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Abstract

The aim of this thesis was to compare predictions of the macroscopic linear elas-

tic responses of two-phase composites. These were obtained by analytical models

and numerical methods. The fictitious composite being studied consists of a matrix

reinforced by randomly dispersed, spherical particles of identical size.

The analytical approaches used are highly developed statistics-based models which,

in turn, provide bounds and estimates of the different elastic parameters.

The numerical predictions are obtained by discrete multi-particle models and take

advantage of finite element modelling for periodic homogenization.

These analytical models and numerical methods were applied for different reinforce-

ment volume fractions and elastic contrasts.

In general, there is good agreement between the analytical and the numerical predic-

tions. Differences were found in the linear elastic response of different mesh types.
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Kurzfassung

Das Ziel dieser Arbeit war es, theoretische Vorhersagen über das linear elastische

Verhalten von zweiphasigen Composites, erlangt durch analytische Modelle und nu-

merische Methoden, zu vergleichen. Das zu untersuchende fiktive Composite besteht

aus einer Matrix welche durch zufällig angeordnete kugelförmige Partikel gleicher

Größe verstärkt wird.

Bei den analytischen Modellen handelt es sich um hochentwickelte statistik-basierte

Verfahren, welche einerseits Schranken (engl. bounds ) und andererseits Abschätzungen

(engl. estimates) der Materialparameter liefern.

Bei den numerischen Vorhersagen handelt es sich um diskrete Multi-Partikel Modelle

welche das Verfahren der Finite Elemente für die periodische Homogenisierung ein-

setzen.

Die genannten analytischen Modelle und numerischen Methoden wurden für verschie-

dene Verstärkungs-Volumsfraktionen und elastische Kontraste untersucht.

Im Allgemeinen gib es gute Übereinstimmung zwischen den Vorhersagen der analy-

tischen Modelle und den numerischen Vorhersagen. Zwischen den Vorhersagen ver-

schiedener Vernetzungsstrategien wurden Unterschiede festgestellt.
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Notation

In this work, tensors of rank four are represented by bold capital Roman letters (e.g.,

A, B). Tensors of rank two are described by bold lower case Greek letters (e.g., σ,

ε). Vectors are represented by bold lower case Roman letters (e.g., u, x). Scalars are

described by non-bold Italic or Greek letters (e.g., E, σ, cel).

Voigt-Nye notation [22] is used in this thesis. This means that Hooke’s law σ = Eε

can be written as

σ11

σ22

σ33

σ23

σ13

σ12


=



E11 E12 E13 E14 E15 E16

E21 E22 E23 E24 E25 E26

E31 E32 E33 E34 E35 E36

E41 E42 E43 E44 E45 E46

E51 E52 E53 E54 E55 E56

E61 E62 E63 E64 E65 E66





ε11

ε22

ε33

γ23

γ13

γ12


(1)

wherein γij = 2εij, i 6= j represents the shear angles [20].

The subscripts m and i denote the specific constituents of a two-phase matrix-

inclusion topology. A subscript p is used when the inhomogeneities occur in form of

particles.
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Chapter 1

Introduction

1.1 Motivation

The use of composites has increased rapidly with new manufacturing methods and

increased demands on materials and structures. Composites can have two or more

different phases. Inhomogeneities dispersed in a matrix or laminated layers of two

materials belong to the so called two-phase composites. Reinforcing an elastic homo-

geneous isotropic matrix with elastic homogeneous isotropic equiaxed particles will

change the effective material properties depending on the particle volume fraction.

These particle reinforced composites have a wide range of use and, therefore, there

is considerable interest in good estimates for their effective material properties.

There exist a wide range of analytical tools for obtaining the effective material prop-

erties of such two-phase elastic composites. Some of them give an estimated value

for a given modulus of a given configuration and others provide a range of values

for the effective material properties, the so called bounds. With the falling costs of

computational power it has become favourable to use the Finite Element Method to

predict the effective material properties of said composites.

In most of the analytical models of particle reinforced composites the particles are

approximated by spheres. This will be applied in this thesis as well.
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This work will compare selected analytical estimates and bounds with the effective

linear-elastic material properties predicted by finite element modelling of appropriate

volume elements.

Using the commercial micromechanics code Digimat (e-Xstream, Luxembourg, and

MSC Software, Newport Beach, 2017), a fictitious composite with different elastic

contrasts cel consisting of a matrix reinforced by identical spherical inhomogeneous

will be modelled and analysed.

1.1.1 Some Words on Literature

A considerable amount of research work on the linear-elastic material behaviour of

composite materials has been published over the past decades. In addition finite

element based modelling has been applied to evaluating the effective material prop-

erties, for example [25].

A brief summary and introduction into the field of micromechanics is given by Böhm

[3]. This report covers the main aspects and gives a good overview of common used

methods.

One of the methods considered in this thesis are the widely used Hashin-Shtrikman

bounds [10]. The sharper three-point bounds, derived by Beran and Molyneux [1],

are used as one of the main references. Another important piece of work on effec-

tive material properties was done by Torquato [27][26], the resulting estimates play

a considerable role in this thesis.

The influence of different sets of statistical parameters for hard impenetrable random

dispersed spheres will be discussed as well.
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1.2 Assumptions of the Present Thesis

There are some main assumptions and simplifications which were used in this thesis.

First of all the inhomogeneities are particles which are considered as identical in

shape and uniform in size. Also the particles are randomly embedded in a matrix,

creating a nearly isotropic macroscopic material behaviour. The study is limited to

linear-elastic, small strain behaviour of said composites. This thesis examines the

behaviour at given elastic contrasts cel between two constitutes. The used material

properties are normalized with respect to the matrix and, therefore, are treated as

non-dimensional.
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Chapter 2

Methods

There are various methods for obtaining the effective material properties of two-

phase composites made of elastic isotropic impenetrable spheres embedded in an

elastic isotropic matrix. They are called mean-field methods, bounding methods and

full-field models. The focus in this thesis lies on the bounding methods, see Section

2.4, and the use of periodic microfields models, a type of full-field model, see Section

2.5.

Before going into detail of the topics mentioned above, a short general introduction

is given.

2.0.1 Scales

When talking about micromechanics it is unavoidable to talk about the different

length scales used to describe the material properties and the geometry. The macroscale

is the largest one to be used, corresponding to the length scale of the structure or

sample made of the material to be studied. On the opposite side the microscale is

the smallest one, describing the length of an inhomogeneity. In-between the micro-

and macroscale there is at least one mesoscale. It is an intermediate length scale

which gives information on the geometries of the structure, for example the position

of particles. Therefore the model size corresponds to the mesoscale.
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Using these length scales allows separating the stress and strain-fields into two con-

tributions [3]

ε(x) = 〈ε〉+ ε′(x) and σ(x) = 〈σ〉+ σ′(x). (2.1)

wherein the variables in the angled brackets 〈?〉 are contributions on the macroscopic

level, i.e., averaged fields. A prime ?′ denotes variables fluctuating at the microscale.

2.0.2 Volume Fraction

The volume fraction ξ is the most important geometrical parameter when considering

particle reinforced composites. It is defined as

ξk =
Vk∑
l Vl

(2.2)

wherein Vk is the volume of the desired phase and
∑

l Vl is the combined volume of

all phases. Beside the material properties of the different phases, the volume fraction

is the main parameter needed to give a first appraisal of the macroscopic material

properties.

2.0.3 Elastic Contrast

Another important parameter of linear-elastic two-phase composites is the so called

elastic contrast cel. It is defined as

cel =
Ei

Em

(2.3)

wherein the Ei defines the Young’s modulus of the inhomogeneities and Em the

Young’s modulus of the matrix. It can be seen as a parameter of inhomogeneity

of the two-phase composite material behaviour.
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1

2
3

(a) Undeformed shape with applied load

u

u3

2

u1

1

2
3

(b) Deformed shape with displacements

Figure 2.1: Schematic illustration of a volume element with periodic boundary con-
ditions and a macroscopic load acting in direction 1

2.1 Material Properties

Evaluation of Effective Material Properties

To acquire the linear-elastic material properties of a given three-dimensional unit cell,

six linearly independent load cases have to be applied.

For example, consider a three-dimensional volume element subjected to a load in

direction 1, see figure 2.1, inspired by [14]. This causes a volume averaged normal

stress only in said direction

〈σ11〉 6= 0, 〈σ22〉 = 〈σ33〉 = 0 (2.4)

There are displacements u1, u2, u3 in all three directions. Considering a positive

Poisson’s ratio, linear-elastic material behaviour and small strain the volume averaged

strains can be calculated as

〈ε11〉 =
u1
L
, 〈ε22〉 =

u2
L
, 〈ε33〉 =

u3
L

(2.5)
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where L is the side length of the volume element. Hooke’s law can than be written

as

〈ε11〉 =
1

E
[〈σ11〉 − ν (〈σ22〉+ 〈σ33〉)]

〈ε22〉 =
1

E
[〈σ22〉 − ν (〈σ11〉+ 〈σ33〉)]

〈ε33〉 =
1

E
[〈σ33〉 − ν (〈σ11〉+ 〈σ22〉)]

(2.6)

Substituting equations (2.5) and (2.4) into equation (2.6) leads to expressions for the

Young’s modulus and the Poisson’s ratio in the load direction

E1 =
L

u1
, ν12 = −u2

u1
, ν13 = −u3

u1
(2.7)

wherein the superscripts indicate the direction according to figure 2.1.

The material properties of the other directions can be computed using the same logic.

In general one would obtain six different systems of equation of the type

σ11

σ22

σ33

σ23

σ13

σ12


=



E11 E12 E13 E14 E15 E16

E22 E23 E24 E25 E26

E33 E34 E35 E36

E44 E45 E46

sym. E55 E56

E66





ε11

ε22

ε33

γ23

γ13

γ12


(2.8)

where Ekl are the different components of the elasticity tensor E. This gives 36

equations for 36 unknown variables (disregarding the symmetry of E).

Isotropic Material Behaviour

One target of the thesis is to acquire the isotropic stiffness and compliance tensors of

two-phase composites reinforced by randomly positioned particles.
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An isotropic material behaviour provides the same elastic response irrespective of the

loading direction. The linear-elastic behaviour of an isotropic material is described by

two independent parameters. For example, the compliance tensor C can be expressed

using only the Young’s modulus and the Poisson’s ratio. The compliance tensor is

defined as

E = C−1 (2.9)

C =



1
E
− ν
E
− ν
E

0 0 0

− ν
E

1
E
− ν
E

0 0 0

− ν
E
− ν
E

1
E

0 0 0

0 0 0 2(1+ν)
E

0 0

0 0 0 0 2(1+ν)
E

0

0 0 0 0 0 2(1+ν)
E


(2.10)

where one can interpret 2(1+ν)
E

as 1
G

, the inverse of the shear modulus.

