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Kurzfassung

Materialien mit starken elektronischen Korrelationen bergen eine Vielzahl faszinieren-

der physikalischer Phänomene; darunter z.B. der Mott Metall-Isolator Übergang in

V2O3, Magnetismus in Fe und Ni, die thermoelektrischen Eigenschaften von CrSb2 oder

LiRh2O4 und die Hochtemperatur-Supraleitung in bestimmten Kupraten. Es ist also

nicht erstaunlich, dass stark korrelierte Elektronensysteme einen regen Forschungsge-

genstand darstellen. Was deren theoretische Beschreibung betrifft, so hat sich über die

letzten 20 Jahre die Kombination aus Dichtefunktionaltheorie (DFT) und dynamischer

Molekularfeldtheorie (DMFT) erfolgreich etabliert. Diese DFT+DMFT Methode wird

im ersten Teil dieser Dissertation vorgestellt. Gleich im Anschluss werden die Ergebnisse

einer DFT+DMFT Rechnung präsentiert, in deren Rahmen ich die magnetischen Eigen-

schaften von FeAl untersucht habe. FeAl ist im Experiment paramagnetisch, während

konventionelle DFT-Rechnungen einen ferromagnetischen Grundzustand liefern. Hier

zeige ich, dass eine bessere Beschreibung elektronischer Korrelationen im Rahmen der

DFT+DMFT Methode das Nicht-Vorhandensein von Ferromagnetismus in FeAl erklärt.

In der Tat werden laut DFT+DMFT die lokalen magnetische Momente von 1.6µB der

Fe-Atome durch Spin-Fluktuationen stark abgeschirmt, sodass sich keine ferromagnetis-

che Ordnung ausbilden kann.

Die DFT+DMFT Methode beschreibt erfolgreich alle lokalen elektronischen Korrela-

tionen, beinhaltet aber keine nicht-lokalen Korrelationen. Letztere sind jedoch in bes-

timmten Fällen von Bedeutung, z.B. in Materialien mit einer 2d Schicht-Struktur. Um

auch nicht-lokale elektronische Korrelationen zu berücksichtigen, sind in letzter Zeit

zahlreiche Erweiterungen der DMFT entwickelt worden. Darunter findet sich die dy-

namische Vertex-Approximation (DΓA), eine diagrammatische Erweiterung der DMFT.

Die DΓA wurde schon erfolreich verwendet, um Modell-Systeme—insbesondere das Ein-

Band Hubbard Modell—zu untersuchen. Ein zentrales Thema dieser Dissertation ist

die Erweiterung der DΓA, um damit Materialeigenschaften zu berechnen. Diese neu en-

twickelte AbinitioDΓA stellt eine umfassende diagrammatische Methode dar, die sowohl
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alle DMFT- und GW -Diagramme, als auch zusätzliche nicht-lokale elektronische Kor-

relationen, z.B. nicht-lokale Spin-Fluktuationen, beinhaltet. Im zweiten Teil dieser Dis-

sertation werden die neue AbinitioDΓA Methode und ihre numerische Implementierung

im Detail präsentiert, zusammen mit den ersten AbinitioDΓA Ergebnissen für SrVO3.



Abstract

Materials with strong electronic correlations exhibit many fascinating physical phenom-

ena: from the Mott metal-insulator transition in V2O3 and the magnetism in Fe and Ni,

to the large thermopower in CrSb2 or LiRh2O4 and the high-temperature superconduc-

tivity in some cuprates. Thus, strongly correlated materials are currently a very vivid

and interesting field of research. On the theoretical side, the DFT+DMFT approach

(density functional theory combined with dynamical mean-field theory), which will be

introduced in the first part of this thesis, has become a well-established method over the

last two decades. In this thesis, the results of a DFT+DMFT study for the magnetic

properties of FeAl will be presented. While standard DFT studies fail to correctly pre-

dict the experimentally observed paramagnetism in FeAl, I show here that the absence

of ferromagnetism can be explained by the correlation-induced screening of short-lived

local magnetic moments of 1.6µB on the Fe site.

However, even though DFT+DMFT works well for many correlated compounds, it still

remains a mean-field theory in the spatial coordinates, which can capture only local

electronic correlations. Thus, in order to include also non-local electronic correlations,

which are important e.g. in materials with a layered 2d structure, extensions of DMFT

have been developed in recent years. Among them, there is the dynamical vertex ap-

proximation (DΓA), a diagrammatic extension of DMFT. DΓA has already been used

successfully to study model systems, in particular the one-band Hubbard model. A

main part of this thesis has been the extension of DΓA to realistic materials’ compu-

tations. This newly developed AbinitioDΓA method represents a unifying framework

which includes both, the GW and DMFT diagrams, but also important non-local cor-

relations beyond, e.g. non-local spin fluctuations. In the second part of this thesis, the

AbinitioDΓA method and its numerical implementation are discussed in detail, together

with the first AbinitioDΓA results for the transition metal oxide SrVO3.
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Introduction

In solid state physics, one can explore countless fascinating materials and physical phe-

nomena therein. This ranges from naturally grown minerals, which come in a huge

variety of colors and shapes, to engineered functional materials, which are used in tech-

nological applications. The latter include e.g. semiconducting devices in computers,

magnetic materials for storage media, thermoelectrics for the conversion of waste heat

into electricity, or superconducting magnets used in high-magnetic-field experiments. All

physical phenomena in the solid state—like magnetism or superconductivity—basically

arise from the interplay among the constituting electrons and ions. However, given the

huge amount of particles N „ Op1023q in a solid, it is very challenging to start from

the microscopic Coulomb interaction between the single electrons and ions to finally get

some insight into macroscopic physical phenomena.
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Figure 1: DFT band-
structure of SrVO3.

The density functional theory (DFT) [1, 2] which, in prin-

ciple, starts ab initio from the Coulomb interaction among

the electrons and ions in a solid has been very successful

in predicting the electronic structure of many compounds.

Here, the many-body problem of N „ Op1023q particles

interacting with each other is not solved straightforwardly.

Instead, several approximations are needed in order to make

the problem treatable. As a first approximation, the ions

are seen as part of a static lattice potential. The electron-

electron Coulomb interaction, on the other hand, is also

approximated very roughly. In fact, within DFT the many-electron problem is replaced

by an effective single-electron problem, where the effect of all the remaining electrons is

only considered through an averaged mean-field. The resulting single-electron problem

is usually numerically solvable and the electronic band-structure and density of states

of realistic materials can be computed. Nowadays, even complex heterostructures and

surfaces (see e.g. Refs. [3, 4]) are treatable within DFT. Furthermore, the computed

results often agree very well with the ones obtained by photoemission experiments. This
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is rather surprising, since the effective single-particle problem solved within DFT ap-

proximates the original many-body problem only very roughly. But it turns out that,

especially in metals, electronic screening processes are often so effective that the mean-

field approach within DFT can be a good approximation.

U

Figure 2: The DMFT im-
purity model.

However, DFT usually fails to correctly predict the elec-

tronic structure of materials with partially filled d or f

orbitals. This is due to the fact that the partially filled

3d orbitals in transition metal elements (from Ti to Cu)

and the 4f orbitals in rare earth elements (from Ce to Yb)

are rather localized. Thus, electronic screening processes

are not very effective in these orbitals and a mean-field-like

treatment of the electron-electron Coulomb interaction is

not sufficient any more. Instead, the strong Coulomb in-

teraction correlates the movement of the electrons. Thus,

in these strongly correlated materials, a better treatment of electronic correlations is

needed. This is possible with the dynamical mean-field theory (DMFT) [5, 6]. As its

name suggests, DMFT is still a mean-field theory in the spatial coordinates. However,

in contrast to usual mean-field theories, DMFT is a diagrammatic technique which does

not take a time average—it is a dynamical mean-field theory. Thus, it captures all dy-

namical, local electronic correlations, e.g. local spin fluctuations. It has been shown

that DMFT provides the exact solution of the Hubbard model in infinite dimensions [5].

However, it turns out that DMFT is usually also a good approximation in three dimen-

sions. Furthermore, when combined with DFT in the so-called DFT+DMFT approach,

physical quantities of strongly correlated materials can be computed. This includes

spectral functions, magnetic susceptibilities, optical conductivity or thermoelectric re-

sponse functions. Indeed, over the last decade, DMFT has become a well-established

and standard method to treat strongly correlated materials.

Figure 3: The local ver-
tex function Γloc used in

AbinitioDΓA.

Nevertheless, DMFT still remains a mean-field theory in

the spatial coordinates and it does not capture any non-

local electronic correlations. Especially in materials with a

2d or 1d structure, e.g. superconducting cuprates with their

layered crystal structure, or close to a second-order phase

transition, e.g. the transition from para- to ferromagnetism,

a mean-field in space can be a poor approximation. Here,

one needs to include also spatial electronic correlations. In

fact, in recent years, extensions of DMFT have emerged in

order to capture also non-local electronic correlations. One
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prominent diagrammatic extension of DMFT is the so-called dynamical vertex approx-

imation (DΓA) [7]. The latter builds on the local DMFT vertex function Γloc—which

is basically a two-particle scattering diagram—and constructs non-local Feynman dia-

grams through the Bethe-Salpeter and/or Parquet equations. DΓA has already been

successfully used for studying the one-band Hubbard model, e.g. to calculate critical

exponents and phase diagrams [8, 9]. One main task of this thesis has been the exten-

sion of DΓA to multi-orbital systems, so that realistic materials’ computations become

feasible. This newly developed AbinitioDΓA starts from a local vertex function Γloc,

which is obtained from a DFT+DMFT computation, and constructs non-local Feynman

diagrams through the non-local Bethe-Salpeter equation. Furthermore, AbinitioDΓA

is not only the generalization of DΓA to multi-orbital systems, but it includes also a

non-local Coulomb interaction V q beyond the Hubbard model. Thus, AbinitioDΓA is

a unifying framework which includes both, the GW and DMFT diagrams, but also im-

portant non-local correlations beyond, e.g. non-local spin fluctuations. The method

development and implementation of AbinitioDΓA has been one main task of this thesis,

which is structured as follows:

• In Chap. 1, the well-established DFT+DMFT approach to strongly correlated

materials is introduced. The chapter starts with a discussion of the general solid

state Hamiltonian and density functional theory (DFT). Then, the intermediate

steps necessary to combine DFT and DMFT—namely the Wannier projection and

the ab initio computation of the interaction parameters through the constrained

random phase approximation (cRPA)—are described. Finally, the multi-orbital

Hubbard model and its solution within DMFT are discussed.

• In Chap. 2, the results of a DFT+DMFT study for the intermetallic FeAl are

presented. In this study, I have investigated the magnetic properties of FeAl. The

latter are intriguing since DFT predicts a ferromagnetic ground-state for FeAl,

while the material is found to be paramagnetic in experiment. Here, by com-

puting magnetic susceptibilities within DFT+DMFT, I show that the absence of

ferromagnetism in FeAl can be explained by a screening of short-lived local mag-

netic moments. The results presented in this chapter have already been published

in the article A. Galler et al., Phys. Rev. B 92, 205132 (2015).

• Chap. 3 provides an introduction to the dynamical vertex approximation (DΓA),

including its full Parquet version and ladder approximation. Here—before dealing

with all the details of the newly developed AbinitioDΓA formalism in the following

chapter—an overview of the DΓA method and its basic ideas, which have been

developed over the last years, is given.
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• In Chap. 4, the newly developed AbinitioDΓA method and its implementation are

presented in detail. First, all multi-orbital equations are derived and the corre-

sponding Feynman diagrams are depicted. Next, I discuss some implementational

details and the structure of the newly developed AbinitioDΓA program. Finally,

the results of some test cases are shown. Part of the equations and diagrams in

this chapter have already been presented in a similar, but shorter version in the

article A. Galler et al., Phys. Rev. B 95, 115107 (2017).

• In Chap. 5, the first AbinitioDΓA results for the transition metal oxide SrVO3 are

shown and discussed. Most of the results presented in this chapter have already

been published in A. Galler et al., Phys. Rev. B 95, 115107 (2017).



Chapter 1

The DFT+DMFT approach

In this chapter, I introduce the DFT+DMFT approach (density functional theory com-

bined with dynamical mean field theory), which is a well-established method to treat ma-

terials with strong electronic correlations. Starting from the general solid state Hamilto-

nian, I first briefly discuss the basic ideas of DFT. Then, the necessary steps to combine

DFT with DMFT are presented: the Wannier projection and the computation of the

Coulomb interaction through the constrained random phase approximation (cRPA). In

the following, the multi-orbital Hubbard model, which is solved within DMFT, is discussed

in detail. Finally, I present the DMFT, together with a short introduction to Green’s

functions and Feynman diagrams. In the end of the chapter, the DFT+DMFT approach

is summarized in a flow chart, and methods to analytically continue the DFT+DMFT

Green’s function and self-energy are discussed.

1.1 The solid state Hamiltonian

In solid state physics, the fundamental ”theory of everything” is, in principle, known.

Since in materials, at the relevant energy scales ranging from some meV to some eV,

only the Coulomb interaction plays a role, the given problem basically consists in all the

electrons and ions of the lattice interacting with each other via the Coulomb interaction.

Usually also relativistic effects can be neglected so that the solid state Hamiltonian is

given by

pH “
ÿ

i

pi
2

2m
`
ÿ

l

Pl
2

2Ml
`

1

2

ÿ

k‰l

ZkZle
2

|Rk ´Rl|
´
ÿ

i,l

Zle
2

|ri ´Rl|
`

1

2

ÿ

i‰j

e2

|ri ´ rj |
, (1.1)

where ´e (Ze), m (M), r (R) and p (P) label the charge, the mass, the position and

the momentum of the electrons (ions). The first two terms in Eq. (1.1) represent the

5



6 CHAPTER 1. The DFT+DMFT approach

kinetic energy of the electrons and the ions. The other three terms instead describe the

ion-ion, ion-electron and electron-electron Coulomb interaction, respectively.

At first glance, the Hamiltonian in Eq. (1.1) does not look overly complicated. However,

due to the large number of particles N „ Op1023q in a solid, there is no hope to solve the

problem exactly, neither analytically nor numerically. In fact, one is also not interested

in the complete information about the solid state system under investigation. The

complete information would correspond to knowing the full many-body wave function

depending on all the coordinates of all the electrons and ions involved, or—seen in a

semi-classical way—knowing about the movement of all the single electrons and ions in

the solid. This large amount of information is neither interesting nor can it be processed

or stored anywhere. Instead, one is usually interested in collective phenomena in a solid,

where the interplay between the electrons and ions gives rise for example to magnetism,

superconductivity or thermoelectricity. In order to theoretically describe these and other

fascinating phenomena in solid state systems, one could already start from macroscopic

observables. This is done in phenomenological approaches like the Landau theory for

phase transitions. In these phenomenological, mostly thermodynamic approaches one

directly works with macroscopic quantities like the total energy, entropy, pressure or

temperature, without going back to their microscopic origins.

In this thesis, however, I am concentrating on ab initio approaches—namely density

functional theory combined with dynamical mean field theory (DFT+DMFT) and the

newly developed ab initio dynamical vertex approximation (AbinitioDΓA). In this con-

text, ab initio means starting from first principles, i.e. from the Hamiltonian in Eq. (1.1)

describing the Coulomb interaction between all the electrons and ions in the lattice.

Equivalently, ab initio is often also translated as parameter free. In fact, the Hamil-

tonian in Eq. (1.1) does not contain any external parameters. In practice, however,

Eq. (1.1) needs to be approximated, which always involves some phenomenological pa-

rameters. Nevertheless, these approximations, foremost the local density approximation

within density functional theory, are usually referred to being ab initio. Thus, in agree-

ment with the common use of the term, in this work ab initio refers to approaches for

realistic materials starting from their electronic structure, which is usually computed

within density functional theory, and involving as few phenomenological parameters as

possible.

Born-Oppenheimer approximation A first and very common simplification of the

solid state Hamiltonian in Eq. (1.1) is the Born-Oppenheimer approximation, which

assumes that the ionic degrees of freedom can be separated from the electronic ones.

This approximation can usually be applied since the movement of the electrons is much
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faster than that of the ions because of their difference in mass. Thus, the electrons adapt

quasi instantly to a modified position of the ions in the lattice. If one is interested in

the electronic structure only, the purely ionic part of the energy can be neglected and

the ions can be seen as forming a static lattice potential V prq “
ř

l´
Zle

2

|r´Rl|
. Thus, the

solid state Hamiltonian in the Born-Oppenheimer approximation reads

Ĥ “
ÿ

i

pi
2

2m
`
ÿ

i

V priq `
1

2

ÿ

i‰j

e2

|ri ´ rj |
, (1.2)

including the kinetic energy of the electrons, the interaction between the electrons and

the lattice potential, and the electron-electron Coulomb interaction.

Despite the simplifications applied so far, it is still impossible to compute the eigenvalues

and corresponding wave functions of the Hamiltonian in Eq. (1.2). Most of the com-

plexity of the problem lies in the last term of Eq. (1.2), the electron-electron Coulomb

interaction. Due to this mutual Coulomb interaction, the movement of every single elec-

tron is influenced by all the other electrons in the solid. In other words, all the electrons

are correlated with each other. In general, these electronic correlations are of course not

negligible. However, it turns out that in many solid state systems, especially in metals,

the electrons are mobile enough to screen the Coulomb interaction, so that the effective

electron-electron Coulomb interaction becomes weaker and electronic correlations are

less important. In this context, a successful approach to make the problem in Eq. (1.2)

treatable, consists in approximating the electron-electron Coulomb repulsion by an in-

teraction between a single electron and an effective mean-field generated by all the other

electrons. Such a mean-field approach, which replaces the correlated many-electron

problem by an effective single-electron problem, has successfully been formulated within

density functional theory (DFT), which will be discussed in the following.

1.2 Density functional theory (DFT)

Hohenberg-Kohn theorem In its mathematical formulation, density functional the-

ory (DFT) is, in principle, an exact theory. In 1964, Hohenberg and Kohn [1] have shown

that the ground state energy of an interacting electron gas in an external potential V prq

is a unique functional of the electron density E “ Erρs; and the true ground state elec-

tron density yields a minimum of Erρs. Since the interaction between the electrons and

the lattice potential is the only non-universal contribution to the ground state energy,

the Kohn-Sham energy functional can be written as

Erρs “

ż

d3r V prqρprq ` F rρs. (1.3)
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This Hohenberg-Kohn-theorem marks the starting point of density functional theory.

Please note that F rρs in Eq. (1.3) is a universal functional, valid for any number of

particles and any potential. If F rρs was a known and sufficiently simple functional

of ρ, it would be possible to find the ground state energy and density by minimizing

the energy functional. But F rρs is not known and its determination leads back to the

problems associated with the complexity of many-electron systems.

Kohn-Sham equations In 1965, Kohn and Sham [2] reformulated DFT by mapping

it to a non-interacting electron system. Thus, they wrote the energy functional of

Eq. (1.3) as

Erρs “

ż

d3r V prqρprq `
1

2

ż ż

d3rd3r1
ρprqρpr1q

|r´ r1|
` Tsrρs ` Excrρs, (1.4)

where Tsrρs is the kinetic energy of the non-interacting electrons and Excrρs the exchange

and correlation energy. Again, the true ground state electron density can in principle

be found by minimizing the energy functional. Applying the variational principle to

Eq. (1.4) leads to the single-electron Kohn-Sham equations

„

´
~2

2m
∆` V prq `

ż

d3r1
ρpr1q

|r´ r1|
`
δExcrρs

δρprq



ψnprq “ εnψnprq, (1.5)

which have to be solved self-consistently together with

ρprq “
ÿ

n

|ψnprq|
2. (1.6)

The last three terms in Eq. (1.5) can be seen as an effective potential Veffprq “ V prq `
ş

d3r1 ρpr1q
|r´r1| `

δExcrρs
δρprq including exchange and correlation. Please note that, in principle,

the Kohn-Sham wave functions ψnprq are only auxiliary wave functions, which yield the

correct ground state density and energy, and do not represent the physical orbitals of the

system. Nevertheless, in DFT band-structure calculations the eigenvalues εn in Eq. (1.5)

are usually associated with the physical eigenenergies of the system.

Local density approximation In principle, the Kohn-Sham equations are suitable

to perform electronic structure calculations, but the exact exchange and correlation

energy Excrρs is an unknown functional and has to be approximated. In the common

local density approximation (LDA), the functional dependence is restricted to the local

electron density. Thus, the LDA exchange and correlation potential reads

ELDAxc rρs “

ż

d3r ρprqεLDAxc pρprqq, (1.7)
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where εLDAxc pρprqq depends only on the electron density ρ at point r and is independent

of the density at neighboring points. In standard LDA computations, the corresponding

exchange and correlation energy of a uniform electron gas is used to evaluate εLDAxc pρprqq

for a given local density. It is also possible to go beyond standard LDA by including

local changes of the density that are mathematically described by the gradient ∇ρprq.
This yields the the generalized gradient approximation (GGA)

EGGAxc rρs “

ż

d3r ρprqεGGAxc pρprq,∇ρprqq. (1.8)

Beside LDA and GGA, a variety of exchange and correlation functionals have been de-

veloped. Most of them are based on the GGA approximation, e.g. also the commonly

used PBE functional [10]. In fact, optimizing and developing new exchange and corre-

lation functionals that are suited for certain classes of materials, is still an ongoing field

of research [11–13].

For many materials, LDA and related functionals provide good results, which is rather

surprising since the Coulomb interaction itself is not local. But, as mentioned already,

especially in metallic systems the electrons are mobile and able to screen their mutual

interaction such that using a local expression for Excrρs can yield quite good results.

Basis sets and pseudopotentials As the lattice potential V prq is periodic, the single-

particle wave functions ψnprq obtained from the Kohn-Sham equations are Bloch waves

ψnkprq “ eikrunkprq, (1.9)

characterized by the envelope function eikr and unkprq, which has the periodicity of the

lattice potential. Bloch waves are labeled by a crystal momentum k lying inside the

Brillouin zone and a band index n. In order to use the Kohn-Sham equations in DFT

codes, one needs to introduce a set of basis functions φj :

ψnkprq “
ÿ

j

cnk,jφnk,jprq. (1.10)

A very simple choice of basis functions are plane waves

ψnkprq “
ÿ

j

cnk,je
ipk`Gjqr, (1.11)

where Gj represent reciprocal lattice vectors. Plane waves can be implemented straight-

forwardly, but in most systems a very large basis set of plane waves is required to obtain

reasonable results. Especially close to the atomic cores, where the lattice potential

diverges, a huge number of plane waves is needed. Thus, different approaches have
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been developed. In particular two methods have shown to give very good results with

a reasonable computational effort: one can choose a different basis set or introduce

pseudopotentials.

Pseudopotentials are effective potentials that take into account the screening of the core

electrons. In the core region the valence electrons interact with the pseudopotential,

while outside the core region they are subject to the full potential. There exist different

methods to construct pseudopotentials [14–16]. Of course, the pseudopotential always

has to be constructed in a way that the wave functions are smooth at the boundary of

the core region. A different approach, allowing the full potential to be used, consists

in choosing a different basis set than plane waves. In the core region, atomic orbitals

appear to be a good choice for basis functions, while in the interstitial region between the

atoms, where the potential is quite smooth, plane waves are usually more appropriate.

A combination of both leads, among others, to augmented plane waves (APW) [17]. In

practice, one has to define a muffin tin radius, which describes non-overlapping spheres

centered at the atomic cores. Within this radius, atomic orbitals are used as a basis

set, while in the remaining interstitial region plane waves are used. On the sphere

boundaries, the inner and the outer part of the APW have to match. By linearizing the

problem one ends up with linearized augmented plane waves (LAPW) [18] which are

used in the Wien2k code [19].

Beyond DFT: Electronic correlations DFT in its local density approximation

works well for many materials—especially metals, where the Coulomb interaction is

screened by itinerant electrons. In fact, for many compounds, DFT successfully pre-

dicts their electronic structure, which can be confirmed experimentally by angle-resolved

photoemission experiments (ARPES). For materials with strong electronic correlations,

however, DFT often fails to predict their electronic structure correctly. For example,

for some compounds with partially filled d or f orbitals, DFT predicts a metallic be-

havior while they are found to be insulating in experiment. This is not a surprise since

especially the partially filled 3d orbitals in transition metal elements or the 4f orbitals

in rare earth elements are rather localized and electronic correlations play an important

role. But in DFT electronic correlations are neglected or, in other words, included only

on a mean-field level within the exchange and correlation potential. Thus, for strongly

correlated materials, many-body approaches, which do not approximate the solid state

Hamiltonian in Eq. (1.2) by an effective single-electron problem, are needed. Due to their

complexity and numerical effort, it is usually, however, not possible to directly apply

many-body techniques to the Hamiltonian in Eq. (1.2). Instead, model Hamiltonians,

which are simpler but still capture the essential physics, must be derived first. One very
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prominent model Hamiltonian in the field of strongly correlated electron systems is the

so-called Hubbard model, which will be discussed in the following.

1.3 The multi-orbital Hubbard model

The Hubbard model, which was introduced by J. Hubbard already in 1963 [20], is the

standard model for strongly correlated electron systems. As discussed in the previous

Sec. 1.2, for electrons in strongly correlated orbitals, e.g. the partially filled 3d orbitals

in transition metal elements, a mean-field description like in DFT is not enough. On

the other hand, a treatment beyond mean-field of the full solid state Hamiltonian in

Eq. (1.2) is currently not feasible. Thus, the method of choice consists in introducing

a simpler model Hamiltonian, which approximates the original solid state Hamiltonian

while preserving its most important physical aspects. The model Hamiltonian of choice

in this context is the Hubbard model, which will be introduced in the following.

We start from the solid state Hamiltonian of Eq. (1.2) in second quantization

pH “
ÿ

σ

ż

d3r pψ:σprq

„

´
~2

2m
∆` V prq



pψσprq

`
1

2

ÿ

σ,σ1

ż

d3r d3r1 pψ:σprq
pψ:σ1pr

1q
e2

|r´ r1|
pψσ1pr

1q pψσprq, (1.12)

where pψ:σprq and pψσprq are field operators that create or respectively annihilate an elec-

tron with spin σ at the position r.1 We can expand these field operators in terms of

localized basis functions, e.g. maximally localized Wannier functions which are intro-

duced in detail in Sec. 1.4. This yields

pψp:qσ prq “
ÿ

R,m

w
p˚q

mRprqpc
p:q

Rmσ , (1.13)

where wmRprq is the Wannier function of orbital m centered at lattice site R, and pc:Rmσ

the corresponding creation operator. Please note that the orbitals m included in the

Hubbard Hamiltonian are usually the rather localized, partially filled 3d or 4f orbitals

in transition metal or rare earth elements.

1For the formalism of field operators and second quantization see e.g. Refs. [21, 22].
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: Coulomb interaction

⇒ correlations

←−
time-averaged

electron density

←−
lattice potential

Figure 1.1: Left: In a solid, the electrons move (black arrow) within a lattice po-
tential (green) and interact with each other (red wiggled line). Through the electron-
electron Coulomb interaction, the movement of the electrons is correlated with each
other. Right: In the (one-band) Hubbard model, the solid state problem is replaced
by (spin up/down) electrons moving from site to site with hopping amplitude t and
interacting with each other through the local Coulomb interaction U . (Reproduced

from Ref. [23])

With Eq. (1.13), the solid state Hamiltonian in Eq. (1.12) can be rewritten as

pH “´
ÿ

RR1

mm1,σ

tmm1pR,R
1q pc:RmσpcR1m1σ

`
1

2

ÿ

R1R2R3R4
ll1mm1

σσ1

Ulm1ml1pR1,R2,R3,R4q pc
:

R3m1σ
pc:R1lσ1

pcR2mσ1
pcR4l1σ

, (1.14)

where the indices ll1mm1 label different Wannier orbitals, while Ri correspond to dif-

ferent lattice sites. Thus, the first term in the Hamiltonian represents the kinetic en-

ergy part and describes electrons hopping from orbital m1 on lattice site R1 to orbital

m on lattice site R. The probability of this process is given by the hopping matrix

tmm1pR,R
1q. The second term in Eq. (1.14) instead represents the electron-electron

Coulomb interaction. In detail, the hopping matrix tmm1pR,R
1q and the Coulomb in-

teraction Ulm1ml1pR1,R2,R3,R4q are given by

tmm1pR,R
1q “ ´

ż

d3r w˚mRprq

„

´
~2

2m
∆` V prq



wm1R1prq, (1.15)

Ulm1ml1pR1,R2,R3,R4q “

ż

d3r d3r1 w˚m1R3
prqw˚lR1

pr1q
e2

|r´ r1|
wmR2

pr1qwl1R4
prq.

