
A SAT Approach to Clique-Width
of a Digraph and an Application

on Model Counting Problems

MASTERARBEIT

zur Erlangung des akademischen Grades

Master of Science

im Rahmen des Studiums

Computational Intelligence

eingereicht von

Aykut Parlak
Matrikelnummer 1225435

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Univ.Prof. Mag.rer.nat. Dr.rer.nat. Stefan Szeider
Mitwirkung: Dr. Simone Bova

Wien, 1. Oktober 2016
Aykut Parlak Stefan Szeider

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/ 
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich. 
 

http://www.ub.tuwien.ac.at 
 
 
 
 

The approved original version of this diploma or 
master thesis is available at the main library of the 
Vienna University of Technology. 
 

http://www.ub.tuwien.ac.at/eng 
 





A SAT Approach to Clique-Width
of a Digraph and an Application

on Model Counting Problems

MASTER’S THESIS

submitted in partial fulfillment of the requirements for the degree of

Master of Science

in

Computational Intelligence

by

Aykut Parlak
Registration Number 1225435

to the Faculty of Informatics

at the Vienna University of Technology

Advisor: Univ.Prof. Mag.rer.nat. Dr.rer.nat. Stefan Szeider
Assistance: Dr. Simone Bova

Vienna, 1st October, 2016
Aykut Parlak Stefan Szeider

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at





Erklärung zur Verfassung der
Arbeit

Aykut Parlak
Address

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 1. Oktober 2016
Aykut Parlak

v





Acknowledgements

First and foremost I would like to thank my supervisor, Prof. Stefan Szeider, for
suggesting this cutting-edge topic, as well as his tireless and valuable support during the
course of thesis. The assistance with research, combined with his patience, motivation,
and immense knowledge has been invaluable. Furthermore, the scientific approaches and
the methodologies I learned from him will remain with me, and always guide me beyond
the scope of this thesis.

I would like also to sincerely thank Dr. Simon Bova, who assisted me with his expertise,
practical tips, suggestions and methodologies. Without his participation and input, this
thesis would not be of the robust quality it is.

I will always be grateful to both Prof. Stefan Szeider and Dr. Simon Bova for their
guidance and assistance during this thesis. It has been a true honor to have had the
chance to work with them.

I would also like to acknowledge Dr. Tomer Kotek for his guidance, and assistance with
figuring out the model counting algorithm from Fischer et al.

Last but not the least, I would like to thank my partner Ania, my uncle Inan, and my
parents for their unwavering support, and encouragement throughout this adventure.

vii





Kurzfassung

Eingeführt von Courcelle, Engelfriet, und Rozenberg, ist die Cliquenweite eine funda-
mentale Grapheninvariante, die in der diskreten Mathematik und Informatik weitgehend
untersucht wurde. Viele schwere Probleme auf Graphen (und gerichteten Graphen) werden
handhabbar, wenn sie auf Graphen (und gerichteten Graphen) von kleinen Cliquenweite
beschränkt sind und in linearer Zeit lösbar. Cliquenweite ist allgemeiner als Baumweite,
da es Graphenklassen von beschränkter Cliquenweite und unbeschränkter Baumweite
gibt, aber beschränkte Baumweite auch beschränkte Cliquenweite impliziert.

Typischerweise ist für Algorithmen für Graphen von kleinen Cliquenweite als Eingabe
ein Zertifikat für kleine Cliquenweite erforderlich, das ebenfalls schwer zu berechnen
ist. In einer neuen Arbeit stellten Heule und Szeider eine Methode zur Berechnung der
Cliquenweite von Graphen auf der Basis einer SAT-Kodierung vor. Diese wird durch einen
SAT-Solver ausgewertet, um die exakten Cliquenweite kleiner Graphen herauszufinden,
die zuvor noch unbekannt war.

Ein Beitrag dieser Diplomarbeit ist eine Verallgemeinerung des Verfahrens von Heule
und Szeider auf gerichteten Graphen (Digraphen). Wir erstellen und implementieren
einen Algorithmus, der mit Hilfe von Aufrufen eines SAT-Solvers die Cliquenweite eines
gerichteten Graphen berechnet und ein Zertifikat erstellt. Wir nutzen dieses Verfahren in
zweierlei Hinsicht. Zuerst finden wir die genaue Cliquenweite von verschiedenen kleinen
gerichteten Graphen. Zweitens haben wir einen Algorithmus von Fischer, Makowsky,
und Ravve implementiert, der die Modelle von aussagenlogischen CNF Formeln mit
gerichteten Inzidenzgraphen kleiner Cliquenweite zählt.
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Abstract

Introduced by Courcelle, Engelfriet, and Rozenberg, clique-width is a fundamental graph
invariant that has been widely studied in discrete mathematics and computer science.
Many hard problems on graphs and digraphs become tractable when restricted to graphs
and digraphs of small clique-width, indeed solvable in linear time when restricted to
classes of bounded clique-width. Clique-width is more general than treewidth, in the
sense that algorithms parameterized by clique-width are effective on larger classes of
instances than algorithms parameterized by treewidth (as there are graph classes of
bounded clique-width where treewidth is unbounded, whereas small treewidth implies
small clique-width).

Typically algorithms for graphs of small clique-width require as input a certificate for
small clique-width, which is already computationally hard to compute. In recent work
Heule and Szeider presented a method for computing the clique-width of graphs based
on an encoding to propositional satisfiability (SAT), which is then evaluated by a SAT
solver, managing to discover the exact clique-width of various small graphs, previously
unknown.

Our main contribution is a generalization of the method by Heule and Szeider to directed
graphs. Namely we present and implement an algorithm that, by invoking a SAT solver
on a suitable instance, certifies the clique-width of a given directed graph. We exploit
this implementation in two ways. First, we find the exact clique-width of various small
directed graphs. Second, we implement an algorithm by Fischer, Makowsky, and Ravve
and combine this and the aforementioned to an algorithm that counts models of CNF
formulas of small directed incidence clique-width.
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CHAPTER 1
Introduction

1.1 Motivation
The algorithmic method of dynamic programming is based on the idea of decomposing
an instance of a problem into subinstances, solving the problem on the subinstances, and
finally combining the solutions to the subinstances into a solution to the original instance.
Roughly, the complexity of the method is dominated by the complexity of the overlaps
between the subinstances.

In the realm of graph algorithms, the basic example of this approach is represented by
algorithms based on tree decompositions of graphs, whose complexity is dominated by
the width of the tree decomposition [CMR01]. Several computationally hard problems
on graphs become feasible on graphs of small treewidth (that is, graphs having tree
decompositions of small width) and linear-time computable on classes of graphs of
bounded treewidth.

Clique-width is a generalization of treewidth, devised to algorithmically deal with dense
graph classes. It exhibits the same behaviour of treewidth on many relevant graph
problems that are computationally hard in general: it warrants feasible time on graphs of
small clique-width, and linear-time feasibility on graph classes of bounded clique-width.
However, it is algorithmically strictly more powerful than treewidth, as there are graph
classes of bounded clique-width where treewidth is unbounded, whereas small treewidth
implies small clique-width [CO00].

Clique-width is defined via a graph construction process involving some fixed graph
operations that introduce vertex labels in such a way that vertices that share the same
label at a certain point of the construction process must be treated uniformly in subsequent
steps. The minimum number of vertex labels introduced along any construction of a
graph obeying the rules of the above process is called the clique-width of the graph, which
is intuitively a measure of its structural complexity. A graph G whose construction uses k
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1. Introduction

vertex labels naturally corresponds to a decomposition of the graph, called k-expression,
that certifies that G has clique-width k. This construction process applies to undirected
and directed graphs.

A practical issue with decomposition algorithms is that they typically need the actual
decomposition as an input, which is in turn hard to compute itself [FRRS09]. Whereas
treewidth-based algorithms are manageable, as tree decompositions are linear-time
computable on graph classes of bounded treewidth using the algorithm of Bodlaender
[Bod96], the case of clique-width is much wilder; for fixed k, we can approximate in
polynomial time the clique-width of graphs of clique-width at most k with an exponential
error [Oum08] It is not known whether this exponential error can be avoided. There is
an algorithm with exponential time (2k + 1)nnO(1) proposed by Wahlström such that
it can decide whether the clique-width of a graph with n vertices is at most k [Wah11].
Because of this intricacy of clique-width, the exact clique-width of even very small graphs
was not known until Heule and Szeider presented their approach.

As far as exact clique-width computation is concerned, Heule and Szeider managed to
compute decompositions for undirected graphs of small clique-width by first encoding the
question into a propositional formula and then evaluating the formula by a SAT solver.
The key idea underlying the success of their method is to avoid the direct computation of
a k-expression for a graph of clique-width k, which involves a number of steps quadratic
in the size of the graph, in favour of the computation of an equivalent certificate, called
k-derivation, involving a number of steps that is only linear in the size of the graph.

1.2 Contribution

We present a theoretical and practical investigation of the problem of certifying the
clique-width of directed graphs (digraphs). One application motivating us is the model
counting algorithm of Fischer, Makowsky, and Ravve [FMR08], that receives as input a
k-expression for a digraph of clique-width k, corresponding to a CNF formula F , and
returns in output the number of models of F . In order to make this algorithm practical,
the input k-expression has to be precomputed.

We approached the problem of certifying the clique-width of digraphs by revisiting
and extending the methods by Heule and Szeider from graphs to digraphs. Our main
contributions can be summarized as follows.

From the theoretical side, we extend the notion of k-derivation to the digraph setting,
show that it characterizes clique-width k for digraphs, and encode it to SAT (Chapters
3–4). Based on this notion, we present several contributions on the practical side, as
follows:

1. We implement an algorithm that receives as input a directed graph G and returns
a k-derivation, where k is the clique-width of G.