2.2 Modelling Approaches

In order to predict the material behaviour of composites, micromechanical models

are needed. The major part of these modelling approaches can be assigned to two

groups. The first group describes the material in terms of phase-wise uniform stress

and strain fields [3]. Some methods of this type are

• Mean-Field Methods (abbr. MFM) which approximate the material behaviour

through the phase averaged strain 〈ε〉 and stress 〈σ〉 of each constituent.

• Bounding Methods, which are described in section 2.4, use variational principles

to restrict the material behaviour between an upper and lower bound.

The second group of methods deals with discrete microgeometries. They study the

interactions between the different phases in a highly detailed way. Some examples

are
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• Embedded Cell Models (abbr. ECM) which consist of a cell, containing the

discrete microgeometry, embedded in a region to which the far field loads are

applied. They are good choices if specific arrangements or crack tips are to be

studied [3].

• Windowing Approaches are used to study relatively small samples of a given

material. The boundary conditions are chosen in a way that there is energy

equivalence between the micro- and macroscales.

• Periodic Microfield Approaches (abbr. PMA) approximate the composite by

using an infinite periodic phase arrangement, more on this in section 2.5.

2.3 Eshelby’s Solution

When Eshelby studied the stress and strain distributions in homogeneous materials

he considered a thought experiment which includes an ellipsoidal inclusion embedded

in an elastic matrix of infinite size [8]. The aim was to obtain the stress and strain

distributions for the case that the ellipsoidal inclusion changes its shape but is still

constrained by the surrounding matrix. Eshelby’s solution to this problem indicates

that the strain εc in the ellipsoidal constrained inclusion is uniform loaded with a

homogeneous eigenstrain εt. The two strains are related via

εc = Sεt (2.11)

wherein S denotes the so-called Eshelby tensor. It depends on the geometric shape of

the inclusion and properties of the embedding material. Expressions for the Eshelby

tensor of spherical inclusions can be found, for example, in [5].
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2.4 Bounding Methods

With this group of methods the effective material properties, for example the moduli

of isotropic materials, are described via lower and upper bounds, that give the phys-

ically possible range. There are a number of bounds available. Depending on the

elastic contrast these bounds can give relatively good approximations of the material

properties and are going to be compared with finite element models in this thesis.

2.4.1 Hill bounds

The Hill bounds [11] are so-called one-point bounds. These bounds are very simple

and are even valid for small, non-representative volume elements. Only the phase

volume fraction ξ is needed. They take the form [3]

[∑
k

ξkCk

]−1
≤ E ≤

∑
k

ξkEk (2.12)

wherein Ek is the elasticity tensor of phase k and Ck is the corresponding compliance

tensor.

2.4.2 Hashin-Shtrikman Bounds

The Hashin-Shtrikman Bounds (abbr. HSB)[10] are the tightest bounds one can

get with information on the phase volume fraction ξ and the macroscopic material

symmetry. This type of bound is a two-point bound, because it can be written

in terms of integrals that depend on the two-point probability function [29]. This

function gives the probability that two points, which are separated by the vector

r, are located in a given combination of the two phases. The two-point correlation

function is illustrated in figure 2.2. Hashin-Shtrikman bounds will be also the most

slack bounds used as comparison in this thesis. With the use of the Hashin-Shtrikman

variational principle the strain energy is bounded and, as a consequence, the effective
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Figure 2.2: Illustration of the three-point (triangle made of r, s and t) and two-
point (line r) correlation functions [29]

elastic moduli as well [10]. This leads to bounds on the elasticity tensor for two-phase

composites which, for the case that the reinforcement is stiffer than the matrix, take

the form [3]

EHS- = Em + ξi
[
(Ei − Em)−1 + (1− ξi)SmCm

]−1
=
[
(1− ξi)EmĀ

dil
m,m + ξiEiĀ

dil
i,m

] [
(1− ξi)Ā

dil
m,m + ξiĀ

dil
i,m

]−1 (2.13)

EHS+ = Ei + ξi
[
(Em − Ei)

−1 + (1− ξi)SiCi

]−1
=
[
(1− ξi)EmĀ

dil
m,i + ξiEiĀ

dil
i,i

] [
(1− ξi)Ā

dil
m,i + ξiĀ

dil
i,i

]−1 (2.14)

wherein S is the Eshelby tensor for spherical inhomogeneities, see section 2.3 and

equation (2.11). Ā
dil
k,l is a strain concentration tensor describing a dilute inhomogene-

ity of material k embedded in material l.

Ā
dil
k,l = [I + SCl (Ek − El)]

−1 (2.15)

The bounds for the bulk and shear moduli can be evaluated directly from equation

(2.13) and (2.14). Zimmerman shows how to derive bounds for the Poisson’s ratio

from bounds for the shear and bulk moduli [31].

Because the Hashin-Shtrikman bounds do not contain any information regarding the
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(a) most separated - lower bound (b) most connected - upper bound

Figure 2.3: Illustration of the structure corresponding to the optimal upper and
lower Hashin-Shtrikman bound according to Torquato [29]. Black de-
notes a phase stiffer than grey Kblack > Kgrey, Gblack > Ggrey

microgeometry beyond the two-point statistics, the upper and lower bound can be

interpreted in terms of an arrangement proposed by Torquato [29]. The lower Hashin-

Shtrikman bound would therefore correspond to an arrangement where the stiffer

phase is the most ”disconnected” due to the presence of the other phase. Conversely,

for the upper Hashin-Shtrikman bound the stiffer phase is the most connected for

the desired volume fraction [29]. There is an illustration in figure 2.3 showing a

structure corresponding to the optimal upper and lower Hashin-Shtrikman bound.

It only consists of a polydispersed composite sphere assemblage (abbr. CSA) with

the diameters of the composite spheres becoming infinitesimally small and therefore

filling the complete space. The white spaces in figure 2.3 are therefore filled with

those progressively smaller coated spheres.

2.4.3 Three-Point Bounds

The Three-Point Bounds (abbr. 3PB) [18] are tighter bounds than the Hashin-

Shtrikman ones. Accordingly, they require additional information on the microgeom-

etry.
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First derived by Beran and Molyneux [1] these bounds use information on the statis-

tics of the phase arrangement in the form of two three-point microstructural param-

eters, η(ξp) and ζ(ξp) [3]. In this thesis two different sets of statistical parameters for

identical impeneterable spheres are used. The first set consists of the ζ(ξp) derived

by Miller and Torquato [18] and the η(ξp) by Torquato et al. [28]. In terms of this

thesis this set is called ”Miller parameters”. The second set of parameters was re-

cently evaluated by Gillman et al. [9]. The statistical parameter ζ(ξp) is restricted

to the closed interval [0, 1] [29]. For the extreme case of ζ(ξp) = 0 the three-point

bound becomes the lower Hashin-Shtrikman bound [26], and for ζ(ξp) = 1 the upper

Hashin-Shtrikman bound.

For engineers the Young’s modulus and the Poisson’s ratio tend to be more important

than the shear and bulk moduli because they are comparable to the uniaxial tensile

test results. Nevertheless, in terms of calculating material properties, it is usually

preferable to evaluate the bulk and shear moduli because they directly correspond

to the purely hydrostatic and purely deviatoric load cases. In [1] one can find the

three-point bounds for the bulk and shear moduli.

2.4.4 Torquato’s Third Order Estimates

Torquato’s Third Order Estimates (abbr. 3OE) alias ”weak contrast expansion

estimates”[27] also rely on the three-point statistical parameters for describing a

given microstructure. They always lie between the three-point bounds and can be

directly compared to predictions from numerical studies. In figure 2.4 a comparison

between the Hill bounds, the Hashin-Shtrikman bounds, the three-point bounds and

the third-order estimates is given for particle volume fractions up to ξp = 0.6, the ma-

terial parameters used for for the constitutes being provided in table 2.1. The phase

geometry consists of identical, randomly positioned, spherical particles embedded in

the matrix, the statistical parameters of Miller et al. [18][28] are used. As one can

see, the third order estimates are positioned closer to the lower bounds and lie within
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Table 2.1: Fictitious material properties used for the comparison
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Figure 2.4: Comparison of three-point bounds, Hill bounds, Hashin-Shtrikman
bounds and Torquato’s third order estimates for the material parame-
ters from table 2.1, the three-point parameters of Miller et al. [18][28]
corresponding to identical, random positioned spheres being used.

the three-point bounds, which, in turn, are inside the Hashin-Shtrikman bounds and

the slacker Hill bounds
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2.4.5 Statistical Parameters

As mentioned for the three-point bounds, section 2.4.3, and the third order estimates,

section 2.4.4, different sets of statistical parameters can be used for describing differ-

ent microstructures. For this thesis statistical parameters for impenetrable identical

spheres in a three-dimensional random arrangement taken from the literature are

used. Evaluating these parameters requires a major computational effort.

Two sets of statistical parameters are used in the following analysis. The most recent

statistical parameters for impenetrable identical spheres were derived by Gillman et

al. [9]. The statistical parameters by Gillman et al. interestingly provide slacker

bounds at higher volume fractions compared to those derived Miller and Torquato

[18][28]. A comparison indicates that the difference in the three-point bounds eval-

uated with the two parameter sets becomes visible at particle volume fractions in

excess of ξp = 0.4. This behaviour can be seen in figure 2.5 a-c. The bounds for the

Poisson’s ratio, evaluated by using the parameters of Gillman et al. and Zimmer-

man’s method [31], widen up with rising particle volume fraction, see figure 2.5 d.

Due to the lack of statistical parameters for particle volume fractions beyond ξp = 0.6

the comparison ceases there.