(1.16)

In practice, however, the Coulomb interaction Ulm1ml1 cannot be computed so straight-

forward. In fact, usually only the localized 3d or 4f orbitals, which represent only a

small subset of all bands in a solid, are included in the Hubbard Hamiltonian. In this

”few-orbital” Hubbard Hamiltonian all remaining bands need effectively be taken into
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Figure 1.2: Coulomb interaction in the multi-orbital Hubbard model: (a) intra-orbital
Coulomb interaction, (b-c) inter-orbital Coulomb interaction, (d) spin-flip and (e) pair-

hopping term. (Taken from Ref. [25])

account by a screening of the Coulomb interaction Ulm1ml1 . In Sec. 1.5, this screen-

ing mechanism will be discussed in more detail and a method to compute the screened

Coulomb interaction—the constrained random phase approximation (cRPA) [24]—will

be presented.

Kanamori interactions Apart from the fact that only the localized, correlated or-

bitals are included in the Hamiltonian in Eq. (1.14), no further approximations have

been made so far. However, in order to obtain a simplified model Hamiltonian—the

multi-orbital Hubbard model—we now assume that only electrons on the same lattice

site are interacting with each other. Thus, the Coulomb interaction becomes purely local

and does not show any spatial dependence Ulm1ml1 “ Ulm1ml1p0,0,0,0q.

In a further approximation for degenerate orbitals in a cubic crystal field (e.g. the t2g

orbitals in SrVO3), the four-index Coulomb interaction Ulm1ml1 is reduced to three inter-

action parameters: the intra-orbital Coulomb interaction U “ Ummmm, the inter-orbital

Coulomb interaction U 1 “ Umm1mm1 and the Hund’s coupling J “ Ummm1m1 “ Umm1m1m.

Assuming furthermore a full rotational invariance of the orbitals,2 one obtains so-called

Kanamori interactions with U 1 “ U ´ 2J [27]. Considering these approximations, one

can write down the multi-orbital (Kanamori) Hubbard Hamiltonian as

pH “ ´
ÿ

RR1

mm1,σ

tmm1pR,R
1q pc:RmσpcR1m1σ

`U
ÿ

R,m

pnRmÒpnRmÓ `
ÿ

R,m‰m1

σσ1

`

U 1 ´ δσσ1J
˘

pnRmσpnRm1σ1

` J
ÿ

R,m‰m1

´

pc:RmÒpc
:

Rm1ÓpcRmÓpcRm1Ò ` pc:RmÒpc
:

RmÓpcRm1ÓpcRm1Ò ` h.c.
¯

. (1.17)

The first two local interaction terms (second line in Eq. (1.17)) are written in terms

of the electron density operator pnRmσ “ pc:RmσpcRmσ. They represent the intra-orbital

2In a cubic crystal field, the rotational invariance of the orbitals is clearly not fulfilled. However, for
3d orbitals, the deviations from spherically symmetric interactions with U 1 “ U ´ 2J are not significant,
as shown in Ref. [26].
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Coulomb interaction U of two electrons residing in the same orbital and the inter-orbital

Coulomb interaction U 1 ´ δσσ1J of two electrons in different orbitals. The interaction

parameter J is often referred to as Hund’s coupling J as it reflects the well-known

Hund’s rule which postulates a maximum spin angular momentum for a given electronic

configuration. The last two terms in the multi-orbital Hubbard Hamiltonian (last line

in Eq. (1.17)) instead cannot be written in terms of density operators pnRmσ. They are

the so-called spin-flip and pair-hopping terms (for a visualization see Fig. 1.2). As the

name suggests, the spin-flip term ”flips” the spin of two electrons residing in different

orbitals m,m1. The pair-hopping term instead annihilates a pair of electrons in orbital

m1 and transfers them to orbital m.

The hopping matrix tmm1pR,R
1q, which is needed in the multi-orbital Hubbard model

in Eq. (1.17), is given by Eq. (1.15). Within the DFT+DMFT approach, however, it is

obtained from an ab initio DFT computation for the material under investigation. Note

that only the correlated orbitals are included in the multi-orbital Hubbard model, while

DFT computes the whole electronic band-structure of the material. Hence, a projection

is needed in order to obtain tmm1pR,R
1q for the correlated orbital-subspace. This so-

called Wannier projection, which will be discussed in the following, constructs localized

wave functions wm for the correlated orbitals out of the DFT Bloch wave functions and

allows to obtain tmm1pR,R
1q in the basis of localized Wannier functions wm.3

1.4 Wannier projection

Within the DFT+DMFT approach, a Wannier projection is used to construct localized

wave functions—the so-called Wannier functions—out of the extended Bloch wave func-

tions used in DFT. These localized Wannier functions are constructed for the correlated

orbitals and can then be interpreted as the localized orbitals of the multi-orbital Hub-

bard model in Eq. (1.17). In the following, I will briefly discuss this Wannier projection,

a more detailed derivation and overview can be found in Ref. [28].

Wannier functions were first introduced in 1937 by G. Wannier [29], who suggested to

construct localized atomic wave functions by superposing Bloch functions. Since Bloch

wave functions of different k have different envelope functions eikr (see e.g. left hand

side of Fig. 1.3), one can expect to obtain a localized wave function by superposing

them. Thus, in the simplest case of a single isolated band n, Wannier functions can be

3The tmm1pR,R1q obtained from a DFT computation does not contain only pure electronic hopping,
but also some electronic exchange and correlation, which is included in DFT on a mean-field level. This
gives rise to the so-called double counting problem, which is discussed in detail in Sec. 1.7.
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Figure 1.3: (Left) Bloch functions for three different wavevectors k (green curves
represent envelope functions eikR). (Right) Localized Wannier functions which are
obtained through a superposition of Bloch functions for different k, see Eq. (1.18).

(Image taken from Ref. [28])

constructed according to

wnRprq “

ż

BZ
d3k e´ikR ψnkprq, (1.18)

where the integral goes over all k in the first Brillouin zone. R is a real-space lattice

vector and Wannier functions at different R are images of one another (see right hand

side of Fig. 1.3).

The Wannier functions wnRprq form an orthogonal set and Eq. (1.18) has the form of a

Fourier transform. Its inverse transform, up to a renormalization factor, is

ψnkprq “
ÿ

R

eikRwnRprq. (1.19)

Thus, the Bloch functions ψnkprq can be expanded in terms of Wannier functions wnRprq,

and vice versa. Both sets of wave functions span the same band-space and the transfor-

mation between them is, in principle, just a basis transformation. However, it should be

noted that, unlike Bloch functions, Wannier functions are not eigenstates of the Kohn-

Sham-Hamiltonian. Thus, in some sense one pays for the localization in real space with

de-localization in energy.

The basis transformation between Bloch and Wannier functions in Eqs. (1.18) and (1.19)

is unitary, but not unique. In fact, there exists a ”gauge freedom” in the definition of

the Bloch functions ψnkprq and one can replace

ψ̃nkprq “ eiφnpkqψnkprq, (1.20)
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without changing the physical description of the system. Here φnpkq is a real function,

that is periodic in k-space. The ”gauge freedom” in Eq. (1.20) propagates into the

Wannier functions, meaning that different choices of φnpkq result in different Wannier

functions with different shapes and spreads. Thus, the construction of Wannier functions

carries a degree of arbitrariness which can be used to construct e.g. maximally localized

Wannier functions.

Multi-orbital Wannier functions So far, we implicitly assumed that we have a

single isolated band with band index n. But in the band-structure of a realistic material

one usually has a manifold of bands that overlap and hybridize with each other. Let

us assume that the Bloch bands, which are included in the Wannier projection, form a

manifold of L bands which are separated from any other bands outside the manifold.4

In this case, the ”gauge transformation” in Eq. (1.20) can be generalized to

ψ̃mkprq “
L
ÿ

n“1

Uk
mn ψnkprq, (1.21)

where Uk
mn is a unitary matrix of dimension L. The construction of the Wannier func-

tions now allows for an additional mixing of the Bloch states according to

wmRprq “

ż

BZ
d3k e´ikR

L
ÿ

n“1

Uk
mn ψnkprq. (1.22)

In this multi-band case, the unitary matrix Uk
mn now carries the gauge freedom of the

Wannier projection. It can e.g. be chosen in a way that maximally localized Wannier

functions are obtained.

Maximally localized Wannier functions A localization criterion for maximally

localized Wannier functions was introduced in 1997 by Marzari and Vanderbilt [30].

They proposed the functional

Ω “
ÿ

m

r〈wmR| r
2 |wmR〉´ | 〈wmR| r |wmR〉 |2s, (1.23)

which gives a measure of the total spread of all L Wannier functions in real space.

4If the bands of interest overlap and hybridize with other bands which extend further out in energy,
it is not easily possible to define a manifold of L bands for the Wannier projection. However, also in
this case of entangled bands a Wannier projection is possible. The procedure then basically consists of
two-steps: first a suitable L-dimensional band-subspace needs to be selected for each k and then Wannier
functions can be constructed. For more details regarding this disentanglement procedure see Ref. [28].
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Figure 1.4: Maximally localized Fe
t2g Wannier orbital in FeAl.

In order to obtain maximally localized Wannier

functions, the functional in Eq. (1.23) needs to be

minimized with respect to the unitary transforma-

tions Uk appearing in Eq. (1.22). In practice, this

is done in an iterative procedure by starting from

an initial projection and then varying Uk. Re-

cently, also ”selectively localized” Wannier func-

tions have been proposed in Ref. [31], where not

the total spread of all L Wannier functions, but

the spread of a subset of chosen Wannier functions

is minimized. This slight variation of the mini-

mization criterion can lead to improvements for projections including a large number

of Wannier functions, where some of them are expected to have a less localized orbital

character than others.

Wannier Hamiltonian As mentioned already, a Wannier projection can provide

ab initio values for the hopping matrix tmm1 in the multi-orbital Hubbard model in

Eq. (1.17). Starting from a standard DFT computation, the correlated bands and thus

the band-subspace L for the Wannier projection needs to be identified. These correlated

bands are usually partially filled 3d or 4f bands close to the Fermi energy. Thus, it is

useful to divide the Kohn-Sham Hamiltonian in the Bloch basis obtained from a DFT

computation into submatrices

»

—

—

–

Ek
b 0 0

0 Ek 0

0 0 Ek
a

fi

ffi

ffi

fl

, (1.24)

where Ek spans the correlated band subspace L we are interested in. The Hamiltonian

Ek in the Bloch basis (of course also Ek
a and Ek

b ) is diagonal Ek
nm “ δnmεnk, with

εnk being the Kohn-Sham eigenenergies. Wannier functions are now constructed only

from the bands included in Ek. When the Wannier projection is completed, Ek can

be rewritten in the basis of maximally localized Wannier functions. This is achieved

through a simple basis transformation

Hk
W “ UkEkpUkq:, (1.25)

where Uk are the unitary matrices obtained from the Wannier projection in Eq. (1.22).

Thus, the Wannier Hamiltonian Hk
W is simply the low energy part of the DFT Hamil-

tonian Ek written in the basis of localized Wannier functions. Hk
W is then used as ab
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initio input for the single-electron part of the multi-orbital Hubbard model in Eq. (1.17).

With the Fourier transform

HR´R1

W “
ÿ

k

eikpR´R
1qHk

W , (1.26)

the multi-orbital Hubbard model in Eq. (1.17) can be rewritten as

pH “
ÿ

RR1

mm1,σ

HR´R1

W,mm1 pc
:

RmσpcR1m1σ

`U
ÿ

R,m

pnRmÒpnRmÓ `
ÿ

R,m‰m1

σσ1

`

U 1 ´ δσσ1J
˘

pnRmσpnRm1σ1

` J
ÿ

R,m‰m1

´

pc:RmÒpc
:

Rm1ÓpcRmÓpcRm1Ò ` pc:RmÒpc
:

RmÓpcRm1ÓpcRm1Ò ` h.c.
¯

` pHdc. (1.27)

Thus, the Wannier Hamiltonian HR´R1

W,mm1 acts as the hopping matrix tmm1pR,R
1q in the

original Hubbard model. However, HR´R1

W does not contain only pure hopping terms,

but also some electronic exchange and correlation included already in DFT. In order

to avoid any double counting of electronic correlations, the so-called ”double-counting”

term pHdc in Eq. (1.27) arises. This double-counting issue will be discussed in more detail

in Sec. 1.7. Now I first focus on the ab initio computation of the interaction values U ,

J and U 1.

1.5 Ab initio computation of the Coulomb interaction

In the DFT+DMFT approach, the Hubbard interaction parameters U , J and U 1 for

the multi-orbital Hubbard model in Eq. (1.27) can be extracted from an ab initio DFT

computation. However, the straightforward use of Eq. (1.16) usually leads to much too

large values for the interaction parameters. This is the case because Eq. (1.16) uses the

bare Coulomb interaction V “ e2

|r´r1| without considering any screening effects. Instead,

the Coulomb interaction in the multi-orbital Hubbard model, which usually contains

only a few correlated bands, is screened by mobile electrons residing in other bands of

the material under investigation. These screening processes stemming from electrons in

bands not included in the Wannier projection need to be considered when computing

the interaction parameters U , J and U 1.

Screening of the Coulomb interaction A method to take into account electronic

screening processes, is the random phase approximation (RPA) [32, 33]. In RPA, the
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Figure 1.5: Screening of the Coulomb interaction within RPA. The double wiggled
lines represent the screened Coulomb interaction W while single wiggled lines denote

the bare Coulomb interaction V .

screened Coulomb interaction W is defined via a Dyson-like equation, which schemati-

cally reads

W “ V ` V PW, (1.28)

leading to

W “
V

1´ PV
, (1.29)

with the bare Coulomb interaction V “ e2

|r´r1| and the polarisation P . In principle, the

latter contains all possible electronic screening processes, which in terms of diagrams

means all possible two-particle diagrams including vertex corrections. However, in RPA

one limits oneself to the lowest-order two-particle diagram, the so-called bubble diagram.

Fig. 1.5 shows how in RPA the bare Coulomb interaction V is screened according to

Eq. (1.28) with the bubble diagram being the only diagram contributing to the polar-

isation P . The bubble diagram describes an electron-hole pair and is mathematically

simply the product of two Green’s functions. Thus, the polarisation in RPA is

P pr, r1, ωq “ ´i

ż

dω1

2π
Gpr, r1, ω ` ω1qGpr1, r, ω1q. (1.30)

By using the Kohn-Sham wave functions ψnk and energies εnk, the polarisation P can

be rewritten as [34]

P pr, r1, ωq “
occ
ÿ

nk

unocc
ÿ

n1k1

„

ψ‹nkprqψn1k1prqψ
‹
n1k1pr

1qψnkpr
1q

ω ´ εn1k1 ` εnk ` iδ
´
ψnkprqψ

‹
n1k1prqψn1k1pr

1qψ‹nkpr
1q

ω ` εn1k1 ´ εnk ´ iδ



,

(1.31)

where ψnk, εnk refer to occupied, while ψn1k1 , εn1k1 to unoccupied states; and the polari-

sation P describes electronic excitations from occupied to unoccupied states.

Constrained random phase approximation (cRPA) In cRPA [24, 35, 36], one

separates the total polarisation P into the polarisation Pd within the correlated target

bands included in the Wannier Hamiltonian Hk
W and the rest of the polarisation Pr

P “ Pd ` Pr . (1.32)
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r

d

r

Pd

Pr

FE

Pr

Figure 1.6: Schematic picture showing the polarisations Pd and Pr within cRPA. Pd
is constrained to electronic transitions within the d subspace while Pr contains all other

possible electronic transitions, e.g. between the r and the d subspace.

The polarisation within the target bands is denoted as Pd since the correlated bands

have usually d character. Pd contains electronic transitions within the d subspace while

Pr includes all other transitions, e.g. from d to r (for a visualization see Fig. 1.6).

Since the effective Coulomb interaction in the DFT+DMFT Hubbard model should be

screened by all polarisations excluding the ones within the d subspace, we are interested

in computing Pr. Then, the partially screened Coulomb interaction Wr can be obtained

through

Wr “
V

1´ PrV
. (1.33)

Please note that P pr, r1, ωq depends on ω and this frequency dependence propagates

into the screened Coulomb interaction Wrpr, r
1, ωq. Thus, due to the energy-dependent

screening, the screened Coulomb interaction becomes frequency-dependent. At high

energies, screening processes become less efficient and above the plasma frequency ωp

the screened Coulomb interaction recovers its unscreened value V . Practically, Pr is

usually obtained by first computing the total polarisation P and the polarisation Pd

within the target d bands [Eq. (1.31) can equally be used to compute Pd by simply

limiting the Kohn-Sham states to states within the d subspace]. Then Pr is obtained by

Pr “ P ´ Pd.
5

After obtaining the partially screened Coulomb interaction Wrpr, r
1, ωq within cRPA, its

matrix elements in the localized Wannier basis can be computed [35]. For this purpose

we can use Eq. (1.16), but with the partially screened Coulomb interaction Wrpr, r
1, ωq

5In the case of entangled bands, the subspaces d and r cannot strictly be separated from each
other. However, also in this case it is possible to compute the partially screened Coulomb interaction
Wrpr, r

1, ωq consistently with the disentanglement procedure of the Wannier projection. For more details
see Refs. [34, 35].
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instead of the bare one V “ e2

|r´r1| . This yields

Ulm1ml1pR,R,0,0, ωq “

ż

d3r d3r1 w˚m10prqw
˚
lRpr

1qWrpr, r
1, ωq wmRpr

1qwl10prq, (1.34)

where wm1R is the Wannier function of orbital m1 at lattice site R. Please note that

Ulm1ml1pR,R,0,0, ωq explicitly depends on R and the frequency ω. The latter is due to

the fact that the screening processes are ω-dependent. However, in many DFT+DMFT

studies including the ones presented in this work, the frequency dependence of the

Coulomb interaction is neglected by simply taking its value at ω “ 0. Thus, the lo-

cal and frequency-independent Hubbard interaction parameters Ulm1ml1 , which are used

in the multi-orbital Hubbard model, are calculated by setting R “ 0 and ω “ 0 in

Eq. (1.34). From Ulm1ml1 , the interaction parameters U , J and U 1—used in the multi-

orbital Kanamori Hubbard model in Eq. (1.17)—can then simply be obtained as already

described in Sec. 1.3. For the non-local Coulomb interaction V q instead, which is used

in AbinitioDΓA [see Eq. (4.26)], one needs to keep the R-dependence in Eq. (1.34).

1.6 Dynamical mean-field theory (DMFT)

As discussed so far, one can set up a multi-orbital Hubbard model with ab initio DFT in-

put. That is, the single-electron part—namely the Wannier Hamiltonian HR´R1

W —in the

Hubbard model in Eq. (1.27) can be obtained through a Wannier projection, while the

local Coulomb interaction parameters U , J and U 1 are calculated from cRPA. However,

it is still not possible to solve the multi-orbital Hubbard model. Even for the single-

orbital Hubbard model,6 which includes only one intra-orbital Coulomb interaction term

U ,

pH “ ´t
ÿ

xRR1y,σ

pc:RσpcR1σ ` U
ÿ

R

pnRÒpnRÓ, (1.35)

no solution exists, neither analytically nor numerically.7 The difficulties arise from the

fact that the kinetic energy and the Coulomb interaction term are diagonal in different

bases: the hopping term t is diagonal in momentum space, while the local Coulomb

interaction term U is diagonal in real space (it acts only on electrons residing on the

same lattice site). It is exactly this competition between itineracy and localization of

the electrons, which lies at the heart of the Hubbard model and makes its solution so

6For simplicity, I restrict the discussion in this section to the single-orbital Hubbard model with
nearest-neighbor hopping t [denoted by xRR1y in Eq. (1.35)]. However, please note that all statements
and results in the following also apply to the multi-orbital case.

7However, there exists a solution in dimensions d “ 1 or dÑ8, and for other simplifying limits such
as U Ñ8 [37].
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difficult. Thus, further approximations are needed in order to make the Hubbard model

treatable. At this point the dynamical mean-field theory (DMFT) comes into play.

DMFT maps the Hubbard model self-consistently onto an auxiliary single-site impurity

model [6], which is way easier to treat than the full lattice problem. This mapping has

been shown to be exact in infinite dimensions or infinite coordination number [5], while

it is clearly an approximation in three or lower dimensions. As its name suggests, DMFT

is a mean-field theory which performs a spatial average by treating the surrounding of

the auxiliary impurity site as a mean-field. However, in contrast to classical mean-field

approaches (e.g. the one for the Ising model), DMFT keeps the time-dependence of

the mean-field—it is a dynamical mean-field theory. Since DMFT is a diagrammatic

method, I will now first briefly introduce Green’s functions and Feynman diagrams.

Then, in Sec. 1.6.2 and 1.6.3 the diagrammatic content of DMFT and the mapping onto

an auxiliary Anderson impurity model will be discussed.

1.6.1 Green’s functions and Feynman diagrams

In DMFT and other many-body approaches, one does not directly approximate the

many-electron wave function, but rather works with Green’s functions. The one-particle

Green’s function describes the propagation of an electron/hole in an interacting many-

body system. It is defined as8

Gσpτ, r, τ
1, r1q “ ´

@

T
“

pcσpτ, rqpc
:
σpτ

1, r1q
‰D

, (1.36)

where pc
p:q
σ are fermionic creation (annihilation) operators and T is the time ordering

operator. If τ ą τ 1, the Green’s function in Eq. (1.36) describes the creation of an

electron at position r1 and (imaginary) time τ 1; this electron then propagates through

the system and is annihilated later on at time τ and position r.9 Thus, the Green’s

function describes the process of probing an interacting many-body system with an ad-

ditional particle. In fact, it is closely related to experiment, where solid state systems are

usually probed by applying an external perturbation, e.g. photons in angular-resolved

photoemission spectroscopy (ARPES).

Since we are dealing with systems in thermal equilibrium, Eq. (1.36) has already been

adopted to the Matsubara formalism with imaginary time τ P r0, βq (with the inverse

8The definition of the Green’s function can easily be extended to two and more particles. The two-
particle Green’s function, which describes the propagation of two electrons/holes in the system, will play
a prominent role in this thesis and will be introduced in detail in Sec. 3.2.1. Here, however, for simplicity
the discussion is limited to the one-particle Green’s function.

9If τ ă τ 1, the Green’s function in Eq. (1.36) describes the propagation of a hole. Please also note
that the electrons in the system are indistinguishable particles and one can in principle not say that the
particle which is extracted is the same as the one which was inserted.
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Figure 1.7: Basic diagrammatic elements for constructing the Feynman diagrams of
the Hubbard model: (left) the non-interacting Green’s function G0 and (right) the local

Coulomb interaction U .

temperature β “ 1{T ). The concept of imaginary time and frequency is a mathemat-

ical construct, whose advantage can be seen by considering the field operators in their

Heisenberg representation

pcp:qσ pτ, rq “ eτ
pH
pcp:qσ prq e

´τ pH
pcp:qσ pt, rq “ eit

pH
pcp:qσ prq e

´it pH , (1.37)

and recalling that the thermal expectation value x ... y is performed according to

x ... y “
1

Z
Tr

´

e´β
pH ...

¯

, (1.38)

where Z “ Tr
´

e´β
pH
¯

. Thus, by using imaginary time τ , the exponential functions in

Eqs. (1.37) and (1.38) can be subsumed in a single imaginary time integration, which is

very useful e.g. for any perturbative expansion.

However, the Green’s function of the Hubbard model cannot directly be calculated since

the trace in the definition of the Green’s function goes over the unknown states of the

interacting many-particle system. So, what one usually does and what leads to the

formalism of Feynman diagrams, is a perturbative expansion in the interacting part of

the Hamiltonian. In fact, the Hubbard Hamiltonian in Eq. (1.35) can be divided into a

non-interacting part pH0, which is represented by the kinetic energy term, and a many-

body interaction part pHI represented by the Coulomb interaction term. For the latter

the perturbative expansion is performed. A detailed derivation of the perturbative

expansion and the formalism of Feynman diagrams can e.g. be found in Refs. [21,

22]. Here I just would like to summarize that the basic elements of the perturbative

expansion of the Hubbard model, which are at the same time the basic ingredients for

its Feynman diagrams, are the Green’s function of the non-interacting system G0 and the

local Coulomb interaction U . These two basic ingredients are depicted diagrammatically

in Fig. 1.7. They can be used to construct all possible diagrams, following the Feynman

rules. Two possible diagrams are e.g. shown in Fig. 1.9.

Dyson equation The non-interacting Green’s function G0 is dressed with all possible

diagrams, leading to the full interacting Green’s functions G of Eq. (1.36). This process

is described by the so-called Dyson-equation, which is depicted in Fig. 1.8. There, the
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Figure 1.8: Diagrammatic representation of the Dyson equation: the non-interacting
Green’s function G0 (single line) is dressed with the self-energy Σ, giving the full,

interacting Green’s function G (double line).

Figure 1.9: The self-energy contains all irreducible, skeleton Feynman diagrams.
Please note that the internal Green’s function lines composing the self-energy diagrams

in this skeleton expansion are interacting Green’s functions (double lines).

Figure 1.10: The (left) non-skeleton diagram is included in the (right) skeleton dia-
gram through the interacting internal Green’s function line (double line).

quantity Σ is the self-energy which—expressed in terms of G—contains all irreducible,

skeleton Feynman diagrams. Skeleton diagrams are diagrams which do not contain any

self-energy inclusions. Irreducible, on the other hand, means that one cannot split the

Feynman diagram into two parts by cutting one internal fermionic line. The reducible

Feynman diagrams are generated instead through the Dyson equation which is depicted

diagrammatically in Fig. 1.8 and reads

G “ G0 `G0ΣG0 `G0ΣG0ΣG0 ` ...

“ G0 `G0Σ pG0 `G0ΣG0 ` ...q

“ G0 `G0ΣG. (1.39)

So the full, interacting Green’s function G can be obtained from the non-interacting one

G0 and the self-energy Σ via G “ 1
G´1

0 ´Σ
.

In k-space, the non-interacting Green’s function can explicitly be written as

G0piν,kq “
1

iν ` µ´ εk
, (1.40)

with iν being fermionic Matsubara frequencies iν “ ip2n`1qπ
β , µ the chemical potential
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and εk the energy eigenvalues of the non-interacting problem. Consequently, the full

interacting Green’s function can simply be written as

Gpiν,kq “
1

iν ` µ´ εk ´ Σpiν,kq
. (1.41)

Thus, all the information beyond the non-interacting problem is basically contained in

the self-energy.

Of course, it is not possible to calculate the self-energy of the Hubbard model exactly by

summing over all possible Feynman diagrams. However, the perturbative expansion in

the form of Feynman diagrams provides an insight into the involved physical processes.

Furthermore, it makes it possible to develop approximations which include only certain

diagrams. In a classical perturbative approach, for example, one would include only the

lowest-order diagrams. In DMFT instead, a whole class of diagrams is included up to

all orders, i.e. in a non-perturbative way. In fact, DMFT includes all local, irreducible

Feynman diagrams, as discussed in more detail in the following Sec. 1.6.2. One clear

advantage of a diagrammatic approach like DMFT is the fact that its diagrammatic

content is well-defined and thus it is clear which physical processes it can describe.

1.6.2 Diagrammatic content of DMFT

The DMFT self-energy contains all local, irreducible one-particle Feynman diagrams.

