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Abstract

I study a principal-agent contracting problem in which problems of

asymmetric information and asymmetric awareness are present. I consider

an insurance situation in which two types of agents know only a subset of

the possible contingencies leading to damage over some good. The insurer

is fully aware. However the insurer does not know which contingencies the

insuree is originally aware of. The model is reduced to study the case of

two types and three states or contingencies. A type who becomes aware of

a contingency updates his awareness by assigning some residual probability

to that event. The principal has the choice of which contingencies to cover,

along with how to structure the terms of his contract to appeal to the var-

ious types. I hypothesize that the distribution of types of agents, updating

parameters and levels of suspicion has an effect on the terms of the optimal

contract. First a general solution method of the optimization problem of

the principal is offered together with general characterizations of solutions.

It is shown that certain distributions of types induce the principal to re-

veal information out of self interest, thereby altering the awareness of the

different types of insurees and inducing more complete contracts.



1 Introduction

“There may be an interesting interaction between unforeseen contin-

gencies and asymmetric information...there is a serious issue as to

how parties form probability distributions over payoffs when they can-

not even conceptualize the contingencies and actions that yield those

payoffs, and as to how they end up having common beliefs ex ante...we

should have some doubts about the common assumption that the par-

ties to a contract have symmetric information when they sign the con-

tract...Asymmetric information would therefore be the rule in such

circumstances and would be unlikely to disappear through bargaining

and communication.” - (Tirole, 1999)

Problems of asymmetric information have a long history in contract theory.

In their most general form, hidden information problems model situations of a

principal contracting with one more agents, or types of agents, whose valuation of

the contract offered by the principal is private information. The standard analysis

shows that the principal, despite not having sufficient information to distinguish

one type from another, can, nevertheless, screen agents by structuring the terms

of the contract to offer the “correct” incentives. Of late, there has been a growing

interest in the concept of unawareness (see the literature review) - the idea that

certain individuals are unable to conceptualize certain states of the world (See, for

example, Schipper, 2011; Board & Chung, 2010; Heifetz et al., 2006). A number

of studies (Auster, 2013; Filiz-Ozbay, 2008; Grant, Kline & Quiggin, 2014) have

incorporated the framework of unawareness into contracting models as a means

to more accurately reflect behaviour we see in the real world. In this thesis I

study strategic interactions resulting from situations in which information and

awareness interact.I look at the case of a fully aware insurer, and an insuree of

limited awareness. The model is similar in construction to that of Filiz-Ozbay

(2011) with two fundamental differences. First, where in Filiz-Ozbay the principal

is omniscient that is not the case in my model. He is fully aware of all states of

the world, but exactly which contingencies each of the other agents in the model

are aware of is private information. Second, I include additional types of agents

to which the principal can cater. Hence the decision problem is compounded

not only by the awareness of individual actors within the model, but also by

the addition of a distribution of types influencing the optimal strategy of the

principal. To keep the analysis tractable in this first stage, I limit the study to a

case of a three state world with overlapping awareness sets. I impose that each of

the agents is aware of one and only one common contingency and each is aware of
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one and only contingency that the other is unaware of. I first define the problem,

and the model. Next I analyze the optimal contract in the three-state, two-type

case and offer a characterization of the equilibrium strategy. I ask the question

of how beliefs of each type are formed, and how this influences the decisions of

the principal over which contingencies to reveal and which types to cater to.
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2 Literature Review

2.1 Unawareness

In its most basic formulation, unawareness is the inability of an agent to con-

ceptualize certain states of the world. The states of which the agent is unaware

are so far removed from her decision making process that they do not even en-

ter her mind as a possibility. She is unaware of such a state, and unaware of

her unawareness. Although there is an extensive body of knowledge of unaware-

ness in the realm of philosophical logic and knowledge - for example see Konolidge

(1986) for a more philosopical exposition of unawareness - modelling unawareness

has proven to be a substantial task for decision theorists and microeconomists

working in the area. Perhaps the earliest anticipations to the study of unaware

agents comes from Geanakopolos (1989) and the most modern canonical models

from Board & Chung (2011) or Heifetz et al. (2008). A variety of approaches

have been used to model unaware agents. Early theoretical foundations were laid

and questions posed by Geanakopolos (1989, 1992), Rustichini, Dekel & Lipman

(1998) but it was Rustichini & Modica (1999) who estalbished the first general

model of unawareness. Later studies such as Halpern (2001), Heifetz et al. (2005)

and Board & Chung (2011) have consistently refined the theoretical constructs,

or taken new approaches entirely. Often, the theoretical approach to modeling

unaware agents been linguistic in that it has relied on the axioms of formal math-

ematical logic to construct languages. With such an approach, one can fully

characterize the agent by the events in his language that he is able to articulate.

Below I introduce the main approaches upon which my thesis, and many papers,

are based.

The Subjective State Space Approach The subjective state-space approach

is succinctly expounded in Heifetz et al. (2006). I follow the notation used in

their model as closely as possible.

The authors first define a partial ordering over a complete lattice of disjoint

spaces S{α}α∈A complete with a partial order � expressing the richness of vocab-

ulary used in a given state-space. Recall that the pair (S,�) is called a lattice if

it holds that

inf{x, x′}

and

sup{x, x′}
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exists for every x, x′ ∈ S. Further, a lattice is complete if both

inf(S)

and

sup(S)

exist for every S ⊆ S. The ordering S � S ′ is read “S is less expressive that S ′”

A state ω ∈ S ∈ Sα for some α can be expressed with the vocabulary available

in Sα.

