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Abstract
In 2014 the first experimental observation of the quantum Chesire Cat effect was
made using neutron interferometry [T. Denkmayr et al., Nat. Commun. 5 (2014)].
By pre and postselecting the neutrons, i.e. adjusting the spin and path state,
in which they enter the interferometer, and which state they need to have in
order to reach the detector, a seemingly paradox situation can arise. A weak
intermediate interaction involving the spin will have an influence on the intensity
at the detector only on one arm of the interferometer – this is the cat’s grin.
Another interaction probing the path influences the intensity only on the other
arm – the cat’s body is spatially separated from its grin. Nevertheless, there is
a drawback in the experiment of 2014; the interaction of the beam with a weak
absorber used in order to measure the path is not of unitary nature and can only
be made for one path at a time. A new experiment carried out in the course of
this master thesis seeks to demonstrate this effect – the separation of body and
grin – simultaneously, unlike the 2014 experiment, where measurements were made
consecutively. For this purpose a new way of attaining the path information was
implemented using the neutron’s energy degree of freedom as a which-way marker,
inspired by multiphoton exchange processes, that leave the spin unchanged. The
experiment was conducted at the Institute Laue-Langevin in Grenoble, France.
The final results qualitatively agree with the theory and show the separation of
the cat from its grin.
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Zusammenfassung
Im Jahr 2014 wurde zum ersten Mal die sogenannte Quanten-Grinsekatze in ei-
nem Neutronen-Interferometer beobachtet [T. Denkmayr et al., Nat. Commun.
5 (2014)]. Durch Prä- und Postselektion, d.h. die Auswahl des Spin- und Pfad-
Zustandes, den Neutronen haben, wenn sie in das Interferometer kommen, und
den sie brauchen, um den Detektor zu erreichen, kann eine scheinbar paradoxe
Situation erzeugt werden. Eine schwache zwischenzeitliche Beinflussung des Spins
hat einen Einfluss auf die Intensität am Detektor nur auf einem Arm des Interfero-
meters – dies ist das Grinsen der Katze. Eine andere Beeinflussung, die den Pfadzu-
stand des Neutrons überprüft, ist nur auf dem anderen Arm wirksam – der Körper
der Katze ist räumlich von ihrem Grinsen getrennt. Nichtsdestotrotz gibt es einen
Nachteil am Experiment aus 2014; die Wechselwirkung des Neutronenstrahls mit
einem schwachen Absorber, die zur Messung des Pfades eingesetzt wurde, ist nicht
unitär und kann nur für jeweils einen der Pfade genutzt werden. Ein neues Experi-
ment das im Zuge dieser Masterarbeit durchgeführt wurde, demonstriert den Effekt
– die Aufteilung von Körper und Grinsen der Katze – gleichzeitig, im Unterschied
zum Experiment aus 2014, bei dem die Messungen nacheinander erfolgten. Zu
diesem Zweck wurde eine neue Möglichkeit zur Messung des Pfadzustandes imple-
mentiert, die den Energiefreiheitsgrad der Neutronen als Welcher-Weg-Markierung
verwendet, inspiriert von Multiphoton-Austauschprozessen, die den Spin unverän-
dert lassen. Dieses Experiment wurde am Institute Laue-Langevin in Grenoble,
Frankreich durchgeführt. Das Messresultat stimmt qualitativ mit der theoretischen
Beschreibung überein und zeigt die Trennung der Katze von ihrem Grinsen.
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1 Introduction
The theory of quantum mechanics describes the world on the microscopic scale.
Its validity has been confirmed experimentally time and time again, using various
systems, e.g. photons, electrons, or neutrons [1]. Many results of quantum me-
chanics seem counter-intuitive, one of which is the wave-particle duality, whereby
a massive particle, e.g. a neutron, behaves as a wave, which goes through the
two paths of an interferometer at once and, after recombination, is detected as a
particle through a nuclear reaction.
This behavior, at non relativistic speeds, is best described using the Schrödinger

equation. Its solutions are waves that have the properties associated with a clas-
sical particle: energy, momentum and position. However, in contrast to classical
mechanics, this description of a particle using the mathematical tool of a wave-
function is only probabilistic, not deterministic. The mathematics are precise in
the sense that we can accurately calculate the probability to measure the particle
at a specified location in space and time, but where it will manifest itself in the
experiment is up to chance. This is called the collapse of the wavefunction, it is the
transition from a description of many possible physical realizations to one single
such manifestation upon measurement [2].
Yet the many possible realizations before the collapse are not without mutual

influence. They show interference through the phase information the wavefunction
carries [3][4]. A measurement of beam intensity only reveals the probabilities
to register a particle count, given by the absolute square of the wavefunction –
a real number. However, the phase information, i.e. the interplay of the real
and complex valued parts of the wavefunction, can be accessed using so called
weak measurements. These are weak intermediate interactions that influence the
quantum system in a predictable way before detection, which do not lead to a
collapse of the wavefunction. The weak value [5], which takes into account the
preparation of the quantum system in an initial state (preselection), and also
the measurement process (postselection), is a complex number characterizing the
wavefunction, which directly appears in physical measurable quantities.
Interferometric phenomena – the superposition of waves – are a feature exhib-

ited by many physical systems. In the case of neutrons as massive particles, in
comparison with photons, there is no classical theory to explain the phenomenon
of interference. For this reason neutron interferometry has long been established
as an excellent tool to study the foundations of quantum mechanics [6].
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An application of weak measurements and interferometry is the so called Cheshire
Cat effect. Through a clever way of preparing the neutrons entering the interferom-
eter and also choosing the quantum state, in which they are measured, i.e. the pre
and postselection of the system, a counter-intuitive experimental situation arises
[7]. A weak interaction involving the spin – the cat’s grin – will have a noticeable
effect only on one path of the interferometer, whereas a measurement of the path
will find the neutron’s path location – the cat’s body – to have taken the other
way. Thereby these two properties, the spin and path degree of freedom, seem to
be spatially separated. The name of the experiment is based on the Cheshire Cat
in Lewis Caroll’s book Alice in Wonderland [8], where the cat is separated from
its grin.
The first experimental observation of this effect was made in 2014 by Denkmayr

et al. [7]. In the 2014 experiment, the measurements of spin and path were carried
out consecutively for the two interferometer paths. The experiment conducted in
the course of this master thesis seeks to make these four measurements simultane-
ously. This would confirm that the separation of the cat and its grin take place at
the same time. For this purpose a new way of making a which-way measurement
is implemented using the neutron’s energy degree of freedom. This is inspired by
a similar method employed in [9] which uses small spin rotations that come with
a shift in energy to mark the paths in an interferometer. However, the method of
which-way marking using the energy degree of freedom implemented in this mas-
ter thesis leaves the spin state unchanged. Inspiration for this method comes from
multiphoton exchange processes observed in [10].
The two paths of the interferometer, one of which contains the grin and the

other the body of the cat, are shifted in energy by different amounts, marking
the different paths. When they recombine, together with a reference beam, an
intensity oscillation with only one frequency corresponding to one path can be
measured, when the neutrons are subject to pre and postselection. From this it is
possible to say, on which path of the interferometer the cat’s body is located.
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2 Cheshire Cat Emerging in
Neutron Interferometry

This chapter gives a description of the quantum Cheshire Cat state and introduces
both the neutron’s spin and path degree of freedom as two-level quantum systems.
It presents the weak value as a way of investigating the Cheshire Cat paradox.

The neutron, as a fundamental particle and building block of the material world,
adheres to quantum mechanics and is associated with several properties, two of
them being its magnetic characteristic – the spin – and its position in space [11]. A
quantum Cheshire Cat experiment can realize a situation, where the two properties
seem to be spatially separated on two opposite paths of a neutron interferometer
(see fig. 2.1).
This, depending on interpretation, seemingly paradoxical situation was first

proposed by Aharonov and Rohrlich in [12] and also Aharanov et al. in [13].
A first experimental confirmation using neutron interferometry was observed by
Denkmayr et al. in 2014 [7], an equivalent experiment was carried out in 2015
[14] with a laser beam and in 2016 [15] using single photons. These experiments
use a weak absorber in order to measure the path system, with the disadvantage,
that its interaction with the quantum state is non-unitary and cannot be carried
out simultaneously for both paths. The experiment conducted in the course of
this diploma thesis takes a modified approach using neutrons and is an attempt
to improve upon these shortcomings of the 2014 experiment.

Figure 2.1: Artistic rendering of the quantum Cheshire Cat, body and grin take
opposite paths in the interferometer. Picture taken from [7].
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A necessary condition for the quantum Cheshire Cat experiment is the so called
pre and postselection of the quantum state. The preselection prepares the system
in an initial state, which then is subject to small localized influences on the two
interferometer paths. These influences probe the system for the two properties
mentioned above, the positions of the spin and path degree of freedom. After-
wards the quantum state is subject to postselection, i.e. adjusting the final state
neutrons coming from the two paths need to have in order to reach the detector.
When the quantum state is successfully pre and postselected a situation can arise,
where a position measurement finds the spin on one arm, and the path degree of
freedom on the other arm of the interferometer.

2.1 Measurement in Quantum Mechanics

Suppose a quantum state |an〉, which is a non-degenerate eigenstate of the Hermi-
tian operator Â, then |an〉 is said to have the eigenvalue an corresponding to the
observable Â.

Â |an〉 = an |an〉 (2.1)

The eigenvalue corresponding to an observable must be a real number, whereas a
general quantum state is represented by complex coefficients. Through the mea-
surement of Â, a quantum state |ψ〉 turns out to be in one of the n eigenstates.
Therefore, the state can be written in the basis of Â’s eigenstates.

|ψ〉 =
∑
n

can |an〉 =
∑
n

〈an|ψ〉 |an〉 (2.2)

Similarly, the observable can be expressed as the sum of the projection operators
of the complete basis as

Â =
∑
n

an |an〉〈an| . (2.3)

Before a measurement of Â on the state |ψ〉 is made, it is said to be represented by a
superposition of many of its possible eigenstates, characterized by the coefficients
can . After the measurement, of which the outcome was recorded, we found the
quantum state in one of its eigenstates |an〉. The corresponding coefficient can has
become equal to one and all the others are zero.
The probability to measure the eigenvalue an, when the quantum state on which

the measurement is conducted is |ψ〉, is simply given by the absolute square of the
corresponding coefficient can , i.e.

P (an) = c∗an · can = |〈an|ψ〉|2. (2.4)
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Lastly, the expectation value of Â is defined as

〈Â〉 =
∑
n

an|〈an|ψ〉|2 = 〈ψ|
∑
n

an |an〉〈an|ψ〉 = 〈ψ| Â |ψ〉 , (2.5)

and weights the possible eigenvalues an with their respective probabilities.
A practical example would be the passing of an arbitrarily polarized photon

beam through an absorbing polarizer. Before the polarizer, the polarization state
of the photon beam is in a (complex) superposition of its two mutually orthogonal
eigenstates, namely |H〉 or |V 〉. Suppose this arbitrary incident state is given
by |ψi〉 = 1√

2(|H〉 + |V 〉), i.e. the beam is polarized at an angle of 45◦ between
the horizontal and vertical polarization direction. When the polarizer is set to
the vertical direction, then the probability for a photon with polarization |ψi〉 to
go through the polarizer is simply given by P (V ) = |〈V |ψ〉|2 = 1

2 . Afterwards
the quantum state is just found in |ψf〉 = 1√

2 |V 〉, the factor 1√
2 represents the

fact, that half of the photons make it through the polarizer and the other half is
absorbed. The type of measurement described here is called a strong or projective
measurement, since the state after the measurement is given by the projection of
|ψi〉 onto the state of vertical polarization |ψf〉 = Π̂V |ψi〉 = |V 〉〈V |ψi〉, with the
projection operator defined as Π̂V = |V 〉〈V | .

2.1.1 Weak Measurements
In a more formal way of treating the measurement process described above, the
measurement device itself is treated as a quantum system. The whole system can
be written as a product |Ψ〉 = |ψ〉 |Φ〉 consisting of the measurement device |Φ〉
(also called ancilla or pointer state) and the quantum state |ψ〉 under study. The
product states interact via a Hamiltonian of the form [2]

Hint = −g(t)q̂Â, (2.6)

where g(t) is a function whose time integral over the interaction time is unity, q̂ is
a canonical position variable of the measuring device, of which p̂ is the conjugate
momentum, and Â is the observable to be measured. The difference of pf − pi of
the momentum operator p̂ corresponding to the measuring device before and after
the measurement has taken place is called the pointer reading and encodes the
value of Â.
A realistic treatment of the measuring device assumes it to have an initial state

|Φi〉 =
∫
dp e−∆2p2 |p〉 =

∫
dq e−q

2/(2∆)2 |q〉 , (2.7)

which is a Gaussian centered around p = 0 with an initial spread of ∆q = ∆ and
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∆p = 1
2∆ in position, respectively momentum space (here ~ = 1). The q and p

space representations are obtained via mutual Fourier transformations. After the
interaction via Hint the whole system has evolved into [16]

|Ψ ′〉 = e−i
∫
Hintdt |Ψi〉 = eiq̂Â |ψi〉 |Φi〉

=
∑
n

can

∫
dq eiqane−q

2/(2∆)2 |an〉 |q〉

=
∑
n

can

∫
dp e−∆2(p−an)2 |an〉 |p〉 ,

(2.8)

expanding the state |ψ〉 in the basis of the observable Â’s eigenstates.

Now two cases can be distinguished, the first having a small initial spread of ∆p,
which makes ∆ very large compared to the spacing between the an’s. Then the
sum in eq. (2.8) consists of n distinct sharp Gaussian peaks, each centered around
a possible value of an. This corresponds to a strong measurement as described in
the preceding section.