2.4.6 Dependence on Elastic Contrast

In this section the behaviour of the various bounds with different elastic contrasts is

discussed. Figure 2.4 presents a number of bounds evaluated for an elastic contrast

of cel = 10. In figures 2.6 to 2.9 the same bounds are shown for an elastic contrast of

cel = 100, cel = 0.1 and an elastic contrast of cel = 0.01, respectively. The Poisson’s

ratios are chosen the same as defined in table 2.1. As one can see in figure 2.6, with a

higher elastic contrast the lower Hashin-Shtrikman and the lower three-point bound

start with a smaller gradient, resulting in slacker bounds. The third-order estimates

tend to stay close to the lower bounds, a behaviour typical for composites of stiff

particles in a compliant matrix. This can be seen in figure 2.7 in the enlarged region.
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Figure 2.5: Comparison of three-point bounds evaluated with different statistical
parameters

An elastic contrast lower than unity, i.e. particles that are more compliant than

the matrix, is explored in figures 2.8 and 2.9. For the bounds in figure 2.8 an elastic

contrast of cel = 0.1 was selected. For this configuration the three-point bounds are

rather sharp and the third-order estimate is closer to the upper bound as one can see

in the diagrams. The Hashin-Shtrikman bounds show a slackness compared to that

obtained for an elastic contrast of cel = 10. The slopes of the curves are reversed,

as expected. One can see for an elastic contrast of cel = 0.01 in figure 2.9 that the

three-point bounds become slack again. The third-order estimate is closer to the

upper bound as well.
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Figure 2.6: Comparison of three-point bounds, Hill bounds, Hashin-Shtrikman
bounds and Torquato’s third order estimates for the statistical param-
eters evaluated by Miller and Torquato [18][28] for an elastic contrast
cel = 100
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Figure 2.7: Detail of the lower bounds for a high elastic contrast of cel = 100
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Figure 2.8: Comparison of three-point bounds, Hill bounds, Hashin-Shtrikman
bounds and Torquato’s third order estimates for the statistical param-
eters evaluated by Miller and Torquato [18][28] for an elastic contrast
cel = 0.1
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Figure 2.9: Comparison of three-point bounds, Hill bounds, Hashin-Shtrikman
bounds and Torquato’s third order estimates for the statistical param-
eters evaluated by Miller and Torquato [18][28] for an elastic contrast
cel = 0.01
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2.5 Periodic Microfield Approaches

In contrast to bounding and mean-field methods, periodic microfield approaches are

based on studying discrete microgeometries.

The basic assumption is that actual microgeometries can be well described by periodic

phase arrangements. The latter can be studied by evaluating the behaviour of a single,

periodic volume element or unit cell. Mechanical loads are applied to the resulting

infinite models and the specific responses can be studied. The information obtained

this way can be used to compute the effective material properties of the periodic

phase arrangement. Instead of studying one very large volume element that closely

approaches being a representative volume element (abbr. RVE), see section 2.5.1,

one can study a series of different, smaller statistical volume elements (abbr. SVEs),

see section 2.5.2, and evaluate the ensemble average of their responses.

2.5.1 Representative Volume Element

The representative volume element represents, in a statistical sense, the actual mi-

crostructure of a given composite. As a consequence an RVE also truly represents the

material properties of statistically homogeneous materials. For this aspect an RVE

must be sufficiently large to provide full information on the microstructure, but it

must, of course, be small enough that the influences of macroscopic gradients can be

neglected [3].

2.5.2 Statistical Volume Element

It has been found difficult to prove that given volume elements are actually RVEs.

As a consequence, statistical volume elements [23] have been introduced. This term

describes volume elements the size of which is insufficient to be a proper RVE. Using

a number of SVEs with different geometries but following the same arrangement

statistics and having the same particle volume fractions plus ensemble averaging, see
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(a) 40 particles (b) 105 particles

Figure 2.10: Periodic statistical volume elements used in this thesis, of a parti-
cle volume fraction of ξp = 0.55 but containing different numbers of
particles.

Section 2.5.4, is an appropriate way to approximate the effective material properties

of a particle reinforced composite [24]. Figure 2.10 shows two different periodic SVEs

used in this thesis. They have the same particle volume fraction of ξp = 0.55 but

different numbers of particles.

2.5.3 Boundary Conditions

To extend a given unit cell appropriate boundary condition must be applied. These

boundary conditions can describe translational periodicity, symmetry and antisym-

metry (point-symmetriy) [3]. In figure 2.11 one can see a variety of possible unit cells

for a periodic arrangement of circles embedded in a matrix. It may be noted that

periodic arrangements can be subjected to either non-periodic or periodic boundary

conditions.
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Figure 2.11: Periodic arrangement of particles with a variety of possible unit cells
with different boundaries [3]

2.5.4 Ensemble Averaging

Evaluating the responses of an appropriate number of statistically equivalent SVEs

and using ensemble averaging to obtain the effective moduli has been proven useful by

Kanit et al. [15] as well as Rasool and Böhm [24]. The ensemble average represents

the arithmetic mean of the given samples, wherein the samples are functions of the

possible states of the underlying statistics.

2.5.5 Closest Isotropic Tensor

In general, even an ensemble average of a number of SVEs consisting of an isotropic

matrix and randomly positioned isotropic particles will not be completely isotropic.

Therefore, it is often worthwhile to find the closest isotropic tensor to the ensemble

averaged one in order to obtain isotropic elastic material properties. There are a

number of ways to achieve this. In this work the closest isotropic tensor will be found

by optimization based on the log-Euclidean distance. To use the log-Euclidean dis-

tance ensures obtaining the same closest isotropic tensor no matter if the compliance



CHAPTER 2. METHODS 23

or stiffness tensor is used [21]. This is due the fact that the log-Euclidean distance is

not influenced by the inversion of elasticity-like tensors.

2.6 Microgeometries

To obtain realistic material properties approaching isotropy, samples of sufficient size

with random microgeometries are needed. This can be achieved in two different

ways. The first is to create microgeometries which are based on real microstructure

information gained from experiments. The second method, and the one chosen in

this work, is to create synthetic random arrangements of particles.

There are various approaches to generating such random arrangements. The one

which will be used in this work is random sequential adsorption, which is introduced

in Section 2.6.1.

2.6.1 Random Sequential Adsorption

One of the most common methods for creating random matrix-inclusion geometries,

for example randomly positioned impenetrable spheres, are random sequential adsorp-

tion algorithms (abbr. RSA). Spheres are placed randomly in the volume element.

If a test sphere penetrates another, previously accepted sphere or is placed within a

certain minimum distance to said sphere, it will be rejected and the algorithm starts

placing another sphere. This procedure is continued till the desired volume fraction

of spheres is reached or no further spheres can be placed in the volume element. The

latter difficulty, referred to as jamming, is taken to occur if the placement of a new

sphere fails within a finite number of tries (”geometric frustration”) [3]. The volume

fraction which can be achieved for periodic arrangements of identical spheres with

the RSA method lies in-between 30% to 35%.

It must be mentioned that periodicity as well as the minimum distance between

spheres and the minimum distance to the face of the box which are used by the al-
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gorithm restrict the comparability to the bounds and the estimates. This is because

the bounds are based on a hardcore distribution, where spheres can touch each other,

whereas the RSA algorithm chosen here is based on a penetrable-concentric-shell

model [27] to improve meshability, see section 3.2.1. The difference can be seen in

figure 2.12.

(a) Hardcore distribution (b) ”Cherry pit” model

Figure 2.12: Comparison of the penetrable-concentric-shell model alias ”cherry pit”
[27] and the hardcore distribution of identical spheres.

Closer Packings

To obtain closer packings other methods must be used. In this thesis the in-house

program Arigen was used for this purpose. The algorithm to create packings beyond

the jamming limit of the RSA method consists a number of ”pseudo-repulsive-force

based vectorial shifting compression” [2] steps. In this thesis 50 to 200 steps were

applied to create the packings with particle volume fractions up to ξp = 0.6.

The closest packing which would be possible for identical spheres is a hexagonal or

cubic close packing with a packing density of ξp = 0.74048 [6]. However, such packings

cannot be considered as random any more because they follow a lattice model.
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Chapter 3

Modelling

In this section the knowledge from section 2 is used to set up and postprocess a

number of analyses to obtain the effective material properties of an elastic isotropic

matrix reinforced with elastic isotropic spherical particles.

The program Digimat (e-Xstream, Luxembourg, and MSC Software, Newport Beach,

2017), which was used to generate most microgeometries and the meshes, has an

interactive workflow which operates through different input pages.

3.1 Define Phase Properties

The phase properties, such as the geometric shape, the size of a particle as well as

the elastic isotropic material properties of the matrix and particles, are defined in

separate input pages (”tabs”). For the material properties each Poisson’s ratio and

Young’s modulus are input parameters. The particle size is calculated from the size of

the volume element, the number of particles and the desired particle volume fraction.

Cube-shaped SVE of edge length 1 were used throughout. Because spherical particles

are used as inhomogeneities there is no need to define orientations.



CHAPTER 3. MODELLING 26

3.2 Generation of Microgeometries

For this work two programs were used to produce the SVEs. For particle volume

fractions lower than ξp = 0.3 the random sequential adsorption algorithm integrated

in Digimat was used. Its usage is described in section 3.2.1. Due to the jamming

limit of the RSA method higher particle volume fractions where generated with the

ILSB in-house program Arigen, see section 3.2.2. Both options can generate periodic

arrangements.

3.2.1 Digimat

As mentioned above, Digimat was used for generating volume elements with particle

volume fractions up to ξp = 0.3. In addition to the particle volume fraction the

minimum distance between neighbouring particles as well as the minimum distance

from a given particles to the box, i.e., the edges of the SVE, must be selected.

These input parameters must be chosen in balance with the meshability of the gener-

ated SVE and they must allow a proper comparison with the bounds. If the minimum

distances are too small, problems with unsatisfactory meshing can occur. Particles

which are too close together may produce an ill-conditioned stiffness matrix. This

is due the fact that the elements tend to be unfavourably shaped in small gaps. On

the other hand, if the minimum distances are too big, the statistics of the phase ge-

ometry may differ too strongly from the hardcore models underlying the three-point

parameters, see figure 2.12.

3.2.2 Arigen

Arigen is an ILSB in-house code for creating periodic or non-periodic microgeome-

tries with high volume fractions of spherical particles or aligned cylindrical fibres. For

this thesis it was used to generate three-dimensional unit cells with identical impen-

etrable spheres. The program follows two steps. In the first step, volume elements
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with particle volume fractions of ξp = 0.33 were generated by a random sequential

adsorption algorithm. In the second stage 50 to 200 ”compression steps” are used

to reach higher particle volume fraction. This method is used to create SVEs with

up to ξp = 0.6. To reach particle volume fractions exceeding, say, ξp = 0.55, smaller

inter-particle and particle-wall distances must be selected and computing times may

be rather high.