Example 2.1. Adapted From Heifetz et al. (2006) Consider a world which

can be described by three basic propositions (a, b, c) which can be either true or

false. This induces the complete lattice of disjoint state spaces:

S = {S{a,b,c}, S{a,b}, S{a,c}, S{b,c}, S{a}, S{b}, S{c}}

For example, the state-space with the richest vocabulary is given as:

S{a,b,c} =

{(a, b, c), (a,¬b, c), (a, b,¬c), (¬a, b, c), (a,¬b,¬c), (¬a,¬b, c), (¬a, b,¬c), (¬a,¬b,¬c)}.

A possible less expressive state is:

S{a,b} = {(a, b), (a,¬b), (¬a, b), (¬a,¬b)}

Which the authors denote as S{a,b} � S{a,b,c}.

The above example warrants further explaination. A state ω ∈ S also exists

in some sense, as we will see, as a state ωS′ ∈ S ′. However each space allows

agents to express ω differently. For example the state ω = (a,¬b, c) ∈ S{a,b,c}

exists as the state ωS′ = {a,¬b} ∈ S{a,b}. However this state is lacking an aspect

when restricted to S{a,b}, namely c is missing from the description of ωS′ . It

is this kind of characterization of state-spaces in terms of the richness of their

descriptive capability which motivates our appellation of the state S{a,b,c} as “more

expressive” than state S{a,b}.

Returning to the paper at hand, projections between state-spaces are defined,

rS
′

S is the projection from space S to S ′ where S � S ′. Note that it must be

the case that this projection is both surjective and commutative. Recall that a

function f : X → Y is surjective if f(X) = Y . Projections commute means

that S ′′ � S ′ � S =⇒ rS
′′

S = rS
′

S ◦ rS
′′

S′ . For a given state ω ∈ S � S ′

define ωS := rS
′

S (ω) (read as “the restriction of state ω from the more expressive
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space S ′ to the less expressive space S”). For any collection of states B ⊂ S

define the extension of states in B to at least as expressive vocabularies as B↑ =⋃
S�S′

(rS
′

S )−1(B). Denote Σ =
⋃
α∈A

Sα for some indexing set A. Then E ⊆ Σ is an

event if it is of the form of B↑. B is called the basis of event E and S = S(E) is

the base space.

Example 2.2. Continued from Example 2.1 The restriction of the state

space (a, b,¬c), (a,¬b,¬c) in S{a,b,c} to the less expressive space S{a,b} are given

by:

r
S{a,b,c}
S{a,b}

((a, b,¬c)) = (a, b) ∈ S{a,b}

r
S{a,b,c}
S{a,b}

((a,¬b,¬c)) = (a,¬b) ∈ S{a,b}

Further, consider the event “a is true”, this event has base-space S{a} and

basis {(a)} and

{a}↑ =

{(a), (a, b), (a, b, c), (a, c), (a,¬b), (a,¬c), (a,¬b,¬c), (a, b,¬c), (a,¬b, c), (a,¬b,¬c)}

The basis of this event is (a) and the base-space is S{a}.

Finally Πi : Σ → P(Σ) is agent i′s possibility correspondence and captures

the states associated with event E ∈ Σ he considers possible. These possibility

correspondences must satisfy the following properties:

Properties On Possibility Correspondences

1. ω ∈ S =⇒ Πi(ω) ⊆ S ′ for some S ′ � S

2. ω ∈ Π↑i (ω) ∀ω ∈ Σ

3. ω ∈ Πi(ω
′) =⇒ Πi(ω

′) = Πi(ω)

4. ω ∈ S ′, ω ∈ Πi(ω) and S � S ′ =⇒ ωS ∈ Πi(ωS)

5. ω ∈ S ′, S � S ′ =⇒ Π↑i (ω) ⊆ Π↑i (ωS)

6. S � S ′ � S ′′, ω ∈ S ′′ and Π(ω) ⊆ S ′ =⇒ (Πi(ω))S = Πi(ωS)

The first of these properties is referred to as confinedness in the paper. It

says that given the “true” state ω the states which I consider possible are all

contained in some space S ′ and as such they can all be expressed with the same
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vocabulary. The second property, generalized reflexivity, guarantees that what an

individual knows to be true obtains. The third stationarity says that if I consider

a certain ω′ possible at the true state ω then every state I consider possible at

ω′ I must also consider possible at ω and vice versa. The authors show that

such a property implies introspection - an individual knows what she knows. The

remaining properties state that after the restriction of ω to ωS the agent does

not learn anything new, does not forget anything she previously knew and does

not become aware or unaware of anything. This has parallels to ideas such as

perfect recall in game theory. This completes the formulation of the subjective-

state-space awareness structure.

Definition 2.1. A subjective-state-space unawareness structure with n

agents is a tuple (S, rS′
S ,�, {Πi}ni=1)) such that:

1. S is a complete lattice of disjoint spaces.

2. � is a partial order over S relating the expressiveness of states to one

another.

3. rS
′

S represents a class of functions such that for S � S ′, rS
′

S : S ′ → S is the

restriction of the more expressive space S ′ to the less expressive space S.

4. {Πi}ni=1 is a sequence of possibility correspondences such that Πi : E → Σ

satisfies properties (1) to (6) of the properties on possibility correspon-

dences.

Define the awareness operator as a function Ai : Σ→ P(Σ):

Ai(E) =

{ω ∈ Σ : Π(ω) ⊆ S(E)↑} ∃ω : Π(ω) ⊆ S(E)↑

∅S(E) Else

Where ∅S = ¬S↑ is a “logical contradiction phrased with expressive power

available in S”. Intuitively, the ∅S event reflects that idea in my language I can

express a logical fallacy, it is the “nothing” event in that it represents an event

that can never happen but I can nevertheless express in my language.

