iv

PDE - Partial Differential Equation
ODE - Ordinary Differential Equation
CG - Conjugate Gradient
PCG - Preconditioned Conjugate Gradient
SPD - Symmetric Positive Definite
DOF - Degree of Freedom

v

Abstract

In the following thesis, different algebraic multigrid methods (AMG) for the solution of elliptic
second order PDEs are investigated. A short introduction into multigrid methods in general
is given and extended to the algebraic approach. A matlab-framework is implemented to test
different algorithms and applied to various physical fields, using AMG as a standalone-solver.
The most promising methods were implemented in the in-house finite element code CFS++,
tested and compared to other types of iterative solvers, for three types of equations with different
kernels of the underlying linear operator. The associated physical fields for the three types of
equations are electrostatic, 3D-mechanic and electromagnetic. The latter one, discretized using
edge-elements, the first two using nodal Lagrangian ansatz-functions.

Kurzfassung

In der folgenden Arbeit werden verschiedene Algebraische Multigrid Methoden (AMG) zur Lö-
sung von elliptischen partiellen Differentialgleichungen zweiter Ordnung untersucht. Zu Be-
ginn wird eine kurze, allgemeine Einführung in Multigrid Methoden gegeben, welche dann zu
einem algebraischen Ansatz erweitert werden. Es wird eine Matlab-Umgebung zur Lösung dreier
verschiedener physikalischer Felder entwickelt, um anschließend die vielversprechendsten An-
sätze im institutseigenen Finite-Elemente Code CFS++ zu implementieren und mit anderen
iterativen Gleichungslösern, anhand verschiedener Gleichungen mit unterschiedlichen Kern des
linearen Operators, zu vergleichen. Mit den implementierten Lösern können elektrostatische,
mechanische und elektromagnetische Probleme gelöst werden. Der Funktionenraum für die er-
sten beiden Felder umfasst lineare Langrange-Ansatzfunktionen, wohingegen das letztere mit
Kantenelementen diskretisiert wird.

vi

Chapter 1

Introduction

The trend of performing numerical simulations of physical problems is steadily increasing, due to
less expenses in real-life experiments and shorter product development cycles. Especially when
designing new products, this approach can decrease development time drastically, because dif-
ferent product-parameters can be tested by simply changing them automatically and re-simulate
the problem, instead of performing time consuming test series or building prototypes.
In order to make the physical problem ”computable”, the first step of nearly all numerical methods
is to discretize the continuous computational domain, for example with triangles, quadrilaterals,
hexahedrals. The next step is to choose an appropriate function space for the solution and dis-
cretize this continuous function space, using finite elements (FE), finite differences (FD), finite
volumes (FV) and many more. The majority of this thesis deals with solving linear algebraic
systems, emerging from a FE-discretization of an elliptic partial differential equation (PDE) of
second order, e.g. Poisson equation for electrostatic problems, Navier’s equation in linear elas-
ticity or Maxwell equations in electromagnetics. But also for other types, e.g. time-dependent
hyperbolic equations or non-linear problems, linear systems, like eq.(1.1), have to be solved.

Kh · uh = fh (1.1)

System matrices Kh ∈ RNh×Nh , where Nh is the number of unknowns, are in most cases, large
symmetric positive definite (SPD) matrices, which are ill conditioned (high condition number1

κ(Kh)) and depening on the discretization, sparse. Variables uh and fh represent the solution-
and right hand side (rhs)-vector. The high demand for solving these systems present the need
for a fast, accurate and memory-efficient solution process. These desired goals for the solver
are, for most cases diametrically opposed, which means, we can not absolutely fulfill every
parameter. Direct solvers, like the standard Gauss-elimination, Cholesky- or LU-decomposition,
often fail due to the high memory consumption, which increases drastically, as the problem size
increases. Especially when solving for more than one unknown per degree of freedom (DOF),
e.g. three-dimensional displacements for mechanical problems, flux densities in electromagnetics
and it gets even worse when various fields are coupled in so-called coupled-field-problems. Then
direct solvers are not feasible anymore and iterative ones have to be used, e.g. preconditioned

1 The condition number of the matrix A ∈ RNh×Nh is defined as the ratio between the largest and the smalles
singular value of A. For a symmetric matrix, singular values are equal to the eigenvalues.

1

conjugate gradient (PCG), generalized minimal residual (GMRES), biconjugate gradient (BiCG)
and numerous specializations of these. Since the system matrices are in general ill-conditioned,
iterative solvers can run into convergence problems and not every physical field can be solved
with one particular method. In this sense, both direct and iterative solvers have their benefits
but also drawbacks.
A class of very efficient iterative methods is called multigrid methods (MG), which are using a
hierarchy of discretization spaces to filter out high- and low-frequency erros in an ”optimal” way.
A detailed explanation will be provided in Chapter 2.

1.1 Multigrid Method

The main idea behind all multigrid methods is to solve the problem on several FE-spaces of
different size. On and between every level, different parts of the error (difference between real
and numerical solution) are eliminated, respectively decreased. Since the approximation of the
error on a coarser space is less complex (fewer DOF’s), this method can theoretically achieve
a computational complexity of O(N), if applied recursively on ever coarser levels, with N as
the number of unknowns on the finest, original level. Early work on multigrid was done by
Hackbusch [1], who made multigrid methods popular. Another illuminating introduction into MG
methods can be found in [2], which provides deeper insight into the main step of all MG methods,
the coarse-grid-correction, which will be explained in detail in Chapter 2. Also the transfer of the
current solution and right hand side between the different hierarchies, obtained by the so-called
prolongation- and restriction-operators are made plausible. From a more theoretical point of
view, convergence-estimates are crucial for the consistent construction of solvers, which is also
true for MG methods. In this sense, [3] provides basic introductions for convergence estimates
of the two-cycle and full MG-cycle. This reference also includes information, on how to use MG
methods as preconditioner for e.g. CG solvers. An important property of the system matrix,
imposed implicitely or explicitely in every book or paper is that the matrix should be symmetric
and positive definite (SPD). Informations on how to handle matrices which are non-SPD or not
”strong enough” positive definite, are given in Chapter 4.
Until now, we have assumed that the different hierarchies of FE-spaces are already constructed
and that our operators (prolongation, restriction) are defined on them. But how are those
hierarchies obtained? In general there are two ways, the geometric and the algebraic approach.
Coarsening an FE-space in the geometric way means, constructing different conformal2 grid
hierarchies. For simple geometries, this seems feasible but as soon as the geometry becomes
more complex or the grid contains local refinements, this construction-process becomes extremely
time-consuming. This is also the reason, why this geometric approach, called geometric multigrid
(GMG) is not used in industrial applications.
The algebraic approach, called algebraic multigrid AMG, on the other hand, which is the main
focus of this work, does not need physical grid hierarchies. It uses the underlying graph of the

2 In an FE-context, conformal means that the traces of the ansatz-functions of two neighbouring elements must be
the same at the connecting surface/edge. For example, the basis functions of element 1 are Lagrange polynomials
of order 4 and element 2 consists of polynomials of order 2, then the trace of both elements does not coincide on
the connecting face/edge.

2

system matrix to construct different FE-spaces, which can then be interpreted as fine grid nodes,
elements, edges and so on.

1.2 Introduction to Algebraic Multigrid

Ruge and Stüben [4] represent the pioneering work in the field of AMG-methods. It provides a
detailled (mathematically formal) introduction on smoothing, coarse grid correction and conver-
gence estimates. A good and comprehensive definition of algebraic smooth error is also given
but it mainly focuses on scalar nodal values. The second part of this reference focuses on the
algorithmic aspect by providing different coarsening and prolongation strategies. Furthermore
the necessity of requiring a M-matrix3 is loosened, in order to obtain a robust solver. In general,
the more diagonally dominant the system matrix is, the better the classical AMG algorithms
work, because they represent strong connections in the FE-space, which is the starting point for
coarsening algorithms. A matrix with weak diagonal dominance might induce poor convergence
because the coarsening of the FE-spaces does not work well anymore. In fact a M-matrix has
positive diagonal and negative off-diagonal elements and is automatically diagonal dominant but
the bigger the difference between diagonal- and off-diagonal-element is, the better. The draw-
back of this AMG-method, compared to GMG is an increased setup time but this has to be
considered in relation to the whole ”coarsening process” in GMG. If we compare the time it takes
to construct the physical mesh hierarchies with the setup-phase of AMG, the algebraic approach
is highly beneficial in terms of performance and also more flexible.
Reitzinger [6] introduces a different, more elaborate concept for solving problems with AMG-
methods, even if the system matrix has no M-matrix properties. This is done by a so-called
auxiliary-matrix, which represents different properties of the original system matrix but has M-
matrix properties and therefore we can apply normal coarsening and prolongation operators on
this matrix, instead of the system matrix itself. With the help of this matrix it is also possible
to extend the solution space to Nédelec’s edge-elements, as presented in [7]. The term smooth
error, in an algebraic framework, is defined less intuitive than in the geometric case, which is
also described in Chapter 2, based on [6].
A further approach was introduced in [8], where a tentative prolongation operator is used to
preserve the nullspace of the underlying kernel of the PDE on each coarse level, to minimize the
energy in the basis functions on the coarse levels and to limit the overlap of supports of the basis
functions. The last statement is equivalent to require the system matrix on the coarse levels
to contain as few nonzero entries as possible. This method is called smoothed aggregation. It
states that it has become very popular to use multigrid methods as preconditioners, rather than
stand-alone solvers, mainly because of the robustness of the solution strategy. Kaltenbacher [9]
shows an improvement of the CG method together with AMG as a preconditioner, compared
to methods based on incomplete Cholesky factorization conjugate gradient methods (ICCG),
because for these methods, the necessary number of iterations increases strongly with the num-

3 A M-Matrix is defined as a matrix A = aij ∈ RNh×Nh , with aij ≤ 0 and i 6= j and if it can we written as
A = sI − B, with I as the identity matrix, B = bij ≥ 0 and s larger than the largest eigenvalue of B. Loosely
speeking, this is a matrix, with positive diagonal, negative off-diagonal elements and additionally, the eigenvalues
of A have positive real parts [5]

3

ber of unknowns. An introduction to the preconditioned conjugate gradient method (PCG) is
also given in [9], besides the AMG-PCG algorithm and an estimation of the upper bound on the
number of iterations to decrease the error to the desired level. Another source of preconditioning,
using MG-methods, is [3] where the problem of ill-conditioned systems is discussed and later the
construction of preconditioners is presented in a very theoretical way. Nevertheless in Section
6.3 of this reference, a ”recipe” for the application of a MG-PCG method is presented.
Following the idea of [6], a virtual FE-mesh is represented by an auxiliary matrix Bh, which
needs more information of the finest grid beside the system matrix. The idea is to relate the
DOF’s of the system matrix to the entries of the auxiliary matrix, depending on the discretiza-
tion (Lagrange or Nédélec). In the next step, the coarsening of the auxiliary matrix via an
appropriate transfer operator to obtain a coarse matrix BH by Galerkin’s method, is applied.
Again, the entries of BH represent the DOF’s of the original system matrix and in such a way,
that the transfer operator for the system matrix is defined. As mentioned in [6], the prolonga-
tion operator has to be chosen problem dependent and in such a way, that the coarse system
matrix KH has the ”same” properties (kernels) as the fine-grid system matrix Kh. In previous
work [10], the idea was to split an H0(curl,Ω)-function into a (H1

0 (Ω))3- and H1
0 (Ω)-part and ap-

ply classical AMG for all components (Helmholtz decomposition). The newer approach coarsens
the H0(curl,Ω)-matrix directly, by introducing an auxiliary matrix like before and performing a
nodal-coarsening, since every entry of Bh corresponds to a node of the edge-element. In [7], it is
shown that the coarsening can in fact be carried out on the nodes, which confirms this approach.
Another feature, explained in detail in [6] is the so-called element preconditioning, which aims
to construct an AMG preconditioner Ch for Kh from a spectrally equivalent matrix Bh. This
can be performed by applying an AMG cycle to Bh instead to Kh and numerical experiments
proove the robustness and efficiency of this strategy [6].

The aim of this work is to investigate the theoretical approach to multigrid methods, especially
to auxiliary-based AMG methods, proposed in [6]. Furthermore a Matlab-framework for testing
different AMG methods and algorithms was developed, which recieves the linear system and
some additional information as input from the in-house FEM code CFS++ [11] and computes
the solution of the system. After the algorithms were verified to be working, three AMG-versions,
similar to [6] were implemented into CFS++. The first type solves second order elliptic problems,
stemming from a H1(Ω) discretization, e.g. Poisson, Laplace problems. With some additional
implementations (block-smoother), the second type can handle (H1(Ω))p discretizations of ellip-
tic problems, e.g. Navier’s equation in structural mechanics. In the third version, another type
was implemented, to solve H(curl,Ω) problems from a Nédéléc edge-element discretization. All
three AMG-types were applied to application examples and to verify their efficiency they are
compared to standard iterative solvers.

In Chapter 2 and 3 the basics of multigrid methods in general and their specialization to AMG
is presented. Followed by Chapter 4, where the ideas of auxiliary-based AMG methods from [6]
and [9] are shown and the convergence results of the Matlab-implementation are presented. The
application examples are then given in Chapter 5.

