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Abstract

The recently discovered occurrence of multiple divergences in the irreducible
vertex functions of strongly correlated electron models, poses serious prob-
lems to the state-of-the-art many-body theory. Dynamical mean-field theory
(DMFT) calculations for the Hubbard model have shown several lines of di-
vergences of the irreducible vertex function, surrounding the Mott-Hubbard
metal-insulator transition, a clear hint of a highly non-perturbative origin.

At high temperatures/large interaction (U), where the Hubbard model
approaches the atomic limit, the divergences could be ascribed to a unique
underlying energy scale ν∗. This simple picture is however not applicable in
the most interesting parameter regime of low temperatures and intermediate
U , where the system behaves like a correlated Fermi-liquid metal.

For this reason a simpler model was analysed, where a similar physics
could be realized: the Anderson impurity model. This provides a more fea-
sible way to treat the Fermi-liquid quasiparticle physics in the parameter
regime of interest.

In a preceding Projektarbeit I performed CT-HYB calculations at the
two particle level, using w2dynamics. The results show the first divergence
line for the Anderson impurity model, with an unexpected low temperature
behaviour.

Motivated by these preliminary findings, in this thesis an investigation
of the whole phase diagram of the Anderson impurity model has been per-
formed. In particular, using w2dynamics, additional lines of divergences were
found: They could be classified in terms of the properties of their associated
singular eigenvectors and compared with the corresponding ones found in
other many-electron systems. This information provides novel insights on
the physical mechanism underlying the breakdown of many-body perturba-
tion theory, clarifying some aspects (such as the relation of the divergences
with the Mott-Hubbard transition), which were not fully understood yet. In
the final part of the master thesis the implication of the low-temperature
behaviour of the divergence lines in the Anderson impurity model onto other
models (such as the Hubbard) is discussed as well.
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Deutsche Kurzfassung

Das vor Kurzem entdeckte Auftreten mehrfacher Divergenzen in irreduzi-
blen Vertexfunktionen von stark korrelierten Elektronensystemen stellt für
die moderne Vielteilchentheorie ein grundlegendes Problem dar. Dynamische
Molekularfeldtheorie (DMFT) Rechnungen für das Hubbard Modell haben
Divergenzlinien in der Umgebung des Mott-Hubbard Metall-Isolator Übergangs
gezeigt, ein deutlicher Hinweis auf einen höchst nicht-perturbativen Ursprung.

Bei hohen Temperaturen/ großer Wechselwirkung (U), wo sich das Hub-
bard Modell dem atomaren Limes annähert, konnten diese Divergenzen einer
zugrunde liegenden eindeutigen Energieskala ν∗ zugeordnet werden. Diese
Vereinfachung ist jedoch im interessantesten Parameterbereich, nämlich bei
tiefen Temperaturen und mittlerem U wo sich das System wie eine korrelierte
Fermiflüssigkeit verhält, nicht anwendbar.

Aus diesem Grund wurde ein einfacheres Modell mit gleichartiger Physik
analysiert: Das Anderson Störstellemodell. Dies bietet einen leichter zu
realisierenden Weg, die Physik der Quasiteilchen der Fermiflüssigkeit im
gewünschten Parameterbereich zu behandeln.

In einer vorangegangen Projektarbeit habe ich, unter Verwendung von
w2dynamics, CT-HYB Berechnungen auf dem Zweiteilchenniveau durchgeführt.
Die Ergebnisse zeigen die erste Divergenzlinie für das Anderson Störstellemodell,
mit einem unerwarteten Tieftemperaturverhalten.

Aufbauend auf diesen ersten Erkenntnissen, wurde in dieser Masterar-
beit das gesamte Phasendiagramm des Anderson Störstellemodells unter-
sucht. Im Besonderen wurden, unter Verwendung von w2dynamics, weitere
Divergenzlinien gefunden, die durch das Verhalten deren entsprechenden sin-
gulären Eigenvektoren klassifiziert werden konnten, und mit Divergenzlinien
von anderen Mehrelektonsystemen verglichen. Durch diese Informationen
konnten neue Einsichten in den Mechanismus, der dem Versagen der Viel-
teilchenstörungstheorie zugrunde liegt, gewonnen werden, was auch einige
Aspekte (zum Beispiel den Zusammenhang der Divergenzen mit dem Mott-
Hubbard Übergang), die soweit noch nicht komplett verstanden waren, klärt.
Im abschließenden Teil der Masterarbeit wird die Bedeutung des Tieftem-
peraturverhaltens der Divergenzlinien des Anderson Störstellemodells, auf
andere Modelle (wie zum Beispiel das Hubbard Modell) diskutiert.
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Chapter 1

Motivation

At the center of this thesis stands the investigation of strong-coupling patholo-
gies, which occur in the many-electron theory at the one- and the two-particle
level, shaking some of the foundations of forefront computational approaches.
In particular, in recent studies [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] divergences in the
irreducible vertex functions, on which we will focus over the course of this
work, as well as multivalued determinations of self-energies in the framework
of the Luttinger-Ward formalism have been reported. Though unexpected,
these features are quite general, as they appear in several many-electron
models, among them e.g. the Falicov-Kimball model, the Hubbard atom and
the Hubbard model.

The vertex divergences have been observed in these models for specific sets
of interaction and temperature values, leading to non-trivial divergence lines
extending over large parts of the corresponding phase diagrams. Specifically,
the results for models containing a metal-insulator transition [11] (MIT),
such as the Dynamical Mean-Field Theory (DMFT) solution of the Hubbard
model, show divergence lines also in the correlated metallic regime, at lower
interaction values than the MIT itself. This is somewhat surprising, because
the vertex divergences are incompatible with the validity of the perturbation
theory. At the same time perturbation theory was, however, expected to hold
at least at low energies up to the onset of the MIT, due to the metallic nature
of the ground state. Moreover, from a precise and insightful comparison of
the occurrences of vertex divergences in different electron models, presented
in [2], it was also inferred that the metal-insulator transition would have a
crucial impact on the shape of the divergence lines.

The aim of this thesis is twofold: (i) we want to thoroughly investigate
the non-perturbative aspects of the correlated metallic regime using a simpler
model than the Hubbard model, which, however, still captures the physics
of strongly correlated electrons. (ii) we want to clarify unambiguously the
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role of the MIT for the occurrence of vertex divergences. For this reason
the Anderson impurity model (AIM) is analysed, which while yielding a non-
trivial description of a strongly renormalized Fermi-liquid, does not show any
Mott transition at T = 0.

The study of the vertex divergences in the AIM will reveal, hence, whether
the MIT plays a crucial role for the divergence lines. Further it will also
clarify the importance of the Kondo scale [12], which marks the onset of
the low-energy Kondo resonance, an essential ingredient of the low-energy
physics of the strongly correlated metallic regime.

In a previous Projektarbeit [50] the first divergence line of the AIM was
already calculated, revealing some unexpected features of the vertex diver-
gences in the AIM. The emergence of a contradiction between these prelim-
inary results and the interpretations given in the most recent publications
[2] has inspired this Master thesis work. Here, the preceding study has been
extended to the whole phase diagram of the AIM, allowing us to perform
a systematic comparison with the corresponding results from other models.
This way a definite progress in the understanding of the basic mechanisms
controlling the irreducible vertex divergences in correlated systems could be
achieved, providing some clear-cut answers about the validity of the inter-
pretations proposed in the most recent scientific works on this topic.
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Chapter 2

Introduction

In this introductory chapter the theoretical framework used to analyse the
vertex divergences is presented in detail, including precise definitions of the
two-particle quantities under consideration. Subsequently a concise overview
of the recent results presented in the literature concerning the understand-
ing of irreducible vertex divergences in different many-electron models is
given. Afterwards, an explicit definition of the specific Anderson model used
throughout this thesis is provided. Eventually, the physics associated with
the underlying Kondo scale is briefly reviewed, as it is of particular impor-
tance for the interpretation of the subsequent results.

2.1 Formalism

In this work we are interested in phenomena occurring in strongly correlated
systems. These systems are usually very hard to treat, as mean field theories
do no longer apply, or give unsatisfying results. Quite generally, this reflects
in the fact that the expectation value of two operators A and B can no longer
be approximated by a product of expectation values of single operators:

〈AB〉 6= 〈A〉〈B〉 , (2.1)

Nevertheless, powerful methods have been developed in the course of the
last 30 years to make predictions for correlated systems, even for the most
complicated situations, where perturbation theory cannot be used. Among
these we recall the Dynamical Mean-Field Theory (DMFT) [15, 16] and its
cluster [17] and diagrammatic extensions [18, 19, 20, 21, 22]. In DMFT purely
local correlation effects can be taken into account, due to the mapping of the
lattice model treated within DMFT onto an auxiliary Anderson impurity
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model. The treatment of non-local correlations is possible through the DMFT
extensions, but it is not directly related to the work presented in this thesis.

In the following a short introduction to the formalism of quantum many-
body theory on the two-particle level is given, as this provides the formal
framework needed to analyse the irreducible vertex divergences, studied in
this thesis. Note that the quantities defined here are purely local quanti-
ties, which completely describe the local (impurity) physics of the Anderson
impurity model, defined in Sec 2.3.

2.1.1 Basic Definitions

All definitions given in this section are briefly mentioned in [2], and discussed
in great detail in [13, 14]. For a more basic introduction, the reader is advised
to the recent literature on this subject, e.g. [23, 24, 25].

As a starting point the one-particle Green’s function is given [13, 14].

G1,σ1σ2(τ1, τ2) = Gσ(τ1, τ2) = 〈Tτc
†
σ(τ1)cσ(τ2)〉 (2.2)

In the equation given above c†σ(τ) and cσ(τ) correspond to creation and
annihilation operators of a fermion with spin σ created/annihilated at the
imaginary time τ , respectively. Tτ represents the time-ordering operator,
guaranteeing that the operator with the largest time acts first. The thermal
expectation value 1

Z
Tre−βHO is denoted by 〈O〉.

An intuitive picture for the one-particle Green’s function given in Eq. 2.2
is the following: For τ1 > τ2 a hole, created at the time τ2 with spin σ,
propagates through the system, from which it is removed at τ1. Along the
path the hole probes the system, thus, the transition amplitude, given by the
propagator Gσ, contains essential information about the intrinsic physical
processes of the many electron system. The same picture is valid for τ1 < τ2,
only that now an electron is propagating.

On the two particle level, one can also define a (local) Green’s function, see
Eq. 2.4, yet, the object usually examined, which is also of particular interest
in our case, is the (local) generalized susceptibility 1 χσ1σ2σ3σ4(τ1, τ2, τ3, τ4)
defined as:

χσ1σ2σ3σ4(τ1, τ2, τ3, τ4) := G2,σ1σ2σ3σ4(τ1, τ2, τ3, τ4) (2.3)

− G1,σ1σ2(τ1, τ2)G1,σ3σ4(τ3, τ4)

1Generalized here means that, if the four times are taken pairwise identical (e.g. τ1 =
τ2 + 0+, τ3 = 0+), one could directly obtain expressions for the physical susceptibilities
(see Eq. 2.13)
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where G2,σ1σ2σ3σ4(τ1, τ2, τ3, τ4) is given by

G2,σ1σ2σ3σ4(τ1, τ2, τ3, τ4) = 〈Tτc
†
σ1

(τ1)cσ2(τ2)c†σ3(τ3)cσ4(τ4)〉 (2.4)

Exploiting some general symmetries, such as the SU(2) symmetry, the
crossing symmetry and the time invariance of the Hamiltonian, one can
restrict the discussion of generalized susceptibilities to χσσ′(τ1, τ2, τ3) :=
χσσσ′σ′(τ1, τ2, τ3) for σ =↑, ↓ and τ4 = 0. All other spin combinations vanish
or can be extracted exploiting explicit algebraic relations [13, 14].

χσσ′(τ1, τ2, τ3) can be Fourier transformed to Matsubara space in two dif-
ferent ways, which are known as particle-hole (ph) and particle-particle (pp)
notation. The Matsubara frequencies are defined as ν = (2n + 1)πT and
Ω = 2nπT , where ν denotes a fermionic and Ω a bosonic Matsubara fre-
quency. Let us state already at this point that for all calculations performed
throughout this thesis, and for those in the literature which are presented
in Sec. 2.2, Ω will be set to zero. This is done to perform comparisons of
the results presented in this thesis to results of the literature, on one hand,
but also because the irreducible vertex divergences appear, systematically, at
lower interaction values for Ω = 0, compared to cases for Ω 6= 0. Yet, for the
sake of generality, in this section Ω is still included in the definitions given
and set to zero in the following sections.

The two notations (ph) and (pp) are depicted in Fig. 2.1 (note that ω
corresponds to Ω in our notation). Physically they describe the process of
an electron scattering with a hole (ph-notation), see the left panel of Fig. 2.1,
or two electrons scattering with one another (pp-notation), depicted in the
right panel of Fig. 2.1. Summing the corresponding energies of the left and
right sight of the diagrams, keeping in mind that holes are associated to
negative energies, one finds that the transferred energy is equal to Ω for both
notations.

Figure 2.1: Left panel: particle-hole notation. Exploited to describe the scattering

process of a hole and a particle. Right panel: two particles scattering with each

other. In both cases the energy Ω is transmitted during the process (in our notation

ω is equal to Ω). Taken from [13].

In the following equation the definition of the Fourier transformed gener-
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alized susceptibility in ph-notation, χνν
′Ω

ph,σσ′ , is given [13, 14].

χνν
′Ω

ph,σσ′ =

β∫
0

dτ1dτ2dτ3 e
−iντ1ei(ν+Ω)τ2e−i(ν

′+Ω)τ3

× [〈Tτc†σ(τ1)cσ(τ2)c†σ′(τ3)cσ′(0)〉 (2.5)

− 〈Tτc†σ(τ1)cσ(τ2)〉〈Tτc†σ′(τ3)cσ′(0)]

The corresponding generalized susceptibility in pp-notation can be ob-

tained from the one in Eq. 2.5 by a frequency shift, namely χνν
′Ω

pp,σσ′ = χ
νν′(Ω−ν−ν′)
ph,σσ′ .