A state in a given state space can be represented by a number of logical

propositions. State spaces comprising a richer vocabulary in a sense describe

more aspects of a state, the projections of such spaces to less descriptive spaces

eliminate these aspects. In this way, a state can be represented, or described, in

every state space in varying degrees of richness.
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This canonical formulation of unawareness excels in its formality and pre-

cision. Such an approach permits clarity on exactly what unawareness is in a

mathematically formal sense. However, often in contract theory a different ap-

proach involving a modelling of subjective probability spaces which are in a sense

restricted has been used which I now turn to discuss.

2.2 Unawareness and Contract Theory

Within the last decade or so, a number of meaningful applications of unawareness

to contract theory have been made. Brief discussions of a number of contributions

which this paper references are offered below.

Incorporating into Contract Theory (Filiz-Ozbay (2011)) Filiz-Ozbay

(2011) analyzes the effect of evolving awareness in an insurer-insuree setting. In

this model, the insurer has full awareness over the states of the world Ω (hereafter

referred to as contingencies) and hence assesses their likelihood with the objec-

tive probability measure µ. The insuree is aware of only Ω′ ⊂ Ω and assesses the

contingencies in Ω with the measure µ(·|Ω). The author assumes a one-to-one

damage mapping c : Ω → R+ and, for simplicity, reduces the entire model to

damage levels where c(Ω) = S and c(Ω′) = S ′ ⊂ S. Hence a contract is writ-

ten on damage levels each of which represents a given contingency, rather than

contingencies themselves.

The process of evolving awareness enters the model in the following way.

First the insurer specifies a contract C = (A, t(·), k). Here, A are the announced

contingencies, t : A→ R are the transfers from insurer to insuree in the case that

contingency a ∈ A \ S ′ materializes and k is the premium payed from insuree to

insurer upon signing the contract. Reading a contract, therefore, can have the

effect of expanding the awareness of the insuree to S ′∪A her extended awareness

set.

This is the crux of the paper, and the insuree must now generate beliefs over

S∪A. This is a probability distribution PC ∈ ∆(S ′∪A). The formation of beliefs

is a part of the solution concept that the authors form. But, briefly, the article

introduces to notions of belief formation in regards to a contract.

Filiz-Ozbay first imposes a compatibility condition on the belief of the insuree

consisting of two main requirements. The first requirement of this condition on

beliefs implies that, from the perspective of the insuree, the insurer makes a utility

gain from offering contract C whenever it is accepted. The second requirement

says that every contingency is considered possible, and “updated” beliefs when

restricted to the initial awareness set S ′ must match. That is, the relative weights
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of contingencies in S ′ cannot be altered in distribution PC - but no requirements

are made on contingencies a ∈ A. Intuitively, a condition such as compatibility

seems natural. If a potential insuree, believes that the insurer makes a loss from

the contract I become wary of its terms. The second point intuitively suggests the

idea that an insuree can judge the frequency of events of which he is aware. So,

conditional on those events of which he is aware, his estimation of their likelihood

with respect to his subjective beliefs, matches the principals when restricted to

those events of which he is aware. Filiz-Ozbay requires beliefs to be compatible

in equilibrium.

Definition 2.2. (Ozbay(2008)) An equilibrium is a triplet (C∗, D∗ : C→ {buy, reject},
(P ∗C)C∈C) such that:

1. C∗ ∈ arg max
C∈C

EU1(C,D∗(C))

2. With respect to the equilibrium belief P ∗C the insuree’s decision rule D∗(C)

is optimal. Further the insuree must reject the offer if ∃ a ∈ A : t(a) > a.

3. P ∗C is compatible wherever possible.

The authors show that under the requirement of compatibility there is always

an equilibrium which does not extend the awareness of the insuree (Theorem 3.1

in Filiz-Ozbay).

However, Filiz-Ozbay concedes that compatible beliefs are still not enough.

There can exist situations in which, although the insuree believes the insurer

makes a utility gain, according to the insurees equilibrium belief P ∗C the insurer

is not a VNM utility maximizer. As such, an additional requirement, consistency

on equilibrium beliefs is imposed.

Definition 2.3. (Ozbay (2008)) An equilibrium (C∗ = (t∗, A∗, k∗), D∗, P ∗C) is

consistent if for every contract C the insuree assesses, with respect to belief P ∗C ,

the insurer to be a utility maximizer. ie:

EU0
1 [C∗, D∗|P ∗C ] ≥ EU0

1 [C,D∗|P ∗C ]∀C ∈ C

Consistency, however, does not rule out the possibility of incomplete contracts

- an incomplete contract in Filiz-Ozbay is one in which A is such that S ′∪A 6= S.

In fact, the paper suggests that incompleteness in the contractual form arises

from the insurers strategic incentive to exploit the unawareness of the insuree.

Consistency of beliefs with respect to a contract is again a very natural notion.

If I believe that the insurer can make a gain by offering some other contract then
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I again become wary of his reasons for offering the contract he posts. So, the

consistency requirement says that in equilibrium, my beliefs support the actions

of the insurer.

Finally, it is shown that incorporating multiple insurers promotes awareness.

Skipping some of the more technical details the following theorem is proofed:

Theorem 2.1. (Filiz-Ozbay(2008)) If the number of insurers is large enough,

then in any symmetric equilibrium where the insuree buys the contract, the offer

is a complete full insurance contract and insurers make zero profits.

