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Abstract

This paper analyzes the arising problems of using MCMC sampling methods under

different model parameterizations in a stochastic volatility model. It turns out that the per-

formance of Bayesian inference is dependent on the true parameter values. The standard

centered parameterization has shortcomings when the variability of its volatility is rela-

tively small, while the non-centered parameterization presents with complications when

the persistence parameter is close to one.

This paper uses the recently presented ancillarity-sufficiency interweaving strategy which

overcomes the pitfalls of the parameterizations by using both of them in order to update

the latent states and the parameters of interest jointly, this way maintaining the dependence

between them.



1 Introduction

1.1 Motivation

By definition, stochastic volatility models are those in which the variance of a given stochastic
process is itself randomly distributed. They are used for instance in the field of mathematical
finance, as it is crucial to understand the underlying variability in markets in order to optimize
risk management or investment decisions. The arising problem lies in the fact that volatility is
a latent phenomenon. As volatility is usually a required statistics for the observed variable, it is
inevitable to estimate its path somehow.

One way of estimation is to represent it as a random variable, emphasizing its unpredictability.
The fluctuation of the value of a financial product imply a varying volatility process. We have
a plethora of evidence suggesting time-varying volatility. To be convinced, it is enough to con-
sider the bigger financial crises. If we look at Figure 1. which shows us the log returns of the
S&P 500 between 2007 and 2016, we can clearly see that the volatility is time-varying.

Figure 1. displays the so called “volatility clustering”, which refers to the observation of Man-
delbrot (1963, p. 418.): “large changes tend to be followed by large changes, of either sign, and

small changes tend to be followed by small changes.”

Analyzing Figure 2. we see that the distribution of log returns is highly peaked and fat-tailed
compared to the normal distribution (with kurtosis 9.7). In the literature, high central peak and
fat-tails are usually characteristics of mixtures of distributions with different variances (Man-
delbrot (1963)). This also serves as a reason why we need to consider volatility as a random
variable. The aforementioned “volatility clustering” implies that volatility is correlated with
past realizations of the volatility process, which is a consequence of mean-reversion.
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Figure 1: Log returns of S&P500

Figure 2: Normal distribution (red) and the frequency distribution of the S&P 500 log returns
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1.2 Outline of the estimation process

Even after allowing volatility to vary over time, there is still no consensus over how to model
volatility or how to best estimate the required parameters. My main focus will be on univariate
stochastic volatility (SV) autoregressive models.
The SV model, which was first introduced by Taylor (1986), had the pioneering idea of allowing
the variance of the returns to be a random process. The characteristics of the SV models explain
better the modern financial innovations than the ARCH models.
First let’s consider the underlying continuous process: the SV price dynamics comes from the
movements of an equity index Yt and its stochastic volatility Vt via a continuous diffusion by a
Brownian motion (Hull and White (1987)):

d log Yt = νdt+
√
VtdB

P
t

d log Vt = κ(γ − log Vt)dt+ τdBV
t . (1)

Where the driver parameters of volatility are (ν, κ, γ, τ) and (BP
t , B

V
t ) are the Brownian mo-

tions. As we can access data only in discrete time, it is natural to take the Euler discretization
of equation (1) in order to get the stochastic volatility autoregressive model :

yt = exp(ht/2)εt (2)

ht = µ+ φht−1 + τηt. (3)

Where ht = log Vt, εt, ηt are iid. normal errors. We take ν = 0 as a simplification, µ = κγ, φ =

1− κ. Here in this setting ht is the underlying stochastic volatility which can be interpreted as
the unobservable information on the markets, and θ = (µ, φ, σε, τ) are the vector of parameters.
The initial state is h1 ∼ N (µ, τ 2/(1− φ2)).
Our interest is to estimate the parameters in the discrete model and preferably to extract the
volatility sequence h1:T = (h1, ..., hT ) in order to evaluate the uncertainty surrounding the
returns. The arising difficulty in estimating the model given by equation (2), (3) is that yt
depends non-linearly on the states ht. We are facing a non-linear state-space model, where
equation (2) defines the measurement equation, equation (3) defines the transition equation. The
measurement equation represents the relation between the observed data yt and the unobserved
state variable h1:T . The transition equation indicates the evolution of the state variable.
Due to the non-linear dependence in (2), we cannot use Kalman filter equations to obtain the
likelihood function of the observations. One response to this obstacle is to approximate the
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measurement equation by linearization:

ln y2t = ht + ln ε2t , εt ∼ N (0, 1) (4)

The obvious choice would be the maximum likelihood estimation method (Harvey et al. 1994)
by approximating the density of ln ε2t by a normal density. The downfall of the resulting linear
Gaussian state-space model is that it does not compensate for approximating by only one normal
density, hence the resulting estimation is only a quasi maximum likelihood estimate (QML).
Another linearization of the measurement equation was introduced in Kim et al. (1998) and
Omori et al. (2007) where the density of ln ε2t is approximated by a mixture of normal densities,
often called as auxiliary mixture sampling:

ln ε2t ∼
N∑
i=1

piρ(mi, s
2
i ) (5)

(ln ε2t |rt = i) ∼ N (mi, s
2
i ) rt ∈ 1, 2, ..., N (6)

Where pi is the weight of the mixture element, mi, s
2
i are the mean and variance of the normal

density denoted by ρ.
Kim et al. (1998) used 7 mixture components, Omori et al. (2007) uses 10 components and his
approximation is promising on Figure 3. We have to emphasize that the values for p, m and s2

are fixed and they do not depend on any parameters or variable.
The QML method would correspond to a 1-component "mixture" in this sampling.
In conclusion, using the auxiliary mixture approximation, the model given by equation (4) is
now conditionally a linear Gaussian state-space model given the indicators r = (r1, r2, ..., rT ).
In this setting, the next step is a Bayesian Markov Chain Monte Carlo (MCMC) approach
with data augmentation instead of maximizing the likelihood function. If one assumes that the
element rt of the mixture is used at time t then the measurement equation of (4) can be rewritten
as:

ln y2t = ht +mrt + ξt, ξt ∼ N (0, s2rt) (7)

From then on, the forward filtering backward sampling (FFBS) method can be used: conditional
on the data Y, the indicator vector r and parameters θ the FFBS offers a sample from the states
h. Then, given h, Y and the indicators r the parameter vector θ can be evaluated. Afterwards,
given Y, h and θ each mixture node has a certain probability which can be computed.
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Figure 3: Difference between X 2 distribution and the 10-component mixture distributions
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2 MCMC

One of the main limitations of the SV model is that the distribution of the return yt, conditional
on the Information set It−1 is often analytically intractable. To overcome this problem, we use
Bayesian inference in this paper. This section reviews the concept of Bayesian statistics based
on Petris et al. (2007) and Platanioti et al. (2005).

2.1 Bayesian Econometrics

The essence of Bayesian statistics is that specific variables might contain some uncertainty
and because of this, they should be described by probabilistic tools. Denoting the variable of
interest as a random variable with a certain probability distribution is supported by the fact
that we seldom have perfect information about for example financial markets and we might be
missing latent processes or dealing with measurement errors.
Bayesian statistics account for the missing information with the usage of conditional probability.
Given the known information we can update our beliefs about the event of interest. The main
result used in Bayesian econometrics is by Thomas Bayes that says:

P (A|B) =
P (B|A)P (A)

P (B)
.