For the sake of conciseness, we restrict ourself to the ph case in the following.
Let us also state here the relation of the susceptibility given here to the local
physical susceptibility, given by

χphysph,σσ′ =
1

β2

∑
νν′

χνν
′Ω=0

ph,σσ′ (2.6)

The susceptibility given above can be split into a part accounting for the
independent propagation of the two particles, the so called bubble term, and
a part containing all vertex corrections. This yields the following relation
[13, 14] :

χνν
′Ω

σσ′ = χνν
′Ω

0 δσσ′ − 1

β2

∑
ν1ν2

χνν1Ω
0 F ν1ν2Ω

σσ′ χν2ν
′Ω

0 (2.7)

In Eq. 2.7, χ0 corresponds to the bubble term, which is given by a product
of two Green’s functions:

χνν
′Ω

0 = −βGσ(ν)Gσ(ν + Ω)δνν′ (2.8)

F ν1ν2Ω
σσ′ , denoted by F in the following, represents the vertex corrections to

the generalized susceptibility, i.e., it comprises all possible scattering events
between the two particles that propagate through the system. Diagram-
matically, it corresponds to all connected two-particle diagrams, which can
be further classified in terms of their two-particle reducibility [13, 14]: One
can distinguish between fully irreducible and reducible two-particle diagrams.
In this context reducibility means that the two-particle diagram falls apart,
when cutting two internal Green’s function lines. This is the natural ex-
tension of the concept of reducibility from the one-particle level to the two-
particle case, discussed here 2. Fully irreducible two-particle diagrams do not

2We recall that at the two-particle level all connected diagrams (i.e. all those belonging
to F ), are - per construction - always one-particle irreducible.
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fall apart when cutting two internal Green’s function lines.
Reducible diagrams can be found in different ways, as Fig. 2.2 shows,

where a generic reducible two-particle diagram is shown. Here the outer
legs 1 and 3 represent outgoing particles, whereas 2 and 4 denote incoming
particles. In Fig. 2.2, the outer legs 1 and 2 are disconnected from 3 and 4
by cutting two internal lines. Of course one may also think of other possible
combinations. This leads to the following definitions: If the outer legs 1
and 3 are separable from 2 and 4, the diagram is called particle-particle
reducible. In the specific situation depicted in Fig. 2.2 the diagram is particle-
hole longitudinal (ph) reducible. The remaining possibility of separating 1
and 4 from 2 and 3 is defined as particle-hole transverse (ph) reducible.

Figure 2.2: A generic two-particle diagram reducible in the longitudinal particle-

hole channel, as it can be split by cutting the two internal Green’s function lines

a and b. 1 and 3 denote outgoing particles, whereas 2 and 4 represent incoming

ones. Taken from [13].

Note that a two-particle diagram is either fully-irreducible or reducible
in one of the channels defined above. This enables one to write down an
exact relation for classifying the two-particle diagrams, which is known as
the parquet equation [26]. This is depicted in Fig. 2.3, where Φρ denotes the
reducible part in the corresponding channel ρ (pp, ph or ph) and Λ the fully
irreducible part.

From this classification it easily follows that one can express the contribu-
tions of F in respect of a specific channel, i.e. F = Γρ+Φρ. Here ρ represents
the desired channel (ph, ph or pp) and Γρ all diagrams that are irreducible
in this specific scattering channel ρ.

Γρ, the irreducible vertex, is the crucial object of interest for this thesis.
Hitherto, we have considered the definition for the ”spinless” case. Yet, if
the spin is explicitly considered, specific spin combinations are of particular

7



Figure 2.3: The parquet equation, an exact relation for the connected two-particle

diagrams, depicted in an algebraic notation, with a low order diagrammatic exam-

ple for each class. Taken from [13].

importance, which are given below

Γνν
′Ω

c = Γνν
′Ω

ph,↑↑ + Γνν
′Ω

ph,↑↓ c = charge channel (2.9)

Γνν
′Ω

s = Γνν
′Ω

ph,↑↑ − Γνν
′Ω

ph,↑↓ s = spin channel (2.10)

Γνν
′Ω

pair = Γ
ν(Ω−ν′)Ω
pp,↑↓ − Γνν

′Ω
pp,0 pair channel (2.11)

Γνν
′Ω

pp,↑↓ = Γ
νν′(Ω−ν−ν′)
ph,↑↓ (2.12)

and hereinafter compactly denoted by r in the case of the charge, the spin
and the pair channel. The particle-particle up-down channel will always be
explicitly stated. They represent the channels where fluctuations related to
physical processes can occur. Note that for χνν

′Ω
ph,σσ′ and F the same relations

hold. Let us also state here the relation of χνν
′Ω=0

c to the physical local charge
susceptibility, given by [9]

χch =
1

β2

∑
νν′

χνν
′Ω=0

c (2.13)

Γr is connected to objects introduced so far by the Bethe-Salpeter equa-
tion, given in the following [2]

± χνν′Ωr = χνν
′Ω

r,0 −
1

β2

∑
ν1ν2

χνν1Ω
r,0 Γν1ν2Ω

r χν2ν
′Ω

r (2.14)

The + sign corresponds to the charge and spin channel, − to the pair one
3. Eq. 2.14 is depicted in a diagrammatic way in Fig. 2.4, where it naturally
occurs that the Bethe Salpeter equation can be viewed, to some extent, as
the two-particle analogon of the Dyson equation.

3The corresponding Bethe Salpeter equation of the particle-particle up-down channel
can be found in the appendix of [13, 14].
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Figure 2.4: Bethe Salpeter equation depicted diagrammatically where the blue

double lines represent the Green’s function. Taken from [2].

2.1.2 Divergences of the Irreducible Vertex

When considering two-particle vertex functions (which are matrices in fre-
quency/momentum space) a variety of divergences can occur (in fact, working
with matrices gives more ”freedom”, than in the case of the self-energy). It
is important, then, to discuss first of all some general features of the vertex
divergences and their connection to the work presented in this thesis.

All vertices defined in the previous section (F,Γ,Λ) can diverge. For in-
stance, this is the case for the full vertex F , which is defined above as the
representation of all connected two-particle diagrams. This divergence takes
place along the diagonal of F , if expressed as a matrix of the fermionic Mat-
subara frequencies. The diagonal elements of this matrix are proportional to
U2 times the physical susceptibility, containing, thus, two-particle reducible
processes. Hence, such a divergence of F is connected to a physical phase
transition.

Here, however, we are interested in the investigation of the more subtle
irreducible vertex divergences, i.e. divergences of Γ in a given channel. In-
terestingly, in such a case, the full vertex F does not diverge. This feature
is depicted in Fig. 2.5, which shows a DMFT calculation for the Hubbard
model for two interaction values, lower and higher than the corresponding
interaction value where the irreducible vertex divergence takes place. In the
first row F is depicted showing no divergence. Γc on the other hand, depicted
in the next row, displays a low-frequency divergence. Due to the fact that
Γc diverges but F stays finite Λ has to diverge as well, to compensate for the
divergence of Γc. This can be seen in the last row of Fig. 2.5.

One can analyse the onset of irreducible vertex divergences from two
different perspectives, namely (i) by considering the inversion of the Bethe-
Salpeter equation or (ii) through a functional derivative of the self-energy
functional, as it will be explained in detail in the following [2].

Inverting the Bethe Salpeter equation, here given in a matrix represen-
tation (indicated by the bold characters), leads to the following expression.
Note that this short part was already discussed in a preceding Projektarbeit
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Figure 2.5: First row: the (local) full vertex F νν
′Ω=0 of the Hubbard model, de-

picted in a Matsubara frequency density-plot, obtained from a two-particle DMFT

calculation. F shows no particular features across this low-frequency divergence

of Γc, which is depicted in the second row. To compensate for the divergence, i.e.

for F to stay finite, Λ also shows a low-frequency divergence. Taken from [2].

[50] in great detail, but as this is of high relevance for this work, it is given
here again.

± Γr = β2
(

[χr]−1 − [χr,0]−1
)

(2.15)

Note that Ω is now set to 0 and omitted hereinafter, as discussed in the
section above.

From Eq. (2.15) it can be easily seen that, although we are working in
Matsubara frequency space, divergent contributions in Γr can indeed arise
from a singular generalized susceptibility χr, while χr,0 does typically not
pose any problem, being merely a product of two Green’s functions 4.

In Eq. (2.16) the spectral representation of the generalized susceptibility
is given. λi is the eigenvalue and Vi,ν the corresponding eigenvector. From

4For the case of ν →∞ the Green’s function will be equal to zero, inducing a singular
χr,0, which is of course never reached in our numerical calculations. Also one might think
of a zero of the Green’s function at frequency zero in the Mott insulating phase, however
this could only be seen in a calculation at T = 0.
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Eqs. (2.15) and (2.16) one can easily understand, that a divergence in Γr

corresponds mathematically to a singular (i.e. vanishing) eigenvalue of χr.

[χr]−1
νν′ =

∑
i

(Vi,ν′)
∗(λi)

−1Vi,ν , (2.16)

Γr diverges, if one or more λi = 0 for i = k1, k2, .... The way how
the vanishing on an eigenvalue λkj leads to divergent contributions in Γr is
connected to the frequency structure of the corresponding eigenvector Vkj ,ν .
Specifically, if the eigenvector is localized in frequency, e.g. a combination
of delta functions, the divergence in Γr can only be observed at frequencies
for which Vkj ,ν 6= 0 holds. This means that for a finite set of frequencies D a
local divergence of Γr takes place [2].

In the other case of Vk,ν 6= 0 for all frequencies, Γr diverges globally.
This means that two different kinds of irreducible vertex divergences can

be expected.

Luttinger Ward formalism

The other possibility of treating irreducible vertex divergences is to extract
the irreducible vertex function as the functional derivative of the self-energy
functional with respect to the Green’s function, in the context of a very
general theoretical formalism, the Luttiger-Ward formalism [27, 28, 29].

In this framework, the static and dynamic properties of a system of cor-
related electrons can be calculated by using the so called Luttinger-Ward
functional Φ [29]. This is related to the grand potential, from which, in turn,
thermodynamical (static) properties can be derived. Further, the following
relation holds

β
δΦ[G]

δG
= Σ[G] , (2.17)

with Σ[G] = Σ if G is exact, relating Φ to dynamic properties of the sys-
tem. The Luttinger-Ward functional Φ[G] is unique, i.e. it only depends on
the interaction term of the Hamiltonian. This in turn means that for several
models, such as the Hubbard model and the Hubbard atom the functional is
the same. The problem is that Φ[G] can not be obtained in a closed form.
It can be, however, calculated by a diagrammatic weak-coupling perturba-
tion expansion as the limit of an infinite series of skeleton diagrams [29], or
non-perturbatively using a functional-integral approach as proposed by [28].

The Luttinger-Ward functional came to great popularity in the field of
quantum many-body physics, because it could be shown that the so called
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”Φ”-derivable approximations automatically fulfill several macroscopic con-
servation laws, where Φ-derivable means that a given (approximative) expres-
sion for the Luttinger-Ward functional is the starting point for calculating
simultaneously one- and two-particle quantities (i.e., both Σ and Γr) [30].

For our purposes, however, the important aspect is that the Luttinger-
Ward formalism can also be used to calculate Γr, as the functional derivative
of the self-energy functional Σ[G] with respect to G. Yet, as we are dealing
with functional derivatives, it is in principle necessary to introduce symme-
try breaking fields to perform such a calculation. This of course prevents
the possibility to obtain Γr analytically for many cases, such as the Hubbard
model and the Anderson impurity model. In very simple cases of disordered
systems, though, the introduction of symmetry breaking fields is not nec-
essary, enabling the calculation of the vertex function analytically. More
precisely, for these simpler systems, a normal derivative of Σ with respect
to the Green’s function can be done by exploiting the possibility of writing
analytic expressions for Σ in terms of G [2].

Γνν
′Ω=0

σσ′ = β
δΣσ(ν)

δGσ′(ν ′)
(2.18)

We should, however, stress that, although the latter is possible also for
the atomic limit case, the simplification of neglecting the introduction of
symmetry breaking fields is no longer valid.

2.2 Overview of the recent developments

In this section a short overview of the recent developments and results con-
cerning the irreducible vertex divergences for various models is provided. In
this respect it is useful to start from a Hamiltonian, encoding all models
under consideration [2].

H = −
∑
〈i,j〉,σ

tσc
†
iσcjσ +

∑
i,σ

εic
†
iσciσ + U

∑
i

ni↑ni↓ (2.19)

The first term is the nearest neighbour hopping term with tσ being the
hopping amplitude between nearest neighbouring lattice sites i and j for the
electron species with spin σ =↑, ↓. The second term contains a random ex-
ternal potential εi and the last term is an instantaneous and local interaction
term with a coupling strength parameter U .
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2.2.1 Disordered Models

As a first step, disordered models, such as the Binary Mixture and the
Falicov-Kimbal model are analysed [2, 31].

The Binary Mixture model is realized by making the following choice of
parameters in Eq. 2.19: t↑ = t↓ = t, U = 0 and εi = ±W/2. This means
that the electrons can hop between neighbouring lattice sites but there is
no interaction among them. At the same time, the randomly distributed
potential εi acts, to a loose extent, as a strongly simplified interaction term.

As already discussed in Sec. 2.1, for simple situations the irreducible ver-
tex can be obtained analytically as a functional derivative of the self-energy
with respect to the Green’s function [2].

Following [2], and exploiting the semi-analytical expression of the DMFT
Green’s function available for the Binary Mixture case, one obtains a single
valued self-energy functional of the non-interacting Green’s function G0, but
interestingly a multivalued functional of the Green’s function G.

Σ±[G] =
±
√

1 +W 2G2 − 1

2G
and Σ[G0] =

W 2

4
G0 (2.20)

Note that the frequency argument of the Green’s function is omitted.
A multivalued self energy functional is a very surprising result, as will be
discussed in the following section.

The next step is the calculation of the irreducible vertex, which for this
case is irreducible in the charge channel (for the Binary Mixture case the
charge channel is defined as Γc = Γ↑↑).

Γ
νν′(Ω=0)
c,± = βδνν′

√
1 +W 2G2 ∓ 1

2G2
√

1 +W 2G2
(2.21)

Note that throughout this overview and the rest of the thesis the bosonic
transport frequency Ω is set to zero, as already explained in Sec. 2.1. The ±
in Γc reflects a multivaluedness of Σ[G].

In fact, it is easy to see that as soon as 1+W 2G2 = 0 holds, the irreducible
vertex diverges. Inserting the explicit expression for the Green’s function into
this condition, one can identify a unique energy scale, underlying all vertex
divergences, as

ν∗ =
2W 2 − 1

4W
. (2.22)

As soon as a fermionic Matsubara frequency ν is equal to this scale, the
condition 1 + W 2G2 = 0 will hold and the vertex, given in Eq. 2.21, will di-
verge at exactly this frequency. This also means that the vertex divergences
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in the Binary Mixture model are frequency localized divergences. By per-
forming this analysis for different temperatures and disorder strengths, one
finds divergence lines, along which the irreducible vertex diverges. The corre-
sponding phase diagram is depicted in Fig. 2.6, and shows a rather non-trivial
situation: At T = 0 the divergence lines accumulate at a disorder strength
(W = 1/

√
2) which is lower than the value of the ”Mott” metal-insulator

transition of this model (W = 1) [2].

Figure 2.6: Phase diagram of the Binary Mixture model, depicting divergence

lines, along which the irreducible vertex in the ”charge” channel diverges. Re-

markably, these lines accumulate well before the Mott transition of the Binary

Mixture model. In the inset the energy scale ν∗, underlying all the divergences, is

shown. Taken from [2].