2



1.2. Contribution

2. We implement an algorithm that receives as input a k-derivation of a directed
graph G and returns in output a k-expression of G.

3. We implement the algorithm of Fischer, Makowsky, and Ravve [FMR08], and test
it on small clique-width instances using the implementations mentioned in Items
1–2 to precompute the input k-expression (Chapter 5).

4. We use the implementation mentioned in Item 1 to find the exact clique-width of
various small directed graphs (Chapter 6).
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CHAPTER 2
Preliminaries

2.1 Formulas and Satisfiability

A boolean variable is a variable that can assume only two values 0 and 1. A literal is a
boolean variable or a negated boolean variable. A clause is a finite set of literals such that
do not contain a complementary pair. A conjunctive normal form or CNF propositional
formula F is a finite set of clauses. V ar(C) denotes the set of variables that occur in
clause C. V ar(F ) =

⋃
C∈F V ar(C).

For a CNF formula F , a truth assignment is a mapping τ : var(F )→ {1, 0} where τ(x̄)
is defined as 1−τ(x) for x ∈ var(F ). A truth assignment τ satisfies a clause C if there
is at least one literal x ∈ C such that τ(x) = 1. An assignment τ satisfies a CNF formula
F if τ satisfies all clauses in F . The satisfiability (SAT) problem is that of testing whether
a given formula (CNF) is satisfiable. A SAT problem is NP-Complete [Coo71]. The
propositional model counting (#SAT) problems ask for the number of truth assignments
for a given (CNF) formula. #SAT is #P-complete [Val79].

2.2 Graphs and Clique-width

An undirected graph G = (V,E) consists of a non-empty finite set V = V (G) of vertices
and a finite set E = E(G) of edges. An edge is unordered pair of distinct vertices and
is denoted by {x, y}, x, y ∈ V (G). An edge between vertices x and y is also denoted by
xy or yx. A directed graph or digraph D = (V,A) consists of a non-empty finite set
V = V (D) of vertices and a finite set A = A(D) of arcs. An arc is an ordered pair of
distinct vertices and is denoted by (x, y) where x, y ∈ V (D). For an arc (x, y), the first
vertex is its head and its second vertex its tail. If there is an edge or arc between two
vertices x and y, then the vertices are adjacent. If two vertices are adjacent, then they
are neighbors of each other [BJG97].
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2. Preliminaries

All graphs considered in this thesis are finite, without self-loops and without parallel
edges or arcs. In digraphs we allow two arcs between two vertices if the arcs have opposite
orientation.

For a positive integer k, a k-graph is a graph whose vertices are labeled with integers
from {1, . . . , k}. An initial k-graph is a k-graph consisting of exactly one labeled vertex,
denoted by i(v) for a vertex v and a label i. The clique-width of graph G, denoted
cwd(G), is the smallest number k of labels required to construct a graph G from initial
k-graphs by using following three operations:

1. Disjoint union, denoted by the binary symbol ⊕;

2. Relabeling, denoted by the unary symbol ρi→j ;

3. a) Edge creation, denoted by the unary symbol ηi,j ;

b) Arc creation, denoted by the unary symbol αi,j .

Intuitively the disjoint union operation brings subgraphs into the same scope so that
the other two operations can operate on them. The edge/arc creation, from label a to
b, create edges/arcs between every vertex of the vertex set labeled with a and every
vertex of the vertex set labeled with b. A construction of an undirected graph uses
edge creation and a construction of a directed graph uses arc creation. The relabeling
operation changes the label of vertices, mainly merging two different labeled subgraphs
in to one labeled subgraph. If k is an integer, then a k-graph is a graph whose vertices
are labeled with elements of {1, . . . , k}. These three operations are used repeatedly
until original graphs are constructed from initial k-graphs. This construction forms an
algebraic term consisting of the operations ⊕, ρi→j , ηi,j/αi,j with i, j ∈ {1, . . . , k} and
i 6= j. Such a term is called k-expression (Example 1).

The parse tree of a k-expression with additional information is called k-expression tree.
Let φ be a k-expression of a graph G = (V,E). Let Q be a k-expression tree of φ with a
root node r. Q contains a node for each operation ⊕, ρi→j , ηi,j , αi,j occurring in φ and
for each initial operation i(v) in φ for ∀v ∈ V and i ∈ {1, . . . , k}. For a node q ∈ Q, φq
defines the subexpression of φ whose k-expression tree is the tree is the subtree of Q
rooted by q. Then each node q ∈ Q is labeled by Gq which is a k-graph constructed by
φq.

A k-expression is called succinct, when an ⊕-node does not have a child ⊕-node. Evi-
dently, we can effectively transform a k-expression into a succinct k-expression and vice
versa [HS15].

Example 1. Let graph G = ({a, b, c, d}, {ab, ac, bc, cd}) be defined by 3-expression.

η2,3(η1,2((ρ2→1(η1,2(1(a)⊕ 2(b)))⊕ 2(c))⊕ 3(d)))

6



2.3. Partition

Since G does not have 2-expression, cwd(G) = 3. Figure 2.1 shows a 3-expression tree of
the G. a

η2,3 q10

⊕ q9

3(d) q8η1,2 q7

⊕ q6

2(c) q5ρ2→1 q4

η1,2 q3

⊕ q2

2(b) q11(a) q0

Figure 2.1: 3-expression tree of Example 1.

2.3 Partition
Set partitions play an important role in the reformulation of clique-width. Let S be a set
and P = {S1, S2, . . . , St} be a set of nonempty subsets of S. P is called a partition of S
if Si ∩ Sj = ∅ and ∪ti=1Si = S for all 1 ≤ i 6= j ≤ t . The elements of the partition P are
called equivalence classes. Let P, P ′ be the partition of a set S . P ′ is the refinement of
P , if for any two elements x, y ∈ S in the same equivalence class of P ′ and also in the
same equivalence class of P .
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CHAPTER 3
SAT Approach to Clique-width

As was mentioned in previous chapters, there was no practical algorithm known to calcu-
late the exact clique-width of graphs until Heule and Szeider published their work. They
proposed a new formulation of k-expression, called k-derivation. The new formulation is
appropriate to be encoded into a SAT instance. Intuitively they coded a k-derivation
of a graph with a parameter k, k is a clique-width candidate, into a SAT instance and
iteratively checked whether the satisfiability of formula was amended by changing value
of k. The smallest parameter k, by which the formula is satisfiable, is the cwd of the
graph.

3.1 Undirected Graphs

3.1.1 Reformulation of Clique-Width

Intuitively a k-derivation of a graph G is the set of snap-shoots of the states of union
and labels of k-expression without edge creations. A k-derivation can present more than
one different graph since it does not include the edge creations. Therefore, we need the
original graph in order to obtain its k-expression tree from its k-derivation.

Consider a graph G(V,E) , in which the finite set V of vertices is called universe. A
template T consists of two partitions of V , a component of V cmp(T ) represents an
induced subgraph of V and a group of V grp(T ) represents a set of vertices with the
same label with respect to their component. A grp(T ) of a template T is a refinement of
cmp(T ). A derivation of length t is a sequence of templates D = {T0, . . . , Tt} with the
four conditions:

• D1: |cmp(T0)| = |V | and |cmp(Tt)| = 1

• D2: grp(Ti) is a refinement of cmp(Ti), 0 ≤ i ≤ t

9



3. SAT Approach to Clique-width

• D3: cmp(Ti−1) is a refinement of cmp(Ti), 0 ≤ i ≤ t

• D4: grp(Ti−1) is a refinement of grp(Ti), 0 ≤ i ≤ t

D1 and D2 imply that |grp(T0)| = |V |. In the first template T0 , the cmp(T0) and grp(T0)
consist of singletons. The derivation D = (T0, . . . , Tt) starts with template T0 and the set
elements are merged until the component of last template Tt has V as a single element.

The width of a component c ∈ cmp(T ) is the number of groups g ∈ grp(T ) such that
g ⊆ c. The width of template T is the maximum width of its components. The width of
the derivation is the maximum width of its templates. A k-derivation is a derivation with
width being at most k. A derivation does not present the edges of graphs. To ensure
that a derivation is the derivation of a graph G = (V,E), there are three conditions that
need to hold for all 1 ≤ i ≤ t [HS15].

1. Edge property: For any vertices u, v ∈ V such that uv ∈ E, if u, v are in the same
group in Ti, then u, v are in the same component in Ti−1.

2. Neighborhood property: For any three vertices u, v, w ∈ V such that uv ∈ E and
u,w 6∈ E , if v, w are in the same group in Ti , then u, v are in the same component
in Ti−1.

3. Path property: For any four vertices u, v, w, x ∈ V , such that uv, uw, vx ∈ E and
wx 6∈ E, if u, x are in the same group in Ti and v, w are in the same group in Ti,
then u, v are in the same component in Ti−1.

The edge property ensures that an edge can be inserted before its vertices have same
label, because it is not possible to insert an edge between two same labeled vertices in
the same component. The neighborhood property and path properties make sure that a
nonexistence edge is not inserted.

A derivation D = (T0, . . . , Tt) is strict, if |cmp(Ti−1)| > |cmp(Ti)| holds for all 1 ≤ i ≤ t.

Lemma 1 ([HS15]). Every k-derivation of a graph G contains as subsequence a strict
k-derivation of G.