The expression says that the probability of A given B is the fraction of the probability of B
given A times the marginal probability of A and the marginal probability of B.
We can also interpret the expression as the updating scheme of our "learning process" about our
event of interest. If we think that event B contains information about event A, but event A is
unobservable, then knowing that event B occurred must change our prior beliefs about event A.
In most cases in practice, event B is usually something that can be observed or sampled, event A
is usually the vector of parameters that describes the model. The observable process is usually
denoted by a random variable y, and the parameters of interest are usually denoted by a vector
θ. The Bayesian inference of θ is given by the Bayes formula:

π(θ|y) =
f(y|θ)π(θ)∫

θ
f(y|θ)π(θ)dθ

∝ f(y|θ)π(θ)

Where f(y|θ) is called the likelihood function or the model specification, π(θ) is called the
prior and m(y) is the marginal density of y. The prior, π(θ) should be chosen as to properly
mirror our beliefs about θ.
The striking difference from the frequentist viewpoint in this procedure is that with the Bayes
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rule, the parameters of interest θ have a probability distribution which can account for the un-
certainty about the "perfectness of the collected information". We already treat θ as a random
variable with its prior, then we collect the data y and update our beliefs to obtain the posterior
distribution of the parameters π(θ|y).
Using the posterior of the parameters, we can draw inferences from the model that we assume
to have generated the given data. By treating the parameters as random variables we can drop
the notion of confidence intervals and simply express the probability of the parameters being in
a certain interval.
One of the main drawbacks of Bayesian statistics is that the posterior distribution of the pa-
rameters of interest π(θ|y) is often analytically intractable, which means that is not of standard
form. One can face computational problems in the posterior distribution, or it can happen that
the posterior distribution does not even exist. One way to overcome these problems is to use
specific sampling methods such as Markov Chain Monte Carlo (MCMC).

2.2 Markov Chain Monte Carlo methods

This section reviews two well-known Markov Chain Monte Carlo (MCMC) samplers. MCMC
is a useful device to generate samples from arbitrary posterior distributions. Its main idea is to
draw a sample from approximated distributions and then use them in order to update and im-
prove the approximation by correcting them. Each iteration step of an MCMC sampler depend
on the latest draw and try to make it better in order to converge to the target distribution of the
parameters of interest.

2.2.1 Sampling methods

In my thesis I am using two particular MCMC sampling methods: the Gibbs sampler and the
Metropolis-Hastings algorithm. I will now introduce the two procedures using the notation and
the concept from Gelman et al. (2014).

• Gibbs sampler
This specific Markov chain method has the striking advantage of usability when facing a
multidimensional problem. To sample from the parameter of interest θ, we first partition
it into d parts, namely θ = (θ1, θ2, ..., θd). With each iteration, the Gibbs sampler goes
through the whole subvector, drawing a new θj conditional on all the other θk, k 6= j. At
the end of each iteration there are exactly d (the number of partitions of θ) draws.
At each iteration t, each θtj is drawn - assuming all the other values of θ are given - from
the following conditional distribution function:

p(θtj|θt−1−j , y)
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Hence we update every component of θ conditional on the previous values of the other
elements of θ, that is why this algorithm is also called the alternating conditional sampling
method.

• Metropolis-Hastings algorithm
The Metropolis-Hastings algorithm is a special case of the Metropolis algorithm. The
method is the following:

1. Draw a starting point θ0 from a starting distribution p0(θ). We can get this starting
distribution from an approximation or it can also be a simple crude estimation.

2. For t = 1, 2, ...:
The generation of θt is a two-stage procedure in this algorithm for all t.
First, we sample θ? from a proposal distribution at time t. This θ? is a candidate to
be θt.
In the second step, we have to calculate the following ratio of densities:

R =
p(θ?|y)/J(θ?|θt−1)
p(θt−1|y)/J(θt−1|θ?)

And then we can either accept or reject the proposed candidate given the following
rule:

θt =

{
θ? with probability min(R, 1)

θt−1 otherwise

The ratio of the proposal distributions J(θt−1|θ?)/J(θ?|θt−1) correct for any arising
bias.
The ratio R is required to be calculable for all (θ, θ?). Even if the proposed parameter
is not accepted, it still counts as an iteration step.

2.2.2 Problems with the convergence rate

Using the notations of Brooks (1998), I briefly summarize the possible problem with the con-
vergence rate.
For a given target distribution π, MCMC methods construct a chain {Xn} which has π as its
invariant distribution, no matter what the initial X0 is. Although the used MCMC algorithm
usually satisfies convergence, the arising issue is the speed at which the specific MCMC al-
gorithm converges to the stationary distribution. This feature determines how many simulation
steps we should run the chain before treating the simulated values as draws from the invariant π.
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A related issue is the dependence of the draws. High dependence among the samples can result
in very slow convergence of the average estimates to the expectations under π. Papaspiliopoulos
et al. (2003) investigated the latter problem carefully and computed exact convergence rates for
particular classes of MCMC algorithms.

2.2.3 Understanding the problem through an example

The two-component Gibbs sampler will be of particular importance in this subsection.
Let’s try to understand why the methods work badly under some true parameters. I will focus
on a linear state space model:
Non-centered parameterization:

yt = µ+ at + εt εt ∼ N (0, σ2
ε )

at = φat−1 + ηt ηt ∼ N (0, σ2
η)

a1 ∼ N (0, σ2
η/(1− φ2)). (8)

Centered parameterization:

yt = ωt + εt εt ∼ N (0, σ2
ε )

ωt = µ+ φ(ωt−1 − µ) + ηt ηt ∼ N (0, σ2
η)

ω1 ∼ N (µ, σ2
η/(1− φ2)). (9)

Given these two parameterizations, let’s focus on a simple case, when only one parameter is
unknown. I will follow the approach of Gelfand et al. (1995) in order to consider the effect
of the Gibbs-sampling in both cases. Consider σ2

ε , σ
2
η and φ as the fixed parameters, and think

about what happens to µ in the two parameterizations. As we do not have to sample the other
parameters, the updating problem simplifies to sampling from µ|y,a and µ|ω,y. Clearly, the
interesting feature is the correlation in the Gibbs sampling. Pitt and Shephard (1999) defined
the autocorrelation at lag 1 for the non-centered parameterization as ρµ(1; a) and similarly for
the centered one by ρµ(1;ω).
After a rather long computation, they get the following important feature:

ρµ(1; a)→ 1 as φ→ 1

ρµ(1;ω)→ 0 as φ→ 1

9



Papaspiliopoulos et al. (2003) computed the convergence rate for these parameterizations using
the results of Roberts and Sahu (1997):

ρc = 1− κ

ρnc = κ, where

κ =
σ2
η

σ2
η + σ2

ε

. (10)

1 − κ is called the Bayesian fraction of missing information. Equation (10) means that the
centered method will face problems when the observed data is not informative, while the non-
centered method will perform badly, when the data is informative.
Papaspiliopoulos et al. (2003) also calculated the asymptotic relative performance of the two
parameterizations for Gaussian state-space models:

1− ρnc
1− ρc

=
1− κ
κ

1− φ
1 + φ

(11)

So the relative performance of the two parameterizations depends on the “signal/noise ratio”
and the persistence parameter. Analyzing equation (11), we can say that given the error terms,
the higher the dependence (parameter φ) among the latent volatilities, the more preferable the
centered model becomes over the non-centered one.
Given these features, we can expect to have highly correlated (slowly converging) samples of
µ when φ is close to one under the non-centered model, and rapidly converging samples under
the centered model.
I followed Papaspiliopoulos (2003) estimating µ with both models using the two-component
Gibbs sampling method as follows:

1. a|y,µ then µ|a,y

2. ω|y,µ then µ|ω,y

So basically sampling the states given all parameters then all states given µ.
The conditional densities are the following:

10



a|y, µ ∼ N (V b− 1µ, V ),

µ|a, y ∼ N (y − a, σ2
ε/n),

ω|µ, y ∼ N (V b, V ),

µ|ω, y ∼ N (p/q, σ2
η/p) (12)

where

V = (σ−2ε In +D−1)−1,

b = σ−2ε y +D−11µ,

p = (n− 1)(1− φ)2 + (1− φ2),

q = ω1(1− φ2) + (1− φ)
n∑
i=2

(ωt − φωt−1) (13)

and

D−1 = 1/σ2
η



1 −φ 0 . . . 0

−φ 1 + φ2 −φ . . . 0

0
. . . . . . . . . 0

... . . . −φ 1 + φ2 −φ
0 . . . 0 −φ 1


. (14)

With both parameterizations, I simulated 200 observations, sampled 20000 times and looked at
the path of µ and its autocorrelation. In the following figures we can see that our prediction was
correct: when φ is close to 1 and the ratio of the errors is small (φ = 0.98, σ2

η = 0.02, σ2
ε = 0.1),

the speed of convergence of the centered model is almost zero (near independence), while the
non-centered parameterization has autocorrelation beyond lags of 200. Both samplers of µ vary
around its true value.
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Figure 4: Centered method varying around true µ = 3

Figure 5: Uncentered method, varying around true µ = 3

Figure 6: Autocorrelation for centered method
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Figure 7: Autocorrelation for uncentered method

When φ is close to zero, then the centered model has problems with convergence (with no-
table autocorrealtion at lag 100) and the non-centered model converges rapidly:

Figure 8: Autocorrelation for centered method, φ = 0.05

Figure 9: Autocorrelation for centered method,φ = 0.5
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Figure 10: Autocorrelation for uncentered method, φ = 0.75

Figure 11: Autocorrelation for uncentered method, φ = 0.1
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3 Ancillarity Sufficiency Interweaving Strategy

The parameterization of MCMC algorithms, such as data augmentation (DA) has been of partic-
ular interest in statistics for many years. I will now summarize the paper by Yu and Meng (2011)
which provides a remedy to the problem of the possible inefficiency of estimating centered and
non-centered models.

3.1 Introduction of the method

The ancillarity-sufficiency interweaving strategy (ASIS) uses two special data-augmentation
schemes, the ancillarity-augmentation (AA) and the sufficient-augmentation (SA) and bounds
them together by interweaving them in each iteration step of the sampler. ASIS exploits the fact
that the missing data is an ancillary statistic in the AA scheme, meanwhile in the SA scheme,
the missing data is a sufficient statistic. In a Bayesian setting, being an ancillary statistic means
that the parameter of interest and the missing data are a priori independent, while being a suffi-
cient statistic means that the parameter of interest depends only on the missing data.
Although both of the parameterizations have the same target distribution, it is well established
(Meng and van Dyk (1997)) that there are cases when one parameterization has a fast conver-
gence rate while the other has a rather slow convergence rate (or can even fail to converge).
Yu and Meng (2011) explain their method with a simple two-level normal hierarchical model:

Yobs|(θ, Ymis) ∼ N (Ymis, 1)

Ymis|θ ∼ N (θ, V ), (15)

where the posterior:

θ|Yobs ∼ N (Yobs, 1 + V ).

Using Ymis as the unobservable data, the DA method iterates between drawing Ymis|(θ, Yobs)
and sampling θ|Yobs, Ymis:

Ymis|(θ, Yobs) ∼ N
(
θ + V Yobs

1 + V
,

V

1 + V

)
θ|(Yobs, Ymis) ∼ N (Ymis, V ) (16)

In this setting Ymis is a sufficient statistic for θ. And the convergence rate is 1
1+V

15



Moreover, if we let: Ỹmis = Ymis − θ and use Ỹmis as the missing data, then the model changes
to:

Yobs|(θ, Ỹmis) ∼ N (Ỹmis + θ, 1)

Ỹmis|θ ∼ N (0, V ). (17)

This results in the same target distribution:

θ|Yobs ∼ N (Yobs, 1 + V ).

This gives another algorithm:

Ỹmis|(θ, Yobs) ∼ N
(
V (Yobs − θ)

1 + V
,

V

1 + V

)
θ|(Yobs, Ỹmis) ∼ N (Yobs − Ỹmis, 1). (18)

In this setting, Ỹmis is an ancillary statistic for θ. And the convergence rate is V
1+V

.
Concerning the convergence rates, if V is small, then the first parameterization has a rate close
to one, while the rate of the second one is close to zero. If the value of V is big, then the rates
are the other way around.

3.2 How ASIS works

Yu and Meng (2011) continue with explaining their method as follows.
To use the interweaving strategy, we need two DA algorithms say Ymis and Ỹmis such that their
joint distribution p(Ymis, Ỹmis|Yobs, θ) conditional on θ and Yobs is well defined. This joint dis-
tribution is often degenerate in the sense that Ỹmis = M(Ymis; θ) is a one-to-one mapping for
given θ.

The two DA schemes lead to two algorithms, where one iterates between:
Algorithm I:
Step 1. Draw Ymis ∼ p(Ymis|θ)
Step 2. Draw θ ∼ p(θ|Ymis)
Algorithm II:
Step 1̃. Draw Ymis ∼ p(Ỹmis|θ)
Step 2̃. Draw θ ∼ p(θ|Ỹmis)

16



The interweaving scheme replaces Step 2. and Step 1̃. with a single step where we do not
condition on θ when drawing Ỹmis

[Ymis|θt]→ [Ỹmis|Ymis]→ [θt+1|Ỹmis]

Yu and Meng (2011) claim that it is often beneficial to first draw θ ∼ p(θ|Ymis) and then sample
Ymis ∼ p(Ỹmis|Ymis, θ). Subsequently, the previous scheme expands to:

[Ymis|θt]→ [θ|Ymis]→ [Ỹmis|Ymis, θ]→ [θt+1|Ỹmis]

It is worth mentioning that the only difference between the interweaving and the alternating
scheme is that here we draw the next sample from the conditional Ỹmis ∼ p(Ỹmis|Ymis, θ) in-
stead of only conditioning on θ. While this change introduces more dependence in the sampling
of Ỹmis, as it is a function of Ymis and θ, it also accelerates convergence as it causes less depen-
dence between θt and θt+1.

In my computation I use the Global Interweaving Strategy which updates the vector of pa-
rameters jointly and does not partition it into its components. That means that first we need to
sample the missing data (Y t

mis), then conditional on them we can draw a “temporary” vector of
parameters (θt+0.5). This will help us sample the missing data with the other parameterization
(Ỹ t+1
mis ) using the sampled pair of (Ymis, θ

t+0.5), finally, we can sample the new vector of param-
eters (θt+1). Formally, the method is the following:

Global Interweaving Strategy (GIS):

Non-integer superscripts index intermediate draws.

• Step 1. Draw Ymis given θ : Y t
mis|θt

• Step 2. Draw θ given Ymis : θt+0.5|Y t
mis

• Step 3. Redraw θ given Ỹmis : θt+1|Ỹ t+1
mis

where Ỹ t+1
mis ∼ p(Ỹmis|Y t

mis, θ
t+0.5)

17



4 Parameter estimation

In the following, I will describe the method introduced by Kastner and Frühwirth-Schnatter
(2014), which I will use in my computations.
Having motivated the importance of stochastic volatility models in the first section, it is not a
surprise that the SV model has been extensively studied. The method of Kastner and Frühwirth-
Schnatter (2014) can be partitioned into two main parts: first an update of the latent variable
(stochastic volatility) and the second part is a joint update of the latent variable and the vector
of parameters.