4

Chapter 2

Preliminaries

Two prominent keywords in the area of solving linear systems, which have their origins in in-
formatics in general, are complexity and scalability. Since this work is mainly located in an
engineering context, the formal definitions of both keywords from above are neglected and used
in a more ”heuristical” manner. The former term, also called computational complexity, roughly
describes the number of operations needed, to solve the problem. For example, if a system with
N unknowns is solved via Gauss-elimination, which has a computational complexity of about
O(N3), needs about N3 operations to solve the problem. By doubling the number of unknowns
Nnew = 2N , the number of operations are eight times as high O(23N3) = O(8N3). For conven-
tional linear solvers, a lower limit in terms of complexity is O(N2), which can (not formally) be
made plausible, since the maximum number of matrix entries of a N ×N matrix is N2 and every
entry has to be the argument of a certain binary operator. Multigrid methods on the other hand
are not bound to this lower limit and can reach an optimal complexity of O(N) because the
method transforms the solution of the Nh×Nh system to a smaller discrete space, solves it there
and improves the solution by prolongating the correction back to the fine system. In an AMG
framework, there are two more kinds of complexity (operator and grid), which are introduced in
Chapter 3
The second term scalability is another important property, when describing solution methods for
linear systems, especially if they are used on parallel architectures. Roughly speaking, it describes
the performance benefit, when increasing the number of calculation-units. Let us assume a
problem of fixed size and varying the number of calculation-nodes. If the computation time
behaves approximately inversely proportional to the number of calculation-nodes, the algorithm
is considered scalable. It has to be mentioned, that it is not sufficient if only the algorithm is
scalable but also the implementation and hardware has to be, not going into details about the
infrastructure between CPU’s and GPU’s or into scalable implementations using OpenMP or
MPI. This behaviour is illustrated in Fig 2.1 1. But in fact, without algorithmic scalability, there
is no parallel implementation and therefore no hardware scalability possible.

1 https://computation.llnl.gov/casc/sc2001_fliers/SLS/SLS01.html

5

https://computation.llnl.gov/casc/sc2001_fliers/SLS/SLS01.html

Figure 2.1: Different preconditioners for CG solver, only MG preconditioner shows scalability

2.1 Smoothing Property of Iterative Solvers

The first step of every multigrid method is the so-called pre-smoothing, where a simple iterative
solver is applied for a few iterations (in the range of two to three), which filters out high frequency
error components, as shown later on in this section. The basic principle for iterative solvers is
the splitting of the system matrix Kh from eq.(1.1) into two, not further defined, matrices
Kh = M−N. Using this splitting, we obtain

M · uh = N · uh + b. (2.1)

Now we can introduce an iteration step ν and define that the left hand side is updated every
iteration by evaluating the right hand side

M · uν+1
h = N · uνh + b. (2.2)

Depending on the choice of M and N, different iterative methods are obtained.

2.1.1 Damped Jacobi Method

Choosing M = diag(Kh) = D, N = Kh and introducing a damping factor ω, results in an
iterative method called damped Jacobi

uν+1
h = uνh + ωD−1

(
f
h
−Kh · uνh

)
, for ν = 0, 1, (2.3)

The matrix (I − ωD−1Kh) := Sh is also called smoothing operator. To show the damping
property, a simple 1D Poisson problem

−∆uh = f
h

on Ω = (0, 1) (2.4)

6

is discretized with a second order central difference scheme2. With a constant grid-spacing ∆x,
we can discretize the Laplacian operator, using ui = u(xi), by

∂2u

∂x2
|i ≈

ui+1 − 2ui + ui−1

∆x2
(2.5)

and the Dirichlet boundary condition translates to u0 = uNh
= 0. This results in a system-matrix

of the form

Kh =
1

h


2 −1 0 0 0

−1 2 −1 0 0

0 −1 2 −1 0

...

0 0 0 −1 2

 . (2.6)

Using the following initial value u0
h of eq.(2.7) and right hand side f

h
= 0 (for simplicity), we can

"solve" (smooth) system (2.3) with different relaxation parameters ω and study the behaviour.

u0
h = [rand(0, 1)]Nh−1

i=1 (2.7)

For clarification, Nh represents the number of grid points3 and in this example it was chosen to
be Nh = 100.
In Fig.2.3 to Fig.2.8 one can clearly see the smoothing of the initally random set of values as
displayed in Fig.2.2. Since the solution is zero, the plots can also be interpreted as an error4-plot.
In the left column of the following figures, the damping of high frequency-error components works
less effective than on the right side because of a non-optimal choice for the damping-parameter
ω. Lowering this relaxation parameter, as it was done for Fig.2.4, 2.6 and Fig.2.8, the high
frequency error decreases with fewer iterations. The damping of this presented Jacobi method
can not be improved any more because the choice ω = 2

3 is already the optimal relaxation value.

2.1.2 Gauss Seidel Method

ChoosingM = L(Kh) andN = U(Kh), with L as the lower- andU as the upper-diagonal matrix
of Kh, leads to the so-called Gauss-Seidel method. Compared to damped Jacobi, it converges
about twice as fast (not shown here) but it still has a complexity of O(N2

h). The iteration is
then obtained by

uν+1
h = L−1

(
f
h
−U · uνh

)
, for ν = 0, 1, (2.8)

In order to show and compare the damping property to the Jacobi method, the same Laplace
problem from eq.(2.4) is smoothed and the results are depicted in Fig. 2.2 to Fig. 2.8. What
we can observe there, is that the solution respectively error is converging faster with the Gauss-
Seidel method but the highest frequencies are damped more efficiently with the damped Jacobi
method. This method can be expanded to form the successive overrelaxation (SOR) with the
relaxation parameter ω, which improves convergence but it is not a trivial task to find an optimal

2 A first order finite element discretization with Lagrangian ansatz-functions results in the same system matrix.
3 later on we will use small index h for fine grid and capital index H for coarse grid
4 Error in this framework means difference between numerical and analytical solution.

7

value for this relaxation parameter and therefore it is not used in the implemented MG methods
of this thesis.

Figure 2.2: Random initial solution u0

Figure 2.3: Solution u5 after 5 steps with non-
optimal ω = 1 for damped Jacobi

Figure 2.4: Solution u5 after 5 steps with op-
timal ω = 2

3 for damped Jacobi

Figure 2.5: Solution u5 after 15 steps with
non-optimal ω = 1 for damped Jacobi

Figure 2.6: Solution u5 after 15 steps with
optimal ω = 2

3 for damped Jacobi

8

Figure 2.7: Solution u5 after 100 steps with
non-optimal ω = 1 for damped Jacobi

Figure 2.8: Solution u5 after 100 steps with
optimal ω = 2

3 for damped Jacobi

2.1.3 High- and Low-frequency errors

When performing an eigenvalue expansion, we can describe the damping property of iterative
solvers in a formal way. Therefore, we write the eigen-decomposition of the system matrix as

Kh · Φi = λiΦi, (2.9)

with Φi as the eigenvectors and λi as the eigenvalues of the system matrix Kh.
In the following, the eigenvalues and eigenvectors for Kh are derived, since this a crucial point
in understanding the smoothing property of iterative methods. Considering the entries of the
system matrix with its tridiagonal structure and repeating pattern [1,−2, 1]T (stemming from
the discretization using eq.(2.5)), we can express eq.(2.9) as (note that Φk

i is the k-th entry of
the eigenvector Φi):

Φk−1
i − 2Φk

i + Φk+1
i

∆x2
= λiΦ

k
i . (2.10)

For better readability, we only consider one eigenvector and eigenvalue (Φk−1
i is written as Φk−1)

and rewrite eq. (2.10) by

Φk−1 − 2Φk + Φk+1

∆x2
= λΦk, i = 1, ..., Nh − 1 (2.11)

with Φ0 = ΦNh+1 = 0 due to Dirichlet boundary condition (BC). Expressing the next eigenvector-
entry explicitely leads to the recurrence-like formula Φk+1 = (2 + λ∆x2)Φk − Φk−1 or

Φ0(x̃) = 0,

Φ1(x̃) = 1,

Φk+1(x̃) = 2x̃Φk(x̃)− Φk−1(x̃),

which might trigger ones intuition to see parallels to the recurrence formula for Chebyshev

9

polynomials of second kind [12]

U0(x) = 1,

U1(x) = 2x,

Uk+1(x) = 2xUk(x)− Uk−1(x).

Due to the boundary condition Φ0 = 0 and the fact that Φ1 is still unknown, we have to use the
property that eigenvectors are only unique up to a constant factor and then we can simply scale
the vector to one and shift the indices of eigenvectors by one, to coincide with the Chebyshev
recurrence

Φk+1(2 + λ∆x2) = Uk(2x̃), (2.12)

where we implicitely used the substitution 2x̃ = 2 + λ∆x2. Due to the second Dirichlet BC
ΦNh+1 = 0, we get the equation UNh

= 0. Now we have reduced the problem of finding eigen-
values to finding roots of Chebyshev-polynomials, which are presented by (see e.g. in [12]):

x̃ = cos

(
kπ

Nh

)
. (2.13)

Now we can plug the roots into the formula for the eigenvalues and obtain

λk =
2x̃− 2

∆x2
=

2 cos
(
kπ
Nh

)
− 2

∆x2
=

2

∆x2

(
1− cos

(
kπ

Nh

))
, k = 1, ..., Nh. (2.14)

Using a trigonometric formula, we recieve the well documented formula for the eigenvalue

λk =
4

∆x2
sin2

(
kπ

2Nh

)
, k = 1, ..., Nh. (2.15)

For the computation of eigenvectors, we start by re-writring eq.(2.10) into the difference equation

Φk+1 − (2 + λ∆x2)Φk + Φk−1 = 0 (2.16)

and define the characteristic polynomial

p(z) = z2 − (2 + λ∆x2)z + 1 = 0. (2.17)

Since this is a polynomial of order two, the solution must be a linear combination of the roots
of this polynomial. For λ ∈ [0, 4], there are two conjugate complex roots and the solution must
be composed as a linear combination of these. These roots can be written as

rk = cos

(
kπ

Nh

)
+ i sin

(
kπ

Nh

)
, (2.18)

which results in the linear combination (no complex part)

Φk = a1 cos

(
kπ

Nh

)
+ a2 sin

(
kπ

Nh

)
. (2.19)

10

According to the boundary conditions Φ0 = ΦNh+1 = 0, a1 is zero and the eigenvectors follow as
(in the full notation as in eq.(2.10)

Φk
i = sin

(
ikπ

Nh

)
. (2.20)

Under the presumption that the eigenvectors form a complete function5 system [13], every initial
error can be expressed as a superposition of eigenmodes

e0 =

Nh∑
i=1

aiΦi. (2.21)

Inserting this result in eq. (2.3), yields6 an error propagation of

e(ν+1) = (I− ωD−1Kh)e(ν) = (I− ωD−1Kh)ν
Nh∑
i=1

aiΦi =

Nh∑
i=1

ai

(
1− h

2
λi

)ν
Φi

e(ν+1) =

Nh∑
i=1

ai

(
1− 2ω sin2

(
iπ

2n

))ν
Φi. (2.22)

Now, we estimate the upper bound of the embraced term for different ”frequency components”:

• i = 1, ..., n2 representing the low frequency error components:∣∣∣∣1− 2ω sin2

(
iπ

2n

)∣∣∣∣ ≤ max
{∣∣∣1− 2ω sin2

(π
2n

)∣∣∣ , |1− ω|} = O(1− ωπ
2

2
h2) ≈ 1 (2.23)

• i = n
2 , ..., n representing the high frequency error components:∣∣∣∣1− 2ω sin2

(
iπ

2n

)∣∣∣∣ ≤ max {|1− ω| , |1− 2ω|} (2.24)

It is obvious that applying the iteration ν-times, the estimates are also taken ν-times and that
the low frequency components (approximated by one) stay nearly the same or at least do not
grow. But the high frequency component (1 − 2ω), which is smaller one, decreases as it gets
multiplied by itself.

2.2 Coarse Grid Correction

As we have seen in the last section, the high-frequency error is damped by applying some iterative
smoothing steps but the low-frequency error stays nearly the same. At first glance, this might

5 a function (vector-) system Φ1,Φ2, ...,ΦNh
in vector-space V is called complete ⇔ ∀ vectors w ∈ V, the sequence

of s1, s2, ..., sm =
∑m

k=1 akΦk converges to w or equivalently ||w − sm||
m→∞−−−−→ 0

6 the system matrix resulting from a second order finite difference discretisation is

A = 1
h


2 −1 0 0 0
−1 2 −1 0 0
0 −1 2 −1 0
...
0 0 0 −1 2

, this results in an inverse diagonal entry of D−1 = Di,j = Di,i = 2
∆x

11

seem as a shortcoming of the previously mentioned iterative solvers but taking a coarser grid
into account, it will become benefitial, which is the topic of this section.
After some smoothing steps, the error might look qualitatively like Fig.2.9. If this error gets
restricted to a coarser grid (for example with number of coarse nodes NH = Nh

2), it gets relatively
more "oscillatory" or "rougher" ([6],p.41). This is because of the number of possible modes in
eq.(2.22). On the fine grid there are Nh− 1 possible modes and on the coarse grid NH − 1 = Nh

2 .
If we pick a certain mode, which might be in the middle of the spectrum of the fine grid, it is at
the upper-end of the spectrum on the coarse grid. This means it will be smoothed if we apply
further smoothing steps on the coarse grid, which is the idea behind coarse grid correction.