The other case has a large initial ∆p, which gives a sum of n broad Gaussians,
appearing similar to one large Gaussian distribution, whose center is now shifted
to the mean value of Â. This situation is called a weak measurement and does
not give any considerable information when it is performed once. However, by
repeating the measurement many times, the momentum shift, and therefore the
mean value of Â, can be determined up to any required precision .

2.2 Weak Values

The weak value, first introduced by Aharonov, Albert and Vaidman [5], is a mea-
sure of an observable Â conditioned on pre and postselection, which is defined
as

〈Â〉w = 〈ψf | Â |ψi〉
〈ψf |ψi〉

. (2.9)

In this equation |ψi〉 is the initial preselected and |ψf〉 the postselected final state.

When the measurement scheme from the previous section is extended by a pro-
jective measurement of state |ψ〉, by choosing the final state |ψf〉 = ∑

n c
′
an |an〉 the

quantum system must have, in order to be able to reach the detector, an interesting
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phenomenon occurs.

|Φf〉 = 〈ψf |Ψ ′〉 = 〈ψf | eiq̂Â |ψi〉 |Φi〉
≈ 〈ψf | (1 + iq̂Â+ · · · ) |ψi〉 |Φi〉
= 〈ψf |ψi〉 (1 + iq̂〈Â〉w + · · · ) |Φi〉

≈ 〈ψf |ψi〉
∫
dq eiq〈Â〉we−q

2/(2∆)2 |q〉

= 〈ψf |ψi〉
∫
dp e−∆2(p−〈Â〉w)2 |p〉

(2.10)

Now the momentum distribution of the pointer state |Φf〉 is shifted away from the
center by an amount equal to the weak value 〈Â〉w. This suggests a possibility to
acces weak values in practical situations.
The weak value has a number of interesting properties [17]:

• Weak values are complex quantities that characterize relative corrections to
detection probabilities caused by an intermediate interaction.

• When the pre and postselected states are nearly orthogonal the weak value
becomes large, because the denominator of eq. (2.9) goes to zero. This
can be used in order to amplify certain signals corresponding to unknown
experimental parameters above technical noise backgrounds.

• It can be used in order to completely characterize a quantum state up to
a global phase, a technique also termed direct quantum state tomography.
Direct in this context signifies that no complicated computational data pro-
cessing is needed and the desired information appears linearly in measurable
quantities, e.g. beam intensity.

• The real part of 〈Â〉w can be interpreted as a conditioned average of the
observable Â on the condition of pre an postselection.

• The weak value is generally a complex number, whose imaginary part causes
a position shift in the pointer state (center of the Gaussian is shifted in the
fourth line of eq. (2.10) in q representation) and whose real part causes a
momentum shift of the pointer (last line of eq. (2.10)).

• The weak value can be used in order to investigate quantum paradoxes.

• Critics of the weak value do not ascribe physical realism to it and treat it as
just a mathematical result of quantum measurement theory.
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It should be noted that weak values cannot be extracted from a single particle
measurement, but are obtained as averages over many detected particles. They
are called weak because originally the theory of weak values was formulated as
such, that the measurement of the observable Â only perturbs the wavefunction
lightly, meaning the interaction is only appreciable in the first order.

2.3 Experimental Studies of Weak
Measurements/Weak Values

In this section two examples of experiments using weak values are presented. The
first experiment uses the weak value in order to directly measure a quantum state,
the second is an application of the weak value as a tool for amplification.

2.3.1 Direct Measurement of the Quantum Wavefunction
An example of the use of weak values to directly determine the wavefunction of a
quantum state is the experiment performed by Lundeen et al. in 2011 [18]. The
wavefunction that was directly measured is the transverse spatial wavefunction of
a photon beam Ψ(x). The experimental setup is depcited in fig. 2.2.

Figure 2.2: Depiction of the setup of the experiment by Lundeen et al. taken from
[18].

A single mode optical fiber transmits photons with a definite wavelength to be
used for the experiment which first pass through a polarizer. The beam profile,
which originally is of Gaussian form, can be modified with a special attenuator

8



labeled RB. The preparation of the photon beam up to this point constitutes the
preselection. The weak measurement scheme uses the polarization state of the
photons as a pointer system. The polarization is weakly rotated by a small angle
α using a λ/2-plate that can be slided across the transverse direction x of the
beam. Afterwards a Fourier transform lens selects only photons with a transverse
momentum p to be able to reach the detectors, which is the postselection. The
weak value of the projection operator Π̂x = |x〉〈x| is then given by

〈Π̂x〉w = 〈p|x〉〈x|Ψ〉
〈p|Ψ〉

= eipx/~Ψ(x)
Φ(p) . (2.11)

When the postselected momentum p = 0, this weak value is directly proportional
to the transverse spatial wavefunction of the beam 〈Π̂x〉w ∝ Ψ(x).
As stated in the preceding section, the real and imaginary part of the weak

value are connected to shifts in q and p of the pointer state (not to be confused
with x and p of the transverse beam profile Ψ). The role of position q and con-
jugate momentum p as complementary bases in the case of photon polarization
as a pointer sate is played by the linear and circular polarization bases. In order
to map out the real and imaginary part of 〈Π̂x〉w and therefore the wavefunction,
the polarization in these complementary bases has to be measured for different
transverse beam positions x. For this, a combination of either a λ/4 or λ/2-plate,
together with a polarization dependent beam splitter and two detectors is used.
With the λ/2-plate the linear polarization is measured and therefore ReΨ(x). For
ImΨ(x) the λ/4-plate is used to measure the circular polarization. The polariza-
tion dependent beam splitter transmits photons corresponding to orthogonal basis
states into two different detectors for an intensity measurement. The difference of
the detector counts for the two complementary bases can then be used to directly
determine Ψ(x).

Figure 2.3: Measurement of Ψ(x) taken from [18]. Left: ReΨ(x) in blue, ImΨ(x)
in red. Right: Comparison with a strong measurement of transverse beam intensity
(solid line) and phase plot.
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The measurement results depicted in fig. 2.3 shows the direct reconstruction, i.e.
the real and complex part of the transverse spatial wavefunction Ψ(x). It shows
good agreement with a strong measurement of the beam intensity along the trans-
verse direction x.

2.3.2 Ultrasensitive Beam Deflection Measurement via
Interferometric Weak Value Amplification

Another application of the weak value is to use it in order to amplify small changes
of the system under study onto a large change of the pointer readout. In 2009
Dixon et al. used it in order to interferometrically measure very small beam
deflections [19]. Their experimental setup is depicted in fig. 2.4.

Figure 2.4: Depiction of the experimental setup of [19].

The preselected state of the system is given by

|ψi〉 = |Φi〉 |X〉 = 1√
2

(ieiχ |	〉+ |�〉) |X〉 , (2.12)

where the states |	〉 and |�〉 are the two possible paths a polarized photon can
take through the Sagnac interferometer, namely clockwise or counterclockwise, and
|X〉 is the transverse position of the beam. A tunable phase shift χ between the
two states is introduced. The weak measurement of beam deflection is produced
by a slight tilt of the piezo driven mirror. This effects the beam via an impulsive
interaction Hamiltonian leading to a time evolution of the form

exp (−ixÂk), (2.13)
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where x is the transverse beam position, k is the transverse momentum change
caused by the mirror tilt, and Â = |�〉〈�| − |	〉〈	| accounts for the fact, that
this effect comes with an opposite sign for the different interferometer states. The
state after this interaction is given by

|ψ′〉 = e−ixÂk |ψi〉 ≈ (1− ixÂk) |Φi〉 |X〉 , (2.14)

when the mirror tilt is smaller then the width of the beam profile. After this inter-
action, the state |ψ′〉 is projected onto the postselected state of the interferometer,
which is given by

|Φf〉 = 1√
2

(|	〉+ i |�〉). (2.15)

The resulting state after the postselection is given by

〈Φf |ψ′〉 = 〈Φf | (1− ixÂk) |Φi〉 |X〉

= (〈Φf |Φi〉 − ikx
〈Φf | Â |Φi〉
〈Φf |Φi〉

) |X〉

≡ 〈Φf |Φi〉 (1− ikx〈Â〉w) |X〉
≈ 〈Φf |Φi〉 e−ikx〈Â〉w |X〉 .

(2.16)

The result consists of the overlap between 〈Φf |Φi〉 = sin(χ/2) which can be tuned
with the phase shift χ, and the transverse beam profile |X〉, which is altered by a
momentum shift equal to k〈Â〉w. The momentum shift is amplified by the weak
value which in this case amounts to 〈Â〉w = i cot(χ/2) ≈ −2i/χ and can become
quite large for small χ. This shift in momentum leads to a displacement of the
beams intensity profile at the detectors and can be used to measure changes in the
signal caused by very small tilts of the mirror up to 400± 200 frad (see fig. 2.5).

Figure 2.5: Measurement of very small angle mirror tilts by Dixon et al. [19].
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2.4 Neutron Optical Approach
In his doctoral thesis of 1924 Louis de Broglie postulated the wave nature of
massive particles, ascribing a wavelength of λ = h/p to them. In 1927 Davisson
and Germer gave prove of this postulate for electrons by scattering them from
nickel crystals, demonstrating the Bragg law to be valid also in the case of massive
particles. In the 1960s Bonse and Rauch utilized perfect silicon crystals, previously
used for x-ray scattering, to measure interference for neutrons. The field of neutron
interferometry has opened up a new way of investigating quantum phenomena,
since the macroscopically separated wave packets inside the interferometer allow
for the insertion of several optical elements in one or both beams.

2.4.1 Neutron Interferometry
As a quantum particle, the neutron is described using a wavefunction. It is a
function of the neutron’s momentum and its position in time and space and follows
the Schrödinger equation. If one takes the absolute square of the wavefunction
one gets the probability to find the particle at the specified coordinates. The
best way to observe the interference effect of neutrons is to use a perfect crystal
interferometer. A more thorough treatment of the working principle of a neutron
interferometer is given later on. At this point only a brief overview is presented.

O

H
PS

I

II

Figure 2.6: Schematic depiction of a three plate neutron interferometer with a
phase shifter in path II.
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A schematic depiction of a three plate neutron interferometer is given in fig. 2.6. In
essence a neutron interferometer consists of a beam splitter that splits the incident
wavefunction in two parts of equal amplitude (first interferometer plate). These
two parts propagate along two different paths, on which each beam is reflected off
a mirror (second plate). The two beams are subsequently recombined at the third
plate and leave the interferometer in two distinct beams, the O beam in parallel
to the incident neutron beam, and the reflected H beam. This interferometric
setup is referred to as the Mach-Zehnder type. The interferometer is cut from a
monolithic perfect silicon crystal. The neutrons entering the interferometer are
monochromatized beforehand and all have the velocity v ∼ 2 km/s. With typical
count rates of 10 – 100 counts/s at the O detector, the chances of two neutrons
being inside the interferometer at the same time are negligibly small. Therefore
all interferometric phenomena observed are of type self-interference. Suppose the
incident wavefunction is given by Ψ0, then the intensity of the O beam can be
written as

IO(∆χ) = |ΨI + ΨII |2 = 1
2 |Ψ0|2|1 + ei∆χ|2

= 1
2(1 + cos ∆χ),

, (2.17)

with a phase difference of ∆χ between the two beams introduced by the phase
shifter labeled PS in fig. 2.6. As can be seen from the last line in eq. (2.17), the
intensity of the O beam oscillates with ∆χ. The law of particle conservation forbids
that neutrons cease to exist midway through the interferometer and therefore,
when IO decreases due to changes in ∆χ, the intensity of the H beam goes up by the
same amount. In summary one can say, that the neutron inside the interferometer
exists as a superposition of two states, namely the two possible paths.

2.4.2 Neutron Spin: A Two-Level Quantum System
As its name suggests, the neutron carries no net electrical charge, however it has a
magnetic moment: it is a spin-1

2 -particle. The spin of a neutron is, as is the path
degree of freedom in a three plate interferometer, a two-level system. This means,
that upon a definite measurement of the spin, one can only have two possible
results, either the spin was in state |↑z〉 or |↓z〉. The spin direction is always given
with respect to an axis, conventionally the z-axis, and can either be parallel or
antiparallel to it. However, since the spin of a particle is a quantum property,
every possible superposition between the two spin states can exist. Through this
mathematical mechanism it is possible for the spin state to describe the orientation
of the magnetic moment, a vector in three dimensional space. Suppose an arbitrary
spin state given by

13



φ

Figure 2.7: Visualization of an arbitrary spin state on the Bloch sphere.

|ψ(θ, φ)〉 = cos
(
θ

2

)
|↑z〉+ sin

(
θ

2

)
eiφ |↓z〉 (2.18)

then the vector of the magnetic moment is related to the spin by the equation

~µ = γ
~
2 〈ψ|~σ |ψ〉 , (2.19)

where γ is the gyromagnetic ratio of the neutron (γ = |2µ/~| = 1, 83247172(43)×
108 s−1T−1) and ~σ is the vector of spin matrices, which are

σx =
(

0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
, (2.20)

with
|↑z〉 ≡

(
1
0

)
and |↓z〉 ≡

(
0
1

)
.

An arbitrary spin state is a point located anywhere on the so called Bloch sphere
specified by the polar angle φ and the azimuthal angle θ. The path degree of
freedom is, as stated above, also a two-level quantum system and can therefore be
treated mathematically in an equivalent way to the spin.
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2.4.3 Manipulation of the Spin: Spin-Rotation
As stated in the preceding section, a spin-1

2 state can be represented by the two
basis states |↑z〉 or |↓z〉 – parallel or anti-parallel with respect to a quantization axis,
conventionally the z-axis. When the spin is located inside an external magnetic
field ~B = (0, 0, Bz)T , the two basis states correspond to different (potential) energy
levels E = ±µ ·Bz, with the lower energy for parallel orientation. When the spin is
initially in one of these two states and the direction of this magnetic field changes,
provided the rate of change is slow compared to |γB|, i.e. the change is adiabatic,
it will remain in its initial state, now with respect to the new direction of the
external field. This situation is depicted in fig. 2.8.