4.1 Outline of the estimation

Kastner and Frühwirth-Schnatter (2014) introduce the “centered” SV model which is very sim-
ilar to equation (2) and (3):

yt = exp(ht/2)εt

ht = µ+ φ(ht−1 − µ) + σηt. (19)

They assume εt, ηs to be iid. standard normal innovations independent for all t,s ∈ 1, ...T .
Throughout the analysis we consider |φ| < 1 to get a stationary autoregressive volatility process.
As before, h= (h1, ..., hT ) is the time-varying latent volatility process. The initial state variable
is distributed as: h0|µ, φ, σ ∼ N (µ, σ2/(1− φ2)) .
The basic properties of this model are the following:

• The unconditional mean of ht is: E(ht) = µ
1−φ

• The unconditional variance of ht is: V(ht) = σ2

1−φ2

• As yt is the product of two kind of processes, exp(ht/2) and iid. normal innovations, yt
is stationary if and only if ht is stationary. As ht is assumed to be stationary, it follows
that yt is also stationary (Platanioti et al. (2005)).

When simulating state-space models, an efficiency improvement is often achieved by reparam-
eterization. Kim et al. (1998) and many others consider a “non-centered” version of equation
(2) and (3):

yt ∼ N (0, ω exp(σat))

at = φat−1 + ηt ηt ∼ N (0, 1) (20)
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In the non-centered parameterization µ is shifted from the transition equation to the measure-
ment equation by the following transformation: at = (ht − µ)/σ. The parameter ω = eµ.
They linearize the measurement equations and use the aforementioned 10-component mixture
of Gaussians given by Omori (2007). This method enables them to draw ht directly from
p(h|σ, φ, µ,y). This is possible via several methods i.e. the forward filtering backward sam-
pling (FFBS, Carter and Kohn (1994)) or the Cholesky-factorization of the precision matrix
(McCausland 2011).
In the following subchapters, I will expound the steps needed for estimating h and the parame-
ters of interest.

1. Sampling the latent volatilities via Forward Filtering Backward Sampling.

2. Sampling µ, σ2, φ via Bayesian regression: it can be either a one-block Metropolis-
Hastings sampler for all parameters in the centered model and a two-block Gibbs sampler
for µ and σ2 and Metropolis-Hastings sampler for φ in the non-centered model.

3. Updating the indicator vector r.

4.2 Forward filtering backward sampling (FFBS)

In order to make inference about the parameters of interest, first we have to sample the latent
volatility process h and treat it as known. As mentioned before, the linearization of the mea-
surement equation and the 10 component mixture of Gaussian innovations make it possible to
sample the latent states directly from p(h|σ, φ, µ,y). I am going to use the forward filtering
backward sampling method for my computation and not the Cholesky-factorization as in Kast-
ner and Frühwirth-Schnatter (2014). In the following paragraph I will briefly summarize the
FFBS method based on West and Harrison (1997).

The univariate Gaussian Dynamic Linear Model (GDLM) with intercepts is represented by:

yt|ht,Ψ ∼ N (λt + Ftht, υ
2
t )

ht|ht−1,Ψ ∼ N (µ+Gtht−1, σ
2
t ),

where we condition on Ψ = (λ1:T , µ, F1:T , G1:T , υ
2
1:T , σ

2
1:T ), and treat the initial value as known

h0 ∼ N (m0, C0). Moreover, the observational and the transition errors are not auto- nor cross-
correlated with each other.
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Based on Theorem 4.1. of West and Harrison (1997), the one-step forecast and posterior distri-
butions are as follows:

ht|y1:t ∼ N (mt, Ct),

ht|y1:t−1 ∼ N (bt, Rt) and

yt|y1:t−1 ∼ N (ft, Qt) is the one-step forecast.

With the subsequent recursions we get:

mt = bt + Atet and Ct = Rt − A2
tQt,

At = RtFt/Qt and et = yt − ft are the Kalman gain and the prediction error,

bt = µ+Gtmt−1 and Rt = G2
tCt−1 + σ2

t ,

ft = λt + Ftbt and Qt = F 2
t Rt + υ2t . (21)

In this sampling method we also need the conditional and smoothed densities which is given in
Lopes and Tsay (2011):

ht|ht+1, yt ∼ N (zt, Zt)

ht|y1:T ∼ N (mT
t , C

T
t )

where

zt = mt +Bt(ht+1 − bt+1) and Zt = Ct −B2
tRt+1

mT
t = mt +Bt(m

T
t+1 − bt+1) and CT

t = Ct +B2
t (Rt+1 − CT

t+1)

After applying this sampling method we get the approximated latent volatility process.
To use the 10-component mixture of normal distribution approximation, we have to do the
following in each iteration step:
Denote with ε?t = yt − ht, where ht is the approximated latent state sampled in the previous
iteration step. Then, we compute the probabilities Pr(rt = k) for k ∈ {1, 2, ..., 10} and t ∈
{1, 2, ..., T} according to :

Pr(rt = k) =
pkN (ε?t |mrk , s

2
rk

)∑10
j=1 pjN (ε?t |mrj , s

2
rj

)
,
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where pk is the weight of the mixture element,N (ε?t |mrk , s
2
rk

) is the density function of the nor-
mal distribution with mean and variance mrk , s

2
rk

. Table 1. contains the values of mrk , s
2
rk
, prk

given in Omori et al. (2007). Then we sample the indicator vector r, given the calculated prob-
abilities.
Each element of the sampled indicator vector r determines which normal distribution we should
use in the linearized equation (7). This approximation with the 10-component mixture of nor-
mal distributions will give us a better approximation of the latent volatility process. All we
have to do now is to run the FFBS method, now with λt = mrt and υ2t = s2rt in equation (21),
where the pair of (mrt , s

2
rt) is determined by the sampled indicator component rt for all t (Lopes

(2009)).

k mrk s2rk prk
1 1.92677 0.11265 0.00609
2 1.34744 0.17788 0.04775
3 0.73504 0.26786 0.13057
4 0.02266 0.40611 0.20674
5 -0.85173 0.62699 0.22715
6 -1.97278 0.98583 0.18842
7 -3.46788 1.57469 0.12047
8 -5.55246 2.54498 0.05591
9 -8.68384 4.16591 0.01575
10 -14.65000 7.33342 0.00115

Table 1: Values of the moments for the mixture normal distributions

After drawing h = (h1, h2, ..., hT ), the initial value of the latent process can be sampled
from h0|h1, µ, φ, σ2 ∼ N (µ+ φ(h1 − µ), σ2) in the centered method and from a0|a1, φ ∼
N (a1φ

2, 1) in the non-centered method.

4.3 Sampling µ, φ and σ2 in the centered model

Given the latent log-volatility process h, we now want to sample the vector of parameters θ =

(µ, φ, σ). Kastner and Frühwirth-Schnatter (2014) propose to use the conditional regression
equation of the volatility process in order to have a tractable likelihood function (preg(h|θ)) for
the Bayesian estimation process. The estimation procedure is as follows:

ht = γ + φht−1 + σηt where ηt ∼ N (0, 1). (22)
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They specify the following prior distributions for both parameterizatons, level µ is normally
distributed with mean bµ and variance Bµ, φ+1

2
is beta-distributed and σ2 is gamma-distributed.