Figure 2.9: Error after some smoothing
steps

Figure 2.10: smooth error restricted to the
coarse mesh

The error, described in eq.(2.25) is the difference between the numerical solution of eq.(1.1) on
the fine grid uh7 and the real/analytical one u.

eh = u− uh (2.25)

Then the residual on the fine grid h can be defined as

rh = f
h
−Kh · uh = f

h
−Kh · (u− eh) . (2.26)

Inserting eq.(2.25) into eq.(2.26) yields

rh = f
h
−Kh · u+ Kh · eh = Kh · eh. (2.27)

This system (2.27) is equivalent to the original discretised system Kh · uh = f
h
and if the error

on the fine grid eh is smooth, then the residual on the fine grid rh is smooth.
At this point we can show the benefit of using a coarser grid, because now we restrict the smooth
residual to the coarse grid, which becomes "rough" (as shown in Fig.2.10), perform smoothening
and prolongate the improved residual back to the fine grid and obtain a better approximation of
the solution as with iterating on the fine grid alone. This process is called Coarse Grid Correction
(CGC)
To write this CGC in a mathematical way, we first have to define the terms restriction and
prolongation:

7 The superscript ν, which represents the iteration number is neglected. Also instead of A we write Ah to specify
that this operator acts on the fine grid with mesh-size h

12

• Restriction: This process can be thought of as a mapping from point-values on the fine
grid to those on the coarse grid. This can either be done by injection (value at fine-grid
point a is value at coarse-grid point b, see Fig. 2.11) or by weighting several fine-grid points
to one coarse-grid point, as depicted in Fig.2.12. Written in a mathematical way, we can
define a restriction operator R ∈ RNH×Nh .

• Prolongation: This can be interpreted as the inverse operation of restriction, because it
is a mapping from coarse grid to fine grid R−1 = P ∈ RNh×NH .

Figure 2.11: Restriction by injection [6]

Figure 2.12: Restriction by weighting [6]

The correction can be written in pseudocode-form as shown in Algrithm 1.

Algorithm 1 Coarse Grid Correction
1: unew

h ← CGC(uh, fh, ν1)

2: function CGC

3: Perform ν1 pre-smoothing steps: uν+1
h = S

(
uνh, fh

)
4: Compute (smooth) residual on fine grid: rh = f

h
−Kh · uν1

h

5: Restrict residual to coarse grid: rH = R · rh
6: Solve coarse grid problem for coarse error eH : KH · eH = rH

7: Prolongate/Interpolate the coarse-grid error to the fine grid: eh = P · eH
8: Correction of the fine-grid solution: unew

h = uh + eh

9: end function

In the solving step for the coarse grid problem in Algorithm 1, the discretisation matrix Kh must
be adapted to a coarse discretisation KH . The construction of coarse system matrices, preserving
the operator properties is a delicate topic and will be covered in Chapter 4. Especially when

13

using edge-elements, the kernel of the curl -operator must be preserved on the coarse level.
In general, the coarse grid correction is the basis of all multigrid methods. In fact, the last
ingredient, which is missing for a real multigrid method is the post-smoothing step, where the
solution unew

h is smoothed by some Gauss-Seidl or damped-Jacobi steps. The prolongation might
trigger some higher-frequency components, which are smoothed-out to obtain a final, improved
solution. In the next section, several multigrid methods are presented, which consist mainly of
different concatenations of several CGC’s and smoothing steps.

2.3 Multigrid Methods

Now we are equipped with the foundation to discuss different MG-methods, which are basically
divided into geometrical and algebraic MG-methods. Geometric MG-methods are an extension
to the methods from the last section and one can think of them as a hierarchy of real grids and
not algebraic connections in the system matrix, as it is done for algebraic MG.
However, the simplicity of the geometric MG has some severe drawbacks for "real world" prob-
lems, because it is nearly impossible to provide a hierarchy of different grid-resolutions for larger,
maybe even unstructured grids, as already mentioned in the introduction. Therefore an alge-
braic version was developed to circumvent this issue, with a convergence rate measure close to
the geometric one.
In general there are four multigrid cycles (two-grid cycle, V-cycle, W-cycle and full-cycle). The
algorithmic basics of these are discussed in the following.

2.3.0.1 Two-Grid Cycle

To obtain a V-cycle, a post-smoothing step in Algorithm 1 must be added, because the pro-
longation to the fine grid might induce some high frequency error. Actually the only purpose
of this cycle, presented in Algorithm 2, is to understand the basic workflow of multigrid meth-
ods (pre-smoothing, restriction, solve coarse problem, prolongation, post-smoothing) because for
large problems even the coarse problem might be too large to be solved with a fast direct solver.
The idea which leads to V- or W- cycles is to shift the solving to even coarser grids than H = h

2 ,
which will be discussed in the next section.

2.3.0.2 V- and W-Cycle

As already mentioned, the idea is to approximate the coarse grid problem by another two-grid
cycle and repeat it recursively. Here, we obviously need a hierarchy of grids for different resolution
levels l, as depicted in Fig.2.13.
The algorithm for V- and W-cycles is illustrated in Algorithm 3. Now we have changed the grid
index h and H to the grid-level index l but between each grid level, the coarsening factor of 1

2

stays the same as before. The only new variable, which is the cycle index γ, by which we can
controle if it is a V- or a W-cycle (Fig.2.14)

14

Algorithm 2 Two Grid Cycle
1: unew

h ← TGC(uh, fh, ν1, ν2)

2: function TGC
3: Perform ν1 pre-smoothing steps: uν+1

h = S
(
uνh, fh

)
4: Compute (smooth) residual on fine grid: rh = f

h
−Kh · uν1

h

5: Restrict residual to coarse grid: rH = R · rh
6: Solve coarse grid problem for coarse error eH : KH · eH = rH
7: Prolongate/Interpolate the coarse-grid error to the fine grid: eh = P · eH
8: Correction of the fine-grid solution: utemp

h = uh + eh

9: Perform ν2 post-smoothing steps: utemp,ν1+ν+1
h = S

(
utemp,ν1+ν
h , f

h

)
10: return unew

h = utemp,ν1+ν2

h

11: end function

Figure 2.13: Grid hierarchy, needed for V- or W-cycles [4]

Algorithm 3 V- and W-Cycle (Multigrid Cycle)
1: unew

l ← MGC(ul, f l, ν1, ν2)

2: function MGC
3: if l = 0 then
4: Solve coarse grid problem for coarse error el: Kl · el = rl
5: else
6: Perform ν1 pre-smoothing steps: uν+1

l = S
(
uνl , f l

)
7: Compute (smooth) residual on fine grid: rl = f

l
−Kl · uν1

l

8: Restrict residual to coarse grid: rl−1 = R · rl
9: Initialize: el−1 = 0

10: for i = 1 : γ do
11: MGC(el−1, rl−1, ν1, ν2)
12: end for
13: Prolongate/Interpolate the coarse-grid error to the fine grid: el = P · el−1

14: Correction of the fine-grid solution: utemp
l = ul + el

15: Perform ν2 post-smoothing steps: utemp,ν1+ν+1
l = S

(
utemp,ν1+ν
l , f

l

)
16: end if
17: return unew

l = utemp,ν1+ν2

l

18: end function

15

Figure 2.14: Different cycles, depending on the cycle-index γ [13]

With these multigrid-cycles, it is possible to solve large problems very efficiently, even compared
to fast direct solvers. This rapid convergence and fast computation time is of course the main
benefit of geometric multigrid methods but on the other hand we still have the issue of requiring
a hierarchy of grids, which is the reason, why it is not widely used in industry.

16

Chapter 3

General Approach to Algebraic
Multigrid

Another approach to obtain hierarchies of FE-spaces is to construct them, solely based on the
system matrix. Methods using this way are then called algebraic multigrid methods (AMG).
The basic principles of AMG (pre-smoothing, coarse grid correction and post-smoothing) are the
same as in the geometric case, only the way to obtain the hierarchies is different.
A fact, which makes AMG less efficient, compared to GMG, is the necessity of a so-called
setup phase, which includes the construction of coarse levels and the assembling of appropriate
operators, which increases the execution time. Therefore AMG is less efficient than GMG but
more universally applyable. If however, we take the time, to construct different geometrical grid
hierarchies, into account, the AMG may become more efficient than GMG, because the FE-space
hierarchies are constructed automatically and not manually as in the geometric approach.
In the following, a short introduction into the term algebraically smooth error is given because
it differs from the more intuitive geometrical interpretation. Furthermore two basic coarsening
strategies are outlined, the standard Ruge-Stüben coarsening and agglomeration. Restriction-
and prolongation-operators are discussed in detail, for the different AMG versions in Chapter
4. The main part of this chapter originates from [4], which is one of the most comprehensive
introductions to algebraic multigrid methods.
But before we start with AMG components in particular, some basic notations are provided.
Following the idea of [4], it is often easier not to think in vector-matrix terminology but in the
more common grid terminology. For this purpuse, a fictitious grid/graph is introduced and the
connections between grid points are identified with entries in the matrix K. Ωh is therefore
the discrete space of matrix coefficients, corresponding to a fictitious discretised computational
domain. Two points i ∈ Ωh and j ∈ Ωh (identified as variable uhi and uhj) are coupled if the
matrix-entry ahij 6= 0. Also the neighborhood of a point i can be expressed by

Nh
i =

{
j ∈ Ωh : j 6= i, ahij 6= 0

}
. (3.1)

17

3.1 Smooth error in an algebraic sense

In the following, the term smooth is defined in a mathematical way, which will be the basis of
the later AMG-components.
An error can be called algebraically smooth, if it is slow to converge with respect to the smoothing
operator Sh, defined in eq.(2.3). This description of algebraic smoothness is equivalent to stating
Sh · e ≈ e, with e as the difference between numerical and real solution e = u − uh. For
further understanding, the following norms are defined with (·, ·) as the standard Euclidean
inner product:

||u||0 = (u, u)
1
2
0 = (Dh · u, u)

1
2 , (3.2)

||u||1 = (u, u)
1
2
1 = (Kh · u, u)

1
2 , (3.3)

||u||2 = (u, u)
1
2
2 =

(
D−1
h Kh · u, u

) 1
2 . (3.4)

The so-called smoothing operator Sh can be identified (by observing the damped Jacobi method)
as the following iteration matrix

Sh =
(
I− ωD−1

h Kh

)
. (3.5)

This iteration matrix is obtained under the assumption that the numerical solution is converging
to the real solution1 for ν →∞. Then we can state, that eq. (2.3) also holds for the real solution
u and subtracting both leads to the evolution of the error eν = u− uν :

F : uν+1
h = uνh + ωD−1

(
f
h
−Kh · uνh

)
, for ν = 0, 1, ... (3.6)

G : u = u+ ωD−1
(
f −Kh · u

)
(3.7)

F−G = eν+1 = (I− ωD−1Kh)eν . (3.8)

Then we can state the following, with Φi as the eigenvectors and λi as the eigenvalues of D
−1
h Kh

(proof in [4] p.26)

D−1
h Kh · Φi = λiΦi → ||Φi||22 = λi||Φi||21, ||Φi||21 = λ||Φi||20. (3.9)

This is of special importance because the smallest eigenvalues are those, which cause slowest
convergence2 and this is what we call algebraic smoothness. This definition is not the same
as for the geometric one because, depending on the discretisation method it can happen, that
geometrically highly oscillatory errors are algebraically smooth, see Example 3.2 in [9]. This is
the reason why the term smooth should be replaced by slow-to-converge. Eq. (3.9) can also be

1 Proof is ommited here, it is based on the spectral radius of the iteration matrix
2 because then the smoothing-operator, respectively iteration-matrix Sh =

(
I− ωD−1

h Kh

)
, is close to one because

(assume e = Φ) then
Sh · eh =

(
I− ωDh

−1Kh

)
· eh

Sh · eh = I · eh − ωDh
−1Kheh︸ ︷︷ ︸
λi︸︷︷︸

<<1

ehω

18

re-written for algebraically smooth error (small λ) as

||Φ||2 � ||Φ||1 and ||Φ||1 � ||Φ||0. (3.10)

We can then define the smoothing requirement, the smoothing operator has to satisfy by

||Sh · e||21 ≤ ||e||21 − σ||e||22 (σ > 0). (3.11)

It can be shown that Gauss-Seidl and damped-Jacobi satisfy this relation uniformly. Eq.(3.11)
states that Sh is efficient in reducing the error e as long as ||e||2 is relatively large compared to
||e||1, if however ||e||2 << ||e||1 then it is inefficient and the error is called smooth.
A remarkable property of algebraic smoothness is, that the algebraic smooth error varies slowly
in the direction of large connections (large off-diagonal entries aij in K). This can be shown by
using eq. (3.10) and inserting into the definition of the norms in eq. (3.4). After some algebra [4],
we obtain an equivalent definition for algebraic smoothness

∑
j 6=i

|aij |
aii

(ei − ej)2

e2
i

� 1. (3.12)

Here we can see that an algebraic smooth error (ei− ej is small) varies slowly in the direction of
large off-diagonal connections.
This property is exploited in the coarsening step and Fig.3.1 displays, that coarsening takes place
only along algebraically smooth error. The left picture shows an error-plot over the computational
domain, where the lower left corner has smooth error and in the other regions we can observe
heavily anisotropic errors (due to boundary conditions but this shall not be elaborated here in
more detail) and the coarsening only works along paths where the error is smooth. If the error
is non-smooth, respectively the connections are weak, less coarsening is applied. This coarsening
process will be the topic of the next section.