μ
B

Figure 2.8: Spin following an adiabatically changing external field (blue arrow).

When the initial spin state is not purely |↑z〉 or |↓z〉, but a superposition of the
two, the difference in potential energy of these two states leads to a change of
the polarization vector ~P = 〈Ψ|~σ |Ψ〉 in time. This phenomenon is called Larmor
precession. When a spin is inside a region with a constant magnetic field, the
polarization vector rotates around an axis parallel to the field, keeping the same
inclination between magnetic moment and external field. The vector ~P precesses
around the magnetic field ~B with the Larmor frequency ωL = |γB|.

d

dt
~P = ~P × γ ~B (2.21)

To control the spinor rotation in the experiment, a magnetic field can be applied
only in a limited region of space. Also the field transition needs to be abruptly, so
that the spin does not adiabatically follow the external field.
There are two ways to make controlled spinor rotations, one is to have direct-

current spin turners. They work by having a constant magnetic field, around which
the spin rotates, contained inside a coil (see fig. 2.9). The spin-rotation angle is
proportional to the field-strength inside the coil and the time of flight through
it. This method comes with the disadvantage of having material (wires) in the
neutron beam, which reduces coherence of the interfering beams due to scattering,
when it occurs inside the interferometer.
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Figure 2.9: Left: Depiction of a direct-current spin-flipper doing a π-spin-rotation.
Right: Simulation of the magnetic field produced by the spin-flipper. It has a non
adiabatic change along the y-axis.

Another way of doing controlled spinor rotations is to use so called resonant-
frequency spin-flippers. They ensure the non-adiabaticity of the field change by
having the magnetic field oscillate in time. Their working principle is explained in
more detail later on.

2.5 Spin and Path Weak Values and the Quantum
Cheshire Cat in Neutron Optical Experiments

In the main experiment of this work the preselected state is given by

|ψi〉 = 1√
2
|↑z〉 (|I〉+ |II〉), (2.22)

which is an entangled state characterized by the direct product of the spin and
path state. When a polarized spin-|↑z〉 neutron enters the interferometer its wave-
function is split 50 : 50 between the two paths |I〉 and |II〉. Before recombination
of the two beams a π-spin-flip takes place in one arm of the interferometer. On its
way to the detector the neutron beam passes through a spin analyzer that filters
out all spin-|↓z〉 neutrons. The postselected state reads

|ψf〉 = 1√
2

(|↓z〉 |I〉+ |↑z〉 |II〉). (2.23)

When one now takes a look at the weak values for the path projection operators
defined as

Π̂I = |I〉〈I| and Π̂II = |II〉〈II| , (2.24)
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and the operators for spin rotation on a single path around an axis in the x-y-plane
defined as

σ̂ξΠ̂I = σ̂ξ |I〉〈I| and σ̂ξΠ̂II = σ̂ξ |II〉〈II| , (2.25)

with σ̂ξ = σ̂x cos ξ + σ̂y sin ξ, one finds

〈
Π̂I

〉
w

= 0 and
〈
Π̂II

〉
w

= 1, (2.26)

as well as 〈
σ̂ξΠ̂I

〉
w

= eiξ and
〈
σ̂ξΠ̂II

〉
w

= 0. (2.27)

The last two relations result from the fact, that σ̂ξ |↑z〉 = a |↓z〉, up to a constant
phase factor a, and vice versa σ̂ξ |↓z〉 = a |↑z〉. With the given pre and postselected
states, the weak values suggest the neutron takes path II and its spin path I.
A measurement of the weak value

〈
σ̂ξΠ̂j

〉
w
can be realized by having a magnetic

field pointing somewhere in the x-y-plane specified by angle ξ locally interact with
the neutron spin on path j. The path weak value

〈
Π̂j

〉
w

can be measured by
having another interaction, that does leave the spin state unchanged, localized
on path j. The strength of these interactions should be weak enough in order
to avoid perturbations of the quantum state that lie outside the regime of weak
measurements.

2.6 Other Experimental and Further Theoretical
Studies of the Quantum Cheshire Cat Effect

The first analysis and proposal of a quantum Cheshire Cat experiment is given in
[13]. As is necessary for the Cheshire Cat effect, orthogonal spin states are pre or
postselected on the two arms of an interferometer. In the proposed experiment the
role of the neutron spin as described above is played by the photon’s polarization
state.
As is argued in [20], in this experiment the pointer state needed to read out the

result of the weak measurements of either polarization or path information is the
transverse spatial wavefunction of a laser beam at the detector. The weak mea-
surement of the polarization state is conducted by placing a birefringent crystal,
that displaces only photons of one polarization state to the left or right, in one
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arm. The path state is weakly measured by placing a glass plate, that displaces
the beam independent of polarization in a direction up or down. These displace-
ments need to be very small compared to the size of the beam profile in order to
be considered a weak measurement. Analogous to the weak values given in the
preceding section the measurements of path and polarization produce a change
in the pointer state only on one arm of the interferometer and are effective on
opposite sides.
The actually realized Cheshire Cat experiments using photons by Atherton et al.

[14] and single heralded photons by Ashby et al. [15] replaced the beam displacing
glass plate with a weak absorber. The polarization dependent beam displacement
of the birefringent crystal is replaced with a slight polarization rotation using a
half-wave plate. Therefore these experiments are exactly analogous to the one
by Denkmayr et al. using neutrons [7], which is explained in more detail at the
beginning of the following chapter. The authors of [14] give an explanation using
the classical expressions for the electric field of the laser beam. Their experiment
is not in the quantum regime and therefore the interfering photons can actually
take both possible paths at once. Together with Corrêa et al. [20], the authors
of [14], express the view, that the experimental situation only seems paradoxical,
when a kind of physical realism is ascribed to the wavefunction between pre and
postselection. They state, that the experimental outcome can also be understood
from the principle of interference and refute the claim, that the spin/polarization
and path degrees of freedom are actually separated from each other.
In a thorough theoretical treatment of the quantum Cheshire Cat experiments

and the criticism they sparked, Duprey et al. [21] state, that the experiments
[7][14][15] are not real implementations of the Cheshire Cat phenomenon, since
the spin/polarization and path degree of freedom of the neutron/photon in the
interferometer would need to be expanded by a third degree of freedom, an ac-
tual pointer state. They claim, that the intensity measurement at the detector
is not a suitable pointer readout. An actual implementation of the Cheshire Cat
experiment would indeed impact the pointer state as if the weak coupling of the
interaction Hamiltonian involving the spin is only effective on one path and the
coupling involving the path projector is effective on the other, when pre and posts-
elected states are suitably chosen. This is true, because the transition amplitude of
the preselected to the postselected state corresponding to a weak interaction, with
a weak value of zero, is also zero and the transition is therefore forbidden. Accord-
ing to Duprey et al., an actual Cheshire Cat experiment has not been observed
experimentally.
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3 Theory

This chapter describes the protocol for measurements of spin and path localization
in order to observe the Cheshire Cat paradox. An explanation of the experimental
method of spin rotation is presented together with a technique, that reveals which
path in the interferometer a neutron takes by using the neutron’s energy degree of
freedom as a path marker. In the end a theoretical description of the experiment,
which was conducted in the course of this master thesis at the Institut Laue-
Langevin in Grenoble, is given.

3.1 Scheme of the Previous Quantum Cheshire Cat
Experiment

The quantum 2014 Cheshire Cat experiment, the first experimental observation of
the effect using matter-wave interferometry, was also carried out at the Institute
Laue-Langevin in Grenoble. The experimental setup at that time is depicted in
fig. 3.1. Incoming polarized |↑z〉 neutrons are rotated by an angle of π/2 into the
x-y-plane by the direct-current spin-rotator DC1 before entering the interferome-
ter. Between the first and the second plate of the interferometer the preselected
state is prepared by two so called Larmor accelerators, which consist of Helmholtz
coils that produce magnetic fields in the z-direction. These fields locally weaken
or strengthen the z-field produced by the guide field coils surrounding the exper-
imental region. This in turn leads to different spin directions for the paths upon
exit of the two accelerator coils, when the Larmor frequency is shifted locally. This
effect can be tuned in order to produce the preselected state

|ψi〉 = 1√
2

(|↑x〉 |I〉+ |↓x〉 |II〉). (3.1)

The combination of DC2 and supermirror analyzer permits only |↓x〉-neutrons to
enter the O detector, therefore the postselected state is given by

|ψf〉 = 1√
2
|↓x〉 (|I〉+ |II〉). (3.2)
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Figure 3.1: Schematic depiction of the 2014 Cheshire Cat experiment. Larmor
accelerators between first and second interferometer plate depicted as rectangles.
Dashed gray lines signify where the weak absorbers are placed one after the other.

The position measurement of the spin on both paths of the interferometer is
now performed by introducing small perturbations, additional spin rotation an-
gles around the z-axis, denoted by βI and βII . These perturbations are deviations
from the z-field of the Larmor accelerators used for the preselection.
The effect of the modified magnetic field onto the neutron wavefunction ψ is

calculated from the formula ψ′ = e−
i
~

∫
Hintdtψ, with the interaction Hamiltonian

Hint = −γ ~
2 ~σ · ~B active inside the region of the Larmor accelerators. Rotation

angles βj are therefore proportional to the magnetic field strength produced by
the Larmor accelerators and the time of flight through their active region. The big
guide field has the same influence in both paths and therefore does not lead to a
relative spin rotation. When the wavefunction after the first interferometer plate
is given by |ψi〉, the weakly perturbed state right before the middle plate reads

|Ψ ′〉 =
(
e+iχ/2eiβI σ̂zΠ̂I + e−iχ/2eiβII σ̂zΠ̂II

)
|ψi〉

≈
(
e+iχ/2[1 + iβI σ̂z]Π̂I + e−iχ/2[1 + iβII σ̂z]Π̂II

) 1√
2

(|↑x〉 |I〉+ |↓x〉 |II〉)

= 1√
2
(
e+iχ/2[1 + iβI σ̂z] |↑x〉 |I〉+ e−iχ/2[1 + iβII σ̂z] |↓x〉 |II〉

)
= 1√

2
(
e+iχ/2[|↑x〉+ βI |↓x〉] |I〉+ e−iχ/2[|↓x〉+ iβII |↑x〉] |II〉

)
(3.3)
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with the action of the phase shifter, i.e. a factor e±iχ/2 with the sign depending
on the path, and using the result σ̂z |↑x〉 = |↓x〉 and σ̂z |↓x〉 = |↑x〉. After the third
interferometer plate, the beams I and II are recombined and pass through DC2
and the supermirror analyzer, which in combination only transmit the |↓x〉-spin
component. This corresponds to the postselection of state |ψf〉. The wavefunction
after the analyzer is then given by

|Ψ ′′〉 = 1√
2

(e−iχ/2 |II〉+ iβIe
+iχ/2 |I〉) |↓x〉 . (3.4)

Calculating the intensity by taking the absolute square up to first order in β results
in

IO = |〈Ψ ′′|Ψ ′′〉|2 = 1
2 − 2βI sinχ. (3.5)

From the O beam intensity one can tell, that only the influence of βI survives
the postselection. In this sense the spin property takes path I. In principle both
measurements of βj can be carried out simultaneously. Then, when one of the two
effects is switched off, one after the other, only one of them will have an appreciable
effect onto the O beam intensity, when the disturbances are sufficiently small. This
result can be interpreted using the weak values for the spin localization〈

σ̂zΠ̂I

〉
w

= 1 and
〈
σ̂zΠ̂II

〉
w

= 0.

The situation is different for the path measurement. This measurement was
done by placing a weak absorber with a transmittance of Tabs ≈ 80% in one of the
interferometer paths as depicted in fig. 3.1. This cannot be done simultaneously
for both paths, as it would only weaken the overall intensity, without gaining any
path information.

When the absorber is in path I the wavefunction before the third plate is given
by

|Ψ ′〉 =
(
e+iχ/2

√
TabsΠ̂I + e−iχ/2Π̂II

)
|ψi〉

= 1√
2
(
e+iχ/2

√
Tabs |↑x〉 |I〉+ e−iχ/2 |↓x〉 |II〉

)
.

(3.6)

Since the postselection removes the |↑x〉-spin component, the resulting intensity is
just

IO = 1
2 , (3.7)

with no influence of the absorber. For the case of an absorber only in path II, the
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wavefunction is given by

|Ψ ′〉 =
(
e+iχ/2Π̂I + e−iχ/2

√
TabsΠ̂II

)
|ψi〉

= 1√
2
(
e+iχ/2 |↑x〉 |I〉+ e−iχ/2

√
Tabs |↓x〉 |II〉

)
,

(3.8)

which, after postselection, results in an intensity of

IO = Tabs
2 , (3.9)

which is reduced in comparison to the intensity without an absorber in path II.
In this sense a measurement of the neutron’s path degree of freedom suggests it
takes path II. This also corresponds to the weak value result〈

Π̂I

〉
w

= 0 and
〈
Π̂II

〉
w

= 1.

A point of critique for this method of measuring the path localization is, that the
interaction of the neutron with the absorber is not of unitary nature regarding the
interferometer quantum state, since the amplitude for one path is reduced. Also,
this method does not allow to differentiate between the path markings of both
paths. When on the other hand the energy degree of freedom is used to mark the
paths, they could be subject to partial shifts in energy with different amounts of
∆E = ~ωj corresponding to the different paths. This way of measuring the path
localization could be carried out simultaneously for both paths.

3.2 Resonant Frequency Spin Flippers

This section covers how the spin degree of freedom can be manipulated using so
called resonant-frequency (RF) spin-flippers. In the main experiment of this work,
this is of importance, not only for the postselection, but also to probe the Cheshire
Cat state for its response to small localized additional spin rotations on the two
paths.
As stated above, in order to have a defined spin-rotation by means of Larmor

precession, a sudden magnetic field change from a region with free evolution of
the quantum state to a limited region, where the desired rotation takes place, is
necessary. With the RF-flipper, oscillating currents are used, in order to have
the non-adiabaticity ensured by a rapid field change in time. The RF-flipper is a
device that produces an oscillating magnetic field B1 in the direction of neutron
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flight which is superimposed with the guide-field B0 [22].