The beta distribution makes sure that φ is inside the unit ball (−1, 1), thus we do not have to
worry about stationarity.
In the regression equation (22), γ = (1 − φ)µ and its conditional prior follows from the prior
of µ, that is γ ∼ N ((1 − φ)bµ, Bµ(1 − φ)2). With this transformation, we can interpret the
regression coefficients as follows, γ is the expected value of the log-volatility at time t given
that at time t − 1 the log-volatility was zero. φ is the expected change in the log-volatility at
time t for every additional change in the log-volatility at time t− 1.
In the next paragraphs I will follow Kastner and Frühwirth-Schnatter (2014) and elaborate the
Bayesian estimation process of the two parameterizations.
With treating the latent volatility process as an auxiliary regression model, we can express the
conditional distribution of ht given the parameters and the lagged volatility with a normal dis-
tribution: ht|θ, ht−1 ∼ N (γ + φht−1, σ

2).
I will now regroup the parameters and regressors in order to have a more understandable no-
tation. Let’s denote β = (γ, φ) and H = (1,h0:(T−1)). Obviously, β contains the coefficients
of the regression and H is a T × 2 matrix which contains ones in the first column and the
latent log-volatility variables in the second. Then we can now write down the formula of the
likelihood function:

preg(h|θ) =

(
1

2πσ2

)T/2
exp

{
− 1

2σ2
(h−Hβ)′(h−Hβ)

}
. (23)

We are interested in finding the posterior distribution p(θ|h). We can expand the posterior
into the product of two conditional distributions as follows, p(θ|h) = p(γ, φ|σ2,h)p(σ2|h).
Following the Bayes formula and the auxiliary regression model, we know that p(θ|h) ∝
preg(h|θ)preg_prior(θ). After analyzing the likelihood function (23), a pair of appropriate conju-
gate prior distributions is preg_prior(θ) = preg_prior(β|σ2)preg_prior(σ

2). Kastner and Frühwirth-
Schnatter (2014) propose the following priors: preg_prior(σ

2) ∝ σ−1 and preg_prior(β|σ2) =

N2(0, σ2B0), whereB0 = diag(B11
0 , B

22
0 ), so γ and φ are a priori independent given σ2.

After specifying the conjugate prior distributions and the likelihood function, we can derive the
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posterior of the parameters:

pproposal(β, σ
2|h) ∝ preg(h|β, σ2)preg_prior(β|σ2)preg_prior(σ

2)

∝
(

1

σ2

)T/2
exp

{
− 1

2σ2
(h′h− 2β′H ′h+ β′H ′Hβ)

}
∗(

1

σ4B11
0 B

22
0

)1/2

exp

{
− 1

2σ2
β′B−1

0 β

}
∗ 1

σ

(24)

We have to compare this expression to the pdf of a multivariate normal distribution with ho-
moskedastic errors in order to extract the conditional posterior of β. Supposew ∼ Nn(ξ,Σσ2),
then

f(w) ∝ exp

{
−1

2
(w′Σ−1w − 2ξ′Σ−1w + ξ′Σ−1ξ)

}
Now we can identify the mean and the variance-covariance matrix in equation (24):
Σ−1σ−2 = (H ′H +B−10 )/σ2 so the variance-covariance matrix is Σ = (H ′H +B−10 )−1.
While ξ′Σ−1 = h′H . Multiplying from the right with Σ yields: ξ′ = h′HΣ. After transposing
the terms, we get the final form of the mean, which is ξ = ΣH ′h.

Hence,

γ, φ|σ2,h ∼ N2

(
(H ′H +B−10 )−1H ′h, (H ′H +B−10 )−1σ2

)
. (25)

Then the conditional posterior of σ2 can be computed after collecting the terms containing σ2

from equation (24):

(
1

σ2

)T
2
+ 3

2

exp

{
− 1

2σ2
(h′h− 2β′H ′h+ β′H ′Hβ + β′B−1

0 β)

}

This looks like the kernel of an inverse gamma distribution. It can be easily read off, that the
first parameter (shape) of the inverse gamma distribution is (T −1)/2, for the second parameter
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(rate) a facilitating calculation is the following:

exp

{
− 1

2σ2

(
h′h− 2β′H ′h+ β′H ′Hβ + β′B−1

0 β
)}

= exp

{
− 1

2σ2

(
h′h− 2β′H ′h+ β′

(
H ′H +B−1

0

)
β
)}

= exp

− 1

2σ2

h′h− 2β′H ′h+ (H ′h)′(H ′H +B−10 )−1︸ ︷︷ ︸
β′

(
H ′H +B−1

0

)
β


= exp

{
− 1

2σ2
(h′h− 2β′H ′h+ (H ′h)′I2β)

}
= exp

{
− 1

2σ2
(h′h− β′H ′h)

}

Hence, the posterior of σ2 conditional on h is:

σ2|h ∼ IG(cT , CT ) (26)

where cT = (T − 1)/2

and CT =
1

2

(
h′h− ((H ′H +B−10 )−1H ′h)′H ′h

)
We sample the parameters with the Metropolis-Hastings algorithm introduced in Chapter 2.
Kastner and Frühwirth-Schnatter (2014) propose to use the posterior of the regression equation
(24) as the proposal density for the Metropolis-Hastings acceptance propability computation.
The required ratio of densities R = p(θ?|y)/Jt(θ?|θt−1)

p(θt−1|y)/Jt(θt−1|θ?) is the following:

R =
p(h0|θnew)p(γnew|φnew)p(φnew)p(σ2

new)

p(h0|θold)p(γold|φold)p(φold)p(σ2
old)

∗ pproposal(βold|σ2
old)pproposal(σ

2
old)

pproposal(βnew|σ2
new)pproposal(σ2

new)

Then, the acceptance probability of the proposed new parameters is min(R, 1).

4.4 Sampling µ, φ and σ2 in the non-centered model

In the non-centered parameterization, the latent volatility process in equation (20) simplifies to
a regression equation without a constant. Sampling the only parameter in that equation is rather
simple with the well-known OLS formula:
The regression model equation is at = φat−1 + ηt ηt ∼ N (0, 1).
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Using the OLS formula and a flat prior, we know that

φ|a ∼ N
(

ΣT−1
i=0 atat−1

ΣT−1
i=0 a

2
t

,
1

ΣT−1
i=0 a

2
t

)
. (27)

Moreover, if we use the Metropolis-Hastings sampling algorithm, then we need a ratio of den-
sities in order to calculate the acceptance probability. Again, we use the derived posterior at
equation (27) as the proposal density function.

R =
p(a0|φnew)p(φnew)/pproposal(φnew)

p(a0|φold)p(φold)/pproposal(φold)

Hence, the acceptance probability is min(1, R).

As for sampling µ and σ2, we can rewrite equation (8) by transforming ht into at by non-
centering:

ỹt = mrt + σat + µ+ ξt (28)

where ỹt = log y2t

We can transform equation (28) into a more familiar regression model,

ŷ = X

[
µ

σ

]
+ ε (29)

where ε ∼ NT (0, IT ) and

ŷ =


ỹ1−mr1

sr1...
ỹT−mrt

srT

 , X =


1/sr1 a1/sr1

...
...

1/srT aT/srT



Now, we can follow the same routine as in the centered method, that is to find the poste-
rior of p(µ, σ|a) we have to use the Bayes formula pproposal(µ, σ|a) ∝ p(a|µ, σ)pprior(µ, σ).
The joint prior of the parameters of interest is pprior(µ, σ) = N2(b0,B0) where b0 =
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(bµ, 0)′ and B0 = diag(Bµ, Bσ).
Then the posterior is as follows:

p(µ, σ|a) ∝ preg(a|µ, σ)p(µ, σ)

∝ exp

{
−1

2
(ŷ′ŷ − 2(µ, σ)′X ′ŷ + (µ, σ)′X ′X(µ, σ))

}
∗(

1

BµBσ

)1/2

exp

{
−1

2
((µ, σ)′ − b0)′B−1

0 ((µ, σ)′ − b0)

}
(30)

Comparing this formula to the multivariate normal pdf, we can easily read off the moments of
the posterior distribution:
Σ−1/1 = (X ′X +B−10 )/1 so the variance-covariance matrix is Σ = (X ′X +B−10 )−1.
While ξ′Σ−1 = ŷ′X+b0

′B−1
0 .Multiplying from the right with Σ yields: ξ′ = (ŷ′X+b0

′B−1
0 )Σ.