Due to the existence of a single energy scale ν∗ and the local frequency
structure of the above given relations, it is possible to identify each diver-
gence line with a single Matsubara frequency (marked by the indices in the
boxes in Fig. 2.6). This can be easily understood, if one imagines to decrease
the temperature at a fixed W . The first Matsubara frequency to fulfill the
relation (2n − 1)πT = ν = ν∗ will be the one with n = 1. Decreasing the
temperature further, other divergences corresponding to the fulfilment of the
condition (2n− 1)πT = ν = ν∗ for progressively larger (integer) values of n
are found. This evidently implies that (i) infinitely many divergences take
place and that (ii) the divergence lines can be rescaled by a factor (2n− 1),
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which let them collapse onto a single line.
The situation described here is quite similar to the slightly more complex

case of the Falicov Kimball [31] model. Here, one spin species is frozen and
hence, the corresponding electrons act as ”scattering centers” for the mobile
spin-species electrons. This can be realized in Eq. 2.19 if the parameters are
chosen such that t↑ = t, t↓ = 0, the random potential εi is put to zero, and
U > 0.

Starting from the DMFT Green’s function for the mobile electrons, which
is exactly the same as in the Binary Mixture case, one finds again a multival-
ued self-energy functional. However, at the two-particle level, the differences
between the two models emerge, as in the Falicov Kimball case the external
scattering potential is not assigned from the beginning, but it is induced by
the immobile electrons, which are in thermal equilibrium with the mobile
ones. This yields a richer structure of the vertex function, as given in the
following, and a new kind of vertex divergence [2].

Γ
νν′(Ω=0)
c,± = βδνν′

√
1 + U2G2(ν)∓ 1

2G2(ν)
√

1 + U2G2(ν)
(2.23)

+β
U2

4
C±

1√
1 + U2G2(ν)

1√
1 + U2G2(ν ′)

where

C± =
1

1−K±
, K± =

∑
ν

√
1 + U2G2 ∓ 1

2
√

1 + U2G2
(2.24)

Comparing the result for the irreducible vertex function in the charge
channel with Eq. 2.21, one immediately realizes that the first term is exactly
the same as in the Binary Mixture case for U = W . This of course implies
that a similar scenario as above is realized, i.e. a single energy scale ν∗

exists causing infinitely many divergence lines along which the vertex diverges
locally at the Matsubara frequency which is equal to the energy scale.

The second term, which is originated by taking the functional derivative
with respect to the thermally averaged density of the immobile electrons, see
[2], diverges also where the first kind of divergences take place, but one can
also see that for K± = 1 the coefficient C± diverges. This leads to a global
divergence taking place at all Matsubara frequencies. In this case, no single
energy scale can be identified and following the discussion made in Sec. 2.1,
it can be seen that the corresponding singular eigenvectors have finite weight
at all Matsubara frequencies.
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2.2.2 Atomic Limit of the Hubbard Model

After discussing disordered models we now turn one step closer to the Hub-
bard model by analysing the atomic limit of the latter. For the Hubbard
atom only two energy scales are of importance, i.e. the interaction U and
the temperature T: In Eq. 2.19 the hopping amplitude is set to zero as well
as the potential εi.

Although the one-particle Green’s function is similar to the Binary mix-
ture/Falicov-Kimball one, the divergences of Γ can no longer be calculated
by the functional derivative procedure used above for the simpler cases of
disordered models. As discussed in Sec. 2.1, the alternative is to analyse the
eigenvalues of the generalized susceptibility, which for the Hubbard atom is
known analytically [2, 13, 14]. χνν

′
c consists of three contributions: (i) de-

pending on ν2 and ν ′2, (ii) proportional to δνν′ and (iii) depending on δν(−ν′).
By applying χνν

′
c to an antisymmetric eigenvector of the form

Vc,ν̄(ν) =
1√
2

[δνν̄ − δν(−ν̄)] , (2.25)

all symmetric contributions will disappear, simplifying the extraction of
the eigenvalues of the remaining contributions. Note that the frequency
structure of the antisymmetric eigenvector in Eq. 2.25 is completely local-
ized, as it only consists of two delta functions evaluated at a fixed fermionic
frequency ν̄. The extraction of eigenvalues can be further simplified by us-
ing symmetry relations, which is presented in detail in [2]. Here, only the
condition for a vanishing of an eigenvalue is recalled:

ν̄ =

√
3

2
U , (2.26)

where ν̄ is the fixed fermionic frequency.
This defines an energy scale ν∗ implying similar properties of the vertex

divergences and the divergence lines as for the Binary Mixture and for the
first kind of divergences of the Falicov Kimball model. The difference is the
linear relation with U which causes the lines to accumulate at the origin.
This difference reflects the missing hopping term in the Hubbard atom and
the corresponding appearance of a spectral gap down to U = 0+. Also note
that the limit of large U for W = U in Eq. 2.22 is not compatible with the
results found for the Hubbard atom (ν∗BM(W = U � 1) = U/2). The phase
diagram for the Hubbard atom is given in Fig. 2.7, displaying the divergence
lines corresponding to the energy scale ν∗ in red color.

In Fig. 2.7, a second kind of divergence is also depicted. As in the case of
the second kind of divergences of the Falicov Kimball model these divergences
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take place at all Matsubara frequencies, and, thus, no single energy scale
can be found. Interestingly, along the orange lines in Fig. 2.7 not only the
irreducible vertex in the charge channel but also Γpair diverges globally for the
Hubbard atom as opposed to the Falicov Kimball model. The corresponding
singular eigenvector is given in [2].
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Figure 2.7: Phase diagram of the Hubbard atom displaying two different kinds

of irreducible vertex divergences. Depicted in red are the purely local divergences

in the charge channel, which correspond to the energy scale ν∗ =
√

3
2 U . Along

the orange lines, instead the vertex diverges globally in the charge and the pair

channel simultaneously. Taken from [2]

2.2.3 Hubbard Model

After analysing simpler models, where the irreducible vertex divergences are
accessible analytically, via a functional derivative for disordered models or
the analysis of the eigenvalues of the analytically known generalized suscep-
tibility in the case of the Hubbard atom, we now discuss the case of the
Hubbard model, or, more precisely its DMFT solution. For the Hamilto-
nian in Eq. 2.19, this implies the following parameter choice: t↑ = t↓ = t,
εi = 0 and U > 0. Due to the complexity of the Hubbard model the vertex
divergences are to be studied numerically in DMFT, by extraction of the
eigenvalues of the generalized susceptibilities.
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In Fig. 2.8 the DMFT results for the half-filled Hubbard model are de-
picted. Along the red divergence lines the irreducible vertex in the charge
channel diverges, along the orange lines a simultaneous divergence in the
charge and the particle-particle up-down channel takes place. The dashed
red and orange line in Fig. 2.8 represent the corresponding results for the first
red and orange line of the Hubbard atom. Note that the ratios of U/T for
all divergence lines of the Hubbard atom are also listed on the right side of
the figure. The blue line corresponds to the metal-insulator transition of the
Hubbard model, as predicted by DMFT.
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Figure 2.8: Phase diagram of the Hubbard model showing the divergences of

the irreducible vertex functions. Along the red lines the charge channel diverges,

whereas along the orange lines a simultaneous divergence in the charge and the

particle-particle up-down channel takes place. The blue line corresponds to the

metal-insulator transition, the dashed lines and values listed on the right represent

the corresponding results obtained for the Hubbard atom. Taken from [2]

Studying this specific manifestation of non-perturbative physics, one no-
tices that for high-T and large U the results of all considered models have
qualitatively the same behaviour. The divergence lines of the Hubbard model
can even be interpreted quantitatively in terms of the results of the Hubbard
atom in this parameter regime. The lines show a linear behaviour, the eigen-
vector has a localized frequency structure and from this comparison, and in
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particular, from the existence of infinitely many divergence lines in the Hub-
bard atom (see the ratios U/T on the right side in Fig. 2.8), it logically follows
that infinitely many divergences must be expected also in the Hubbard model
[2].

Yet, following the divergence lines towards lower temperatures significant
deviations from the Hubbard atom behaviour are found. At first, the lines
show a non-linear behaviour, qualitatively similar as that observed in the
Binary mixture and Falicov Kimball model. This might be ascribed to small
corrections stemming from the finite hopping value. Still, this comparison
may be misleading, due to an important difference rooted in the correspond-
ing eigenvectors. As it can be seen in Fig. 2.9, where the corresponding sin-
gular eigenvectors of the first red divergence line for different temperatures
for the Hubbard model are shown, the frequency structure of the eigenvector
changes drastically. With decreasing (U,T) the frequency structure of the
eigenvector broadens, an effect that was absent in the case of the disordered
models.

Reducing the temperature further, by following the divergence lines the
strongly correlated metallic regime is reached. Here, the divergence lines
show a so far unobserved behaviour. Not only do the divergence lines no
longer accumulate at T = 0, they also show a re-entrance, i.e. a bend-
ing towards higher interaction values, as if the perturbative low-temperature
regime were to some extent ”protected” against this non-perturbative man-
ifestation. This is supported by the fact that a Kondo resonance, which
enables a Fermi-liquid description in terms of low-energy quasiparticle exci-
tations, appears at low temperatures, as opposed to the models considered
so far [2]. Further it is inferred in [2] that the Mott transition plays a crucial
role for the shape of the divergence lines.

In a recent work [5] irreducible vertex divergences were also found in a
DCA calculation of the two-dimensional Hubbard model, which demonstrates
that this phenomenon is not merely an artefact of DMFT 5.

To summarize, the analysis recapitulated so far shows the existence of
infinitely many divergence lines in the phase diagram of many-body model
systems. For disordered models and the Atomic Limit they could be related
to a single energy scale ν∗, governing the shape of the divergence lines and the
frequency structure of the divergences of Γc (for the first kind of divergences of

5While this topic is beyond the scope of this thesis, we note here that the inclusion of
non-local correlations determines in general a loss of metallic coherence, which is reflected
in a shift of the divergences towards lower interaction values. Moreover, in the case of
exact diagonalization (see Sec. 3.2), it has been shown that the momentum structure of
the divergences and of their singular eigenvectors become as (if not more) important as
their frequency structure.
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Figure 2.9: Eigenvectors of the first red divergence line of the Hubbard model

for different temperatures expressed in the basis of the Matsubara index n. In red

the result for the highest temperature is depicted, where the eigenvector shows

a localized frequency structure as is the case for the eigenvectors of the atomic

limit. By reducing the temperature the components of the eigenvector at an in-

creasingly large number of Matsubara frequencies gain finite weight, leading to a

”broadening” of the frequency structure of the eigenvector. Taken from [2]

the Falicov Kimball model and the Hubbard atom). In particular, for models
with a metal-insulator transition, it turned out that these divergences take
place always before the transition, in the (correlated) metallic phase.

Additionally, a second kind of divergence was found, which is not related
to a single energy scale, as this takes place at all Matsubara frequencies
simultaneously (a global divergence of the irreducible vertex). This second
kind of divergences in general appears always after the one of the first kind.

2.2.4 Implications at the one-particle level

Returning to the discussion of Eq. 2.20 of the Binary Mixture model, where
a mulivaluedness of the self-energy functional, if expressed as a functional of
the interacting Green’s function G, was observed , we will discuss now the
corresponding implications at the one-particle level.
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In Fig. 2.10, the self-energy for two different values of the disorder strength
W is depicted. The left panel shows the situation for the temperature
T = 0.002 and W = 0.65 < W̃ = 1/

√
2, with W̃ being the disorder strength

value at which the vertex divergences accumulate at T = 0, meaning that at
this W no divergence has taken place yet. The calculations of [2] have shown
that, for these parameters, the physical self-energy is always given by one of
the solutions of Eq. 2.20, Σ+, which is agreeing with the predictions of per-
turbation theory, as opposed to Σ− which has a non-perturbative asymptotic
behaviour. Conversely, for disorder strengths W > W̃ , the situation is dif-
ferent, as it can be seen in the right panel of Fig. 2.10. In the low-frequency
range the physical self-energy is given by Σ− and changes abruptly at the
energy scale ν∗ to the perturbative Σ+ branch. Quite remarkably, at the
frequency where this change of branches of the physical self-energy occurs,
i.e. at the energy scale ν∗, the imaginary part of the one-particle Green’s
function as a function of Matsubara frequencies displays a minimum. From
this it evidently follows that the occurrence of vertex divergences and the
multivaluedness of the self-energy is closely related to the spectral gap for-
mation, at least for the Binary Mixture model [2]. We also note that, in this
specific case, the abrupt changing of branches can also be observed for the
two-particle quantities, as discussed in [2].

After considering the implications of vertex divergences at the one-particle
level for the Binary Mixture model, we now turn to the case of the Hubbard
atom.

In a recent, pioneering, publication by Kozik [6] it was observed that
diagrammatic Monte-Carlo algorithms, which sum skeleton diagrams of the
interacting Green’s function G, run into unphysical solutions, although the
diagrammatic series has converged (in the work the case of the Hubbard atom
was explicitly considered). Mathematically, this indicates that only a ”sim-
ple”, but not an ”absolute”, convergence of the diagrammatic series could
be found. This poses, evidently, a serious problem to these methods, as no
criterion was identified to decide whether the diagrammatic series converges
to the physical solution or not.

At the same time, this ambiguity can be recasted in the statement that
the mapping G0 → G is not invertible for interacting systems, as originally
anticipated. On a more theoretical level this is a discomforting result as in
the Luttinger Ward formalism the existence of a unique mapping is somehow
implicitly assumed. Thus, a lack of uniqueness might lead to an ill-defined
Luttinger Ward functional, which, in turn, is crucial for guaranteeing that
the chosen approximation is ”conserving”, i.e. consistent with fundamental
physical conservation laws [30].

More recently, Gunnarsson et.al. [9] could demonstrate rigorously the
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Figure 2.10: Imaginary part of the physical self-energy shown together with the

two solutions of Eq. 2.20 for T = 0.002 and two different values of the disorder

strength W . Σ+ corresponds to a solution of Eq. 2.20, agreeing with perturbation

theory, as opposed to Σ−. In the left panel, the disorder strength is lower than W̃ ,

implying that no divergence has taken place so far. Here, the physical self-energy

corresponds for all frequencies to the perturbative one, i.e. Σ = Σ+. For W > W̃

this is no longer the case: For low frequencies the physical self-energy is given

by Σ− changing abruptly to Σ+ at the energy scale ν∗, which is related to the

vertex divergences. The insets show the imaginary part of the Green’s function as

a function of Matsubara frequencies, which has a minimum exactly at ν∗. Taken

from [2]

connection of this ”phenomenon” to the irreducible vertex divergences de-
scribed above. In fact, the study in [9] has shown that infinitely many unphys-
ical G0 solutions exist in the functional space of the interacting model, which
for specific parameters cross the physical one. This means that for a given
temperature T and interaction U the two functions G0

unphys(ν) and G0
phys(ν)

are exactly equal for all Matsubara frequencies. At such a crossing an irre-
ducible vertex divergence takes place, which could be proven analytically [9]
(see supplemental material, section A). Moreover, the functional dependence
on U at the crossing determines the frequency structure of the corresponding
singular eigenvector and thereby if the vertex divergence is global or localized
in frequency. The situation is depicted in Fig. 2.11, where, in the left panel,
the double occupancy (TrGΣ) and in the right panel the crossing of physical
and unphysical solutions is depicted. For the red lines at a single frequency
the crossing of the physical and unphysical Green’s functions is linear with
U , whereas at all other frequencies it is quadratic with U . This can be seen
in the right panel of Fig. 2.11, especially in the inset showing the red lines.
The one frequency where the linear crossing is observed is also the frequency
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where the singular eigenvector has finite weight. In the case of the orange
lines the crossing happens for all frequencies with the same behaviour. In the
left panel of Fig. 2.11 it can be seen that double occupancies calculated with
unphysical Green’s functions cross the physical one for specific parameters.
The unphysical double occupancies increase with higher U . The crossing of
these solutions bears, evidently, the danger for an algorithm, based on the
resummation of dressed diagrams, to run into an unphysical solution. The
grey lines in the left panel correspond also to unphysical Green’s functions,
which however never cross the physical one.