One can understand this diagrammatic content from the fact that DMFT provides the

exact solution for the Hubbard model in infinite dimensions or, equivalently, for infinite

coordination number. Thus, to derive the DMFT we follow Ref. [38] and explicitly

consider this limit. Let us start with the expectation value of the kinetic energy part in

the Hubbard model in Eq. (1.35)

x pHkiny “ ´t
ÿ

xR,R1y,σ

xpc:R1σpcRσy, (1.42)

where xR,R1y stands for a summation over nearest neighbors and the probability for an

electron to hop from lattice site R to R1 is given by |t|2. The probability |t|2 obviously

needs to add up to a value Op1q when summed over all nearest neighbors. Thus, by

increasing the coordination number z (the number of nearest neighbors) the hopping

amplitude t needs to be rescaled in order to prevent the kinetic energy term from di-

verging. The Hubbard interaction term instead does not need any rescaling since it is

purely local and thus independent of z. In 1989, Metzner and Vollhardt [5] have shown

that the only scaling, for which the physics of the Hubbard model remains non-trivial in

the case of infinite coordination number, is t 9 1?
z
. This way, also the propagator scales
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Figure 1.11: The DMFT self-energy contains all local irreducible Feynman diagrams.
(Dots represent the bare Hubbard interaction U and i is a lattice site index.)

like xpc:R1σpcRσy 9
1?
z

and it can be shown that the self-energy becomes purely local [5],

or equivalently, momentum-independent

Σpiν,kq Ñ Σpiνq. (1.43)

Thus, the DMFT self-energy becomes purely local and contains all local, irreducible

one-particle Feynman diagrams (see Fig. 1.11 where i is a lattice site index). These

local diagrams capture all local electronic correlations in a non-perturbative way so that

DMFT can e.g. account for local spin fluctuations.

1.6.3 Mapping onto an Anderson impurity model

One key to the success of DMFT lies in its mapping of the Hubbard model onto a

single-site Anderson impurity model (AIM). Such a mapping is possible since the same

local Feynman diagrams, which constitute the DMFT self-energy, can also be obtained

from an AIM. This was realized in 1992 by Georges and Kotliar [6], who proposed a

self-consistent mapping of the local DMFT Green’s function on the Green’s function of

an AIM.

The Hamiltonian of the AIM describes an interacting impurity hybridizing with a bath

of non-interacting electrons. In second quantization it reads

pH “
ÿ

kσ

εka
:

kσakσ `
ÿ

kσ

Vk

´

a:kσcσ ` c
:
σakσ

¯

` UnÒnÓ, (1.44)

where a:kσ (akσ) are creation (annihilation) operators of non-interacting bath electrons

with energy εk (for simplicity we assume that there exists only one band in the bath). c:σ

(cσ) instead create (annihilate) electrons at the interacting impurity site, and nσ “ c:σcσ.

Vk quantifies the hybridization strength between the bath and the impurity, while U is

the purely local Coulomb interaction between the localized electrons at the impurity

site.

If the AIM is solved by quantum Monte Carlo simulations, which is the method of choice

in this work, one usually switches to an action formalism. Then one can integrate out
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the bath and arrive at a retarded interaction on the impurity, which can be described

by a frequency-dependent, non-interacting Green’s function G0piνq. Given G0piνq, the

interacting Green’s function of the Anderson impurity model GAIMpiνq can be obtained

via a multi-dimensional path integral of Grassmann variables ψ and ψ: [39]

GAIMpiνq “ ´
1

Z

ż

DrψsDrψ:sψψ:eArψ,ψ:,pG0q´1s, (1.45)

with the partition function Z and the action A

Z “

ż

DrψsDrψ:seArψ,ψ:,pG0q´1s, (1.46)

A “
ÿ

σm

ψσpiνqG0piνq´1ψ:σpiνq ´ U
ÿ

σσ1

ż β

0
dτψ:σpτqψ

:

σ1pτqψσ1pτqψσpτq.

Due to the high dimensionality of the fermionic configuration space, the integrals are

evaluated stochastically by a Monte Carlo algorithm. The Hirsch-Fye quantum Monte

Carlo (HF-QMC) [40] is based on a time discretization ∆τ of the integrals, which leads

to a systematic error requiring an extrapolation ∆τ Ñ 0. The continuous-time quantum

Monte-Carlo algorithm [41, 42], which is used in this work, instead avoids this time

discretization error and also allows for computations at lower temperatures than HF-

QMC.

DMFT self-consistency cycle As already mentioned, one can formulate a self-

consistent scheme to determine the appropriate AIM which describes the respective

Hubbard model in infinite dimensions. This self-consistent DMFT loop is depicted in

Fig. 1.12 and is briefly described in the following.

One starts with a trial self-energy Σpiνq, which might just be zero. This local self-

energy Σpiνq, which in the end—when self-consistency is reached—will be the DMFT

self-energy, is used as an approximation for the full self-energy of the Hubbard model

Σpν,kq. Thus, the Green’s function of the Hubbard model is computed as

Gpiν,kq “
1

iν ` µ´ εk ´ Σpiνq
, (1.47)

with µ being the chemical potential and εk the energies obtained from a DFT compu-

tation.10

Then the Hubbard model is mapped onto an Anderson impurity model by computing the

local, k-summed Green’s function Gpiνq “
ř

kGpiν,kq and defining the non-interacting

10In the multi-orbital case, εk is replaced by the Wannier Hamiltonian Hk
W of Eq. (1.25) and Σpiνq

becomes a matrix in the orbital degrees of freedom.
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lattice problem

mapping to AIM

initial

Figure 1.12: Schematic flow diagram of the DMFT algorithm.

Green’s function of the AIM G0piνq via the impurity Dyson equation as

G0piνq´1 “ Gpiνq´1 ` Σpiνq. (1.48)

Next, the AIM has to be solved. This corresponds to solving the path integral in

Eq. (1.45), which is usually the numerically most expensive step in the DMFT self-

consistent loop. But once the Green’s function of the AIM GAIMpiνq is obtained, its

self-energy can be computed using the impurity Dyson equation once again

ΣAIMpiνq “ G0piνq´1 ´GAIMpiνq
´1. (1.49)

This self-energy ΣAIMpiνq is taken as the new self-energy of the Hubbard model Σpiν,kq «

Σpiνq and one re-enters the self-consistent loop again. Then the algorithm is iterated

until a convergence criterion, e.g.
ř

iν |ΣN`1piνq ´ ΣN piνq| ă ε, is fulfilled.

1.7 DFT+DMFT double counting correction

DFT already takes into account some correlations, as part of the Hartree term and the

exchange and correlation potential Exc. Thus, in order to avoid considering local corre-

lations twice within DFT+DMFT, a double-counting correction needs to be introduced,

as depicted in Eq. (1.27). However, in practice it is impossible to exactly separate local

from non-local correlation parts in DFT, since the latter is based on the electron density
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and not on Feynman diagrams like DMFT. Thus, the double-counting of local electronic

correlations within DFT+DMFT can only be removed in an approximative way.

The double-counting correction employed in this work is based on the so-called fully

localized limit (FLL) correction, which was introduced by Anisimov et al. [43] for the

LDA+U approach. This double-counting correction is based on the assumption that

the atomic limit represents a good approximation for the localized orbitals employed in

DMFT. Differentiating the total energy in this fully localized limit leads to the following

double-counting correction:

ΣDC,m “
Ū

2

ˆ

nm ´
1

2

˙

, (1.50)

where nm denotes the filling of orbital m and Ū is an average Coulomb interaction

parameter, which in a cubic symmetry and for L orbitals can be calculated as Ū “

U`pL´1qpU´2Jq`pL´1qpU´3Jq
2L´1 [44]. Thus, the orbitals are shifted according to their filling:

half filled orbitals are left unchanged, while fully filled (empty) orbitals are shifted to

negative (positive) energies. When considering only degenerate orbitals connected by

symmetry (e.g. the three t2g orbitals), their filling nm is obviously the same. In this

case, the double-counting correction in Eq. (1.50) results in a global shift of all orbitals

and can be absorbed in the chemical potential. In the general case, however, the double-

counting correction leads to mutual shifts between the included orbital manifolds (e.g.

between eg and t2g orbitals).

In this work, the double-counting correction is computed only once from the DFT fillings

and is not updated during the DMFT self-consistency cycle. In this case, the double-

counting correction can simply be absorbed in the Wannier Hamiltonian

H̃k
W,mm1 “ Hk

W,mm1 ´ ΣDC,mδmm1 , (1.51)

where ΣDC,m is now computed with the DFT fillings ΣDC,m “
Ū
2

`

nDFT
m ´ 1

2

˘

.

The question of the most appropriate double-counting correction is still an ongoing

debate. Beside the FLL double counting correction, there exists e.g. also another com-

monly used double-counting correction ”around mean-field” (AMF) [45]. In summary,

one can say that the double-counting issue is one of the drawbacks of the DFT+DMFT

approach since no fundamentally exact way of solving this problem exists. Thus, it

introduces a degree of arbitrariness in the ab initio DFT+DMFT approach. One way

to overcome the double-counting problem would be the combination of DMFT with the

GW method in the so-called GW+DMFT approach [46, 47]. Since GW is a perturbative

diagrammatic technique, the double-counting problem can in principle be solved exactly

in GW+DMFT. Furthermore, the screened Coulomb interaction W is an essential part
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of the GW method and can be computed consistently within the GW+DMFT approach.

However, so far no fully self-consistent GW or GW+DMFT method has been imple-

mented11 and the existing schemes again rely on DFT, suffering from similar problems

as DFT+DMFT in this respect.

1.8 Summary: DFT+DMFT flow

The necessary steps to perform a DFT+DMFT computation—ranging from the DFT

computation, the Wannier projection and cRPA, to the actual DMFT—have already

been discussed in detail in the previous sections. Here, however, the single steps are

summarized and shown in their context in the flow diagram Fig. 1.13. This should

finally provide a compact overview of the DFT+DMFT approach.

As depicted in the flow diagram in Fig. 1.13, in the first step a DFT computation for

the material under investigation is performed. For this DFT computation, we use the

program package Wien2k [19]. As discussed in Sec. 1.2, from the DFT computation

one obtains the Kohn-Sham energies εnk and wave functions ψnk. Please note that the

effective potential Veff in Fig. 1.13 contains the ionic potential of the lattice and the

electronic exchange and correlation potential.

In the second step, the correlated band-subspace needs to be identified since within

DFT+DMFT one first computes the whole band-structure of the material under inves-

tigation within DFT and then one treats its correlated bands, e.g. the partially filled 3d

bands of transition metal elements, within DMFT. This way, (local) electronic correla-

tions are treated properly in the bands where they are expected to play an important

role, and the numerical effort of the computation remains feasible since only a few bands

are treated within DMFT while one stays with the DFT result for all the other bands.

Thus, we perform a Wannier projection for the correlated bands, as described in detail

in Sec. 1.4. For the Wannier projection, we use the the wien2wannier interface [49] and

the wannier90 program [50] which constructs maximally localized Wannier functions.

This way, we obtain the Wannier Hamiltonian HR´R1

W , which is a direct input for the

DFT+DMFT multi-orbital Hubbard model.

Together with the Wannier projection, the Hubbard interaction parameters U , J and

U 1 need to be obtained from the DFT band-structure. This is done by means of the

constrained random phase approximation (cRPA), as described in detail in Sec. 1.5.

With U , J , U 1 and HR´R1

W all necessary ab initio input for the multi-orbital Hubbard

model is provided and one can finally proceed to the actual DMFT step.

11See, however, Ref. [48] for a partially self-consistent GW+DMFT scheme.
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cRPAWannier projection

DFT

DMFT

wien2k

wien2wannier

wannier90

w2dynamics

Figure 1.13: DFT+DMFT flow diagram

In DMFT, the multi-orbital Hubbard model is self-consistently mapped onto an auxiliary

Anderson impurity model (AIM). For this inner DMFT self-consistency cycle and all

details regarding DMFT please refer to Sec. 1.6. Here, it should just be mentioned

that for the DMFT we use the w2dynamics program package [42, 51], which solves

the AIM using continuous-time quantum Monte Carlo in the hybridisation expansion

(CT-HYB) [41].

Charge self-consistency Once the DMFT self-energy Σpiνq and Green’s function

Gpiνq are obtained, a new charge distribution/electron density ρprq can be computed.

The latter is directly connected to the Green’s function via ρprq “ lim
τÑ0

Gpτ, r, rq “

lim
τÑ0

1
β

ř

iν e
´iντGpiν, r, rq. Since we are interested in the difference of the charge distri-

bution between DFT and DFT+DMFT, the quantity, which is computed, is

∆Npkq “
1

β

ÿ

iν

`

Gpiν,kq ´GDFTpiν,kq
˘

, (1.52)

with the DMFT lattice Green’s function Gpiν,kq “
`

iν ` µ´Hk
W ´ Σpiνq

˘´1
and the

DFT Green’s function GDFTpiν,kq “
`

iν ` µDFT ´H
k
W

˘´1
. Then, ∆Npkq is trans-

formed from the Wannier into the Bloch basis and into real space giving the difference

in the charge distribution ∆ρprq

∆Npkq Ñ ∆ρprq. (1.53)
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If ∆ρprq is not negligibly small, the Kohn-Sham energies and wave functions are updated

according to the new ρnewprq “ ρprq`∆ρprq and the DFT+DMFT cycle restarts again.

For details regarding this charge-self-consistent DFT+DMFT scheme see Ref. [52]. For

the DFT+DMFT studies in this work, however, no charge-self-consistency has been

employed since changes in the electron density ∆ρprq were small.

1.9 Spectral functions and analytical continuation

The (local) one-particle Green’s function Gpωq basically describes the process of prob-

ing an interacting many-body system with an additional particle and is thus directly

connected to the spectral function of the system Apωq via

Apωq “ ´
1

π
=Gpωq. (1.54)

The spectral function Apωq, which can be seen as the many-body analog of the elec-

tronic density of states, can directly be measured in photoemission spectroscopy (PES)

experiments. Please note that the Green’s function Gpωq in Eq. (1.54) depends on

real frequencies ω, while the CT-QMC algorithm employed to solve the DMFT impu-

rity problem computes the DMFT Green’s function Gpiνq on the Matsubara axis iν.12

Thus, a transformation from imaginary to real frequencies iν Ñ ω is needed. If Gpiνq

was known at infinitely many discrete Matsubara frequencies iν and with perfect pre-

cision, the problem of analytical continuation from iν to ω would be well-defined and

straightforward. However, since these conditions are not fulfilled for standard tech-

niques, several methods to address the problem of analytical continuation have been

developed.

One rather intuitive approach consists in directly fitting Gpiνq, e.g. with a complex

polynomial ppzq in the Padé approximation. Through the fit one then obtains an ana-

lytical expression for Gpzq, from which Gpωq can directly be obtained. However, without

further improvements as e.g. in Ref. [53], this method usually works only for Green’s

functions Gpiνq with very low numerical noise, and is thus not suited for QMC data.

Instead, the method of choice for the analytical continuation of QMC data is usually

the so-called maximum-entropy method [54].

12More precisely, the CT-QMC solver employed in this work computes the Green’s function Gpτq
depending on imaginary time τ . Gpiνq is then obtained through a Fourier transformation.
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Maximum-entropy method Starting from the relation between the Green’s function

on the Matsubara axis Gpiνq and the spectral function Apωq13

Gpiνq “

ż

dω
´ 1
π=Gpωq
iν ´ ω

“

ż

dω
Apωq

iν ´ ω
, (1.55)

one can, through a Fourier transform, derive a direct relation between Gpτq and Apωq

Gpτq “

ż

dω
Apωqe´τω

1` e´βω
. (1.56)

Please note that the expression e´τω

1`e´βω
(with the inverse temperature β) is often referred

to as kernel function (for more details please refer to Ref. [55]). In principle, Eq. (1.56)

represents a direct relation between the Green’s function Gpτq computed in QMC and

the spectral function Apωq. However, Eq. (1.56) cannot be inverted straightforward in

order to obtain the spectral function Apωq. Due to the exponential e´τω in the kernel

function, which for large ω strongly suppresses the integrand, there usually exist many

spectral functions Apωq which lead to essentially the same Green’s functionGpτq. Among

all these possible spectral functions, the maximum-entropy method identifies the Apωq

with the highest probability by introducing a likelihood criterion

ppAq „ e´
χ2

2 eαS . (1.57)

In Eq. (1.57) the entropy term S appears, which gives the maximum-entropy method

its name. It reads

S „

ż

dω ApωqlnrApωqs. (1.58)

The term e´
χ2

2 in Eq. (1.57) instead arises from the fact that one usually assumes a

Gaussian distribution for the error of Gpτq computed by QMC. For more details please

refer to Ref. [55]. Here it should just be mentioned that among all possible spectral

functions, which are in agreement with the Gpτq computed in QMC, the maximum-

entropy method chooses the Apωq with the highest entropy or, equivalently, the least

features in the spectrum. This way, one avoids introducing artificial features in the

spectrum, which are not sufficiently supported by the given data for Gpτq.

k-resolved spectral function The k-resolved spectral functionApω,kq “ ´ 1
π=Gpω,kq

can be obtained from the k-dependent DFT+DMFT Green’s function on the real fre-

quency axis

Gpω,kq “
´

ω ` µ´Hk
W ´ Σpωq ` iδ

¯´1
, (1.59)

13Eq. (1.55) is simply a special case of the general Cauchy integral formula for a complex Green’s
function Gpzq which is analytic in the upper half plane and decays like 1{|z| for large z.
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with µ being the chemical potential, Hk
W the Wannier Hamiltonian and Σpωq the DMFT

self-energy on the real frequency axis. Since the QMC solver provides us with the self-

energy on the Matsubara axis Σpiνq, an analytical continuation is again needed to obtain

Σpωq. In order to analytically continue the self-energy Σpiνq, I implemented an approach

that makes use of the available maximum-entropy algorithm for analytically continuing

Gpτq Ñ Apωq. For this purpose, I construct a fictitious Green’s function involving the

DMFT Matsubara self-energy Σpiνq, but without any Hamiltonian Hk
W . This fictitious

Green’s function G̃piνq reads

G̃piνq “ piν ´ Σpiνq ´ µ̃q´1 , (1.60)

where µ̃ is a fictitious chemical potential, which is optimized in order to obtain a not

too asymmetrical G̃pτq. Please note that, in contrast to the real Green’s function in

Eq. (1.59), G̃piνq is orbital-diagonal since the QMC-solver employed in this work com-

putes only orbital-diagonal self-energies Σmmpiνq. The fictitious G̃pτq corresponding to

G̃piνq is then obtained through a Fourier-transformation

G̃pτq “
1

β

ÿ

iν

e´iντ G̃piνq. (1.61)

Next, G̃pτq can be analytically continued by using the standard maximum-entropy

method.14 This way, one gets an artificial spectral function

G̃pτq Ñ Ãpωq. (1.62)

From Ãpωq one then obtains the fictitious Green’s function on the real frequency axis

G̃pωq through

=G̃pωq “ ´πÃpωq, (1.63)

<G̃pωq “ 1

π

ż

dω1
=G̃pω1q
ω1 ´ ω

, (1.64)

where Eq. (1.64) is a so-called Kramers-Kronig relation, a special case of Cauchy’s

integral formula, relating the real and the imaginary part of Gpωq. Since G̃pωq “

pω ´ Σpωq ´ µ̃q´1, the analytically continued self-energy can now directly be calculated

as

Σpωq “ ω ´ µ̃´ G̃´1pωq. (1.65)

14The statistical error on G̃piνq necessary for the maximum-entropy method is simply adapted from
the true DMFT Green’s function Gpiνq. All orbital-diagonal components of G̃pτq are continued indepen-
dently. Since currently no orbital-off-diagonal elements of Σpiνq are provided, the problem of analytical
continuation for orbital-off-diagonal elements does not arise. For a possible way to analytically continue
orbital-off-diagonal elements see the appendix in Ref. [56]
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Figure 1.14: k-resolved DFT+DMFT spectral function Apω,kq of paramagnetic
CrSb2. CrSb2 is a correlated, narrow-gap semiconductor with large thermopower at
low temperatures, whose transport properties can be investigated within DFT+DMFT.

Σpωq is then used to obtain the k-dependent Green’s function on the real frequency axis

Gpω,kq according to Eq. (1.59). Finally, the k-resolved spectral function is calculated

as Apω,kq “ ´ 1
π=Gpω,kq.

I have implemented this approach for obtaining Apω,kq in the form of a python-script,

which makes use of the maximum-entropy program by A. Sandvik [54] and is interfaced

with w2dynamics. This methodology has subsequently been successfully applied to

CrSb2 (see Fig. 1.14), FeAl (see Fig. 2.3) and to SrRuO3/SrTiO3 heterostructures in

Ref. [57].





Chapter 2

Screened moments and absence of

ferromagnetism in FeAl

In this chapter, I present the results of a DFT+DMFT study for the intermetallic

FeAl, especially its magnetic properties. The latter are intriguing since DFT predicts

the material to be ferromagnetic, while it is paramagnetic in experiment. I show that

this discrepancy can be overcome by a better treatment of electronic correlations within

DFT+DMFT. There, the absence of ferromagnetism in FeAl is explained by dynamical

spin fluctuations that screen short-lived local magnetic moments of 1.6µB. Please note

that this chapter has been adapted from the article A. Galler et al., Phys. Rev. B 92,

205132 (2015). For the latter, which is partially building upon my Master thesis, I have

done the calculations, analyzed the results and written the first version of the paper.

2.1 Motivation

Intermetallic alloys of iron and aluminum have a high hardness with a much lower specific

weight than steel. Because of this, their low costs, and resistance against corrosion and

oxidation, FeAl alloys are often used as lightweight structural materials. Most puzzling

are the magnetic properties. Here, experiments such as high-field Mössbauer investiga-

tions [58] indicate no magnetism for stoichiometric FeAl which forms a B2 CsCl-type

of lattice (two interpenetrating Fe and Al simple cubic lattices). Especially the fact

that FeAl does not show ferromagnetism in experiment, while electronic structure cal-

culations within spin-polarized density functional theory (DFT) predict a ferromagnetic

ground state, has drawn attention to the material: independently of the band-structure

code, DFT orbital basis set and exchange correlation potential, a ferromagnetic ground

state with a magnetic moment at the Fe site of about 0.7µB is found [58–62]. Even

37
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though the energy difference between the ferromagnetic and the nonmagnetic state is

rather small, the ferromagnetic state is stable over a wide volume range. In fact, only a

reduction of the lattice constant by more than 10% would suppress ferromagnetism [63].

This high stability of the ferromagnetic phase in FeAl suggests that the deviation from

experiment is not just a numerical inaccuracy, but requires a deeper understanding.

Different approaches have been used hitherto to explain the deviation between spin-

polarized DFT and experiment. One explanation is based on the fact that the processes

used to prepare FeAl often ”freeze in” chemical disorder. That is, ”real” FeAl is usually

not fully ordered due to various lattice defects, such as vacancies and antisites, which in

turn could have a significant effect on the magnetic properties of the material. Against

this background, there exist several studies concerning the effects of disorder on the

magnetic properties of FeAl [60, 62, 64, 65]. For example, in Ref. [64] the disorder is

included via the coherent potential approximation (CPA) [66] in the Korringa, Kohn

and Rostoker (KKR) framework [67, 68], with the paramagnetic phase described by the

disordered local moment approximation (DLM) [69]. In agreement with previous DFT

calculations, it has been found that ideal FeAl is ferromagnetic. However, even with a

small degree of disorder the paramagnetic state, without net magnetization but nonzero

local moments, becomes the stable configuration. Thus, disorder destroys the long-range

ferromagnetic order in DFT.

However, no ferromagnetism has ever been observed for stoichiometric “real” FeAl, even

for samples with very low defect concentration. Therefore, it still remains the question

if perfectly ordered FeAl would really be ferromagnetic as predicted by DFT. Indeed,

Mössbauer experiments [58] find magnetic moments only for Fe antistructure atoms

(which means Fe atoms sitting on an Al lattice site) and their eight Fe neighbors.

Another possible explanation has been given in Ref. [63] using the DFT+U approach [45].

Usually, one would expect DFT+U to yield larger magnetic moments and a stronger

tendency towards ferromagnetism than DFT. For U values ranging from 4 to 5 eV a

nonmagnetic state however coexists with the ferromagnetic one in DFT+U . The fer-

romagnetic state even disappears for a rather large U “ 5 eV, which offers another

explanation of the non-magnetic nature of FeAl. This rather unusual DFT+U result

can be explained by the changes in the density of states (DOS): increasing U reduces

the DOS at the Fermi level so that according to the Stoner criterion there is no ferro-

magnetism [63] even though the effective exchange is increased by U [70]. Hence, in a

narrow range of U , there is no ferromagnetism in DFT+U [63].

In Ref. [70] it has been argued that this DFT+U result has to be taken with a grain of salt

and it has been proposed for the first time that dynamical spin fluctuations suppress

ferromagnetism in FeAl. This has been supported by a dynamical mean-field theory
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Figure 2.1: Electronic band-structure (left) and density of states (right) of FeAl
within DFT. The color coding indicates the band character obtained from the Wannier

projection.

(DMFT [5, 6]) calculation [70]. For U “ 2 eV, FeAl is found [70] to be paramagnetic in

DFT+DMFT [38, 71–73]. However, Ref. [70] only shows a single DFT+DMFT result,

the spectral function. The proposed spin fluctuations, the magnetic properties and

susceptibility have not been calculated.

Considering these limited results as well as the improvements of DFT+DMFT in recent

years, a more thorough analysis is in order. Beyond the first DFT+DMFT spectrum

of Ref. [70], we study the local and bulk magnetic susceptibility, the magnetic moment

and the k-resolved spectrum. We also explicitly calculate the local interactions ab initio

by constrained random phase approximation (cRPA) and beyond Ref. [70] we include

the calculated Hund’s exchange in DMFT with its full SUp2q symmetry, since it plays

a pivotal role for the magnetic properties. Our results show that while there is a local

moment of even 1.6µB on short time scales, it is screened (suppressed) on longer time

scales. This suppression of the local moment occurs on the fs time scale (eV´1) and

explains why there is eventually no long-range ferromagnetic order.

2.2 Electronic structure within DFT

As a first step, we employ the Vienna ab initio Simulation Package (VASP) [16] with

GGA-PBE functional [10] for calculating the band-structure and density of states of

FeAl. The left panel of Fig. 2.1 shows the band-structure of FeAl around the Fermi

level. The bands closest to the Fermi level have mainly Fe 3d character and are split

into t2g and eg due to the cubic crystal field. For these bands we will later include

electronic correlations by DMFT. However, since the Fe 3d bands strongly hybridize

with the Al 3s and 3p states, we also include these Al bands (as non-interacting) in our

low energy Hamiltonian. The corresponding Hamiltonian is obtained by a projection
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onto nine maximally localized Wannier orbitals [50], which reproduce the DFT band-

structure well.

The right panel of Fig. 2.1 shows the orbital resolved density of states. It can be seen that

the central peak is mainly of t2g character. As the Fe t2g orbitals form only weak bonds

with the nearest-neighbor Al atoms, they have a rather small energy dispersion. The Fe

eg states instead point towards the neighboring Fe atoms and hybridize more strongly.

Hence they have a larger bandwidth and split into a bonding- and an antibonding-like

part.

2.3 DMFT self-energy and spectral function

After obtaining the low energy Hamiltonian in the basis of Wannier functions, we perform

DMFT calculations including the five Fe d orbitals and the 4 Al sp3 orbitals within a so-

called dp model [74]. We supplement the DFT-based Wannier Hamiltonian in DMFT by

a local d-d Kanamori interaction, but disregard d-p and p-p interactions beyond what is

already contained in DFT. Note that the hopping terms of the Hamiltonian still contain

the full information about the hybridization with the Al sp3 states and charge transfer

between d and sp3 orbitals is allowed.

We calculate the screened many-body Coulomb interactions U , U 1 and J by the con-

strained random phase approximation (cRPA) [32, 33], where we exclude only the Fe

d states from the screening. This is appropriate as interactions are also applied only

to these d states [75]. For our DMFT calculation, we use the average values for the

intra-orbital Coulomb interaction U “ 3.36 eV, the inter-orbital Coulomb interaction

U 1 “ 2.36 eV and the Hund’s coupling J “ 0.71 eV. This yields a local, SUp2q-symmetric

Kanamori interaction [27, 76]:

Ĥloc “ U
ÿ

m

pnmÒpnmÓ `
ÿ

m‰m1,σσ1

pU 1 ´ δσσ1Jqpnmσpnm1σ1

` J
ÿ

m‰m1

´

pc:mÒpc
:

m1ÓpcmÓpcm1Ò ` pc:mÒpc
:

mÓpcm1Ópcm1Ò ` h.c.
¯

. (2.1)

Here, pc:mσ (pcmσ) creates (annihilates) an electron with spin σ in the Fe 3d orbital

m; pnmσ “ pc:mσpcmσ. We employ the double counting correction of the fully localized

limit [43], and validate that a difference of 2.5 eV in the double counting does not change

our findings (not shown).