After transposing the terms, we get the final form of the mean, which is ξ = Σ(X ′ŷ+B−1
0 b0).

Hence,

µ, σ|a ∼ N2

(
(X ′X +B−10 )−1(X ′ŷ +B−1

0 b0), (X ′X +B−10 )−1). (31)

4.5 Interweaving part

The second part of the method of Kastner and Frühwirth-Schnatter (2014), as mentioned before,
is a joint update of the latent variable and the vector of parameters. The Ancillarity-Sufficiency
Interweaving Strategy (ASIS) method developed by Yu and Meng (2011) is based on the idea
of interweaving two parameterizations (in this case the centered (C) and non-centered (NC))
in order to increase the sampling efficiency. ASIS exploits the fact that h in C is a sufficient
statistic for µ and σ while a from NC is an ancillary statistic for these parameters. Hence the
ASIS method can converge even if C or NC fails to do so.
The ASIS method proceeds as the following (using C as the baseline method):

1. Draw h, following the method introduced in Chapter 4.2

2. Draw θ using Metropolis-Hastings algorithm, explained in Chapter 4.3

3. Move to NC by setting a = (h−µ)
σ

4. Draw θ = (µ, σ, φ) with the sampling method introduced in Chapter 4.3
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5. Move back to C by setting h = µ+ σa

6. Redraw the mixture component indicators r, see more details in Chapter 4.2

These steps should be repeated in order to estimate the parameters of interest and the latent
volatility process.
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5 ASIS through an example

In Chapter 4. I have introduced and expounded the method to sample the latent volatility process
and the Bayesian estimation of the vector of parameters. I will now present the boosting power
of ASIS in terms of autocorrelation of the samplers on a simulated time series. I set the true
parameters to be µtrue = −10, σtrue = 0.1 and φtrue = 0.98. Then I followed Kastner and
Frühwirth-Schnatter (2014) with setting the priors to be the following:

µ ∼ N (−10, 10),
φ+ 1

2
∼ B

(
40,

80

1.98
− 40

)
and σ2 ∼ G

(
0.5,

1

0.02

)

I also used the same parameters for the auxiliary regression priors.
For the centered parameterization:

σ2 ∼ G−1(0.5, 0), γ, φ|σ2 ∼ N2(0, diag(1012, 108))

For the non-centered parameterization:

µ, σ ∼ N2((−10, 0)′, diag(10, 0.01))

I followed Lopes (2009) to implement the FFBS method.
In Table 2., I summarize and compare the results from my code with the results from using
the R-package ‘stochvol’(Kastner (2013)). Both estimations ran 5000 iterations with a burnin
period of 100. For each parameter, the first row contains the mean, the second row contains the
standard deviation of the samplers.

Parameters Centered method Non-centered method ASIS method
My code ‘stochvol’ My code ‘stochvol’ My code ‘stochvol’

µ −8.633 −9.5084 −11.52 −9.533 −8.95 −9.5574
Std. dev. 0.8869 0.5191 1.847 0.6170 1.256 0.7167
φ 0.985 0.9706 0.9963 0.970 0.9774 0.9726
Std. dev. 0.0125 0.0331 0.0036 0.0390 0.0174 0.0340
σ 0.0709 0.0604 0.107 0.0527 0.1335 0.0516
Std. dev. 0.0046 0.0476 0.0389 0.0562 0.0437 0.0508

Table 2: Estimation results
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It can be seen that the R-package ‘stochvol’performs better estimating the parameters. It is also
visible, that my code cannot estimate well the parameter µ while it gives a good enough esti-
mation of φ and σ.
Concerning the methodology, the centered (non-centered) method first samples the latent volatil-
ity process given by Chapter 4.2, then proceeds to draw the parameters of interest using the
posterior distributions derived in Chapter 4.3 (4.4 for the non-centered method). Then, treating
the parameters as know, we can resample the latent states and the indicator vector r.
The ASIS method proceeds as given in Chapter 4.5.

Regarding the convergence rates, Figure 12. shows the autocorrelations of the three parameters
with the three estimation methods. ASIS always outperforms the centered and the non-centered
methods.
Figure 12. shows us the pitfall of using only one parameterization. The centered method has
a relatively fast convergence rate when estimating µ compared to the non-centered method. At
the same time, the centered method falls short when sampling the persistence parameter φ and
the standard deviation σ. We can see that the centered method has an extremely slow conver-
gence rate for σ.
We would most probably opt for using the non-centered method if we would have to choose
between them, but that would also mean that we would have to compromise with a slower con-
vergence rate for the parameter µ in order to have faster rates for the other parameters.
With the ASIS method we do not have to make any compromises as it outperforms the other
two methods for all parameters.
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(a) Autocorrelation of µ

(b) Autocorrelation of φ

(c) Autocorrelation of σ

Figure 12: Difference in autocorrelations under different methods
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6 Conclusion

In this thesis, the arising efficiency problems of two possible parameterizations of stochastic
volatility models are presented. The goal of shifting from one parameterization to the other one
is to improve any MCMC algorithms.
The ASIS method offers the possibility of using both parameterizations and avoid choosing one
and face the consequences of possible efficiency problems.
ASIS interweaves the two parameterizations and updates jointly the latent states and the vector
of parameters. This joint update preserves the link between them. This dependence often
increase the likelihood of the proposed updates to land in a high posterior density area.
In Section 2. I presented an example adapted from Papaspiliopoulos et al. (2003) which presents
how much the choice of the parameterization can affect the sampling efficiency and how easily
can certain parameter values cause serious autocorrelation among sampled parameters.
In Section 5. I presented the power of ASIS through a simulation example where using the
ASIS method outperformed both the centered and the non-centered parameterizations in terms
of convergence rate.
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A Code

log_volatilities <- function(y,FF,G,mu,mr,a_1,R_1,sigma_sq,sr){

# defining the needed variables

t=length(y) # number of periods

a=numeric(length=t)

R=numeric(length=t)

m=numeric(length=t)

f=numeric(length=t)

Q=numeric(length=t)

C=numeric(length=t)

A=numeric(length=t)

x=numeric(length=(t-1))

H=numeric(length=(t-1))

mn=numeric(length=(t-1))

Cm=numeric(length=(t-1))

B=numeric(length=(t-1))

# filling up the first elements

a[1]=a_1

R[1]=R_1

f[1]=mr[1]+FF*a[1]

Q[1]=FF*R[1]*FF + sr[1]

A[1]=R[1]*FF/Q[1]

m[1]=a[1]+A[1]*(y[1]-f[1])

C[1]=R[1]-A[1]*Q[1]*A[1]

# filling up the rest with a loop

for (i in 2:t){

a[i]=mu+G*m[i-1]

R[i]=G*C[i-1]*G + sigma_sq

f[i]=mr[i]+FF*a[i]

Q[i]=FF*R[i]*FF + sr[i]

A[i]=R[i]*FF/Q[i]

m[i]=a[i]+A[i]*(y[i]-f[i])

C[i]=R[i]-A[i]*Q[i]*A[i]

B[i-1]=C[i-1]*G/R[i]

H[i-1]=C[i-1]-B[i-1]*R[i]*B[i-1]

}

# now extracting the log volatilities with backward sampling

h=numeric(length=t)

h[t]=rnorm(1,m[t],sqrt(C[t]))

x = numeric(length=(t-1))

for (ii in (t-1):1){

x[ii]=m[ii]+B[ii]*(h[ii+1]-a[ii+1])

h[ii]=rnorm(1,x[ii],sqrt(H[ii]))

}

# returning the log volatilites

return(h)