The results of Arigen are imported into a spreadsheet program. The positions and

sizes of the spheres were then passed on to Digimat for visualization and integration

into the workflow.

3.3 Meshing

The meshing of the generated geometries is done with the built-in Digimat mesher.

Some meshing parameters are available to influence the mesh quality and the total

number of degrees of freedom (abbr. DOF). There are options for generating smooth

or voxel meshes.

3.3.1 Smooth Meshes

The main element type used in smooth meshes is isoparametric, quadratic, 10-node

tetrahedral elements with full integration. Some analyses were also done with linear

4-node tetrahedral elements, which are known to have sub-optimum convergence

properties. The meshes which are based on tetrahedra are called smooth meshes.

An appropriate element size is used which is fine enough to represent the geometry

and is still in balance with the computation time. Digimat offers some tools for

improving the mesh efficiency. Two options discussed here are ”internal coarsening”

and ”curvature control”. Internal coarsening enlarges elements which are far away

from a phase boundary, see [19], p.521, thereby reducing the number of elements and,

consequently, the number of degrees of freedom and improving the efficiency. This
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(a) without curvature control (b) curvature control set to 0.1

Figure 3.1: Influence of curvature control on the mesh discretization of an SVE with
40 particles and ξp = 0.55. Pertinent regions are marked for comparison.

option was chosen for all analyses. The curvature control option allows to improve

the discretization of curved surfaces. The influence of curvature control can be seen

in figure 3.1. One undesirable effect which was found using curvature control is that

it may produce non-conforming meshes on opposite faces of the SVE, see figure 3.2.

Non-conforming meshes tend to produce nodes without a partner on the opposite face,

which, in turn, may give rise to unphysical perturbations in local stresses, compare

figure 3.3. Even though such errors tend to have minimal influence on the predicted

macroscopic responses, such meshes are clearly problematic in the context of periodic

homogenization.

Furthermore, it is difficult for the user to predict where curvature control will refine

the mesh. Accordingly, curvature control was not applied for the analyses in this

thesis. There is also the option to generate meshes where the interfaces are modelled

with separate nodes. This means that each phase has its own node at the interface

at the same position. This feature can be used for non-linear models of interfaces
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(a) Positive x− y face (b) Negative x− y face

Figure 3.2: Opposite faces of a volume element with 40 particles and ξp = 0.55,
meshed with curvature control. Some regions with incompatible meshes
are marked for comparison.

Figure 3.3: Detail of an outer face of a model showing particles intersected by the
box. The Von Mises stress distribution shows a local peak due to an
”unconnected” node caused by incompatible meshing.

and separation. Because these are not part of this thesis the interfaces are modelled

with shared nodes.
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(a) Smooth mesh (b) Voxel mesh

Figure 3.4: Comparison of the same microgeometry discretized by smooth and voxel
meshes, respectively. The meshing parameters are the same as used in
this thesis.

3.3.2 Voxel Meshes

At a first look, it does not seem to make sense to take an exact digital geometry and

generate a voxel based mesh from it. Voxel based meshes are more usually generated

from computed tomography or magnetic resonance imaging scans [4], where they

provide three-dimensional visualisations and are predestined for generating meshes

made of voxels.

The main advantage of voxel meshes in the present setting is their simplicity. Com-

pared to smooth meshes one can give the exact number of elements to be generated

in a voxel mesh a priori. This is due to the fact that voxel meshes are built as a

fixed array with n3
vox elements, where nvox is the number of hexahedron elements in

each direction. In figure 3.4 one can see a comparison of the same microgeometry

discretized with the two types of mesh such that comparable numbers of degrees of

freedom result. Although voxel meshes tend to require more degrees of freedom for

obtaining a discretisation of a spatial resolution that is comparable to that of smooth

meshes the computational effort to generate the mesh and solve the system is smaller
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Table 3.1: Effective volume fraction of the actual geometry in comparison with the
volume fraction of smooth and voxel meshes. The deviations are given
in %, normalized in respect to the actual geometry.

Effective Volume Fraction Deviation

No. Phase Smooth Voxel Geometry ∆Smooth ∆Voxel

1
Particles 0.549938 0.550063 0.549996 -0.0105 0.0122

Matrix 0.450062 0.449937 0.450004 0.0129 -0.0149

2
Particles 0.549932 0.550060 0.549997 -0.0118 0.0115

Matrix 0.450068 0.449940 0.449986 0.0182 -0.0102

3
Particles 0.549939 0.550082 0.549995 -0.0102 0.0158

Matrix 0.450061 0.449918 0.450014 0.0104 -0.0213

4
Particles 0.549938 0.550049 0.550000 -0.0113 0.0089

Matrix 0.450062 0.449951 0.450010 0.0116 -0.0131

5
Particles 0.549938 0.550056 0.549998 -0.0109 0.0105

Matrix 0.450062 0.449944 0.450019 0.0096 -0.0167

[30]. Voxel meshes also have the advantage of a better conditioned stiffness matrix

because for two-phase composites only two different stiffness entries exist and that

there are no issues with mesh periodicity.

In the first step of generating the voxel mesh a regular, structured mesh of identical,

cube shaped elements is built. The voxel-elements are then assigned the material

properties of the phase which occupies the center of the voxel, see [19], p.522. There-

fore, for glancing intersections of spheres the original geometries tend to become

disturbed depending on the size of the elements. One can see in figure 3.5 that the

diameter of glacing intersections of spheres appears bigger on a voxel based mesh.

With finer discretization the original geometry is better represented.

Upon explicit checking the voxel models were found to accurately correspond to the

prescribed phase volume fractions. This can be seen in table 3.1. The percentage de-

viation between the different meshes and the actual geometry is almost always below

0.02%. The voxel meshes tend to have minimally higher particle volume fractions

compared to the actual geometry.



CHAPTER 3. MODELLING 32

(a) Original microgeometry (b) Badly discretized voxel mesh

Figure 3.5: Example of a badly discretized mesh in which some of the voxels pertain-
ing to different particles, effectively introducing non-spherical ”super-
inclusions” into the model. Also notable are effects of glancing intersec-
tions of spheres with the box, the resulting circles showing considerable
changes to their radii.

Complications with Voxel Meshes

Using voxel based meshes can lead to issues with the discretization. If the diagonal of

a voxel is bigger than the minimum distance between two particles, changes of topol-

ogy may occur, an issue illustrated in figure 3.5. One can see that the discretization

of this sample is so bad that some particles become connected. Even if the voxels

touch only in one vertex, a larger ”super-inclusion” is effectively generated within the

finite element framework. This gives rise to volume elements that do not correspond

to identical spherical particles, making them ill-suited for the present work.
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Figure 3.6: Illustration of a rectangular cell with periodic boundary conditions [3]

3.4 Boundary Conditions

For micromechanical finite element analysis appropriate boundary conditions must

be applied, which ensure that the Mandel-Hill [16][12] conditions are fulfilled, i.e.,

that microscopic and macroscopic behaviour are energetically equivalent. One can

choose between a number of different conditions [3]. In this thesis periodic boundary

conditions were applied, a brief introduction to which is given here.

3.4.1 Periodic Boundary Condition

Periodic boundary condition are used to extend a finite volume element into an

infinite periodic arrangement. They have been proven to provide fast convergence

in terms of model size as well as allowing reduced SVE sizes [13]. For periodic

boundary conditions the displacements of half of the faces of the volume element

is fully controlled by the opposite face of the unit cell. For example, in figure 3.6

the face pairs W-E and N-S share the same fluctuations. A general expression for

periodic boundary conditions for small strains is [3]

u+
k − u

−
k = u(sk + ck)− u(sk) = 〈ε〉 ∗ ck (3.1)
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wherein u+
k and u−k are the displacements of the homologous points sk and sk + ck.

ck is the linking vector which connects those points. Using the notation from figure

3.6 and applying equation (3.1) on a two-dimensional rectangular cell one can write

[3]

uN(s̃1) = uS(s̃1) + uNW , uE(s̃2) = uW (s̃2) + uSE (3.2)

Here s̃k denotes the local coordinates on a pair of faces. Therefore each pair of faces

should be meshed with the same discretization.

Comparing equations (3.1) and (3.2) shows that the information of the macroscopic

strain 〈ε〉 is contained in the nodal displacements of the edge nodes SE and NW [3].

Every single deformed unit cell can be seen as a piece of a jigsaw puzzle which fits

in perfectly with its neighbours. The approach described above can be applied to

three-dimensional unit cells as well [17].

3.5 Exporting Input Data

To carry out an analysis with Abaqus (Dassault Systèmes, Vélizy-Villacoublay, 2016),

the mesh created with Digimat has to be exported. This can be done automatically

via a Digimat option. It creates an Abaqus .inp file. To obtain the material properties

of the unit cell six different linear independent load cases have to be applied.

Modifying the Input

The input file generated by Digimat was modified such that load controlled instead

of displacement controlled analyses were done. This has the advantage of allowing all

six necessary analyses to be done as six steps in a single analysis. The modification

was carried out by replacing the ∗STEP section of the Abaqus input file provided by

Digimat. Then the file ”StepDataDIT.inp” was imported. In this file the new loads

are provided.
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3.6 Solving

The six different load cases of the generated microgeometries are either computed

with Digimat or Abaqus. The voxel based meshes are mainly computed with Abaqus

due to the high number of degrees of freedom involved which make the parallelization

capabilities and optional iterative solver of Abaqus especially valuable. The smooth

meshes using quadratic tetrahedral elements were primarily analysed with Digimat.

Results were found to be independent of the solver used.

3.7 Post-processing

Digimat can evaluate the material properties of a given microgeometry directly. There

is only a need to ensemble average the output files. In contrast, more post-processing

steps are necessary for analyses carried out with Abaqus. This is done with tools

available from the Institute of Lightweight Design and Structural Biomechanics.