For the solution of the DMFT impurity problem we use a continuous-time quantum

Monte Carlo (CT-QMC) algorithm in its hybridization expansion (CT-HYB) in the
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Figure 2.2: DMFT self-energies for the Fe d orbitals (at inverse temperature β “
30 eV´1 corresponding to 390 K). The extracted quasiparticle weight is Z “ 0.75 .

version of Ref. [42], for a review see Ref. [41]. Especially with regard to the magnetic

properties that we will compute, it is important to employ the rotationally invariant

form of the interaction term Hloc above, including a pair-hopping and a spin-flip term,

and not only density-density contributions. As for the CT-HYB, we note that it is

essential to truncate the outer states for the evaluation of the local fermionic trace only

at high energies, especially at high temperatures.

Fig. 2.2 shows the imaginary part of the DMFT self-energy Σpiνq on the Matsubara

axis for all five Fe d orbitals. In order to avoid all uncertainties related to an analytical

continuation, we calculate the quasiparticle weight Z directly from the self-energy on

the Matsubara axis Z “ 1{p1´=pBΣpiνq{Bpiνqq|iνÑ0q. This yields a value of Z “ 0.75 ,

essentially the same for all 3d orbitals. This Z value would indicate a rather weakly

correlated material.

The corresponding spectral function Apω,kq “ ´1{π=pGpω,kqq is shown in Fig. 2.3 on

the real frequency axis, for which an analytic continuation using a stochastic version

of the maximum entropy method has been used [54]. In comparison to the DFT DOS,

both occupied and empty states are slightly shifted towards the Fermi energy due to

the Fermi-liquid renormalization. There is no evidence of pronounced upper and lower

Hubbard bands and one can only observe a weak increase of the spectral weight at

high frequencies. In agreement with Ref. [70], we find that the spectral function at the

Fermi level is essentially the same in DFT+DMFT as in DFT. We did not perform

charge-self-consistent calculations since the difference in the occupation of the d-orbitals

between the DFT-derived Hamiltonian and DMFT is very small. In DFT, we have 4.8

electrons in the t2g and 2.5 electrons in the eg states out of 11 electrons per unit cell, in

DMFT the t2g orbitals are occupied with 4.8 and the eg orbitals with 2.6 electrons. Also

the changes in the one-particle spectrum are rather small. Note, only if DMFT alters
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Figure 2.3: DMFT k-resolved (left) and k-integrated (right) spectral function at
β “ 30 eV´1, compared to DFT.

the spatial charge distribution ρprq considerably, charge self-consistency would have an

effect. Thus, we expect changes by charge-self-consistency to be small.

Fig. 2.3 presents the corresponding k-resolved spectrum which shows that also the

DFT+DMFT bands essentially follow the DFT band-structure. The most noteworthy

effects are again a slight shift towards the Fermi level, i.e., a quasiparticle renormaliza-

tion and a broadening of the bands, especially of the d bands located around the Fermi

level. Hence, regarding only single-particle quantities, FeAl seems to exhibit only weak

correlation effects. However, this picture changes when considering also two-particle

quantities, namely the magnetic susceptibility.

2.4 DMFT magnetic properties

In order to study the magnetic properties of FeAl within DFT+DMFT, we compute

the local magnetic susceptibility, represented by the two-particle spin-spin correlation

function

χlocpτq “
ÿ

mn

χmnloc pτq “ g2
ÿ

mn

〈
pSmz pτq

pSnz p0q
〉

(2.2)

with m and n being the orbital indices of the five Fe d orbitals, τ the imaginary time,

and g « 2 the gyromagnetic factor for the electronic spin. pSmz pτq “ 1{2ppnmÒpτq ´

pnmÓpτqq is the z-component of the spin operator of orbital m, expressed in terms of the

corresponding density operators pnmσ “ pc:mσpcmσ.

Technically speaking, χlocpτq is obtained by first measuring the generalized magnetic

susceptibility χlocpiω, iν, iν
1q of the converged DMFT impurity model by means of CT-

HYB quantum Monte Carlo sampling. Thereby, χlocpiω, iν, iν
1q automatically con-

tains all vertex corrections to the bare (DMFT) bubble spin susceptibility. The sum
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over the fermionic Matsubara frequencies ν and ν 1 and a Fourier transform, χlocpτq “

1{β
ř

iω e
´iωτχpiωq, finally lead to χlocpτq. Here, for the large frequency asymptotics,

the bare bubble contribution, Eq. (2.3), which is known on a larger frequency grid and

an additional fitting function of the form 1{ν2 have been used. The results for χlocpτq

are shown in Fig. 2.4 for β “ 30 eV´1 (for lower temperatures the numerically feasible

frequency box becomes too small).

The solid, blue curve in Fig. 2.4 corresponds to the total magnetic susceptibility χlocpτq of

Eq. (2.2). The dashed, orange curve instead represents the orbital-diagonal contribution
ř

m χ
mm
loc pτq. The dotted, purple curve is the bare-bubble contribution χ0,locpτq, which

neglects vertex corrections and is obtained by directly convoluting the DMFT Green

functions Gmpiνq:

χ0,locpiωq “ ´
1

β

ÿ

iν,mσ

GmσpiνqGmσpiν ` iωq (2.3)

The significant difference between the bare-bubble contribution and the susceptibility

including vertex corrections in Fig. 2.4 reveals that electronic correlations actually play

a major role in FeAl, more than it could be expected from the weak quasiparticle renor-

malization. Fig. 2.4 also shows that the enhancement of χlocpτq stems approximately

in equal parts from an enhancement of the intra-orbital contribution (diagonal part)

and additional inter-orbital (off-diagonal) contributions, which are not present in the

bare-bubble susceptibility.

The local susceptibilities in Fig. 2.4 show a rather fast and strong decay in τ . Here, the

value of χlocpτq at τ “ 0 can be interpreted in terms of the instantaneous, local magnetic

moment. The observed decay in τ reflects a dynamical screening of this local magnetic
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moment due to quantum fluctuations. Thus, we can conclude that dynamical quantum

fluctuations significantly reduce the local magnetic moment in FeAl.

Fitting χlocpτq to an exponential between τ “ 0 eV´1 and τ “ 5 eV´1 yields a time

scale for the screening of τs “ 1.03 eV´1 “ 4.02 fs. The inverse of τs is the energy

scale associated with the screening which is essentially the bare bandwidth if we have

a noninteracting system, the width of the central peak if we consider the interacting

bubble, and the Kondo temperature for the interacting system with vertex corrections.

This Kondo temperature is smaller than the width of the central peak [77]. Hence the

decay with vertex corrections should be slower. Indeed, in Fig. 2.4 the total χlocpτq

decays slower than the bubble contribution. For a related analysis, how to interpret the

susceptibility as a function of imaginary time and how the local, fluctuating magnetic

moment reflects as a pronounced low-energy peak in the local neutron spectra, see

Refs. [78–80].

In the inset of Fig. 2.4, we separate the eg and t2g contributions of the susceptibility.

These two contributions are rather independent as one clearly sees from the longer time

scale on which the t2g susceptibility decays. This different decay rate can be explained by

the considerably more narrow t2g bandwidth and hence stronger correlations of the t2g

orbitals. If Hund’s exchange was the major player, on the other hand, one would expect

a stronger coupling of eg and t2g susceptibility, and a decay on a similar time scale.
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Figure 2.5: DFT+DMFT magnetization
for different temperatures. The ferromag-
netic moment is zero within the error bars.

This all suggests that the Hund’s rule ex-

change J , which mainly drives the inter-orbital

contribution, is not exceedingly important in

FeAl. This is in contrast to other Fe-based

compounds such as the iron-based supercon-

ductor LaFeAsO [75, 78], which have been

classified as Hund’s metals [76, 81].

From the local magnetic properties, we now

turn to the bulk magnetic susceptibility and

the long-range ordered ferromagnetic moment.

Fig. 2.5 shows the ordered magnetic moment,

which has been obtained by breaking the spin

symmetry in the first DMFT iteration so that the system can either stabilize a para-

or ferromagnetic solution. As Fig. 2.5 clearly shows, the ordered ferromagnetic moment

is zero down to a temperature of 100 K. Thus, in the investigated temperature range,

FeAl is paramagnetic in DFT+DMFT, in agreement with experiment but in contrast to

DFT.
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This result is also supported by the calculation of the bulk ferromagnetic susceptibility

in DFT+DMFT. To this end, we have applied a small magnetic field of H “ 0.005 eV,

checked (for some temperatures) that this is still in the linear M vs. H regime (which fur-

ther confirms the paramagnetic phase) and calculated χpq “ 0q “M{H at this H. This

way all vertex corrections are included; and this quantity allows to determine whether

there is a second order phase transition towards a ferromagnetic phase or not. Prospec-

tively competing phases with a different wave vector q are however not accessible this

way.
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Figure 2.6: Susceptibility χ0piω “ 0,qq
vs. qx and qy (at qz “ 0) calculated from
the DMFT d-electron Green functions at
β “ 100 eV´1. The maximum at q “ 0 in-
dicates that without vertex corrections fer-

romagnetism is the leading instability.

The full q-dependent susceptibility χpiω,qq

could in principle be obtained by solving the

Bethe-Salpeter equation. Unfortunately, this

is computationally too demanding for five or-

bitals at low temperatures. For the same

reason the local susceptibility χlocpτq could

only be calculated reliably down to β “

30 eV´1. But to gain at least some insight

whether ferromagnetism or magnetic phases

with other q-vectors prevail, we study the

bare bubble susceptibility χ0piω “ 0,qq “

´ 1
β

1
Nk

ř

iν,k,m,n,σ Gmnσpiν,kqGnmσpiν,k ` qq,

which does not include vertex corrections. The

result shown in Fig. 2.6 indicates that q “ 0 is

the leading instability.1 Thus, in the following

we will focus on χpq “ 0q.

The temperature dependence of the susceptibility χpq “ 0q “ M{H including vertex

corrections is shown in Fig. 2.7. Upon decreasing temperature, we first notice an increase

of the susceptibility. However, below 400K, the susceptibility decreases again. This clear

trend of a reduction of the susceptibility by decreasing T makes the onset of a ferro-

magnetic order at lower temperatures extremely unlikely. We note that a marked low-T

reduction of χpq “ 0q has been also reported experimentally [84] and theoretically [85]

in the iron-pnictide compound LaFaAsO. There, this behavior of χpq “ 0q coexists with

an opposite (increasing) trend of the local magnetic susceptibility χloc [85]. Hence, the

unusual low-T reduction of χpq “ 0q has been attributed to specific features of the

one-particle spectral function of LaFeAsO, displaying significant temperature variations

near the Fermi level. By performing the same analysis for FeAl we find, however, that

the low-T behavior of χloc (inset of Fig. 2.7) and χpq “ 0q (main panel) is qualitatively

1While the Stoner criterion Iχpq “ 0q ą 1 would predict ferromagnetism for I “ U or I “ J , it is
known that this criterion largely overestimates the tendency towards ferromagnetism [82, 83].
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?
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very similar: both show a visible reduction for T ă 400K. In the very same temperature

interval, a slight reduction of the instantaneous local moment (χlocpτ “ 0q, inset) is

also found, which is a typical behavior in the Fermi liquid regime, as described by the

DMFT.

Hence, in FeAl, the role played by emerging low-energy structures of the spectral function

appears to be less important than in LaFeAsO. Rather, the trend of χpq “ 0q in FeAl may

simply reflect the corresponding low-T reduction of the local magnetic moment (9
?
χloc),

in particular of the screened one. The latter can be ascribed to the enhanced metallic

coherence of the low-temperature region, which is a general effect of local correlations

in the Fermi-liquid regime.



Chapter 3

Beyond DMFT: the dynamical

vertex approximation (DΓA)

This chapter provides an introduction to the dynamical vertex approximation (DΓA), a

diagrammatic extension of DMFT. After a general overview of extensions of DMFT,

I will discuss the basic ideas of DΓA, which has become a successful approach to non-

local electronic correlations over the last years. Starting from the two-particle Green’s

function and the diagrammatic content of DΓA, I will introduce both, its full parquet

version and ladder approximation together with the most important equations. However,

before presenting all the detailed equations of the newly developed AbinitioDΓA in the

next chapter, this chapter should only give a schematic overview of DΓA without going

too much into details.

3.1 Extensions of DMFT

The dynamical mean-field theory (DMFT) is without any doubt a very powerful method

to study strongly correlated electron systems. By combining density functional theory

and dynamical mean-field theory in the DFT+DMFT approach, it is possible to inves-

tigate the physical properties of materials with strong electronic correlations. In fact,

within DFT+DMFT physical observables like the spectral function, magnetic suscepti-

bility, optical conductivity or thermoelectric response of materials with up to or even

more than five orbitals in the correlated subspace can be computed. These physical

quantities can then be compared directly to experimental findings and often the agree-

ment is already quantitative. Nevertheless, as DMFT remains a mean-field theory in

47
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the spatial coordinates, it does not capture any non-local electronic correlations.1 In

DMFT the effect of electrons at different lattice sites on the electrons on one specific

lattice site is considered only through a mean-field. However, in contrast to classical

mean-field theories, DMFT avoids taking a time average, so it can account for all local,

temporal electronic correlations.

The DMFT approach of considering neighboring lattice sites through a mean-field is

exact in infinite dimensions and usually turns out to be a good approximation in 3d.

However, in lower dimensions, e.g. in materials with a 2d or 1d structure or a preferred

direction, a mean-field in space can be a very poor approximation. Superconducting

cuprates with their layered crystal structure or oxide heterostructures are highly dis-

cussed examples for such low-dimensional structures. There, spatial electronic correla-

tions, which cannot be taken into account by DMFT, are expected to play an important

role. The same applies to materials close to a second-order phase transition, e.g. the

transition from para- to ferromagnetism. In the latter case, the correlation length of

the fluctuations corresponding to the emerging ferromagnetic order becomes very large

and diverges at the transition. Thus, close to the phase transition non-local correlations

are expected to play an important role and the purely local DMFT treatment is no

longer satisfying. Furthermore, non-local correlations also arise in materials where the

Coulomb interaction is not well screened. There, a non-local Coulomb interaction be-

yond the Hubbard model needs to be taken into account, leading to additional non-local

electronic correlations among the electrons.

The inclusion of spatial electronic correlations seems to be necessary in order to inves-

tigate many intriguing physical phenomena in condensed matter physics. On the other

hand, DMFT already provides an accurate treatment of all local electronic correlations

within the Hubbard model and one does not want to sacrifice these merits. Thus, the

goal is to build on DMFT and to develop extensions that can add non-local corrections

on top of the local DMFT correlations.

Cluster extensions One possible and rather intuitive way to include spatial electronic

correlations are cluster extensions of DMFT. There, the single DMFT impurity site

is replaced by a cluster of sites. This way, all spatial electronic correlations within

the cluster size are taken into account. There exist two different classes of cluster

extensions, depending on whether they are formulated in real or in momentum space.

In the so-called cellular DMFT (CDMFT) [86] the cluster is defined in real space while

the dynamical cluster approximation (DCA) [87, 88] works with clusters in momentum

1When referring to non-local correlations or a non-local Coulomb interaction, the term non-local
simply means not local and thus with a spatial dependence. However, please note that non-local electronic
correlations can include both, classical correlations and quantum entanglement.
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space. Compared to CDMFT, the DCA has the advantage of not breaking the lattice

translational symmetry of the system. CDMFT, on the other hand, is better suited to

treat natural units in anisotropic systems, such as the vanadium dimer in the M1 phase

of VO2 [89].

Figure 3.1: Here, for a DCA study
of the half-filled Hubbard model on
a triangular lattice, the first Brillouin
zone has been divided into four coarse-
grained cells yielding a four-site clus-

ter. (Figure taken from Ref. [90].)

In order to get closer to the real lattice problem it

is the best to have a cluster made of as many sites

as possible. But of course there are numerical lim-

itations regarding the number of cluster sites. For

a single-band Hubbard model clusters with up to

100 sites are feasible [91], while for multi-band ma-

terials’ computations only a few sites are possible.

For SrVO3—the material that we will investigate

with the dynamical vertex approximation—only a

cluster made of two sites has been considered in

a DCA study so far [92]. This means that actual

cluster DMFT computations can account only for

short-range spatial electronic correlations. While

short-range fluctuations within the cluster size are treated very accurately, cluster DMFT

studies need to completely neglect spatial long-range electronic correlations or have ac-

cess to them only when reasonable cluster sizes are reached and extrapolations with

respect to the cluster size can be performed. Certainly, close to a second-order phase

transition, electronic correlations on all length scales should be considered.

Diagrammatic extensions Long-range electronic correlations can be taken into ac-

count by diagrammatic extensions of DMFT. The latter do not enlarge the DMFT

impurity problem by adding additional impurity sites, but instead are adding additional

non-local Feynman diagrams to the local DMFT self-energy. Since the diagrammatic

content of DMFT is well known—the DMFT self-energy contains all local irreducible

one-particle Feynman diagrams—non-local Feynman diagrams can systematically be

added. There exist different methods of diagrammatic extensions, among them the

GW+DMFT approach [46, 47], the dynamical vertex approximation (DΓA) [7], the dual

fermion (DF) [93], the one-particle irreducible approach (1PI) [94], the Trilex [95] and

the Quadrilex [96] method. While the GW+DMFT approach directly supplements the

local DMFT self-energy with the non-local screened exchange diagram of GW , all other

methods are based on the local two-particle vertex function, which can be obtained from

the DMFT impurity model. The differences between the diagrammatic extensions based

on the two-particle vertex function lay in the details: the considered vertex function (e.g.

DΓA employs the fully irreducible, while the 1PI approach the one-particle irreducible
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vertex), the involved one-particle Green’s function (e.g. DΓA uses the DMFT lattice

Green’s function, while the DF approach the completely non-local Green’s function) and

the kind of the constructed non-local diagrams.

A detailed comparison of the different diagrammatic extensions and their merits can

be found in Ref. [97]. In the following, I will instead focus on the dynamical vertex

approximation (DΓA). The latter has already been successfully used for studying model

systems such as the one-band Hubbard model. Among these DΓA studies, there are the

investigation of the Mott metal-insulator transition in the 2d Hubbard model [9, 98, 99],

a study of the critical exponents in the 3d Hubbard model and the breakdown of the

paramagnetic Fermi-liquid regime at low temperatures due to spin fluctuations [8, 100],

and the investigation of a possible separation of the DΓA self-energy into spatial and

dynamical components [101, 102]. Here, in this thesis, the DΓA approach will be gen-

eralized to multi-orbital systems and a non-local Coulomb interaction, so that realistic

materials’ computations become feasible. This newly developed AbinitioDΓA method

and its implementation will be presented in detail in Chap. 4. Before, however, I will

give a brief and schematic introduction to the DΓA formalism following the discussion

in Ref. [103].

3.2 An introduction to DΓA

The dynamical vertex approximation (DΓA) [7] is a diagrammatic extension of DMFT

whose aim is to add non-local corrections to the local DMFT self-energy. The additional

non-local Feynman diagrams are obtained from the two-particle Green’s function and

its corresponding vertex function. Thus, I will first introduce the two-particle Green’s

function and other important ingredients for the DΓA. Then, the basic ideas of the DΓA

in its parquet and ladder version will be presented.

3.2.1 The two-particle Green’s function

In analogy to the one-particle Green’s function—which is the propagator of a single

particle and the main building block of DMFT—, the two-particle Green’s function de-

scribes the propagation and interaction of two particles (or a particle and a hole). Similar

to the one-particle Green’s function which has already been introduced in Eq. (1.36),
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Figure 3.2: Diagrammatic representation of the two-particle Green’s function:
Gp2qpiω, iν, iν1q consists of two disconnected, non-interacting terms and one connected,
interacting term including the full vertex function F . As indicated, the connected
term and the disconnected bubble term χ0piω, iνq form the generalized susceptibility

χpiω, iν, iν1q.

the two-particle Green’s function is defined as2

Gp2qσ1σ2σ3σ4pτ1, τ2, τ3, τ4q “
@

T
“

pcσ1pτ1qpc
:
σ2pτ2qpcσ3pτ3qpc

:
σ4pτ4q

‰D

. (3.1)

Thus, it describes two particles being inserted in the system at (imaginary) times τ2 and

τ4, propagating in the system and then being extracted again at τ1 and τ3 respectively

(σi are spin indices). Taking into account time translational invariance, we can set τ4 “ 0

yielding a two-particle Green’s function depending on three times only. Then, a Fourier

transformation of Eq. (3.1) gives a two-particle Green’s function G
p2q
σ1σ2σ3σ4piω, iν, iν

1q

depending on three frequencies; two fermionic Matsubara frequencies, iν “ ip2n`1qπ
β

and iν 1, and one bosonic Matsubara frequency iω “ i2nπ
β . Furthermore, the fact that,

in absence of spin-orbit interaction, the spin needs to be conserved, restricts the spin

degrees of freedom and allows for the following combinations with two different spins

only:

G
p2q
σσ1piω, iν, iν

1q “ G
p2q
σσσ1σ1piω, iν, iν

1q, (3.2)

G
p2q

σσ1
piω, iν, iν 1q “ G

p2q
σσ1σ1σpiω, iν, iν

1q. (3.3)

In terms of Feynman diagrams the two-particle Green’s function can be represented

as shown in Fig. 3.2. It consists of two disconnected contributions—representing the

independent propagation of the particles—and a connected part that stems from the

interaction among the particles. The disconnected parts are simply pairs of one-particle

Green’s functions and can be written as GpiνqGpiν 1q and GpiνqGpiν ´ iωq respectively.

The latter is the so-called bubble term χ0piω, iνq “ GpiνqGpiν ´ iωq. The connected

part instead takes into account all possible interactions among the two particles, the

so-called vertex corrections. In fact, the quantity F is the full vertex function and it

2Here, for simplicity, we restrict ourselves to the local, single-orbital two-particle Green’s function
(without any k-dependence or orbital indices). For a detailed multi-orbital definition within AbinitioDΓA
please refer to Eq. (4.2).
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consists of all connected two-particle diagrams. Thus, from a physical point of view, F

can be seen as the scattering amplitude between two particles.

Usually one does not directly work with the two-particle Green’s function, but rather

with the generalized susceptibility χpiω, iν, iν 1q.3 In order to obtain the latter, the dis-

connected term with GpiνqGpiν 1q—the first one in Fig. 3.2—needs to be subtracted from

the two-particle Green’s function. Indeed, the generalized susceptibility is formed by

the last two contributions in Fig. 3.2, namely the disconnected bubble term χ0piω, iνq “

GpiνqGpiν´ iωq and the connected part including the full vertex F . This diagrammatic

relation can be easily translated into an equation4

χ “ χ0 ` χ0Fχ0, (3.4)

with χ0 being the non-interacting (bubble) and χ the full susceptibility. Thus, if the

susceptibilities χ and χ0 are known, the full vertex function F can be obtained from

Eq. (3.4).

3.2.2 The basic idea of DΓA

Since DΓA is a diagrammatic extension of DMFT, it builds on DMFT which accounts

already very accurately for all local electronic correlations. In fact, the DMFT self-

energy Σloc contains all local, irreducible, skeleton one-particle Feynman diagrams.

In DΓA the assumption of locality is raised one level higher: the fully irreducible two-

particle vertex function Λ is assumed to be purely local.5 Hence, Λloc contains all

local, fully irreducible two-particle diagrams. The two diagrams explicitly shown in the

diagrammatic series for Λloc in Fig. 3.4 are two of these fully irreducible two-particle dia-

grams and represent two possible ways of interaction among the two particles. Note that

the first diagram—the lowest-order contribution to Λloc—is simply the local Coulomb

interaction U . Thus, in analogy to the local Coulomb interaction U in DMFT, the fully

irreducible vertex function Λloc represents the interaction part in DΓA.

The local, fully irreducible vertex function Λloc is one main building block of DΓA.

The second necessary ingredient is the lattice DMFT Green’s function GDMFTpiν,kq “

1{riν ` µ ´ εk ´ ΣDMFTpiνqs. With these two building blocks—the ”interaction” Λloc

3Physical susceptibilities, which depend just on one frequency argument, can be obtained
from this generalized susceptibility via a summation over the two fermionic frequencies, χpiωq “
1{β2 ř

iν,iν1 χpiω, iν, iν
1
q.

4For clarity, in this introductory chapter all equations are written in a schematic way, in particular
all spin and frequency arguments are omitted. For detailed equations see Chap. 4 about AbinitioDΓA.

5Full irreducibility at the two-particle level means that a two-particle diagram cannot be split into
two parts by cutting two internal fermionc lines.
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Figure 3.3: In DMFT, the self-energy Σloc is a purely local quantity containing all
local, irreducible one-particle Feynman diagrams. Dots represent the local Hubbard
interaction U and i is a lattice site index. Please also note that the double lines are

dressed Green’s functions, so they already contain DMFT self-energy inclusions.

Figure 3.4: In DΓA the fully irreducible two-particle vertex Λloc is purely local. It
consists of the bare interaction U and all fully irreducible two-particle diagrams of which

the first (envelope) diagram is shown.

and the propagator GDMFT—a huge variety of diagrams can be constructed. These

diagrams form the non-local reducible vertex function F , which in turn leads—through

the equation of motion—to the non-local (k-dependent) DΓA self-energy ΣDΓApiν,kq.
6

According to the type of diagrams included in F , two different DΓA schemes are distin-

guished. The so-called ladder-DΓA considers only ladder diagrams in a specific channel,

which—roughly speaking—means that vertex functions (irreducible in the specific chan-

nel) are lined up in a row or column and connected by DMFT propagators. Considering

only ladder diagrams in a specific channel can be well justified if it is clear in which

channel the leading instabilities are expected to be. The full parquet version of the DΓA

instead takes into account also more complicated ”parquet-like” diagrams, which basi-

cally means ladder diagrams in multiple channels that are intertwined self-consistently

with each other. Needless to say, the parquet version of the DΓA is more complete

than the ladder scheme—it contains ladder diagrams in all channels and additional non-

ladder-type diagrams—, but is also much more demanding to realize. Thus, for realistic

multi-orbital computations, we restrict ourselves to the ladder version of the DΓA. Nev-

ertheless, for completeness and clarity, I will first introduce the full parquet version of

the DΓA before switching to the ladder approximation which is eventually employed in

the ab initio DΓA scheme.

6By considering higher-order n-particle vertex functions, DΓA would for nÑ8 eventually yield the
exact solution of the lattice problem. But the computation of three- and more-particle vertex functions
is numerically extremely demanding. Thus, at the moment DΓA does not take into account any higher-
order vertex function than n=2.
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Figure 3.5: Two diagrams contributing to the full vertex Fijkl in the parquet version of
DΓA. The non-local Fijkl is obtained by connecting local, fully irreducible vertices Λiiii
(obtained from an auxiliary impurity model) with non-local DMFT Green’s functions

Gij . (The indices i, j, k, l denote lattice sites.)

3.2.3 Full parquet version

The diagrams contributing to the full non-local vertex function Fijkl are constructed by

connecting the local, fully irreducible vertex function Λiiii with non-local DMFT Green’s

functions, i.e. Gpiν,kq “ 1{riν ` µ ´ εk ´ ΣDMFTpiνqs. Thus, the non-locality of the

full vertex function Fijkl—represented by the four different site indices—can in principle

be traced back to the non-local DMFT Green’s functions used in the construction of

the parquet- or ladder diagrams. The fully irreducible vertex Λiiii instead is purely

local and can be obtained from an auxiliary Anderson impurity model. Fig. 3.5 shows

two exemplary diagrams that contribute to Fijkl if the full parquet version of DΓA is

employed.

Parquet decomposition The diagrams contributing to the reducible vertex function

Fijkl can systematically be divided into four categories according to their reducibility.