}

## Following the code of Hedibert Feitas Lopes

## URL: http://hedibert.org/monte-carlo-methods-and-stochastic-volatility/

## now accounting for the mixture of normal errors:

approx_log_vol = function(y,vol,FF,G,mu,a_1,R_1,sigma_sq){

#Omori (2007) 10 piece approximation of a log chi^2:
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mr= c

(1.92677,1.34744,0.73504,0.02266,-0.85173,-1.97278,-3.46788,-5.55246,-8.68384,-14.65000)

#mean

sr = c(0.11265,0.17788,0.26768,0.40611,0.62699,0.98583,1.57469,2.54498,4.16591,7.33342) #

variance

p = c(0.00609,0.04775,0.13057,0.20674,0.22715,0.18842,0.12047,0.05591,0.01575,0.00115) #

probability

#transforming the inputs

y_star= log(y^2)

sq_sr= sqrt(sr)

n =length(y)

r = numeric(length=n)

eps =numeric(length=n)

## approximating the log chi^(2) distribution

for (i in 1:n){

eps[i] = y_star[i]- vol[i] # log(eps^(2))

weight= dnorm(eps[i],mr,sq_sr)*p

r[i]= sample(1:10,size=1,prob=weight/sum(weight))

}

## extracting the log-volatilities and the indicator vector

hh = log_volatilities(y_star,FF,G,mu,mr[r],a_1,R_1,sigma_sq,sr[r])

return(list(hh=hh,mr=mr[r],sr=sr[r]))

}

## multivariate normal density function

binorm_dens <- function(x,meaan,Sigma){

1/(2*pi)*det(Sigma)^(-0.5)*exp(-0.5*t(x-meaan)%*%solve(Sigma)%*%(x-meaan))

}

## iteration steps for the centered method

for (ii in 1:M) {

sigma_new = 1/rgamma(1, (length(h)-1)/2,C_T)

ww=mvrnorm(1, b_T, (sigma_new*B_T))

phi_new = ww[2]

gamma_new = ww[1]

if (phi_new<0.999999){

R_11 = dnorm(h_vol_0,gamma_new/(1-phi_new),sqrt(sigma_new/(1-phi_new^(2))))*dnorm(gamma_

new,b_mu*(1-phi_new),sqrt(B_mu)*(1-phi_new))*(1/(2*beta(a_zero,b_zero))*((1+phi_new)/

2)^(a_zero-1)*((1-phi_new)/2)^(b_zero-1))*dgamma(sigma_new,0.5,0.5*B_sigma)

R_12 = dnorm(h_vol_0,gamma_old/(1-phi_old),sqrt(sigma_sq_old/(1-phi_old^(2))))*dnorm(gamma

_old,b_mu*(1-phi_old),sqrt(B_mu)*(1-phi_old))*(1/(2*beta(a_zero,b_zero))*((1+phi_old)/

2)^(a_zero-1)*((1-phi_old)/2)^(b_zero-1))*dgamma(sigma_sq_old,0.5,0.5*B_sigma)

R_21 = binorm_dens(x=c(gamma_old,phi_old),mean_param,(B_T*sigma_sq_old))*dinvgamma(sigma_

sq_old,(length(h)-1)/2,C_T)

R_22 = binorm_dens(x=c(gamma_new,phi_new),mean_param,(B_T*sigma_new))*dinvgamma(sigma_new

,(length(h)-1)/2,C_T)

R = (R_11)/(R_12+.Machine$double.eps) * (R_21)/(R_22+.Machine$double.eps)

accept_prob[ii] = min(1,R)

if (runif(1)< accept_prob[ii]){

sigma_sq_old =sigma_new

phi_old = phi_new

gamma_old=gamma_new

accepted=accepted+1

}
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}

param_c[ii,]=c(gamma_old,phi_old,sigma_sq_old)

listed<-approx_log_vol(yy,h,1.0,phi_old,gamma_old,0,1000,sigma_sq_old)

h<-listed$hh #$

h_vol_0 = rnorm(1,mu_dr+phi*(h[1]-mu_dr),sqrt(sigma_sq))

h_T =c(h_vol_0,head(h,-1)) # h_{-T} where last element is omitted but the initial value is

kept

X=cbind(1,h_T) # Design matrix

B_T = solve(t(X)%*%X + solve(B_0))

b_T = B_T%*%t(X)%*%h

C_T = 0.5*(sum(h^2)-t(b_T)%*%t(X)%*%h)

}

## iteration for the non-centered method

for (ii in 2:M) {

phi_new = rnorm(1,mean_nc_phi,sd = st_nc_phi)

if (phi_new<0.999999){

R_11 = dnorm(h_tilde_0,0,sd=sqrt(1/(1-phi_new^2)))*(1/(2*beta(a_zero,b_zero))*((1+phi_new)

/2)^(a_zero-1)*((1-phi_new)/2)^(b_zero-1))/dnorm(phi_new,mean_nc_phi,st_nc_phi)

R_12 = dnorm(h_tilde_0,0,sd=sqrt(1/(1-phi_old^2)))*(1/(2*beta(a_zero,b_zero))*((1+phi_old)

/2)^(a_zero-1)*((1-phi_old)/2)^(b_zero-1))/dnorm(phi_old,mean_nc_phi,st_nc_phi)

R = R_11/R_12

accept_prob_nc[ii] = min(1,R)

if (runif(1)< accept_prob_nc[ii]){

phi_old = phi_new

accepted_nc=accepted_nc+1

}

}

params_nc[ii,2]=phi_old

zz <- mvrnorm(1,b_tilde_T,B_tilde_T)

params_nc[ii,1]=zz[2]

params_nc[ii,3]=zz[1]

mu_old=params_nc[ii,1]

sigma_nc_old=params_nc[ii,3]

listed<-approx_log_vol(yy,h,1.0,phi_old,mu_old*(1-phi_old),0,1000,sigma_nc_old^2)

h=listed$hh

mr_t =listed$mr

sr_t =listed$sr

h_vol_0=rnorm(1,mu_old+phi_old*(h[1]-mu_old),sigma_nc_old)

h_tilde_0 = (h_vol_0 -mu_old)/sqrt(sigma_nc_old^2)

for (i in 1:length(h)) h_tilde[i]=(h[i]-mu_old)/sqrt(sigma_nc_old^2)

numerator = h_tilde_0*h_tilde[1]

for (i in 1:(length(h)-1)) numerator = numerator + h_tilde[i]*h_tilde[i+1]

denominator = h_tilde_0^2

for (i in 1:(length(h)-1)) denominator = denominator + h_tilde[i]^2

mean_nc_phi = (numerator/denominator)

st_nc_phi = (1/sqrt(denominator))

for (tt in 1:n) y_hat[tt] = (log(yy[tt]^2)-mr_t[tt])/sqrt(sr_t[tt])

for (tt in 1:n){

X_tilde[tt,] = c(h_tilde[tt]/sqrt(sr_t[tt]),1/sqrt(sr_t[tt]))

}
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B_tilde_T = solve(solve(B_tilde) + t(X_tilde)%*%X_tilde)

b_tilde_T = B_tilde_T%*%(solve(B_tilde)%*%b_tilde + t(X_tilde)%*%y_hat)

}

## ASIS method

for (ii in 1:M){

## centered method

sigma_new = 1/rgamma(1, (length(h)-1)/2,C_T)

ww=mvrnorm(1, b_T, (sigma_new*B_T))

phi_new = ww[2]

gamma_new = ww[1]

if (phi_new<0.999999){

R_11 = dnorm(h_vol_0,gamma_new/(1-phi_new),sqrt(sigma_new/(1-phi_new^(2))))*dnorm(gamma_

new,b_mu*(1-phi_new),sqrt(B_mu)*(1-phi_new))*(1/(2*beta(a_zero,b_zero))*((1+phi_new)/