Proof. Let D = (T0, . . . , Tt) be a k-derivation of G. Since |cmp(Ti − 1)| ≥ |cmp(Ti)|,
the only case we need to be sure that we do not have is |cmp(Ti−1)| = |cmp(Ti)| in the
D = (T0, . . . , Tt) . We show that if we have such a template, either Ti−1 or Ti can be
eliminated. If the grp(Ti−1) = grp(Ti), then we can remove Ti from D = (T0, . . . , Tt)
. If grp(Ti−1) 6= grp(Ti), then, since i 6= 1, there are two cases, 1 < i < t or i = t. If
i = t, then Ti is the last template and we can safely remove it from D = (T0, . . . , Tt) . If
1 < i < t, then since grp(Ti−1) is a refinement of grp(Ti), we can safely remove Ti.
When we apply the operation above iteratively on the templates of the k-derivation, then
we can obtain a strict k-derivation of G.

10



3.1. Undirected Graphs

Lemma 2 ([HS15]). Every strict k-derivation of a graph with n vertices has length at
most n− 1.

Proof. Since a k-expression is a strict, the number of components in templates has to
be decreased for each step and since |cmp(T0)| = n and |cmp(Tt) = 1|, it follows that
t ≤ n− 1.

Lemma 3 ([HS15]). From a k-expression of a graph G we can obtain a k-derivation
of G in polynomial time.

Proof. Let φ be a k-expression of a graph G(V,E) and Q is a (succinct) k-expression
tree of φ with root r. Let R(q) be the number of ⊕-nodes appearing on the path
from r to q ∈ Q(V ). Let U,L ⊂ Q such that U is a set of ⊕-nodes and L is a set of
leaves in Q and t := maxq∈LR(q). We define Ui = {q ∈ U : R(q) = t − i + 1} and
Li = {q ∈ L : R(q) < t− i+ 1}.

We can define a derivation D = (T0, . . . , Tt) as follows. For each template Ti ∈ D,
cmp(Ti) = {V (Gq) : q ∈ Li ∪Ui} and grp(Ti) = {∪q∈Ui∪Ligrp(Gq)} where grp(Gq) is the
partition of V (Gq) with respect to labels of vertices. Since |grp(Gq)| ≤ k for all nodes
q ∈ Q, D is a k-derivation. It remains to be shown that D is a k-derivation of G. For
this we need to ensure that all properties of a k-derivation of G hold.

To show that the edge property holds, any two vertices u, v ∈ V such that uv ∈ E have to
be in the same component in Ti−1 if they are in the same group in Ti. We can proof this
by contradiction. Assume that u, v ∈ V , uv ∈ E and u, v are in the same group but in
different components c1, c2 in Ti−1. Since u, v are in the same group of Ti, u, v are in the
same component of Ti. Hence, there is an ⊕-node q ∈ Ui with u, v ∈ V (Gq) ∈ cmp(Ti).
Let q1, q2 be children of q such that V (Gq1) = c1 and V (Gq2) = c2. But neither
uv ∈ E(Gq1) nor uv ∈ E(Gq2), and there is not a η-operation that inserts edge uv . So
uv 6∈ E(Gr) = E, which is a contradiction. Hence, the edge property holds.

To show that the neighborhood property holds, we use contradiction as well. Assume that
there are three vertices u, v, w ∈ V , uv ∈ E, uw 6∈ E and v, w are in the same group of
Ti but u, v are in the different components in Ti−1, respectively in components c1 and
c2. Since v, w are in the same group in Ti then they have to in the same component c
in Ti. Let q ∈ Ui be an ⊕-node such that v, w ∈ V (Gq) = c, let q1, q2 be children of q
such that V (Gq1) = c1 and V (Gq2) = c2. Hence, uv 6∈ E(Gq1) ∪ E(Gq2), so we need to
introduce the edge uv in some node between q and r. Since v, w are in the same label
in Gq, they have to have the same labels in any node between q and r. Hence, an edge
creation between the label of v and the label of u would also introduce edge uw which is
in contradiction with uw 6∈ E. Hence, the neighborhood property holds.

To show that the path property holds, we use contradiction as before. Assume that four
vertices u, v, w, x ∈ V , such that uv, uw, vx ∈ E and xw 6∈ E, u, x are in the same group
in Ti and v, w are in the same group in Ti, but u, v are in the different components c1
and c2 in Ti−1, respectively. According to neighborhood property, u,w are in the same

11



3. SAT Approach to Clique-width

component in Ti−1 and v, x are in the same component in Ti−1. Since u, x are in the same
group of Ti, then they have to be in a same component c in Ti. Since u,w are in the same
component in Ti−1, then they have to be in the same component in Ti. Since u, x are in
c in Ti and u,w are in the same component in Ti, then w ∈ c. In a similar way we can
see that v ∈ c in the template Ti. Let q ∈ Ui be an ⊕-node such that v, w ∈ V (Gq) = c.
Let q1, q2 be children of q such that V (Gq1) = c1 and V (Gq2) = c2. Since u and v are
in different components in Ti−1 then u, v 6∈ E(Gq1) ∪ E(Gq2). Therefore, we need to
introduce the edge uv in some node between q and r. Since v, w are in the same label in
Gq and u, x are in the same label in Gq, they have to have the same labels in any node
between q and r. Hence, an edge creation between the label of v, w and the label of u, x
would also introduce an edge xw which is in contradiction with xw 6∈ E. Hence, the path
property holds as well. We can conclude that D is a k-derivation of G.

The procedure above can be clearly carried out in polynomial time.

Lemma 4 ([HS15]). From a k-derivation of a graph G we can obtain a k-expression
of G in polynomial time.

Proof. Let D = (T0, . . . , Tt) be a k-derivation of graph G(V,E) with the label set {1 . . . k}.
By Lemma 2, we can assume that D = (T0, . . . , Tt) is a strict k-derivation of G. We are
going to construct a k-expression tree for G from k-derivation in polynomial time.

The construction consists of three steps.

In the first step we construct a k-expression tree Q⊕ that consists of leaves and ⊕-node.
For each component c = {v} ∈ cmp(T0) , where v ∈ V , we introduce a node q(c, 0) with
the label 1(v).These are the leaves of the k-expression tree. Then for each c ∈ cmp(Ti), we
introduce an ⊕-node q(c, i) and add edge with children nodes if there is a node q(c′, i− 1)
such that c′ ⊆ c. D1 and D3 properties ensure that the Q⊕ is a tree. Q⊕ does not have
to be succinct.

In the second step we are going to obtain a k-expression tree Q⊕,ρ by adding the ρ
operation on Q⊕. By depth first ordering, we can visit each node q(c, i) and inset at
most k ρ-node between q(c, i) and q′(c′, i − 1) such that grp(Gq′) = {g ∈ grp(Gq(c,i)) :
g ⊆ c} ⊆ grp(Ti). Since any partition can be obtained by its refinements, properties D2
and D3 ensure that such a node insertion is possible.

The last step is obtaining the k-expression tree Q⊕,ρ,η by adding η-nodes on Q⊕,ρ.We are
going to show that for each edge uv ∈ E, there is an added η-node q above an ⊕-node q
in Q⊕,ρ,η such that q is a child of p and it introduces the edge uv but does not introduce
an edge not found in E.

Let q(c, i) be the ⊕-node with the smallest i in Q⊕,η such that u, v ∈ V (Gq). Therefore,
there are two child nodes q1(c1, i − 1), q2(c2, i − 1) of q in Q⊕,η such that u ∈ V (Gq1)
and v ∈ V (Gq2). It follows that c1, c2 ∈ Ti−1 are distinct components with u ∈ c1 and
v ∈ c2. According to the edge property, if u and v are in different components in Ti then
u and v are in different groups of Ti. This means that u and v have different labels in
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Gq, lu and lv respectively. We can add a η-node p with operation ηlu,lv above q as its
parent node. The node p introduces the edge uv. It remains to be shown that it does
not introduce an edge not found in E. We can show it by each vertex couple u′, v′ ∈ c
with labels lu and lv respectively. We need to consider four cases.

Case 1: u = u′, v = v′. Then trivially u′v′ = uv ∈ E.

Case 2: u = u′, v 6= v′. Assume on the contrary that u′v′ 6∈ E. Since v and v′

have the same label in Gq that means they are in the same group of Ti. According to
the neighborhood property u and v have to be in a same component Ti−1 which is a
contradiction to the smallest choice of i.

Case 3: u 6= u′, v = v′. This is the symmetric to Case 2.

Case 4: u 6= u′, v 6= v′. We can proof once more by contradiction. Assume that u′v′ 6∈ E.
From Case 2 and Case 3, we know that uv′, u′v ∈ E. According to the path property, it
follows that u and v belong to the same component in Ti−1. Then it is a contradiction
with smallest choice of i.

Since η-nodes do not introduce a non-existing edge, we can apply the procedure above to
obtain a k-expression tree of G in polynomial time.

Lemma 5 ([HS15]). Let 1 ≤ k ≤ n. If a graph with n vertices has a k-derivation, then
it has a k-derivation of length n− k + 1.

Proof. For the proof, we need to use the k-length of a derivation. The k-length of a
derivation for a fixed k ≥ 1 is the number of templates that contain a component of a
larger size than k. Let l(n, k) be the largest k-length of a strict derivation with universe
size n. Before we show the proof, we need to present 3 claims.

Claim 1: l(n, k) < l(n+ 1, k).

To see the claim, let D = (T0, . . . , Tt) be a strict derivation over a universe V of size n with
length l(k, n). Consider a strict derivation D′ = {T ′0 . . . T ′t+1} over universe V ∪ {a} such
that cmp(T ′i ) = cmp(Ti) ∪{a} for 0 ≤ i ≤ t and cpm(T ′t+1) = V ∪ {a}. The derivation
D′ has k-length l(k, n) + 1.