~B(t) =

B1 cos(ωt)
0
B0

 (3.10)

In order to have a spin rotation, a resonance condition between the oscillating and
constant fields has to be fulfilled. The working principle is simply described as
follows:
Suppose a frame of reference, which moves with the neutron and is rotating

around its center of mass with an angular velocity corresponding to the Larmor
rotation. The oscillating field B1 in the x-direction can be thought of as a super-
position of two circularly counter-rotating fields in the x-y-plane with frequency
ω. When the guide-field B0 has the right magnitude, a rotation of the spin due to
Larmor precession would be in phase with one of the counter-rotating components.
The other component would be rotating with double the velocity in the other di-
rection and therefore average out over time (rotating wave approximation). This
would mean one of the rotating field components is fixed with respect to the spin in
the rotating frame of reference. This creates a constant axis for the spin to revolve
around by virtue of, again, Larmor precession. The rotation angle is proportional
to the oscillating field component B1.

Figure 3.2: Schematic depiction of the RF-flipper doing a π-spin-flip. Locally
tunable guide field coil in yellow, RF-coil in red.

The resonance condition is

ωres = 2|µ|B0

~

(
1 + B2

1
16B2

0

)
, (3.11)

the second term being a correction due to the rotating wave approximation. For the
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purpose of setting up the RF-flipper, given a desired frequency f , it is convenient to
use the approximate resonant condition B0[G] ∼ 1

3f [kHz] as a starting point for the
guide field. The action of the RF-flipper on the spinor of a neutron wavefunction
can be written as a unitary matrix [23]

URF (β, ω) =
(

cos(β2 ) −i sin(β2 )e+iωt

−i sin(β2 )e−iωt cos(β2 )

)
, (3.12)

with the rotation angle β ∝ B1 and resonant frequency ω. From the off diagonal
entries one can tell that the energy of the flipped parts of the spinor are shifted
by ∆E = −~ω. Another way of writing eq. (3.12) is given by

URF (β, ω) = cos(β2 )1− i sin(β2 )
(

0 cosωt+ i sinωt
cosωt− i sinωt 0

)

= cos(β2 )1− i sin(β2 )
(

cosωt σ̂x − sinωt σ̂y
)
,

(3.13)

which makes clear that the spin rotation occurs around an axis that rotates with
frequency ω in the x-y-plane.

For later use we write the expansion of eq. (3.12) for small β up to the first order

URF (β, ω) |↑z〉 =
(

1 −iβ2 e
+iωt

−iβ2 e
−iωt 1

)(
1
0

)
+O(β2)

≈ |↑z〉 − i
β

2 e
−iωt |↓z〉

(3.14)

and the same for a rotation angle of π − β

URF (π − β, ω) |↑z〉 = URF (π, ω) ∗ URF (−β, ω) |↑z〉

=
(

β
2 −ie+iωt

−ie−iωt β
2

)(
1
0

)
+O(β2)

≈ β

2 |↑z〉 − ie
−iωt |↓z〉 .

(3.15)

For β = π/2 and incident spin |↑z〉 the resulting wavefunction is a spin rotating in
the x-y-plane with frequency ω.

URF (π/2, ω) |↑z〉 = 1√
2

(
1 −ie+iωt

−ie−iωt 1

)(
1
0

)

= 1√
2

(|↑z〉 − ie−iωt |↓z〉)
(3.16)
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3.3 Simultaneous Spin Localization Measurement

This section explains, how a measurement that finds the spin property of the
neutron in one interferometer arm but not in the other, can be carried out using
RF-flippers. Suppose a three plate interferometer with two RF-flippers in the two
paths as depicted in fig. 3.3. The pre and postselected states can be written exactly
as already presented in section 2.5

|ψi〉 = 1√
2
|↑z〉 (|I〉+ |II〉) and |ψf〉 = 1√

2
(|↓z〉 |I〉+ |↑z〉 |II〉).

preselection is carried out by the magnetic prism polarizer and postselection by
the two RF-flippers in the two paths, one doing a π-flip, the other doing no flip at
all. Now, in order to measure the response of the system, small deviations from
these rotation angles, βI and βII respectively, are introduced. From a conceptual
standpoint we assume here two distinct spin rotators in path I, one that is solely
responsible for postselecting the state and the other to introduce a small additional
spin rotation beforehand. Since there is limited space available and the outcome
is no different from the easily realizable case of only one RF-flipper, that rotates
the spin around an angle that deviates from the postselection angle π by βI , the
latter option is chosen.
When the incoming wavefunction is given by |Ψ0〉 = |↑z〉 e−iω0t, the quantum state
right before the last interferometer plate in this case can be written as

|Ψ ′〉 = |I ′〉+ |II ′〉

= 1√
2
e−iω0t

[
URF (π − βI , ωRF ) |↑z〉 |I〉+ URF (βII , ωRF ) |↑z〉 |II〉

]
.

(3.17)

Putting in the approximations for URF up to the first order in β (using eqs. (3.14)
and (3.15)) gives

|Ψ ′〉 ≈ 1√
2
e−iω0t

[(βI
2 |↑z〉 − |↓z〉 ie

−iωRF t
)
|I〉 e+iχ/2+

+
(
|↑z〉 −

βII
2 |↓z〉 ie

−iωRF t
)
|II〉 e−iχ/2

]
.

(3.18)

The supermirror filter out all the |↓z〉-spins in the beam, therefore the wavefunction
after the analyzer is given by

|Ψ ′′〉 ≈ 1√
2
e−iω0t′

[
βI
2 |↑z〉 e

+iχ/2 + |↑z〉 e−iχ/2
]
. (3.19)
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Figure 3.3: Schematic depiction of a three plate interferometer with two RF-flippers
in the two paths and a supermirror analyzer before the O detector.

Now taking the absolute square, the intensity of the O beam can be written in the
form

IO(χ) ≈ 1
2 + βI

2 cosχ, (3.20)

which only depends on βI in the first order. If the deviation angles β are chosen
sufficiently small, only the linear response is appreciable in the intensity measure-
ment. In this sense the spin property of the neutron, given pre and postselection,
takes path I.

3.4 Realization of a Which Way Measurement for
Neutrons

The motivation for the experiment carried out in the course of this diploma the-
sis was to improve the Cheshire Cat experiment of 2014 in a way, such that the
weak perturbations used in order to probe the quantum state for its spin and path
localization are all applied simultaneously. As stated above, the path localization
measurement using weak absorbers cannot be applied for both paths simultane-
ously. Also the non-unitarity of the absorbers nuclear interaction was criticized.
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The first idea that was considered theoretically was to take the setup from
the 2014 experiment and replace the weakly absorbing foils with two RF-Flippers
operating at different frequencies ωI and ωII , which would make a small angle
spin-rotation, in order to introduce an energy shift in the flipped part, i.e. a
factor e−iωjt. The plan was for this factor to lead to an interference term with the
initial energy e−iω0t, which would make the intensity oscillate with frequency ωj
[9]. Then, if only one frequency, e.g. ωI is detected in the intensity measurement,
this suggests

〈
Π̂II

〉
w

= 0. This proposed setup is illustrated in fig. 3.4. The

O
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,ω
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χ
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β2

β1

DC1

DC2

Figure 3.4: Schematic depiction of the Cheshire Cat experimental setup from 2014
with RF-flippers in place for the weakly absorbing foil between second and third
interferometer plate.

problem with this setup is, that the RF-flippers produce a spin-rotation around a
rotating axis in the x-y-plane. When one looks at the weak values expected for a
rotation around such an axis specified by angle ξ, such that σ̂ξ = σ̂x cos ξ+ σ̂y sin ξ,
assuming pre and postselected states of the 2014 experiment, written in eqs. (3.1)
and (3.2), which are given by〈

σ̂ξΠ̂I

〉
w

= −i sin ξ and
〈
σ̂ξΠ̂II

〉
w

= − cos ξ (3.21)

one notices, that they are nonzero on both paths. Therefore, both RF-flippers
would have an appreciable effect on the quantum state between pre and postselec-
tion, since ξ changes periodically in time. Also, argumentatively it is not possible
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to separate the effect of the RF-flipper onto the time-dependent part of the wave-
function, i.e. the energy, from the spin rotation it causes, in order to conclude
the spin and path degree of freedom are localized on opposite interferometer arms.
Another way of accessing the neutrons energy without changing the spin state had
to be devised.

3.5 Energy Manipulator Coils
The most easily accesible property of a neutron in the experiment is the spin, it
serves to create orthogonal states in the two paths, a key element of the Quantum
Cheshire Cat state. However, the spin state cannot simultaneously be used as a
which-way marker for the neutron’s path degree of freedom. The next property
which comes to mind is the neutron’s energy, being present in the time-dependent
part of the wavefunction, e.g. when it is modeled as a plane wave

ei(
~k~x−ω0t), ω0 = E0

~
.

If it is possible to manipulate the energy a certain way in a finite region inside
the interferometer, this could lead to a time-oscillation of the intensity at the
detector with a frequency corresponding to the localized influence. For this reason
the energy-manipulator coil (EM) is used, it serves as a way to shift the energy
without causing a rotation of the spin. The detected frequency of the intensity
oscillation is then a which-way marker for the neutron’s path.

3.5.1 Theoretical Treatment
The EM-coil consists of a pair of Helmholtz coils that produce an oscillating mag-
netic field in the z-direction (see fig. 3.5), so that the overall field inside the coil
becomes

~B(t) =

 0
0

B0 +B1 cosωt

 (3.22)

with the static guide field B0, which surrounds the EM-coil. What happens to
a neutron that traverses three consecutive regions, the middle region having a
magnetic field as in eq. (3.22), and the outer regions only B0 in the z-direction, is
formally treated in [24], here only the results are presented. When the incoming
neutron wavefunction is given by

|ψi〉 = |↑z〉 |E0〉 = |↑z〉 e−iω0t, (3.23)
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Figure 3.5: Schematic depiction of the EM-coil. Spin direction is left unchanged.

the wavefunction after the EM-coil is given by

|ψ′〉 = UEM(α, ω) |ψi〉 =
+∞∑

n=−∞
Jn(α) |↑z〉 e−i(ω0+nω)t, (3.24)

with the Bessel functions of the first kind Jn. The interaction strength

α = µB1

~ω
sin(ωτ/2) (3.25)

is a function of the magnetic field strength B1, the frequency ω and the time of
flight trough the oscillating field region τ . One can see that the EM-coil has no
effect, if τ is equal to an integer number of periods of the oscillation and the sine
term vanishes. Intuitively this makes sense, because the neutron has the same
potential energy upon entry and exit of the EM-coil. When the incident neutrons
are polarized in the |↑z〉 state the oscillating field in the z-direction cannot change
the spin direction. However, the EM-coil creates shifts in energy ∆E = ±n~ω of
the initial wavefunction with amplitudes Jn(α), which corresponds to a one photon
exchange between the neutron and the oscillating field. In a series expansion for
small α up to the first order this leads to

|ψ′〉 = |↑z〉 e−iω0t(J0(α) + J1(α)e−iωt + J−1(α)e+iωt +O(α2))
= |↑z〉 e−iω0t(J0(α) + J1(α)(e−iωt − e+iωt) +O(α2))
= |↑z〉 e−iω0t(1− iα sinωt+O(α2)),

(3.26)
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using J−n = (−1)nJn, J0(α) ≈ 1 and J1(α) ≈ α
2 . Since the influence of the EM-coil

onto the neutron wavefunction appears only in the imaginary component in the
first order, this effect cannot be seen in an intensity measurement of a single beam
but needs to be resolved interferometrically together with a reference beam. An
interpretation of the action of the EM-coil in terms of state vectors can be written
as

|ψ′〉 = UEM(α, ω) |↑z〉 |E0〉
= |↑z〉 (J0(α) |E0〉+ J1(α) |E0 + ~ω〉+ J−1(α) |E0 − ~ω〉+O(α2))

≈ |↑z〉 (|E0〉+ α

2 (|E0 + ~ω〉 − |E0 − ~ω〉)).
(3.27)

and is visualized in fig. 3.6.

E₀

E₀+ħω

E₀-ħω

Figure 3.6: Visualization of the shift in energy caused by the EM-coil.

3.5.2 Associated Experiment by Summhammer
An experimental study of the effect an EM-coil has, when it is placed inside a
neutron interferometer, was carried out by Summhammer et al. in 1995 [10].
In this work the oscillating magnetic field parallel to the external guide field is
produced by a magnetic C-shaped yolk consisting of alternating layers of cardboard
and metal sheet, which is placed in one arm of a two-path interferometer (see
fig. 3.7). The polarized neutrons pass through the gap in the yolk above and
below which driving coils are wound, which induce the oscillating field. The gap is
7 mm high, 14 mm wide, and measures 21 mm along the neutron trajectory. The
field oscillates with a frequency of 7534 Hz, a value limited by the time resolution
of the neutron detection. Time-dependent neutron detection in the O beam is
conducted via a multichannel scaler card that runs time-locked to the field. A
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period of the oscillation is divided into 64 bins of width 2.07µs. An empirical
expression for the intensity of the O beam presented in the paper is given by

IO(χ, t) ∝ |eiχ ψi + ψ′|2 = 1 + 2
N∑

j=−∞
|uj| cos(φj + χ− jωt), (3.28)

where ψi and ψ′ are the same as from eqs. (3.23) and (3.24), amplitudes uj = Jn(sα)
are the Bessel functions with a scaling constant s, and φj relative phases. From
three runs with different settings of the phase shifter χ, the amplitudes |uj| could be
extracted from Fourier transforms of the time-dependent intensity measurements.
The result is depicted in fig. 3.8.