2)^(a_zero-1)*((1-phi_new)/2)^(b_zero-1))*dgamma(sigma_new,0.5,0.5*B_sigma)

R_12 = dnorm(h_vol_0,gamma_old/(1-phi_old),sqrt(sigma_sq_old/(1-phi_old^(2))))*dnorm(gamma

_old,b_mu*(1-phi_old),sqrt(B_mu)*(1-phi_old))*(1/(2*beta(a_zero,b_zero))*((1+phi_old)/

2)^(a_zero-1)*((1-phi_old)/2)^(b_zero-1))*dgamma(sigma_sq_old,0.5,0.5*B_sigma)

R_21 = binorm_dens(x=c(gamma_old,phi_old),mean_param,(B_T*sigma_sq_old))*dinvgamma(sigma_

sq_old,(length(h)-1)/2,C_T)

R_22 = binorm_dens(x=c(gamma_new,phi_new),mean_param,(B_T*sigma_new))*dinvgamma(sigma_new

,(length(h)-1)/2,C_T)

R= (R_11)/(R_12+.Machine$double.eps) * (R_21)/(R_22+.Machine$double.eps)

accept_prob[ii] = min(1,R)

if (runif(1)< accept_prob[ii]){

sigma_sq_old =sigma_new

phi_old = phi_new

gamma_old=gamma_new

accepted=accepted+1

}

}

param_half[ii,]=c(gamma_old,phi_old,sigma_sq_old)

## then transforming h to h_tilde with the drawn parameters:

hh_tilde=(h-(param_half[ii,1]/(1-param_half[ii,2])))/sqrt(param_half[ii,3])

hh_tilde_0 = (h_vol_0 -(param_half[ii,1]/(1-param_half[ii,2])))/sqrt(param_half[ii,3])

numerator = hh_tilde_0*hh_tilde[1]

for (i in 1:(length(h)-1)) numerator = numerator + hh_tilde[i]*hh_tilde[i+1]

denominator = hh_tilde_0^2

for (i in 1:(length(h)-1)) denominator = denominator + hh_tilde[i]^2

mean_nc_phi = (numerator/denominator)

st_nc_phi = (1/sqrt(denominator))

phi_new = rnorm(1,mean_nc_phi,sd = st_nc_phi)

if (phi_new<0.999999){

R_11 = dnorm(hh_tilde_0,0,sd=sqrt(1/(1-phi_new^2)))*(1/(2*beta(a_zero,b_zero))*((1+phi_new

)/2)^(a_zero-1)*((1-phi_new)/2)^(b_zero-1))/dnorm(phi_new,mean_nc_phi,st_nc_phi)

R_12 = dnorm(hh_tilde_0,0,sd=sqrt(1/(1-phi_old^2)))*(1/(2*beta(a_zero,b_zero))*((1+phi_old

)/2)^(a_zero-1)*((1-phi_old)/2)^(b_zero-1))/dnorm(phi_old,mean_nc_phi,st_nc_phi)

R = R_11/R_12

accept_prob_nc[ii] = min(1,R)

if (runif(1)< accept_prob_nc[ii]){
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phi_old = phi_new

accepted_nc=accepted_nc+1

}

}

param_int[ii,2]=phi_old

for (tt in 1:n){

X_tilde[tt,] = c(hh_tilde[tt]/sqrt(sr_t[tt]),1/sqrt(sr_t[tt]))

}

#X_tilde

y_hat = (y_log-mr_t)/sqrt(sr_t)

B_tilde_T = solve(solve(B_tilde) + t(X_tilde)%*%X_tilde)

b_tilde_T = B_tilde_T%*%(solve(B_tilde)%*%b_tilde + t(X_tilde)%*%y_hat)

## sampling mu and sigma:

qq =mvrnorm(1,b_tilde_T,B_tilde_T)

param_int[ii,1]<-qq[2] ##mu

param_int[ii,3]<-qq[1] ## sigma square root

gamma_old<-param_int[ii,1]*(1-param_int[ii,2])

phi_old<-param_int[ii,2]

sigma_sq_old<-param_int[ii,3]^2

h=param_int[ii,1]+param_int[ii,3]*hh_tilde

listed<-approx_log_vol(yy,h,1.0,phi_old,gamma_old,0,1000,sigma_sq_old)

h=listed$hh

h_vol_0= rnorm(1,gamma_old+phi*(h[1]),sqrt(sigma_sq_old))

mr_t =listed$mr

sr_t =listed$sr

h_T =c(h_vol_0,head(h,-1)) # h_{-T} where last element is omitted but the initial value is

kept

h_T

X=cbind(1,h_T) # Design matrix

B_T = solve(t(X)%*%X + solve(B_0))

b_T = B_T%*%t(X)%*%h

C_T = 0.5*(sum(h^2)-t(b_T)%*%t(X)%*%h)

}

## code for centered method in Chapter 2.2.3

D_inv =matrix(0,nrow=n,ncol=n)

D_inv[1,1]=1

D_inv[n,n]=1

for (i in 2:n){

D_inv[i,i]=1+psi^2

D_inv[i-1,i]=-psi

D_inv[i,i-1]=-psi

}

D_inv=(1/sig_n2)*D_inv

Sig=matrix(0,nrow=n,ncol=n)

D <- solve(D_inv)

Sig=sig_e2*diag(x = 1,nrow=n,ncol=n)+D

Sig_inv =solve(Sig)

V=matrix(0,nrow=n,ncol=n)

V=sig_e2 *Sig_inv %*% D
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One=matrix(1,nrow=n,ncol=1)

for (iter in 1:niter){

# Learning mu:

b=(sig_e2)^(-1)*y +D_inv %*% One* mu_dr[iter]

Meann =V%*%b

# Learning w:

for (k in 1:n){

w[k] = rnorm(1,Meann[k],sqrt(V[k,k]))

}

# Learning mu:

p = (n-1)*(1-psi)^2+(1-psi^2)

q=(1-psi^2)*w[1]

for (ii in 2:n) q=q +(1-psi)*(w[ii]-psi*w[ii-1])

mu_dr[iter+1] =q/p+ rnorm(1,0,sqrt(sig_n2/p))

# Storing the draws

draws[iter,] = c(w,mu_dr[iter+1])

}

## code for non-centered method in Chapter 2.2.3.

D_inv =matrix(0,nrow=n,ncol=n)

D_inv[1,1]=1

D_inv[n,n]=1

for (i in 2:n){

D_inv[i,i]=1+psi^2

D_inv[i-1,i]=-psi

D_inv[i,i-1]=-psi

}

D_inv=(1/sig_n2)*D_inv

Sig=matrix(0,nrow=n,ncol=n)

D <- solve(D_inv)

Sig=sig_e2*diag(x = 1,nrow=n,ncol=n)+D

Sig_inv =solve(Sig)

V=matrix(0,nrow=n,ncol=n)

V=sig_e2*Sig_inv %*% D

One=matrix(1,nrow=n,ncol=1)

mu_dr =numeric(length=(burnin+thin*M+1))

mu_dr[1]= 1.0 # flat prior for mu

for (iter in 1:niter){

# Learning mu:

b=(sig_e2)^(-1)*y +D_inv %*% One* mu_dr[iter]

Meann =V%*%b - One*mu_dr[iter]

# Learning h:

for (k in 1:n){

h[k] = Meann[k]+rnorm(1,0,sqrt(V[k,k]))

}

# Learning mu:

y_m = mean(y)

h_m = mean(h)

mu_dr[iter+1] = y_m-h_m+rnorm(1,0,sqrt(sig_e2/n))

# Storing the draws

draws2[iter,] = c(h,mu_dr[iter+1])

}
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