As for the physical implications of the essentially formal problem dis-
cussed in this section, let us note here: The authors of [9] have managed to
relate the irreducible vertex divergences of the Hubbard model to the be-
haviour of the local physical charge susceptibility χch, defined in Eq. 2.13,
which obviously decreases as the Mott transition is approached. By a pro-
jection into the eigenvalue basis it becomes clear that the decrease of χch
is originated by several initially positive eigenvalues changing sign, and by
that causing a vertex divergence each time. This behaviour is also shown
in Fig. 2.12, where it is evident that without the negative eigenvalues, χch
would saturate at a value too large in the Mott insulating phase.

Figure 2.11: Left panel: Double occupancy expression, for the Hubbard atom,

where Σ is calculated with the physical (black solid line) or with unphysical G0 (red

and orange lines). It is obvious that this observable should decrease with increasing

U , which, however, happens only for the physical solution. For specific parameters

the unphysical and physical solutions cross exactly where also a divergence of

the irreducible vertex takes place. Right panel: Imarinary part of the unphysical

and physical Green’s function G0 crossing each other for a specific U , where the

dependence on U at the crossing determines the frequency structure of the vertex

divergence. Taken from [9].
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Figure 2.12: Results for χch of a DMFT calculation for the half-filled Hubbard

model, where the internal frequency sum is projected into the corresponding eigen-

basis. Evidently, at large U the negative eigenvalues cause the decrease of χch,

leading to the expected strongly suppressed value in the Mott insulating phase.

Taken from [9].

2.3 Anderson Impurity Model

The Anderson impurity model (AIM) [32] is one of the most prominent mod-
els in solid state physics. Originally introduced to describe the physics of
local magnetic moments, eventually applied to study the Kondo effect [12],
the AIM nowadays has become a crucial part of the DMFT scheme.

The AIM describes a single impurity site embedded in a non-interacting
bath of electrons, which can hybridize onto/from the impurity site. In the
case of interest for this work, the impurity site has a single non-degenerate
level, resulting in a doubly occupied impurity site at most.

The Hamiltonian of the Anderson impurity model [33] is given in Eq.
2.27, and depicted in a simplified way in Fig. 2.13, for the specific case con-
sidered here.

H =
∑
σ

εdc
†
d,σcd,σ + Und,↑nd,↓

+
∑
k,σ

εkc
†
k,σck,σ (2.27)

+
∑
k,σ

(Vkc
†
d,σck,σ + V ∗k c

†
k,σcd,σ)
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In the first line the impurity site terms are given, where εd corresponds
to the energy of the impurity level and U is the local interaction value,
contributing if the site is doubly occupied. c†d,σ/cd,σ creates/annihilates an

electron on the impurity site and nd,σ is equal to c†d,σcd,σ. The second line
describes the energy of the non-interacting bath of electrons with εk being
the dispersion relation, while in the third line the hybridization onto/from
the impurity site (Vk/V ∗k ) is given.

Figure 2.13: A simple sketch of the Anderson Impurity model, depicting the basic

elements of the Hamiltonian in Eq. 2.27 - a box-shaped density of states (grey),

hybridization onto/from the impurity site from/to the electron bath (blue) and

the local interaction on the impurity site, if doubly occupied (orange).

Depending on the choice of parameters, situations with and without local
magnetic moments can be realized, which is discussed in the subsequent sec-
tion. For this work the parameters are chosen in the following way: The hy-
bridization is taken to be k-independent, i.e. Vk = V and the non-interacting
density of states (DOS) ρ(ε) for the bath electrons is chosen to be box shaped.
The corresponding ρ(ε) is given in Eq. 2.28, where D is the half bandwidth

ρ(ε) =
1

2D
Θ(D − |ε|) (2.28)

The values for the parameters defining the specific model used in the calcu-
lations are listed in Tab. 2.1, and illustrated schematically in Fig. 2.13.

The choice of a box-shaped DOS and a k-independent hybridization en-
sures that no particular features of ρ(ε) or V will affect the study of diver-
gences.
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Parameters Values

half bandwidth D 10
hybridization V 2
interaction U 3-10

Table 2.1: Parameters of the AIM for this work

2.3.1 Local Magnetic Moments

As the following section 2.4 is deeply connected to the physics of local mag-
netic moments, their appearance shall be briefly discussed. Note that for this
section the ground state properties are analysed, hence the temperature is
set to zero.

As a starting point the impurity site, detached from the host metal, is
analysed, i.e. V = 0. In the case we consider here, depicted in Fig 2.14, there
is only one orbital at the impurity site, which can be at most doubly occu-
pied. The empty level has energy 0, the singly occupied, which is degenerate
because of the spin, has the energy εd and the doubly occupied impurity site
has 2εd+U , due to the on-site interaction. It is clear that only the singly oc-
cupied impurity site has a non-zero magnetic moment. The energies, or more
precisely the values of εd and U , can be chosen in a way, for the singly occu-
pied state to be the ground state, which corresponds to a localized magnetic
moment.

Figure 2.14: Isolated interacting impurity with a single orbital. Due to the spin-

degeneracy the impurity site can be at most doubly occupied.

The next step is to analyse a non-interacting (U=0) impurity embedded
in a metallic host (V 6= 0). Due to the hybridization a change in the density
of states is observed. This can be seen by calculating the Green’s functions
of the conduction band and the impurity site, which is discussed in detail in
[33].

More specifically, assuming a flat conduction band and a k-independent
hybridization V , as is the case in this work, the change in the local density
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of states of the impurity site [δρ(ε)] can be obtained easily. This is given by

δρ(ε) =
∆/π

ε2 + ∆2
, (2.29)

where ∆ = πρ0|V 2|. Note that this broadening of the DOS leads to a
renormalization of the specific heat and the magnetic susceptibility, but it
will not give a Curie-Weiss contribution to the magnetic susceptibility.

The final step is to include the on-site interaction at the impurity site
(U 6= 0). For specific parameters, discussed below, the interacting Anderson
impurity model can be mapped onto a s-d model. 6 This model consists of a
Heisenberg exchange interaction between the local moment of the impurity
site and the conduction electrons of the host metal [33]. The Hamiltonian is
given in the following, where Jk,k′ is a coupling constant.

Hs−d =
∑
k,k′

Jk,k′(S+c†k,↓ck′,↑ + S−c†k,↑ck′,↓ + Sz(c
†
k,↑ck′,↑ − c†k,↓ck′,↓)) (2.30)

One can demonstrate that in the parameter regime εd +U � εF , εd � εF
and |εd + U − εF |, |εd − εF | � ∆ the mapping of the interacting Anderson
impurity model onto the s-d model works, which means that a local magnetic
moment exists, and results in an antiferromagnetic exchange interaction, for
details see [33].

In our case, using the values given in Tab. 2.1, the abovementioned con-
strains hold (note that we also impose particle-hole symmetry), as we have:

∆ = πρ0V
2 = π/5 < 1 and εd = −U/2 (2.31)

2.4 Kondo Scale

The full treatment of the Kondo effect and the Kondo problem exceeds the
scope of this thesis, which is why it is summarized here only shortly, focusing
on the specific elements needed in the course of this work. For a thorough
treatment of the Kondo effect and of the Kondo problem, the reader is re-
ferred to the literature, e.g. [33, 34, 35, 36].

In a nutshell, the Kondo effect is a many-body effect which was first
observed in metals with magnetic impurities, in particular in simple metals
containing a small amount of transition metals, i.e. at ”d” impurities [36].

6This mapping is somewhat similar to the one applicable to the half-filled Hubbard
model at strong coupling (U � t), where by projecting out the double-occupied/empty

state one obtains an Heisenberg model with coupling constant J = 4t2

U [33, 35].
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In such systems, a term proportional to − ln(T ) in the electrical resistiv-
ity of the conduction electrons is observed in the low-temperature regime.
Fig. 2.15 depicts schematically such a contribution, which in combination
with the resistivity term stemming from the lattice vibrations (typically
∝ T 5), gives a resistivity minimum. Note that this is merely a sketch, i.e.
ρ and T are plotted in arbitrary units, nevertheless it matches qualitatively
well the behaviour found in realistic cases, e.g. in copper doped with iron
[36].
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Figure 2.15: Resistivity minimum due to the combination of a logarithmic term

increasing with decreasing temperature and the typical phonon term - this is merely

an example ρ and T are given in arbitrary units (ρ∗, T ∗).

The − ln(T ) term appears due to the interaction of the conduction elec-
trons with the localized magnetic moments of the impurities. This was first
explained by J. Kondo in 1964 [12], who showed that second order pertur-
bation theory is sufficient to get logarithmic terms in the resistivity. In fact,
these logarithmic terms stem from spin flip processes, which can be seen if
the problem is analysed using the s-d model, given in Eq. 2.30. In particular,
one of the second order spin flip terms is depicted in Fig. 2.16, where the
dotted line represents the local magnetic moment of the impurity and the
solid line represents a conduction electron. In the scattering process one of
the conduction electrons with wavevector k and spin down (↓) is scattered
to the state k′ ↓ via an intermediate state where the spin of the conduction
electron and the impurity spin are flipped. These processes give rise to a
temperature dependent scattering amplitude, because terms containing fac-
tors like (1− fk′′), describing the probability of an empty intermediate state,
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Figure 2.16: Spin flip processes, second order in the coupling strength J (as-

sumed to be k independent), which are responsible for the temperature dependent

scattering amplitudes, eventually causing the logarithmic terms in the electrical

resistivity. A conduction electron with wavevector k and spin down (↓) is scattered

into an intermediate state k′′ ↑, where the spins of both, the conduction electron

and the impurity are flipped. The conduction electron is then scattered to the

final state k′ ↓.

do not cancel out [33, 35, 36].
After calculating all the scattering amplitudes, and considering a ran-

dom distribution of impurities in the metal, the resistivity of the conduction
electrons amounts to

R(T ) = aT 5 +R0 − cimpR1 ln

(
kBT

D

)
, (2.32)

where cimp represents the concentration of impurity sites in the metal-
lic host [33] and R1 is a factor, containing amongst other constants, the
coupling strength J (assumed to be k independent). We should also note
that the first term in Eq. 2.32 is the resistivity due to the electron-phonon
interaction and the second term is the temperature-independent resistivity
contribution accounting for the scattering of conduction electrons on non-
magnetic impurities. We recall that, as for the latter a spin flip process is
evidently not possible, their low-temperature contribution reduces to a more
standard, constant (R0) behaviour [23, 24]. As a result, calculating the min-
imum of the resistivity R(T ) yields a temperature which weakly depends on

the impurity concentration (Tmin ∝ c
1/5
imp).

Hence, with these findings, the observed resistivity minimum could be
explained as well as the subsequent increase with decreasing temperature.
Yet, it is obvious that the solution in Eq. 2.32 is not universally applicable,
as for T → 0 the logarithmic term diverges, which contradicts the always
finite experimental extrapolated value of the resistivity for T → 0 in these
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metallic systems. Moreover, analogous ”artificial” divergences are also found
in other physical quantities like the magnetic susceptibility or the specific
heat.

From a theoretical point of view, this can be traced back to a breakdown of
the perturbative ansatz. In fact, the challenge of finding a suitable treatment
of the Kondo effect for T → 0, has been known for decades of the last century
as the ”Kondo problem”.

A first idea of summing up the leading logarithmic terms from higher
orders of perturbation theory, carried out by A. A. Abrikosov in 1965 [37],
did not solve the problem, but brought new insights. As it turns out, in this
framework the divergence takes place at a finite temperature for all phys-
ical quantities (resistivity, specific heat and magnetic susceptibility). This
temperature is known as the Kondo temperature, which is given by

kBTK ∝ De−1/2Jρ0 , (2.33)

for the perturbatively treated s-d model (ρ0 is the constant value of a
box-shaped density of states, which was assumed in this case) [33].

Later, Anderson found another way to sum up the leading logarithmic
terms, which is known as the Poor Man’s scaling. This method is a scal-
ing approach which gradually eliminates scattering processes involving high
energy states in the upper and lower band edge, resulting in a reduced band-
width. The reduction is accounted for by a corresponding renormalization of
the coupling strength.

Anderson’s approach works perfectly for the ferromagnetic case. Yet, for
the antiferromagnetic case of our interest, the reduction of the bandwidth
only works down to an energy of the order of kBTK . At this point, the
coupling strength diverges and the approach breaks down.

More advanced approaches, e.g. a non-perturbative renormalization group
method used by Wilson [38], or the Bethe-Ansatz method which gave exact
results [39, 40], were required to gain an accurate description of the non-
perturbative regime for T < TK . Their application eventually yielded a
unified physical picture 7 [33, 35, 36] : For temperatures lower than TK
the impurity spin is gradually screened by conduction electrons. This re-
sults in a reduction of the magnetic moment and eventually the moment
is fully quenched, as the conduction and impurity electrons form a singlet
state, yielding a temperature independent contribution to the resistivity and
a constant contribution to the magnetic susceptibility.

7For a concise review see http://www.scholarpedia.org/article/Kondo effect, by A. C.
Hewson and J. Kondo
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Another important aspect is that for low temperatures all physical quan-
tities can be expressed as universal functions of the energy scale TK , which
clearly shows the intrinsic importance of the Kondo temperature.

Note that the discussions of the Kondo effect and the Anderson impurity
model have been made hitherto in a somewhat historical context, focusing on
the implication of this effect on conduction electrons in metals with magnetic
impurities. In other words, the resistivity of the conduction electrons was
the quantity of interest.

The ”building block” of this intriguing physics, i.e. the spin-dependent
scattering processes occurring at a single impurity site, can of course have a
variety of other applications. We recall, e.g., the resonances induced by the
Kondo effect in quantum dots, which eventually enhance its conductivity,
just the opposite trend compared to the effect in metals with impurities.
In DMFT, the Kondo effect also plays a role: Here however, the impurity
electrons are of relevance, as they mimic the local physics of the lattice system
under consideration. Hence in DMFT, the Kondo effect, leading to a low-
temperature Kondo resonance at the Fermi level, enhances the conductivity
for a fixed interaction strength U.