O

H

χ

α,ω

Figure 3.7: Schematic depiction
of the experimental setup from
the 1995 paper by Summhammer
et al.

Figure 3.8: Photon exchange amplitudes extracted from Fourier data as a function
of the oscillating field amplitude. Solid lines are plots of the corresponding Bessel
functions fitted with the scaling constant s as the only free parameter.
Normalization, such that the total exchange probability from exchanges of
−10 to +10 photons is equal to 1. Taken from ref. [10].
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3.6 Experimental Scheme
In this section the final setup for a simultaneous Cheshire Cat measurement is
presented. The calculation for the intensity of the O beam is carried out, when
the neutron wavefunction inside the interferometer is subject to the various ma-
nipulator devices discussed above. The experimental arrangement is depicted in
fig. 3.9. The upper beam between second and third interferometer plate is used as
a reference beam and is labeled |R〉, the middle beam is |II〉 and the lower beam
is |I〉. The spatial separation of spin and path degree of freedom, the key feature
of the Cheshire Cat state, happens on the sub loop of the interferometer between
the second and fourth plate on path |I〉 and |II〉.

�

π/2,ωRF

π-
β1

χ

β2
α2
,ω
2

α1,ω1

T
abs
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PM

H-Det

GF

ωRF
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Aux-

Figure 3.9: Schematic depiction of the interferometer with all parts used for the
experiment.

Monochromatized neutrons with wavelength λ ≈ 1.9 Å go through a pair of polariz-
ing magnets and enter the interferometer with spin |↑z〉. At the first interferometer
plate the reference beam is branched off and attenuated with an absorber Tabs. The
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reference beam subsequently undergoes a spin rotation by an angle of π/2 using
an RF-flipper in order to consist of |↑z〉 and |↓z〉 in equal parts . After the second
interferometer plate beam |I〉 goes through an EM-coil operating at frequency ωI
and through an RF-flipper that makes a rotation by an angle of π − βI . In this
case the π-rotation corresponds to the postselected state, and βI is a weak distur-
bance of the spin. Beam |II〉 first goes through an EM-coil operating at frequency
ωII and then through an RF-flipper that makes a rotation by the small angle βII .
The reference beam is also rotated by βII , but because of the attenuation through
Tabs this effect can be neglected. After that, the beams recombine at the fourth
interferometer plate to form the O beam, which then goes through the analyzing
supermirror, that only transmits |↑z〉-spins to pass on to the time-dependent de-
tectors. In the notation of pre and postselection, the pre selected state is given
by

|Ψi〉 = 1√
2
|↑z〉 |E0〉 (|I〉+ |II〉) (3.29)

and is prepared directly after the second interferometer plate and the postselected
state is given by

|Ψf〉 = 1√
2

(|↓z〉 |I〉+ |↑z〉 |II〉) (3.30)

and is selected through a combination of RF-flipper in path I and the supermirror.

3.6.1 Calculation of the O Beam Intensity

Here the calculation is carried out without the use of the formalism of pre and
postselection, just by developing the initial wavefunction further using the mathe-
matical results from above. The reference beam is needed, in order to interferomet-
rically resolve the which-way marking of the path using the neutron’s energy state.
Suppose the incident neutron beam can be written as |Ψ0〉 = |↑z〉 |E0〉 = |↑z〉 e−iω0t.
Then, the quantum state after the first interferometer plate is given by

|Ψ ′〉 = |R′〉+ |Ψ ′0〉

= A
[√
Tabs |↑z〉 |E0〉 |R〉 e−iφ/2 + |Ψ ′0〉 e+iφ/2

]
,

(3.31)

with A being a normalization constant. The |R〉 beam is weakened by an ab-
sorber with transmission Tabs. The preselected state is prepared after the split-
ting of |Ψ ′0〉 into |I〉 and |II〉 at the second interferometer plate: |Ψ ′0〉 → |Ψi〉 =

1√
2 |↑z〉 |E0〉 (|I〉+ |II〉).
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Between second and third plate the quantum state is given by

|Ψ ′′〉 = |R′′〉+ |II ′〉+ |I ′〉

= A
[
URF (π/2, ωRF )

√
Tabs |↑z〉 |E0〉 |R〉 e−iφ/2+

+ UEM(αII , ωII) |↑z〉 |E0〉 |II〉 e+iφ/2+

+ UEM(αI , ωI) |↑z〉 |E0〉 |I〉 e+iφ/2
]
,

(3.32)

The weakened beam |R〉 undergoes a spin rotation by π/2 into the x-y-plane using
an RF-flipper in order to show interference with |↑z〉 and |↓z〉 spins equally. For the
which-way measurement beams |I〉 and |II〉 go through two EM-coils operating
at different frequencies ωI and ωII respectively. This way an intensity oscillation
at the detector with frequency ωj indicates the neutron was traveling along path
|j〉. After the third plate beam |II〉 and |R〉 are combined and further referred to
as only |II〉. Now beams |I〉 and |II〉 go through two RF-flippers and are turned
by the angles π − βI and βII respectively. This, together with the polarizing
supermirror, serves to create the orthogonal spin states of the postselected state
|Ψf〉 = 1√

2(|↓z〉 |I〉+ |↑z〉 |II〉). The small angles βj are introduced in order to probe
the spin system for its path localization. Between the third and fourth plate the
state is given by

|Ψ ′′′〉 = |II ′′〉+ |I ′′〉

= A′
[
URF (βII , ωRF )URF (π/2, ωRF )

√
Tabs |↑z〉 |E0〉 |II〉 e−iφ/2e−iχ/2+

+ URF (βII , ωRF )UEM(αII , ωII) |↑z〉 |E0〉 |II〉 e+iφ/2e−iχ/2+

+ URF (π − βI , ωRF )UEM(αI , ωI) |↑z〉 |E0〉 |I〉 e+iφ/2e+iχ/2
] (3.33)

Putting in |E0〉 = e−iω0t and the approximations from the previous section for the
unitary matrices URF and UEM up to the first order in α and β using eqs. (3.14)–
(3.16) and (3.26) gives

|Ψ ′′′〉 ≈ A′e−iω0t
[√

Tabs
2
(
(1− βII

2 ) |↑z〉 − (1 + βII
2 ) |↓z〉 ie−iωRF t

)
|II〉 e−iφ/2e−iχ/2+

+
(
|↑z〉 −

βII
2 |↓z〉 ie

−iωRF t
)
(1− iαII sinωIIt) |II〉 e+iφ/2e−iχ/2+

+
(βI

2 |↑z〉 − |↓z〉 ie
−iωRF t

)
(1− iαI sinωIt) |I〉 e+iφ/2e+iχ/2

]
(3.34)
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The recombination of the sub beams at the fourth interferometer plate and the
subsequent action of the supermirror analyzer, filtering out the |↓z〉 spin compo-
nent, leaves

|Ψ ′′′′〉 ≈ A′e−iω0t′ |↑z〉
[√

Tabs
2 (1− βII

2 )e−iφ/2e−iχ/2+

+ (1− iαII sinωIIt′)e+iφ/2e−iχ/2

+ βI
2 (1− iαI sinωIt′)e+iφ/2e+iχ/2

]
.

(3.35)

Now taking the absolute square and neglecting nonlinear terms α2, β2 and αβ, and
also

√
Tabs

2 β, since it is small in the experiment, results in the final intensity of the
O beam

IO(t) = |〈Ψ ′′′′|Ψ ′′′′〉|2

∝ 1 + Tabs
2 + βI cosχ+

√
2Tabs(cosφ+ αII cosωIIt sinφ).

(3.36)

This relation suggests, that linear influences on the spin of the pre and postselected
ensemble are only caused by the spin-rotation angle βII in path II and the intensity
oscillates only with frequency ωI coming from the EM-coil in path I. This effect
can be verified experimentally by switching off, i.e. setting zero, one of the four
disturbances αI , αII , βI , βII , one after the other for the duration of one measure-
ment, and looking for the effect on the (time-dependent) intensity measurement.
In this sense the spin and path degree of freedom become spatially separated, since
only αI and βII have a linear influence on the intensity, which happens on opposite
interferometer arms I and II.
The effect of perturbation βII influences the spin on path II and therefore the

cat’s grin and αI shifts the energy on path I and therefore has an influence on the
body of the cat. This corresponds to the spin and path weak values in eqs. (2.26)
and (2.27)
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4 Neutron Optical Setup
This chapter is dedicated to the parts needed for interferometric experiments with
neutrons. It gives a more detailed description how the interferometer works to-
gether with the phase shifter plates and neutron detectors. The devices used for
pre and postselection of the quantum state, namely the polarizing magnets and an-
alyzing supermirror, are described. In the end it is explained, how the the RF and
EM-coils introduced in the previous chapter are realized in the limited available
space inside the interferometer, and how the whole experiment can be operated
automatically with a computer.

4.1 Neutron Source
The experiment was carried out by using the research reactor at the Institute
Laue-Langevin in Grenoble, France. With a peak flux of ∼ 1.5 × 1015cm−1s−1 at
the moderator of the reactor running at 58 MW power it is the neutron source
with the highest flux worldwide. Thermal neutrons are guided to the experimental
areas using total reflection below the critical angle inside rectangular beam tubes.
Neutrons of a definite wavelength (λ ≈ 1.9 Å, corresponding to a velocity of
∼ 2080 m/s) are selected by the monochromator crystal and reflected under a
Bragg angle of 30◦ into the experimental region. After the interferometer typical
detector count rates are of the order of ∼ 10cm−1s−1, when all spin manipulation
devices are present inside the interferometer.

4.2 Neutron Detectors
The neutron as a particle without electrical charge can only be detected indirectly
after producing ionized particles via a nuclear reaction, e.g.

3
2He +1

0 n −→ 3
1H +1

1 p Q = 0.764 MeV. (4.1)

The energy of 0.764 MeV released in this reaction is distributed onto the decay
products. 3

2He is used because it has a large cross section for neutrons in the
experimental energy range. It is contained as a gas in a counter tube, where the
tubing acts as a cathode and a fine wire in the center is the anode, with applied
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voltages typically around 1000 − 1500 V. When the charged particles produced
inside the gas volume accelerate due to the high voltage, a charge avalanche is
created that leads to a sudden voltage drop between anode and cathode, which,
after amplification, is registered as a neutron count signal. When no time resolved
measurement is needed, bigger counter tubes are used and the neutrons enter in
axial direction, having a bigger reaction volume. For a time resolved measurement,
smaller detectors (diameter ∼ 7 mm) are placed, such that the neutrons enter in
a direction perpendicular to the cylinder axis. This allows for a time resolution of
at least 7 mm

2080 m/s ∼ 3.4µs.

Figure 4.1: Photograph of the small neutron detector used for time-dependent
measurements. Size comparison with a standard pencil. Both end parts are isolated
with heat shrink tube. The bulge in the left end is produced by a clamp used to
connect the outer wire of the coaxial cable with the detector tubing, a bad connection
suspected to be the cause of a problematic blind count rate, as mentioned later on.

4.3 Perfect Crystal Interferometer and Phase Shifter
Plates

The experiment carried out in the course of this diploma thesis makes use of a
four plate interferometer (see fig. 4.2). It is cut from a perfect silicone crystal such
that the (2, 2, 0) crystal plane is perpendicular to the surface of the four plates, as
can be seen in fig. 4.3, which is the so called Laue configuration. When a neutron
beam hits the first interferometer plate at the Bragg angle θB, the intensity is
roughly split 50 : 50 between the reflected and transmitted beam. At the second
and third plate the same situation occurs, so that the sub beams are recombined at
the fourth plate, where the so called O beam leaves the interferometer in parallel
to the incident neutrons, and the H beam is reflected under the Bragg angle. Sub
beams leaving the interferometer at the second and third plate are not used for
the experiment. In order to have a coherent superposition of the reflected neutron
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wavefunctions at the third and fourth interferometer plate, it is essential that all
refractive planes are aligned with a precision comparable to the lattice parameter.
In comparison with a standard three plate interferometer, where the incident beam
is split into two parts and then recombined, the four plate geometry offers three
independent paths for the neutron to interfere.