In analogy to the definition of one-particle-irreducibility, full irreducibility at the two-

particle level means that a diagram cannot be split into two parts by cutting two internal

fermionic lines. All fully irreducible two-particle diagrams are contained in the fully ir-

reducible vertex function Λ, which we have already identified as one of the main building

blocks of DΓA. All other diagrams present in F are reducible diagrams, but they can

be further divided into three categories since at the two-particle level there exist three

possibilities (called channels) to cut a diagram into two pieces. Thus, a diagram can

be reducible in the particle-particle (pp) channel, the particle-hole (ph) channel or the

transverse particle-hole (phq channel. A diagram is always either fully irreducible or

reducible in one channel. Thus, F can be written in the form of the so-called parquet

equation

F “ Λ` φpp ` φph ` φph , (3.5)
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Figure 3.6: Diagrammatic illustration of the parquet equation. For each contribution
(fully irreducible, reducible in pp, ph or ph channel) a low-order diagram is shown.

(Figure reproduced from Ref. [104].)

where Λ represents the fully irreducible vertex function and φr the reducible vertex

functions in a certain channel r “ ppp, ph, phq. Fig. 3.6 shows lowest-order examples for

each type of diagrams.

Bethe-Salpeter equation Another possibility is to divide the full vertex function F

in reducible and irreducible diagrams in one channel r

F “ Γr ` φr, (3.6)

where Γr is the irreducible vertex in a certain channel r “ ppp, ph, phq and φr the

corresponding reducible vertex. Thus, Γr contains all diagrams which are irreducible

in channel r while φr contains all reducible ones in that channel. Note that irreducible

diagrams in a certain channel can still be reducible in another channel. For instance,

Γph contains all fully irreducible diagrams, but also all diagrams reducible in the pp or

the ph channel: Γph “ Λ` φpp ` φph. Since the reducible diagrams in a certain channel

can be expressed in terms of the corresponding irreducible ones and the full vertex via

φr “ Γrχ0F , we can write F in the form of a Dyson-like equation

F “ Γr ` φr “ Γr ` Γrχ0F , (3.7)

where the bubble term is, in general, the product of two non-local Green’s functions

χ0 “ GG. According to Eq. (3.7), F can be expressed as the sum of all irreducible

diagrams in a specific channel Γr and the reducible diagrams in this channel φr. And

the latter can be obtained by connecting the irreducible diagrams Γr with the full vertex

F via a pair of one-particle Green’s functions χ0 “ GG. Eq. (3.7) is the so-called Bethe-

Salpeter equation which is—besides the parquet equation—another crucial ingredient

for the DΓA.

Before turning to another relation needed in DΓA—the equation of motion—let me

just add a remark on the channel decomposition of F . We have already seen that all
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Figure 3.7: Diagrammatic representation of the equation of motion. The non-local
DΓA self-energy Σij is obtained from the full vertex Fijkl and the DMFT Green’s

functions Gij .

reducible two-particle diagrams can be divided into diagrams reducible in the ph, ph or

pp channel. If we take into account also the spin-dependence, the definition of channels

needs to be extended. By considering SU(2) symmetry, there are three independent spin

combinations Ò, Ö, Ö. Together with the ph, ph and pp channel this would lead to nine

possible combinations. However, by considering further symmetries (e.g. the so-called

crossing symmetry), it turns out that there are only four independent channels, which

are usually defined in the following way:

Γνν
1ω

d “ Γνν
1ω

ph,Ò ` Γνν
1ω

ph,Ö, (3.8)

Γνν
1ω

m “ Γνν
1ω

ph,Ò ´ Γνν
1ω

ph,Ö, (3.9)

Γνν
1ω

s “ Γνν
1ω

pp,Ö ´ Γνν
1ω

pp,Ö
, (3.10)

Γνν
1ω

t “ Γνν
1ω

pp,Ö ` Γνν
1ω

pp,Ö
. (3.11)

Defined in this way, the Bethe-Salpeter equations in the so-called (d)ensity, (m)agnetic,

(s)inglet and (t)riplet channel decouple.

Equation of motion Finally, an additional relation—the Schwinger-Dyson equation

of motion—is needed to perform DΓA. The Schwinger-Dyson equation of motion con-

nects the full vertex function F with the self-energy Σ and reads

Σ “
Un

2
` pUχ0F qG. (3.12)

Thus, in DΓA the equation of motion (3.12) is used to obtain the non-local self-energy Σ

from the full, non-local vertex function F through a convolution with non-local DMFT

Green’s functions G. In fact, F is contracted by χ0 “ GG and a third Green’s function

G (for a diagrammatic illustration of the equation of motion see Fig. 3.7).
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Bethe-Salpeter Eq. (3.7)
Parquet Eq. (3.5)

"inverse local Parquet"

Eq. of motion (3.12)

 

Figure 3.8: Flow diagram of the DΓA algorithm in its full parquet version.

Parquet-DΓA flow To conclude this section, a schematic flow diagram of the DΓA

algorithm is depicted in Fig. 3.8. It shows how the relations presented so far are em-

ployed.

In a first step, an auxiliary Anderson impurity model (AIM) is solved by using an ap-

propriate impurity solver, e.g. exact diagonalization (ED) or continuous-time quantum

Monte Carlo (CT-HYB). A converged DMFT solution—and thus the AIM which the

lattice problem is mapped onto in DMFT—is usually a reasonable starting point for

DΓA. However, compared to DMFT, in DΓA not only the one-particle impurity Green’s

function Glocpiνq, but also the two-particle Green’s function or the corresponding gen-

eralized susceptibility χωνν
1

loc need to be computed. Clearly, the computation of χωνν
1

loc

is numerically much more demanding than the computation of Glocpiνq, especially for

multi-orbital systems. In fact, this is one of the bottlenecks of the DΓA algorithm.

In a second step, the fully irreducible vertex of the impurity model Λωνν
1

loc needs to

be extracted from χωνν
1

loc . This procedure is referred to as ”inverse local parquet” in

Fig. 3.8 and is done by first computing the irreducible vertices Γr and the corresponding

reducible ones φr in all channels using the local Bethe-Salpeter equation (3.7). Then, the

fully irreducible vertex Λωνν
1

loc can be obtained through the local version of the parquet

equation (3.5).



58 CHAPTER 3. Beyond DMFT: the dynamical vertex approximation (DΓA)

Figure 3.9: In ladder-DΓA, the full non-local vertex F consists of ladder diagrams
in a specific channel r. The ladder diagrams are formed by local, irreducible vertex

functions Γr,loc connected with non-local DMFT Green’s funtions Gij .

In the next step, the full non-local vertex of the lattice Fωνν
1

qkk1 needs to be computed

from Λωνν
1

loc and the non-interacting lattice Green’s function G0piν,kq “ 1{riν ` µ´ εks.

Thereby, Λωνν
1

loc is assumed to be the fully irreducible vertex of the lattice. Fωνν
1

qkk1 can

be obtained by employing the parquet (3.5) and the Bethe-Salpeter equations (3.7) in

all channels. From Fωνν
1

qkk1 the k-dependent self-energy Σpiν,kq can then directly be

calculated via the equation of motion (3.12). The way of obtaining Fωνν
1

qkk1 and Σpiν,kq

from Λωνν
1

loc and G0piν,kq is an iterative procedure itself.7 Beside the computation of

χωνν
1

loc , it is the second numerical bottleneck of the DΓA algorithm.

Once Σpiν,kq and the corresponding Gpiν,kq are obtained, we can, in principle, recom-

pute the local Green’s function Gnew
loc piνq “

ř

kGpiν,kq, which in turn defines a new

AIM. Thus, the self-consistent loop starts again from the beginning and is iterated till

convergence of Σpiν,kq is reached.

This full, self-consistent DΓA scheme is numerically extremely demanding. Especially

for realistic multi-orbital systems it is currently not feasible. Thus, usually one employs

a simplified version of DΓA, the so-called ladder-DΓA approximation which is discussed

in the next section.

3.2.4 Ladder approximation

In the ladder approximation of DΓA, only a certain type of non-local diagrams is consid-

ered. In fact, in ladder-DΓA the full non-local vertex F contains only ladder diagrams

in a specific channel. These ladder diagrams are obtained by aligning local irreducible

vertex functions Γr,loc in the channel r under consideration and connecting them with

non-local one-particle DMFT Green’s functions Gij . Thereby, the local irreducible ver-

tex function Γr,loc is obtained from the DMFT impurity model and the ladder diagrams

7In a self-consistent loop G, F and Γr are first initialized with reasonable values (e.g. the non-
interacting lattice Green’s function G0 and the local Hubbard U). Then, the reducible vertices φr can
be obtained by means of φr “ Γrχ0F . Through the parquet equation (3.5) these φr define a new
F new. With this F new, new Γnew

r are defined through Γnew
r “ F new

´ φr and a new lattice self-energy
Σnew can be computed via the equation of motion (3.12). Through the Dyson equation a new Gnew

can be obtained. Then the self-consistent-loop starts again and is iterated till convergence of Σ/G is
reached [105].
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are constructed through the Bethe-Salpeter equation (3.7) which has already been in-

troduced and is discussed in more detail here.

The Bethe-Salpeter equation actually describes a summation of ladder diagrams. By

translating Fig. 3.9 into an equation, one ends up with

F “Γr,loc ` Γr,locχ0Γr,loc ` Γr,locχ0Γr,locχ0Γr,loc ` ...

“Γr,loc ` Γr,locχ0

´

Γr,loc ` Γr,locχ0Γr,loc ` ...
¯

“Γr,loc ` Γr,locχ0F, (3.13)

which is exactly the Bethe-Salpeter equation that has already been introduced in Eq. (3.7).

The only difference is that here Γr has been replaced by the local Γr,loc, that can be

obtained from the DMFT impurity model. Please also note that in the ladder approxi-

mation the full vertex F in Fig. 3.9 includes only scattering processes of a particle and a

hole from one common lattice site i to another common lattice j, since Γr,loc is a purely

local quantity. In Fourier space, this means that F depends only on the transferred

momentum q and not on the momenta of the incoming particle and hole k and k1.

In the present ladder-DΓA scheme, we solve the Bethe-Salpeter equation in the r “

ph channel. However, in addition also non-local ladders in the ph channel are taken

into account. The ph-ladders can be obtained from the ph-ladders through symmetry

considerations. However, all diagrams in the pp channel are assumed to be purely

local. This means that, compared to the full parquet version of DΓA, not only the fully

irreducible vertex Λ, but also φpp is assumed to be local

Flad “ Λloc ` φpp,loc ` φph ` φph . (3.14)

Assuming all diagrams in the pp channel to be purely local, can be justified if the

leading instabilities in the system under investigation are not connected to this chan-

nel. The non-local ordering instabilities in the ph and ph channel are associated with

(anti)ferromagnetism, magnons or charge density waves, while the non-local pp ladder

can describe attractive pairing (e.g. superconductivity) and localization effects. If the

latter are not expected to be dominant in the system under consideration, non-local

ladder diagrams in the pp can be neglected. However, since one often does not know the

leading instabilities in a system a priori, it would be better to consider non-local dia-

grams in all channels—as it is done in the full parquet version of DΓA. But, since from

a numerical point of view the full parquet scheme is not (yet) feasible for multi-orbital

systems, the ladder approximation makes it possible to pioneer insight into non-local

correlation phenomena in realistic materials. By keeping in mind which kind of physics

is captured and making sure that at least the contribution of the lowest-order non-local
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Bethe-Salpeter Eq. (3.14)

         inverse Bethe-Salpeter Eq. 

Eq. of motion (3.12)

Figure 3.10: Flow diagram of the ladder-DΓA algorithm.

diagrams, that have been disregarded, is small, the ladder approximation can be a good

approximation to perform DΓA.

Ladder-DΓA flow The ladder-DΓA computations performed so far—including the

ones in this thesis—are ”one-shot” computations starting from a converged DMFT so-

lution. The corresponding flow diagram of the algorithm is depicted in Fig. 3.10 and

briefly described in the following.

In a first step, the DMFT impurity model needs to be solved. This yields the local

DMFT Green’s function Glocpiνq and the generalized susceptibility χωνν
1

loc . In contrast

to the full parquet scheme introduced earlier, it is necessary to start the ladder-DΓA

flow from a converged DMFT solution. In fact, since there is no self-consistent cycle,

the ladder-DΓA scheme starts from a DMFT solution and adds non-local electronic

correlations on top of it.

In the second step, the local irreducible vertex Γωνν
1

r,loc in the ph-channel is extracted from

χωνν
1

loc by inverting the local Bethe-Salpeter equation.

Next, the Bethe-Salpeter equation is used to construct the full non-local vertex function

Fωνν
1

q . This is done exactly in the way it is depicted in Fig. 3.9 and formulated in

Eq. (3.13). Thus, non-local ladder diagrams are constructed from the local Γωνν
1

r,loc and

the k-dependent DMFT Green’s function GDMFTpiν,kq.
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From the full vertex Fωνν
1

q , the ladder-DΓA self-energy Σpiν,kq is then obtained through

the Schwinger-Dyson equation of motion (3.12).

λ-correction The fact that there is no self-consistency in ladder-DΓA is reflected in an

enhanced asymptotic behavior of the lattice self-energy. Thus, in order to restore the 1{iν

asymptotic behavior of the ladder-DΓA self-energy, a correction needs to be introduced.

This correction of the self-energy can be done in the form of a so-called Moriyasque λ-

correction. For details about this correction please refer to Ref. [103]. Here it should just

be mentioned that the λ-correction is done at the level of the physical susceptibilities

χωr,q “ 1{β2
ř

νν1 χ
ωνν1
r,q , since it is always desirable to apply such an effective correction

to a real physical observable. Correcting the physical susceptibilities in a way that

mimics self-consistency at the two particle level (χωr,loc “
ř

q χ
λ,ω
r,q ), turns out to cure the

asymptotic behavior of the ladder-DΓA self-energies. Please note, however, that in this

thesis no λ-correction has been employed since for the AbinitioDΓA study of SrVO3 in

Chap. 5 the corrections turned out to be very small.





Chapter 4

Ab initio dynamical vertex

approximation

In this chapter, the ab initio dynamical vertex approximation (AbinitioDΓA) is presented

in detail. AbinitioDΓA is the extension of DΓA to ab initio materials’ calculations and

represents a unifying framework: it includes both, GW and DMFT-type of diagrams,

but also important non-local correlations beyond, e.g. non-local spin fluctuations. The

development and implementation of this new methodology has been one main part of

this thesis. Thus, in the first part of this chapter, all multi-orbital equations are derived

and the corresponding diagrams are shown. Then, in the second part, I discuss some

implementational details regarding the newly developed AbinitioDΓA program. Finally,

in the end of this chapter, I show the results of some test cases and benchmarks.

4.1 Derivation of the equations

The ab initio dynamical vertex approximation (AbinitioDΓA) is the extension and appli-

cation of the DΓA formalism to realistic multi-orbital systems. It allows us to perform

ab initio materials calculations beyond DFT+DMFT [38] or GW+DMFT [46] by in-

cluding electronic correlations on all length scales. In principle, a fully self-consistent

AbinitioDΓA scheme would be desirable. However, from a numerical point of view,

the DΓA in its full parquet version is currently not feasible for multi-orbital systems.

Thus, the AbinitioDΓA in its current implementation adopts the ladder-DΓA approxi-

mation presented in the previous Chap. 3.2.4. Besides the multi-orbital structure, the

AbinitioDΓA approach includes a non-local Coulomb interaction V q beyond the local

Coulomb interaction U of the Hubbard model. This non-local V q accounts for the spa-

tial dependence of the Coulomb interaction and can be computed ab initio by using

63
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constrained random phase approximation (cRPA) [24, 36]. Together with this non-local

Coulomb interaction, AbinitioDΓA contains all DMFT diagrams, all GW diagrams and

other non-local electronic correlations beyond. In this respect, AbinitioDΓA represents

a unifying framework.

Here, the AbinitioDΓA formalism will be presented step by step starting from the so-

lution of the DMFT impurity model. Then, the inclusion of the non-local Coulomb

interaction and the diagrammatic extension through the Bethe-Salpeter equation will

be explained. Finally, the equation of motion, that gives the k-dependent AbinitioDΓA

self-energy, is discussed. While the previous chapter provided an overview of DΓA and

tried to avoid any details, here the AbinitioDΓA equations will be presented in full

detail, including, in particular, all orbital indices.

4.1.1 Extracting the local irreducible vertex Γloc

The starting point of AbinitioDΓA is a converged DMFT computation for the material

under investigation. Since AbinitioDΓA adopts the ladder approximation of DΓA which

does not include any self-consistency, the DMFT starting point is really important.

Thus, in a first step, a DFT+DMFT study for the material under investigation is per-

formed. This way, the materials’ DFT bandstructure, the low-energy Hamiltonian Hk
W

in the basis of maximally localized Wannier functions, and the local DMFT self-energy

Σpiνq and one-particle Green’s function Gpiνq are obtained. Of course, the DMFT cycle

involves self-consistency over the one-particle quantities (see Sec. 1.6.3). After conver-

gence of Σpiνq and Gpiνq is reached, the two-particle Green’s function Gp2q of the DMFT

impurity model, which is a necessary ingredient for DΓA, is computed. Please note that

the two-particle Green’s function of the impurity model is computed only once, the

DMFT cycle does not involve any self-consistency over two-particle quantities.

Local Green’s functions and symmetries The multi-orbital definitions of the local

one- and two-particle Green’s functions read

Gσ,lmpτq ” ´
A

T
”

pclσpτqpc
:
mσp0q

ıE

, (4.1)

G
p2q
lmm1l1
σ1σ2σ3σ4

pτ1, τ2, τ3q ”

A

T
”

pclσ1pτ1qpc
:
mσ2pτ2qpcm1σ3pτ3qpc

:

l1σ4
p0q

ıE

,

(4.2)

where plmm1l1q are orbital indices and σi denotes spin. Furthermore, τ P r0, βq denotes

imaginary time (with the inverse temperature β) and T is the time ordering operator.

The computation of the multi-orbital two-particle Green’s function in Eq. (4.2) is done
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with a continuous-time quantum Monte Carlo solver in the hybridisation expansion

(CT-HYB) [106, 107]. This step is numerically very demanding, especially if a non-

density-density type of interaction (such as the Kanamori interaction) is employed. In

practice, it is done by extending the CT-HYB with a so-called worm algorithm and

improved estimators [108, 109].

The fact that, in the absence of spin-orbit coupling, the spin is conserved, reduces the

spin degrees of freedom of Gp2q in Eq. (4.2) to the following combinations

G
p2q
σσ1,lmm1l1pτ1, τ2, τ3q ” G

p2q
lmm1l1

σσσ1σ1
pτ1, τ2, τ3q, (4.3)

G
p2q

σσ1,lmm1l1
pτ1, τ2, τ3q ” G

p2q
lmm1l1

σσ1σ1σ

pτ1, τ2, τ3q. (4.4)

If we further restrict ourselves to the paramagnetic case, i.e. exclude magnetic long-range

order, we can make use of the SU(2) symmetry

G
p2q
σσ1 “ G

p2q
p´σqp´σ1q “ G

p2q
σ1σ , (4.5)

Gp2qσσ “ G
p2q
σp´σq `G

p2q

σp´σq
. (4.6)

One particularly useful choice of spin combinations are the (d)ensity and (m)agnetic (m)

channel

G
p2q
d “ Gp2qσσ `G

p2q
σp´σq, (4.7)

Gp2qm “ Gp2qσσ ´G
p2q
σp´σq. (4.8)

By considering SU(2) symmetry (Eqs. (4.5) and (4.6)), the density and magnetic channel

can explicitly be written as

G
p2q
d “

1

2

´

G
p2q
ÒÒ
`G

p2q
ÓÓ
`G

p2q
ÒÓ
`G

p2q
ÓÒ

¯

, (4.9)

Gp2qm “
1

2

´

G
p2q

ÒÓ
`G

p2q

ÓÒ

¯

. (4.10)

In CT-HYB, the two-particle Green’s function is computed in τ -space. Since AbinitioDΓA,

in its actual implementation, is formulated in frequency space, a Fourier transformation

is needed. In the ph-notation, the Fourier transformation with respect to τ is defined as

Gωνν
1

σσ1,lmm1l1“

ż β

0

ż β

0

ż β

0
dτ1dτ2dτ3e

iντ1e´ipν´ωqτ2eipν
1´ωqτ3G

p2q
σσ1,lmm1l1pτ1, τ2, τ3q, (4.11)

where ν and ν 1 denote fermionic and ω bosonic Matsubara frequencies. In the cho-

sen frequency convention, ω corresponds to a longitudinal transfer of energy from one

particle-hole pair (ml) to the other (m1l1). For simplicity, the superscript p2q has been
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Figure 4.1: The crossing symmetries describe the invariance of the two-particle
Green’s function (up to a global minus sign) under an exchange of (a) the two an-
nihilation or (b) creation operators. In (c) both, annihilation and creation operators,
have been exchanged resulting in a full swap of the incoming and outgoing particle
labels. In addition to the frequencies ωνν1, also spin σσ1 (in green) and orbital indices

lmm1l1 (in blue) are shown.

omitted in Gωνν
1

σσ1,lmm1l1 since the three frequency indices ωνν 1 already imply that it is a

two-particle Green’s function.

With respect to the frequencies, the two-particle Green’s function also fulfills the so-

called crossing symmetries

Gωνν
1

σσ1,lmm1l1 “ ´G
pν1´νqpν1´ωqν1

σ1σ,m1mll1
(4.12)

“ ´G
pν´ν1qνpν´ωq

σσ1,ll1m1m
(4.13)

“ G
p´ωqpν1´ωqpν´ωq
σ1σ,m1l1lm , (4.14)

which are a consequence of the Pauli principle for indistinguishable fermions. Exchang-

ing two annihilation [Eq. (4.12)] or creation [Eq. (4.13)] operators in the two-particle

Green’s function results only in an additional minus sign. In the last crossing relation

in Eq. (4.14), both, the creation and the annihilation operators, have been exchanged

resulting in a full swap of the incoming and outgoing particle labels. For clarity, the

crossing relations are also visualized in Fig. 4.1.

Please note that if we replace the frequency indices ωνν 1 with bosonic and fermionic

compound indices qkk1, where q “ pq, ωq, k “ pk, νq and k1 “ pk1, ν1q, we obtain

the non-local Green’s function. All relations presented so far—including the crossing

symmetries in Eqs. (4.12)-(4.14)—can be generalized to the non-local case by this index

replacement. Here, however, I stick to the frequency indices ωνν1 because this section is

devoted to the extraction of Γloc from the local two-particle impurity Green’s function.

The two-particle Green’s function itself can be divided into three contributions: two

disconnected parts and one connected part. Thus, it can be written as

Gωνν
1

σσ1,lmm1l1 “ δω0G
ν
σ,lmG

ν1

σ1,m1l1 ´ δσσ1δνν1G
ν
σ,ll1G

ν´ω
σ,m1m ` Gcon ωνν1

σσ1,lmm1l1 . (4.15)
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Figure 4.2: Ingredients of the local two-particle Green’s function Gωνν
1

σσ1,lmm1l1 in
Eq. (4.15). The latter consists of two disconnected and one connected part includ-
ing the full vertex function Floc. Together, the disconnected part denoted with χ0,loc

and the connected part Gcon form the generalized susceptibility χloc. (The frequency
convention follows the ph-notation.)

The disconnected parts are simply pairs of one-particle Green’s functions and represent

the non-interacting part of the two-particle Green’s function. Thus, they describe the

independent propagation of two particles—or a particle and a hole. The connected part

Gcon instead contains the full vertex function F and describes all scattering events. In

Fig. 4.2 this relation is shown diagrammatically.

Please note that all one-particle Green’s function lines Gν in Fig. 4.2 and Eq. (4.15)

are the interacting local DMFT Green’s functions. Thus, they are already dressed

with the local DMFT self-energy Σν . Furthermore, in the current implementation,

the local DMFT self-energy and Green’s function are assumed to be diagonal in the

orbital indices: Gνσ,lmδlm and Σν
σ,lmδlm. This assumption is based on the fact that

most DMFT solvers—in particular the employed w2dynamics CT-HYB solver [42, 51]—

consider only orbital-diagonal hybridization functions, which lead to orbital-diagonal

DMFT self-energies Σν
σ,lmδlm and Green’s functions Gνσ,lmδlm (e.g. for t2g orbitals in

a cubic crystal field this holds exactly). In the AbinitioDΓA implementation, some

small technical advantages, which will briefly be discussed in Sec. 4.2.3, arise with this

approximation. However, it is in principle easy to generalize the implementation to

orbital-off-diagonal local DMFT self-energies and Green’s functions. Hence, here the

equations will be presented in general, without assuming Gνσ,lm to be orbital-diagonal.

Local Bethe-Salpeter equation As it can be seen from Fig. 4.2, the generalized sus-

ceptibility χωνν
1

loc can be obtained by subtracting the first disconnected term δω0G
ν
σ,lmG

ν1

σ1,m1l1

from the two-particle Green’s function. Thus, the generalized susceptibility χωνν
1

loc con-

sists of the disconnected part denoted with χ0,loc in Fig. 4.2 and of the connected part
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Figure 4.3: The local Bethe-Salpeter equation depicted in this figure allows to extract
the local irreducible vertex Γωνν

1

loc from the generalized susceptibility χωνν
1

loc .

Gcon

χωνν
1

0,lmm1l1 “ ´βG
ν
ll1G

ν´ω
m1mδνν1 , (4.16)

Gcon ωνν1

r,lmm1l1 “
ÿ

nn1hh1

χωνν0,lmhnF
ωνν1

r,nhh1n1χ
ων1ν1

0,n1h1m1l1 . (4.17)

Please note that all quantities in Eqs. (4.16) and (4.17) are local, even if they do not

carry an explicit subscript ”loc”. Furthermore, the index r P td,mu in Eq. (4.17) refers

to the particle-hole (d)ensity or (m)agnetic channel since the Bethe-Salpeter equations

of AbinitioDΓA are formulated in these channels. By putting Eqs. (4.16) and (4.17)

together

χωνν
1

r,lmm1l1 “ χωνν
1

0,lmm1l1δνν1 `
ÿ

nn1hh1

χωνν0,lmhnF
ωνν1

r,nhh1n1χ
ων1ν1

0,n1h1m1l1 , (4.18)

and using that

Fωνν
1

r,lmm1l1 “ Γωνν
1

r,lmm1l1 ` φ
ωνν1

r,lmm1l1

“ Γωνν
1

r,lmm1l1 `
ÿ

nn1hh1

ν2

Γωνν
2

r,lmhnχ
ων2ν2

0,nhh1n1F
ων2ν1

r,n1h1m1l1 , (4.19)

one obtains the Bethe-Salpeter equation for the local generalized susceptibilities in the

density and magnetic channel

χωνν
1

r,lmm1l1 “ χωνν
1

0,lmm1l1δνν1 `
ÿ

nn1hh1

ν2

χωνν0,lmhnΓωνν
2

r,nhh1n1χ
ων2ν1

r,n1h1m1l1 , (4.20)

which is diagrammatically depicted in Fig. 4.3.