In the perspective of this Master work, it is intriguing to investigate the
relation of the Kondo scale with the irreducible vertex divergences occurring
in strongly correlated systems. To this end, an analytic expression for the
Kondo scale valid for the single impurity Anderson model and the chosen
parameters is highly desirable, as Eq. 2.33 is only valid for the s-d model
solved using the perturbative ansatz described above.

Unfortunately, the Poor Man’s scaling approach does not work in all
parameter regimes. This is due to the fact, that the Anderson impurity
model also contains charge fluctuations of the impurity site, in contrast to
the s-d model. In some cases, these charge fluctuations are only virtual or
can be treated perturbatively by a scaling approach. For example, if the
impurity levels, i.e. εd and εd +U lie outside the conduction band (εd � −D
and εd + U � D) there are no real charge fluctuations, and a Schrieffer-
Wolff transformation can be safely used to map the Anderson model onto an
s-d model [33]. In this case, the Kondo scale would be given by a similar

expression as Eq. 2.33 with J = U |V 2|
|εd||εd+U | . Charge fluctuations can be taken

into account perturbatively in a scaling approach, if only one impurity level
or both lie inside the conduction band. However, for |εd| and |εd + U | � D
there is almost no renormalization of the parameters U and εd, i.e. the scaling
approach is not applicable. In the most general situation, depending on the
values of ∆, U and εd, charge fluctuations might occur or not and the Kondo
scale will be a complicated function of these parameters.
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A more general treatment can be made using the Bethe ansatz [33]. For
the single impurity Anderson model, this yields an expression for the Kondo
temperature in the case of D � U (assuming a linear dispersion), which
reads

kBTK = 0.4107U
( ∆

2U

)1/2

e−πU/8∆+π∆/2U (2.34)

This is Eq. (6.109) of [33], together with the numerical factor 0.4107, derived
by a comparison with numerical renormalization group results obtained by
Krishna-murthy et al. [41]. Eq. 2.34 will be used for comparing the numerical
results of this Master work with the Kondo temperature.

At this point, it is time to illustrate our original expectation for the
relation of the Kondo scale with the irreducible vertex divergences.

As discussed in Sec. 2.2 in the atomic limit regime, a linear shape of
the vertex divergence lines is found. In the low-temperature intermediate
coupling regime, however, we expect that the Kondo scale will play a crucial
role for the behaviour of the divergence lines, especially governing the T → 0
part of the line. Due to the fact that, in the AIM no metal-insulator transition
exists for T = 0, we are certain that no divergence at a finite interaction value
will be found for T → 0.
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Figure 2.17: Expectation of the shape of the first divergence line of the AIM,
showing a linear behaviour in the atomic limit regime. For low temperatures we
expect the Kondo scale to govern the way how the divergence line approaches
T → 0, and due to the absence of a MIT at T = 0, no divergence at finite U is
found.

The expectations were not met, which will be discussed in Chapter 4.
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Chapter 3

Methods

After thoroughly discussing the theoretical framework and the latest results
reported in the recent literature, we want to highlight some crucial aspects
of the methods we use to calculate the irreducible vertex divergences in the
Anderson impurity model, defined in the previous section. To this end, we
shortly mention the Continuous Time Quantum Monte Carlo (CT-QMC) and
Exact-Diagonalization (ED) methods, as well as the post processing proce-

dures used to determine the interaction value Ũ , at which the divergences
occur. As parts of these methodologies were already discussed in a previous
project [50], we will focus here especially on the improvements achieved over
the course of this Master work, which enabled a more precise calculation of
of the location of the vertex divergences.

3.1 CT-HYB

The first step in obtaining vertex divergences is the calculation of the two-
particle Green’s function. We used the w2dynamics [42] package, which
is a CT-QMC solver in the hybridization expansion, hence CT-HYB. The
basics of Continuous Time Quantum Monte Carlo calculations were already
discussed in a preceding work [50]. Here, we just refer the reader to the
most pertinent literature: In particular, references [43, 44] and [47] can be
recommended as a thorough introduction to this topic.

If not explicitly stated otherwise, for all calculations w2dynamics was
used with a slight modification of its standard implementation to allow the
read-in of a fixed electronic bath (see [50] for details).

During the calculations with w2dynamics, however, a very specific prob-
lem was observed, which will be discussed in the next section.
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3.1.1 The random number generator

For very specific parameter sets (i.e., particular values of U and T ) our
calculations yielded ImΣ(iν) with significant systematic errors in its high-
frequency asymptotics. This was also leading to an incorrect behaviour of
the irreducible vertex function and the singular eigenvectors. As an example
for such a situation, the results for ImΣ(iν) of a pathological calculation is
shown for positive Matsubara frequencies only in Fig. 3.1. It is evident that
the asymptotic behaviour does not show the correct decrease of ImΣ(iν)
towards zero at high frequencies, but a seemingly linear trend towards −∞.
The two-particle quantities show a similar unphysical ”drift”.

After a tedious search for the origin of this peculiar behaviour, we could
identify the random number generator as the source of this error. In fact, the
old random number generator, previously implemented in w2dynamics, had
produced random numbers not to a sufficient accuracy, leading to operators
in the trace with exactly same imaginary time. While unnoticed in many
cases, in delicate calculations, such as those presented in this thesis, for very
specific sets of parameters, this problem could indeed affect the quality of
the final results.
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Figure 3.1: Imaginary part of the self-energy for positive Matsubara frequencies
of a pathological calculation. As it turned out, the random number generator was
the origin of the problem causing this false asymptotics of one- and two-particle
quantities (two-particle quantities not shown).

After this bug has been identified, the random number generator was
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substituted and we performed rigorous tests at many temperatures and in-
teraction values. The tests showed that for any parameter set considered,
including those which have been previously problematic, the pathological re-
sults, discussed above, no longer appear. Moreover, it should be stressed that
for all non-pathological calculations performed with the old random number
generator, no deviation with respect to the results was observed, indicating
that these subtle problem was affecting a very limited subset of cases.

3.2 Exact Diagonalization

Another impurity solver allowing for the calculation of the two-particle Green’s
function exploits the Exact-Diagonalization method (ED) [48, 49]. Essen-
tially, in this scheme, the hybridization function of the AIM is approximated
by a discretized bath, i.e. a finite number of nB bath sites. Under this
assumption, and by that, the Hamiltonian can be diagonalized exactly us-
ing standard lapack routines. The calculations of the one- and two-particle
Green’s functions (and thus Σ and Γ) can be performed then by means of the
Lehmann representation [49, 19, 18]. However, the calculation of two-particle
quantities is only possible to a very limited extent, due to the costly scaling
of the algorithm with nB. For our two-particle calculations, we used 5 sites,
i.e. one impurity and four bath sides.

3.3 Postprocessing: Analysis of Vertex Di-

vergences

In the preceding Projektarbeit [50], the method to identify the interaction

value Ũ , where the eigenvalue of the generalized susceptibility is equal to
zero was of central interest and, thus, described in greatest detail. For this
reason, we will focus, in particular, on the new progress achieved at this
regard, in the course of the Master work. Let us start by recalling that
from calculations at the same temperature for different interaction values
the eigenvalue of interest of χc

1 must be extrapolated to yield an estimate
for Ũ . In a bisection procedure calculations with interactions values closer to
Ũ are then performed until a satisfactory refinement in U is reached, which
for our work was for the first lines O(10−1) and for all the subsequent lines

1Note that, as explained in [50], we actually analyse the eigenvalues of χc/χ0 as here
the eigenvalues inducing the vertex divergences can be distinguished easily from the ones
decaying like 1/ν2.
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O(10−2) in U . After that, Ũ is estimated from a linear approximation of the
two results for eigenvalue of interest, which are closest to zero.

As in this thesis the calculation of other divergence lines but the first is of
interest, let us recall here: The second, third, forth and fifth divergence lines
calculated correspond to the Ũ values where the second, third, forth and fifth
eigenvalue of the generalized susceptibility in the charge channel is equal to
zero. In the cases of the orange divergence lines a simultaneous vanishing of
the first and second eigenvalue of the susceptibility in the particle-particle up-
down channel is observed, for the first and second orange line, respectively.
Because the eigenvalues of χc and χpp,↑↓ are exactly the same in the case of an
orange vertex divergence, the eigenvalues of χpp,↑↓ will not be explicitly shown
in the following. With the help of the corresponding singular eigenvectors the
eigenvalues could be related unambiguously to the associated divergence line,
also in more complicated situations, such as the crossing of divergence lines.
In chapter 4 general features of the singular eigenvectors (such as symmetry,
minima, maxima), corresponding to the vanishing eigenvalues, which are
necessary to perform this identification, will be discussed.

As for the afore mentioned improvement in the procedure to compute
Ũ , this exploits the information obtained as a byproduct from calculations
of Ũ values of previous divergence lines. Using this information allows for
a faster bisection procedure, i.e. the U grid can be initially estimated to a
higher precision, without performing a calculation for the specific eigenvalue
of interest, as will be discussed in the following subsection.

3.3.1 Extrapolation procedure to determine Ũ

In Fig. 3.2 the eigenvalue (λ) of the generalized susceptibility corresponding
to the third red line is plotted for T = 0.5. Every dot represents a result for
λ obtained from a w2dynamics calculation. The dots at interaction values
further away from Ũ have been obtained beforehand as a byproduct from cal-
culations at the same temperature, but for previous divergence lines, where
other eigenvalues were of interest (data from the second, third, forth and
fifth divergence line are reported in Fig. 3.2). As it can be seen, λ(U) dis-
plays a rather evident quadratic behaviour in U . This information could be
used to improve the extrapolation of the results for λ to estimate the inter-
action interval where Ũ would most likely be found, enabling us to perform
considerably less calculations.

The procedure described above for the case of the eigenvalue correspond-
ing to the third red line for T = 0.5 can be used for all Ũ values of interest.
Throughout this thesis this was done for all cases with a quadratic fit of the
pre-existing data, which yielded very satisfying results. As a verification, of
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Figure 3.2: Fifth smallest eigenvalue of χc for T = 0.5. Every dot represents a cal-
culation, whereas the calculations at interaction values further away from Ũ were
performed to obtain the Ũ values of previous divergence lines (here second, third
and forth). The U dependence of the eigenvalue allows for a good approximation
as a quadratic function.

the quadratic fit, being the best choice for fitting the results of the eigenvalue
of interest, we performed a comparison with higher order fits in Fig. 3.3 and
Fig. 3.4. In the plots the extrapolations from a quadratic, a cubic and a
forth order fit as well as the results for two different temperatures are shown.
It can be seen that the quadratic fit provided the best estimates for both
temperatures.
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Figure 3.3: Comparison of the predictive qualities of a quadratic, a cubic and a
forth order fit (dashed lines) for T = 0.5 for the singular eigenvalue of the third
red line. In this case, evidently, the quadratic and the cubic fit could estimate the
results (red solid line) best.
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Figure 3.4: As Fig. 3.3 for T = 0.3333. Here the quadratic fit yields the most
satisfying estimate for Ũ .
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Chapter 4

Results and Discussion

After defining all quantities of importance in the analysis of irreducible ver-
tex divergences in Chapter 2 and introducing the methods used to extract
them from two-particle CT-QMC calculations in Chapter 3, we now want to
present the results obtained throughout this thesis for the case of the Ander-
son impurity model (AIM). First, the divergence lines appearing in the phase
diagram of the AIM are analysed and compared to the ones of the Hubbard
model, allowing to clarify the roles played by the metal-insulator transition
and the Kondo scale. Thereafter, several features of the singular eigenvectors
Vc corresponding to the vertex divergences of the AIM are studied in great
detail in terms of their temperature behaviour, as well as of their underlying
symmetries. Through this analysis a better understanding of the different
properties of the divergence lines and of their low-temperature features could
be gained.

4.1 Phase Diagram

In Fig. 4.1 the phase diagram of the AIM is shown, depicting all divergence
lines obtained in the course of this thesis. The lines correspond to the in-
teraction value Ũ at a given temperature T , where the eigenvalue of the
generalized susceptibility (charge or particle-particle up-down channel) van-
ishes. Red lines correspond to irreducible vertex divergences taking place in
the charge channel (see Sec. 2.1 for the definition of the channels). Orange
lines on the other hand represent divergences taking place in the charge and
the particle-particle up-down channel simultaneously.

The behaviour of the first red divergence line is already described in
great detail in a previous Projektarbeit [50]. Summarizing the corresponding
results, there it has been argued, that the occurrence of an irreducible vertex
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Figure 4.1: Phase diagram of the AIM depicting the first five divergence lines,
i.e. the values Ũ where for the temperature T the corresponding eigenvalue of
the generalized susceptibility vanishes. Red lines correspond to divergences taking
place in the charge channel, whereas along orange lines a simultaneous divergence
in the charge and the particle-particle up-down channel is observed.

divergence at T = 0 for a finite interaction value is very likely. Taking this
into account, when analysing the behaviour of the other divergence lines
shown in Fig. 4.1, it becomes rather evident that the divergence lines of the
AIM show a very similar behaviour compared to the Hubbard model case,
depicted in Fig. 2.8 [1, 2]. In the high-temperature/large interaction area
of the phase diagram the lines show a linear behaviour, which would be
expected, according to the insights of the results for the Hubbard atom,
discussed in Sec. 2.2. Fig. 4.2 supports this expectation: Here the results for
the first divergence line for the highest temperature values are compared with
the first red divergence line of the Hubbard atom which is known analytically
[2]. It can be seen that, although the line for the AIM shows almost a linear
behaviour, the atomic limit is not yet reached completely. This is due to the
fact that, in the parameter regime considered the half-bandwidth D is still
the largest energy scale (D = 10).

At intermediate temperatures, the divergence lines show a non-linear be-
haviour, as observed for the Hubbard model, as well as in the Binary mixture
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and Falicov Kimball case. As argued in Sec. 2.2, however, qualitative differ-
ences between the disordered models and the Hubbard model emerge on the
level of the corresponding singular eigenvectors, limiting the validity of the
comparison with the latter ones. The same argument applies to the AIM,
for which a ”broadening” of the corresponding singular eigenvectors is ob-
served, which is absent in the case of disordered models (the results for the
eigenvectors of the AIM will be discussed in Sec. 4.2).
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Figure 4.2: Comparison of the first divergence line of the AIM to the first di-
vergence line of the Hubbard atom [2]. For high temperatures the behaviour is
quite similar, however, the atomic limit is not entirely reached, due to the half-
bandwidth D still being the largest energy scale.