3.7.1 ILSB In-house Tools

There are suitable post-processing tools available at the Institute of Lightweight De-

sign and Structural Biomechanics. The ones which are used in this thesis are ex-

plained below.

procDNdata

procDNdata is a tool for extracting information on master nodes and loads from the

output database (abbr. odb) created by the analysis using the Python linking to the

Abaqus output database. It is used by calling it in the shell and afterwards entering

the output database’s name to started the processing. procDNdata creates a .rne file.
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etfrpt

The tool etfprt is used to extract the stiffness and compliance tensors from the .rne

file created with procDNdata. The results are stored in an .out file.

avgelt

With avgelt a set of elastic tensors can be ensemble averaged. The purpose is to

replace big analyses with a number of smaller ones to obtain a approximation to the

macroscopically isotropic material behaviour. Avgelt reads a number of .out files and

computes an .ave file which contains the ensemble averaged stiffness and compliance

tensors. Due to numerical errors and inaccuracies due the limited number of particles

in a given set of SVEs obtained with a finite number of analyses the tensor, in general,

is not perfectly isotropic.

closelt

To improve the approximation of the isotropic effective material behaviour the ILSB

in-house tool closelt is used. It computes the closest isotropic tensor to the approx-

imately isotropic tensor provided by an .ave file. It can use different methods to do

so. For this thesis the closest isotropic tensor using the log-Euclidean distance was

used for the effective material behaviour. As an example equation (3.3) shows the



CHAPTER 3. MODELLING 37

compliance tensor of a statistic volume element with a particle volume fraction of

ξp = 0.55 and 40 particles, which obviously shows some anisotropy.

C =



0.3348943 −0.0727037 −0.0731641 0.0079077 −0.0050045 0.0077936

−0.0726824 0.3403466 −0.0771278 −0.0003539 −0.0003791 −0.0007849

−0.0731539 −0.0771646 0.3395461 −0.0073117 0.0037889 −0.0039859

0.0078925 −0.0003436 −0.0073263 0.8221935 0.0020122 −0.0140192

−0.0049982 −0.0003620 0.0037847 0.0020300 0.8053628 −0.0129824

0.0077822 −0.0008082 −0.0039911 −0.0140271 −0.0129741 0.8208980


(3.3)

The closest isotropic compliance tensor of the same statistic volume element obtaining

via the log-Euclidean distance is

Cisotrop =



0.336367 −0.073387 −0.073387 0.000000 0.000000 0.000000

−0.073387 0.336367 −0.073387 0.000000 0.000000 0.000000

−0.073387 −0.073387 0.336367 0.000000 0.000000 0.000000

0.000000 0.000000 0.000000 0.819508 0.000000 0.000000

0.000000 0.000000 0.000000 0.000000 0.819508 0.000000

0.000000 0.000000 0.000000 0.000000 0.000000 0.819508


(3.4)

The isotropic engineering moduli can be obtained from this tensor using the relations

C11 = C22 = C33 = 0.336367 =
1

E

C12 = C13 = C23 = −0.073387 = − ν
E

C44 = C55 = C66 = 0.819508 =
1

G

K =
E

2(1− 2ν)

(3.5)
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resulting in

E = 2.97294, ν = 0.218175, G = 1.22024, K = 1.75815 (3.6)

Note that due to the linearity of the analyses discussed here, input and output data

remain valid if multiplied by an arbitrary factor. For this reason, no units are given

for the moduli.
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Chapter 4

Results

4.1 Definition of the Main Analysis

The main aim of this thesis is to compare analytical bounds for composite materi-

als, made of an elastic homogeneous matrix reinforced with elastic isotropic spherical

particles, with the effective material properties extracted from discrete finite element

models with the use of the periodic unit cell approach.

The statistical parameters needed for some of the bounds (for example the three-point

bounds) are available only for particle volume fractions up to ξp = 0.6. Therefore

volume elements were modelled up to that limit. A second limitation is that with

the methods used it may take considerable computational effort to generate random

microstructures with particle volume fractions higher than ξp = 0.55. Thus the main

analysis covers a range of particle volume fractions from 0 to 0.55 with an increment

of ∆ξp = 0.05. Because the solution for ξp = 0 is trivial, modelling of the unit cells

starts with ξp = 0.05. The ”main analysis” pertains to an elastic contrast of cel = 10.

There are also analyses with cel = 100 and cel = 0.1, but these where done with a

bigger increment ∆ξp = 0.1, also starting at ξp = 0.05. Furthermore, both smooth

and voxel meshes are used to check if there is a difference in the resulting effective

material properties. The Poisson’s ratios for the matrix, νm = 0.3, and the particles,
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Table 4.1: Input material properties for the different elastic contrasts which were
computed in this thesis

Elastic contrast Matrix Parameter Particle Parameter

cel Em νm Ep νp

10 1 0.3 10 0.1

100 1 0.3 100 0.1

0.1 1 0.3 0.1 0.1

0.01 1 0.3 0.01 0.1

νp = 0.1, are the same in all analyses. All the input material properties of the main

analysis are summarized in table 4.1. The number of particles was set to 40 for the

main analyses. Nevertheless there were also analyses with a higher number of parti-

cles, see section 4.4

In total 55 microgeometries were generated for the main analysis. The edge length of

the SVEs was always set to 1 to perform comparable meshing on the unit cells. To

ensure successful meshing and to avoid numerical difficulties there was a prescribed

minimum distance between neighbouring particles, see figure 2.12. This distance was

set to 0.01 of the particle diameter. For some analyses covering higher volume frac-

tions and increased numbers of particles this distance was reduced, more on this in

section 4.4.

4.2 Comparison of Numerical and Analytical So-

lutions

The main comparison between the numerical and analytical solutions employs the

input parameters defined in section 4.1. In sum, the effective material properties

achieved with smooth meshes using tetrahedral elements are compared with the

Hashin-Shtrikman bounds, the three-point bounds and the third-order estimates up
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Figure 4.1: Effective material properties predicted with smooth and voxel meshes
in comparison with various bounds and estimates for an elastic contrast
of cel = 10.

to a particle volume fraction of ξp = 0.55. The results of these analyses can be found

in figure 4.1. The statistical parameters derived by Gillman et al. are used for the

three-point bounds and the third-order estimates, compare figure 2.4. Enlarged ver-

sions of the diagrams including different statistical parameters can be found in the

appendix A.1 on page 71.

All the effective moduli computed with the smooth meshes are within the three-point

bounds and therefore between the Hashin-Shtrikman bounds as well. The values

computed are located near the lower bounds and close to the third-order estimates.

With increasing particle volume fraction the difference between the computed values
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and the third-order estimates tend to increase to some extent. However, at a particle

volume fraction of ξp = 0.55 the two values approached each other again. To some

extent this can be attributed to the statistical parameters of Gillman et al. which

provide stiffer estimates at particle volume fractions exceeding ξp = 0.5, see figure

2.4.

Figure 4.2 shows one of the undeformed SVEs used in this thesis. It contains 40

particles at a particle volume fraction ξp = 0.55. Six different linear independent

load cases were used to predict the effective material properties. The deformed stress

fringe plots for these load cases can be found in figures 4.3 - 4.8. The loading direc-

tions correlate with the given coordinate system.

Figure 4.2: Undeformed SVE used in this thesis containing 40 particles at a particle
volume fraction ξp = 0.55. The elastic contrast was cel = 10.
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Figure 4.3: Resulting deformed shape of the SVE and predicted distribution of
effective stress for an unidirectional load in x direction. (ξp = 0.55,
cel = 10, 40 particles)

Figure 4.4: Resulting deformed shape of the SVE and predicted distribution of
effective stress for an unidirectional load in y direction. (ξp = 0.55,
cel = 10, 40 particles)
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Figure 4.5: Resulting deformed shape of the SVE and predicted distribution of
effective stress for an unidirectional load in z direction. (ξp = 0.55,
cel = 10, 40 particles)

Figure 4.6: Resulting deformed shape of the SVE and predicted distribution of
effective stress for a shear load in x− y direction. (ξp = 0.55, cel = 10,
40 particles)
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Figure 4.7: Resulting deformed shape of the SVE and predicted distribution of
effective stress for a shear load in x− z direction. (ξp = 0.55, cel = 10,
40 particles)

Figure 4.8: Resulting deformed shape of the SVE and predicted distribution of
effective stress for a shear load in y − z direction. (ξp = 0.55, cel = 10,
40 particles)
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Table 4.2: Comparison of the normalized effective shear modulus G and bulk mod-
ulus K obtained with smooth and voxel models. The deviations ∆K and
∆G are given in % and normalized with respect to the smooth meshes.
(elastic contrast cel = 10)

G K Deviations

ξp Smooth Voxel Smooth Voxel ∆G ∆K

0.05 0.42052 0.42304 0.88344 0.88522 0.5997 0.2013

0.10 0.46081 0.46556 0.93810 0.94129 1.0321 0.3407

0.15 0.50674 0.51404 0.99801 1.00275 1.4404 0.4751

0.20 0.55849 0.56885 1.06357 1.07017 1.8557 0.6206

0.25 0.61631 0.63013 1.13455 1.14313 2.2420 0.7562

0.30 0.68152 0.70081 1.21176 1.22386 2.8309 0.9985

0.35 0.76030 0.78374 1.30122 1.31505 3.0826 1.0628

0.40 0.85426 0.88546 1.40241 1.42107 3.6532 1.3306

0.45 0.96471 1.00631 1.51764 1.54152 4.3125 1.5735

0.50 1.07808 1.12934 1.63442 1.66268 4.7547 1.7291

0.55 1.20689 1.26576 1.76172 1.79373 4.8778 1.8170

4.2.1 Comparison of Smooth and Voxel Models

Whereas the smooth models used 10-node fully integrated tetrahedral elements (C3D10

in Abaqus), the voxel models employed fully integrated 8-node hexahedra (C3D8 in

Abaqus), each representing a voxel. The meshing parameters for the tetrahedra were

set such that each analysis had approximately three millions degrees of freedom. For

smaller particle volume fractions the internal coarsening option for the meshing re-

duced that number a little, see section 3.3.1. For the standard voxel meshes 125

voxels in each direction were chosen. This results in six million degrees of freedom,

which is close to the convergence limit, see section 4.3. Identical microgeometries

were used with the two types of models to achieve comparable results.

The results are presented in figure 4.1. As one can see from the diagrams the voxel

meshes tend to predict higher effective moduli compared to the smooth models. This
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Figure 4.9: Comparison of bulk over shear modulus plots for different particle vol-
ume fractions ξp. The elastic contrast was cel = 10.

is remarkable because the voxel meshes contain around twice as many degrees of free-

dom as smooth meshes and might, therefore, be expected to show a less stiff material

behaviour. This indicates that the voxel meshes generated by Digimat tend to give

rise to stiffer material properties for the given microgeometries and discretizations.