The local irreducible vertex function Γωνν
1

loc , which is one main building block of AbinitioDΓA,

can now be extracted through an inversion of Eq. (4.20). It is supplemented with the

non-local Coulomb interaction V q and then used to build the non-local ladder diagrams

forming the full non-local vertex function F qkk1 of the lattice. These steps will be de-

scribed in more detail in the next sections.
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4.1.2 The non-local Coulomb interaction V q

Before introducing the non-local Coulomb interaction V q, let us first briefly recall the

general definition of the Coulomb interaction

pU “
1

2

ÿ

R1R2R3R4
ll1mm1

σσ1

Ulm1ml1pR1,R2,R3,R4q pc
:

R3m1σ
pc:R1lσ1

pcR2mσ1
pcR4l1σ

, (4.21)

where R denotes the lattice site, ll1mm1 are orbital and σσ1 spin indices. The Coulomb

interaction fulfills a ”particle swapping” symmetry

Ulm1ml1pR1,R2,R3,R4q “ Um1ll1mpR3,R4,R1,R2q, (4.22)

which corresponds to a swap of the incoming and the outgoing particle. Defining the

Fourier transform with respect to R in the same way as for Gp2q, yields

Uqkk1

lm1ml1 “
ÿ

R1,R2,R3

eikR1e´ipk´qqR2eipk
1´qqR3Ulm1ml1pR1,R2,R3,0q ; (4.23)

or the interaction operator

pU “
1

2

ÿ

qkk1

ll1mm1

σσ1

Uqkk1

lm1ml1pc
:

k1´qm1σpc
:

klσ1pck´qmσ1pck1l1σ, (4.24)

where pcklσ “
ř

R e
ikR

pcRlσ. If we neglect the orbital overlap between adjacent unit cells

and, in particular, do not consider any non-local exchange, the k-point dependence of the

Coulomb interaction can be simplified so that the creation and annihilation operators

are paired up at site 0 and R. This yields a local U and a purely non-local V q

Ulm1ml1 ” Ulm1ml1p0,0,0,0q, (4.25)

V q
lm1ml1 ”

ÿ

R‰0

eiRqUlm1ml1pR,R,0,0q. (4.26)

Here, the swapping symmetry reduces to Ulm1ml1 “ Um1ll1m and V q
lm1ml1 “ V ´qm1ll1m. In

practice, the local and non-local Coulomb interaction in Eqs. (4.25) and (4.26) are

obtained ab initio by using the constrained random phase approximation (cRPA) [35].

For details concerning the cRPA method please refer to Sec. 1.5.

In AbinitioDΓA, the local irreducible vertex function Γωνν
1

is supplemented by the non-

local Coulomb interaction of Eq. (4.26). From a physical point of view, this is a natural

extension of Γωνν
1

since the latter can be seen as the effective interaction in AbinitioDΓA.

In fact, the local vertex Γωνν
1

already contains the local Coulomb interaction U as its
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Figure 4.4: The crossing-symmetric non-local Coulomb interaction Vqkk1

consists of
two terms: V q and V k´k1

.

Figure 4.5: The local irreducible vertex Γωνν
1

loc is supplemented by the non-local

Coulomb interaction V qkk1

.

lowest order contribution. In this sense, in AbinitioDΓA the irreducible vertex function

is approximated by its local contribution, except for the lowest order term which is taken

with its full spatial dependence. However, before the non-local Coulomb interaction is

added to Γωνν
1

, it needs to be written in the form of a crossing-symmetric vertex. In its

crossing-symmetric form, the non-local Coulomb interaction has two contributions

Vqkk1

σσ1,lmm1l1 “ β´2pV q
lm1ml1 ´ δσσ1V

k1´k
mm1ll1q, (4.27)

where V q depends only on q, while the second term V k1´k depends on k1 ´ k. Vqkk1

can now directly be added to the local irreducible vertex function Γωνν
1

, which has been

extracted from the DMFT impurity model,

Γqkk1

σσ1,lmm1l1 “ Γωνν
1

σσ1,lmm1l1 `Vqkk1

σσ1,lmm1l1 . (4.28)

Please note, however, that in the present AbinitioDΓA implementation we neglect the

V k1´k term—similar to the GW approach where V k1´k is also neglected. This approx-

imation considerably simplifies the AbinitioDΓA equations and reduces the numerical

effort, as will be shown in the next section.

4.1.3 Construction of the full vertex F q

Non-local Bethe-Salpeter equation After extracting Γωνν
1

r,loc from the DMFT two-

particle Green’s function and supplementing it with the non-local interaction V q, the
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Figure 4.6: The non-local Bethe-Salpeter equation is used to obtain the full vertex
function F qνν1

. Please note that here only the longitudinal particle-hole channel is
shown, while finally the transversal particle-hole channel is also included.

full vertex of the lattice F qkk1
r can be obtained through the non-local Bethe-Salpeter

equation. The latter is given by

F qkk1

r,lmm1l1 “ Γqkk1

r,lmm1l1 ` φ
qkk1

r,lmm1l1

“ Γqkk1

r,lmm1l1 `
ÿ

nn1hh1

k2

Γqkk2

r,lmhnχ
qk2k2

0,nhh1n1F
qk2k1

r,n1h1m1l1 , (4.29)

where Γqkk1
r is the local irreducible vertex in the density or magnetic channel r P td,mu,

which has been extended by a non-local Coulomb interaction according to Eq. (4.28).

Please also note that qkk1 are compound indices that contain also the frequencies ωνν1.

χqkk
0 is a product of two interacting lattice Green’s functions

χqkk
0,lmm1l1 “ ´βG

k
ll1G

k´q
m1mδkk1 , (4.30)

where Gk
ll1 can explicitly be obtained via Gk

ll1 “

´

iν ` µ´Hk
W ´Σν

¯´1

ll1
, with Hk

W being

the Wannier Hamiltonian, and Σν and µ the DMFT self-energy and chemical potential,

respectively.

Here, we focus on the longitudinal particle-hole (ph) channel, since the AbinitioDΓA

formulation mostly works in this channel. Thus, all quantities without an explicit ph

subscript refer to the ph channel. Let us emphasize, however, that the transversal

particle-hole ph channel is finally recovered through the use of the crossing symmetries

so that the final expression for the AbinitioDΓA self-energy also contains non-local ladder

diagrams in the ph channel. The particle-particle (pp) channel instead is assumed to be

purely local. Thus, the particle-particle diagrams contributing to AbinitioDΓA are only

the purely local ones contained in Γωνν
1

.

The non-local Bethe-Salpeter equation (4.29) can be considerably simplified if Γqkk1 does

not depend on the momenta k and k1. Indeed, this dependence arises only from the sec-

ond (crossed) V k1´k term in Eq. (4.27) which is neglected e.g. in the GW approach [110].

If we follow GW and neglect this term, or average it over k (which gives zero since V
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was defined as purely non-local), the vertex (in the two spin channels r P td,mu) reads

Γqνν1

r,lmm1l1 “ Γωνν
1

r,lmm1l1 ` 2β´2V q
lm1ml1δr,d. (4.31)

Please note that the non-local Coulomb interaction is present only in the density channel,

since we have neglected V k1´k. In fact, the remaining V q is not spin-dependent and

thus cancels in the magnetic channel Γm “ Γσσ ´ Γσp´σq.

With this simplification, the non-local Bethe-Salpeter equation becomes

F qkk1

r,lmm1l1 “ Γqνν1

r,lmm1l1 `
ÿ

nn1hh1

k2

Γqνν2

r,lmhnχ
qk2k2

0,nhh1n1F
qk2k1

r,n1h1m1l1 . (4.32)

The property that Γr is independent of k and k1 carries over to the full vertex in

Eq. (4.32). Thus, we can sum over k2 in Eq. (4.32) and obtain

F qνν1

r,lmm1l1 “ Γqνν1

r,lmm1l1 ` φ
qνν1

r,lmm1l1

“ Γqνν1

r,lmm1l1 `
ÿ

nn1hh1

ν2

Γqνν2

r,lmhnχ
qν2ν2

0,nhh1n1F
qν2ν1

r,n1h1m1l1 , (4.33)

where

χqνν
0,lmm1l1 “

ÿ

k

χqkk
0,lmm1l1 “ ´β

ÿ

k

Gk
ll1G

k´q
m1m. (4.34)

Eq. (4.33) is also depicted diagrammatically in Fig. (4.6).

Compound indices and matrix equations At this point we now combine the left

(right) orbital indices and fermionic Matsubara frequencies into a single compound index

tml, νu (tm1l1, ν1u), as it is also done in the numerical implementation of the equations.

This way, all employed quantities can be written in matrix form, e.g. F qνν1

r,lmm1l1 Ñ

F q
rtmlνutm1l1ν1u Ñ F q

r . Thus, Eq. (4.33) can be written as a matrix equation in terms of

compound indices

F q
r “ Γq

r ` Γq
rχ

q
0F

q
r . (4.35)

The full vertex F q
r can now, in principle, be extracted from Eq. (4.35) through a simple

matrix inversion

F q
r “

“

pΓq
rq
´1 ´ χq

0

‰´1
. (4.36)

However, as recently shown in Ref. [99], the Γloc extracted from a self-consistent DMFT

calculation contains an infinite set of diverging components (please remind that Γloc is

contained in Γq). In order to avoid the numerical complications associated with these
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divergencies, we use Eqs. (4.19) and (4.31) to substitute Γq
r in Eq. (4.36) by

Γq
r “

Fωr
1` χω0F

ω
r

` 2β´2V qδr,d. (4.37)

This yields for the full vertex F q
r in the density and magnetic channel

F q
d “

´

Fωd ` 2β´2V qp1` χω0F
ω
d q

¯”

1´ χnl,q0 Fωd ´ 2β´2χq
0V

qp1` χω0F
ω
d q

ı´1
, (4.38)

F q
m “F

ω
m

”

1´ χnl,q0 Fωm

ı´1
, (4.39)

where the purely non-local χnl0 has been defined as

χnl,q0 ” χq
0 ´ χ

ω
0 . (4.40)

This formulation is equivalent to Eq. (4.36) but circumvents the aforementioned diver-

gencies in Γloc, since the latter does no longer have to be inverted explicitly.

Including the ph channel through the crossing symmetries The full non-local

vertices in Eqs. (4.38) and (4.39) are not crossing-symmetric, since they were generated

through the Bethe-Salpeter equation in the particle-hole channel only. In fact, the Bethe-

Salpeter equation carries only the ”swapping” symmetry of the two-particle Green’s

function in Eq. (4.14) over to Γ and φ, but not the other two crossing symmetries in

Eqs. (4.12) and (4.13). However, the crossing symmetry of the full non-local F can be

restored by explicitly adding the corresponding diagrams of the transversal particle-hole

channel (as it has been done before for a single orbital in Refs. [7, 111]). Thus, in the

parquet equation (3.5), we add the reducible contributions φ in the particle-hole and

transversal particle-hole channel, and subtract their respective local contributions which

are already contained in the local F :

Fqkk1

d,lmm1l1 “ Fωνν
1

d,lmm1l1 `Vqkk1

d,lmm1l1 ` pφ
qνν1

d,lmm1l1 ´ φ
ωνν1

d,lmm1l1q ` pφ
qkk1

ph,d,lmm1l1
´ φωνν

1

ph,d,lmm1l1
q.

(4.41)

Please note that again all quantities in the transversal particle-hole channel carry an

explicit subscript ph, while for the longitudinal particle-hole channel the ph subscript is

omitted, since the latter is the ”default” channel for the formulation of the AbinitioDΓA

equations. In Eq. (4.41) all diagrams in the particle-particle channel and all fully irre-

ducible diagrams, except Vqkk1 , are considered to be local. The bare non-local interac-

tion vertex Vqkk1 defined in Eq. (4.27) has to be added explicitly to the parquet equation

since it is neither part of the reducible vertices φph and φph, nor the local F .
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Now we resolve the local and non-local Bethe-Salpeter equations (4.19) and (4.33) for

φωνν
1

d and φqνν1

d , and then explicitly express Γqνν1

d through Eq. (4.31). This yields

pφqνν1

d,lmm1l1 ´ φ
ωνν1

d,lmm1l1q “

´

F qνν1

d,lmm1l1 ´ Γqνν1

d,lmm1l1

¯

´

´

Fωνν
1

d,lmm1l1 ´ Γωνν
1

d,lmm1l1

¯

“

´

F qνν1

d,lmm1l1 ´ Γωνν
1

d,lmm1l1 ´ 2β´2V q
lm1ml1

¯

´

´

Fωνν
1

d,lmm1l1 ´ Γωνν
1

d,lmm1l1

¯

“ Fnl,qνν
1

d,lmm1l1 ´ 2β´2V q
lm1ml1 , (4.42)

where the purely non-local vertex Fnl has been defined as

Fnl,qνν
1

r,lmm1l1 ” F qνν1

r,lmm1l1 ´ F
ωνν1

r,lmm1l1 . (4.43)

We can optimize the AbinitioDΓA computations by expressing the difference in the

transversal particle-hole channel ph in Eq. (4.41), namely pφqkk1

ph,d
´φωνν

1

ph,d
q, in terms of the

longitudinal particle-hole channel ph. Thus, we make use of the fact that the transversal

particle-hole channel (ph) is by definition crossing-symmetric to the particle-hole chan-

nel, i.e. antisymmetric to the particle-hole channel with respect to a relabeling of the

two incoming or outgoing particles. In particular, this yields

φωνν
1

ph,σσ1,lmm1l1
“ ´φ

pν1´νqpν1´ωqν1

σ1σ,m1mll1
. (4.44)

By using the definition of the density and magnetic channel in Eqs. (4.7) and (4.8), and

by applying the SU(2) symmetry in Eq. (4.6) and the symmetry relation in Eq. (4.44),

one can explicitly express the ph density channel in terms of the ph density and magnetic

channel. This yields

φωνν
1

ph,d,lmm1l1
“ φωνν

1

ph,σσ,lmm1l1
` φωνν

1

ph,σp´σq,lmm1l1

“ ´φ
pν1´νqpν1´ωqν1

σσ,m1mll1 ´ φ
pν1´νqpν1´ωqν1

σp´σq,m1mll1

“ ´
1

2

´

φ
pν1´νqpν1´ωqν1

d,m1mll1 ` φ
pν1´νqpν1´ωqν1

m,m1mll1

¯

´ φ
pν1´νqpν1´ωqν1

m,m1mll1

“ ´
1

2
φ
pν1´νqpν1´ωqν1

d,m1mll1 ´
3

2
φ
pν1´νqpν1´ωqν1

m,m1mll1 , (4.45)

or in the non-local case

φqkk1

ph,d,lmm1l1
“ ´

1

2
φ
pk1´kqpk1´qqk1

d,m1mll1 ´
3

2
φ
pk1´kqpk1´qqk1

m,m1mll1 . (4.46)
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By subtracting Eq. (4.45) from (4.46) and expressing all terms by F—similar as we did

for Eq. (4.42)—, we obtain

pφqkk1

ph,d,lmm1l1
´ φωνν

1

ph,d,lmm1l1
q “ ´

1

2
F
nl,pk1´kqpν1´ωqν1

d,m1mll1 ´
3

2
F
nl,pk1´kqpν1´ωqν1

m,m1mll1 ` β´2V k1´k
m1lml1 .

(4.47)

Eqs. (4.42) and (4.47) can now be used in Eq. (4.41) to finally give

Fqkk1

d,lmm1l1 “ Fωνν
1

d,lmm1l1 ` F
nl,qνν1

d,lmm1l1 ´
1

2
F
nl,pk1´kqpν1´ωqν1

d,m1mll1 ´
3

2
F
nl,pk1´kqpν1´ωqν1

m,m1mll1 . (4.48)

Please note that the two non-crossing symmetric contributions to the bare non-local

interaction V in Eq. (4.42) and (4.47) add up to become exactly V qkk1 as defined in

Eq. (4.27). This is a unique property of the simplification employed in Eq. (4.31).

4.1.4 Equation of motion

Once the crossing-symmetric full vertex function F qkk1 is obtained, the AbinitioDΓA self-

energy can be calculated through the Schwinger-Dyson equation of motion, which has

already been introduced in Eq. (3.12) for the single-orbital case. In order to derive the

multi-orbital Schwinger-Dyson equation, we first compare the τ -derivative of Gk
σ,lmpτq

in the Heisenberg equation of motion with the Dyson equation. This yields

rΣGskσ,mm1 pτq “
A

T
””

pU full,pckmσpτq
ı

pc:km1σp0q
ıE

“
ÿ

lhnσ1

qk1

`

Umlhn ` V
q
mlhn

˘

A

T
”

pc:k1´qlσ1pτqpck´qhσpτqpck1nσ1pτqpc
:

km1σp0q
ıE

“ lim
τ 1Ñτ`

ÿ

lhnσ1

qk1

`

Umlhn ` V
q
mlhn

˘

Gqk1k
σ1σ,nlhm1pτ, τ

1, τq. (4.49)

The limit in Eq. (4.49) can be taken by splitting the two-particle Green’s function into

its connected and disconnected parts

rΣGskσ,mm1 pτq “
ÿ

lhnσ1

qk1

`

Umlhn ` V
q
mlhn

˘

ˆ

”

Gcon qk1k
σ1σ,nlhm1pτ, τ, τq`

`δq0n
k1

σ1,lnG
k
σ1,hm1pτq ´ δσσ1δkk1n

k´q
σ,lh G

k
σ,nm1pτq

ı

, (4.50)

where nmm1 “ xpc
:
mpcm1y. As Eq. (4.50) already indicates, the two disconnected parts of

the two-particle Green’s function will finally give the Hartree and the Fock contribution

to the AbinitioDΓA self-energy. In the next step, we take the Fourier transform of
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Figure 4.7: The AbinitioDΓA self-energy is obtained from the full vertex Fq through
the Schwinger-Dyson equation of motion. In addition, the Hartree and Fock contribu-
tions are added, which can be traced back to the disconnected parts of the two-particle

Green’s function.

Eq. (4.50) with respect to τ :

rΣGskσ,mm1 “
ÿ

lhnσ1

qk1

`

Umlhn ` V
q
mlhn

˘

ˆ

„
ż β

0
eiντGcon qk1k

σ1σ,nlhm1pτ, τ, τqdτ`

`δq0n
k1

σ1,lnG
k
σ1,hm1 ´ δσσ1δkk1n

k´q
σ,lh G

k
σ,nm1

ı

. (4.51)

Since the connected part is continuous, it is possible to obtain the equal time component

in Eq. (4.51) by simply summing up the bosonic and the left fermionic Matsubara

frequencies
ż β

0
dτeiντGcon qk1k

σ1σ,nlm1 pτ, τ, τq “
1

β2

ÿ

ων1

Gcon qk1k
σ1σ,nlm1 . (4.52)

In order to obtain the multi-orbital Schwinger-Dyson equation for the self-energy, one

now just needs to multiply Eq. (4.51) with G´1 from the right. This yields

Σk
σ,mm1 “ ΣHF k

σ,mm1 ` Σcon k
σ,mm1 , (4.53)

Σcon k
σ,mm1 “ β´2

ÿ

ll1hn
σ1qk1

´

Umlhn ` V
q
mlhn

¯

Gcon qk1k
σ1σ,nlhl1rG

k
σs
´1
l1m1 . (4.54)

ΣHF is the static Hartree-Fock contribution to the self-energy, which stems from the

disconnected parts of Eq. (4.51) and reads

ΣHF k
σ,mm1 “

ÿ

ll1k1σ1

pUmlm1l1 ` V
q“0
mlm1l1qn

k1

σ1,ll1 ´
ÿ

ll1q

pUmll1m1 ` V
q
mll1m1qn

k´q
σ,ll1 . (4.55)

The connected part of the self-energy Σcon we express in terms of the full vertex F

using the relation in Eq. (4.17). This yields

Σcon k
mm1 “ ´β

´1
ÿ

ll1nn1hh1qk1

´

Umlhn ` V
q
mlhn

¯

χqk1k1

0,nll1n1F
qk1k
d,n1l1h1m1G

k´q
hh1 . (4.56)

This relation is depicted diagrammatically in Fig. (4.7), together with the static Hartree

and Fock contribution of Eq. (4.55).
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In order to derive the version of the equation of motion that is actually implemented,

Eq. (4.56) is split into contributions stemming from the longitudinal and the transversal

particle-hole channel, as well as U and V q terms. Explicitly:

ΣUloc,k ”´ β´1
ÿ

qν1

Uχqν1ν1

0 Fων
1ν

d Gk´q, (4.57)

ΣV loc,k ”´ β´1
ÿ

qν1

V qχqν1ν1

0 Fων
1ν

d Gk´q, (4.58)

Σph,k ”´ β´1
ÿ

qν1

´

U ` V q
¯

χqν1ν1

0 Fnl,qν
1ν

d Gk´q, (4.59)

ΣUph,k ”´ β´1
ÿ

qν1

Ũχqν1ν1

0

´1

2
Fnl,qν

1ν
d `

3

2
Fnl,qν

1ν
m

¯

Gk´q, (4.60)

ΣV ph,k ”´ β´1
ÿ

qν1

Ṽ k1´kχqk1k1

0

´1

2
Fnl,qν

1ν
d `

3

2
Fnl,qν

1ν
m

¯

Gk´q, (4.61)

where all orbital indices, which remain the same as in Eq. (4.56), have been suppressed

for clarity. Please note that Ũlm1l1m “ Ulm1ml1 and similarly for V . The self-energy

contribution ΣUloc,k in Eq. (4.57) contains the local DMFT self-energy Σν
DMFT. In fact,

with the purely non-local χnl,qνν0 defined in Eq. (4.40), we can rewrite Eq. (4.57) as

ΣUloc,k “ ´β´1
ÿ

qν1

U
´

χων
1ν1

0 ` χnl,qν
1ν1

0

¯

Fων
1ν

d Gk´q

“ Σν
DMFT ´ β

´1
ÿ

qν1

Uχnl,qν
1ν1

0 Fων
1ν

d Gk´q. (4.62)

Furthermore, in the non-local Bethe-Salpeter ladders we have, in Eq. (4.31) and similar

to GW , included V q but not V k1´k. Against this background it is reasonable to omit

the contribution ΣV ph of Eq. (4.61).

Formulation with three-leg vertices In the following we will take advantage of

the particular momentum and frequency structure of the Schwinger-Dyson equation to

optimize the numerical calculation of the self-energy. Thus, we define three three-leg

vertices (cf. Refs. [95, 111]) with increasing order of non-local character:

γωνr,lmm1l1 ”
ÿ

n1h1ν1

χων
1ν1

0,lmn1h1F
ων1ν
r,h1n1m1l1 , (4.63)

γqν
r,lmm1l1 ”

ÿ

n1h1ν1

χnl,qν
1ν1

0,lmn1h1F
ων1ν
r,h1n1m1l1 , (4.64)

ηqν
r,lmm1l1 ”

ÿ

n1h1ν1

χqν1ν1

0,lmn1h1F
qν1ν
r,h1n1m1l1 ´ χ

ων1ν1

0,lmn1h1F
ων1ν
r,h1n1m1l1 . (4.65)

The completely local γων can directly be extracted from the impurity solver [109, 112].

γqν instead contains the local full vertex connected to a purely non-local χnl,qνν0 as
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defined in Eq. (4.40). The three-leg vertex ηqν describes the full vertex connected to the

full χqνν
0 , but with γωr —which means all purely local diagrams—removed. ηqν can be

calculated efficiently from Eqs. (4.38) and ((4.39)) using a matrix inversion and γωr :

ηq
r “ p

~1` γωr q
´”

1´ χnl,q0 Fωr ´ 2β´2χq
0V

qp~1` γωr qδrd

ı´1
´ 1

¯

, (4.66)

where ~1lmm1l1 “ δll1δmm1 . Now the contributions to the AbinitioDΓA self-energy can be

written in terms of the three-leg quantities defined in Eqs. (4.63)-(4.65):

ΣUloc,k “Σν
DMFT ´ β

´1
ÿ

q

Uγq
dG

k´q, (4.67)

ΣV loc,k “´ β´1
ÿ

q

V qpγq
d ` γ

ω
d qG

k´q, (4.68)

Σph,k “´ β´1
ÿ

q

´

U ` V q
¯

pηq
d ´ γ

q
dqG

k´q, (4.69)

ΣUph,k “β´1
ÿ

q

Ũ
”1

2
pηq
d ´ γ

q
dq `

3

2
pηq
m ´ γ

q
mq

ı

Gk´q. (4.70)

By gathering the terms and using the crossing symmetry of the local F in γq, one finally

obtains the AbinitioDΓA self-energy in the compact form, which is actually implemented

in the AbinitioDΓA program,

ΣDΓA “ΣUloc,k ` ΣV loc,k ` Σph,k ` ΣUph

“Σν
DMFT ´ β

´1
ÿ

q

´

U ` V q ´
Ũ

2

¯

ηq
dG

k´q`

` β´1
ÿ

q

3

2
Ũηq

mG
k´q ´ β´1

ÿ

q

´

V qγωd ´ Uγ
q
d

¯

Gk´q. (4.71)

4.2 Implementational details

One main part of this PhD thesis has been the implementation of the AbinitioDΓA

equations presented in the previous section. Thus, in the following I will discuss some

algorithmic details concerning the newly developed AbinitioDΓA program. These rather

technical issues will facilitate future developments and extensions.

Fig. 4.8 presents an overview of the AbinitioDΓA algorithm in its current implementa-

tion. There, all necessary steps are depicted in the form of a flow-diagram. In addition,

important names of employed programs and input/output files are given. The single

steps will be discussed in detail in the following.
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DMFT two-particle Green's function

Wien2k
wien2wannier, wannier90
w2dynamics

g4iw_conn.hdf5

case.hdf5

umatrix.dat
vmatrix.hdf5

g4iw_conn_sym.hdf5

vertex_chann_sym.f90

main.f90 
  eom_module.f90
  susc_module.f90
  one_particle_quant_mod.f90
  index_module.f90
  lapack_module.f90

DFT+DMFT
(see Sec. 4.2.1)

Preprocessing
(see Sec. 4.2.2)

case.conf

configure 
eom, susc, 
k_path, k_list, small_freq_box

self energy

momentum-dependent 
DMFT susceptibility 

if susc

if eom

main                      program 
(see Sec. 4.2.3)

correction

symmetrized

cRPA

ham.hk

Figure 4.8: Flow diagram of the AbinitioDΓA algorithm. Programs are indicated
as blue boxes with the main program and module names listed on the right. The

input/output data files instead are indicated in red.

4.2.1 DFT+DMFT computation

As Fig. 4.8 shows, the starting point of AbinitioDΓA is a converged DFT+DMFT cal-

culation for the material under investigation. Here, we use the Wien2k program pack-

age [19, 113] to perform the DFT computation, the wien2wannier interface [49] and

wannier90 [50] to construct the Wannier Hamiltonian Hk
W , and the w2dynamics CT-

QMC program [42, 51] to solve the DMFT impurity model. This way, we obtain all

single-particle quantities which are used in AbinitioDΓA: the wien2wannier Hamilto-

nian Hk
W , the local DMFT one-particle Green’s function Gν and self-energy Σν , as well

as the chemical potential µ. The wien2wannier Hamiltonian Hk
W is stored in the file

ham.hk, while all the other DMFT single-particle quantities can be found in the hdf5

file case.hdf5 which has the usual w2dynamics output format. The local and non-local

Coulomb interaction U and V q can also be obtained ab initio by using the constrained

random phase approximation (cRPA) [114, 115]. For details about the cRPA method

please refer to Sec. 1.5. The four-index U and V q are currently stored in two separate

files umatrix.dat and vmatrix.hdf5.
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After convergence of the DFT+DMFT computation, the connected part of the DMFT

two-particle Green’s function Gcon is computed which is a numerically very demanding

task. In practice, Gcon is calculated within the w2dynamics program package by extend-

ing the CT-HYB with a worm algorithm and improved estimators [108, 109]. Then it is

stored in the file g4iw conn.hdf5, whose structure will be discussed in the following.

Storage of the DMFT two-particle Green’s function The connected part of the

local two-particle Green’s function Gcon ωνν1

σ1σ2σ3σ4,lmm1l1
, which is measured in CT-HYB, is a

very large quantity and needs a lot of storage capacity. In fact, in its most general form

it has four orbital indices lmm1l1 and four spin indices σ1σ2σ3σ4, and it depends on three

Matsubara frequencies ωνν 1. Due to numerical limitations, Gcon cannot be measured on

an arbitrary big Matsubara frequency grid. However, in order to obtain decent results

within AbinitioDΓA, the size of the bosonic and fermionic frequency boxes should be

reasonably big in order to reach the asymptotic region of Gcon. Furthermore, to deserve

the name ”multi-orbital”, the two-particle Green’s function will capture at least 2-3

orbitals. If we assume the case of three orbitals—e.g. the three t2g orbitals in SrVO3—,

then we have 34 “ 81 orbital degrees of freedom, together with 24 “ 16 spin degrees

of freedom. However, the orbital and spin degrees of freedom are usually restricted by

the symmetry of the interaction of the local DMFT impurity problem. The Kanamori

interaction in Eq. (2.1), which we usually employ, allows only for orbital combinations

where two orbitals are the same (iijj, ijij, ijji). Thus, for three orbitals, the number

of possible orbital combinations is reduced to 21. Furthermore, according to Eqs. (4.3)

and (4.4), also the spin degrees of freedom are reduced to six per orbital combination.