Lowering the temperature further, one reaches the correlated metallic
regime. Also there, the results of the AIM and the Hubbard model re-
main very similar, more than originally anticipated. The lines show a ”re-
entrance”, i.e. a bending towards higher interaction values, as if the low-
temperature intermediate interaction regime were ”protected” against the
non-perturbative mechanism originating the irreducible vertex divergences
(as already discussed for the Hubbard model in Sec. 2.2). This unexpected

resemblance, i.e. the re-entrance and especially the finite Ũ at T = 0, raises
concerns on the importance of the role played by the the metal-insulator tran-
sition for the divergence lines, as suggested in recent publications. In fact, in
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[2], where for disordered models, the Hubbard atom and the Hubbard model
the occurrence of divergence lines is compared (as summarized in Sec. 2.2),
it was inferred that the shape of the metal-insulator transition occurring in
the Hubbard model should be responsible for the peculiar shape of the diver-
gence lines in that model. Yet, comparing the results presented in this thesis
for the AIM to the results for the DMFT solution of the Hubbard model, this
conclusion seems to be not correct. In the AIM a metal-insulator transition
at T = 0 is absent, nevertheless the divergence lines show a qualitatively
similar behaviour.

Our comparison rules out the metal-insulator transition as a crucial fac-
tor for the shape of the divergence lines in the correlated metallic regime.
What may have, however, an important role is the Kondo scale, defined in
Sec. 2.4. Our original expectation for the impact of the Kondo scale on the
low-temperature behaviour of the first red divergence line has been illustrated
in Fig. 2.17. As it can be seen in Fig. 4.3, where our numerical results are
shown, the expectations were not met. In fact, the T → 0 behaviour of the
first red divergence line is not at all governed by the Kondo scale.
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Figure 4.3: Low-temperature results for the first red divergence line compared to
the Kondo scale defined in Eq. 2.34. Evidently the low-temperature behaviour is
not related to the Kondo scale in the way we expected it to be.

However, as we shall see, to rule out the impact of the Kondo scale com-
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pletely would be also not correct. To show this, we will include the Kondo
scale in the whole phase diagram of the AIM to compare it to all divergence
lines obtained throughout this thesis. In this respect, let us note here first
that, the Kondo scale evidently does not refer to a sharp transition, but a
crossover between two different regimes and that it can be estimated by sev-
eral procedures. In Fig. 4.4 all divergence lines together with the Kondo scale
obtained through estimates from several definitions are shown. The dashed
black line corresponds to the analytic expression of the Kondo scale given
in Eq. 2.34 (TK), the blue line corresponds to the same expression, without
the factor computed by Krishna-murthy et.al. (TL) [33, 41]. Alternatively
the Kondo scale can also be estimated from the quasiparticle renormaliza-
tion factor Z as TK ∝ Z∆ (∆ as defined in Sec. 2.3), which is plotted as the
dashed magenta line. In our case, Z was calculated independently by fitting
the imaginary part of the self-energy obtained from one-particle w2dynamics
runs at extremely low temperatures (T = 0.003333). From this comparison,
one can argue that while the T → 0 behaviour is not affected by TK , the re-
entrance of the red divergence lines most likely is. Especially the Kondo scale
estimate TL plotted as the blue dashed line, which lies almost exactly on top
of the point where the divergence lines start to bend towards higher interac-
tion values again (i.e. the re-entrance point), suggests such a connection. To
prove this unambiguously the value of the Kondo scale for our specific model
must be obtained from additional calculations for the corresponding local
magnetic susceptibility. This will be further elaborated in Chapter 6. Let
us also note, that while the connection of the re-entrance points of the red
divergence lines and the Kondo scale seems very likely, for the orange lines
the existence of such a relation is unclear. At this point, one can already say
that the connection between the Kondo scale and the re-entrance represents
an intriguing result, which could be interpreted in the following way: Start-
ing from the high-temperature regime the divergence lines display a linear
behaviour, as explained by the results of the Hubbard atom. Then a non-
linear (but still monotonous) behaviour is observed, similar to the quadratic
one of the Binary Mixture and Falicov Kimball case. When approaching the
Kondo scale, however, the Kondo resonance builds up, leading to the bending
towards higher interaction values of the divergence lines. In this scenario the
Kondo scale would be the boundary between this two regions.

Further, if the re-entrance point, i.e. the point of the lowest interaction
value obtained by a given divergence line, is connected to the Kondo scale,
it is clear how an ”extrapolation” of the phase diagram of the AIM at larger
values of U would look like. At low temperatures the distance between the
divergence lines would get narrower the lower the exponentially decreasing
Kondo scale gets, as (i) they are always connected to results of the Hubbard
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atom at higher temperatures and (ii) at the same time they should bend
towards higher interaction values for T < TK . This extrapolation can be
exploited - in principle - to formulate possible predictions for the coexistence
region of the metal-insulator transition of the Hubbard model, which will be
mentioned in Chapter 6.
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Figure 4.4: Phase diagram of the AIM with the Kondo scale, according to different
definitions. The black dashed line corresponds to the analytical expression of TK
given by Eq. 2.34, the blue dashed line to the same expression, but without the
factor obtained by Krishna-murthy et.al. [41] (TL) and the magenta dashed line
represents the value of Z∆ (see text). From this comparison one could infer a
direct connection between the re-entrance points of the red divergence lines and
the Kondo scale.

Returning to the comparison of the results of the Hubbard model and
the AIM, apart from the general similarities discussed above a qualitative
difference can be seen: At intermediate temperatures, the second and third
divergence line cross, breaking the typical lines order found in all cases anal-
ysed so far (Falicov Kimball, Hubbard atom and Hubbard model in DMFT,
i.e., always an orange line after a red one, before the next red line). We should
also note, however, that the two lines cross again at low temperatures, restor-
ing the typical line ordering. This surprising and hitherto unobserved feature
will be discussed now in more details.

44



4.1.1 Crossing of Divergence Lines

In Fig. 4.5 a zoom of the phase diagram depicted in Fig. 4.1 in the area of
the crossing of the second and third line is shown. Here, it can be also seen
that even the fourth and fifth line show such a peculiar crossing, though, to
a much smaller extent.
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Figure 4.5: A zoom of the phase diagram of the AIM given in Fig. 4.1 where the
crossing of the first orange and the second red line, as well as of the second orange
and the third red line can be seen.

The first question one must ask, is, if this result is merely a numerical
artefact. To rule out this possibility we performed several tests, which are
described in the following.

Boxanalysis

For the calculation of two-particle quantities with w2dynamics a fermionic
frequency box must be chosen, which can have, in principle, a huge effect
on the results for the eigenvalues of the generalized susceptibility. To check
whether a sufficient number of frequencies were taken into account, a so called
”box analysis” was performed [44]. Here, the high-frequency part of the gen-
eralized susceptibility is discarded and the remaining central low-frequency
part is diagonalized. This enables one to analyse the smallest eigenvalue as a
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function of fermionic frequency box size. The result of this test is depicted in
Fig. 4.6 and Fig. 4.7, where it can be seen, that the corresponding eigenvalues
of the first orange and second red line are converged, indicating that enough
frequencies were taken into account in the original calculations.
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Figure 4.6: Box analysis of the eigenvalue corresponding to the second red line
at T = 0.08 and a specific interaction U . The test shows that the eigenvalue is
converged i.e. 60 Matsubara frequencies (positive plus negative) are sufficient.

The next, more general, check is to verify the presence of the crossing,
by trying to reproduce it using a completely different algorithm as impurity
solver than w2dynamics, which is why we performed additional ED calcula-
tions for selected parameters.

ED check

Using an ED implementation capable of performing calculations on the two-
particle level, we ran a test for two interaction values at the temperature
T = 0.08, i.e., where the largest distance between the red and orange line was
observed. The results are displayed in the phase diagram given in Fig. 4.8,
where it can be seen that the ED calculation does reproduce the crossing
observed in the w2dynamics implementation of the CT-HYB QMC.
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Figure 4.7: As Fig. 4.6 for the first orange line. Also for the calculations at T =
0.08 for the first orange line 60 fermionic Matsubara frequencies were sufficient.

As for a more detailed comparison, in Fig. 4.9, a zoom onto the area where
the calculation was performed is given. Here it can be noticed, that the re-
sults for Ũ are not exactly on top of one another. In Fig. 4.10, the eigenvalues
are plotted, where this slight discrepancy can be also observed. The reason
for this difference of the results can be ascribed to the number of bath sites
chosen for the ED calculation, which is also the computational bottleneck
of the algorithm. In fact, in the two-particle ED calculation one is limited
to four bath sites only, as for more sites the ED-evaluation of the Lehmann
representation of the generalized susceptibility becomes computationally too
expensive. In Fig. 4.11, where the imaginary part of the w2dynamics self-
energy is compared to the one obtained from the ED fit of the hybridization
function, it can be seen that four bath sites are not sufficient to completely
capture the right behaviour of ImΣ. In Fig. 4.12, where six bath sites were
used to fit the bath, it can be seen that the exact self-energy can be repro-
duced almost perfectly. This means that with six bath sites the discrepancies
in the results of the two-particle calculation can be expected to vanish.

Summarizing, there are slight differences in the results, which could, how-
ever, be entirely ascribed to the ED discretization of the bath. In spite of
this minor deviations, the crossing of lines could be clearly reproduced in
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Figure 4.8: Results of the ED calculations of Ũ for the second red line (blue)
and the first orange line (magenta) at β = 12.5 together with the phase diagram
obtained using w2dynamics. As it can be seen, though slight differences occur due
to the discretization of the ED-bath, the line crossing is still very clearly observed.

the ED calculations, demonstrating that this is not merely an artefact of
the w2dynamics calculation, but a true feature of the divergence lines of the
AIM.

After verifying the numerical reliability of the observed crossing of diver-
gence lines, one must ask if this is in conflict to any aspect of the current
understanding of the irreducible vertex divergences.

One of the most important progress recently achieved [9] regards the
crossing of unphysical and physical solutions described in Sec. 2.2. Analysing
Fig. 2.11, where such a crossing of physical and unphysical solutions for the
case of the Hubbard atom is discussed, one can see that the first red and
orange line do indeed cross themselves, but that this does happen away
from the physical solution. One could in principle, however, imagine that
for other cases (such as the AIM), a different situation occurs, where this
crossing of unphysical solutions is shifted towards the physical solution. In
this perspective, one can conclude that the previously unobserved crossing
of divergence lines reported in this master thesis is somewhat surprising, but
at least not in conflict with the current understanding of irreducible vertex
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Figure 4.9: As Fig. 4.8, with a zoom onto the area of interest, to show the actual
size of the slight discrepancy in Ũ induced by the discretization error of ED.
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Figure 4.10: Results of the w2dynamics and the ED calculation for the eigenvalues
of the generalized susceptibility in the charge channel. A slight difference in the
eigenvalues is observed, which causes the corresponding minor discrepancy in Ũ
depicted in Fig. 4.8 and Fig. 4.9.
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Figure 4.11: Comparison of the imaginary part of the w2dynamics self-energy to
the one obtained from the bath fit of the ED calculation with four bath sites. The
four bath sites are not enough to exactly reproduce the right behaviour of ImΣ,
but the overall agreement is sufficient for our scopes.

divergences [9].
What is most remarkable about this result, however, is that it is hitherto

only observed for the AIM, and not for the DMFT solution of the Hubbard
model. In the appendix B of [2], where a low-temperature zoom of the phase
diagram of the Hubbard model is shown, it can be seen that, although the
orange and red divergence lines are extremely close to one another, they
never cross. In the light of these findings, we suggest to carefully recheck the
delicate DMFT low-temperature calculations of [2], to verify whether any
occurrence of line crossings might have been overlooked. If this is not the
case, one must conclude that the DMFT self-consistency cycle - and the as-
sociated strong renormalization of the low-energy part of the electronic bath
- is somehow related to the ordering of divergence lines at low temperatures,
which could be a quite intriguing topic to investigate in future studies.
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Figure 4.12: As Fig. 4.12 with six bath sites, which are sufficient for obtaining
the right imaginary part of the self-energy.

4.2 Evolution of the singular eigenvectors

After discussing the first five divergence lines of the AIM obtained throughout
this thesis, we want to study the corresponding singular eigenvectors Vc, i.e.
those connected to the five lowest eigenvalues of the generalized susceptibility
in the charge channel. As a short summary of the most important features of
Vc introduced in Sec. 2.1 and Sec. 2.2 let us state here: The frequency struc-
ture of the singular eigenvector, i.e. whether the weight of Vr (r corresponds
to the charge c or the particle-particle up-down pp channel) is localized or
not, is governing at which frequencies the divergence of the irreducible vertex
function can be observed. For the Falicov Kimball as well as the Hubbard
atom two different kinds of vertex divergences, and correspondingly two dif-
ferent kinds of eigenvectors are found, which are either completely localized
(red divergence lines) or not localized in frequency space (orange divergence
lines). Remarkably the frequency localized structure of the first kind of eigen-
vectors is independent of the temperature, except of the trivial dependence
originating from the definition of the Matsubara frequencies themselves.

For the Hubbard model, on the other hand, this is no longer the case as
localized eigenvectors can be found only in the large U , high T limit, whereas
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the eigenvectors progressively gain weight at more and more Matsubara fre-
quencies, when the temperature is reduced.

Let us also note that the eigenvectors of the generalized susceptibility
in the particle-particle up-down channel, where a simultaneous vertex diver-
gence along the orange divergence lines takes place, are for the AIM exactly
the same as in the case of the charge channel. For this reason, they are not
shown in this thesis, except in Fig. 4.13, where the equivalence of the corre-
sponding eigenvectors is explicitly demonstrated for a given interaction value
and T = 0.025.

In the first subsection the effect of the temperature on the frequency
structure of the singular eigenvectors Vc is studied, followed by a direct com-
parison of the Vc’s corresponding to given divergence lines. Afterwards, the
even (orange divergence lines)/odd (red divergence lines) symmetry of the
eigenvectors and a possible relation to the Green’s function is investigated,
before in the last part of this section the role of the interaction is discussed.
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Figure 4.13: Comparison of the corresponding eigenvectors of the generalized
susceptibility in the charge (r=c - black solid line) and the particle-particle up-
down (r=pp-ud - red dots) channel. Evidently, the eigenvectors are exactly the
same.
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4.2.1 Evolution of the singular eigenvectors - along a
given divergence line for different temperatures

In a preceding Projektarbeit [50] the Vc’s of the first red divergence line of
the AIM for different temperatures were already discussed in great detail. In
a similar fashion, our new results for different temperatures along the other
four calculated divergence lines are reported and analysed in the following.

The singular eigenvectors Vc of a given divergence line are shown in
Fig. 4.14 to Fig. 4.21, where they are plotted in the basis of Matsubara fre-
quencies (iν) for several temperatures. It can be readily seen that, for all
cases at high temperatures the eigenvectors Vc are localized in frequency
space, i.e. their components have finite weight only at a few Matsubara fre-
quencies. This agrees, asymptotically, with the results for the Hubbard atom,
where the singular eigenvector has finite weight only at the one Matsubara
frequency corresponding to the energy scale ν∗ (see Sec. 2.2). By reducing
the temperature, however, components at other Matsubara frequencies gain
weight. This effect was already observed for the first divergence line, as re-
ported in [50], and reflects that no single energy scale, like in the Hubbard
atom case, can any longer be identified as ”responsible” for all the multiple
vertex divergences.