Intuitively, the argument is as follows. As the number of firms gets larger, the

insurer has two competitive options; 1) Announce contingencies which are hidden

by other insurers 2) Offer a different contract on the same contingencies. The

chance of attracting a consumer by offering the same contract decreases with

number of insurers in the market. Therefore, an insurers expected gain from

following the strategies of the others decreases with number of insurers in the

market. As such, it is better to extend the awareness of the insurer. Essentially

firms engage in a process of competition over awareness and prices such that each

will cover all contingencies fully, and earn zero in expectation.

The paper by Filiz-Ozbay is not only clear and concise but provides a number

of powerful and interesting results. Filiz-Ozbay succintly makes the case for

unawareness as a driving force in the incompleteness of contracts, and goes on to

show that competition among insurers promotes completeness in the contractual

form. Its theoretical foundation is that of the earlier discussed paper by Heifetz

et al., save for the fact that the mechanics of this model limits discussion to

mutually exclusive events to which agents assign subjective probabilities. It is

this idea that I incorporate into the following work, and allows for updating

among and between unaware agents. A further interesting example of this sort

of approach is found in Zhao (2013).

Framing Contingencies in Contracts (Zhao (2013)) Zhao in his paper

Framing Contingencies in Contracts again builds on the model proposed by Filiz-

Ozbay to examine how insurers frame the contingencies offered in a contract. By

this he means the process by which terms in a contract can be used to promote

or restrict awareness. The awareness structure is similar to that of Filiz-Ozbay:

The insurer is aware of the entire set of contingencies leading to damage whereas

the insuree knows only a subset of these. Consider the following example of how

framing interacts with awareness. Suppose Ω = {a, b, c} is the set of possible
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damages to a good v. The insuree is aware only of a. Further, the insurer can

offer two contracts to an insuree. The first contract the insurer can offer promises

to transfer x units of value in the case contingency a. The second, promises x

in the event that a “damage” occurs. Intuitively, we know that the agent will

prefer the second contract: Although she is unaware of states (a, b) explicitly,

she is aware of the possibility that other damages may occur to the good. This

is where the papers by Zhao and Filiz-Ozbay differ: Zhao allows for a modeling

of awareness of unawareness. I explain the basic method by which this is achieved.

First, the agent is aware of, and can express, some subset of a partition of Ω.

Let K0 denote the agents initial awareness and L(K0) be the events which can be

expressed by the agent. Let X ⊂ Ω represent a general event. For example, in

Zhaos model, the general event X can be summarized by the sentence “a damage

occurs to good v”. This event X captures a general concept, regardless of whether

or not the individual contingencies x ∈ X are available in the agents mind during

the decision making process. This is what drives Zhao’s model, this general

event X captures the idea that there are contingencies in the world of which

the insuree is unaware, but at the same time she is aware that she is unaware

of these contigencies, and hence is aware of the general concept X (along with

its complement XC). Beliefs over these events are defined in the following way.

For Z ∈ {X,XC} let αZ(K0) denote the residual probability of the unforeseen

event Z. This function represents the degree to which the agent is aware of

her unawareness of unforeseen contingencies in Z. Thus, whilst the objective

probability space is given as (Ω, 2Ω, µ) where µ is objective probability measure,

the agent perceives a somewhat restricted version of this space (K0,L(K0), µK0)

where:

µK0(ω) =
µ(ω)∑

ω∈Ω

µ(ω) +
∑

Z∈{X,XC}
αZ(K0)

∀ω ∈ K0

µK0(Z \K0)
αZ(K0)∑

ω∈Ω

µ(ω) +
∑

Z∈{X,XC}
αZ(K0)

∀Z ∈ {X,XC}

Using this method of belief formation, the utility of the insuree becomes

“general-event dependent” in the sense that the choice the insuree makes, be-

tween accepting and rejecting the contract depends on whether or not the un-

derlying concept of this general event “occurs”. The utility function is given by

U : Ω× S → R:

10



u(ω, S) =

uX(s) ω ∈ X

uX
C

(s) ω ∈ XC

where S represents the choice set of the agent and the principal. That is, S

is the set which denotes the contingencies on which the contract is signed along

with the transfers, together with the choice of whether to accept or reject on the

part of the agent.

After defining the maximization problem of the insurer, Zhao offers the key

result of the paper (Proposition 1 in Zhao (2008)). Briefly this says that the

insurer exploits the contract if and only if the contract leaves the insuree unaware

of some payoff-relevant contingencies. It is easy to read this as a tautology - the

insurer is exploitative if he exploits the unawareness of the insuree. But it is not

trivial that this carries over to optimizing behavior. That is, it is not trivial that

in an optima the insurer is exploitative if and only if the contract is vague on

certain contingencies.

Using this Zhao turns to look at home insurance contracts, and models the

choice of the insurer between offering the exploitative or non-exploitative contract

as dependent on αZ(K0) - the agents degree of awareness of unawareness. There

are a range of α values such that it is more profitable to announce than to not-

announce extra contingencies (Proposition 2 in Zhao (2008)).

Zhao finally channels Filiz-Ozbay (2008) by analyzing the case of a justifiability

constraint - the constraint that the insurer must appear to be a VNM utility

maximizer according to the insuree - corresponding to the consistency requirement

of equilibrium beliefs in Filiz-Ozbay. Under this constraint a full insurance result

obtains, and again the insurer will announce the contigency as long as the insuree

does not overestimate the existence of contingencies in Z.