Hence, in total, the originally 81x16 spin-orbital combinations are reduced to 21x6=126

non-zero components in the three-orbital case.

Group structure of the file g4iw conn.hdf5 In an attempt to decrease the amount

of storage for Gcon, we store only its non-zero spin-orbital components in hdf5 file format.

The latter is a hierarchical data model, which allows us to handle complex and large

amounts of data in an effective way. In particular, it allows us to create groups that

contain datasets. This feature we use to store the non-zero spin-orbital components of

Gcon ωνν1

σ1σ2σ3σ4,lmm1l1
in the form of a ”lookup-table”. This means that we translate the band

and spin indices ofGcon ωνν1

σ1σ2σ3σ4,lmm1l1
into a single index Ω through a unique transformation:

σ1σ2σ3σ4, lmm
1l1 Ø Ω. (4.72)

For each spin-orbital component we can now simply ”look up” the corresponding Ω

and also the other way around (this is done by the subroutines component2index and
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..
.

groupname

..
.

Figure 4.9: Structure of the file g4iw conn.hdf5, which contains the two-particle im-
purity Green’s function Gcon measured in CT-HYB (w2dynamics). Each group named
by the combined index Ω contains the corresponding non-zero spin-orbital component
of Gcon. Shown are the first four groups in the SrVO3-file. Note that many spin-orbital
combinations do not exist, e.g. Ω “ 2 which corresponds to Gcon ωνν1

ÒÒÒÓ,1111, and are hence
not stored.

index2component, respectively). The combined index Ω is at the same time also the name

of the group in the file g4iw conn.hdf5 whereGcon ωνν1

σ1σ2σ3σ4,lmm1l1
“ Gcon ωνν1

Ω is stored. Thus,

g4iw conn.hdf5 contains as many groups as there are non-zero spin-orbital components

in Gcon ωνν1

σ1σ2σ3σ4,lmm1l1
. Each of these groups contains a dataset with the corresponding

Gcon ωνν1

Ω for all bosonic and fermionc Matsubara frequencies. For example, for SrVO3

the structure of the g4iw conn.hdf5 file is shown in Fig. 4.9. For SrVO3 in a paramagnetic

t2g setup with Kanamori interactions, the file contains 126 groups and thus 126 non-

zero spin-orbital components of Gcon . Together with a box of 120 bosonic and fermionic

Matsubara frequencies, this yields 4GB.

Please note that this way of storing the two-particle impurity Green’s function is not

limited to density or Kanamori kind of interactions. It can also be used for a general, full

Coulomb interaction. In case of the latter, the file would simply contain more non-zero

spin-orbital components of Gcon, which means more groups.

4.2.2 Preprocessing of the AbinitioDΓA input data

Before starting the main AbinitioDΓA program, the file g4iw conn.hdf5 containing the

connected part of the two-particle impurity Green’s function Gcon is pre-processed.

The format of g4iw conn.hdf5, which is produced by the w2dynamics program pack-

age and has been presented above, is in principle a good starting point for perform-

ing AbinitioDΓA. However, the preprocessing script vertex chann sym.f90 prepares the

AbinitioDΓA input data—namely Gcon —in a way that best fits the needs of the main
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AbinitioDΓA program. In this preprocessing step, the connected part of the two-particle

impurity Green’s function is symmetrized [SU(2) and orbital symmetry] and transformed

into the density and magnetic channel. The modified Gcon, obtained in this way, is

organized again in a suitable hdf5 group structure and written to a new file called

g4iw conn sym.hdf5, as discussed in the following and depicted in Fig. 4.10.

Symmetrization Since all AbinitioDΓA equations have been formulated in the particle-

hole density and magnetic channel, we can work in these channels right from the be-

ginning. Thus, already in the preprocessing script I construct Gcon
r in the density

and magnetic channel r P td,mu. If SU(2) symmetry is implied, I can use Eqs. (4.9)

and (4.10) to define Gcon
r in the density and magnetic channel as

Gcon
d “

1

2

´

Gcon
ÒÒÒÒ `G

con
ÓÓÓÓ `G

con
ÒÒÓÓ `G

con
ÓÓÒÒ

¯

, (4.73)

Gcon
m “

1

2

´

Gcon
ÒÓÓÒ `G

con
ÓÒÒÓ

¯

. (4.74)

Working in the density and magnetic channel and implying SU(2) symmetry from the

beginning, has the advantage that spin indices do not need to be considered any more.

Instead, we are left with a channel index r P td,mu only. Thus, the quantities, that

will in the following be processed in the main AbinitioDΓA program, have less indices

and are smaller from a storage point of view—a clear advantage considering that these

quantities are in general very large. Furthermore, in Eqs. (4.73) and (4.74) we already

take the SU(2) average over several components measured in CT-HYB which clearly

improves the statistics of the two-particle Green’s function and thus the quality of the

data.

A further improvement regarding the statistics of the two-particle Green’s function can

be achieved by symmetrizing over equivalent orbitals. Thus, in addition to the SU(2)

symmetry, the AbinitioDΓA preprocessing script also considers orbital symmetries and

explicitly symmetrizes Gcon
r over equivalent orbitals, e.g. the t2g orbitals in SrVO3.

This orbital-symmetrization can, however, be switched off by setting su2 only=.true. in

the preprocessing script vertex chann sym.f90.

Group structure of the file g4iw conn sym.hdf5 Fig. 4.10 shows the group struc-

ture of g4iw conn sym.hdf5, which contains the symmetrized Gcon
r in the density and

magnetic channel. The file contains separate groups with the density and the magnetic

channel. Furthermore, the data is split in subgroups for each bosonic frequency (index

iω). This is a reasonable choice since the AbinitioDΓA algorithm is parallelized over
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...
...

...

...

Figure 4.10: Group structure of the file g4iw conn sym.hdf5, which contains the
SU(2)- and orbital-symmetrized Gcon in the density and magnetic channel. iω refers to
the bosonic frequency index, while Ωb is a combined index of the four orbital indices
lmm1l1. Shown are the first few entries in the SrVO3 file (three orbitals, Kanamori

interaction).

the bosonic Matsubara frequency and, organized in this way, the data can be addressed

quickly when reading a specific bosonic frequency slice of Gcon
r .

Each bosonic frequency group contains subgroups with the non-zero orbital components

of Gcon νν1

r,lmm1l1 . These orbital subgroups are labeled by the combined orbital index Ωb. The

latter is defined through a similar index transformation as in Eq. (4.72), but involving

only orbital indices. This yields

lmm1l1 Ø Ωb. (4.75)

Thus, the four orbital indices lmm1l1 are transformed into the combined index Ωb.

In the case of SrVO3, the number of components is reduced from 126 non-zero spin-

orbital components in the original g4iw conn.hdf5 file to 21 orbital components for each

channel in g4iw conn sym.hdf5. This reduction by a factor of three is also obvious from

the definition of the density and magnetic channel in Eqs. (4.73) and (4.74), where six

components are mapped onto two. Clearly, the size of the g4iw conn sym.hdf5 file is

hence also significantly reduced compared to g4iw conn.hdf5.

Since the preprocessing script vertex chann sym.f90 reads from and writes to hdf5 files, it

uses the hdf5 library for Fortran. In order to keep the script more clear, most operations

related to the hdf5 library for Fortran have been moved to a separate module named

hdf5 module.f90. The latter contains e.g. subroutines named create component and

add to component, which are then directly used in the preprocessing script.
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Currently, vertex chann sym.f90 is pre-processing only the two-particle Green’s function

stored in g4iw conn.hdf5.1 The single-particle quantities like the local DMFT self-energy

and Green’s function instead are directly fed into the main AbinitioDΓA program from

the separate file case.hdf5 produced by w2dynamics. Certainly, it could be a good idea to

pre-process also the single-particle quantities in the existing preprocessing script. Then

the latter would produce one single file, which contains all the necessary input data in

the format needed by the main AbinitioDΓA program. This would have the advantage

that changes in the CT-HYB (w2dynamics) output would affect only the preprocessing

script. If necessary, the script could even be modified to pre-process data obtained from

another DMFT solver.

4.2.3 The main AbinitioDΓA program

Configuration The main AbinitioDΓA program is configured in the file case.conf.

There one can specify, among others, if one wants to compute the AbinitioDΓA self-

energy (eom “ .true.) and/or momentum-dependent DMFT susceptibilities (susc “

.true.), which I will briefly introduce in the end of this section. Both quantities can be

computed on a regular k-grid (default), or for specific user-defined k-points or a k-path

(if k list “ .true., the corresponding k-path is read from the file klist.dat). However,

before performing actual AbinitioDΓA computations, it is recommended to check if the

local version of the Schwinger-Dyson equation of motion reproduces the local DMFT

self-energy Σν . This can be done by inserting only the purely local, three-leg γω defined

in Eq. (4.63) in the equation of motion.2

Since the main AbinitioDΓA program named main.f90 has to execute many tasks, it is

split into several modules. There exists a module for the computation of the equation

of motion eom module.f90, and another one for computing the momentum-dependent

susceptibilities susc module.f90. Furthermore, all subroutines involving one-particle

Green’s functions and non-interacting susceptibilities χ0 are gathered in the module

one particle quant mod.f90. Finally, there exists also a module index module.f90 for the

1Since the file g4iw conn.hdf5 is very large, the pre-processing script vertex chann sym.f90 is reading
the groups in the file—which correspond to the non-zero spin-orbital components of Gcon—not all at
once, but iteratively one after the other. Thus, the first group, e.g. Gcon ωνν1

ÒÒÒÒ,1111 in Fig. 4.9, is read
and a routine checks if the component goes into the density or the magnetic channel according to
Eqs. (4.73) and (4.74) (e.g. Gcon ωνν1

ÒÒÒÒ,1111 contributes to the density channel). Next, the ”orbital-only”
combined index Ωb is computed and the component is written into the corresponding groups in the file
g4iw conn sym.hdf5. Then the script proceeds with the next spin-orbital component in g4iw conn.hdf5.
Please note that the orbital-symmetrization implemented in vertex chann sym.f90 is based on the same
scheme and is done simultaneously.

2Currently, this check is done with a separate script, but it will eventually be included in the main
AbinitioDΓA program.
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k-q index search needed e.g. to construct the k-q-dependent non-interacting suscepti-

bility of Eq. (4.77), and another module lapack module.f90 for matrix inversions.3 The

main tasks of these modules will be discussed in detail in the following.

Implemented equations As the flow diagram in Fig. 4.8 clearly shows, the main

AbinitioDΓA program main.f90 needs as an input the symmetrized two-particle impu-

rity Green’s function in the density and magnetic channel stored in g4iw conn sym.hdf5.

In addition, also the Wannier Hamiltonian Hk
W and the local DMFT one-particle Green’s

function Gν , self-energy Σν and chemical potential µ, which are stored in the files ham.hk

and case.hdf5, are needed. Furthermore, the local and non-local Coulomb interaction U

and V q are read from the files umatrix.dat and vmatrix.hdf5, respectively.

Hk
W and the DMFT self-energy Σν and chemical potential µ are used to compute the

k-dependent DMFT Green’s function

Gk
ll1 “

´

iν ` µ´Hk
W ´ Σν

¯´1

ll1
, (4.76)

which in turn is used to construct the q-dependent bubble χqνν
0 . The latter represents

the generalized susceptibility without vertex corrections and reads

χqνν
0,lmm1l1 “ ´β

ÿ

k

Gk
ll1G

k´q
m1m. (4.77)

In AbinitioDΓA, χqνν
0 is needed to construct the full, non-local vertex function Fq

through the non-local Bethe-Salpeter equation. Please note that in Eq. (4.77) a sum-

mation over k is performed resulting in a k-independent χqνν
0 . This simplification of

assuming χqνν
0 to be only q-dependent is possible because the k´ k1 dependence of the

non-local Coulomb interaction has been neglected (see Sec. 4.1.2 and 4.1.3).

The local DMFT Green’s function instead is used to construct the local bubble

χωνν0,lmml “ ´βG
ν
ll1G

ν´ω
m1mδll1δmm1 . (4.78)

Here, the local DMFT Green’s functions are assumed to be orbital-diagonal Gνll1δll1 .

By subtracting Eq. (4.78) from Eq. (4.77), one obtains the purely non-local χnl,qνν0 “

χqνν
0 ´ χωνν0 .

The local and non-local χ0’s introduced so far are important ingredients to obtain the

three-leg vertices γων , γqν and ηqν , which have been defined in Eqs. (4.63)-(4.66) and

3The main AbinitioDΓA program will eventually become even more modularized. Thus, parts of the
main program, e.g. the computation of the Bethe-Salpeter equation, will be moved into modules.
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are repeated here for clarity:

γωνr,lmm1l1 “
ÿ

n1h1ν1

χων
1ν1

0,lmn1h1F
ων1ν
r,h1n1m1l1 , (4.79)

γqν
r,lmm1l1 “

ÿ

n1h1ν1

χnl,qν
1ν1

0,lmn1h1F
ων1ν
r,h1n1m1l1 , (4.80)

ηqν
r,lmm1l1 “

ÿ

n1h1ν1

χqν1ν1

0,lmn1h1F
qν1ν
r,h1n1m1l1 ´ χ

ων1ν1

0,lmn1h1F
ων1ν
r,h1n1m1l1 . (4.81)

Please note that γων is a completely local three-leg vertex which can, in principle, directly

be extracted from the impurity solver. Since at the moment γων is, however, not yet

provided by the w2dynamics impurity solver, the current version of the AbinitioDΓA

program explicitly computes γων from Fων
1ν according to Eq. (4.79).

The computation of the three-leg vertices in Eqs. (4.79)-(4.81) clearly also involves the

local DMFT vertex function Fωνν
1

—one of the most important ingredients to perform

AbinitioDΓA. Fωνν
1

can be obtained from the connected part of the two-particle impu-

rity Green’s function Gcon, which is stored in the file g4iw conn sym.hdf5, by

Fωνν
1

r,lmm1l1 “ rpχ
ω
0 q
´1sννlmmlG

con ωνν1

r,lmm1l1 rpχ
ω
0 q
´1sν

1ν1

l1m1m1l1 , (4.82)

which diagrammatically corresponds to an ”amputation” of the left and the right legs of

Gcon. For the computation of the purely local γων in Eq. (4.79) instead, only the right

legs of Gcon need to be ”amputated”, i.e. γων
1

r,lmm1l1 “
ř

ν G
con ωνν1

r,lmm1l1 rpχ
ω
0 q
´1sν

1ν1

l1m1m1l1 .

Furthermore, in order to compute ηqν in Eq. (4.81), one needs also the q-dependent

vertex function F qν1ν which can be obtained from the non-local Bethe-Salpeter equation.

As discussed in detail in Sec. 4.1.4, one can explicitly insert the corresponding expression

for F qν1ν in Eq. (4.81) and rewrite ηq in the compact form

ηq
r “ p

~1` γωr q
´”

1´ χnl,q0 Fωr ´ 2β´2χq
0V

qp~1` γωr qδrd

ı´1
´ 1

¯

, (4.83)

which involves only a single matrix inversion. Eq. (4.83) is actually the way how ηq is

computed in the main AbinitioDΓA program.

The three-leg vertices γων , γqν and ηqν can then directly be used in the equation of

motion in order to obtain the AbinitioDΓA self-energy. In fact, the implemented form
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of the equation of motion, which has already been introduced in Eq. (4.71), reads

ΣDΓA “ΣUloc,k ` ΣV loc,k ` Σph,k ` ΣUph

“Σν
DMFT ´ β

´1
ÿ

q

´

U ` V q ´
Ũ

2

¯

ηq
dG

k´q`

` β´1
ÿ

q

3

2
Ũηq

mG
k´q ´ β´1

ÿ

q

´

V qγωd ´ Uγ
q
d

¯

Gk´q, (4.84)

and is realized in the module eom module.f90 of the main AbinitioDΓA program. In

the following, I will focus on the explicit numerical implementation of the equations pre-

sented so far and discuss some operations and characteristics of the main AbinitioDΓA

program in detail.

Parallelization The AbinitioDΓA algorithm can be parallelized over the combined

bosonic index q “ pq, ωq, since the three-leg vertices γων , γqν and ηqν can be computed

separately for each q, and in the equation of motion one finally simply sums over all

q-contributions. Thus, the combined index q is used to distribute the AbinitioDΓA al-

gorithm over several nodes/cores with an MPI-parallelization. Each core then processes

a different range of q-indices and reads in only the data slices of g4iw conn sym.hdf5

that are actually needed.4

Compound indices The main AbinitioDΓA program makes use of compound indices

so that all equations can be implemented in the form of matrix operations. The em-

ployed compound indices are obtained by transforming the four orbital and two fermionic

frequency indices of Fωνν
1

lmm1l1 into two compound indices. Thereby, the two left orbital

indices lm and the left fermionic frequency index ν are combined into one compound

index tml, νu, while the two right orbital indices m1l1 and the right fermionic frequency

index ν 1 form the second compound index tm1l1, ν1u.5 This way, Fωνν
1

lmm1l1 can be written

in matrix form Fω
tm1l1,ν1utml,νu, as illustrated in Fig. 4.11. Please note that in the local

Fωνν
1

lmm1l1 many matrix elements are zero, since the Kanamori interaction allows only for

entries where two orbitals are the same. These zero matrix elements are exactly the

orbital components not present in g4iw conn sym.hdf5. However, in order to perform

straightforward matrix operations, one needs to work with the whole matrix including

4The main AbinitioDΓA program does not read Gcon ωνν1

lmm1l1 all at once from the file g4iw conn sym.hdf5.

Since Gcon ωνν1

lmm1l1 is a purely local quantity which does not depend on q but only on ω, a corresponding

slice of Gcon ωνν1

lmm1l1 needs to be read only when the bosonic Matsubara frequency ω in the loop over the
combined index q “ pq, ωq changes.

5Please note that the bosonic frequency ω does not enter the compound index; the AbinitioDΓA
program is parallelized over the ”external” index q “ pq, ωq.
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Figure 4.11: By using compound indices tml, νu and tm1l1, ν1u, Fωνν
1

lmm1l1 can be written
in matrix form (in the graphics, the ”external” bosonic frequency ω has been omitted
for simplicity). Explicitly shown is the first orbital block (ν “ ν1, ν1 “ ν11) in the case of
two orbitals. Please note that many entries are zero if density or Kanamori interactions

are employed, e.g. F
ν1ν

1
1

1112 “ 0 and F
ν1ν

1
1

1121 “ 0.

( (

...

...

..
.

Figure 4.12: Matrix structure of the bubble terms χnl,qνν0,lmm1l1 , χ
qνν
0,lmm1l1 and χωνν0,lmml (in

the graphics, the ”external” bosonic index q “ pq, ωq has been omitted). Shown are the
first two ”orbital blocks” (in orange). The block-diagonal structure arises from the fact
that the bubble terms are diagonal with respect to the fermionic frequency δνν1 . The
local χωνν0,lmml of Eq. (4.78) has an even simpler, completely diagonal structure (dark
orange matrix elements only). Here, the full structure is only shown for clarity, the
main AbinitioDΓA program stores and works only with the non-zero orbital blocks.
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all zero elements. On the other hand, this has the advantage that the implementa-

tion of the main AbinitioDΓA program is not restricted to density or Kanamori kind of

interactions.

By using the compound indices tml, νu and tm1l1, ν1u, also the time reversal symmetry

of the local F can be implemented easily. In fact, the time reversal symmetry

Fωνν
1

lmm1l1 “ Fων
1ν

l1m1ml, (4.85)

which corresponds to an exchange of the incoming and outgoing particles, reduces to a

transpose in the compound matrix

Fωtml,νutm1l1,ν1u “ Fωtm1l1,ν1utml,νu. (4.86)

Similar to the local, full vertex function Fων
1ν , also the bubble terms χnl,qνν0 , χqνν

0 and

χωνν0 can be written in matrix form with respect to the compound indices tml, νu and

tm1l1, ν1u, as visualized in Fig. 4.12. Since the bubble terms are diagonal with respect

to the fermionic frequency indices χνν0 “ χνν
1

0 δνν1 , they have a block-diagonal structure

with all frequency off-diagonal (ν ‰ ν 1) matrix elements being zero. This block-diagonal

structure applies to χnl,qνν0 , χqνν
0 and χωνν0 . However, the purely local χωνν0 of Eq. (4.78)

is even fully diagonal (containing only the dark orange elements in Fig. 4.12), since

the local DMFT Green’s functions are assumed to be orbital-diagonal. This diagonal

structure of χωνν0 is used in Eq. (4.82) for ”amputating” the legs of the local Gcon,ωνν1

in order to obtain Fωνν
1

.

Computation of the three-leg vertices The computation of the three-leg vertices

γq and ηq in Eqs. (4.80) and (4.83) involves a multiplication of χnl,q0 with Fω. This

matrix multiplication can be simplified by exploiting the block-diagonal structure of

χnl,q0 . In fact, by multiplying each orbital block of χnl,q0 with the corresponding horizontal

slice of Fω, as shown in Fig. 4.13, one can avoid a large and time-consuming matrix

multiplication with a lot of zero entries.

The matrix inversion in the equation for ηq (4.83) instead cannot be simplified or split

into smaller subroutines. Here, the full matrix dimension is needed. In fact, from a

numerical point of view, this matrix inversion is the most demanding operation of the

main AbinitioDΓA program.

The calculation of the three-leg vertices in Eqs. (4.79)-(4.83) furthermore requires a sum

over the left fermionic frequency. In fact, the summation over the left fermionic frequency

makes them, diagrammatically, three-leg vertices. In terms of compound matrices, this
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Figure 4.13: The matrix multiplication of the block-diagonal χnl,qνν0,lmm1l1 with the full

Fωνν
1

r,lmm1l1 in Eqs. (4.80) and (4.83) can be split into several smaller operations. By

multiplying each orbital block of χnl,qνν0,lmm1l1 with the corresponding slice of Fωνν
1

r,lmm1l1

(marked with the same color), one can avoid multiplying a lot of zero entries with each
other.

sum over the left fermionic frequency is visualized in Fig. 4.14. Through the sum, the left

compound index is reduced to an orbital compound index tlmu and the resulting matrix

is not quadratic any more. Please note that this summation over the left fermionic

frequency needs to be performed explicitly only in order to obtain γq and γω.6 The

three-leg structure of ηq is actually obtained in a different way, i.e. by multiplying with

p~1` γωq from the left, as can be seen in Eq. (4.83).

Equation of motion Once the three-leg vertices γωr , γq
r and ηq

r are obtained, they can

directly be used in the expression for the Schwinger-Dyson equation of motion (4.84).

There, the multiplication of the three-leg vertices with the corresponding local and non-

local Coulomb interaction terms (U , Ũ and Vq) is done in the basis of compound indices.

Thus, the four-index Ulmm1l1 and V q
lmm1l1 , which are obtained through constrained random

phase approximation (cRPA) [32] and stored in the files umatrix.dat and vmatrix.hdf5,

first need to be transformed to compound indices tmlu and tm1l1u.7 Then, the multipli-

cation of V q and U times the three-leg γ’s and η in the Schwinger-Dyson equation of

motion (4.84) can easily be performed, as schematically depicted in Fig. 4.15.

The final convolution with the non-local Green’s function Gk´q in the equation of mo-

tion (4.84) is more straightforward to perform by breaking up the compound indices

in single orbital and frequency indices again. This way, the different contributions in

the equation of motion can be computed easily. The sum over the bosonic compound

index q “ pq, ωq, on the other hand, is performed by summing up all q-contributions

6Eventually, the purely local three-leg vertex γω will be directly computed in CT-HYB (see Ref. [116]),
which will make the current sum over the left fermionic frequency to obtain γω redundant.

7Currently, all components of the local four-index U are simply stored in the file umatrix.dat in the
format i j k l u value. The non-local Coulomb interaction V q instead is stored in an hdf5-file making
use of a similar group structure which has already been employed for the local Gcon. Thus, vmatrix.hdf5
contains only the non-zero components of V q. Eventually, local and non-local Coulomb interaction will
be joined in one single hdf5 file.
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Figure 4.14: Schematic representation of the sum over the left fermionic frequency
needed to obtain the three-leg vertices γω, γq and ηq in Eqs. (4.79)-(4.83). By summing
over all stacked slices (different colors symbolize different left fermionic frequencies νi),
the first dimension of the matrix is reduced to the orbital-only compound index tlmu.

within the parallel loop over q. Finally, the contributions computed on different cores are

summed up by using an MPI gather. As discussed in Sec. 3.2.4, the AbinitioDΓA self-

energies Σk
DΓA, which are Ladder-DΓA self-energies, need to be λ-corrected. However, in

SrVO3—the material studied here—, the λ-correction turned out to be negligible. Thus,

at the moment there does not exist any standardized implementation of the AbinitioDΓA

λ-corrections yet.

k-point symmetries and high-frequency asymptotics Currently, the k-dependent

AbinitioDΓA self-energy Σk
DΓA is, by default, computed on a regular k-grid within the

first Brillouin zone of the corresponding material. In fact, the AbinitioDΓA algorithm

uses the k-grid of the wien2wannier Hamiltonian, which is a regular grid within the re-

ducible Brillouin zone. However, this default k-grid for the computation and output of

the AbinitioDΓA self-energy can be substituted with a user-defined k-list or k-path (set

k list “ .true. in the the file case.conf). Of course, it would also be desirable to restrict

the computation of Σk
DΓA to the irreducible Brillouin zone. Especially, restricting the

q-grid of the parallel q-loop to the irreducible Brillouin zone would save a lot of com-

putational time. In general, this could be done through an interface with a DFT-code

like Wien2k, which includes already elaborate routines to deal with crystal symmetries.

So far, there exists only the option to choose a more coarse q-grid. By setting e.g.

q frac “ 2 in the case.conf file, the distance between neighbouring q-points is doubled

compared to the original k-grid of the wien2wannier Hamiltonian. However, this option

is rather for a speedup of test runs, since it does not respect any crystal symmetries for

the reduction of the k-grid.

In case.conf one can also specify to run a computation with fewer bosonic or fermionic

frequencies. By setting small freq box=.true. and explicitly entering the desired number

of bosonic and fermionic Matsubara frequencies, the default frequency boxes, which are

taken over from the Gcon measured in CT-QMC, are cut to the specified size. With this

option one can check the convergence of the AbinitioDΓA results with respect to the
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Figure 4.15: Schematic representation of the matrix multiplication between the in-
teraction matrices U and Vq and the three-leg vertices γωr , γqr and ηqr . This operation

is part of the Schwinger-Dyson equation of motion (4.84).

size of the used frequency boxes. By performing several computations with increasing

size of the bosonic and fermionic frequency boxes, one can extrapolate the value of

the AbinitioDΓA self-energy Σk
DΓA and avoid uncertainties related to the finite size of

the considered frequency boxes. However, this extrapolation procedure is numerically

expensive since it requires running the AbinitioDΓA program multiple times (once for

each frequency box size). Furthermore, the quality of the CT-QMC data for Gcon

needs to be very high in order to obtain a monotonous and smooth behavior for the

extrapolation. Hence, currently I simply work with the maximally affordable box size

and check the convergence of Σk
DΓA by further performing some computations with

smaller box sizes.

Recently, vertex asymptotics have been implemented within w2dynamics [116]. Thus,

the high-frequency asymptotics of the local, full vertex function Fωνν
1

are directly com-

puted within CT-QMC by considering all asymptotically contributing diagrams. This

reduces statistical uncertainties of the local vertex and allows for very large frequency

box sizes. These improvements regarding the local vertex are really important for the

main AbinitioDΓA program. However, because of numerical limitations, the latter can-

not deal with arbitrary big frequency boxes, and thus the final extrapolation of Σk
DΓA

with respect to the frequency box size still needs to be done.