Claim 2: Let D = (T0, . . . , Tt) be a strict derivation over a universe V of size n of k-length
l(k, n). Then, template Tt−l(k,n)+1 has exactly one component the size of k + 1 and all
other components are singleton.

To show the claim, consider the template Tj where j = t− l(k, n). Since there are l(k, n)
templates which have a component size of larger than k in D and D is a strict derivation,
j is the largest index that all components of Tj have a size of at most k. Let c1 . . . cr
be the components of Tj+1 such that |c1| ≥ |c1| ≥ · · · ≥ |cr| > 1, therefore |c1| > k. We
show that r = 1. We are going to show this by contradiction. Assume that r > 1. It
holds that |ci| ≥ 2 for 2 ≥ i ≥ r. Then we pick an element ai ∈ ci, 2 ≥ i ≥ r, and obtain
set X = ∪ri=2ci \ {ai}. Then we induce D to a strict derivation D′ over the universe
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3. SAT Approach to Clique-width

V ′ = V \X. l(n′, k) = l(n, k) since n = |V | > |V ′| = n and D′ have same k-length. This
contradicts Claim 1. Hence r = 1, therefore c1 is the only component that |c1| > k and
all other components are singleton. It remains to be shown that |c1| = k + 1. We use
contradiction again in order to show it. Assume that |c1| > k + 1. We can induce the D
to a strict derivation D′′ over universe V ′′, where {b1 . . . bk+1} ∈ c1, X = c1 \{b1 . . . bk+1}
and V ′′ = V \X. For n = |V | and n′′ = |V ′′|, l(n′′, k) = l(n, k). It contradicts Claim 1
since n = |V | > |V ′′| = n′′. Hence Claim 2 holds.

Claim 3: l(n, k) < n− k.

To show the claim, let D = (T0, . . . , Tt) be a strict derivation over a universe V of size n
with length l(k, n) and j = t− l(n, k). By Claim 2, we know that Tj+1 has exactly one
component with size k + 1 and n− k − 1 singleton components. By this we can conclude
that |cmp(Tj+1)| = n− k. While D is strict derivation, we have n− k = |cmp(Tj+1)| >
|cmp(Tj+2)| > · · · > |cmp(Tt)| = 1. Therefore l(n, k) = t − j ≤ n − k. Hence Claim 3
holds.

Now we can proof the lemma. Let D = (T0, . . . , Tt) be a strict derivation of a graph
G(V,E) with |V | = n. We can assume that D is a strict derivation according to Lemma 1.
Let l be k-length of D and let j = t− l. We define a derivation D′ = (T0, T

′
j , Tj+1 . . . , Tt)

where T0, Tj+1, . . . Tt are templates of D and cmp(T ′j) = cmp(Tj), grp(T ′j) = grp(T0).
We need to show that D′ is a k-derivation of G. For this we need to consider the edge,
neighborhood and path properties for T ′j and Tj+1. T ′j only has singleton groups, then
T ′j satisfies the properties. Also the properties hold for Tj+1, because T ′j has exactly the
same components as Tj . The length of derivation D′ is t− j + 1. When we substitute j
with t − l, then the length of D′ is l + 1. By Claim 3 we know that l ≤ n − k. Hence
l + 1 ≤ n− k + 1.

With the result of Lemmas 3, 4, and 5, we can conclude with the Proposition 1.

Proposition 1 ([HS15]). Let 1 ≤ k ≤ n. A graph G with n vertices has clique-width at
most k if and only if G has a k-derivation of length at most n− k + 1.

3.2 Directed Graphs
This section is an important part where this thesis goes beyond the study from Heule
and Szeider [HS15]. We extend their approach to digraphs. The differences between
the clique-width of an undirected and a directed graph is the edge and arc creations.
The clique-width of directed graphs use an arc creation instead of an edge creation,
also is called directed clique-width. Let G be a undirected graph and G′ be a directed
graph obtained by orienting the edges of G then cwd(G) ≤ cwd(G′). Then we can
obtain a k-expression of G from a k-expression of G′ by replacing the arc creations with
edge creations [CO00]. We can get the k-expression of an undirected graph G from the
k-expression of its directed version with an equal or fewer numbers of labels. In Example
2, we can see clearly that cwd(G) ≤ cwd(G′) holds.
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Example 2. Consider the digraph G′ = ({a, b, c}, {(a, b), (b, c)}) (Figure 3.1a) and its
undirected version G = ({a, b, c}, {ab, cb}) (Figure 3.1b). The 3-expression of G′ is

α2,3(α1,3(1(a)⊕ 2(b)⊕ 3(c)))

and it has 3 labels (cwd(G) = 3). We can obtain a 3-expression for G by replacing arc(α)
operations with edge(η) operations, such that :

η2,3(η1,3(1(a)⊕ 2(b)⊕ 3(c))).

On the other hand, there exists a 2-expression for G :

η1,2(1(a)⊕ 2(b)⊕ 1(c)).

Hence cwd(G) = 2. a

a b c

(a) Graph G′

a b c

(b) Digraph G

Figure 3.1: G is an undirected graph by omitting the direction of edges of G′ (Figure
3.1a). cwd(G) = 2 and cwd(G′) = 3.

3.2.1 Reformulation of clique-width

The reformulation of the k-expression of a digraph into a k-derivation is quite similar
with undirected graphs. Since the arc creations are not considered in a k-derivation, the
derivation conditions D1-D4, stay the same for digraphs as well. The differences occur
through the derivation of a graph’s conditions. To ensure that a derivation is derivation
of a digraph D = (V,A), we formulate the following three conditions that hold for all
1 ≤ i ≤ t.

Arc Property: For any two vertices u, v ∈ V such that (u, v) ∈ A, if u, v are
in the same group in Ti, then u, v are in the same component in Ti−1.

Neighborhood Property:

For any three vertices u, v, w ∈ V such that (u, v) ∈ A and (u,w) /∈
A, if v, w are in the same group in Ti, then u, v are in the same
component in Ti−1.
For any three vertices u, v, w ∈ V such that (v, u) ∈ A and (w, u) /∈
A, if v, w are in the same group in Ti, then u, v are in the same
component in Ti−1.

Path Property: For any four vertices u, v, w, x ∈ V , such that uv, uw, xv ∈ A
and xw /∈ A, if u, x are in the same group in Ti and v, w are in the same
group in Ti, then u, v are in the same component in Ti−1.
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u v

(a) Edge property

u′ v′

(b) Arc property

Figure 3.2: Visualization of edge and arc properties. The vertices in the dashed area are
in the same group in a template of a derivation.

u w

v

(a) Only case for undirected graphs.

u′ w′

v′

(b) Case 1 for directed graphs

u′ w′

v′

(c) Case 2 for directed graphs

u′ w′

v′

(d) Case 3 for directed graphs

u′ w′

v′

(e) Case 4 for directed graphs

Figure 3.3: Visualization of neighborhood property for undirected and directed graphs.
The vertices in the dashed area are in the same group in a template of a derivation.

It is clear that the edge and arc creations stay relatively the same for undirected and
directed graphs (see Figure 3.2.). On the other hand, the neighborhood property is
a bit different for directed graphs. It is essentially the same as for undirected graphs
but it considers the direction of arcs. Therefore, the neighborhood property covers four
cases for directed graphs, while it covers one case for undirected graphs (see Figure
3.3). Hence, the neighborhood property is more powerful for directed graphs. It has an
effect on the path property so that the path property also stays relatively the same for
undirected graphs. Consider Figure 3.4b. It is a directed version of the path property of
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u x

v w

(a) For undirected graphs.

u′ x′

v′ w′

(b) For a directed graph.

u′ x′

v′ w′

(c) For a directed graph.

Figure 3.4: Visualization of path property for undirected and directed graphs.The vertices
in the dashed area are in the same group in a template of a derivation.

the undirected case (Figure 3.4a). According to the neighborhood property for directed
graph, we can be sure that all arcs of the case are inserted. But even so we need the
path property for directed graphs. Consider the case in Figure 3.4c. According to the
neighborhood property we can not be sure that arc (v′, u′) is inserted. The arc can be
inserted by the path property. The path property stay relatively same for directed graph
through the neighborhood property for directed graphs.

Since the k-derivation of graphs does not consider the edge/arc creation, Lemmas 1 and
2 preserve their validity for digraphs. On the other hand, Lemmas 3, 4 and 5 need to be
reconsidered for digraphs. The directed versions of lemmas are Lemma 6 for Lemma 3,
Lemma 7 for Lemma 4 and Lemma 8 for Lemma 5, respectively. The neighborhood and
path property used in the following proofs are the new properties which we redefined for
directed graphs.

Lemma 6. From a k-expression of a digraph D = (V,A) we can obtain a k-derivation
of D in polynomial time.

Proof. The proof is quite similar to the undirected version. The main differences are
that, instead of edges and edge creations, we have arcs and arc creations.

Let φ be a k-expression of a digraph D(V,A) and Q is a (succinct) k-expression tree
of φ with root r. Let R(q) be the number of ⊕-nodes appearing on the path from
r to q ∈ Q(V ). Let U,L ⊂ Q such that U is a set of ⊕-nodes, L is a set of leaves
in Q and let t := maxq∈LR(q). We define Ui = {q ∈ U : R(q) = t − i + 1} and
Li = {q ∈ L : R(q) < t− i+ 1}.