Zhao’s paper relies more explicitly on the modelling of agents with languages

who view a certain partition of the restricted state-space. These are the events

in the model. The language of the agents determine their ability to express such

events and in turn their awareness of an event. Whilst the objective probability

space would be given by (Ω, 2Ω, µ) - the space viewed by the principal - the

subjective space is a restriction of that to (Ω,L(K), µK). In this way, events can

be modelled as non-mutually exclusive.

2.3 Executive Summary of the Literature

The literature on the subject of unawareness is relatively heterogenous. First,

there are number of competing approaches and ideas on exactly how unaware
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agents should be modelled in terms of mathematical formalism. The subjective-

state-space approach offered by Heifetz et al. (2006) is often the formal under-

pinning of most applications of unawareness to contract theory. Auster (2013),

Zhao (2011) and Filiz-Ozbay (2011) are all examples of this. Moreover, there

are various approaches on how to incorporate unawareness into principal-agent

contracting models. The two main approaches to be contrasted are that of Zhao

and Filiz-Ozbay. Where Zhao’s model allows a discussion of non-mutually ex-

clusive events which partition the state-space, Filiz-Ozbays perhaps simpler, or

more intuitive, model restricts discussion to mutually exclusive events, which

are modelled as contingencies in an insurance contract. Further, Filiz-Ozbay’s

formulation of beliefs is less restrictive. Whilst both impose a common initial

measure - conditional on those contingencies of which the unaware agent is aware

- Filiz-Ozbay’s equilibrium concept allows for more flexibility in how beliefs are

formed they merely have to be compatible with the contract. On the other hand,

Zhao’s formulation of unawareness and awareness of unawareness is interesting

in its ability to capture how agents update their entire probability space after

reading the contract. Although all the papers I have discussed have their mer-

its, this thesis leans more in the direction of Filiz-Ozbay in terms of modelling

agents aware of certain mutually exlusive events who’s awareness evolves in the

interaction of insurance contracting situation.
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3 Model

The following is a proposed model of a situation in which strategic interactions

depend on both asymmetric information and asymmetric awareness. Asymmet-

ric awareness enters the model by supposing the agent is aware of only a subset

of these causes complete with a restricted/subjective probability measure. The

principal, on the other hand, is aware of the full set along with the objective

probability measure over this set. Asymmetric information is captured via the

idea that the principal, although aware of the agents limited awareness, does

not know exactly which contingencies the agent considers. The agent can up-

date her awareness when offered a contract. She reads the terms, evaluates the

contingencies mentioned and assigns a subjective probability assessment to these

new contingencies. However, I further suppose that reading terms of which she

was previously unaware corresponds - in a sense - to becoming aware of her own

unawareness as in Zhao (2011). In this setting, I interpret this as a proxy for sus-

picion. When new contingencies are announced to the agent, she becomes aware

of the general event that there are other contingencies of which she is still un-

aware and can use this position when bargaining with the principal. The insurer

must offer a contract to the insuree for protection against some damages.

3.1 Two Types, Three States

Awareness, Information and Types Let Ω = {a, b, c} be the entire set of

causes leading to damages of a good v owned by an agent. The insurer has perfect

knowledge of the contigencies ω ∈ Ω along with their probabilities given by µ(·),
the objective probability measure. The insuree on the other hand is a aware only

of a certain K ⊂ Ω set of contingencies and evaluates their probabilities with

a restricted probability measure µK(·). Although the insuree may not be able

to accurately assess the probability of some event occurring it is unproblematic

to assume that she assesses the relative weights of events correctly. Intuitively,

the contingencies of which she is aware, she can observe and hence can judge

the relative frequency of them in the same way as the insurer. That is, µK(·) =

µ(·|K). A type K ∈ Θ is associated with a given K that characterizes their

awareness. There is a distribution f(·) over Θ of which the principal is aware. For

this, the most basic version of the model, I assume that there are just two types

of agents: A who are aware of set A = {a, b} occur with probability f(A) = π,

and B who are aware of B = {b, c} and occur with probabiity f(B) = 1− π.

Although an interesting question is how the insurer behaves given no infor-

mation on these types I impose that the insurer knows the cardinality of each of
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the awareness sets along with the number of types. That is, he knows there are

two types who are each aware of two contingencies. The asymmetric information

arises from the fact that the principal does not know which ω ∈ K the agent is

aware of, despite knowing the cardinality of K.

Further, without loss of generality I introduce the following assumption for

clarity in the three state case.

Following Filiz-Ozbay I introduce a damage function d : Ω→ R+ and reduce

the model to damage levels S = d(Ω). As such, the words “event” and “damage”

will be interchanged for fluidity where there is no room for confusion.

Abusing notation slightly let d(a) = a, d(b) = b and d(c) = c. Then, I impose

the following conditions on the relationship between the damage levels.

Assumption 3.1. b < a and b < c

As such, the least salient state is state b of which both are aware initially and

bargaining occurs over b plus the states of which each type becomes aware. To

keep things general, we do not impose anything on the relationship between a

and c.

Contracts

Definition 3.1. A contract in this model can be defined as a tuple C =

(Q, t(·), k) where:

1. Q are the events covered by the contract (the announced contingencies).

2. t : Q → R+ is a function specifying transfers to be paid in the event an

q ∈ Q materizalizes.

3. k is a premium paid to the insurer.

Then the space of all contracts C is the set of all such tuples.

The definition of a contract involves the use of a damage function to reduce

the model to only damage levels.