Besides these considerations, note that in Figs. 4.14 to 4.21 it looks as
if the largest contributions of the low-temperature eigenvectors are located
approximately at the same frequency. This was also already discussed to
some extent in the previous work [50] and shall be analysed now in greater
detail. In Fig. 4.22, the Vc’s of the second red divergence line for the highest
temperatures are shown. The eigenvectors are plotted as a function of iν · β,
which evaluates to a prefactor times the Matsubara index n (i.e. 2n − 1).
Note that only the parts of the antisymmetric Vc’s for positive Matsubara
indices are reported. For the highest temperatures (in Fig. 4.22 plotted in
different variations of red) the only relevant contribution is found at the sec-
ond Matsubara index. This agrees again perfectly with the insights gained
from the Hubbard atom. By lowering the temperature, components at other
indices gain weight, i.e. the eigenvector ”broadens”, the largest contribution,
however, remains still located at the second index. This allows us to relate
the singular eigenvectors shown in Fig. 4.22 to the ones of the Hubbard atom,
which are given by a delta function at the second Matsubara index for all
temperatures. Hence, the observed broadening could be approximately de-
scribed in terms of a transformation of the delta shaped eigenvectors of the
Hubbard atom into a Lorenzian. In Fig. 4.22 in green color, the Vc for the
temperature of the re-entrance of the corresponding second red divergence
line is shown. It is evident that here the shape of the eigenvector can still
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be understood as described above, to some extent. In Fig. 4.23 the Vc’s cor-
responding to the temperatures lower than the re-entrance point are shown
additionally to the ones of Fig. 4.22. Starting from the eigenvector plotted
in light-blue color, which still has the largest contribution at the same in-
dex as in the Hubbard atom case, the maximum of the Vc’s progressively
shifts as the temperature is decreased. As a result, the eigenvectors show a
qualitatively different behaviour for temperatures higher or lower than the
re-entrance point, corresponding to the eigenvector plotted in green color.

We should note that the situation is exactly mirrored in the opposite
trend of the largest component of Vc as a function of Matsubara frequencies
(iν), instead of the Matsubara index n. In Fig. 4.24 the eigenvectors shown
in Fig. 4.23 are plotted as a function of (iν). Here it can be clearly seen, that
the largest contribution of the eigenvectors corresponding to temperatures
lower than the re-entrance point remains located to an (almost) constant
frequency independently of the temperature, while for temperatures higher
than the re-entrance, a progressive shift of the largest component to higher
(iν) is observed.

As it has been demonstrated in [2] and recalled in Sec. 2.2, divergences
controlled by a unique energy scale are associated to localized singular eigen-
vectors, fully defined by in terms of the index n. Hence, the nature of the
divergences above/below the re-entrance is completely different, in that the
existence of a unique energy scale is no longer possible below that border.

The results substantiate the discussion made for the Kondo scale in
Sec. 4.1, as a boundary between two regimes. The first one, at higher temper-
atures, is a regime to a given extent related to the Hubbard atom case and
the second one, at low temperatures, corresponds to a region where the ap-
pearance of the low-energy Kondo resonance drives a qualitatively different
behaviour.

A further verification of this role played be the re-entrance point is pro-
vided by Fig. 4.25 and Fig. 4.26, where analogously to Fig. 4.22 and Fig. 4.23
the eigenvectors of the third red line (for which fewer low-temperature results
exist) are shown. Here, the same explanation applies.
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Figure 4.14: Singular eigenvectors of the generalized susceptibility in the charge
channel for several temperatures of the first orange divergence line, plotted as a
function of Matsubara frequencies.
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Figure 4.15: As Fig. 4.14, reporting, in an enlarged scale, solely the results for low
temperatures. Here it can be seen, that the location of the maximum contribution
of the eigenvectors stays constant for low enough temperatures.
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Figure 4.16: Singular eigenvectors of the generalized susceptibility in the charge
channel for several temperatures of the second red divergence line, plotted as a
function of Matsubara frequencies.
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Figure 4.17: As Fig. 4.16, reporting, in an enlarged scale, solely the results for low
temperatures. Here it can be seen, that the location of the maximum contribution
of the eigenvectors stays constant for low enough temperatures.
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Figure 4.18: Singular eigenvectors of the generalized susceptibility in the charge
channel for several temperatures of the second orange divergence line, plotted as
a function of Matsubara frequencies.
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Figure 4.19: As Fig. 4.18, reporting, in an enlarged scale, solely the results for
low temperatures. The constant location of the maximum contribution of the
eigenvectors can hardy be seen here, as not enough low-temperatures exist.

57



-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

-4 -2  0  2  4

V
c
(ν
)

iν

T=0.2

T=0.1

T=0.08

T=0.025

T=0.0125

Figure 4.20: Singular eigenvectors of the generalized susceptibility in the charge
channel for several temperatures of the third red divergence line, plotted as a
function of Matsubara frequencies.
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Figure 4.21: As Fig. 4.20, reporting, in an enlarged scale, solely the results for
low temperatures. The constant location of the maximum contribution of the
eigenvectors can hardy be seen here, as not enough low-temperatures exist.
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Figure 4.22: Singular eigenvectors of the generalized susceptibility in the charge
channel for several temperatures of the second red divergence line, plotted as a
function of the product iν ·β, which corresponds to (2n−1). By this representation,
the relation to the results of the Hubbard atom can be seen very well, as, for
high enough temperatures, the largest contribution is always found at the second
Matsubara index. For the eigenvectors plotted in different orange color-tones, as
well as for the one shown in green, one can still see the relation to the delta peak
shaped frequency structure of the eigenvectors of the atomic limit, only broadened
into a Lorenzian shape. The eigenvector plotted in green color corresponds to the
temperature where the re-entrance point of the associated divergence line is found.

59



-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 0  20  40  60  80  100  120  140

V
c

iν*β

T=0.1

T=0.08

T=0.05

T=0.025

T=0.0125

Figure 4.23: As Fig. 4.22, but showing also the results for temperatures lower
than the one of the re-entrance point. Evidently, the relation to the singular
eigenvectors of the Hubbard atom can no longer be established, as the maximum
is now shifting to the right.

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0  1  2  3  4  5  6

V
c

iν

T=0.2

T=0.1333

T=0.115

T=0.1

T=0.08

T=0.05

T=0.025

T=0.0125

Figure 4.24: As Fig. 4.23, but the eigenvectors are plotted now as a function of
the Matsubara frequencies. Here, it can be seen that the largest contribution of
the eigenvectors is found at the same Matsubara frequency, if the temperature is
decreased below the one of the re-entrance point.
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Figure 4.25: As Fig. 4.22 for the third red divergence line.
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Figure 4.26: As Fig. 4.23, for the third red divergence line. Note that for this
divergence line fewer results in the low-temperature regime have been computed
hitherto.
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4.2.2 Evolution of the singular eigenvectors - compar-
ison for different divergence lines

As described in the beginning of this section, the singular eigenvectors show
a ”broadening” with decreasing the temperature if plotted as a function
of Matsubara indices. This indicates that no single energy scale can be
responsible any more for the irreducible vertex divergences. However, it turns
out that it is also very intriguing to compare the eigenvectors of different
divergence lines with one another, as it will be discussed below. Note that
here also the ”broadening” will be discussed shortly, described in great detail
in the previous chapter.

In Fig. 4.27 the singular eigenvectors of the charge channel of the three
red divergence lines calculated over the course of this thesis are compared
for the same temperature (T = 0.025). In gray the corresponding singular
eigenvectors at the highest temperature value reached during the calculations
(T = 0.5) is shown 1. The gray eigenvectors show a perfect agreement with
the insights provided by the results of the Hubbard atom. As discussed in
Sec. 2.2 and also in Sec. 4.2.1, for the Hubbard atom an energy scale ν∗ could
be identified, yielding an irreducible vertex divergence soon as a Matsubara
frequency is equal to this scale. This allowed, in turn, for the identification
of the multiple divergence lines with single Matsubara frequencies, which
corresponded eventually to those Matsubara frequencies where the localized
singular eigenvectors have finite weight.

This can be seen in Fig. 4.27, where for the first divergence line (top panel)
the gray eigenvector displays its largest contribution at the first Matsubara
frequency. Note that this agreement is clearly not perfect, as the atomic limit
is not fully reached, in the parameter regime considered, see the discussion
made for Fig. 4.2.

In any case, also the other eigenvectors, corresponding to the second and
third divergence line (middle and top panel) for T = 0.5 can be understood
in the same manner, as they show the largest contribution at the second or
third Matsubara frequency, respectively. Comparing the eigenvectors plotted
in gray to the eigenvectors plotted in red (i.e., red for the first red divergence
line, light-red for the second red and dark-red for the third red line) one
notices that this largest contribution is shifted towards higher frequencies,
as discussed in great detail in the previous section. At the same time, at
low frequencies a ”structure” is emerging: For the eigenvector of the second
divergence line (middle panel) a local maximum and a local minimum appear,

1Note that for a better representation of the features we intend to discuss, the eigen-
vectors of T = 0.5 are rescaled by a factor of 0.45.
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leading to 3 ”nodes” in their frequency components. In the case of the third
line (bottom panel) the corresponding eigenvector has 5 ”nodes”, and, thus,
a minimum and maximum more. Extrapolating the behaviour observed for
the three eigenvectors, one can infer that the eigenvector of the n-th red
divergence line will have 2n−1 ”nodes”. As the interpretation of the singular
eigenvectors of the generalized susceptibility is lacking, it is still unclear at
the moment, what the meaning of this elusive low-frequency ”structure” is.

After analysing the eigenvectors of the red divergence lines only, a similar
comparison can be eventually made for the eigenvectors of the red and or-
ange divergence lines, shown in Fig. 4.28. In the upper panel the eigenvector
corresponding to the first red and orange divergence line are plotted in red
and orange, respectively, for the same temperature T = 0.025. Analogously,
in the lower panel, the eigenvectors corresponding to the second divergence
lines are reported. The eigenvectors of the orange lines look, to a rough
extent, as a ”symmetrized” version of the antisymmetric eigenvectors corre-
sponding to the red divergence lines. This, hitherto unexploited, feature is
very helpful for rigorously classifying the two kinds of divergences, as argued
in the following section.

4.2.3 Symmetry of the singular eigenvectors

As a consequence of the temperature evolution of the singular eigenvectors
discussed above and the considerations made in Sec. 2.2 concerning the dis-
tinction criterion of the two kinds of vertex divergences, i.e., the locality of
the eigenvector, it becomes clear that a specific difficulty arises: As seen in
Figs. 4.22 to Fig. 4.26, as well as Fig. 4.27, the eigenvector ”broadens”, i.e.
it gains weight at all Matsubara frequencies. This means obviously that the
locality of the eigenvector does no longer represent a valid distinction cri-
terion between the two kinds of vertex divergences introduced in Sec. 2.1.
However, as explained in Sec. 4.2.2 in the discussion of Fig. 4.28, the symme-
try of the eigenvectors could still be. In fact, the even/odd symmetry of the
eigenvectors Vc remains always preserved in the two different classes of vertex
divergences. More precisely, for the first kind of vertex divergences (always
depicted in red color), which in Sec. 2.1 was classified as the localized one, the
eigenvectors are for all temperatures antisymmetric under the transformation
iν → −iν. In the case of the other kind of divergences (depicted always in
orange) the eigenvector is symmetric. As a result, the frequency symmetry
of Vc(ν) can be adopted as a clear-cut criterion, valid at all temperatures, to
classify the divergence lines in the (half-filled) AIM. Moreover the symmetry
of the eigenvectors is directly reflected in the shape of the irreducible vertex
function. In the Figs. 4.29 and 4.30 the influence of the symmetry of the Vc’s
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Figure 4.27: Top panel: Singular eigenvector for T = 0.025 (red) and T = 0.5
(gray) of the first red divergence line. Middle panel: Eigenvector T = 0.025 (red)
and T = 0.5 (gray) of the second red divergence line. Bottom panel: As middle
and top panel, only for the third red divergence line. All eigenvectors correspond
to vanishing eigenvalues of the generalized susceptibility in the charge channel.
From this comparison one can see that the eigenvectors at the high temperature
value (gray) agree precisely with the insights of the Hubbard atom, i.e. they
are localized with finite weight at the Matsubara frequency corresponding to the
irreducible vertex divergence. The eigenvectors plotted in red display not only
the ”broadening” discussed in Sec. 4.2.1 but also the emergence of a characteristic
low-frequency structure.
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”symmetrized” version of the antisymmetric red eigenvectors.
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onto the shape of the irreducible vertex function is illustrated. In the left
inset of both figures the smallest eigenvalues are shown. In particular, we are
considering a case where the calculations have been performed between the
second red and the first orange divergence line, in a parameter regime where
the two lines are very close to each other. In the first case, shown in the left
inset of Fig. 4.29, the red dot marks the eigenvalue closest to zero, which, in
this case, corresponds to a red divergence with an antisymmetric eigenvector
plotted in the inset on the right side. In the main panel, where the irreducible
vertex function in the charge channel, Γc, is shown, it can be easily seen that
Γc has almost the same frequency structure as the eigenvector. This can
also be understood from the considerations made in Sec. 2.1, which we want
to summarize here shortly: The irreducible vertex in the charge channel is
governed by the inverse of the corresponding generalized susceptibility, given
in the expression below

[χc]
−1
νν′ =

∑
i

(Vi,ν′)
∗(λi)

−1Vi,ν . (4.1)

From this relation one sees immediately that the eigenvector Ṽi,ν , and by
that also the associated symmetry, corresponding to the eigenvalue closest
to zero (λ̃i ≈ 0), is crucial for the frequency structure of Γc:

[Γc]νν′ ≈ [χc]
−1
νν′ ≈ (λ̃i)

−1(Ṽi,ν′)
∗Ṽi,ν (4.2)

This can also be seen in the second example shown in Fig. 4.30. Here, the
interaction value was changed only marginally, nevertheless, as it can be seen
in the left inset, the eigenvalues corresponding to the first orange divergence
line are now the closest to zero. This leads to an almost perfectly symmet-
ric vertex function due to the dominance of the corresponding symmetric
eigenvector in the sum of Eq. 4.1.

Evidently, the correspondence between the frequency symmetries of Vc(ν)
and Γc holds rigorously at the divergence line, i.e. at calculations performed
at Ũ . Otherwise, several small eigenvalues can give a large contribution, es-
pecially in calculations performed not in the proximity of a vertex divergence.
As an example, one could imagine to perform a calculation at an interaction
value in between the two selected for Fig. 4.29 and Fig 4.30. In such a case
the irreducible vertex function will not have a clear symmetry. This will also
be the case for Γc at the crossing of the divergence lines, described in Sec. 4.1.
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Figure 4.29: Irreducible vertex function in the charge channel for Ω = 0, a fixed ν
and a variable ν ′. This calculation was performed at the interaction value U=4.5
and T = 0.05, which is in the proximity of the second red divergence line. Left
inset: Small eigenvalues of the generalized susceptibility are shown. The red dot
marks the smallest one, corresponding to a divergence in the charge channel only,
i.e. a red divergence line. Right inset: The antisymmetric eigenvector correspond-
ing to the smallest eigenvalue depicted in the left inset in red, is shown. As it can
be seen in the main panel, Γc has almost exactly the same frequency structure.