We can define a derivation D = (T0, . . . , Tt) as follows. For each template Ti ∈ D,
cmp(Ti) = {V (Dq) : q ∈ Li ∪Ui} and grp(Ti) = {∪q∈Ui∪Ligrp(Dq)} where grp(Dq) is the
partition of V (Dq) with respect to labels of vertices. Since |grp(Dq)| ≤ k for all nodes
q ∈ Q, D is a k-derivation. It remains to be shown that D is a k-derivation of D. For
this we need to ensure that all properties of the k-derivation of D hold.
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To show that the arc property holds, we need to show for any two distinct vertices
u, v ∈ V such that (u, v) ∈ A have to be in the same component in Ti−1 if they are
in the same group in Ti. We can proof this by contradiction. Assume that u, v ∈ V ,
(u, v) ∈ A, u, v are in the same group but in different components c1, c2 in Ti−1. Since
u, v are in the same group of Ti, therefore u, v are in the same component of Ti. Hence
there is an ⊕-node q ∈ Ui with u, v ∈ V (Dq) ∈ cmp(Ti). Let q1, q2 be children of q such
that V (Dq1) = c1 and V (Dq2) = c2. But neither (u, v) ∈ A(Dq1) nor (u, v) ∈ A(Dq2),
therefore there is not a η-operation that inserts an (u, v) arc. So (u, v) 6∈ A(Dr) = A
which is a contradiction. Hence, the arc property holds.

To show that the neighborhood property holds, we use contradiction as well. Assume
that there are three vertices u, v, w ∈ V , (u, v) ∈ A, (u,w) 6∈ A and v, w are in the same
group of Ti but u, v are in different components in Ti−1, respectively in components c1
and c2. Since v, w in the same group in Ti then they have to in the same component c
in Ti. Let q ∈ Ui be an ⊕-node such that v, w ∈ V (Dq) = c, let q1, q2 be children of q
such that V (Dq1) = c1 and V (Dq2) = c2. Hence (u, v) 6∈ A(Dq1) ∪ A(Dq2), so we need
to introduce arc (u, v) in some node between q and r. Since v, w are in the same label
in Dq, they have to have the same labels in any node between q and r. Hence, an arc
creation between label of v and label of u would also introduce an arc (u,w) which is in
contradiction with (u,w) 6∈ A. Hence, the path property holds.

We also need to show the second case of the neighborhood property. Assume that there
are three vertices u, v, w ∈ V , (v, u) ∈ A, (w, u) 6∈ A and v, w are in the same group of
Ti but u, v are in different components in Ti−1, respectively in components c1 and c2.
Since v, w are in the same group in Ti then they have to in the same component c in Ti.
Let q ∈ Ui be an ⊕-node such that v, w ∈ V (Dq) = c, let q1, q2 be children of q such that
V (Dq1) = c1 and V (Dq2) = c2. Hence (v, u) 6∈ A(Dq1) ∪A(Dq2), so we need to introduce
the arc (v, u) in some node between q and r. Since v, w are in the same label in Dq, they
have to have the same label in any node between q and r. Hence, an arc creation between
label of v and label of u would also introduce an arc (w, u) which is in contradiction with
(w, u) 6∈ A. Hence, the neighborhood property holds.

To show that the path property holds, we use contradiction as before. Assume that four
vertices u, v, w, x ∈ V , such that (u, v), (u,w), (x, v) ∈ A and (x,w) 6∈ A, u, x are in
the same group in Ti and v, w are in the same group in Ti, but u, v are in the different
components c1 and c2 in Ti−1, respectively. According to the neighborhood property, u,w
need to be in the same component in Ti−1 and v, x need to be in the same component in
Ti−1. Since u, x are in the same group of Ti, then they have to be in the same component
c in Ti. Since u,w are in the same component in Ti− 1, then they have to be in the same
component in Ti. Since u, x are in c in Ti and u,w are in the same component in Ti, then
w ∈ c. Similarly we can see that v ∈ c in the template Ti. Let q ∈ Ui be an ⊕-node such
that v, w ∈ V (Dq) = c, let q1, q2 be children of q such that V (Dq1) = c1 and V (Dq2) = c2.
Since u and v are in different components in Ti−1 then u, v 6∈ E(Dq1)∪E(Dq2). Therefore,
we need to introduce arc (u, v) in some node between q and r. Since v, w are in the same
label in Dq and u, x are in the same label in Dq, they have to have the same labels in
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any node between q and r. Hence an arc creation between label of v, w and label of u, x
would also introduce an arc (x,w) which is in contradiction with (x,w) 6∈ A. Hence, the
path property holds.

We can conclude that D is a k-derivation of G. The procedure above can be clearly
carried out in polynomial time.

Lemma 7. From a k-derivation of a digraph D = (V,A) we can obtain a k-expression
of D in polynomial time.

Proof. Let D = (T0, . . . , Tt) be a k-derivation of digraph D(V,A) with the label set
{1 . . . k}. According to Lemma 2, we can assume that D = (T0, . . . , Tt) is a strict
k-derivation ofD. We are going to construct a k-expression tree forD from its k-derivation
in polynomial time.

The construction consists of three steps.

In the first step, we construct a k-expression tree Q⊕ which consists of leaves and ⊕-nodes.
For each component c = {v} ∈ cmp(T0) , where v ∈ V , we introduce a node q(c, 0) with
the label 1(v). These are the leaves of the k-expression tree. Then for each c ∈ cmp(Ti),
we introduce an ⊕-node q(c, i) and add edge with children nodes if there is a node
q(c′, i− 1) such that c′ ⊆ c. D1 and D3 properties ensure that the Q⊕ is a tree. Q⊕ does
not have to be succinct.

In the second step, we are going to obtain a k-expression tree Q⊕,ρ by adding the ρ
operation on Q⊕. By depth first ordering, we can visit each node q(c, i) and insert at
most k ρ-node between q, i and q′(c′, i− 1) such that grp(Aq′) = {g ∈ grp(Aq(c,i)) : g ⊆
c} ⊆ grp(Ti). Since any partition can be obtained by its refinements, properties D2 and
D3 ensure that such a node insertion is possible.

The last step is obtaining the k-expression tree Q⊕,ρ,α by adding α-nodes on Q⊕,ρ. We
are going to show that for each arc (u, v) ∈ A, there is an added α-node q above an
⊕-node q in Q⊕,ρ,α such that q is a child of p and it introduces the arc (u, v) but does
not introduce an arc not found in A.

Let q(c, i) be the ⊕-node with the smallest i in Q⊕,α such that u, v ∈ V (Aq). Therefore,
there are two q1(c1, i − 1), q2(c2, i − 1) child nodes of q in Q⊕,α such that u ∈ V (Aq1)
and v ∈ V (Aq2). It follows that c1, c2 ∈ Ti−1 are distinct components with u ∈ c1 and
v ∈ c2. According to the arc property, if u and v in different components in Ti then u
and v are in different groups of Ti. This means that u and v have different labels in Gq,
lu and lv respectively. We can add a α-node p with operation αlu,lv above q as it is the
parent node. The node p introduces the arc (u, v). It remains that it does not introduce
an arc not found in A. We can show it by each vertex couple u′, v′ ∈ c with labels lu and
lv respectively. We need to consider four cases.

Case 1: u = u′, v = v′, then trivially (u′, v′) = (u, v) ∈ A.
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Case 2: u = u′, v 6= v′. Assume on the contrary that (u′, v′) 6∈ A. Since v and v′

have the same label in Dq that means they are in the same group of Ti. According
to the neighborhood property, u and v have to be in a same component Ti−1 which is
contradiction to smallest choice of i. Hence (u′, v′) ∈ A.

Case 3: u 6= u′, v = v′ Assume on the contrary that (u′, v′) 6∈ A. Since u and u′ have
the same label in Dq that means they are in the same group of Ti. According to the
neighborhood property, u and v have to be in the same component Ti−1 which is in
contradiction to the smallest choice of i. Hence (u′, v′) ∈ A.

Case 4: u 6= u′, v 6= v′ We can proof once more by contradiction. Assume that u′v′ 6∈ A.
By Case 2 and Case 3, we know that uv′, u′v ∈ A. According to the path property, it
follows that u and v belong to the same component in Ti−1. Then it is a contradiction to
the smallest choice of i.

Since α-nodes do not introduce a non-existing edge, we can apply the procedure above
to obtain a k-expression tree of D in polynomial time.

Lemma 8. Let 1 ≤ k ≤ n. If a directed graph with n vertices has a k-derivation, then it
has a k-derivation of length n− k + 1.

Proof. The proof is quite similar to the proof of Lemma 5. We also use the k-length of a
derivation. Let l(n, k) be the largest k-length of a strict derivation with the universe size
n. We can use the same claims from Lemma 5, since they are based on the derivation.

Claim 1: l(n, k) < l(n+ 1, k).

Claim 2: Let D = (T0, . . . , Tt) be a strict derivation over a universe V of size n of k-length
l(k, n). Then, template Tt−l(k,n)+1 has exactly one component the size of k + 1 and all
other components are singleton.

Claim 3: l(n, k) < n− k.

We need to proof the lemma with the claims for a derivation of a directed graph.

Now we can prove the lemma. Let D = (T0, . . . , Tt) be a strict derivation of a digraph
D(V,A) with |A| = n. We can assume that D is a strict derivation according to Lemma 1.
Let l be k-length of D and let j = t− l. We define a derivation D′ = (T0, T

′
j , Tj+1 . . . , Tt)

where T0, Tj+1, . . . Tt are templates of D and cmp(T ′j) = cmp(Tj), grp(T ′j) = grp(T0).
We need to show that D′ is a k-derivation of D. For this we need to consider the arc,
neighborhood and path properties for T ′j and Tj+1. T ′j has only singleton groups, then
T ′j satisfies the properties. Also the properties hold for Tj+1, because T ′j has exactly the
same components as Tj has. The length of derivation D′ is t− j + 1. When we substitute
j with t− l, then the length of D′ is l + 1. By Claim 3 we know that l ≤ n− k. Hence
l + 1 ≤ n− k + 1.