Example 3.1. Let damages be:

d(ω) =


500 ω = a

200 ω = b

700 ω = c
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A contract which promises transfers of 500 in the event that a obtains and 300

in the event that c obtains, together with a premium of 500 is a tuple:

C = ({a, c}, (t(a) = 500, t(b) = 0, t(c) = 300), 500)

There is an implicit assumption that offering such a contract to the A type

(for example) alters his awareness, that is, agents are able to conceive of a notion

once they are presented with it.

Updating Awareness and Suspicion After reading a contract which an-

nounces terms of which the insuree was previously unaware, she must form beliefs

over these contingencies. Let BK denote the the distribution of type K over the

set of announced contingencies Q.

Definition 3.2. The updated probability distribution of type K BK is the dis-

tribution defined by:

BK(s) =
(1− αK)µP (s)∑

s∈K µP (s)
∀ s ∈ K

Where αK is an exogenously given parameter reflecting the residual weight

type K gives to the newly announced contingencies:

BK(s) = αK

for s ∈ Q \K
And if K ⊆ Q =⇒ BK(·) = µ(·|K)

αK is a parameter that is given exogenously acting as a measure of updating

for a given type. The second condition of the above definition says that if no new

contingencies are revealed we get our original distribution back.

For example, A could be offered a contract based on {a, c}. After reading

such a contract the A type resigns residual probability αA to c and updates her

beliefs over the contingencies {a, b} in accordance with definition 3.2.

Note that with this kind of belief formation, the insurers profit is dependent

not only on the terms of the contract, but also on the way in which beliefs are

formed. That is, the terms of the optimal contract of following a given strategy

(the choice of who to appeal to) depends on how suspicious each type becomes ex

ante. For reasons that will become clear, for the rest of this paper I will refer to

a type who, after becoming aware of a contingency x assigns αK < µ(x). Figure
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Figure 1: Profit of the Insurer As a function of the Updating Process

1 shows the profit of the insurer from following the strategy of announcing all

contingencies and appealing to both types.

As I hope figure 1 demonstrates, the optimal profit is highly dependent on

the way beliefs are formed. As such, the optimal strategy depends not only on

the distribution of types, but also on this updating process.

The Insurers Problem For both insurer and insuree, utilities depend not only

on the terms of the contract, but also on their strategies. For the insuree of either

type the strategy space is simply SK = {Accept, Reject}.
The insuree’s strategy can be summarized via a decision rule DK : C→ {0, 1}

where 0 indicates rejection and 1 indicates acceptance for K ∈ {A,B}. The

expected utility of type K from contract C = (Q, t(·), k) can be written as:

EUK(C|DK(C)) = [
∑
Q

u(v − s+ t(s)− k)BK(s) +
∑
K\Q

u(v − s)BK(s)]DK(C)

+ [
∑
Q

u(v − s)BK(s) +
∑
K\Q

u(v − s)BK(s)](1−DK(C))

Example 3.2. Continued from Example 3.1 Suppose the insurer offers the

contract identified in Example 3.1. Let u(x) =
√
x.

The objective probabilities of the various contingencies are:
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µP (ω) =


0.25 ω = a

0.5 ω = b

0.25 ω = c

Let v = 1000, then the objective utility is given by:

√
1000− 500 + 500− 500× 0.25 +

√
1000− 200 + 0− 500× 0.5

+
√

1000− 700 + 300− 500× 0.25 ≈ 14.88

After reading such a contract, A becomes aware of c and B becomes aware of

a. Hence each must update. Suppose αA = 0.1 and αB = 0.2 then beliefs are

given by:

BA(s) =


0.3 s = a

0.6 s = b

0.1 s = c

and

BB(s) =


0.2 s = a

0.53 s = b

0.27 s = c

Reservation utilities are given by:

E(U(C)|A, 0)

=

√
1000− 500× 0.3 +

√
1000− 200× 0.6 +

√
1000− 700× 0.1 ≈ 25.4

E(U(C)|B, 0)

=

√
1000− 500× 0.2 +

√
1000− 200× 0.53 +

√
1000− 700× 0.26 ≈ 24.175

And the value of purchasing the contract is:

E(U(C)|A, 1)
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=

√
1000− 500 + 500− 500× 0.3 +

√
1000− 200 + 0− 500× 0.6+

√
1000− 700 + 300 + 500× 0.1 ≈ 18.1

E(U(C)|B, 1)

=

√
1000− 500 + 500− 500× 0.2 +

√
1000− 200 + 0− 500× 0.53

+
√

1000− 700 + 300− 500× 0.37 ≈ 16.37

And as such both insurees will reject such a contract contract.

For an insurer the strategy space is simply terms of the contract. The insurer

structures the terms of the contract such that he maximizes the expected payoff

he gets from the A types and B types together. Given the distribution f(A) = π

the insurers utility function is given by:

EUP (C|DA(C), DB(C)) =

π[k −
∑
Q

t(s)µ(s)]DA(C) + (1− π)[k −
∑
Q

t(s)µ(s)DB(C)

The insurers problem is formally given by the following definition.

Definition 3.3. The problem of the insurer is:

max
C∈C

EUP (C|DA(C), DB(C))

The insurer must choose a contract which maximizes his expected payoff. In

the interest of being explicit, with two types, this is equivalent to solving the

following problem.

max
k,t(·),Q

π[k −
∑
Q

t(s)µ(s)]DA(C)

+ (1− π)[k −
∑
Q

t(s)µ(s)DB(C)
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subject to, for K ∈ {A,B} it holds:

∑
Q

u(v + t(s)− k)µ(s|K) +
∑
K\Q

u(v − s− k)µ(s|K)

≥
∑
Q∪K

u(v − s)µ(s|K) (1)

⇐⇒

DK(C) = 1

where the above is the participation constraint of the K type.