4.2.4 Relation of the vertex divergences and the Green’s
function

After discussing several features of the singular eigenvectors, now their re-
lation to the Green’s function will be investigated. At this scope we will
briefly reconsider the irreducible vertex divergences of the Binary Mixture
[2] (see Sec. 2.2). For this simple disordered model the vertex divergences,
and by that the underlying energy scale ν∗, could be related to the spectral
gap formation due to the connection of ν∗ and the minimum of the Green’s
function. As it turns out, a somewhat similar relation, can also be found for
the irreducible vertex divergences of the Hubbard atom [51]. Starting from
the Green’s function of the Hubbard atom, given in Eq. 4.3 as a function of
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Figure 4.30: As Fig. 4.29, only now at U=4.62, which is in the proximity of
the first orange divergence line. In the left inset it can be seen that the other
eigenvalue in the charge channel (the one of the particle-particle up-down is not
shown, vanishes however at the same Ũ) is now the smallest. As a result, here the
shape of the vertex function is essentially governed by the corresponding symmetric
eigenvector, shown in the right inset.

Matsubara frequencies

G(ν) =
1

2

(
1

iν + U
2

+
1

iν − U
2

)
(4.3)

= − iν

v2 + U2

4

,

one can easily verify that the second derivative is zero at the interaction
value

√
3

2
U . This expression, however, is equal to the energy scale ν∗ =

√
3

2
U

related to the irreducible vertex divergences of the Hubbard atom. Sum-
marizing shortly the discussion made in Sec. 2.2 for the vertex divergences
of this model: As soon as a Matsubara frequency is equal to ν∗, a diver-
gence takes place at this frequency, and the only non-zero contribution of
the corresponding eigenvector is located at this frequency. This means that,
in contrast to the Binary mixture case where the divergence could be related
to the minimum of the Green’s function, now for the Hubbard atom the di-
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vergence is related to the inflection point of the Green’s function. Physically
the inflection point of a Green’s function is an indication for a spectral gap
formation, however not as clear as the minimum.

Coming back to our case of the AIM, as seen in the Figs. 4.22 and 4.25 the
singular eigenvectors in the high-temperature regime of the phase diagram
hardly change and resemble those of the Hubbard atom case. Thus, it is
interesting to investigate, if also the connection to the Green’s function found
for the case of the Hubbard atom still holds in the case of the AIM. In
Figs. 4.31, 4.32 and 4.33 the second derivatives of the Green’s function and
the Green’s functions themselves are shown for the highest temperatures
of the third red divergence line. Note that the Green’s functions had to
be rescaled in order to be able to make visible the changes of the second
derivatives in the plots. The second derivative was calculated using a simple
numerical differentiation, i.e.,

f ′′(x) ≈ f(x+ h)− 2f(x) + f(x− h)

h2

We note that, due to this simple implementation, no second derivative
for the first frequency can be calculated.

Analysing Fig. 4.31, showing the Green’s function and the second deriva-
tive for the highest temperature value (T = 0.5) of the third red divergence
line, it can be seen, that at such high temperatures the relation between
the inflection point of the Green’s function and the divergences observed
for the Hubbard atom, is also found in the AIM. Here, the inflection point
is located at the third Matsubara frequency for the third divergence line,
and the largest contribution of Vc(iν), plotted in Fig. 4.25, is exactly at the
third Matsubara frequency. However, such a connection gets lost at lower
temperatures, as the next two Figs. 4.32 and 4.33, corresponding to the tem-
peratures T ≈ 0.333 and T = 0.2, show. In fact, at T ≈ 0.333 the inflection
point is somewhere between the second and third Matsubara frequency, but
at T = 0.2 no inflection point is visible any longer. Quite surprisingly, this
already happens at temperatures where the singular eigenvectors of the AIM
still largely resemble the very localized ones of the Hubbard atom, as it can
be seen in Fig. 4.25.

4.2.5 Evolution of the eigenvectors - the role of the
interaction U

In this subsection, we complete the discussion of the ”adiabatic” evolution
of singular eigenvectors by studying their dependence on the interaction. At
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Figure 4.32: As Fig. 4.31 for T ≈ 0.333. The inflection point is no longer at the
third frequency, as it starts to shift towards the second.
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Figure 4.33: As Fig. 4.31 for T = 0.2. The inflection point is no longer visible
in the plot, the Green’s function shows a purely metallic behaviour. This implies
that the connection of the vertex divergences and the inflection point is lost.

this scope, however, only in this subsection, also non-singular eigenvectors
will be shown.

We will analyse how the a variation of U at the same temperature affects
the shape of the two kinds of eigenvectors, which become singular at the
corresponding divergence line, i.e. when U = Ũ .

In Fig. 4.34 and Fig. 4.35 the eigenvectors corresponding to the second
and third eigenvalue of the generalized susceptibility which become singular
eigenvalues for U = Ũ (i.e. second red and first orange divergence line),
are shown for the temperature T = 0.025 and different interaction values U .
Interestingly, the shape of the asymmetric eigenvectors of the second red line
show hardly any influence of the interaction U . Note that in Fig. 4.34 only
the part of the eigenvectors for positive Matsubara frequencies are shown,
in order to highlight the very small changes. The opposite happens for the
symmetric eigenvectors corresponding to the first orange line, depicted in
Fig. 4.35. More precisely, it appears that the Matsubara frequency, where
the largest contribution of the eigenvector is located, is essentially unaffected
by a change of the interaction, while in the high-frequency tail a strong
dependence on the interaction value can be observed.

The implications of this peculiar dependence on the interaction value,
only observed for one kind of eigenvectors, i.e. those corresponding to the
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orange divergence lines, remain so far unclear.

-0.2

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0  2  4  6  8  10

V
c
(ν
)

iν

U=4.4

U=4.6

U=4.7141939

U=4.7550187

U=4.8

U=5.2

Figure 4.34: Comparison of the antisymmetric eigenvectors corresponding to the
second red divergence line for T = 0.025 and several interaction values. Only the
positive Matsubara frequency axis is shown, in order to demonstrate the smallness
of the variations of Vc(ν) as a function of U . The corresponding Ũ value for this
temperatures is 4.742.
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Figure 4.35: Comparison of the symmetric eigenvectors corresponding to the
first orange divergence line for T = 0.025 and several interaction values. The
corresponding Ũ value is 4.756. It appears that the interaction has a definitive
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constant.
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Chapter 5

Conclusions

This thesis was devoted to the discussion of an elusive as much as intriguing
feature of quantum many-body theories, the divergences of the irreducible
vertex function. Specifically, in this work, the occurrence of such problems
has been analysed for a model not yet considered in this perspective: the
Anderson impurity model (AIM).

The study of vertex divergences in the AIM allowed for the investigation
of two questions of profound importance: Are the vertex divergences related
to an occurrence of a Mott transition? What is the role of the Kondo scale,
if it has an influence at all?

In the first part of the thesis a short introduction to the general theoretical
framework, including also a concise recollection of the latest results from
the literature (Chapter 2), as well as a review of the numerical methods
to extract the vertex divergences (Chapter 3), is given. In the following
Chapter 4, the new results of this master thesis are presented: The irreducible
vertex divergences of the Anderson impurity model are precisely described
and analysed. As a conclusion, the main findings and their implications are
briefly reconsidered in this conclusions chapter.

In particular, as for the results, in Sec. 4.1 the phase diagram of the AIM
is shown and compared to the one of the Hubbard model solved by means of
DMFT [2]. From this comparison,larger similarities than initially expected
for have been found, as the divergence lines show qualitatively the same be-
haviour in the whole phase diagram. More specifically, for both models a
re-entrance of the divergence lines is found, i.e. a bending towards higher
interaction values in the low-temperature regime and, most importantly, di-
vergences at finite interaction values for T = 0 are observed. Note that
in the AIM no metal-insulator transition is present at T = 0, from which
it logically follows that the metal-insulator transition must be ruled out as
a crucial factor for determining the shape of the divergence lines and the
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behaviour of the corresponding eigenvector in the low-temperature regime.
This answers the first question that was of central interest for this thesis.

Such a crucial role for the shape of the vertex divergences in the low-
temperature regime could be ascribed, instead, to the Kondo scale. In fact,
the Kondo scale appears to mark the boundary between two regimes of rad-
ically different behaviour of the vertex divergences. The crossing of such
a border is reflected in two main aspects: (i) the shape of the divergence
lines and (ii) the corresponding singular eigenvectors. As for the first as-
pect, a regime showing a monotonous (linear or quadratic) behaviour of the
divergence lines is found for higher temperatures than the Kondo scale (TK)
and it can be clearly distinguished from the regime of lower temperatures.
In fact, by crossing TK the re-entrance of the divergence lines is observed
and rather similar line-shapes in the AIM and the Hubbard model are found
at low-temperatures, where the Kondo resonance dominates the low-energy
physics. As for (ii) results for the temperature evolution of the singular eigen-
vectors Vc(iν), discussed in great detail in Sec. 4.2.1, further substantiate the
claim that the Kondo scale represents indeed a boundary between two dif-
ferent regimes. In particular, the eigenvectors for higher temperatures, show
great similarities with the ones of the Hubbard atom, in that way that the
largest component of Vc(iνn) is found at the same Matsubara index n for dif-
ferent temperatures. For lower temperatures than the Kondo scale, however,
the locations of the largest contribution of the singular eigenvectors stay no
longer constant at the same Matsubara index, but at the same Matsubara
frequency, independent of the temperature. This means that the shape of
the eigenvectors can no longer be related to the ones found for the Hubbard
atom, differently from temperatures higher than TK . Furthermore, this also
reflects the absence of a unique energy scale ν∗.

The evident relation of the Kondo scale and the re-entrance point of the
divergence lines allows for an ”extrapolation” of the phase diagram calculated
for the AIM in the following way: Due to the exponentially decreasing Kondo
scale at large U the distance between the multiple divergence lines of the AIM
will get smaller and smaller. This can be understood from the fact that, on
the one hand, the divergence lines are always connected to the results of the
Hubbard atom for higher temperatures than the re-entrance point and, on
the other hand, they are bending towards higher interaction values for lower
temperatures. This also suggests, in a sort of ”Gedankenexperiment”, how
to make a prediction for the vertex divergences in the not yet investigated
coexistence region of the Hubbard model in DMFT, which will be discussed
as an outlook of this work in Chapter 6.

Beyond the overall similarities of the divergence lines of the Hubbard
model to those obtained for the AIM, one qualitative difference was, how-
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ever, found: In the case of the AIM a previously unobserved crossing of
divergence lines of different kinds is found. While such a crossing is not in
contradiction to the current understanding of irreducible vertex divergences,
it calls for further, more precise studies of the low-temperature area of the
phase diagram of the Hubbard model.

Additionally, the comparison of the singular eigenvectors of different di-
vergence lines suggests that the symmetries in frequency space, specifically
the odd symmetry found for the eigenvectors corresponding to the red diver-
gence lines and the even symmetry found for the orange kind of eigenvectors,
provides a valid distinction criterion between the two kinds of vertex diver-
gences observed so far, generically applicable also to the most challenging
correlated metallic regime.

In conclusion, this thesis has provided clear-cut answers to several ques-
tions in the context of the irreducible vertex divergences, especially for the
role of the Kondo scale and of the metal-insulator transition. Although other
important issues remain to be clarified, through the findings of this thesis,
the possible paths how to proceed further have become clearer, as it will be
explicitly outlined in Chapter 6.
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Chapter 6

Outlook

After the discussion of the results obtained throughout this thesis, as well
as of their implications, we want to present some among the most promis-
ing follow-up projects. This ranges from numerical refinements planned to
rigorously prove the strong indications emerging from this Master work, to
completely new calculations suggested by the same thesis’ results.

Error Analysis

Throughout this thesis, several claims considering the low-temperature prop-
erties of irreducible vertex divergences were made, which could be signifi-
cantly substantiated further, from a numerical perspective, if results at even
lower temperatures could be obtained. Among those claims, we want to recall
here the most likely occurrence of a vertex divergence at a finite interaction
value at T = 0 and the approximately constant location of the maximum
component of the singular eigenvectors as a function of Matsubara frequen-
cies (iν). In principle, CT-QMC calculations at lower temperatures are pos-
sible, but the relevant question is, whether it is possible to get precise enough
results in a reasonable amount of computation time. To answer this question,
we suggest to implement a resampling error analysis method, such as e.g.,
exploiting the n − 1 Jackknife method [52, 53]. Using such a procedure it

would be possible to add an error bar to the Ũ values in the phase diagram,
verifying rigorously the validity of the results obtained so far and revealing
if calculations at lower temperatures can indeed yield meaningful results in
reasonable computation times.
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Kondo scale

Another major result of this thesis is the identification of the role played by
the Kondo scale. In fact, we found strong indications that the Kondo scale
is connected to the re-entrance behaviour of, at least, the red divergence
lines. However, the Kondo scale could be estimated hitherto only by exploit-
ing approximative textbook expressions or, indirectly, through one-particle
spectral properties. To bring a definite proof, the Kondo scale should be at
best obtained from two-particle calculations for the local susceptibility of our
specific model at different temperatures. If this connection is confirmed, we
suggest to perform DMFT calculations in the coexistence region of the Hub-
bard model on the metallic site of the Mott transition, because we expect
the occurrence of a particularly interesting configuration of divergence lines
there. More precisely, the Kondo scale of the auxiliary AIM of a DMFT cal-
culation goes to zero at U = Uc2, which means that, in the proximity of this
interaction value, we can expect a kind of ”compressed” version of the phase
diagram of the AIM. This would lead to a situation where the divergence
lines accumulate more and more as Uc2 is approached, with the distance be-
tween the lines getting smaller and smaller. Also, one would expect that in
this configuration only the re-entrance part of the lines remains as the Mott
transition, on its metallic side, should ”cut off” the part of the divergence
lines connected to the Hubbard atom results and the parts bending towards
higher interaction values for temperatures lower than TK .

Two-site model

Analysing an AIM with only a single bath site allows for analytic calculations
of the ground state and the first excited ones. If also in such an oversimplified
AIM a vertex divergence at a finite interaction value at T = 0 takes place,
as it is quite likely in the light of the new results of this thesis, it could
be possible to gain an analytical insight about the microscopic processes
controlling the vertex divergences of the AIM.

Symmetry broken phases

Over a longer time perspective, it would be also very desirable to study the
occurrence vertex divergences in the case of symmetry broken phases. In
such situations, a considerably large amount of the interaction is ”used” to
stabilize the long range order. This means that not much of the interaction
strength remains available to originate the non-perturbative divergences of
the irreducible vertex. Hence, they can be expected to vanish or, at least,
to appear at a weaker extent. This long-term project would be intrinsically
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connected to the foreseen challenging development of DMFT extensions for
the cases of symmetry broken phases.
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