Also, one can discern in table 4.2 that the values computed for the bulk modulus show
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smaller differences between the two types of model than do the results for the shear

modulus. This indicates that the voxel elements, in terms of these analyses, show a

stiffer shape change performance compared to the volume change performance.

Figure 4.9 shows so-called bulk over shear modulus plots for two different particle

volume fractions, which provide information on the bounds and estimates at the

chosen particle volume fractions. One can again see that the smooth models tend to

give lower moduli compared to the voxel meshes for the volume fractions shown.

Comparison of Different Statistical Parameters

In this section the material properties computed with the smooth models using tetra-

hedral elements are compared with the third-order estimates using two different sets

of statistical parameters, see section 2.4.5. Table 4.3 shows the percentage deviation

between the predictions from periodic homogenization and the third-order estimates.

As one can see, the statistical parameters of Miller et al. give slightly closer agreement

for the shear modulus for particle volume fractions of ξp ≤ 0.3. Beyond that value

the full-field predictions of the shear and bulk moduli are closer to the estimates ob-

tained with the statistical parameters of Gillman et al. The deviations indicate that

beyond a particle volume fraction of ξp = 0.5 both estimates tend to approach the

numerical values again. The statistical parameters published by Gillman et al. give

better agreement at evaluated particle volume fractions. For all cases considered, the

ensemble averaged predictions of the smooth models lie slightly above the third-order

estimates, the difference being clearly smaller for the bulk modulus. Since the results

obtained with the voxel models are consistently stiffer than the ones predicted with

the smooth meshes, the latter obviously are in better agreement with the analytical

results.

Overall, there is very satisfactory agreement between the two modelling approaches

despite the minor differences in the geometries considered.
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Table 4.3: Normalized effective shear modulus G and bulk modulus K predicted
with the third-order estimates using different sets of statistical parame-
ters and an elastic contrast of cel = 10. The percentage deviations ∆K
and ∆G are between the smooth mesh and the third-order estimates and
are normalized with respect to the third-order estimates.

Third-order estimates Deviations

Gillman et al. Miller et al. Gillman et al. Miller et al.

ξp G K G K ∆G ∆K ∆G ∆K

0.05 0.42033 0.88331 0.42036 0.88328 0.0452 0.0148 0.0383 0.0178

0.10 0.46018 0.93764 0.46030 0.93754 0.1363 0.0483 0.1095 0.0597

0.15 0.50476 0.99684 0.50508 0.99663 0.3915 0.1174 0.3283 0.1382

0.20 0.55479 1.06146 0.55541 1.06112 0.6676 0.1988 0.5549 0.2309

0.25 0.61161 1.13219 0.61207 1.13153 0.7688 0.2084 0.6940 0.2669

0.30 0.67603 1.20978 0.67613 1.20871 0.8112 0.1637 0.7963 0.2523

0.35 0.74934 1.29516 0.74874 1.29336 1.4628 0.4679 1.5438 0.6077

0.40 0.83311 1.38939 0.83149 1.38668 2.5388 0.9371 2.7375 1.1344

0.45 0.92998 1.49389 0.92633 1.49001 3.7341 1.5898 4.1428 1.8543

0.50 1.04195 1.61008 1.03559 1.60483 3.4675 1.5117 4.1030 1.8438

0.55 1.18454 1.75033 1.16392 1.73516 1.8868 0.6507 3.6918 1.5307

Low Particle Volume Fractions

At a fixed size of the unit cell and fixed numbers of particles going to smaller particle

volume fractions implies that the diameter of the particles must become smaller.

Accordingly, at very low particle volume fractions a voxel based mesh with the chosen

discretization may not represent the spherical shape particularly well. In fact, in some

cases the moduli predicted by such models slightly exceed the three-point bounds,

see figure 4.10. This can be explained by the fact that the three-point bounds are

sensitive to the geometric shape of the particles. The values are still within the

Hashin-Shtrikman bounds, however, these bounds depend only on the phase volume

fraction and the macroscopic symmetry of the composite. A comparison between

discretizations for the particles can be found in figure 4.11. Note how the voxel mesh

is limited in representing the spherical shapes.
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Figure 4.10: Enlarged section of the low particle volume fraction region of figure
4.1

4.2.2 Different Elastic Contrasts cel

The following section concentrates on the effective material behaviour for different

elastic contrasts cel. There were four different sets of material parameters used for

this analysis, the pertinent data being listed in table 4.1 along with the elastic con-

trasts cel. The same sets of microgeometries as in section 4.2 were used in order to

obtain comparable results.

The results can be found in figures 4.12, 4.13 and 4.14. The numerical values of the

moduli predicted for the different discretizations are listed in tables 4.4, 4.6 and 4.8.

Enlarged versions of the plots are provided in the appendices A.2, A.3 and A.4 be-
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(a) Tetrahedron mesh (b) Voxel mesh

Figure 4.11: Phase arrangement for a particle volume fraction of ξp = 0.05 meshed
with quadratic tetrahedra to obtain a smooth mesh (a) and discretized
with a voxel mesh (b). Both are meshed with the parameters used in
the main analysis.

ginning with page 76. Tables 4.5, 4.7 and 4.9 provide the corresponding predictions

from the third-order estimates and their percentage deviation from smooth meshes.

As can be seen from figure 4.12 the voxel models tend towards higher effective moduli

compared to the smooth meshes for the elevated elastic contrast of cel = 100, espe-

cially at elevated particle volume fractions. This statement can be verified via the

deviations of the material properties shown in table 4.4. One can see that the per-

centage deviations between the two sets of models increase drastically with increasing

particle volume fraction ξp. For a particle volume fraction of ξp = 0.55 the difference

between shear moduli evaluated with the voxel and smooth meshes exceeds 20%. As

for the elastic contrast cel = 10, for all cases considered the predictions obtained with

the smooth meshes are higher than the third-order estimates, but lie below the results

of the voxel meshes.

For the case of particles that are more compliant than the matrix, cel = 0.1, how-
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ever, the smooth models using tetrahedral elements predict stiffer effective material

behaviour. The differences in the shear and bulk moduli between voxel and smooth

meshes always remains below 1% in this regime and therefore is of minor importance,

see table 4.6. All predicted material properties are closer to the upper three-point

bound rather than the lower one, see in figure 4.13. Such behaviour is typical for

composites consisting of compliant inhomogeneities in a stiffer matrix. The third-

order estimates are very similar to the simulated results and do not seem to show a

clear trend with respect to them.

Decreasing the elastic contrast further to cel = 0.01 leads to similar behaviour as seen

for cel = 0.1. The computed material properties are closer to the upper three-point

bound as well as the third-order estimate. Table 4.8 shows that the percentage de-

viation between the meshes is bigger than for cel = 0.1. Nevertheless, the maximum

deviation is less than 3%, with respect to the smooth mesh, which is smaller than the

deviations computed for cel = 100. It is also worth mentioning that the percentage

deviation for the bulk modulus is bigger than the one for the shear modulus. This

behaviour is reversed compared to that for cel = 100. Again, no consistent order-

ing with respect to the third-order estimates is present, although there seems to be

some tendency for the latter scheme to predict higher bulk moduli than do the voxel

models.
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Table 4.4: Comparison of the normalized effective shear modulus G and bulk mod-
ulus K computed with different types of mesh for an elastic contrast of
cel = 100. The deviations ∆K and ∆G are given in % and are normalized
with respect to the smooth mesh.

G K Deviations

ξp Smooth Voxel Smooth Voxel ∆G ∆K

0.05 0.42742 0.43239 0.90267 0.90741 1.1630 0.5248

0.15 0.53682 0.55542 1.07221 1.08978 3.4651 1.6387

0.25 0.68682 0.73128 1.28783 1.33534 6.4723 3.6892

0.35 0.90670 0.98936 1.59686 1.67098 9.1169 4.6416

0.45 1.28845 1.51636 2.08692 2.29122 17.6887 9.7895

0.55 1.76183 2.17558 2.67023 3.03515 23.4841 13.6662

Table 4.5: Normalized effective shear modulus G and bulk modulus K predicted
with the third-order estimates using the statistical parameters from Gill-
man et al. and an elastic contrast of cel = 100. The percentage deviations
∆K and ∆G are between the smooth mesh and the third-order estimates
and are normalized with respect to the third-order estimates.

Third-order estimates Deviations

ξp G K ∆G ∆K

0.05 0.42703 0.90239 0.0895 0.0311

0.15 0.53140 1.06790 1.0200 0.4036

0.25 0.67184 1.28180 2.2306 0.4704

0.35 0.86713 1.56552 4.5635 2.0019

0.45 1.14875 1.95553 12.1610 6.7189

0.55 1.61072 2.56124 9.3815 4.2554
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Figure 4.12: Effective material properties predicted with smooth and voxel meshes
in comparison with various bounds and estimates for an elastic con-
trast of cel = 100.
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Table 4.6: Comparison of the normalized effective shear modulus G and bulk mod-
ulus K computed with different types of mesh for an elastic contrast
of cel = 0.1. The percentage deviations ∆K and ∆G are between the
smooth mesh and the third-order estimates and are normalized with re-
spect to the third-order estimates.

G K Deviations

ξp Smooth Voxel Smooth Voxel ∆G ∆K

0.05 0.35621 0.35604 0.74306 0.74207 -0.0463 -0.1327

0.15 0.30366 0.30338 0.59179 0.59017 -0.0939 -0.2741

0.25 0.25657 0.25653 0.47042 0.47015 -0.0136 -0.0565

0.35 0.21503 0.21458 0.37488 0.37259 -0.2130 -0.6127

0.45 0.17668 0.17614 0.29186 0.28921 -0.3056 -0.9086

0.55 0.14457 0.14427 0.22755 0.22573 -0.2089 -0.8003

Table 4.7: Normalized effective shear modulus G and bulk modulus K predicted
with the third-order estimates using the statistical parameters from Gill-
man et al. and an elastic contrast of cel = 0.1. The percentage deviations
∆K and ∆G are between the smooth mesh and the third-order estimates
and are normalized with respect to the third-order estimates.