Figure 3.1: Left picture shows the error after some smoothing steps and the right one is the
coarsened grid with coarsening along strong connections [14]

19

3.2 Coarsening

The most time-consuming part of the setup-phase in most AMG algorithms are the coarsening
algorithms, which are used to subdivide the computational domain Ω into two disjoint subsets
Ω = C ∪ F . In this context, C represents the set of nodes or entries in the system matrix,
forming the coarse domain ΩH and F represents the fine nodes or matrix-entries, which make
up the fine-system, together with the coarse variables. Depending on the problem, there are
numerous methods, how to obtain a useful splitting, which ensures good convergence. A good
splitting does not only have to transport inhomogeneous material properties, like anisotropy,
to the coarser level but also has to ensure that the underlying kernel of the fine system is still
represented on the coarse grid. To transport the solution and right hand side vector of the linear
system to the coarse grid, the best way for AMG is to use prolongation and restriction operators,
as introduced in Section 2.2. Another possible approach is to use the equations, e.g. nodal or
edge, on the coarse grid and discretize the coarse system. This approach is called coarse-grid-
discretization, which is not investigated further in this work, we restrict ourselves to the first
approach, using prolongation and restriction operators. To preserve the mentioned kernel of the
underlying PDE of the fine system, the so-called Galerkin operator is used, which is defined
as the left- and right-multiplication of the fine system Kh with the restriction operator R and
interpolation (prolongation) operator P.

KH = RKhP = RKhR
T . (3.13)

At this point it should be mentioned that we assume, equivalently to geometric multigrid, that
restriction and prolongation are inverse operators (PT = R). The correct construction of these
operators is essential and discussed in detail in Chapter 4. An important aspect, not only for the
proper understanding of AMG but also for finite elements is the knowledge of weighted residuals.
In general, we approximate a function u(x, t) in space and time by

u(x, t) ≈ uh(x, t) =
N∑
i=1

cj(t)Φj(x), (3.14)

where cj(t) are time-dependent coefficients and Φj(x) so-called ansatz-functions, e.g. Lagrangian,
integrated Legendre-polynomials and many more. These ansatz-functions are elements of a
function space V (more details about function-spaces are provided in the next chapter). Our
generic differential equation, we want to solve, has the generic form

Lu = 0, (3.15)

with the differential operator L and the real solution u. Applying the differential operator to the
approximation of eq. (3.14), instead of the exact solution, we recieve the residual r as

Luh = r. (3.16)

20

The aim is to minimize this residual, which is done by integrating the residual over the domain
and weighing it with a so-called test-function v(x):∫

Ω
vj(x)r(x, t)dΩ = 0, j = 1, ..., N. (3.17)

Depending on the type of test-function, different methods are obtained. For example, if the
domain is discretized into N disjoint subdomains Ωi and the test-function is one if x ∈ Ωi and
zero elsewhere, we obtain the foundation of the finite-volume-method. By choosing the Dirac-
delta function δ(x−xi) as the test-function, a so-called collocation-method is the result. For the
method we are interested in, which is the Galerkin-method, the test-functions are chosen to be
identical to the ansatz-functions. Furthermore, if the function space, of which these functions
are member of, is orthogonal, the residuum is projected onto the orthogonal components and the
coefficients Cj can be computed.
The reason, this brief introduction was given, is the fact, that if we compute the coarse system,
this orthogonalization also holds for the residual of the coarse system.

3.2.1 Standard/Ruge-Stüben coarsening

For this method, we assume a matrix with positive diagonal entries and (mostly) negative off-
diagonal entries [4].
First of all we define a strong (negative) coupling of variable i to variable j by

−aij︸︷︷︸
positive if aij<0

≥ εstrong max
aik<0

|aik| with const. 0 < εstrong < 1. (3.18)

Then the set of all strong couplings of variables i is defined, together with Ni from eq.(3.1), by

Si = {j ∈ Ni : i strongly coupled to j}. (3.19)

Furthermore we also need the set of all variable j from (3.19) which are strongly coupled to i
and denote this set as the transpose of Si

STi = {j ∈ Ω : i ∈ Sj}, (3.20)

with Ω as the set of indices (1, 2, 3, ...) in aij .
Now we can start with the algorithm itself. At first, every point is equipped with a "measure of
importance" λi, which is defined as

λi =
∣∣STi ∩ U ∣∣+ 2

∣∣STi ∩ F ∣∣ (i ∈ U), (3.21)

with U as the set of undecided variables (neither C nor F) and F as the set of fine variables.
With this λi we measure, roughly spoken, how valuable the variable is to become a C variable,
as seen in Fig.3.2. The algorithms can be seen in Algorithm4.

21

Figure 3.2: Ruge-Stüben coarsening [3], with λi-values for undecided points, black color for
coarse- and white for fine-grid points

Algorithm 4 Standard Coarsening

1: function RSCoarsen
2: while u 6= {0} do
3: Associate every point with λi =

∣∣STi ∩ U ∣∣+ 2
∣∣STi ∩ F ∣∣ (i ∈ U)

4: Pick point with maximum value and make it a C-point C := C ∪ {i}, U := U \ i
5: All points, strongly influenced by this new C-point become F-points

∀j ∈ STi ∩ U : F := F ∪ {j}, U := U \ {j}
6: Increase measure of newly created F-points λk = λk + 1, ∀k ∈ Sj
7: end while
8: return
9: end function

After this algorithm, all F variables have at least one strong coupling to a C variable and the
coarsening is finished (some post-coarsening steps are neglected here).

3.2.2 Agglomeration

Another coarsening algorithm, used in this work, especially later on for solving H(curl,Ω) prob-
lems, is the agglomeration-technique, see Fig.3.3. This strategy has less complexity than the
previous RS-coarsening but also the disadvantage that the coarsening does not take place along
directions of smooth error. There are different ways to obtain such a splitting. The method
used in the construction of agglomerates for H(curl,Ω) problems in Chapter 4 can be describes
as to define initial patches as the set of neighbours of every coarse point. After that step it is
possible that some nodes have only one neighbour (there are only two nodes in the agglomerate)
which can happen if Dirichlet boundary values are eliminated in the system matrix and nodes
on the surface have no connection between each other. In the second step, we loop over every
agglomerate, smaller than a certain threshold and redistribute them to other (neighbouring) ag-
glomerates. By performing such an additional loop, we can bring the agglomerates, by a certain
extent, to a homogeneous size of nodes. It was observed, in the H(curl,Ω)-case, that such a
”homogenization” of agglomerate-sizes can lead to a very good grid-complexity (GC) around 1.1
and 1.2.
This grid-complexity [9] can be used as a measure for the speed of coarsening, also for the other
coarsening-strategies. It is defined as

GC(Kh) =

∑L
i=1Mi

M1
, (3.22)

22

where L as the number of levels and Mi as the number of unknowns for level i. If this number
is close to one, the coarsening is considered fast.

Figure 3.3: Agglomerates [6]

3.3 AMG as Preconditioner

It is shown in [15] that a robust solution strategy can be acchieved by combining CG with MG
(not necessarily AMG) as a preconditioner.
By neglecting theoretical aspects of conjugate gradient method and its preconditioned version,
which can be found in most books about numerical computations, the algorithm can be written
(analogous to [9]), as presented in Algorithm 5, with the preconditioner-matrix Ch.

Algorithm 5 Preconditioned Conjugate Gradient Method

1: function PCG
2: k = 0
3: r0 = Khu

0
h − fh

4: Solve Chd
0 = −r0

5: s0 = −d0

6: r1 = r0

7: while ||rk+1|| > ε||r0|| do
8: αk = (rk)T sk

(dk)TKhd
k

9: uk+1
h = ukh + αkdk

10: rk+1 = rk + αkKhd
k

11: Solve Chs
k+1 = rk+1

12: βk = (rk+1)T sk+1

(rk)T sk

13: dk+1 = −sk+1 + βkdk

14: k = k + 1
15: end while
16: return
17: end function

The optimal choice of a preconditioner matrix Ch would clearly be Ch = K−1
h . But comput-

23

ing this inverse with ”standard” solvers would be as demanding as solving the original problem,
therefore some methods use e.g. incomplete Cholesky decomposition to obtain feasible precondi-
tioners. An alternative, as proposed in [15] or [3] is to actually compute the inverse of Kh with
a multigrid method, which provides a good and very fast preconditioner.
In Chapter 4, three versions of auxiliary-based AMG-methods are shown and implemented as
stand-alone AMG-solvers in Matlab. In all application examples in Chapter 5, a AMG-PCG
method, as proposed in Algorithm 5 is used to solve the system.

24

Chapter 4

Auxiliary-based Algebraic Multigrid
Methods

The classic multigrid approaches, presented above are all limited to symmetric positive definite
(SPD-) matrices. For scalar-valued, linear nodal Lagrangian-FE (e.g. solving the Poisson prob-
lem (2.4)) this restriction does not pose a problem. If however the unknowns are vector-valued
(e.g. displacements in linear elasticity) or another function space for approximation of the con-
tinuous basis is used (e.g. H(curl,Ω), the matrices are no longer positive definite or diagonally
dominant. Therefore a different approach has to be used, in order to use the same algorithms
from the ”classic” MG-methods. This approach, as already mentioned in the introduction and
described in [6], uses an auxiliary matrix, which represents an artificial grid and it is constructed
to be diagonal dominant and SPD. The idea is to apply the coarsening not onto the system-
matrix Kh itself, which is not nescessarily SPD, but to the auxiliary matrix Bh, which has this
property and generate coarse levels of system matrices and prolongation operators. According
to [6], the information of a SPD system matrix is not enough in order to construct an efficient
and robust AMG method. Therefore, additional information about the mesh-geometry, FE-
discretization and the underlying PDE has to be gathered. This is the reason, why the section
is called ”specialized AMG-methods”, because the classic AMG approach acts like a standalone-
solver, which needs no further information than the sytem matrix. In the following, a short
introduction to function spaces and variational formulation is given, in order to fully compre-
hend the construction of auxiliary matrices and prolongation operators afterwards. Further on,
there are three different systems observed, similar to [6]. One arising from a scalar-valued linear
nodal Lagrangian discretization, the second one from a vector-valued one and the third system,
resulting from an edge-element discretization with Nédélec-elements. Every example of those
three is solved with the implemented Matlab-AMG solver.

25

4.1 Auxiliary Matrix

Assume a finite element mesh ωh, consisting of edges and nodes ωh = (ωeh, ω
n
h), as depicted in

Fig.4.1. A geometric edge is defined by two nodes i, j ∈ ωnh

eij = (i, j) ∈ ωeh.

The edge-vector (distance and direction of the nodes) can be defined by

aij = xi − xj ∈ Rd.

Figure 4.1: FE-mesh [6]

The auxiliary matrix Bh ∈ RMh×Mh , with Mh as the number of nodes, must have the following
property, in order to apply the coarsening schemes sucessively:

(Bh)ij =

{
bij ≤ 0, if i 6= j

−
∑

j 6=i bij ≥ 0, if i = j
(4.1)

In [9], the second case is defined as 1 −
∑

j 6=i bij ≥ 0 but for all tests, carried out, the result is
the same because the off-diagonal entries are in general much larger than one. The entries of
Bh, which represents a virtual FE-mesh, have the following relation to the entries of the system
matrix Kh:

• If linear nodal Lagrange-FE are used, then ||kij || 6= 0⇔ |bij | 6= 0 for i 6= j

• If the system matrix stems from a scalar-valued problem, the system matrix can be used
as auxiliary matrix, which results in the classic AMG method, described in the previous
sections.

• If Nédélec edge-elements are used, bij represents an edge in the virtual FE-mesh.

26

4.1.1 Function spaces and variational formulation

For the theoretical background, let us introduce the operator equation, as it is done in [6]

Au = f with A : V→ V∗ (4.2)

with V as an appropriate function space and V∗ its dual space1. Depending on the physical
equation, different function spaces (Sobolev spaces) are used:

H1(Ω) = {u ∈ L2(Ω) : grad(u) ∈ L2(Ω)}, (4.3)

(H1(Ω))d := {u ∈ (L2(Ω))d : ∇ · u ∈ L2(Ω)} (4.4)

H(curl,Ω) = {u ∈
(
L2(Ω)

)d
: curl(u) ∈

(
L2(Ω)

)d} (4.5)

with L2(Ω) as the space of square integrable2 functions on Ω. If boundary conditions are intro-
duced, the spaces from above are adapted, in order to incorporate the boundary conditions at
the boundary Γ with outward pointing normal vector n:

H1
0 (Ω) = {u ∈ H1(Ω) : u|Γ = 0}, (4.6)

H0(curl,Ω) = {u ∈ H(curl,Ω) : (u× n)|Γ = 0}. (4.7)

One of the most important properties, which must be preserved across the different hierarchy-
levels is the kernel (nullspace) of the linear operator A:

V0 = {u ∈ V|a(u, v) = 0,∀v ∈ V} = ker(A), (4.8)

where a(u, v) represents a bilinear form3. For example in electrostatics, u ∈ H1(Ω) would
represent the scalar electrostatic potential Ve and v ∈ H1(Ω) a scalar test function. Then the
bilinear form can be identified with the more convenient variational formulation-expression

a(Ve, v) =

∫
Ω
∇v · ∇VedΩ. (4.9)

1 Dual space might be unfamiliar in an engineering context, therefore the definition: Let X be a vector space, then
the set of all linear functionals f on X are called the dual space of X. A functional is a map from vector space
X to a scalar.