To observe interferometric phenomena, it is necessary to tune a phase shift
between the wavefunctions of the sub beams. This is done with phase shifter
plates. These are plates with a thickness in the range of 3-5 mm made of sapphire
or silicon, that can be rotated by an angle of ∼ ±1.5◦. After traversing the plate,
the neutron wavefunction is subject to a phase shift due to the interaction with
the nuclei of the material, which is proportional to [3]

χ = −NbcλD,

where N is the density of scatterers, bc the nuclear scattering length, λ the neu-
tron’s wavelength and D the thickness of the plate. When the phase shifter plate is
inserted between two interferometer plates (as in fig. 4.3) and rotated, the optical
path length in the material is different for the two beams, which leads to a phase
difference. This phase difference is in good approximation linear with the rotation
angle of the plate. A rotation of the phase plates by the angle stated above leads
to a difference in phase of about 2− 3 times 2π. When the incident wavefunction
is given by Ψ0, the intensity at the O detector can be written as

IO = |ΨI + ΨII + ΨIII |2

= 1
16 |Ψ0|2 |rrtt e−iφ/2 e−iχ/2 + trrt e+iφ/2 e−iχ/2 + ttrr e+iφ/2 e+iχ/2|2,

(4.2)

where φ and χ are the phase differences introduced by the phase shifters in the
front and back of the interferometer, and t and r the coefficients for transmission
and reflection respectively. The result is

IO(φ, χ) = A (3 + 2 cosφ+ 2 cosχ+ 2 cos(φ+ χ)) , (4.3)

with the constant A = 1
16 |Ψ0|2|r|4|t|4. Similarly for the H-beam intensity one finds

IH(φ, χ) = |Ψ0|2 |rrtr e−iφ/2 e−iχ/2 + trrr e+iφ/2 e−iχ/2 + ttrt e+iφ/2 e+iχ/2|2

= |Ψ0|2 |r|2|t|2
(
2|r|4 + |t|4 + 2|r|4 cosφ+ 2|r|2|t|2 (cosχ+ cos(φ+ χ))

)
,

(4.4)

which seems a bit more complicated. This is due to the fact, that for the O beam
the number of transmissions and reflections is the same for all three interferometer
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paths, whereas for the H beam it is not. The calculation above is valid only for an
ideal case, where all beam splitters have the same t and r. In reality eq. (4.3) has to
be modified in order to reflect the imperfections of the interferometer, where each
reflection and transmission is accompanied by a loss of coherence. The modified
equation reads

IO(φ, χ) = A(3 + 2CI,II cosφ+ 2CII,III cosχ+ 2CI,III cos(φ+ χ)), (4.5)

where the coefficients 0 ≤ Ci,j ≤ 1 give the contrast for interference between paths
i and j. In practice contrast is measured by blocking one beam with an absorber,
e.g. beam ΨI , then taking an interferogram by varying the angle of the phase
plate, in this case χ, and measuring the count rate. The intensity in the O beam
is then given by

III,IIIO (χ) = |ΨII + ΨIII |2 = |Ψ0|2|r|4|t|2(1 + CII,III cosχ). (4.6)

When the interferogram is fitted with a sinusoidal of the form A+B sin(fχ+D),
the contrast of the O beam is then given by

CII,III = B

A
=
I ′O,max − I ′O,min
I ′O,max + I ′O,min

. (4.7)

The H beam generally shows lower contrast, since the numbers of t and r are
unequal, but higher intensity, because there is one possible path, where only one
reflection takes place.
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Figure 4.2: Photograph of the four plate interferometer.
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Figure 4.3: Topview of the four plate interferometer with neutron beams and phase
shifter plates shown. Bragg plane orientation depicted at the first plate. Red beams
are not needed for the experiment.
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4.4 Polarizing Magnets
Before entering the interferometer, the neutron beam passes through the gaps of
two permanent magnetic yokes, as is depcited in fig. 4.4. The magnetic field inside
the gaps is shaped like a prism. Analogous to the optical case, the neutron beam
is refracted upon entry and exit of the field region. Since the potential energy of
the neutrons in the magnetic field is exactly opposite for |↑z〉 and |↓z〉, the beam
splits into two sub beams containing only one spin state. The angle difference of
the two sub beams is of the order of arcseconds, but this is large enough that only
one beam fulfills the Bragg condition, whereas the other does not. This way the
polarizing magnets prepare the neutrons in the desired spin state |↑z〉.

Figure 4.4: Artistic depiction of the polarizing magnets. Neutron beam in green,
deflected beam with |↓z〉 neutrons dashed. Magnetic field direction indicated by the
red arrows.

4.5 Supermirror
The supermirror consists of a multi-layered structure made of two materials with
a different coherent scattering length, depicted in fig. 4.5. At every boundary
surface between two layers one part of the incoming neutron beam is reflected and
the other transmitted. If the optical path difference between two reflected sub
beams is a multiple of the wavelength λ, constructive interference occurs. This
way, the supermirror acts as an artificial crystal structure. If the thickness of the
neighboring layers changes slightly from layer to layer, this condition is weakened,
so that it is fulfilled by a variety of incoming neutron wavelengths. If now one
of the materials is magnetic and the other non-magnetic, the magnetic scattering
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length has to be taken into account in addition to the nuclear scattering length.
This way the overall scattering length of the two materials becomes sensitive to the

nλ

Figure 4.5: Schematic depiction of the supermirror analyzer.

incoming neutron spin direction. A situation can arise, where the scattering length
is the same for |↓z〉, so that the spins effectively see only one material and become
transmitted onto an absorber on the bottom of the multi-layered structure. For |↑z〉
the two materials have a different scattering length and constructive interference
occurs for the reflected beam. In the experiment the supermirror is used as an
analyzer, allowing only |↑z〉 to be transmitted into the detector.

4.6 Guide Field
The guide field is produced by two rectangular Helmholtz coils that are placed
above and below the interferometer as is depicted in fig. 4.6. It is needed in order
to provide a quantization axis for the spin and avoid depolarization. The guide
field is connected to a DC power supply and is kept on a constant temperature
using cooling water in order to avoid thermal disturbances of the interferometer
due to the heat produced by the current. The guide field should be larger in
magnitude than the oscillating field produced by the EM-coils in order to avoid
a zero field crossing, which causes depolarization. In the experiment a guide field
strength of 2 mT was used.
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Figure 4.6: Artistic rendering of the whole experimental setup.

4.7 Optical Bench
The experiment is located inside a radiation shielded chamber, where the neutron
flux can only be turned on from the outside. The chamber contains a smaller
temperature controlled room inside which the so called optical bench is located. It
is a steel construction that suspends a table, on which the interferometer is placed,
from above by three heavy springs in order to separate the interferometric setup
from outside vibrational influence. The interferometer rests upon a plastic slab
lying on a glass plate that is centered on a rotational axis as is depicted in fig. 4.6.
The rotation is controllable with a motor stage in coarse mode and can be fine
tuned using a piezo. This enables to record the so called rocking curve, a graph
of the intensity against the rocking angle. The rocking angle can be controlled
with a precision in the order of 10−4 degrees. For the perfect alignment of the
crystal planes with respect to the neutron beam, it is necessary to control the tilt
of the interferometer around another axis perpendicular to the rocking axis. This
is the so called rho-axis, it tilts the glass plate by lowering or raising it on one
side, where it rests upon rod with threads. This motion is precise up to 0.5× 10−2
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mm. Not depicted in fig. 4.6 is the aperture in front of the interferometer, which
collimates the neutron beam into a rectangular profile of typically 5× 5 mm using
cadmium sheets and can be positioned automatically in the plane perpendicular
to the neutron beam. With the aperture a spot of high intensity of the neutron
beam and good contrast of the interferometer can be selected. The height of the
spring-suspended table can be varied by adding or subtracting weights from the
table.

4.8 Spin-Manipulation Assembly
A critical optical element of the experiment is the spin-manipulation assembly
(SMA), a water tight container for all the coils influencing different sub beams
inside the interferometer. It was designed using the CAD software Rhinoceros
(see fig. 4.7) and is put together from 3d-printed parts made out of ABS plastic
and coils wound from lacquer coated copper wire. It has holes for the neutron
beam to pass through unobstructed and can be held on constant temperature
using cooling water that enters and exits the SMA through four nozzles on the
top (see fig. 4.8). The copper wires are led through channels in the plastic parts
that are designed to maximize the sealing surface. When the different parts of the
SMA are assembled contact surfaces are moistened with acetone, in which the ABS
plastic is soluble. This way the parts are welded together creating a water-tight
seal.
The three RF-coils are wound around rectangular tubes above and below which

small Helmholtz coils are placed that produce a local z-field. This makes it possible
to adapt to local deviations of the big guide field in order to fulfill the resonant
condition for the spin flip. The two EM-coils are wound around scaffold parts glued
on the top and bottom of the rectangular beam tubes. Upon assembly, the five
coils are placed onto grooves in the bottom of the two vessel forms, so that they
stay in the right position. After the assembly, when the acetone has evaporated,
the holes for the beams are cut out and smoothed using a file.
At each interferometer plate the neutron beam profile is broadened which can

be modeled with a simple geometric approximation as can bee seen in fig. 4.9.
This effect is accounted for by making the wholes for the neutrons in the SMA
subsequently wider down the beam. The SMA is mounted on a goniometer that
makes it possible to control its orientation. The goniometer is connected to a
robotic arm that can be rotated around the z-axis and moved in all three directions
of space automatically with a precision of 10−5 m. The indium absorber Tabs is
connected to the SMA, as are three optional ∼ 100% cadmium absorbers, that can
be put in and out of the three holes in the front part of the SMA, which makes it
possible to acces the three beams separately.
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Figure 4.7: Rendering of the 3d-printed parts for the SMA.

Figure 4.8: Photograph of the SMA inside the
interferometer.

d

Figure 4.9: Beam
broadening at an
interferometer plate with
thickness d.
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4.8.1 Coil Assembly Dimensions

Figure 4.10: Topview section of the SMA inside the interferometer with dimensions
in mm. Neutron beam cross section before the interferometer is 5× 5 mm.

The SMA was designed to accommodate an incoming neutron beam with a
cross section of 5 × 5 mm. As already mentioned, at every interferometer plate,
the neutron beam is subject to a broadening, which is accounted for by making
the rectangular holes in the SMA larger for the two RF-flippers downstream of the
beam. The broadening only takes place in the plane where the beam separation
occurs. In the perpendicular direction the beam always keeps a height of 5 mm,
when the overall beam divergence of typically 1◦ is neglected. At every hole, the
inner cross section of the rectangular tubes is made to keep a distance of at least
2 mm to the neutron beam. This is needed in order to account for imperfections in
assembling the parts and to have some tolerance when positioning the SMA in the
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experiment. The vessel forms and rectangular tubes of the SMA were printed with
a wall thickness of 0.55 mm and only one perimeter of filament, a setting found
best to work for making the parts watertight. The neutron beam is centered at a
distance of 13.5 mm from the bottom of the SMA. Holes for the RF-flippers have a
height of 14 mm and for the EM-coils a height of only 9 mm, which makes it easier
to produce the strong oscillating magnetic z-fields necessary for the experiment to
work. The rectangular scaffold parts for the EM-coils have round holes in order to
allow the cooling water to flow more freely. The design of the RF-flippers is very
similar to the ones used in other experimental works carried out by Denkmayr et
al. [25] and Geppert et al.[26], which were also made with 3d-printing. Another
critical point which was accounted for is the minimum distance of about 8 mm
needed in order to fit the phase shifter plate χ between SMA and the fourth
interferometer plate.

Figure 4.11: Sideview of the two SMA parts, dimensions in mm.
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4.8.2 EM-Coil Field Simulation
A simulation of the magnetic field produced by the EM-coil was conducted using
Mathematica. The EM-coils are modeled as two surface currents along the outer
walls of a cuboid with a square base of side length 17.5 mm and height 7 mm that
keep a distance of 10.5 mm (see fig. 4.12). An analytic expression for the field
produced by this configuration is evaluated numerically. The result suggests that
the field between the two coils, inside the volume of the neutron beam, is homo-
geneously pointing in the z-direction and stray fields are very small in magnitude
(max(Bx,y/Bz) = 0.013). The coils are modeled to have 15 windings around each
cuboid with a current of 2 A. Figure 4.13 shows a plot of the z-field magnitude
along the neutron trajectory.

Figure 4.12: 3d vector plot of the magnetic field produced by the EM-coil.
Dimensions in m. Current carrying wires modeled as outer surfaces of the two
cuboids.
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Figure 4.13: Left: Plot of Bz(x, 0, 0) of the magnetic field produced by the EM-coil
along a line in the direction of neutron flight through the center of the hole for the
neutron beam. Right: Heatmap of

∫
dxBz(x, y, z)/

∫
dxBz(x, 0, 0) over the cross

section of the neutron beam normalized to the center (dashed rectangle shows
expected beam profile at the location of the EM-coils when the incoming beam is
5× 5 mm).
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4.9 Measurement Control and Data Acquisition
The experimental setup is located inside a radiation shielded chamber and is re-
motely controlled from a small room about 5 m away. All in and outputs are
connected to a computer running a Labview program responsible for the experi-
ment control. Most measurements, e.g. preparatory parameter scans, are done by
varying one parameter, say the rocking angle, and then registering neutron counts
for a fixed duration, thus recording a scan. A typical application is to record an
interferogram, i.e. a scan of one phase shifter plate. By varying the aperture
position in the plane perpendicular to the neutron beam it is possible to record
a 2d-map of the interferometer contrast, measuring an interferogram at each po-
sition. Motor axes that can be varied automatically include the rocking angle,
the rho-axis, horizontal supermirror position, two phase shifters, sample holder
robot (holds the SMA) rotation and position, monochromator orientation, and H
detector position. It is also possible to set constant and alternating currents and
voltages by addressing different power supplies and function generators, which in
turn are connected to AC amplifiers, via automated GPIB commands. This is
needed in order to control the RF-flippers, EM-coils and guide-field.
Another possible mode of data acquisition is to perform a time-dependent mea-

surement. For this purpose a field-programmable gate-array (FPGA) is used. The
FPGA runs a continuous-cycle with a given loop-time and records the occurrence
of neutron-counting events, which are sorted into bins of constant width, creating
a histogram. This way it is possible to measure an oscillating intensity signal as
can be produced, when an EM-coil is present in one arm of the interferometer.
As already mentioned above for this purpose the 1/4′′ detectors are used, being
placed with their axis perpendicular to the neutron beam, since they offer a better
time resolution. In order to have the oscillating magnetic fields of the EM-coils
running synchronous to the FPGA loop, the two function-generators producing
the sinusoidal control voltages are operating in burst-mode. They are started at
the same instant by a burst signal, a sharp voltage pulse, and produce a fixed
number of sine periods, such that an integer multiple of this period is equal to the
loop time. The RF-coils are not time-locked to the FPGA-loop and operate in
continuous mode.
It should be noted that neutron counting events obey Poissonian statistics, where

a recorded countrate of N neutrons per second is associated with an error of
√
N .

By measuring for a longer time, therefore registering more neutron counts, the
relative error in the count rate decreases.
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5 Measurement
This chapter covers, how the experiment was set up, starting from the right place-
ment of the interferometer and finding the Bragg peak, to measuring interfero-
grams and adjusting the 1/4′′ detectors, and different coils, RF and EM alike. All
preparatory measurements are presentend and in the end we arrive at the starting
point for the final measurement.