Similar to the way in which Heule and Szeider concluded with Proposition 1, we can also
conclude with the Proposition 2 with respect to the Lemmas 6, 7, and 8.
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Proposition 2. Let 1 ≤ k ≤ n. A digraph D with n vertices has clique-width at most k
if and only if D has a k-derivation of length at most n− k + 1.
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CHAPTER 4
Encoding a Derivation of a Graph

4.1 Undirected Graphs
Let G = (V,E) be an undirected graph and t > 0 be an integer parameter. Heule and
Szeider constructed a CNF formula Fder(G, t) such that it is satisfiable if and only if
there is a derivation of length t for G.

It is assumed that the vertices of G are given in some arbitrary but fixed linear order.
For any distinct two vertices u, v ∈ V (G), they introduce a propositional variable cu,v,i
which indicates whether u and v are in the same component of template Ti. Also, in the
same sense, they introduce a propositional variable gu,v,i for any two distinct vertices
u, v ∈ V (G) to indicate whether the vertices are in the same group of template Ti. We
start to obtain clauses for derivation conditions D1-D4.

The formula Fder(G, t) consists of the conjunction of all clauses generated below.

For the conditions D1–D4:

(c̄u,v,0) ∧ (cu,v,t) ∧ (cu,v,i ∨ ḡu,v,i) ∧ (c̄u,v,i−1 ∨ cu,v,i) ∧ (ḡu,v,i−1 ∨ gu,v,i)
for u, v ∈ V , u < v, 0 ≤ i ≤ t.

The transitive properties of components and groups also need to be considered such that
for the vertices u, v, w and a component c, if u, v ∈ c and u,w ∈ c, then v, w ∈ c.

(c̄u,v,i ∨ c̄v,w,i ∨ cu,w,i) ∧ (c̄u,v,i ∨ c̄u,w,i ∨ cv,w,i) ∧ (c̄u,w,i ∨ c̄v,w,i ∨ cu,v,i) ∧
(ḡu,v,i ∨ ḡv,w,i ∨ gu,w,i) ∧ (ḡu,v,i ∨ ḡu,w,i ∨ gv,w,i) ∧ (ḡu,w,i ∨ ḡv,w,i ∨ gu,v,i)

for u, v, w ∈ V , u < v < w, 0 ≤ i ≤ t.

For the edge property, we need to include the clauses for any two vertices u, v ∈ V with
u < v, uv ∈ E and 1 ≤ i ≤ t:
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4. Encoding a Derivation of a Graph

(cu,v,i−1 ∨ ḡu,v,i).

For the neighborhood property the following clauses are needed for any three vertices
u, v, w ∈ V with uv ∈ E and uw /∈ E and 1 ≤ i ≤ t:

(cmin(u,v),max(u,v),i−1 ∨ ḡmin(v,w),max(v,w),i)

For the path property, we need to include the following clauses for any four vertices
u, v, w, x, such that uv, uw, vx ∈ E, and wx /∈ E, u < v and 1 ≤ i ≤ t:

(cu,v,i−1 ∨ ḡmin(u,x),max(u,x),i ∨ ḡmin(v,w),max(v,w),i)

The following statement is a direct consequence of the above definitions.

Lemma 9. Fder(G, t) is satisfiable if and only if G has a derivation of length t.

Until this part, we have set of clauses to ensure that we can obtain a derivation with
length t. Now we need to introduce new variables and clauses to present the width
of a derivation of at most k. Heule and Szeider have two approaches for encoding the
width of derivation. Their first approach is direct encoding. The idea of direct coding is
to introduce a variable for each vertex to indicate its group number for each template.
But this approach can produce clauses such that unit propagation of SAT solvers can
not result in a conflict. Therefore, they proposed representative encoding which uses
two types of variables, the representative variable rv,i and the order variable o>v,a,i. The
representative variable rv,i indicates that if the vertex v represents a group in template
Ti. For each group, just one vertex can present it which will the smaller vertex from the
group since the vertices are given in fixed linear order. We can express this property by
the following clauses:

(rv,i ∨
∨
u∈V,u<v gu,v,i) ∧

∧
u∈V,u<v(r̄v,i ∨ ḡu,v,i) for v ∈ V , 0 ≤ i ≤ t

The order variable o>v,a,i expresses that the label number of the vertex v is greater than
a in template Ti, with v ∈ V , D = {1, . . . , k}, a ∈ D \ {k}, 0 ≤ i ≤ t. For example,
assigning o>v,2,2 = 1 means that the label of v in T2 is greater than 2. Heule and Szeider
coded the number of the representative variables at most k in a component with the
order variables.

If two vertices u and v are representative in the same component of a template Ti and
u < v, then o>u,a,i = 0 and o>v,a,i = 1 must be hold. Since u < v and u, v are representatives,
u can not have the highest numbered label and v can not have the lowest numbered label.
Furthermore, if o>u,a,i = 1 and u < v then o>v,a,i = 1. The related clauses are:
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4.2. Directed Graphs

(c̄u,v,i ∨ r̄u,i ∨ r̄v,i ∨ ō>u,k−1,i) ∧ (c̄u,v,i ∨ r̄u,i ∨ r̄v,i ∨ o>v,1,i) ∧∧
1≤a<k−1(c̄u,v,i ∨ r̄u,i ∨ r̄v,i ∨ ō>u,a,i ∨ o>v,a+1,i)

for u, v ∈ V , u < v, 0 ≤ i ≤ t.

The representative encoding requires n(n+ k − 1)(n− k + 2) variables and worst case
O(n5 − n4k) clauses.

4.2 Directed Graphs
Directed graphs have quite similar encoding to undirected graphs. The main differences
appear in the encoding of properties. In particular, the encoding of the derivation
conditions D1-D4 and the representative encoding of directed graphs stay exactly same
for undirected graphs. Therefore, in this section we just consider the clauses for digraph
conditions: arc property, neighborhood property and path property.

We have the same assumptions as for undirected graphs. The vertices are given in some
arbitrary but fixed linear order. For any two distinct vertices u, v ∈ V (G), we introduce
a propositional variable cu,v,i which indicates whether u and v are in the same component
of template Ti. Also in the same sense, we introduce a propositional variable gu,v,i for
any two distinct vertices u, v ∈ V (G) to indicate whether the vertices are in the same
group of template Ti.

In order to enforce the arc property of a directed graph D = (V,A), we add the following
clauses for any u, v ∈ V , (u, v) ∈ A and 1 ≤ i ≤ t:

(cmin(u,v),max(u,v),i−1 ∨ ḡmin(u,v),max(u,v),i).

For the neighborhood property, the following clauses are needed for any three vertices
u, v, w ∈ V 1 ≤ i ≤ t:

i) (u, v) ∈ A and (u,w) /∈ A

(cmin(u,v),max(u,v),i−1 ∨ ḡmin(v,w),max(v,w),i)

ii) (v, u) ∈ A and (w, u) /∈ A

(cmin(u,v),max(u,v),i−1 ∨ ḡmin(v,w),max(v,w),i)

For the path property, we need the following clauses for any four vertices u, v, w, x ∈ V ,
such that (u, v), (u,w), (x, v) ∈ A, and (x,w) /∈ A and 1 ≤ i ≤ t:

(cmin(u,v),max(u,v),i−1 ∨ ḡmin(u,x),max(u,x),i ∨ ḡmin(v,w),max(v,w),i)
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4. Encoding a Derivation of a Graph

The representative encoding of digraphs requires n(n+ k − 1)(n− k + 2) variables. The
number of clauses depends on the digraph and is O(n5−n4k) which is same for undirected
graphs.
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CHAPTER 5
Model Counting with

Clique-width

The model counting problems have been studied in recent research areas of informat-
ics such as AI, probabilistic reasoning, contingency planning, and hard combinatorial
problems. Simply finding a solution to such problems can be challenging, to count the
number of solutions is much harder [GSS09]. Fischer et al. proposed a model counting
algorithm that counts the number of models of formulas of bounded clique-width in
polynomial time [FMR08]. The algorithm calculates the number of models of a formula
using a k-expression tree of the directed incidence graph of the formula. In Chapter 4.2
we obtained an approach for determining the clique-width of a directed graph and in
this chapter we consider the approach of Fischer et al. and in Section 5.3 we present the
result of an application (program) based on this approach.

5.1 Directed Incidence Graph
The incidence graph of a CNF formula F is a bipartite graph such that each clause and
variable is presented as a vertex and there is an edge between a variable vertex and
a clause vertex if the variable occurs in the clause. The signed incidence graph of a
clause set F is an incidence graph of F with edge labels (+) and (−) to indicate whether
variables occur positively or negatively in a clause. The directed incidence graph of a
clause set F is a digraph obtained from a signed incidence graph of F with oriented
edges such that if the sign of an edge is positive then the orientation of the arc is from
the vertex of the variable to the vertex of the clause and if it is negative the other way
around.

Example 3. Consider propositional formula F = {{x, y, z}, {x, ȳ}, {ȳ, z̄}} with C1 =
{x, y, z} , C2 = {x, ȳ} and C3 = {ȳ, z̄}. The incidence graph of F is shown in Figure
5.1a and the directed incidence graph of F is shown in Figure 5.1c. a
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5. Model Counting with Clique-width

Figure 5.1: Incidence graph (a), signed incident graph (b) and directed incidence graph
(c) of formula F = {C1, C2, C3} with C1 = {x, y, z} , C2 = {x, ȳ} and C3 = {ȳ, z̄}

5.2 Model Counting of Formulas of Bounded Clique
Width

This section is based on the paper [FMR08] from Fischer, Makowsky and Ravve. Fischer
et al. proposed an algorithm that calculates the number of models of a formula on the
nodes of the k-expression tree of its directed incidence graph. The intuitive idea is that
we have a table for each node of the k-expression tree. We initiate the tables of the
leaf nodes and calculate the table of the inner nodes by starting with the leaves of the
k-expression tree and going up from child nodes to parent nodes. We repeat this process
until we reach the root node. At the end, we have the number of models of the formula
in the table of the root node.