With this in hand we are ready for an equilibrium definition.

Definition 3.4. An equilibrium of the two-type model is a contract C =

(Q∗, t∗(·), k∗) and a tuple of strategies (D∗A(C∗), D∗B(C∗)) such that:

1. The insurees of either type decides optimally on the contract given their

beliefs ie. (D∗A(C∗), D∗B(C∗) are such that:

D∗K(C∗) =1 ⇐⇒ E[uK(C∗|1)|BK ] ≥ E[uK(C∗|0)|BK ] & E[UP |BK ] ≥ 0

0 ⇐⇒ E[uK(C∗|0)|BK ] > E[uK(C∗|1)|BK ]

∀K.

2. Given the decisions of each type, the contract C∗ is optimal for the insurer.

ie:

E[UP (C∗|D∗A(C∗), D∗B(C∗))] ≥ E[UP (C,D∗A(C), D∗B(C))]

∀C ∈ C

3. k∗ ≥ 0 and t∗(ω) ≤ d(ω)∀ω ∈ Ω

An equilibrium is a contract, which in itself consists of a set of announced

contingencies, a transfer rule and a premium. This contract must be optimal for

the insurer given the decisions of each type, which in turn must be optimal for

each insuree. Further, we require that premiums are non-negative - the insurer

will never pay someone to take a contract - and transfers must not exceed damages

since such a contract could serve to give the insurer infinite profit.
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4 Solution Method

The problem the insurer faces is different from the standard insurance problem

in that he faces uncertainty in terms of the distribution of types and as such of

the awareness levels of the insuree he is dealing with. This problem is further

compounded by the fact that announcing a contingency alters the participation

constraint of a type. If an insuree reads a contract announcing a contingency of

which she was previously unaware then her utility function updates to include

a state which accounts for that contingency, and her beliefs update. Hence her

participation constraint has the potential to be significantly different ex ante.

Even further, it may be optimal to simply cater to one type, or it may be op-

timal to cater to both types. The solution method I propose to the problem is

the following. The insurer faces a sequence of optimization problems subject to

varying constraints. Each of these problems corresponds to a different choice or

strategy the insurer plays. First, he must choose which contingencies to cover.

Each Q ⊆ {a, b, c} is a potential set of contingencies on which the insurer can

offer cover. Further, he must optimize the terms of the contract depending on

which type he chooses to cater to. That is, for each Q he find the optimal con-

tract which the A type would accept, the optimal contract which the B type

would accept and the optimal contract which both types. This corresponds to

solving three optimization problems for each Q. For a given Q the insurer solves

the relevant maximization problem once subject to the participation constraint

of the A type, once subject to the participation constraint of the B type and once

subject to the participation constraint of both types. In all cases, contracts must

be compatible and transfers cannot exceed damages. This process eventuates by

giving the insurer a menu of contracts such that for any π he simply picks the

contract which maximizes his expected payoff.

4.1 Characterizing Solutions to the Insurers Problem

In this section I characterize the equilibrium contract as a function of the param-

eters of the model.

Proposition 4.1. Appealing to K over a single contingency x ∈ K yields the

zero contract ie. The contract characterized by the system of equations

k∗ : Participation Constraint of K Type Binds

t∗(x) = x
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Proof. WLOG I show this for the decision to appeal to A over b. The insurer

solves:

max k − µ(b)t(b)

subject to

u(v − a− k)
µ(a)

µ(a) + µ(b)
+

µ(b)

µ(a) + µ(b)
u(v − b+ t(b)− k)

= u(v − a)
µ(a)

µ(a) + µ(b)
+ u(v − b) µ(b)

µ(a) + µ(b)

t(b) ≤ b (2)

Yielding first order conditions

1− λ
[u′(v − a− k))µ(a)

µ(a) + µ(b)
+
u′(v − b+ t(b)− k)µ(b)

µ(a) + µ(b)

]
= 0 (3)

−µ(b) + λ
[
u′(v − b+ t(b)− k)

µ(b)

µ(a) + µ(b)

]
− γb = 0 (4)

λ
[
u(v − a− k)

µ(a)

µ(a) + µ(b)
+

µ(b)

µ(a) + µ(b)
u(v − b+ t(b)− k)

]
= 0 (5)

γb[t(b)− b] = 0 (6)

Clearly 2 implies the constraint must bind and therefore it must be the case

that:

u(v − a− k)µ(a) + u(v − b+ t(b)− k)µ(b)

= u(v − a)µ(a) + u(v − b)µ(b)

Note that λ = 0 implies the contradiction 1 = 0 and hence the constraint
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must bind.

Solving for λ yields

λ =
γb + µ(b)

u′(v − b+ t(b)− k)µ(b)

Substituting this expression into 3 implies:

1− [µ(b) + γb +
µ(a)u′(v − a− k)

u′(v − b+ t(b)− k)
+
γb
u

′
(v− a− k)µ(a)u′(v − b+ t(b)− k)] = 0

⇐⇒

µ(b) + γb +
µ(a)u′(v − a− k)

u′(v − b+ t(b)− k)
+
γbu
′(v − a− k)µ(a)

u′(v − b+ t(b)− k)

=

µ(b) + µ(a) + µ(c)

Case 1: γb = 0 then

u′(v − a− k)

u′(v − b+ t(b)− k)
=
µ(a) + µ(c)

µ(a)

Then concavity implies that t∗(b) > b− a and the constraint binds at k.