2 Hilbert-space with u,v ∈ Rd, dot product u ·v =
∑d

i=1 uivi and the inner product 〈u,v〉0 =
∫

Ω
u ·vdx and norm

||u||20 = 〈u,u〉0. Note: x must be a measure-space, e.g. Euclidian space Rd.
3 Bilinear form on vector space V is a function from of two variables into the field of scalars F (of V) V× V→ F ,
which satisfy

B(v1 + v2,w) = B(v1,w) +B(v2,w)
B(fv,w) = fB(v,w)

B(v,w1 + w2) = B(v,w1) +B(v,w2)
B(v, fw) = fB(v,w),

with v,w ∈ V and f ∈ R.

27

In this example, the kernel of the bilinear form (equivalent to the kernel of the linear operator
A) can be identified as

V0 = ker (a(Ve, v)) = {Ve ∈ H1(Ω)|∇Ve = 0, ∀v ∈ H1(Ω)}. (4.10)

For a more elaborate discussion of kernel spaces, see Chapter 2 of [6].
The next step is to introduce discretized function spaces, since we are working in a FE-context.
The discrete function space4 Vh, respectively kernel space V0h, which is discretized with a size-
parameter h has to be equivalent to the original function space V for h→ 0. A prolongation- or
restriction-operation from a coarse to fine system (or vice versa) is defined by

Rsys
h : Vh → VH . (4.11)

This operation also has to preserve the kernel space on the coarse level

V0h = {u ∈ Vh|Rsys
h uH ∈ V0h}. (4.12)

The construction of appropriate prolongation and restriction operators for three different classes
of problems is presented in the following.

4.2 H1(Ω) elliptic problems

Equipped with the definitions from above, we can now introduce the construction of AMG-
components for problems inH1(Ω) space. A possible example could be the electrostatic equation,
where we are solving for a scalar potential. For a more detailed description of the physical field,
see Chapter 5.

Auxiliary Matrix Bh

The auxiliary matrix can be constructed by two different methods, one is the classic AMG
approach, where no additional information about the underlying PDE or geometry is needed,
i.e. Bh = Kh. The other one is the geometric approach, using a different (auxiliary) matrix for
the coarsening process, with

bij = − ε

||aij ||22
for i 6= j, (4.13)

where ε introduces the ability to extend the computation to more than one material, e.g. in
electrostatics this could represent different permeabilities. For the diagonal, (4.1) can be used
by simply summing up all off-diagonal entries of one row and multiplying it by (−1). With this
construction, the matrix patterns of Kh and Bh are the same, which is important for nodal
Lagrange-FE. The next step is the coarsening of the auxiliary matrix, for which the classical
RS-algorithm from Section 3.2.1 is sufficient.

4 correct partitioning of the computational domain Ω assumed

28

Prolongation

A very simple prolongation operator is the piecewise constant interpolation (4.14), which is the
same for both Kh and Bh, since both matrices have the same sparsity pattern. In [6] another
prolongation operator is proposed with a discrete harmonic extension but it was neglected here
because it is computationally more expensive.

(Psys
h)ij = (PB

h)ij =


1, if i = j
1

|Si
h∩ω

n
C |
, if i ∈ ωnF , j ∈ S

i,T
h ∩ ω

n
C

0, else

(4.14)

The coarse grid system-, respectively auxiliary-matrix can be computed by Galerkin’s method:

KH = BH = (Psys
h)TKhP

sys
h . (4.15)

Smoothing

For the scalar case, a simple Gauss Seidel- or damped Jacobi-smoother can be applied, as defined
in (2.3) and the algorithm is presented in Section 6.2.1.

Convergence Comparisons

The implemented Matlab algorithm for scalar H1(Ω) problem is compared to a Matlab-intern
PCG and GMRES solver. Fig.4.2.

0 50 100 150 200 250 300 350 400

10−24

10−22

10−20

10−18

10−16

10−14

10−12

10−10

10−8

10−6

Number of iterations

N
or
m
al
iz
ed

re
si
du

al

V-Cycle AMG
PCG
GMRES

Figure 4.2: Convergence Comparison of scalar elliptic problem

29

4.3 (H1(Ω))p elliptic problems

This is the more general case of p-dimensional H1(Ω)-problems. An example is Navier’s equation
in the static case

fV +∇ · [σ] = 0. (4.16)

Applying a linear constitutive equation [σ] = [c] : [S], with [c] as the tensor of elasticity and [S]

the strain-tensor, we obtain
fV +∇ · ([c] : [S]) = 0. (4.17)

The weak formulation (in Voigt-notation and the differential operator matrix B, as defined in
eq. (5.12) of Section 5.2) follows as:∫

Ω
(Bu′)T [c]BudΩ =

∫
Ω
u′ · fV dΩ (4.18)

with Dirichlet boundary conditions at the outer boundary. In this equation (4.18) we see the
vector valued displacement-unknowns u and the test function u′. For p-dimensional vector-
unknowns, also the entries of the system matrix are vector valued: (Kh)ij = kij ∈ Rp×p. This
means the size of the system matrix (number of unknowns) is Nh · p, with Nh as the number of
nodes. For a more detailed description of the physical field, see Chapter 5.

Auxiliary Matrix Bh

Again there are two ways to do an AMG-setup for the auxiliary matrix, the classic- or the
geometric-way. The classic approach would be to define an appropriate matrix norm (4.19) and
take the value of the norm as the entry of the system matrix

(Bh)ij = −||kij ||∞ i 6= j, (4.19)

where || · ||∞ is the infinity-norm, defined as the maximum row-sum ||Kh||∞ = maxj
∑Nh

i=1 |aij |.
Note that Bh ∈ RNh×Nh , while Kh ∈ RNh·p×Nh·p and the norm includes the entries of the vector-
valued DOF’s at the specific node. For example, node i in Fig. 4.1 (assume it is a 3D-problem)
has three unknowns, in the above weak form they are displacements and the corresponding entries
in the system matrix form a R3×3 submatrix, e.g.

k̃ij = Kh(i, j)

 3 1 0

1 4 9

0 9 2

 , (4.20)

where i and j are the submatrix entries of the system matrix and correspond to the entries i, j
in the auxiliary matrix the following way:

i = [3i+ 0, 3i+ 1, 3i+ 2]

j = [3j + 0, 3j + 1, 3j + 2] .

30

Finally the entry bij in the auxiliary matrix is obtained, using eq. (4.19)

bij = −||k̃ij ||∞ = −14. (4.21)

The problem with this method is that it is less stable and needs more iterations to converge,
especially for linear elasticity problems.
The second way is to define the auxiliary matrix based on geometry information, similar to
(4.13). And again, as for the scalar case, the patterns of Kh are equal to the pattern of Bh, since
every off-diagonal (p × p)-submatrix in Kh must represent the connection of two nodes. If we
have a look at Fig. 4.3, we clearly see a connection between e.g. nodes ω1 and ω5, therefore the
submatrix k̃1,1 of Kh has a off-diagonal sub-matrix k̃1,5. Also the entry in the auxiliary-matrix
b1,5 is non-zero and has the value of the distance between these nodes. On the other hand node
ω1 has no direct connection to node ω9 and therefore the off-diagonal submatrix k̃1,9 is a 3× 3

zero-matrix. This shows, in a heuristical way, that the auxiliary matrix inherits the graph of
the underlying original system. An important notice is that the above considerations only hold
if the nodes of the physical/spatial discretization (mesh) coincides with the discretization of the
FE-space, which is true for first order Lagrangian finite elements. If higher order Lagrangian
ansatz-functions are used, there are also nodes (at the zeros of the Lagrangian-polynomial) in the
FE-space, which do not coincide with physical grid points. Therefore connections between nodes
can no longer be interpreted as edges of a mesh. Nevertheless the information of the position of
nodes in a higher-order FE-framework is known5 and the above procedure should work because
the graph of the system matrix actually represents a virtual mesh, which can be coarsened but
this neighter proven in this work, nor further elaborated on.

Figure 4.3: Node-connections in a FE-mesh

Prolongation

The difference to the scalar case is that the prolongation operators for the system matrix Psys
h

and the auxiliary matrix PB
h are not the same anymore. The difference is that every entry of

5 at least for nodal finite elements, the positions are located at discrete points

31

the auxiliary matrix corresponds to a p × p-submatrix in the system-matrix, despite this fact,
the operators are similar to (4.14), which is a simple piecewise constant interpolation. Actually
the operator for Bh is exactly the same. For the system-matrix it reads as

(Psys
h)ij =


Ip, if i = j ∈ ωnC

1
|Si

h∩ω
n
C |
· Ip, if i ∈ ωnF , j ∈ S

i,T
h ∩ ω

n
C

0, else

(4.22)

with Ip ∈ Rp×p as the p-dimensional identity matrix. Other, more sophisticated but also com-
putationally more expensive prolongation operators are given in [6] and [9].
Analog to the scalar case, the coarse auxiliary- and system-matrices KH and BH are computed
by Galerkin’s method (4.15).

Smoothing

Again, we can use the same kind of smoother as in the scalar-case, which is the Gauss-Seidel or
damped-Jacobi method. Nevertheless a block -version must be used, otherwise we obtain poor
convergence.
This block-version can easily be constructed, by re-arranging the equations, such that for each
node/point the spatial entries are inserted one after another. For example, the solution (displace-
ment) vector with three nodes i, before the re-arrangement, might look like uh = [ui, vi, wi] =

[u1, u2, u3, v1, v2, v3, w1, w2, w3], which would result in poor convergence. The correct ordering
would be uh = [u1, v1, w1, u2, v2, w2, u3, v3, w3].

4.3.1 Convergence Comparisons

The implemented Matlab algorithm for a scalar H1(Ω) problem is compared to a Matlab-intern
PCG and GMRES solver, see Fig.4.2. For this convergence graphs, the weak form of system
(4.17) is solved for the displacements.

32

0 100 200 300 400 500 600 700

10−9

10−7

10−5

10−3

10−1

101

103

105

107

109

Number of iterations

N
or
m
al
iz
ed

re
si
du

al

V-Cycle AMG
PCG
GMRES

Figure 4.4: Convergence Comparison for static Navier’s equation

4.4 H(curl,Ω) elliptic problems

Since this function space is mainly used for edge-elements in computational electromagnetics, we
solve the system of Maxwell’s equations for the quasistatic case (often called eddy current case),
where the displacement current density term is neglected. The strong form, where also moving
bodies are neglected, reads as

γ
∂A

∂t
+∇× ν∇×A = Ji. (4.23)

The weak form with appropriate boundary conditions (not mentioned here, because only the
convergence for a generic example shall be shown) follows∫

Ω
γA′ · ∂A

∂t
dΩ +

∫
Ω
∇×A′ · ν∇×AdΩ =

∫
Ω
A′ · JidΩ. (4.24)

For a more detailed description of the physical field, see Chapter 5.

Auxiliary Matrix Bh

In [7] it is mentioned that the coarsening can be performed on the nodes, like for the classical
nodal Lagrange elements. Therefore we again introduce an auxiliary matrix Bh, with the same
”meaning” as in the two cases before but with a slightly different construction. For the H1(Ω)-
and (H1(Ω))p-version, the entries ofBh can be computed by taking the appropriate entry or block
in the system matrix and perform a certain operation on it, including the geometry information.
For the H(curl,Ω)-space, an element-wise assembly of the different contributions (4.25) has to

33

be carried out, where νr is the reluctivity of the material.

brij = − νr
||aij ||2

with i 6= j and (i, j) ∈ ωeh (4.25)

The correct construction of this auxiliary matrix is explained in detail in Section 6.1.1.
Furthermore, we have to preserve the kernel of the curl-operator on the different virtual meshes,
which is later on assured by constructing a special prolongation operator for the system matrix.

Prolongation

For the different prolongation operators, we have to introduce an additional construct, called the
index-map ind(), which is defined by

Ωn
H = ind(Ωn

C). (4.26)

Together with another coarsening-method, the agglomeration-method, described in Section 3.2.2,
we can define the coarse nodes as

Ωn
h = {ind(i) | i ∈ Ωn

h}, (4.27)

which means that all nodes in Ωn
h are assigned an index, of the according agglomerate

Iih = {j ∈ Ωn
h | ind(j) = ind(i)} ⊂ N i

h.

For example in Fig. 3.3, all nodes in agglomerate Iih are assigned the same index.
Since we use direct interpolation, the prolongation operators consist solely of 0 and 1 entries.
The prolongation operator for the auxiliary matrix can be defined as

(PBh)ij = pnij =

{
1 if i ∈ Ωn

h, j = ind(i)

0 otherwise
(4.28)

The coarse grid auxiliary matrix BH is calculated via Galerkin’s method, as for the two versions
before.
Now we can deal with the construction of prolongation operators for the system matrix Kh. It
should be mentioned that every entry of the system matrix corresponds to a scalar quantity,
defined on an edge of the finite element. The coarsening for the auxiliary matrix was carried
out on nodes but now we face the problem that the system matrix is defined on edges, which
introduces a more complex prolongation operator because not only the decrease of the number
of edges should be provided but also the kernel of the curl-operator has to be.
Reitzinger [6] states that there is no proof yet, which manifests that the prolongation operators
effectively decrease the number of edges in the coarse mesh. If however the number of non-zero
entries in the auxiliary matrix does not grow too fast, the decrease of edges is heuristically given.
The second requirement, the preservation of the kernel, is ensured by constructing the prolonga-
tion operator for the system matrix in the following way (by assuming a positive orientation of

34

an edge j = (j1, j2) from j1 to j2 if j1 < j2 holds):

(P sysh)ij =

{
1, if j = (ind(i1), ind(i2))

−1, if j = (ind(i2), ind(i1))
(4.29)

Smoothing

Point- or simple block-smoothers, which were used for scalar or vectorial H1-problems are not
suitable anymore. Instead of them, an overlapping technique must be used, which smoothes all
edges, connected to one node, together, see Fig.4.1. Similar to [9] we can use a connectivity
matrix Rj , which extracts the appropriate subblocks Kj out of the full system matrix Kh by
applying

Kj = RjKhR
T
j . (4.30)

Now, we can apply a Gauss-Seidel smoother to every node j = 1, ..., n of the fine mesh

uji+1 = uji + RT
j (Kj)−1Rj(fh −K · ui). (4.31)

Since the extraction of the subblocks and the sub-residuals can already be performed in the setup-
phase, including the evaluation of the quadratic form, the performance is only slightly worse than
a standard point Gauss-Seidel method. For details about implementation, see Section 6.2.2. The
effects of the smoother in this case, should not be neglected, because choosing, e.g. a standard
point-Gauss-Seidel method can destroy the good convergence of the solver, as shown later on in
Fig. 5.8 in Section 5.3.3.