Theorem 1 ([FMR08]). Given a CNF formula F and signed parse tree derSI(F ) for
clique-width of up to k, it is possible to calculate #F , with a number of algebraic operations
that is linear in the size of the parse tree derSI(F ), and exponential in k.

Before starting the formulation and describing the steps of the algorithm, we need to
clarify that if there are no clauses in the formula F = {} then the number of models of
F is 2n, where n is the number of variables in the scope and if there are no variables in
the scope and no clauses in F , then number of models of F is 20 = 1.

The table of the nodes of a k-expression tree keeps the number of models of its transfor-
mation. A transformation F (A,B,C) of a formula F for given subsets A,B,C of {1, . . . , k}
is described with the following operations:

1. Remove every clause labeled with i ∈ A from F .

2. Let Xi be the set that consists of all variables labeled with i ∈ {1, . . . , k}. For each
label i ∈ B add a clause that consists of the disjunction of the all variables x ∈ Xi.

3. For each label i ∈ C add a clause that consists of the disjunction of the all negation
of variables x ∈ Xi.
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5.2. Model Counting of Formulas of Bounded Clique Width

Example 4. Let F = {C1, C2}, C1 = {x, y} and C2{y, z̄}, where label lC1 = 1, lC2 =
2, lx = 3, ly = 3, lz = 2. Then F {1},{2},{3} = {C2, {z}, {x̄, ȳ}} a

Fischer et al. assume that all unions are made by disjoint subsets of the label set. This
can be achieved by constructing a k-expression tree with duplicate the number of labels.
The idea is that for each union node with binary child nodes, we can shift the label
numbers of one child by k, and after the union operation we can use the relabeling
operation to set back the labels from {k + 1, . . . , 2k} to {1, . . . , k}. Also, if there is a
union node consisting of more than two child nodes in the k-expression tree, it can be
reconstructed with a union of only two child nodes and vice versa. Since the algorithm is
required in exponential time in k, the duplication of k reduces the performance of its
practical application.

For each node of the k-expression tree of a formula F , we have a table that consists of
the number of models #F (A,B,C) for each possible triple subsets A,B,C (they do not
need to be disjoint) of {1, . . . , k}. The calculation of tables of each node starts from leaf
nodes to inner nodes by the following:

1. If the node v is a disjoint union of u and w:

#FA,B,Cv = #FA,B,Cu .#FA,B,Cw

2. If the node v is an arc creation αi,j(Fw) where w is the child node of v.

a) If i is the label of clauses and j is the label of variables:
i. if i ∈ A then

#(F (A,B,C)
v ) = #(F (A,B,C)

w ),
ii. if j ∈ C

#(F (A,B,C)
v ) = #(F (A∪{i},B,C)

w ),
iii. otherwise

#(F (A,B,C)
v ) = #(F (A,B,C)

w )+#(F (A∪{i},B,C∪{j})
w )−#(F (A,B,C∪{j})

w ).
b) If j is the label of clauses and i is the label of variables:

i. if j ∈ A then

#(F (A,B,C)
v ) = #(F (A,B,C)

w ),
ii. if i ∈ B

#(F (A,B,C)
v ) = #(F (A∪{j},B,C)

w ),
iii. otherwise

#(F (A,B,C)
v ) = #(F (A,B,C)

w )+#(F (A∪{j},B∪{i},C)
w )−#(F (A,B∪{i},C)

w ).

3. If the node v is a relabeling operation ρi,j(Fw) where w is a child node of v:
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5. Model Counting with Clique-width

a) i ∈ B ∪ C

#(FA,B,Cv ) = 0
b) if j 6∈ B ∪ C and our setting is: if j ∈ A then A′ = A ∪ {i}, otherwise

A′ = A \ {i},

#(F (A,B,C))
v = #(F (A′,B,C))

w

c) if j ∈ B and j 6∈ C, and with the setting: if j ∈ A then A′ = A∪{i} otherwise
A′ = A \ {i}, B1 = B ∪ {i} \ {j}, B2 = B and B3 = B ∪ i

#(F (A,B,C)
v ) = #(F (A′,B1,C)

w ) + #(F (A′,B2,C)
w )−#(F (A′,B3,C)

w )
d) if j 6∈ B and j ∈ C, and with the setting: if j ∈ A then A′ = A∪{i}, otherwise

A′ = A \ {i}, C1 = C ∪ {i} \ {j}, C2 = C and C3 = C ∪ {i}

#(F (A,B,C)
v ) = #(F (A′,B,C1)

v ) + #(F (A′,B,C2)
v )−#(F (A′,B,C3)

v )
e) if j ∈ B and j ∈ C

if j ∈ A then A′ = A ∪ {i}, otherwise A′ = A \ {i},
B1 = B ∪ {i} \ {j}, B2 = B,B3 = B ∪ i,C1 = C ∪ {i} \ {j}, C2 = C
and C3 = C ∪ {i}

#(F (A,B,C)
v ) = #(F (A′,B1,C1)

v ) + #(F (A′,B1,C2)
v ) + #(F (A′,B2,C1)

v ) +
#(F (A′,B2,C2)

v ) −#(F (A′,B3,C1)
v ) −#(F (A′,B3,C2)

v ) −#(F (A′,B1,C3)
v ) −

#(F (A′,B2,C3)
v ) + #(F (A′,B3,C3)

v )

The intuitive idea behind the calculation is that we already keep the possible transforma-
tions in the tables, and calculate the current table values from the previous table by the
set inclusion/exclusion principle.

5.3 An Application on Model Counting
We can solve a model counting problem of a formula in polynomial time if we are given a
k-expression of the directed incidence graph of the formula where k is a constant. We
can achieve this by having a table for each node of the k-expression tree of the directed
incidence graph of a formula and calculating tables of parent nodes from the table of their
child nodes, once we initiate the tables of leaf nodes. Therefore, we wrote a program
that transforms a k-derivation to its k-expression tree based on the Lemma 6. We wrote
the program 1 in programming language Python. It takes the output of the decoder
program and generates the related k-expression tree. In order to obtain the k-expression
tree from a graph, we run the sequence of programs in the order: encoder, SAT solver,

1The code of the program is available on https://bitbucket.org/ayParlak/thesis-codes.
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5.3. An Application on Model Counting

Table 5.1: A table of transformations for {0, . . . , 3}.

A B C #F (A,B,C)

∅ ∅ ∅ n1
∅ ∅ {1} n2
∅ ∅ {2} n2
...

...
...

...
{1,2,3} {1,2,3} {1,2,3} n512

decoder and k-expression tree generator. We automated the running of the sequence
with a shell script. We used a 4-core QEMU Virtual CPU(2665.908 Mhz, 4096 KB) 16
GB RAM machine running Ubuntu 10.04 for all our testing and the SAT solver Glucose
version 2.2 [AS09] to check the satisfiability of the CNF formulas, as it was one of the
best solvers for our instances [HS15].

Example 5. Consider the propositional formula F = {{x, y, z}, {x, ȳ}, {ȳ, z̄}} with
C1 = {x, y, z} , C2 = {x, ȳ} and C3 = {ȳ, z̄}. The directed incidence graph of F is
shown in Figure 5.2. The k-derivation of the directed incidence graph is z2y1C3

3x
1C4

2C1 :
z3x4y5C3

3C
5
2C1 . a

x

y

z

C1

C2

C3

Figure 5.2: Directed incidence graph of formula F = {C1, C2, C3} with C1 = {x, y, z} ,
C2 = {x, ȳ} and C3 = {ȳ, z̄}

.

The algorithm from Fischer et al. proposes keeping a table (see Table 5.1) that includes
all possible transformations of the formula for each node of the k-expression tree. The
size of the table is exponential with k such that 23k and the number of operations is
linear in size of the k-expression tree. We can solve a #P problem in polynomial time
but since it is exponential in k, the performance of the program strictly depends on k
(for k ≥ 7, we can run out of space on our current testing machine, see Table 5.2). As
we pointed out in Section 5.2, the algorithm requires a disjoint subset of labels used by
the child nodes of union nodes. This can force the algorithm to duplicate the number of
labels and increase the performance manifestly.

The performance of the program for small size problems is not significant for comparing
it with other exact model counting programs. It can have comparable performance with
big size problems, or instance with small clique-width. However, it is a still challenging
topic to find the clique-width for the big size of graphs (see Figure 6.2).
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root q1

α0,2 q2

⊕ q3

ρ2→0 q4

α1,2 q5

⊕ q6

α0,1 q7

⊕ q8

0(z) q9

⊕ q10

1(C3) q11 2(y) q12

α0,1 q13

⊕ q14

1(C2) q15 0(x) q162(C1) q17

Figure 5.3: 3-expression tree of the directed incidence graph of Figure 5.2, Example 5.

Table 5.2: Size of transformations table for different values of k.

k Size of transformations table (23k)

1 8
2 64
3 512
4 4 096
5 32 768
6 262 144
7 2 097 152
8 16 777 216
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CHAPTER 6
Experimental Results

In this chapter, we review the experimental results of the SAT approach to clique-width
from the paper by Heule and Szeider [HS15], as well as the experimental results of our SAT
approach to clique-width of digraphs. We used a 4-core QEMU Virtual CPU(2665.908
Mhz,4096 KB) 16 Gb RAM machine running Ubuntu 10.04 for all our testing and the
SAT solver Glucose version 2.2 [AS09] to check the satisfiability of the CNF formulas, as
it was one of the best solvers for our instances [HS15].