5.1 Search of the Interferometer Sweet Spot
From the previous experiment in the last reactor cycle by my colleagues Bülent
Demirel and Armin Danner, the monochromator crystal and polarizing magnets
are already set in a good position, which is left unchanged for the current exper-
iment. As the first step, the big O detector is placed in the direct beam. The
aperture, which is positioned after the polarizing magnets and in front of the IFM,
is set to 5× 5 mm and scanned horizontally and vertically to find the position of
highest neutron intensity. Then the interferometer is placed onto the rotary table
on top of a plastic slab. The O detector is moved so that it catches the neutron
beam reflected inside the interferometer, in parallel to the original beam.
As a next step, the rocking angle is varied in coarse mode (with a motor) to find

the peak position, where the incoming neutron beam fulfills the Bragg condition
for the interferometer. From this position the rocking angle can be varied using a
piezo, in order to record a rocking curve (fig. 5.1). The rocking curve shows two
Gaussian peaks, essentially the beams with |↑z〉 and |↓z〉 neutrons separated by
the polarizing magnets. Later on, when the spin-analyzer is put in place in front
of the O detector, the right peak of the curve for the O beam vanishes (only |↑z〉
neutrons of the left peak reach the detector, see fig. 5.3).
Now the rho-axis, which controls the tilt of the interferometer around its longer

axis is adjusted. For this purpose, the outer beams between second and fourth
interferometer plate are blocked with a folded cadmium sheet, so that only the
middle beam can pass through to the detectors. The cadmium absorbers simply
rest on the interferometer between the plates. This setup makes the interferometer
more sensitive for the following rho-axis scan. The reason is, that the middle beam
gets reflected three times before it hits the H detector and only reflection, not
transmission, is dependent on the precise alignment of the Bragg planes. The sum
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Figure 5.1: Rocking curve of the empty interferometer (without supermirror, all
three beams free, measured with big O detector). Fit curves are a sum of two
Gaussians of the form y0 + Ae−(x−x0

σ
)2 .

of O and H detector counts for the left peak of the rocking curves obtained for
different values of rho is fitted with a Gaussian. The FHWM of these fits is then
plotted against rho. From this curve the minimum, i.e. the optimum rho value, is
determined from another Gaussian fit (fig. 5.2).
For the following measurements, the rocking angle is always set to the peak

position of the rocking curve, which can be done automatically in the measurement
software.
Next, interferograms are recorded by scanning the rotation angle of phase shifter

χ. The contrast and intensity of the interferograms are obtained from sinusoidal
fits (contrast C = B/A from fit function A + B cos (fχ+D), intensity B, see
figs. 5.4 and 5.5). By varying the aperture position horizontally and vertically
in the plane perpendicular to the neutron beam, taking an interferogram at each
step, a 2d-map of contrast and intensity is recorded (fig. 5.6). The intensity is not
homogeneous over this 2d-map, because the beam profile in front of the interfer-
ometer is influenced by the placement of the polarizing magnets. Also the contrast
shows variation, because the interferometer plates have a certain roughness on the
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surface due to manufacturing.
The aperture is now set to a position of high contrast and intensity for the O

beam. After that, the supermirror is put in place in front of the O detector and
scanned horizontally with linear motors on its front and back end to get good
alignment with the neutron beam. The raster scan is repeated (fig. 5.7). Again
the aperture is set to the new optimum position. The contrast in the O beam is
now higher than in the previous raster scan, which is due to the neutron beam
being free of incoherent |↓z〉-components after the supermirror.
Finally, the SMA is introduced into the interferometer. To find the optimum

position for the SMA, first the middle hole was blocked with a cadmium plate and
the SMA was moved in parallel to the interferometer plates while measuring the
count rate. Then the two outer beams were blocked and the scan was repeated.
The maxima of the two scans were differing only by fractions of a mm, so the SMA
was positioned to a value in between. Then the SMA was scanned vertically and
placed at the maximum count rate position. At last a final raster scan was carried
out (fig. 5.8).
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Figure 5.3: Rocking curve with supermirror in place, two outer beams blocked with
Cd sheet, measured with small O+Aux detector (higher noise).
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Figure 5.5: Interferogram recorded with phase shifter φ, reference beam blocked.
Both curves are in phase, because the phase shifter effects the first interferometer
loop, and when the intensity is low, the beam, that in turn has a high intensity,
leaves the interferometer without hitting a detector.
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cadmium absorber, interferogram recorded with phase shifter χ.
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5.2 Adjustment of the RF-Flippers
To adjust the RF-flippers βI , βII and π/2 the corresponding beams are isolated,
meaning the other beams are blocked with a 1mm thick cadmium plates with
∼ 100% absorption. Then the guide-field is adjusted, so that it fulfills the approx-
imate resonance condition B[G] ∼ 1

3f [kHz]. The frequency used for all RF-flippers
is 60 kHz.
The coils are connected to an amplifier in series together with a capacitance.

The capacitance is chosen, so that the LC-circuit has resonance frequency around
the desired 60 kHz. For this purpose, the inductance of the coils is determined
with an electronic RLC-meter. The corresponding capacitance can be calculated
from the formula

f0 = 1
2π
√
LC

. (5.1)

The RF-currents from the amplifier are driven via a function generator producing
a sinusoidal voltage oscillation. First, an amplitude scan of the function genera-
tor voltage is carried out. This amplitude is proportional to the oscillating field
strength B1 and therefore to the spin-rotation angle. For a spin rotation around
an axis perpendicular to the spin-analysis direction a sinusoidal behavior of the
intensity against the rotation angle is expected. The measured count rates from
the amplitude scan are fitted with a sine wave and the minimum is chosen for the
subsequent scan over the guide field current. This scan serves to find the optimal
guide field strength in order to fulfill the resonance condition of the RF-flipper.
For the π/2-flipper, the big guide field is varied (fig. 5.9 right). A dip in the count
rate is expected, when the resonance condition is fulfilled. The measured curve is
fitted with a Gaussian and the minimum is chosen as a final value for the guide
field strength. Then, the amplitude of the function generator is scanned again to
arrive at the minimum count rate, from which the driving voltage corresponding
to a π/2-flip is calculated (fig. 5.9 left).
This process is repeated for the other coils, but now the local guide-fields are

varied (see figs. 5.10 and 5.11). Since all RF-flippers operate at the same frequency
this is not strictly necessary, but the local guide field coils exist in order to account
for possible deviations of the big guide field. The currents for the minimum count
rate of the scans are very near zero, signifying that the big guide field has good
homogeneity, so the local guide fields are left turned off.
The final amplitudes for the RF-flippers in the experiment are calculated from

the sinusoidal fits by taking the maximum (0 amplitude), plus 15◦ from the fitted
period when βII is turned on for the RF-flipper in path II, the minimum (π-flip),
minus 15◦ when βI is turned on for path I, and the minimum minus 90◦ for the
π/2-flipper. The flip-ratios are calculated by dividing the counts for no flip through
the counts for a π-flip.
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Figure 5.9: Adjustment of the π/2-flipper. Left: Amplitude scan of the RF-field.
Right: Scan of the big guide field magnitude when the RF-field strength is set to a
π-flip. Flipratio: 27.0
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Figure 5.10: Adjustment of RF-flipper βI . Left: RF-amplitude scan. Right: Scan of
local guide field when the RF-coil does a π-flip. Flipratio: 44.3
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Figure 5.11: Adjustment of RF-flipper βII . Left: RF-amplitude scan. Right: Scan of
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5.3 Setting up the Detectors for Time-Dependent
Measurements

For setting up the two 1/4′′ detector tubes, they were placed at the neutron guide
exit before the polarizing magnets in the direct beam, one after the other. As
already mentioned above, the small width of ∼ 7 mm offers for a better time
resolution, since the time a neutron spends inside the detector volume is limited.
The detectors are each connected to an electronic device that works as an amplifier
and signal shaper in one. There were two different devices, one with a specified
maximum count rate of 50 kHz, the other of 150 kHz. Both values are more than
enough to cover the frequencies of ∼ 25 kHz used for the EM-coils with count
rates on the order of 10 counts per second. Each device has two input ports, a
DC power supply and a high voltage supply. Outputs are the amplified detector
signal and the shaped signal, which consists of logic voltage pulses corresponding
to neutron counting events.
First, the amplifier gain is adjusted to factory settings. Then, a measurement

of the high voltage supply against the count rate is conducted. The HV is set on
top of the small plateau in the graph of fig. 5.12. Next, the amplifier output is
connected to a multi-channel-analyzer (MCA). The MCA records a histogram of
the signal pulse peak height, sorted into 1024 bins equally distributed in a range of
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Figure 5.12: Left: Graph of count rate against high voltage supply of one of the
small detectors. Right: Illustration of a MCA spectrum. Unfortunately, no
screen-shot of the spectrum in the MCA software was taken. Signal inside the
window selected by the discriminator from left to right: proton peak, tritium peak,
combination of the two. Low voltage flank produced by electronic noise.
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0− 10 V. This spectrum is needed in order to determine the lower cut-off voltage,
below which a pulse is ignored. The MCA histogram consists of three peaks, one
produced by the lighter decay product of the detector reaction eq. (4.1), namely
the proton, the other one by the tritium nucleus, and the third peak is produced
by both. The MCA spectrum should contain these peaks inside a region between
0 and 4 V, because the higher cut-off voltage of the amplifier and shaper device is
fixed at 4 V. If not, the gain has to be adjusted. The lower cut-off voltage is then
set at the edge of the plateau, where the proton peak is located. This prevents
electronic noise located in the lower voltage range from polluting the data.
This process was repeated for the second small detector. After both were set up,

they were placed inside a pouch of folded cadmium sheet directly at the exit window
of the supermirror analyzer, such that their cylindrical axis is perpendicular to the
neutron beam, and they lie one after the other in the direction of neutron travel.
The cadmium shielding is to block stray neutrons.
At first, measurements of the count rate without neutron flux showed good

results of roughly two counts in 120 seconds. Later it was noticed, that this
number fluctuates unpredictably and was at times as high as 0.5 per second. The
suspected reason for this is a bad connection between the high voltage coaxial
cable outer electrode and the detector tubing, which acts as the cathode. This
connection is only clamped and should be soldered for future experiments.
For this reason, the detectors can be used in order to make a time-dependent

measurement, to find the frequency, with which the count rate oscillates via fast
Fourier transformation. For a measurement of neutron intensity over a longer time
period, to be comparable to other such measurements, the data obtained with the
smaller detectors is not reliable. Such a measurement must be done with the big
O detector.

5.4 Adjustment of the Energy Manipulator Coils
To see the effect of the energy manipulation it is essential to have interference
with the reference beam. In order to save on measurement time the 30% absorber
was removed during the adjustment. For the adjustment of coil αI beam II was
blocked with a 1mm cadmium beam-stopper and vice versa for αII . All other coils
were turned off and the phase shifter angle φ was set to π/2 to maximize the effect
on the oscillating intensity. The coils are in series with a capacitance chosen to
support resonant frequencies of the circuit at around 20-25 kHz and connected to
an amplifier, which is driven by a function generator. The frequencies for the two
coils, ωI = 26 kHz and ωII = 22 kHz, are chosen, because they produce the desired
detectable intensity oscillation after unsuccessful tries with 50 kHz beforehand.
Now a time-dependent measurement is carried out, where the logic pulses cor-
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responding to neutron counts from detectors O and Aux are fed into an FPGA
card, where they are sorted into bins of width 5 µs in a repeating sequence with
a certain loop time. At the beginning of each loop the FPGA card sends out a
burst signal, starting the function generator, which produces an integer number of
sine waves with frequencies ωI and ωII on two channels, such that the loop time
is a multiple of the sine periods. The counts from both detectors are registered
separately because the time of flight between the detectors, which are placed ap-
proximately 1 cm apart, can not be ignored in comparison with the binwidth. Two
detectors are used in order to have a higher overall count rate. They are placed
one after the other in the direction of neutron flight, because this placement gives
the highest overall count rate.
Different amplitudes of the function generator signal are applied and time-

dependent measurements are performed. The recorded histograms are analyzed
via a fast Fourier transform (FFT) algorithm that calculates amplitude spectra as
can be seen in figs. 5.13 and 5.14.
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Figure 5.13: Time-dependent measurements for different function generator
amplitudes for αII . Measurement time 1200 s, loop time 500 µs, binwidth 5 µs.
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Figure 5.14: Time-dependent measurements for different function generator
amplitudes for αI . Measurement time 1200 s, loop time 500 µs, binwidth 5 µs.
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What can be seen in the FFT spectra is a dominant peak at zero frequency
corresponding to a constant count rate in time, i.e. no photon exchange between
neutron and EM-coil. The second peak is located at the operating frequency of
the EM-coils, either at 22 kHz or 26 kHz, corresponding to one photon exchange.
Other peaks can appear at multiples of the operating frequency and correspond
to multi-photon exchange.
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Figure 5.15: Plots of peak height extracted from above FFT-spectra against
function generator voltage.