4.4.1 Convergence Comparisons

The implemented Matlab algorithm for a H(curl,Ω) problem is compared to a Matlab-intern
PCG and GMRES solver and the results are displayed in Fig.4.2.

35

0 200 400 600 800 1,000 1,200 1,400 1,600 1,800 2,000

10−7

10−5

10−3

10−1

101

103

105

Number of iterations

N
or
m
al
iz
ed

re
si
du

al

Two-Cycle AMG
PCG
GMRES

Figure 4.5: Convergence comparison for electromagnetic problem

Above convergence plots show promising results for the implemented AMG-versions and the
next step is to implement these algorithms in the in-house FEM-code CFS++ and try to observe
similar convergence properties and also investigate the execution time for solving the systems.
In the next chapter, different application examples, in the three function spaces from above are
used to test the CFS++ implementations, using AMG as a preconditioner for a CG-solver.

36

Chapter 5

Application Examples

All results in this chapter are computed, using a PC with an Intel i7-3820 3.6GHz processor
and using only one OpenMP-thread, in order to make different solvers comparable, which might
have better or worse parallelization. The compiler, used to build CFS++ was gcc-4.8.5, with
optimization flag -O3.

5.1 Electric potential: Capacitor

In this example, a capacitor, depicted in 5.1, with two electrodes and prescribed scalar potential
is solved, using an AMG-preconditioner for a CG-solver. The medium inside the capacitor has
a relative permeability of 1. It should be mentioned that the following examples have no deeper
physical meaning, they shall only be used to verify the AMG algorithms.

Figure 5.1: Capacitor setup

37

5.1.1 Physical Description

The equations, which need to be solved for this case are theMaxwell equations for the electrostatic
case

∇×E = 0 (5.1)

∇ ·D = qe (5.2)

D = εE. (5.3)

Because the electric field intensity E is curl-free, the Helmholtz-decomposition1 can be applied
and E is purely defined by the scalar potential Ve

E = −∇Ve. (5.4)

By inserting this equation into (5.3), we obtain

−∇ · ε∇Ve = qe. (5.5)

Now the problem in the strong form can be stated, similar to [9], as

Given :

qe = 0

ε : Ω→ R

Find : Ve : Ω→ R

−∇ · ε∇Ve = qe

Boundary Conditions :

Ve = 0V on Γbottom

Ve = 10V on Γtop

5.1.2 Weak Formulation

Since we have prescribed Dirichlet boundary conditions, our solution Ve and test function v are
elements of Sobolev-spaces, which fulfill the boundary conditions:

Ve ∈W (Ω) = {w ∈ H1(Ω) | w = 0 on Γbottom, w = 10 on Γtop}, (5.6)

v ∈ H1
0 (Ω). (5.7)

1 Let u ∈ V , be a vector on a bounded domain, then vector u can be split up into a rotation-free and a divergence-
free part

u = −∇Φ +∇×A,

with Φ as a scalar potential and A as a vector potential.

38

By performing an integration by parts and use the property of the test function (it must vanish
at Dirichlet boundaries), we obtain the weak formulation as∫

Ω
ε∇v · ∇VedΩ = 0. (5.8)

Then the Galerkin approach, with linear Lagrange ansatz-functions, is applied and results in the
final linear system

K · V e = f. (5.9)

At this point it is important to notice that the whole AMG-framework in Matlab and CFS++
only works with lowest-order, linear ansatz-functions.

5.1.3 Computational Setup and Results

The computational domain is meshed with 40000 regularly structured linear quadrilateral ele-
ments. To explore the convergence of the method and compare it to a classical GMRES and CG
solver, the residual in every iteration step is stored and depicted in Fig. 5.2. In this plot, we can
clearly see the simplicity of the setup. The residuals of all three solver-types start at an already
very low residual of about 10−9, which is due to the two-dimensional setup and the overal good
property of the Laplace operator in an FE-context. Furthermore we can observe that, although
the initial residual is very low, the pure CG solver has obvious problems to decrease the residual,
whereas GMRES and the AMG-preconditioned CG-solver have some potential left to minimize
the residual. Even in this simple example, we can see a constant logarithmic decrease of the
residual for the AMG-CG version, whereas the graph for GMRES becomes less steep, the lower
the residual gets.

0 20 40 60 80 100 120 140 160 180 200 220 240
10−14

10−13

10−12

10−11

10−10

10−9

Number of iterations

R
es
id
ua

l

AMG-CG
GMRES
CG

Figure 5.2: Convergence comparison for the 2D capacitor problem

39

The AMG-algorithm performed a splitting into five hierarchy-levels, consisting of 40000 nodes
on the finest level, 10000 on level 2, 2500 on level 3, 607 on level 4 and 150 on the coarsest one.
To show the benefits not only in the ”residual-space” but also in terms of wallclock-times, the
number of nodes was increased and the CPU-times are stored and compared to a GMRES-solver.
The results are presented in Table 5.1, which shows the extremely good O(N) complexity of the
AMG-algorithm, because the factor between size of system two and size of system one is 2.25

and the solve-times have a factor of 2.3. GMRES on the other hand cannot stay compatible for
larger systems, since it’s complexity is higher.
At this place it should be mentioned, that the setup-phase has to be computed only once for
the whole analysis and can become quite large, especially for the vector-valued and edge-version.
The solve-time is more important, since this step has to be performed e.g. in every time-step of
a transient analysis.

Nh GMRES AMG-CG

Setup Solve Setup Solve Nr. of Levels

40000 0.64 3.96 0.62 0.23 5

90000 1.43 15.44 1.42 0.53 6

Table 5.1: Wallclock-times of different system-sizes

5.2 Mechanical Field: Loaded Beam

In this example, a cantilever beam, fixed at the left surface Γleft and loaded with a constant
pressure at the top-surface Γtop is computed. As in the example before, an AMG-CG is used to
solve the problem. The isotropic material parameter are chosen to be E = 210000MPa for the
E-modulus and ν = 0.3 for the Poisson-number.

Figure 5.3: Loaded beam

40

5.2.1 Physical Description

The equations, which need to be solved for this case is Navier’s equation

fV +∇ · [σ] = ρa, (5.10)

which can be derived as presented in [9]. In this equation, [σ] denotes the Cauchy stress tensor,
which can be expressed, as already mentioned in Section 4.3, as the scalar-product2 of the tensor
of elasticity [c] and the strain-tensor [S]. The volumetric forces are denoted by fV . In an
FE-context, it is more convenient to represent the stress-tensor [σ] as a vector σ of its tensor-
components, called Voigt-notation

[σ] =

 σxx σxy σxz

σyx σyy σyz

σzx σzy σzz

→ σ =



σxx

σyy

σzz

σyz

σxz

σxy


. (5.11)

Now, we can transfer the divergence operator of eq. (5.10), acting on the tensor into the equiv-
alent matrix-form and introduce the differential-operator B as in [9]

B =


∂
∂x 0 0 0 ∂

∂z
∂
∂y

0 ∂
∂y 0 ∂

∂z 0 ∂
∂x

0 0 ∂
∂z

∂
∂y

∂
∂x 0


T

. (5.12)

Eq. (5.10) can now be re-written to

BTσ + fV = ρa. (5.13)

Since we want to solver for the mechanical displacements u and not for the stress-components,
we have to introduce the definition of the linear mechanical strain tensor S in eq. (5.14), which
is derived from the full Green-Lagrange strain-tensor linearization and neglecting higher order
terms, for the full formulation, see [9].

[S] =
1

2

(
∇Xu + (∇Xu)T

)
=


∂ux
∂x

1
2

(
∂ux
∂y +

∂uy
∂x

)
1
2

(
∂ux
∂z + ∂uz

∂x

)
1
2

(
∂ux
∂y +

∂uy
∂x

)
∂uy
∂y

1
2

(
∂uy
∂z + ∂uz

∂y

)
1
2

(
∂ux
∂z + ∂uz

∂x

)
1
2

(
∂uy
∂z + ∂uz

∂y

)
∂uz
∂z

 = sij (5.14)

where ∇X denotes the derivatives with respect to the original coordinates (Lagrangian coordi-
nates). This tensor can also be written in Voigt notation [S]→ S and by applying the differential

2 Scalar product of two tensors A and B is defined the following way:

A : B = AijBij

41

operator B on u, we obtain the strain tensor S in Voigt-notation.
By putting all definitions from above together and inserting it into the original Navier’s equation
(5.10), we obtain the Navier’s-equation in (computational-friendly) Voigt-notation:

fV + BT [c]Bu = ρ
∂2u

∂t2
. (5.15)

Now the problem in the strong form can be stated as (static case)

Given :

h = b = 1m, L = 5m

a = 0 static case

ρ = undefined, since a = 0

E = 210000MPa (isotropic material)

ν = 0.3

Find : u : Ω→ R3

fV + BT [c]Bu = 0

Boundary Conditions :

u = 0 on Γleft

[σ]T · n = −20000
N
m2

ez on Γtop

5.2.2 Weak Formulation

Due to the boundary conditions at the boundary of the computational domain Ω, the solution
quantity u ∈ (H1

0)3 and test function v ∈ (H1
0)3 are elements of an appropriate Sobolev-space,

which incorporates the boundary condition, as in the scalar case. By performing an integration
by parts and use some properties, imposed on the test function, as in the electrostatic-case, we
otain the weak formulation as ∫

Ω
(Bv)T [c]BudΩ =

∫
Ω
v · fV dΩ. (5.16)

The non-trivial kernel3 of the underlying bilinear form of eq. (5.16)

a(u,v) =

∫
Ω

(Bv)T [c]BudΩ (5.17)

forms, according to [6], a six-dimensional subspace (rigid body modes)

ker(a(u,v)) = {u ∈ V | Bu = 0 ∀v ∈ V} = {a× x + b | a,b ∈ Rd}. (5.18)

3 A kernel is called trivial if it consists only of the nullvector of the vectorspace

42

0 50 100 150 200 250 300 350 400

10−5

10−3

10−1

101

103

105

Number of iterations

R
es
id
ua

l

AMG-CG
GMRES
CG

Figure 5.4: Convergence comparison between AMG-CG, GMRES and CG

Applying the Galerkin approach with linear Lagrange Ansatz-functions, we obtain the final linear
system

Ku · u = f , (5.19)

where Ku is the system matrix, which consists only of the stiffness-matrix, since we have no
acceleration (no mass-matrix) and no damping (no damping-matrix).

5.2.3 Computational Setup and Results

The first analysis is performed, using 132300 undestorted hexahedral elements and the con-
vergence between CG, GMRES and AMG-CG is compared. For the AMG-CG we are solving
the problem on three hierarchy-levels. As one can see in Figure 5.4, the AMG-CG converges
well, while GMRES and CG have serious problems to lower the residual, CG does not even
seem to converge at all. The problem might be the strong connection between the different
spatial-directions (x, y, z). Even the AMG-CG runs into difficulties, when the mesh gets more
distorted. For example in Figure 5.5, the hexahedral element are distorted by a certain factor

length in x-direction
length in y-, z-direction , as shown in the legend. As [6] states, equations arising from eq. (5.16)
are challenging for AMG because of the nontrivial kernel (5.18) of the corresponding opera-
tor respectively bilinear form, which can not be approximated well enough. Furthermore, the
prolongation-type we are using (averaged) is not the optimal one, because it only preserves con-
stant functions, whereas the prolongation, based on harmonic extension is able to approximate
more than constant functions [6].
Restricting the analysis to the undestorted case, we can investigate the scalability and check
if O(N) is still reached. For this field, the results of AMG-CG are not compared to GMRES

43

because it would take too long to converge to the residual-threshold of 10−8, which can be seen
in Fig. 5.4. Looking at Table 5.2, it becomes obvious that the optimal complexity is no longer
valid because due to the convergence-issues the number of iterations increases and therefore the
solution-time rises over-proportional.

0 100 200 300 400 500 600 700

10−7

10−5

10−3

10−1

101

103

105

Number of iterations

R
es
id
ua

l

distortion 1.11
distortion 1.3

Figure 5.5: Convergence comparison using AMG-CG for different mesh distortions

Nh AMG-CG

Setup Solve Nr. of Levels

132300 25.5 19.43 4

432450 83.95 216.95 5

Table 5.2: Wallclock-times for different system-sizes

5.3 Electromagnetic Field: Current Loaded Coil

In this example, the electromagnetic field of a current loaded copper coil with an iron-core and
surround air, as depicted in Fig. 5.6, is computed. The difference to the two examples before is
the kind of FE-space. Here, we are using Nédéléc’s edge elements, which are the natural choice
of the H(curl,Ω) space.