Third-order estimates Deviations

ξp G K ∆G ∆K

0.05 0.35615 0.74291 0.0022 0.0202

0.15 0.30368 0.59125 -0.0056 0.0925

0.25 0.25673 0.47007 -0.0627 0.0751

0.35 0.21486 0.37201 0.0833 0.7712

0.45 0.17777 0.29179 -0.6131 0.0247

0.55 0.14393 0.22158 0.4447 2.6970



CHAPTER 4. RESULTS 56

0.0 0.1 0.2 0.3 0.4 0.5 0.6
PARTICLE VOLUME FRACTION

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E
FF

E
C

T
IV

E
 Y

O
U

N
G

s 
M

O
D

U
LU

S

EC = 0.1

HSB

3PB (Gillman)

3OE (Gillman)

Tetrahedron

Voxel

(a) Youngs’s modulus

0.0 0.1 0.2 0.3 0.4 0.5 0.6
PARTICLE VOLUME FRACTION

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

E
FF

E
C

T
IV

E
 S

H
E
A

R
 M

O
D

U
LU

S
 

EC = 0.1

HSB

3PB (Gillman)

3OE (Gillman)

Tetrahedron

Voxel

(b) Shear modulus

0.0 0.1 0.2 0.3 0.4 0.5 0.6
PARTICLE VOLUME FRACTION

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

E
FF

E
C

T
IV

E
 B

U
LK

 M
O

D
U

LU
S
  

EC = 0.1

HSB

3PB (Gillman)

3OE (Gillman)

Tetrahedron

Voxel

(c) Bulk modulus

0.0 0.1 0.2 0.3 0.4 0.5 0.6
PARTICLE VOLUME FRACTION

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

E
FF

E
C

T
IV

E
 P

O
IS

S
O

N
 R

A
T
IO

 

EC = 0.1

HSB

3PB (Gillman)

3OE (Gillman)

Tetrahedron

Voxel

(d) Poisson’s ratio

Figure 4.13: Effective material properties predicted with smooth and voxel meshes
in comparison with various bounds and estimates for an elastic con-
trast of cel = 0.1.
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Table 4.8: Comparison of the normalized effective shear modulus G and bulk mod-
ulus K computed with different types of mesh for an elastic contrast of
cel = 0.01. The deviations ∆K and ∆G are given in % and are normal-
ized with respect to the smooth mesh.

G K Deviations

ξp Smooth Voxel Smooth Voxel ∆G ∆K

0.05 0.34930 0.34924 0.72849 0.73014 -0.0192 0.2268

0.15 0.28585 0.28505 0.56379 0.56223 -0.2774 -0.2767

0.25 0.23071 0.22913 0.43703 0.43301 -0.6835 -0.9212

0.35 0.18145 0.17990 0.33408 0.33003 -0.8526 -1.2126

0.45 0.13658 0.13486 0.24716 0.24222 -1.2630 -1.9995

0.55 0.10167 0.09989 0.18373 0.17888 -1.7574 -2.6386

Table 4.9: Normalized effective shear modulus G and bulk modulus K predicted
with the third-order estimates using the statistical parameters from Gill-
man et al. and an elastic contrast of cel = 0.01. The percentage devi-
ations ∆K and ∆G are between the smooth mesh and the third-order
estimates and are normalized with respect to the third-order estimates.

Third-order estimates Deviations

ξp G K ∆G ∆K

0.05 0.34979 0.73228 -0.1389 -0.5174

0.15 0.28639 0.56534 -0.1882 -0.2736

0.25 0.23066 0.43462 0.0212 0.5561

0.35 0.18197 0.33092 -0.2907 0.9543

0.45 0.13990 0.24774 -2.3703 -0.2333

0.55 0.10194 0.17475 -0.2560 5.1381
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Figure 4.14: Effective material properties predicted with smooth and voxel meshes
in comparison with various bounds and estimates for an elastic con-
trast of cel = 0.01.



CHAPTER 4. RESULTS 59

Table 4.10: Number of degrees of freedom (abbr. DOF) for different meshes used
for analysis. The smooth meshes discretized with tetrahedral elements
are used for comparison.

Element type DOF in Millions

Voxel 0.4 1.2 3.3 4 6 10

Tetrahedron
quadratic 0.6 3

linear 0.08 0.4 0.8

4.3 Convergence Behaviour of Different Element

and Mesh Types

As one can conclude from the preceding section the voxel based meshes tend to

predict higher effective moduli, and thus stiffer macroscopic behaviour than smooth

discretizations using tetrahedral elements. Therefore this sections takes a closer look

at the convergence behaviour of the different discretizations. For this purpose five

different phase arrangements of 40 particles each with a particle volume fraction of

ξp = 0.55 were studied. The material properties used for the constituents can be

found in the first row of table 4.1, the elastic contrast being cel = 10. The results

of the analysis were computed with the same set of five SVEs for different element

types and differently fine discretizations. Afterwards the results were ensemble aver-

aged and the closest isotropic tensor was evaluated to obtain the effective material

properties.

The different element types were 10-node fully integrated tetrahedra with quadratic

interpolation (C3D10 in Abaqus), 4-node fully integrated tetrahedra with linear in-

terpolation (C3D4 in Abaqus) and 8-node hexahedra with linear interpolation (C3D8

in Abaqus) with full integration. The numbers of degrees of freedom of the different

meshes are listed in table 4.10. For the voxel meshes the number of degrees of freedom

is identical for the five different phase arrangements whereas for the smooth meshes

the given numbers of degrees of freedom are the mean values of the different phase

arrangements.
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Figure 4.15: Comparison of the convergence behaviour of different models. Each
analysis consists of 5 SVE, 40 particles each at ξp = 0.55. Three-point
bounds and the third-order estimate with statistical parameters from
Miller et al. and Gillman et al. are given as reference.

The results of the analyses are shown in figure 4.15. Enlarged versions of the plots

are presented in appendix A.5, page 88.

The coarsest discretizations of the smooth meshes using quadratic and linear tetrahe-
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dral elements have the same reference element size and the same number of elements.

This was the coarsest discretization which could be meshed successfully. Neverthe-

less, for the smooth models using quadratic tetrahedral elements fairly good results

are already achieved. The predicted material behaviour is close to the third-order

estimates but slightly above them. A refinement of the mesh shows only a small

tendency to approach the third-order estimates more closely, the predicted responses

having essentially converged.

The smooth models meshed with linear tetrahedron elements show surprisingly good

convergence behaviour and also quickly approach the predictions of the quadratic

elements with higher refinement steps. One peculiarity which can be seen with the

linear elements is that they underestimate the effective bulk modulus for very coarse

discretizations.

The voxel based analyses show less satisfactory convergence behaviour in comparison

to the smooth meshes. The material properties level off only at significantly higher

numbers of degrees of freedom, and, for very coarse discretizations effective moduli

are obtained that are outside the three-point bounds, probably due to the effects

discussed in section 3.3.2. For figure 4.15 the statistical parameters by Miller et al.

are used, which give rise to lower values of the upper bounds than the parameters

derived by Gillman et al. Despite the fairly high number of degrees of freedom in-

volved, the effective moduli predicted with the voxel meshes are noticeably higher

than the results obtained with the smooth meshes and the third-order estimates.

For the main analysis voxel meshes with six millions degrees of freedom were used.

As one can see in figure 4.15 this discretization gives results fairly close to the con-

vergence limit.

4.4 Influence of SVE Size

For a fixed SVE size and a fixed number of particles, particle size must vary when the

particle volume fraction is changing. Therefore, the ratio between the edge length
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Table 4.11: Relation between particle volume fraction ξp and the ratio LSVE

dp
. dp

is the diameter of the particles, the SVE size LSVE and the number
of particles np are fixed values. These are the same SVEs as used in
section 4.2

LSVE ξp np dp
LSVE

dp

1

0.05

40

0.1337 7.482

0.10 0.1684 5.939

0.15 0.1928 5.188

0.20 0.2122 4.713

0.25 0.2285 4.376

0.30 0.2429 4.118

0.35 0.2557 3.911

0.40 0.2673 3.741

0.45 0.2780 3.597

0.50 0.2879 3.473

0.55 0.2972 3.364

0.60 0.3060 3.268

of the SVE and the particle diameter changes. This effect can be seen in table

4.11. According to Drugan and Willis [7] the latter parameter can be connected to

the error on the effective material properties. They predict, that if the cell length

to particle diameter ratio is LSVE

dp
> 2 the maximum error in terms of the effective

moduli will be less than 5%, irrespective of the particle volume fraction. For a ratio

of LSVE

dp
≥ 4.5 this error will drop below 1%. Segurado et al. [25] reported that,

when using periodic boundary conditions, the scatter of the moduli will be ”almost

negligible” when LSVE

dp
> 3.74 and ξp ≤ 0.3.

Table 4.11 shows the values of np, dp and LSVE

dp
pertaining to the volume elements

used in this thesis. For the volume fractions in excess of ξp = 0.4, LSVE

dp
can be seen

to fall below the value quoted in [25]. Therefore additional analyses for those particle

volume fractions with a higher number of particles were done.

Since, in contrast to [7] and [25], the present work uses ensemble averaging and

isotropization for improving the results, the above statements on the necessary size
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Table 4.12: Parameters of the SVEs set up such that the ratio LSVE

dp
approaches a

value of 5. The SVE edge length LSVE was kept unchanged.

LSVE ξp np dp
LSVE

dp

1

0.35 84 0.200 5.008

0.40 90 0.204 4.902

0.45 105 0.202 4.962

0.50 100 0.210 4.714

0.55 105 0.216 4.641

0.60 105 0.222 4.508

of volume elements are not strictly applicable to it and probably are to conservative.

The number of particles was increased to reach a ratio of LSVE

dp
= 5. This, however,

could not be achieved for all volume fractions considered because difficulties were

encountered in generating sufficient numbers of meshable microgeometries with the

desired parameters for particle volume fractions exceeding ξp = 0.50. In table 4.12

one can see the SVE parameters which could be achieved.

4.4.1 Comparison of Differently Sized SVEs

A comparison of the effective moduli predicted with the SVEs defined in table 4.12

and with the smaller volume elements described in table 4.11 can be seen in figure

4.16. The same meshing parameters were used for five microgeometries for each

volume fraction. Using the same meshing parameters but having smaller spheres

to discretize leads to a poorer representation of the actual microgeometry, especially

with respect to the shape of the spheres. As one can see in figure 4.16 the new smooth

SVEs using tetrahedral elements result in slightly less stiff material behaviour which

is well within the three-point bounds. This indicates that the larger numbers of

particles, even thought they are less well discretized due to their smaller size, lead to

material properties which are closer to the third order estimates.