To compare the FFT data with the expected amplitudes for the energy-shifted
components of the wavefunction, namely the Bessel functions, the peak heights
of the FFT spectra were plotted against the peak to peak voltage of the function
generator fig. 5.15. The plots are to be taken with skepticism, since the zero
frequency peak height, i.e. the amplitude for no photon exchange, is also influenced
by the incoherent part of the intensity, as well as by the problematic count rate of
the small detectors without neutrons. The incoherent part of the intensity is also
responsible for the reduced contrast of the interferometer.
The value chosen for the final experiment is 0.6 Vpp for both coils, test mea-

surements for 0.5 Vpp can be seen in fig.5.16 and fig.5.17 together with the time-
dependent histograms. These measurements took place after the temperature reg-
ulation of the interferometer chamber had a breakdown under conditions of worse
contrast, as is mentioned later on. The final amplitude values are chosen because
the FFT shows good peak height at the corresponding frequencies ωI = 26 kHz
and ωII = 22 kHz and no or small peaks at multiples of that frequencies (higher
order effects).
From the behaviour of the graph in fig. 5.15 for one photon exchange (green

line), a rough approximation of the parameters αj can be extracted. Since the first
maximum of J1(α) is located at α ≈ 1.84 and the maxima of the plots in fig. 5.15
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lie at around 1 to 1.2 Vpp, the experimental values for αj (corresponding to 0.6
Vpp) must be below 1, when assuming the relation between function generator
driving voltage and oscillating magnetic field strength B1 to be linear. For this
reason a crude guess approximates them to be at αj ≈ 0.9. This would lead to an
overlapping of wavefunctions for αj = 0 and αj = 0.9 of ∼ 80%.
The occurence of peaks with frequencies double or even triple the frequencies of

the EM-coils corresponds to higher order terms of eq. (3.24) and is an indicator
that the intensity oscillation is really caused by the effect in question. In addition
to the one photon exchange also multi-photon exchange is possible. The linear
order approximations used in order to arrive at the oscillating intensity eq. (3.36)
do not cover the multi-photon effects, which can cause the intensity to oscillate
with double or even triple the frequency of the EM-coil.
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Figure 5.16: Test of αI , function generator amplitude 0.5 Vpp, binwidth 5 µs, loop
time 500 µs, measurement time 1000 s.
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Figure 5.17: Test of αII , function generator amplitude 0.5 Vpp, binwidth 5 µs, loop
time 500 µs, measurement time 1000 s.
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5.5 Phase Shifter Scans
Before the final measurement the phase shifter angles φ and χ, as defined in
eq. (4.2), are set to the required values. First, the phase shifter χ in the back
is scanned while the reference beam is blocked with a cadmium plate (fig. 5.18).
Then the middle beam II is blocked and the 30% absorber introduced into the
reference beam for the φ scan (fig. 5.19). Both scans are done using the big O
detector to avoid electronic noise from the smaller detectors.
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Figure 5.18: χ scan before final measurement.
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The interferograms have different periods of the oscillation, because the two
phase shifters in the front and back of the interferometer are made out of different
materials, sapphire and silicon, with different widths. The counts per second for
the scan of φ are lower than for χ, because the 30% absorber is present in one
path.
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6 Results
Unfortunately, the night before the final measurement, the temperature regula-
tion of the interferometer setup had a breakdown. It took about half a day for
the system to stabilize again and the contrast did not return completely. Before
the measurement, the phase shifters are set to the required positions χ = 0 and
φ = π/2. Then, the time-dependent measurements are started automatically in
the order: ’all on’, ’βI off’, ’βII off’, ’αII off’ and ’αI off’, each taking 1.5 hours,
using the 1/4′′ detectors in the O beam. Afterwards, a second round of measure-
ments is carried out using the big O detector, where the intensity is averaged over
a period of 600 seconds, in order to compensate the blind count rate fluctuations
of the 1/4′′ detectors.
Parameters of the final measurement are:

• final contrast: Cχ ≈ 39% for phase shifter χ and
Cφ ≈ 54% for φ

• αI ≈ 0.9 function generator amplitude 0.6 Vpp
ωI = 2π ∗ 22 kHz

• αII ≈ 0.9 function generator amplitude 0.6 Vpp
ωII = 2π ∗ 26 kHz

• βI = βII = 15◦ ≈ 0.26 rad
ωRF = 2π ∗ 60 kHz

• Tabs ≈ 0.3

single beam intensities (counts/180 s):

ref. beam (with Tabs) beam I beam II
320 916 1018

• blind count rate of the small detectors after the final measurement
(counts/300 s):

small O Aux
92 51
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Again I give the expression for the expected intensity of the O beam (eq. (3.36)):

IO ∝ 1 + Tabs
2 + βI cosχ+

√
2Tabs(cosφ+ αII cosωIIt sinφ)

When the values for the phase shifter angles χ = 0 and φ = π/2 are put into this
intensity, the result becomes:

IO ∝ 1 + Tabs
2 + βI + αII

√
2Tabs cosωIIt (6.1)

To recapture, parameters αI and βII do not appear in this intensity and should
not induce a change when they are switched on and off. Parameter αII is expected
to cause an intensity oscillation with frequency ωII , however it does not change
the mean intensity recorded over a longer time interval, since the cosine term is
centered at zero. Only when βI is switched off, the intensity is expected to decrease
significantly.
In order to compare the final measurements with the expected behavior, a calcu-

lation using the estimated experimental parameters is carried out. An expression
of the O beam intensity is evaluated as in eq. (3.33), by taking the absolute square
of the wavefunction and approximating the matrices URF and UEM up to second
order in αj = 0.9 ∗ δαj and βj = 0.26 ∗ δβj , also using the value for Tabs = 0.3. In
this notation the variables δij can either be one, when the perturbation is switched
on, or zero when it is off. The incident wavefunction in this calculation is normal-
ized to |〈Ψ0|Ψ0〉|2 = 3. Finally, if numerical coefficients in the resulting expression
under 1

10 are neglected, the result reads

IO ∝ 1 + 0.15 + 0.26 ∗ δβI + 0.69 ∗ δαII cosωIIt, (6.2)

where the terms have the same order as in the expression directly above. Now this
numerical result needs to be corrected for the contrasts Cχ = 0.39 and Cφ = 0.54,
which can easily be done by introducing these values as factors in front of the
terms, where originally the trigonometric functions with arguments χ and φ have
been. This yields

IO ∝ 1 + 0.15 + 0.10 ∗ δβI + 0.37 ∗ δαII cosωIIt, (6.3)

which is a numerical expression that can be compared with the final measurements.
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6.1 Data
The time dependent measurement results for the five cases: ’all on’, ’αI off’, ’αII
off’, ’βII off’ and ’βI off’ are plotted in figs. 6.2–6.6 as histograms together with
the corresponding FFT spectra. In fig. 6.1 the time independent measurement of
the mean intensity over 600 seconds with the big O detector is depicted for these
five case.
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Figure 6.1: Counts per 600 s, measured with big O detector.
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Figure 6.2: αI , αII , βI , βII turned on, loop time 1000 µs, binwidth 5 µs,
measurement time 1.5 h. Measured with two 1/4′′ detectors.
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Figure 6.3: αI turned off, loop time 1000 µs, binwidth 5 µs, measurement time
1.5 h. Measured with two 1/4′′ detectors.
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Figure 6.4: αII turned off, loop time 1000 µs, binwidth 5 µs, measurement time
1.5 h. Measured with two 1/4′′ detectors.
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Figure 6.5: βI turned off, loop time 1000 µs, binwidth 5 µs, measurement time
1.5 h. Measured with two 1/4′′ detectors.
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Figure 6.6: βII turned off, loop time 1000 µs, binwidth 5 µs, measurement time
1.5 h. Measured with two 1/4′′ detectors.
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6.2 Discussion
The overall behaviour is qualitatively in accordance with eq. (3.36), meaning the
intensity goes down, when magnetic perturbation βI is switched off (see fig. 6.1)
and no oscillation of the intensity in time can be seen when the energetic pertur-
bation αII is switched off (fig. 6.3), altough in measurements when αII is switched
on, a distinct peak in the FFT spectrum at 22 kHz can be seen. Other influences
leave the system more or less unchanged.
One can see that the intensity for the case ’αI off’ is slightly diminished in

comparison to the other three cases were the intensity should be unchanged. This
can be explained by the fact, that the energy manipulator coils in reality do not
completely leave the spin unchanged. Therefore a slight rotation away from the
|↑z〉 state caused by αI introduces a small amount of spins |↑z〉 were there should
be almost none after the RF-π-flip. When αI is turned off this effect vanishes and
so the intensity goes down slightly.
Quantitatively, the reduction in counts per 600 s from 5766 for ’all on’ to 5117

for ’βI off’, which is roughly 11% is in good agreement with the intensity estimation
using experimental parameters (eq. (6.3)), which approximates it as 0.10

1+0.15+0.10 =
8%.
The amplitude of the time-dependent intensity oscillation is a little bit harder

to compare with the measurements. A comparison between the FFT spectra and
cosine fits of the form a + b cos (2πft+ c) to the data (see fig. 6.7) reveals their
connection to each other. The FFT peak at zero frequency is equal to the average
number of counts per bin and the peak at 22 kHz is equal to the amplitude of the
fitted cosine function with the same frequency, as summarized in the table below.
The advantage of the fits is that they give a direct value for the error.

Counts/Bin FFT peak height cosine fit parameters
0 kHz 22 kHz average counts a amplitude of 22 kHz osc. b

all on 46.22 11.80 46.22 ± 1.01 11.80 ± 1.44
αI off 48.6 10.28 48.62 ± 1.01 10.30 ± 1.40
βI off 46.53 10.46 46.54 ± 1.08 10.48 ± 1.52
βII off 50.10 12.79 50.10 ± 1.06 12.80 ± 1.49

Table 6.1: Comparison between FFT peaks and cosine fits to the time-dependent
data. The case ’αII off’ cannot be fitted, since it shows no oscillation in time
corresponding to a distinct frequency.

Now the background count rate due to electronic noise has to be subtracted from
the time resolved data. The average of such counts per bin for the measurement
time of 1.5 h is calculated as 92+51

300 cts/s ∗ 1000 bins ∗ 5µs ∗ 1.5 ∗ 3600 s = 12.87 for
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the sum of both detector counts. When this value is subtracted from the average
number of counts per bin, e.g. for the case ’all on’, which gives 46.22−12.87 = 33.35
the result can be related to the amplitude of the 22 kHz oscillation, i.e. 11.80

33.35 ≈ 0.35
which is in good agreement with the numerical estimate from eq. (6.3), namely

0.37
1+0.15 ≈ 0.32.
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Figure 6.7: One of the cosine fits to the time-dependent count rate of both small
detectors for the case of ’all on’.
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Figure 6.8: The first three Bessel functions Jn(x) and the first order approximation
for J1(x) ≈ x

2 . Vertical red line at x = 0.9 where the parameters αj are estimated to
be.

A comparison of the Bessel functions and their linear approximation used in the
calculations with UEM is presented in fig. 6.8. The deviation of J1(0.9) from
0.9
2 is less than 10%, but the deviation of J0(0.9) from 1 is almost 20% and
J2(0.9) ≈ 0.1. A better value for the strength of the EM-coils would be αj = 0.5,
which would give J0(0.5) ≈ 0.94, J1(0.5) ≈ 0.24 and J2(0.5) ≈ 0.03. Together
with a 10% absorber the resulting intensity oscillation would be (see eq. (6.1))

75



αII
√

2Tabs = 0.5 ∗
√

2 ∗ 0.10 ≈ 0.22, limited by contrast, which under ideal prac-
tical cirumstances can be up to C ≈ 70%, to 0.7 ∗ 0.22 ≈ 0.16. A change in the
intensity due to CβI ≈ 0.16 that has the same magnitude would in turn be caused
by a magnetic rotation angle of βI ∼ 13◦.
The relative error of an intensity oscillation in time can alternatively be cal-

culated as
√
N
N

= 1√
N
, when N is the number of counts per bin, with which

the intensity oscillates, and the error is given by the Poisson statistics, which
neutron counting events obey. In the time-dependent measurement of ’all on’
this amounts to 1√

11.80 ≈ 0.29. Now, when the same average count rate of
33.35/bin/1.5h is assumed, a relative count rate oscillation of amplitude 0.16 would
give N = 0.16 ∗ 33.35 ≈ 5.34. Then, in order to have the same relative error, the
measurement time would have to be increased, so that 1/

√
5.34 t

1.5h = 0.29. This
gives t ≈ 3.34 h, therefore, for the same relative error or better, the time-dependent
measurement would have take upwards of 3.34 h.
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7 Conclusion and Outlook
Inspired by the first experimental demonstration of the quantum Cheshire Cat
effect by Denkmayr et al. using neutron interferometry in 2014 [7], a new experi-
ment was explored, that seeks to demonstrate the same effect using four localized
perturbations which all act simultaneously and are of unitary nature. The four
perturbations exist to probe the interferometer quantum state, which is subject to
pre and postselection, for the localization of its spin and path degree of freedom.
In order to measure the path degree of freedom, a novel experimental approach

was implemented, that makes use of the neutron’s energy state by causing an
energy shift dependent on the path, without a change of the spin state. This
approach is inspired by multiphoton exchange processes observed in [10].
By switching off only one of the four perturbations, one after the other, an

appreciable effect is only caused by two of them, effective on opposite paths of
the interferometer. On path I, the spin is influenced by a small additional spin
rotation, leading to an O beam intensity increase for the pre and postselected
ensemble. On path II, a local magnetic field in the z-direction, oscillating with
frequency ωII , causes a shift in energy without turning the spin. The energy shifted
beam leads to an oscillation of the O beam intensity with the same frequency, when
it shows interference with an additional reference beam weakened by an absorber
with transmittance Tabs ≈ 30%. The other two perturbations, which have no
measurable effect on the intensity, are of the same nature as just described, only
on opposite paths.
The measurement results qualitatively suggest the neutron’s spin degree of free-

dom to be spatially separated from its path degree of freedom, given pre and
postselection, which is known as the Cheshire Cat paradox.
In the future, the experiment could be repeated with weaker interactions and

a stronger absorber with Tabs = 10% in order to better fulfill the linear order
approximations for the perturbations of energy (αI , αII) and spin (βI , βII) on the
two paths, used in the weak measurement scheme. The adjustment of the EM-coils
should be carried out with higher accuracy in order to reach a better quantitative
agreement between theory and experiment. Under these conditions, assuming
contrasts of C = 70%, in order to have influences onto the intensity on the order
of 1/10, the parameters for the perturbations should be reduced to αj = 0.5 and
βj = 0.22 ≈ 13◦. In this case, the measurement time for the time dependent
measurements would have to take upwards of ∼ 3.5 h.
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