44

Figure 5.6: Current loaded coil

5.3.1 Physical Description

The set of equations, which needs to be solved for this example, are Maxwell equations

∇×H = J +
∂D

∂t
, (5.20)

∇×E = −∂B
∂t
, (5.21)

∇ ·D = qe, (5.22)

∇ ·B = 0, (5.23)

together with the three constitutive equations

J = γ(E + v ×B), (5.24)

D = εE, (5.25)

B = µH. (5.26)

Furthermore, we assume, that none of the three parts (coil, core, air) are moving (v = 0) and
all quantities are independent of time (static problem). In this case, all time derivatives in
the Maxwell equations vanish. In this case, the electromagnetic field, as goverened by Maxwell
equations splits up into an electrostatic- and a magnetic-part and the latter, which describes the
physics of our problem, will be computed. In the next step, we introduce the magnetic vector
potential A via

B = ∇×A. (5.27)

45

We are allowed to do this, since B is solenoidal (∇ ·B = 0). Therefore, eq. (5.23) automatically
fulfilled and inserting eq. (5.27) into eq. (5.26) and (5.20), we arrive at a curl-curl problem
(static case)

∇× 1

µ
∇×A = J, (5.28)

with the reluctivity ν = 1
µ .

Now the complete problem in the strong form can be stated as (static case):

Given :

µair = 1.2566 · 10−6 Vs
Am

, µcoil = 1.2566 · 10−6 Vs
Am

µcore = 6.2 · 10−3 Vs
Am

Find : A : Ω→ R3

∇× ν∇×A = Ji

Boundary Conditions :

n×A = 0, on Γφ

n ·A = 0, on Γx,Γy,Γz

Interface Conditions at material parameter-discontinuities :

n ·Acoil = n ·Aair, on Σair-coil

µair n×∇×Aair = µcoil n×∇×Acoil, on Σair-coil

n ·Acore = n ·Aair, on Σair-core

µair n×∇×Aair = µcore n×∇×Acore, on Σair-core

5.3.2 Weak Formulation

Before we multiply with a test function A′, an appropriate space has to be constructed. The
classical H0(curl,Ω) is not enough, since it does not include interface-restrictions. Therefore, we
introduce an appended Sobolev-space

HΣ
0 = {u ∈ H0(curl,Ω)|u× n|Σ = 0}. (5.29)

After the appropriate function space is constructed and A,A′ ∈ HΣ
0 is stated, we can write the

weak formulation as ∫
Ω
∇×A′ · ν∇×AdΩ =

∫
Ω
A′ · JidΩ. (5.30)

As stated in [6], we have to add a term, scaled with a so-called fictitious condictivity γ′ << ν

in order to ensure the uniqueness of the boundary value problem. The additional term does not
much effect the solution and it results in the regularized weak form∫

Ω
∇×A′ · ν∇×AdΩ +

∫
Ω
γ′A′ ·AdΩ =

∫
Ω
A′ · JidΩ. (5.31)

The next step is the discretization of the geometry, followed by the discretization of the continuous

46

function-space into a finite space, which is done via so-called (Nédéléc) edge elements. The main
difference to Lagrangian ansatz-functions, without going into to much detail, is that degrees of
freedom do not correspond with nodes but with edges. The classical Galerkin-ansatz, e.g. for
the vector potential is written as

A ≈
Nedges∑
i=0

NiÃi, (5.32)

with Nedges as the number of edges in the domain, with no boundary condition (unknown vector
potential), Ni as the edge- (Nédéléc-) shape function corresponding to edge i and Ãi as the
actual degree of freedom. This DOF shall not be confused with the component of A because it
is the line-integral of the vector potential along edge i

Ãi =

∫
i
A · ds. (5.33)

For a more rigorous introduction into edge elements, see [9] or [16]. Since the problem is static,
there is no time derivative in the final formulation and together with the Galerkin-ansatz for
edge-elements, the linear system can be derived as

KAA = f. (5.34)

5.3.3 Computational Setup and Results

The first analysis for the convergence comparison between AMG-CG, GMRES and CG were
carried out on a discretization with about 20000 edges. Due to the finite element formulation
of edge elements, the size of the linear system was 17067, because on surface ΓΦ, the magnetic
flux density was forced to be tangential to the surface and therefore the vector-potential is zero.
The convergence-results are depicted in Fig. 5.7, where the superiority of AMG-CG is clearly
visible. The classical CG-method does not converge at all, as does the GMRES, or at least very
slowly. To emphesize the importance for an appropriate smoother is shown if Fig. 5.8, where a
standard point Gauss-Seidl method was used to solve the problem, instead of the correct Arnold-
Falk-Winther (AFW) smoother. Also the computation times are some order of magnitudes lower
than for GMRES, which is not even mentioned in Table 5.3 because it took too long to decrease
the residual to a level, where it is comparable to AMG-CG. One abnormality was observed for
the solution time of the largest system in Table 5.3, which is lower than the solution time for
the next smaller system. It is not obvious where this comes from but it is definitely an artefact
from implementation and not from the algorithmic-side. A possible explanation might be that
the small systems did not fully utilize Intel-MKL’s abilities in terms of internal storage schemes
or optimizations regarding cache efficiency.

47

Nh AMG-CG

Setup Solve Nr. of Levels

17067 3.04 1.4 2

23100 3.12 2.02 2

60304 19.37 16.2 2

114080 64.72 13.61 3

Table 5.3: Wallclock-times for different system-sizes

0 50 100 150 200 250 300 350 400 450 500
10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

101

102

Number of iterations

R
es
id
ua

l

AMG-CG
GMRES
CG

Figure 5.7: Convergence comparison between AMG-CG, GMRES and CG for the current loaded
coil

48

0 50 100 150 200 250 300 350 400 450 500
10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

101

102

Number of iterations

R
es
id
ua

l

AMG-CG
GMRES
CG
AMG with GaussSeidl

Figure 5.8: Convergence comparison with a wrong smoother

49

Chapter 6

Implementation Details

In this chapter, a short introduction into the implementation in CFS++ is given, with the main
focus on the algorithmic approach and less on the sofware-development process, since there is
definitely some room for improvement regarding this topic. The main goal of this chapter is to
provide some basic informations to improve or extend the existing implementation, especially for
mechanical engineers, who might be unfamiliar with some of the following terms.

6.1 Sparse Matrix Storage

Since we are nearly solely dealing with sparse matrices, the only feasible matrix storage format
is a CRS- (compressed row storge) or CCS- (compressed column storage) storage format. These
formats have the ability to store nnz non-zero entries of a N ×N -matrix in only 2 ·nnz+N + 1

storage-entries instead of the N2 storage-entries, when using a dense matrix storage. This format
simply avoids, storing zero-entries in the matrix. Depending on the matrix type, the number of
storage entries in the sparse-format can be furhter decreased, if the matrix is symmetric, then
the format are called S(ymmetric)CRS or S(ymmetric)CCS.
The implementations in CFS++ were solely carried out with the non-symmetric CRS storage
format. Although there are numerous explanations for this format, a short description is provided
in the following.
CRS consists of three arrays: row-index rI, column-index cI and data-index dI. Assume we
have, for example the following (m× n) = (3× 4) matrix

K =

1 0 0 5

2 5 0 0

0 0 7 3

 ,

which has three rows and six non-zero entries. The row-index rI has size (m+ 1) and stores for
each row the number of non-zero elements, with its first entry 0, per definition. Following this
explanation, we can construct the row-index as

rI =
(

0 2 4 6
)
.

50

The column-index cI contains for each non-zero element the corresponding column in the matrix,
in our example it would be (0-based indexing)

cI =
(

0 3 0 1 2 3
)
,

as does the data-index
dI =

(
1 5 2 5 7 3

)
.

These definitions make it easy to loop over every non-zero element in the matrix (row-wise),
according to pseudocode in Algorithm 6.

Algorithm 6 Looping over every non-zero element in a CRS-matrix

1: function CRS-loop

2: for i = 0 : m do
3: for j = rI[i] : rI[i+ 1] do
4: K(i, cI[j]) = dI[j]

5: end for
6: end for
7: end function

An important fact, which is especially beneficial for iterative solver, like Gauss-Seidl or Jacobi
is the knowledge where the diagonal elements of a quadratic (N × N) matrix are. There are
two ways (implemented in CFS++) for this purpose. The first method introduces a new array
diagI, which stores for each diagonal entry the position in the data array. The second method
performes a re-ordering of cI and dI, so that the diagonal element of row i is stored at position
rI[i]. The second version makes it very easy and efficient to loop only over the diagonal entries
of a quadratic sparse matrix, as shown in Algorithm 7.

Algorithm 7 Looping over diagonal elements in a CRS-matrix with diagonal-ordered columns

1: function CRS-loop

2: for i = 0 : m do
3: diagonalEntry(i) = dI[rI[i]]

4: end for
5: end function

6.1.1 Construction of auxiliary matrix for H(curl,Ω) problems

The construction of the auxiliary matrix for H(curl,Ω) problems and edge-element discretization
has a higher complexity than for the more trivial scalar or vectorial nodal version. Therefore a
small example, is provided here.
Assume we have four elements, as shown in Fig. 6.1 with global and element-wise node-numbers.

51

Figure 6.1: Example for the construction of the auxiliary-matrix

According to eq. (4.25), we have to perform an element-wise assembling of contributions into
the auxiliary matrix. For element 1, the local auxiliary-matrix B1 is a (3× 3) matrix, since the
triangular element has three nodes and looks as follows:

B1 =

b12 + b13 −b12 −b13

−b21 b21 + b23 −b23

−b31 −b32 b31 + b32

 . (6.1)

Note that the entries in this matrix represent the distance between the nodes with local node-
numbering. Building the element-wise auxiliary-matrices (B2 and B3)for the other two elements
is straight forward. The next step is to assemble them into the global auxiliary matrix B, using
global node-numbers.
This global matrix has a size of (5 × 5) and the contributions from the different elements are
coloured, according to their original element.

B =



b12 + b15 −b12 0 0 −b15

−b21 b25 + b21 + b25 + b23 b23 0 −b25 − b25

0 −b32 b34 + b35 + b32 −b34 −b35

0 0 −b43 b43 + b45 −b45

−b51 −b52 − b52 −b53 − b53 −b54 b54 + b35 + b35 + b25 + b51 + b52


(6.2)

For the actual implementation, the construction of the element-wise matrices can be bypassed,
if a construct, called edgeList is introduced, which stores for each edge the appropriate global
node-numbers (indices in the auxiliary matrix) and the distance between these nodes. Then the
assembling can be carried out by looping over all edges, as presented in Algorithm 8.

52

Algorithm 8 Building the auxiliary-matrix by edge-wise contributions

1: function AuxiliaryMatrixEdge

2: numRows = GetNumNodes() // get number of all nodes in the mesh
3: for i = 0 : numRows do
4: edges = edgeList[i] // array containing edges, connected to node i
5: for j = 0 : edges.size() do
6: nodes = edges[j].nodes() // array containing the two nodes of edge j
7: invDist = 1.0/edges[j].dist() // inverse distance between two nodes
8: for k = 0 : 2 do
9: // Fill diagonal entries in B

10: B[nodes[k], nodes[k]] = invDist

11: // Fill off-diagonals in in B

12: l = (k == 0)? 1 : 0

13: B[nodes[k], nodes[l]] = −invDist
14: end for
15: end for
16: end for
17: end function

6.2 Smoother Algorithms

The smoothers-classes in CFS++ consist of two main methods: a setup- and a solve-phase. In
the first, all results, which are needed for the computation and do not change over the iterations,
e.g. diagonal inverse or patches, are stored here. This has the benefit, that it is known in the
fast solve-step. In the following sections, the generic system

K · u = f

will be solved for K ∈ RN×N , using damped-Jacobi or Arnold-Falk-Winther (AFW) smoother.

6.2.1 Damped Jacobi

As already presented in Section 2.1.1, the damped Jacobi method reads as

uν+1 = uν + ωD−1
(
f −K · uν

)
, for ν = 0, 1,

The only candidate for the setup-phase is the inversion of the diagonal element, stored in array
invDiag.
The algorithm for the solve-phase is straight forward, as presented in Algorithm 9.

53

Algorithm 9 Damped-Jacobi solve-step with previously computed inverse diagonals

1: function DampedJacobiSolve

2: for ν = 1 : smoothSteps do
3: rν = f −K · uν

4: for i = 0 : N do
5: uν+1[i] = uν [i] + Ω · r[i] · invDiag[i]

6: end for
7: end for
8: end function

6.2.2 Arnold-Falk-Winther

This type of smoother is more involved than Jacobi- or Gauss Seidl-method, because the impor-
tant part of the smoother are not the entries in the system matrix but their connections between
each other. In Section 4.4 it was mentioned that edges, which are connected to a common node,
are smoothed together, by extracting submatrices out of the global system matrix. The approach
of eq. (4.30) is useful for a nice mathematical description but when writing the algorithm, the
use of such matrices would undo all performance optimizations before because we would have
to perform a double matrix-product for every node of our system. Therefore we split up the
initial setup-phase into a method CreatePatches() and ExtractPatches(), which are described in
the following.