There was no such clear effect for voxel based meshes. As one can see in figure 4.16
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Table 4.13: Comparison of effective material properties predicted from volume ele-
ments containing different numbers of particles using smooth quadratic
meshes. The exact number of particles used is given in table 4.12. The
elastic contrast was cel = 10. The deviations are given in %, normalized
with respect to the 40-particle SVEs.

G K Deviations

ξp 40 particles ”larger” SVE 40 particles ”larger” SVE ∆G ∆K

0.35 0.76030 0.75775 1.30122 1.29380 0.3351 0.5702

0.40 0.85426 0.84849 1.40241 1.39688 0.6753 0.3943

0.45 0.96471 0.95112 1.51764 1.50497 1.4083 0.8348

0.50 1.07808 1.06438 1.63442 1.62216 1.2708 0.7501

0.55 1.20689 1.20466 1.76172 1.75786 0.1848 0.2191

0.60 1.40125 1.40006 1.93807 1.93678 0.0849 0.0666

Table 4.14: Comparison of the normalized effective shear modulus G and bulk mod-
ulus K computed with different meshes for the ”larger” SVEs contain-
ing more particles. The deviations ∆K and ∆G are given in %, nor-
malized with respect to the smooth meshes. The elastic contrast is
cel = 10.

G K Deviations

ξp Smooth Voxel Smooth Voxel ∆G ∆K

0.35 0.75775 0.78730 1.29380 1.31628 3.9000 1.7375

0.40 0.84849 0.88823 1.39688 1.42100 4.6836 1.7267

0.45 0.95112 1.00407 1.50497 1.53609 5.5670 2.0678

0.50 1.06438 1.12910 1.62216 1.65820 6.0805 2.2217

0.55 1.20466 1.29642 1.75786 1.81015 7.6171 2.9746

0.60 1.40006 1.54191 1.93678 2.01672 10.1317 4.1275

the averaged material properties obtained from the new set of SVEs are generally

close to the results from the SVEs with a smaller number of particles with no obvious

tendencies. This is interesting because a fixed number of voxels was used and thus

one might expect the decreasing particle size to lead to badly resolved spheres. In

figure 4.17 an example of such a voxel mesh is shown. Therefore it is remarkable that

the predictions are still within the three-point bounds, which assume perfect spheres.
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Figure 4.16: Enlarged section of the upper part of range of particle volume fraction
ξp. The resulting effective material properties were computed with
smooth and voxel meshes for an elastic contrast of cel = 10.

Table 4.13 shows the percentage deviations between the SVEs with standard and

”large” numbers of particles. As one can see for the bulk modulus the difference is

always below 1% and for the shear modulus the percentage deviation is always less

than 1.5% The bulk modulus predicted with the voxel mesh using the high number

of particles differs slightly more from the third-order estimates than does the value

obtained with the ”standard” arrangements of 40 particles. This may indicate that

achieving smooth convergence with the voxel meshes may be non-trivial in terms of

the voxel resolution required. The present analysis indicates that the improvement

in terms of this analysis is not worth the effort for generating and meshing suitable
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(a) 105 particles (b) 40 particles

Figure 4.17: Examples of voxel meshed arrangements used in this thesis with a
particle volume fraction of ξp = 0.55 and 105 particles in comparison
with another arrangement with ξp = 0.55 and 40 particles

microgeometries.

Table 4.14 shows a comparison of different moduli predicted with different meshes

for the ”larger” SVEs.

Arrangements with High Volume Fractions and Increased Numbers of

Particles

Usually, in this thesis, the minimum distance between two particles was set to 0.01

of the particle diameter. Nevertheless, for some high particle volume fractions and

SVEs with increased numbers of particles it was necessary to decrease this distance

to values as small as 0.003 particle diameters. This had an influence on the meshing.

With unchanged voxel discretization more particles tend to be connected and, there-

fore, super inhomogeneities are created, see section 3.3.2, because the voxels cannot
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resolve the microgeometry anymore, leading to overestimating the effective moduli.

Another issue, which appeared with the tetrahedra meshes, is that there was a sig-

nificant number of microgeometries, which could be generated with Arigen, but were

subjected to meshing complications. Generally speaking, out of ten tries to generate

a satisfactory microgeometry only three to four could be meshed. This fact leaves

doubts about the statistical quality of the resulting SVEs where the minimum dis-

tance between neighbouring particles is very small- the fact that many arrangements

could not be meshed may bias the resulting effective moduli.

In figure 4.18 one can see the effective material properties predicted for the more

highly packed arrangements. All the results obtained for the particle volume frac-

tion of ξp = 0.6 were obtained with microgeometries with reduced distance between

the particles. This also applies to the results for ξp = 0.55 and a particle count of

np = 105. As one can see the resulting effective moduli evaluated from the voxel

models tend to increase and therefore represent a ”stiffer” material characteristic.

The effective material parameters which were computed with smooth meshes show

little change, even though the number of particles per cell has doubled.
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Figure 4.18: Results obtained with highly packed arrangements with decreased
minimum distance between the particles. The resulting effective ma-
terial properties were computed with smooth and voxel meshes for an
elastic contrast of cel = 10.
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Chapter 5

Conclusion

The present study compares different models for the effective elastic moduli and ten-

sors of composites reinforced by identical spherical particles. These models compare

two-point and three-point bounds, third-order estimates as well as smooth and voxel

models employing discrete microstructures for periodic homogenization.

The predictions with smooth meshes were found to always comply with the three-

point bounds, independent of the three-point statistical parameters used. Therefore,

the properties are within the Hashin-Shtrikman bounds as well.

Comparing the smooth geometries with voxel the meshes leads to the observation

that with rising particle volume fractions the predictions obtained with the smooth

meshes tend to stay closer to analytical estimates than the voxel meshes, see section

4.2.1.

With rising elastic contrast cel the results obtained with the voxels meshes show a

clear tendency to exceed analytical estimates and numerical homogenization results

using smooth models. This tendency, however, is much smaller for elastic contrasts

cel smaller than unity.

When using voxel meshes it is crucial to assure that the individual particles do not

become connected due to an excessively coarse discretization. The smooth meshes
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are not susceptible to this difficulty, but also show limitations in handling closely

approaching particles.

The results indicate that ensemble averaging and isotropizing results from sets of sta-

tistically equal SVEs provides valid predictions in comparison with SVEs containing

higher numbers of particles for the same particle volume fractions ξp.

In view of the very different underlying assumptions, the good agreement between

the analytical and numerical methods compared in this thesis provides clear evidence

of the validity on both types of model.
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Appendix A

Results

A.1 Elastic Contrast cel = 10
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Figure A.1: Effective Young’s moduli computed with smooth and voxel meshes in
comparison with various bounds and estimates using different three-
point statistics. The elastic contrast was cel = 10.
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Figure A.2: Effective shear moduli computed with smooth and voxel meshes in
comparison with various bounds and estimates using different three-
point statistics. The elastic contrast was cel = 10.
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Figure A.3: Effective bulk moduli computed with smooth and voxel meshes in com-
parison with various bounds and estimates using different three-point
statistics. The elastic contrast was cel = 10.
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Figure A.4: Effective Poisson’s ratios computed with smooth and voxel meshes in
comparison with various bounds and estimates using different three-
point statistics. The elastic contrast was cel = 10.
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A.2 Elastic Contrast cel = 100
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Figure A.5: Effective Young’s moduli computed with smooth and voxel meshes in
comparison with various bounds and estimates using different three-
point statistics. The elastic contrast was cel = 100.
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Figure A.6: Effective shear moduli computed with smooth and voxel meshes in
comparison with various bounds and estimates using different three-
point statistics. The elastic contrast was cel = 100.
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Figure A.7: Effective bulk moduli computed with smooth and voxel meshes in com-
parison with various bounds and estimates using different three-point
statistics. The elastic contrast was cel = 100.
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Figure A.8: Effective Poisson’s ratios computed with smooth and voxel meshes in
comparison with various bounds and estimates using different three-
point statistics. The elastic contrast was cel = 100.
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A.3 Elastic Contrast cel = 0.1
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Figure A.9: Effective Young’s moduli computed with smooth and voxel meshes in
comparison with various bounds and estimates using different three-
point statistics. The elastic contrast was cel = 0.1.
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Figure A.10: Effective shear moduli computed with smooth and voxel meshes in
comparison with various bounds and estimates using different three-
point statistics. The elastic contrast was cel = 0.1.
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Figure A.11: Effective bulk moduli computed with smooth and voxel meshes in
comparison with various bounds and estimates using different three-
point statistics. The elastic contrast was cel = 0.1.
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Figure A.12: Effective Poisson’s ratios computed with smooth and voxel meshes in
comparison with various bounds and estimates using different three-
point statistics. The elastic contrast was was cel = 0.1.
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A.4 Elastic Contrast cel = 0.01
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Figure A.13: Effective Young’s moduli computed with smooth and voxel meshes in
comparison with various bounds and estimates using different three-
point statistics. The elastic contrast was cel = 0.01.
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Figure A.14: Effective shear moduli computed with smooth and voxel meshes in
comparison with various bounds and estimates using different three-
point statistics. The elastic contrast was cel = 0.01.
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Figure A.15: Effective bulk moduli computed with smooth and voxel meshes in
comparison with various bounds and estimates using different three-
point statistics. The elastic contrast was cel = 0.01.
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Figure A.16: Effective Poisson’s ratios computed with smooth and voxel meshes in
comparison with various bounds and estimates using different three-
point statistics. The elastic contrast was cel = 0.01.



APPENDIX A. RESULTS 88

A.5 Comparison of Degrees of Freedom
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Figure A.17: Convergence behaviour for the effective Young’s modulus and differ-
ent element types in comparison with various bounds and estimates.
The analyses consist of 5 statistical equal SVEs, 40 particles each and
ξp = 0.55. The elastic contrast was cel = 10.
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Figure A.18: Convergence behaviour for the effective shear modulus and different
element types in comparison with various bounds and estimates. The
analyses consist of 5 statistical equal SVEs, 40 particles each and
ξp = 0.55. The elastic contrast was cel = 10.
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Figure A.19: Convergence behaviour for the effective bulk modulus and different
element types in comparison with various bounds and estimates. The
analyses consist of 5 statistical equal SVEs, 40 particles each and
ξp = 0.55. The elastic contrast was cel = 10.
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Figure A.20: Convergence behaviour for the effective Poisson’s ratio and different
element types in comparison with various bounds and estimates. The
analyses consist of 5 statistical equal SVEs, 40 particles each and
ξp = 0.55. The elastic contrast was cel = 10.
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