Momentum-dependent susceptibilities With the main AbinitioDΓA program one

can also compute momentum-dependent, physical susceptibilities. This option (susc)

can be specified in the case.conf file. Then, the AbinitioDΓA program is executed in

the usual way until the computation of the three-leg vertices. But instead of continuing

with the equation of motion, the q-dependent DMFT susceptibilities can be obtained as

χq
r,lmm1l1 “

ÿ

nn1hh1

ν1ν

χqν1ν1

0,lmhnF
qν1ν
r,nhh1n1χ

qνν
0,n1h1m1l1 . (4.87)
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These are the dynamic and q-dependent DMFT susceptibilities in the density and mag-

netic channel r P td,mu (the compound index q contains q and the bosonic frequency

ω). The magnetic susceptibility in form of a spin-spin correlation function can then

be obtained from Eq. (4.87) by summing over the corresponding orbital combinations

χq
m “

ř

ll1 χ
q
m,lll1l1 . The local magnetic susceptibility, which has been computed for FeAl

in Sec. 2.4, can be obtained by replacing the compound index q “ pq, ωq in Eq. (4.87)

with the bosonic frequency index ω only, i.e. χq
m Ñ χωm.

4.2.4 Numerical effort

The numerical effort for calculating the local vertex in CT-HYB scales roughly as

β5p#oq4 with a large prefactor because of the Monte-Carlo sampling (#o is the number

of oritals; there is also an exponential scaling in #o for calculating the local trace but

only with a β1 prefactor so that this term is less relevant for typical #o and β). The

β5p#oq4 scaling can be understood from the fact that an update of the hybridization

matrix is „ β2 (the mean expansion order is „ β), and we need to determine pβq3p#oq4

different vertex contributions if the number of measurements per imaginary time interval

stays constant. However, since we eventually calculate the self energy which depends on

only one frequency and two orbitals, a much higher noise level can be permitted for larger

#ω and #o. That is, in practice a weaker scaling on #ω and #o is possible. Outside a

window of lowest frequencies, one can also employ the asymptotic form [105, 116, 117]

of the vertex which depends on only two frequencies so that its calculation scales as

β4p#oq4. Without using these shortcuts, calculating the vertex for SrVO3 with #o “ 3,

#ω “ 120 and β “ 10 eV´1 took 150000 core h (Intel Xeon E5-2650v2, 2.6 GHz, 16

cores per node).

As discussed already, the main AbinitioDΓA program is parallelized over the compound

index q “ pω,qq. Obviously, this q-loop scales with the number of q-points #q and

the number of (bosonic) Matsubara frequencies #ω (which is roughly „ β), and thus as

#ω#q. Within this parallel loop, the numerically most demanding task is the matrix

inversion in Eq. (4.83). Since the dimension of the matrix that needs to be inverted is

given by #ωp#oq2, the inversion scales „ p#ω#o2q3. Altogether this part hence scales

as #q#ω4#o6. (The numerical effort for calculating the self energy via the equation of

motion (4.84) is „ #q2#ω2#o6 and becomes the leading contribution at high temper-

atures and a large number of q-points.) For the AbinitioDΓA computation of SrVO3

with #o “ 3 and #q “ 203, the numerical effort with respect to the number of Matsub-

ara frequencies #ω has explicitly been tested by performing computations with three

different frequency box sizes: #ω “ 120, #ω “ 240 and #ω “ 400. Fig. 4.16 shows

the respective numerical effort in core h. From Fig. 4.16 it can be seen that the main
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Figure 4.16: Computational effort of the AbinitioDΓA program with respect to the
number of involved Matsubara frequencies #ω.

AbinitioDΓA program scales with p#ωq3.5, which is indeed slightly better than the ex-

pected #ω4 behavior. This is most likely due to the fact that the used linear-algebra

routines for matrix inversions scale better than p#ω#o2q3.8

4.3 Test cases

In order to assess the numerical stability and convergence of the newly developed

AbinitioDΓA program, several test cases have been considered. Since the AbinitioDΓA

is a genuinely new method, there do not exist many other results to compare with. How-

ever, there exists already a DΓA program for the one-band case, which has e.g. been

used to obtain the results in Refs. [9, 98, 99]. Thus, I benchmarked the newly developed

AbinitioDΓA program to this already existing DΓA program. For the multi-band case

instead, we rely on tests performed in the atomic limit, where the results are known

exactly. The results of these test cases are summarized in the following.

4.3.1 One-band Hubbard model

The one-band Hubbard model was chosen as a first test case to benchmark the AbinitioDΓA

program. I considered the one-band 2d Hubbard model at half-filling n “ 0.5 and an

inverse temperature of β “ 8 (all quantities in units of the bandwidth). The Hubbard

interaction was set to U “ 1 and a total number of Nk “ Nq “ 10ˆ 10 k-points in the

reducible 2d Brillouin zone and #ω “ 80 bosonic and fermionic frequencies were used

in the computation.

8The matrix inversion in Eq. (4.83) is performed by using the lapack -routines zgetrf and zgetri, which
compute the inverse of a matrix by triangular decomposition.
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Figure 4.17: Local self-energy for the one-band 2d Hubbard model at half-filling
n “ 0.5 and inverse temperature β “ 8 (#ω “ 80). The local self-energy obtained from
the AbinitioDΓA program (in red) coincides with the original DMFT self-energy (in

grey) up to statistical fluctuations.

Fig. 4.17 shows the result of the first check that has been performed for this system.

Here, all k- and q-dependent propagators Gk and Gk´q have been replaced with their

local counterpart Gν and Gν´ω. This way, the AbinitioDΓA program corresponds to

a local equation of motion and thus reproduces the local DMFT self-energy. Indeed,

Fig. 4.17 shows that the local self-energy obtained this way coincides with the original

DMFT self-energy up to statistical fluctuations stemming from the CT-QMC error,

which is larger for the local two-particle vertex employed in AbinitioDΓA.

After this first check, I computed the k-dependent AbinitioDΓA self-energies and com-

pared them to the results obtained from the one-band DΓA program. Fig. 4.18 shows

the comparison of the self-energies for three different k-points. In order to exclude

uncertainties related to the statistical noise of the CT-QMC input data, I also run

the AbintioDΓA program with exactly the same exact-diagonalization (ED) input data

which was used in the one-band DΓA program. Indeed, Fig. 4.18 shows that this way

the self-energies obtained from the DΓA and the AbinitioDΓA program are lying on top

of each other.

The results presented so far were at half-filling, where additional symmetries apply which

are in general not present away from half-filling. In order to make sure the AbinitioDΓA

program works correctly at all fillings, the 2d Hubbard model at a filling of n “ 0.57 has

been considered. Fig. 4.19 shows that also out of half-filling the local DMFT self-energy

is reproduced correctly by the AbinitioDΓA program. The visible fluctuations in the

local self-energy obtained from the AbinitioDΓA program (red lines in Fig. 4.19) are

due to poor statistics of the CT-QMC data and the small frequency boxes of #ω “ 60

employed in this test run. However, one can observe a small deviation in the real part of
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Figure 4.18: (Abinitio)DΓA self-energies of the 2d Hubbard model (half-filling, β “ 8,
#ω “ 80) for three different k-points: (red) AbinitioDΓA program with CT-QMC
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with ED input data. Up to statistical fluctuations (in particular at large frequencies
iν) stemming from the CT-QMC input data, all self-energies are lying on top of each

other.
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self-energy.

the self-energy even at the first fermionic Matsubara frequencies (visible in the left panel

of Fig. 4.19). Thus, in order to make sure that there is no error in the AbinitioDΓA

program, I compared with out of half-filling results obtained from the existing one-

band DΓA program. Since there were no DΓA results available for the same test case

(2d Hubbard model, n “ 0.57), Fig. 4.20 shows results for the 3d Hubbard model at

n “ 0.43. There, it can clearly be seen that the one-band DΓA and the AbinitioDΓA

program yield exactly the same result for the local self-energy which agrees very well

with the original DMFT self-energy.9

4.3.2 Two-band atomic limit

Since the present AbinitioDΓA program is the first implementation of DΓA for multi-

orbital systems, the options to actually test the multi-orbital features are very limited.

Of course, in any case one can and should always check that the local version of the

AbinitioDΓA program correctly reproduces the local DMFT self-energy. In particular,

in the multi-orbital case one should make sure that the local version of the AbinitioDΓA

program yields the same local self-energy for all degenerate orbitals.

For further checks, we here rely on computations in the atomic limit, where no hybridiza-

tion of the impurity with the bath exists. In this simplified limit, the self-energy and

the two-particle Green’s function can be calculated analytically. Thus, one can provide

9For the test cases out of half-filling presented in Figs. 4.19 and 4.20, no actual DΓA self-energies
have been computed. The agreement of the AbinitioDΓA with the DΓA program in the cases presented
so far has been regarded to be sufficient to indicate that the AbinitioDΓA program is working correctly
for the one-band case.
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Figure 4.21: Two-band atomic limit at half-filling (n “ 0.5) and interaction param-
eters U “ 1.0, J “ 0.25 and U 1 “ 0.5. The exact solution (in grey, background) is
reproduced correctly by the AbinitioDΓA program with exact input data (in blue) as

well as QMC input data (in red). (here #ω “ 80)

the AbinitioDΓA program with the exact two-particle Green’s function of the atomic

limit and make sure that the resulting self-energy corresponds to the exact solution.

Fig. 4.21 indeed shows that the exact self-energy in the two-band degenerate atomic

limit at half-filling is correctly reproduced by the AbinitioDΓA program. In fact, when

the program is provided with the exact two-particle Green’s function, the resulting self-

energy perfectly agrees with its exact counterpart. In addition, also the atomic limit

two-particle Green’s function obtained through CT-QMC yields the correct self-energy

up to statistical fluctuations.10

Furthermore, I also investigated the two-band atomic limit for a filling of n “ 0.3.

Fig. 4.22 shows that in this case the AbinitioDΓA algorithm yields a self-energy which

slightly deviates from the exact solution. Especially the real part of the self-energy in

the left panel of Fig. 4.22 shows a notable offset compared to the exact solution. This

deviation is most likely an artefact of the finite size (here #ω “ 80) of the employed

fermionic and bosonic frequency boxes. In fact, I checked the convergence of the self-

energy with respect to the employed frequency boxes and found that by increasing #ω

the self-energy converges towards its exact solution (see Fig. 4.23). This suggests that

the limitations due to finite frequency box sizes within the AbinitioDΓA program can

be overcome by a final extrapolation of the AbinitioDΓA self-energy.

10Please note that the self-energy shown in Fig. 4.21 applies to both orbitals since they are degenerate.
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Chapter 5

AbinitioDΓA results for SrVO3

This chapter shows the first AbinitioDΓA results for the transition metal oxide SrVO3.

I have chosen SrVO3 as the first material to be studied within AbinitioDΓA since it is a

well-established testbed material in the field of strongly correlated materials. Please note

that most of the results presented here have already been published in A. Galler et al.,

Phys. Rev. B 95, 115107 (2017), which has also been taken as the textual basis for this

chapter.

Strontium vanadate, SrVO3, is a strongly correlated metal that crystallizes in a cubic

perovskite lattice structure with lattice constant a “ 3.8Å. It has a mass enhance-

ment of m˚{m „ 2 according to photoemission spectroscopy [118] and specific heat

measurements [119]. At low frequencies, SrVO3 further reveals a correlation induced

kink in the energy-momentum dispersion relation [77, 120–122] if subject to careful

examination [122]. SrVO3 became the testbed material for the benchmarking of new

codes and the testing of new methods for strongly correlated electron systems, see e.g.

Refs. [48, 92, 118, 120, 123–130]. Besides academic interests, SrVO3 actually has a

number of potential technological applications, e.g. as electrode material [131], Mott

transistor [132], or as a transparent conductor [133].

Here we first employ Wien2k [19, 113] band-structure calculations in the generalized

gradient approximation (GGA) [10] and wien2wannier [49] to project onto maximally

localized Wannier functions [50] for the low-energy t2g orbitals of vanadium. The mo-

mentum dispersion corresponding to these orbitals is shown in Fig. 5.1 (left) along with

a cut of the Fermi surface (right). For these low-energy orbitals the constrained lo-

cal density approximation [135] yields an intra-orbital Hubbard U “ 5 eV, a Hund’s

exchange J “ 0.75 eV and an inter-orbital U 1 “ U ´ 2J “ 3.5 eV [118, 120]. These

101
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Figure 5.2: Real (left) and imaginary (right) part of the generalized susceptibility
χωνν

1

m,1111 in the magnetic (m) channel for the 1111 orbital component at ω “ 0. χ is

related to the irreducible local vertex via Eq. (4.20). By summing χωνν
1

m over its two
fermionic frequencies ν and ν1 one can obtain the physical local magnetic susceptibility

χωm, as e.g. in Ref. [134].

interaction values were shown to reproduce the experimental mass enhancement within

DMFT [118, 120, 123].1

We use the Kanamori parametrisation of the local interaction with the above values for

U , U 1 and J and perform DMFT calculations for the thus defined low-energy model at an

inverse temperature β “ 10eV ´1. In DMFT the lattice model is self-consistently mapped

onto an auxiliary single Anderson impurity model (AIM) [136]. In order to extract

the local dynamic four-point vertex function we use the w2dynamics package [42, 51],

which solves the AIM using continuous-time quantum Monte Carlo in the hybridisation

1For studying the recently suggested role of plasmonic effects [48, 125, 129] on the quasi-particle
renormalization, we would need to include a larger set of orbitals in AbinitioDΓA, which is possible
if the local vertex corrections are restricted to the d orbitals. Alternatively, one could perform the
AbinitioDΓA with a dynamical/retarded interaction.



103

expansion (CT-HYB) [106, 107]. When considering non-density-density interactions

(such as the Kanamori interaction), the multi-orbital vertex function is only accessible

by extending CT-HYB with a worm algorithm [108]. To illustrate the complexity of

this quantity, we display in Fig. 5.2 the generalized susceptibility χωνν
1

m,1111 [related to

the vertex via Eq. (4.20)] as a function of the two fermionic frequencies at zero bosonic

frequency and all orbital indices being the same.

While the CT-HYB algorithm is in principle numerically exact, the four-point vertex

function usually suffers from poor statistics due to finite computation times. In an

effort to limit the statistical uncertainties to an acceptable level, we further make use

of a sampling method termed “improved estimators” [109, 112]. This method redefines

Green’s function estimators of CT-HYB by employing local versions of the equation

of motion, resulting in an improved high-frequency behavior for sampled quantities.

Additionally, we also employ high-frequency asymptotics for the vertex function, which

further reduce statistical uncertainties and allow for an extrapolation to larger frequency

boxes. Thus, within CT-HYB, we sample a cubic frequency box with 120 points in each

direction and compute the high frequency asymptotics as described in Ref. [116]. In

principle, through the use of the high frequency asymptotics, arbitrary big frequency

boxes for the vertex function are accessible. However, in order to limit the numerical

effort of the AbinitioDΓA program, we restrict ourselves to a maximum of 400 frequency

points in each direction.

Before computing the actual AbinitioDΓA self-energies for SrVO3, we check the quality

and statistics of the four-point vertex sampled in CT-HYB. Thus, we employ the local

version of the equation of motion, which should reproduce the original DMFT self-energy

and reads Σν
DMFT “ ´β

´1
ř

ων1Uχ
ων1ν1
0 Fων

1ν
d Gν´ω [see Eq. (4.62)]. Fig. 5.3 shows the

comparison between the local DMFT self-energy obtained this way (in red) and the

original DMFT self-energy (in grey). Small differences are clearly notable. Since similar

deviations have already been observed for test cases out of half-filling in Sec. 4.3, where

they could be attributed to the finite size of the employed frequency boxes, we study the

convergence with respect to the frequency boxes also here. Thus, beside the frequency

box of #ω “ 400 frequencies2 used to obtain the result in Fig. 5.3, we further employ

two smaller frequency boxes with #ω “ 240 and #ω “ 120 respectively. Fig. 5.4

shows a clear tendency towards the correct DMFT result with increasing frequency box

size. Convergence is, however, not yet reached. In the AbinitioDΓA implementation we

therefore explicitly substitute Σν
DMFT with the original DMFT result. Consequently, all

remaining U -terms in the equation of motion (4.71) are non-local terms, which decay

faster with frequency than their local counterparts by at least one power. Indeed, the

2A frequency box of #ω “ 400 yields Matsubara frequencies extending to ˘p400`1qπ{β for fermionic
and to ˘400π{β for bosonic frequencies, respectively.
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Figure 5.3: Comparison between the original DMFT self-energy for SrVO3 (in grey)
and the local self-energy obtained from the local vertex through the local version of the

equation of motion (in red). (employed frequency box size: #ω “ 400)
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Figure 5.4: By increasing the size of the frequency box #ω of the local vertex, the
local self-energy slowly approaches the DMFT solution.

AbinitioDΓA self-energy obtained this way depends only very weakly on the size of

the employed frequency box: in Fig. 5.5, the symbols indicate results for the smallest

frequency box #ω “ 120, while the lines depict the self-energy for the largest box

#ω “ 400.

The two top panels of Fig. 5.5 show the momentum-dependent self-energy Σmm1piν,kq of

SrVO3 in the t2g subspace (m “ xy, xz, yz) for three selected k-points. For a comparison,

also the momentum-independent DMFT self-energy is shown. The results have been

obtained following the AbinitioDΓA approach developed in Sec. 4.1 with the local vertex

obtained from a DFT+DMFT calculation (using a constrained DFT interaction) as a

starting point. Please note that concomitant to the restriction to the t2g subspace and
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Figure 5.5: (Color online) AbinitioDΓA k-dependent self-energies and spectral functions
for SrVO3. Shown are the imaginary (top) and real (middle) part of the self-energy and
the corresponding spectral function (bottom) for the k-points Γ “ p0, 0, 0q (first column),

X “ p0, π, 0q (second column) and M “ pπ, π, 0q (third column).

the DFT starting point, we did not include the inter-site interaction V q yet.3

We first discuss the self-energy via its low-frequency expansion: Σpiν,kq “ <piν Ñ
0,kq` i=Σpiν Ñ 0,kq` p1´ 1{Zkqiν`Opν2q. From the local DMFT self-energy we ex-

tract4 a quasi-particle weight ZDMFT “ 0.49 and a scattering rate γDMFT ” ´=ΣDMFTpiν Ñ

0q “ 0.37 eV. The imaginary parts of the AbinitioDΓA Matsubara self-energy (see

Fig. 5.5 top panel) suggest a slight enhancement of the quasi-particle weight Zk (smaller

slope at low energy) for all momenta and orbital components. Interestingly, we find

for the quasi-particle weight Zk an extremely weak momentum-dependence. Indeed Zk

varies by less than 2% within the Brillouin zone. This is also illustrated in Fig. 5.6 (d)

which displays Zk of the dxy Wannier orbital in the kz “ 0 plane. The corresponding

dependence of γk is displayed in panel (c) of Fig. 5.6. Also here, we see only a small

momentum differentiation of at most 10%.

3Using a larger window of orbitals, it would be possible to include U ` V q even if the local vertex is
calculated only for a smaller subset of orbitals. This would yield at least the GW contribution to the
self-energy.

4We extract the expansion coefficients from the Matsubara data with a 3rd-order polynomial fit to
Σpiνn,kq at the first six Matsubara frequencies, and limit the discussion to orbital-diagonal components.
Spectra are computed with the full self-energy.
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Figure 5.6: (a) Real and (b) imaginary part of the AbinitioDΓA self-energy Σpiν0,kq
at the first Matsubara frequency ν0 (c) scattering rate γk and (d) quasiparticle weight Zk

in the kz “ 0 plane for the dxy orbital.a

aWe extract the expansion coefficients from the Matsubara data with a 3rd-order polynomial fit to
Σpiνi,kq at the first six Matsubara frequencies, and limit the discussion to orbital-diagonal components.
Spectra are computed with the full self-energy.

The momentum-dependence of the DΓA self-energy in general further allows for an

orbital differentiation of correlation effects in this locally degenerate system.5 For Zk

and γk that are both obtained from the imaginary part of the Matsubara self-energy,

only a small difference between non-equivalent orbital components develops (see top

panel in Fig. 5.5).

Much more sizable effects occur for both the momentum and the orbital dependence of

the real-part of the self-energy at low energies. This can be inferred from the middle

panel of Fig. 5.5 and Fig. 5.6 (a) that displays <Σpiν0,kq at the lowest Matsubara

frequency, again for the dxy orbital in the kz “ 0 plane. We witness a momentum-

differentiation of 0.2eV or more—a quite notable effect beyond DMFT. We note that,

contrary to Zk and γk, the momentum-dependence of <Σpiν0,kq in Figure 5.6 (a) does

not mirror the shape of the Fermi surface in Figure 5.1 (right). This will in particular

influence transport properties that probe states in close proximity to the Fermi surface.

At low energies, we also find a pronounced orbital-dependence in <Σpiν,kq: At the X-

point the real-part of the low-frequency self-energy is larger by about 0.1eV for the (at

this k point) degenerate dxy, dyz orbitals than for the dxz component. At the M point

the dxy component is larger than the dxz, dyz doublet.

Combining the influence of the orbital- and momentum dependent self-energy, we hence

find systematically larger shifts <Σpiν “ 0,kq for excitations with higher initial (DFT)

energy. Seen relatively, this means that unoccupied states are pushed upwards and

occupied states downwards, resulting in a widening of the overall band-width. This was

previously evidenced using perturbative techniques [127, 129, 137].

5In particular, away from high-symmetry points, the lifting of degeneracy also allows for orbital-off-
diagonal components in the self-energy. We however find these to be very small in the current system,
which is why we limit the discussion to the diagonal components.
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At high energies, the self-energy becomes again independent of orbital and momentum

to recover the value of the Hartree term.6

We now use the maximum entropy method [54, 138] for the analytical of the AbinitioDΓA

Green’s function7 to real frequency spectra. In the lowest panel of Fig. 5.5 we compare

our results to conventional DMFT for selected k-points. From the above discussion it is

clear that the AbinitioDΓA self-energy will cause quantitative differences in the many-

body spectra, while the overall shape will be qualitatively similar to our and previous

DMFT results. As evidenced above, the inclusion of non-local fluctuations decreases

the degree of electronic correlations: Both, a larger Z and the shifts induced by <Σ,

slightly increase the interacting band-width with respect to DMFT. Indeed, we see in

our spectra signatures of reduced correlations: Hubbard bands are less pronounced and

quasi-particle peaks move away from the Fermi level, although in the current case these

effects are small. This is congruent with previous dynamical cluster approximation

(DCA) calculations that included short-ranged non-local fluctuations [105]. Let us also

note that recently it was indeed found experimentally [139], that the lower Hubbard

band in SrVO3 is intrinsically somewhat less pronounced than previously thought, with

a substantial part of spectral weight actually originating from oxygen vacancies.

The very weak momentum dependence of the quasi-particle dynamics and electronic

lifetimes does not come as a surprise. Indeed, the local nature of Z was previously

established in a DΓA study of the 3D Hubbard model [101], and, using perturbative

techniques, in metallic oxides [129] and the iron pnictides and chalcogenides [137, 140].

On the other hand, these studies found a largely momentum-dependent static contri-

bution <Σpν “ 0,kq to the self-energy. Going beyond model studies and perturbative

methods, we here confirm that <Σpν “ 0,kq indeed contains non-negligible momentum-

dependent correlations beyond DMFT even for only purely local interactions. Still,

in the current study, momentum-dependent effects are small enough to only lead to

quantitative changes. There are three main reasons for the preponderance of local self-

energy effects: (1) SrVO3 is not in close proximity to a spin-ordered phase or any other

second-order phase transition. Therefore, non-local spin- or charge-fluctuations were

not expected to be particularly strong. (2) SrVO3 is a cubic, i.e. fairly isotropic system.

Non-local correlation effects are generally more pronounced in anisotropic or lower di-

mensional systems. Therefore, we can speculate that non-local self-energies will become

more prevalent in ultra-thin films of SrVO3 [132, 141]. (3) The GW approach in fact

yields a much larger static k-dependence <Σpν “ 0,kq [127, 129]. This is however an

effect of the non-locality of the interaction which yields a largely momentum-dependent

6The Hartree term is k-independent since the interactions we use here are local.
7In our AbinitioDΓA calculations we do not update the chemical potential. However, from the DΓA

Green’s function we find a particle number of 1.062, which is very close to the target occupation of 1.
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screened exchange contribution to the self-energy.8 While non-local interactions are in-

cluded in the AbinitioDΓA formalism (see Sec. 4.1), we here performed calculations with

a local interaction only, and are thus missing this effect.

8Indeed, applying the GW approach to the one-band Hubbard model (in which exchange effects
are absent by construction), results in a negligible momentum dependence of <Σpν “ 0,kq in three
dimensions [101].



Chapter 6

Conclusion and outlook

In this thesis, I have introduced methods to treat materials with local and non-local elec-

tronic correlations, namely the well-established DFT+DMFT approach and the newly

developed AbinitioDΓA methodology. Furthermore, I have presented results for specific

correlated materials—the intermetallic FeAl and the transition metal oxide SrVO3.

The first part of this thesis has been devoted to the DFT+DMFT approach and a

particular DFT+DMFT study of the intermetallic FeAl. In Chap. 1, which provided

a general introduction to the DFT+DMFT method, I have first briefly discussed the

basic ideas of density functional theory (DFT). Then, I have introduced the multi-

orbital Hubbard model and the necessary steps to combine DFT with DMFT, namely

the Wannier projection and the constrained random-phase approximation (cRPA). In

the following, the solution of the multi-orbital Hubbard model within dynamical mean-

field theory (DMFT) has been discussed in detail. A short section at the end of Chap. 1

has been dedicated to DFT+DMFT spectral functions and the problem of analytical

continuation. Finally, in Chap. 2, I have presented the results of a DMFT+DMFT

study for the intermetallic FeAl. While DFT wrongly predicts FeAl to be ferromagnetic,

no magnetization and a paramagnetic susceptibility for the whole range of temperature

investigated is found within DFT+DMFT. I have shown that this behavior originates

from quantum fluctuations that screen short-lived local magnetic moments of 1.6µB.

In the second part of this thesis, starting with Chap. 3, I have presented in detail the

newly developed ab initio dynamical vertex approximation (AbinitioDΓA). The latter

represents a diagrammatic extension of DMFT, which can take into account non-local

electronic correlations and a non-local Coulomb interaction. Since AbinitioDΓA is the

extension of DΓA to ab initio materials’ computations, I decided to provide an overview

over the basic ideas of DΓA and its success over the last years in Chap. 3. In the

following Chap. 4, the multi-orbital AbinitioDΓA equations have been derived and some

109



110 CHAPTER 6. Conclusion and outlook

implementational details regarding the new AbinitioDΓA program have been discussed.

In the end of Chap. 4, I also included the results of some test cases, which I used in order

to test the newly developed AbinitioDΓA program. In Chap. 5, I have finally presented

the first AbinitioDΓA results for a realistic material, namely SrVO3, a frequently used

testbed material in the field of strongly correlated electron systems.

The first AbinitioDΓA study for SrVO3 shows that the AbinitioDΓA methodology, which

has been developed within this thesis, is capable of studying non-local electronic corre-

lations in realistic materials. In fact, the present AbinitioDΓA study for SrVO3 already

included three correlated orbitals. The AbinitioDΓA method has now been implemented

and tested on the testbed material SrVO3 and is ready to be used on materials where

non-local correlations and a non-local Coulomb interaction are expected to play an im-

portant role. However, before that, the role of the non-local Coulomb interaction V q

still needs to be tested, since it has not yet been included in the AbinitioDΓA study for

SrVO3 presented in this thesis. But once the non-local Coulomb interaction is tested,

non-local effects in a variety of materials can be investigated. Possible candidates are e.g.

cuprate superconductors with their layered crystal structure or SrVO3 thin films. Closely

related to the AbinitioDΓA approach and possible future projects are also the calcula-

tion of the q-dependent magnetic susceptibility (e.g. in Fe) and the optical conductivity

including vertex corrections. Another remaining task is the further development of the

AbinitioDΓA program. There, e.g. the implementation of additional symmetries, es-

pecially k-point symmetries, could reduce the current numerical effort, making bigger

systems with more correlated orbitals accessible to AbinitioDΓA.
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Mein größter Dank geht jedoch an meine Familie, besonders an meine Eltern Elisabeth

und Martin. Vielen Dank für eure konstante Unterstützung und Ermutigung, auf die ich
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for academic achievements, 11/2011



Merit scholarship by the Autonomous Province Bozen-Südtirol: 07/2013, 07/2012, 07/2011,
07/2010, 07/2009
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for the best secondary school graduates in the Autonomous Province Bozen-Südtirol, 10/2007
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