6.1 Clique-Width of Undirected Graphs
In this section we review the results from Heule and Szeider. They calculate the
clique-width of a graph by determining in which value of k ∈ {1 . . . |V |} , it holds that
F (G, k, |V | − k + 1) is satisfiable and F (G, k − 1, |V | − k + 2) is unsatisfiable.

They provided two programs that are written in the programming language C.1 The
first program is the decoder which decodes a given graph in DIMACS format and a
parameter k into CNF in DIMACS format. The CNF formula is satisfiable if and only if
the graph has a clique-width of less or equal to k. The second program is the decoder
which converts the CNF formula in DIMACS format into a k-derivation. They used
string notation to present a k-derivation as a string.

For a graph G = (E, V ), V = {a1, . . . , an}, a component string

a
c(a1,a2)
1 a

c(a2,a3)
2 a

c(a3,a4)
3 . . . a

c(an−1,an)
n−1 an

of the components of a derivation D = (T0, . . . , Tt) is an order of vertices of graph with
the smallest template number c(a, a′) such that a and a′ appear in the same component.

1The sources of the encoding are available on https://bitbucket.org/mjhheule/
cwd-encode/.
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6. Experimental Results

In the same way a group string

a
g(a1,a2)
1 a

g(a2,a3)
2 a

g(a3,a4)
3 . . . a

g(an−1,an)
n−1 an

of the groups of a derivation D = (T0, . . . , Tt) is an order of vertices of graph with the
smallest template number g(a, a′) such that a and a′ appear in the same group. It is
easy to see that such an order always exists and it may not be unique. Therefore, we can
present a k-derivation in a string notation (see Example 6).

Example 6. Consider the Petersen graph (Figure 6.1)G = (E, V ), V = {a, b, c, d, e, f, g, h, i, j},
E = {ac, ad, af, bd, be, bg, ce, ch, di, ej, fg, fj, gh, hi, ij}. Its 5-derivation (T0, . . . , T4) is

cmp(T0) = {a, b, c, d, e, f , g, h, i, j}, grp(T0) = {a, b, c, d, e, f , g, h, i, j},
cmp(T1) = {ace, bfg, dhi, i}, grp(T1) = {a, b, c, d, e, f , g, h, i, j},
cmp(T2) = {abcefg, dhi, j}, grp(T2) = {a, b, cg, d, e, f , h, i, j},
cmp(T3) = {abcdefghi, j}, grp(T3) = {ab, cg, d, efi, h, j},
cmp(T4) = {abcdefghij}, grp(T4) = {ab, cg, dh, efi, j};

By the string notation we can present the 5-derivation of the Petersen graph with

a1c1e2b1f1g3d1h1i4j : a3b5c2g5d4h5e3f3i5j.

a

ae

d c

b

f

j

i h

g

Figure 6.1: The Petersen graph

The performance of the program for upper bounds is better than for lower bounds (Table
6.1). There are two reason behind this performance difference. First, since the derivation
length is smaller, by Proposition 1, the upper bounds formulas are smaller. Second, for
lower bounds, all the search space needs to be explored, while for upper bounds the
solution can be found on a branch without exploring other branches. Further more, the
running time of the CNF formula creation is significantly less than the running time
of the SAT solver. Therefore, the performance of the program is determined by the
performance of the SAT solver (Table 6.1).

34



6.1. Clique-Width of Undirected Graphs

k 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Time1(s) 0.22 0.20 0.19 0.19 0.16 0.15 0.15 0.16 0.13 0.15 0.13 0.11 0.12 0.22
Time2(s) 0.76 3.17 8.88 12.99 26.40 43.20 121.85 0.22 0.30 0.17 0.13 0.11 0.09 0.07

Table 6.1: A random graph G with 20 vertices and 101 edges for different values of k.
Time1 presents the running time of creating clauses of the CNF formula and Time2
presents the running time of the SAT solver. Up to k = 9 the formulas are unsatisfiable,
after that they are satisfiable, therefore cw(G) = 10.

Figure 6.2: Time performance of the program for different candidate values of k for
random graphs.

The program for a graph G and cwd(G)= k has the greatest running time on candidate
value k − 1 for cwd(G). When we consider the greatest running time (24864 s) for the
graph with 30 vertices in Figure 6.2, we can observe that the performance of the algorithm
is restricted for the larger graphs.

Figure 6.3: Smallest graphs with clique-width 3, 4, 5, and 6 (from left to right) [HS15].
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6. Experimental Results

k 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Time1(s) 0.17 0.17 0.17 0.16 0.12 0.11 0.11 0.12 0.12 0.12 0.14 0.10 0.10 0.09
Time2(s) 0.40 1.13 4.56 7.84 11.48 26.16 24.98 74.37 1.34 0.38 0.11 0.10 0.10 0.09

Table 6.2: A directed graph G′ (obtained by randomly orienting the edge of graph G
from the Table 6.1) with 20 vertices and 101 arcs for different values of k. Time1 present
the running time of creating clauses of CNF formula and Time2 presents the running
time of SAT solver. Up to k = 10 the formulas are unsatisfiable, after they are satisfiable,
therefore dcw(G) = 11.

6.2 Clique-Width of Directed Graphs

We extended the approach of Heule and Szeider for directed graphs. We modified the
encoder and decoder they provided, for directed graphs2. We also used Nauty [McK81]
to generate non-isomorphic connected digraphs with up to seven vertices.

ae

d c

b

f

j

i h

g

(a) Petersen graph

ae

d c

b

f

j

i h

g

(b) A directed version of Petersen graph

Figure 6.4: Petersen graph with 5-derivation: a1c1e2b1f1g3d1h1i4j:a3b5c2g5d4h5e3f3i5j
and orientation of it with 6-derivation: f5j1h1e1c2i1a1d3g4b:f6j5g6i3c4h6a6e2d6b.

In addition, we reviewed the directed version of some famous graphs. One of them is
the Petersen graph (10 vertices, 15 edges graph named after the Danish mathematician
Julius Petersen) which has clique-width of 5. It has 324 orientations and 2 of them have
clique-width of 6 while others have 5, see Figure 6.4.

As we discussed in Section 3.2, an orientation of an undirected graph has clique-width
greater than or equal to the clique-width of its underlying graph [CO00]. The performance
of the algorithm for directed graphs and for undirected graphs do not have significant
differences (Table 6.1, Table 6.2).

2The sources of the encoding are available on https://bitbucket.org/ayParlak/
thesis-codes.
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6.3. The Clique-Width Numbers

6.3 The Clique-Width Numbers

Heule and Szeider defined a term called clique-width number. The clique-width number
for a number k is the smallest number nk such that there exists an nk-vertex graph with
clique-width k. They published also the experimental results up to ten vertices (see
Table 6.4). They used Nauty [McK81] to generate non-isomorphic connected graphs.
Additionally they eliminated the non-prime [HP10] graphs. As a result of this practical
work they determined the first seven clique-width numbers: 1, 2, 4, 6, 8, 10, 11. Figure 6.3
shows the four smallest graphs that correspond to the clique-width numbers 3, 4, 5 and 6.
In our experimental work, we determined the first five clique-width numbers for directed
graphs: 1, 2, 3, 4, 6. Figure 6.5 shows the three smallest digraphs that correspond to the
clique-width numbers 3, 4 and 5.

(a) (b) (c)

Figure 6.5: Smallest digraphs with clique-width 3, 4, and 5 (from left to right).

The clique-width number is different for undirected and directed graphs, since they have
different operation in their construction. For the same value of k, a clique-width number
for undirected graphs is greater or equal than the number for directed graphs. Figure
6.3 shows nk for different values of k for undirected and directed graphs. n1 and n2 are
trivial cases. Because we can not insert an edge or an arc with one label and we can
build just a complete graph with two labels (the smallest complete graph with an edge
or an arc is K2). The differences start from three labels (see Figure 6.5a and 6.3).

Table 6.3: Clique-width numbers for different values of k for undirected and directed
graphs.

k nk (undirected) nk (directed)

1 1 1
2 2 2
3 4 3
4 6 4
5 8 6
6 10 ?
7 11 ?

The reason behind this differences is, while we can introduce the edges between the
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6. Experimental Results

vertices of two different labels but we can not introduce the opposite oriented arcs between
the vertices of two different labels (see Figure 6.6).

u w

v

(a) Undirected graph G

u′ w′

v′

(b) Digraphs G′

Figure 6.6: Digraph G′ is an orientation of graph G and the vertices in the dashed area
have the same label. We can introduce the edges of graph G with two labels but we can
not introduce the arcs of the digraph G′ with two labels.
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CHAPTER 7
Conclusion

We revisited and extended the SAT approach to clique-width by Heule and Szeider from
graphs to digraphs.

From the theoretical side, we generalized the key idea by Heule and Szeider, of certifying
clique-width k by k-derivations instead of by k-expressions, from the graph to the digraph
setting. We also presented a SAT encoding of the directed version of the notion of
k-derivation.

We then exploited this theoretical work to implement an algorithm that is capable of
finding the clique-width of small directed graphs (around 20 vertices), previously unknown;
see Table 6.3. We also implemented a model counting algorithm by Fischer, Makowsky,
and Ravve, and tested it on instances of small clique-width; to this aim we exploited
the above implementation together with a program that computes a k-expression from a
k-derivation of a digraph of clique-width k.
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