Creation of patches: The creation of patches, as depicted in Fig. 6.2 has to be performed
for every node of the current hierarchy-level. The main purpose of this method is to find and
store indices of the system matrix, which are extracted in the ExtrachtPatches() method. This
can easily be achieved by two methods. The first method is to loop over every diagonal in the
auxiliary-matrix, which contains an entry for every node, and store it’s off-diagonal elements,
which correspond to the edges, connected to the diagonal point (if the matrix is viewed as an
adjacency graph). For example, let us consider node i in Fig. 6.2, which has the position Bii

in the auxiliary-matrix B. Node j has a direct path (edge) to this node and therefore it is an
off-diagonal Bij . By doing this we can identify the edge eij , get its index in the system-matrix,
store it in the patch of node i and continue our search for neighbours of this node. For the actual
implementation, a slightly different approach was used, using previously gathered information
about the grid. Therefore we use an edge-map, which stores for each edge, both connected nodes.
By looping over every node and identifying every occurence-position of this node in the edge-
map1, we can reduce the complexity because as soon as we obtained the occurence, the index in
the system matrix needs no further lookup in other maps.

1 When using hash-maps (e.g. boost::unordered_map), this has on average constant time O(1), in the worst case
O(N).

54

Figure 6.2: Edge patches for Arnold-Falk-Winter smoother

Extraction of patches: This method is needed to improve the performance of the actual
solve-step afterwards. Extraction in this context means to form small submatrices Kj from
the global system matrix, according to the previously computed edge- (system-matrix)-indices,
stored in patches. Also the inversion of these submatrices (Kj)−1 is stored, since they do not
change during successive iterations.

Solve-step: Before we analyse the algorithms, let us revisit the basic iteration-formula for the
AFW smoother from eq. (4.30)

Kj = RjKhR
T
j ,

uji+1 = uji + RT
j (Kj)−1Rj(fh −K · ui).

We can clearly identify the crucial part of the above formula, which is the matrix-vector product
K ·ui, with K as the full system-matrix. Because this need to be performed for every node in the
solve-step, which is obviously a bad idea, if performance matters. To circumvent this problem,
we only update our matrix-vector product for the rows in the matrix, which are contained in the
patches for the particular node. The solve-step algorithm is depicted in Algorithm 10.
Another important aspect of this smoother is the overlapping of patches as seen in Fig. 6.2.
Without these connections of patches, we end up with a standard point Gauss-Seidel method,
which would lead to convergence problems, at least for electromagnetic problems, as shown in
Fig. 5.8. To prevent confusion, the patches, defined above are, not at all, the agglomerates,
needed for the construction of hierarchy-levels, as presented in Sec. 3.2.2. These agglomerates
are constructed, so that there is a disjoint splitting of the computational domain, patches on
the other hand must have a cut set, otherwise the convergence is not assured. A possible
(heuristical) explanation might be that the information for nodal Lagrangian ansatz functions
is located at discrete nodes, with no additional condition for the interaction between nodes,

55

Algorithm 10 Solve step for the Arnold-Falk-Winther smoother

1: function AFWStep
2: for n = 0 : nodes do
3: p← GetPatchOfNode[n]
4: erhs ← GetRHSofPatch[n], esol ← GetSolutionOfPatch[n] //extract from global

vectors
5: for i = 0 : p.size() do
6: KrP ← ExtractRowFromK(p[i])
7: rS [i] = KrP · esol
8: end for
9: tmp1 = erhs − rS

10: tmp2 = esol + (Kj)−1 · tmp1
11: uji+1 ← InsertInCorrectP lace(tmp2, p)
12: end for
13: end function

because these ansatz functions (composed of Lagrangian polynomials) have a compact support
and therefore do not exchange information between each other. For edge-elements it is more
involved, since not only the kind of polynomials for the ansatz function is different (integrated
Legendre polynomials) but also the matching of these functions at connecting nodes, in 3D also
face, has to be ensured, so there are definitely conditions between edges, which must be satisfied
and this kind of smoother takes care of these.

56

Chapter 7

Summary

The aim of this work was to implement algebraic multigrid methods in CFS++, in order to be
able to solve equations arising from elliptic partial differential equations in H1(Ω), (H1(Ω)d and
H(curl,Ω) space and to apply these to solve problems in different physical fields.
The first part was a thorough literature research, combined with small primal implementations
in Matlab were carried out, in order to understand the basic principles. Extending this frame-
work, resulted in an AMG-framework in Matlab, which uses the exported linear system and
some additional informations from CFS++ and solves the problem, using AMG-methods. This
additional information consists mainly of geometry-data, which is needed for the auxiliary-based
AMG-approach. If the problem shall be solved via a standard AMG-solver, no additional infor-
mation, regarding the geometry is needed, because it uses the underlying graph of the system
matrix as a virtual mesh.
With this framework it was possible to test different approaches and algorithms, in order to
find out the most promising approach to implement in CFS++. For the Matlab-part, only
a standalone solver (no preconditioner) was implemented, using V- and W-cycles. In order
to find out the best approach, a convergence comparison between the standalone-solver and
Matlab-intern GMRES and PCG were carried out for three generic physical fields (electrostatic,
3D mechanic and electromagnetic). This comparison showed promising results with regard to
convergence. In all three physical fields, AMG was able to outperform the other two solvers also
with respect to execution time.
In the next step, the previously tested algorithms were implemented in CFS++ with additional
performance improvements, especially using CFS++ -intern patterns and graph-structures of
sparse matrices. Especially the use of Intel MKL for the double matrix product in the Galerkin-
operator, brought significant performance benefits, compared to the self-written sparse matrix-
matrix product.
A topic, definitely worth further investigation is the analysis of performance-improvement, when
computing this sparse matrix-matrix product in parallel, because for larger systems this can
have a significant impact. Regarding the parallelization, another improvement would be a par-
allel setup-phase, using domain-decomposition and parallel coarsening. The difficulty is that all
mentioned coarsening strategies, besides agglomeration, are pure serial. In order to use a parallel
strategy, completely different algorithms and distributed storage- and communication-concepts

57

have to be implemented, as shown by Reitzinger [6].
Especially for the application in acoustics, an extension to higher order finite elements is beneficial
and a mathematical challenging task. A next step for the implementation could be, to extend
the computation to complex valued matrices, arising for example from the Helmholtz-equation
in acoustics or time-harmonic cases in general. The ansatz to solve this problem is shown in [9],
where the complex-valued matrix is split into a real and an imaginary part and the transfer
operators are computed, based on the coarsening of the auxiliary matrix.

58

Bibliography

[1] W. Hackbusch. Multigrid Methods and Applications. Springer Series in Computational Mathemat-

ics, 1985.

[2] W. L. Briggs. A Multigrid Tutorial. SIAM, 1987.

[3] G. Haase and U. Langer. Skriptum zur Vorlesung Multigrid-Methoden. Abteilung Numerische

Mathematik und Optimierung, Institut für Analysis und Numerik, Johannes Kepler Universität Linz,

1998.

[4] K. Stüben. Algebraic Multigrid (AMG): An Introduction with Applications. German National

Research for Information Technology, Institute for Algorithms and Scientific Computing SCAI, St.

Augustin Germany, 1999.

[5] C.R. Johnson. Inverse M-matrices. In Linear Algebra and its Applications, volume 47, pages 195

– 216, October 1982.

[6] S. Reitzinger. Algebraic Multigrid Methods for Large Scale Finite Element Equations. Ph.D. thesis,

Institut für Analysis und Numerik, Johannes Kepler Universität Linz, 2001.

[7] R. Hiptmair. Multigrid Methods for Maxwell’s Equations. SIAM Vol. 36, No.1, pp. 204-225, 1998.

[8] J. Mandel, M. Brezina, and P. Vanek. Energy Optimization of Algebraic Multigrid Basis.

UCD/CCM report 125, 1998.

[9] M. Kaltenbacher. Numerical Simulation of Mechatronic Sensors and Actuators: Finite Elements

for Computational Multiphysics. Springer Berlin Heidelberg, 2015.

[10] R. Beck. Algebraic multigrid by component splitting for edge elements on simplicial triangulations.

Preprint SC 99-40, Konrad-Zuse-Zentrum für Informationstechnik Berlin, 1999.

[11] M. Kaltenbacher. Advanced Simulation Tool for the Design of Sensors and Actuators. In Procedia

Engineering, Proc. Eurosensors XXIV, Linz, Austria, volume 5, pages 597 – 600, September 2010.

[12] M. Abramowitz and I. Stegun. Handbook of Mathematical Functions: with Formulas, Graphs and

Mathematical Tables . 1965.

[13] M. Kaltenbacher. Computational Acoustics. CISM International Centre for Mechanical Sciences,

Chapter Direct and Iterative Solvers by U. Langer and M. Neumüller, 2018.

59

[14] M. Wagner. Algebraic Multigrid Methods on Parallel Architectures. Diplomarbeit, Institut für

Mikroelektronik, TU Wien.

[15] M. Jung, U. Langer, A. Meyer, W. Queck, and M. Schneider. Multigrid Preconditioners and their

Application. In Proceedings of the 3rd GDR Multigrid Seminar held at Biesenthal, Karl- Weierstraß

Institut für Mathematik, pages 11 – 52, 1989.

[16] S. Zaglmayr. High Order Finite Element Methods for Electromagnetic Field Computation . In

Ph.D. thesis, Johannes Kepler University, Linz, 2006.

60

List of Figures

2.1 Different preconditioners for CG solver, only MG preconditioner shows scalability 6
2.2 Random initial solution u0 . 8
2.3 Solution u5 after 5 steps with non-optimal ω = 1 for damped Jacobi 8
2.4 Solution u5 after 5 steps with optimal ω = 2

3 for damped Jacobi 8
2.5 Solution u5 after 15 steps with non-optimal ω = 1 for damped Jacobi 8
2.6 Solution u5 after 15 steps with optimal ω = 2

3 for damped Jacobi 8
2.7 Solution u5 after 100 steps with non-optimal ω = 1 for damped Jacobi 9
2.8 Solution u5 after 100 steps with optimal ω = 2

3 for damped Jacobi 9
2.9 Error after some smoothing steps . 12
2.10 smooth error restricted to the coarse mesh . 12
2.11 Restriction by injection [6] . 13
2.12 Restriction by weighting [6] . 13
2.13 Grid hierarchy, needed for V- or W-cycles [4] . 15
2.14 Different cycles, depending on the cycle-index γ [13] 16

3.1 Left picture shows the error after some smoothing steps and the right one is the
coarsened grid with coarsening along strong connections [14] 19

3.2 Ruge-Stüben coarsening [3], with λi-values for undecided points, black color for
coarse- and white for fine-grid points . 22

3.3 Agglomerates [6] . 23

4.1 FE-mesh [6] . 26
4.2 Convergence Comparison of scalar elliptic problem 29
4.3 Node-connections in a FE-mesh . 31
4.4 Convergence Comparison for static Navier’s equation 33
4.5 Convergence comparison for electromagnetic problem 36

5.1 Capacitor setup . 37
5.2 Convergence comparison for the 2D capacitor problem 39
5.3 Loaded beam . 40
5.4 Convergence comparison between AMG-CG, GMRES and CG 43
5.5 Convergence comparison using AMG-CG for different mesh distortions 44
5.6 Current loaded coil . 45
5.7 Convergence comparison between AMG-CG, GMRES and CG for the current

loaded coil . 48

61

5.8 Convergence comparison with a wrong smoother 49

6.1 Example for the construction of the auxiliary-matrix 52
6.2 Edge patches for Arnold-Falk-Winter smoother 55

62

List of Tables

5.1 Wallclock-times of different system-sizes . 40
5.2 Wallclock-times for different system-sizes . 44
5.3 Wallclock-times for different system-sizes . 48

63

List of Algorithms

1 Coarse Grid Correction . 13
2 Two Grid Cycle . 15
3 V- and W-Cycle (Multigrid Cycle) . 15
4 Standard Coarsening . 22
5 Preconditioned Conjugate Gradient Method . 23
6 Looping over every non-zero element in a CRS-matrix 51
7 Looping over diagonal elements in a CRS-matrix with diagonal-ordered columns 51
8 Building the auxiliary-matrix by edge-wise contributions 53
9 Damped-Jacobi solve-step with previously computed inverse diagonals 54
10 Solve step for the Arnold-Falk-Winther smoother 56

64

	Table of Contents
	Notation
	Introduction
	Multigrid Method
	Introduction to Algebraic Multigrid

	Preliminaries
	Smoothing Property of Iterative Solvers
	Damped Jacobi Method
	Gauss Seidel Method
	High- and Low-frequency errors

	Coarse Grid Correction
	Multigrid Methods
	Two-Grid Cycle
	V- and W-Cycle

	General Approach to Algebraic Multigrid
	Smooth error in an algebraic sense
	Coarsening
	Standard/Ruge-Stüben coarsening
	Agglomeration

	AMG as Preconditioner

	Auxiliary-based Algebraic Multigrid Methods
	Auxiliary Matrix
	Function spaces and variational formulation

	H1() elliptic problems
	(H1())p elliptic problems
	Convergence Comparisons

	H(curl,) elliptic problems
	Convergence Comparisons

	Application Examples
	Electric potential: Capacitor
	Physical Description
	Weak Formulation
	Computational Setup and Results

	Mechanical Field: Loaded Beam
	Physical Description
	Weak Formulation
	Computational Setup and Results

	Electromagnetic Field: Current Loaded Coil
	Physical Description
	Weak Formulation
	Computational Setup and Results

	Implementation Details
	Sparse Matrix Storage
	Construction of auxiliary matrix for H(curl,) problems

	Smoother Algorithms
	Damped Jacobi
	Arnold-Falk-Winther

	Summary
	Literature
	List of Figures
	List of Tables
	List of Algorithms