Case 2: γb > 0 then t(b) = b and the constraint binds at k∗.

I claim that case 2 is always the profit maximizing action.

Consider case 1 in which t(b) < b, note from the participation constraint that

k∗ > k.

Let x = t(b)− b them since the participation constraint binds it must be the

case that:

u(v − x− k) > u(v − b) =⇒ b− x > k =⇒ b > k

Further note that

u(v − b+ t(b)− k) > u(v − b) =⇒ t(b) > k

Hence we have:

b > t(b) > k

We want to show that:
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k − t(b)µ(b) < k∗ − bµ(b)

Now since k∗ > k it remains to show that 0 < k− k∗ < t(b)− b but this holds

since t(b) < b. Hence t(b) = b and k∗ such that the constraint binds characterizes

the optimal solution.

The above proposition yields a characterization of the insurers problem in the

case that no compatibility constraint as in Filiz Ozbay is imposed. Note however

that since the constraint binds we must have

u(v − k) > u(v − b)

=⇒

k < b = t(b)

Hence

But this implies:

k∗u′(v − a) < u′(v − b)[t∗(b)− k∗]

=⇒

t∗(b) >
u′(v − a)µ(a) + u′(v − b)µ(b)

u′(v − b)µ(b)
k∗

=⇒
µ(b)

µ(a) + µ(b)
t∗(b) >

u′(v − a)µ(a) + u′(v − b)µ(b)

u′(v − b)
k∗

µ(a) + µ(b)

But note that

b < a =⇒ u′(v − a)

u′(v − b)
> 1

and as such:

u′(v − a)µ(a) + u′(v − b)µ(b)

u′(v − b)
1

µ(a) + µ(b)
>
µ(a) + µ(b)

µ(a) + µ(b)
= 1

Hence:

µ(b)

µ(a) + µ(b)
t∗(b) >

u′(v − a)µ(a) + u′(v − b)µ(b)

u′(v − b)
k∗

µ(a) + µ(b)
> k∗
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So, according to the insuree, the insurer makes a loss on such a contract. In

general this is something we would want to abstract from, as in Filiz-Ozbay, such

a requirement was not implemented in this paper but is an interesting avenue for

future research.

Proposition 4.2. The decision to appeal to only one insuree over the contingen-

cies of which they are originally aware, K, yields the contract characterized by

the following system of equations:

t(s) = s∀ s ∈ K

u(v − k∗) =
∑
K

u(v − s)µ(s|K)

Proof. I show this, WLOG, for the decision to appeal to A on {a, b}.

max k − t(a)µ(a)− t(b)µ(b) (7)

subject to

u(v − a+ t(a)− k)
µ(a)

µ(a) + µ(b)
+ u(v − b+ t(b)− k)

µ(b)

µ(a) + µ(b)
≥

u(v − a)
µ(a)

µ(a) + µ(b)
+ u(v − b) µ(b)

µ(a) + µ(b)
(8)

t(a) ≤ a (9)

t(b) ≤ b (10)

Consider the first order conditions:

1− λ[u′(v − a+ t(a)− k)
µ(a)

µ(a) + µ(b)
+ u′(v − b+ t(b)− k)

µ(b)

µ(a) + µ(b)
] = 0

(11)

−µ(a) + λu′(v − a+ t(a)− k)
µ(a)

µ(a) + µ(b)
− γa = 0 (12)

−µ(b) + λu′(v − b+ t(b)− k)
µ(b)

µ(a) + µ(b)
− γb = 0 (13)

First note that λ = γa = γb = 0 yields the contradiction µ(a) = µ(b) = 0.
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Next note that λ > 0 but γa = γb = 0 yields the contradiction 1−µ(a)−µ(b) =

0 after solving 12 and 13 for λ and substituting into 11.

λ = 0, γa > 0, γb > 0 =⇒ t∗(a) = a, t∗(b) = b. If the constraint does

not bind, then this cannot be optimal since increasing k∗ until it does gives the

insurer more profit. Note that it cannot be the case that λ = γi = 0 since this

would imply that µ(i) = 0.

Hence the only possible solution is characterized by λ > 0, γa > 0, γb > 0.

This implies that t∗(a) = a and t∗(b) = b and the constraint binds. Hence the

system:

t∗(a) = a

t∗(b) = b

u(v − k∗) = u(v − a)
µ(a)

µ(a) + µ(b)
+ u(v − b) µ(b)

µ(a) + µ(b)

Characterizes the solution.

Proposition 4.3. (Characterization of a solution to appealing to the alternative

type on K)

If αB ≤ µ(a) then the optimal contract resulting from the decision to appeal

to the B type over {a, b} is characterized by the equation system:

t∗(a) = a

t∗(b) = b

u(v − a+ t∗(a)− k∗) αB
(1− αB)

[
µ(b) + µ(c)

]
+ u(v − b+ t∗(b)− k∗)µ(b)

+u(v − c− k∗)µ(c) =

u(v − a)
αB

(1− αB)

[
µ(b) + µ(c)

]
+ u(v − b)µ(b) + u(v − c)µ(c)

Proof. The insurer solves:

max k − t(a)µ(a)− t(b)µ(b)

Subject to
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u(v − a+ t(a)− k)
αB

(1− αB)

[
µ(b) + µ(c)

]
+ u(v − b+ t(b)− k)µ(b)

+u(v − c− k)µ(c) ≥

u(v − a)
αB

(1− αB)

[
µ(b) + µ(c)

]
+ u(v − b)µ(b) + u(v − c)µ(c) (14)

t(a) ≤ a (15)

t(b) ≤ b (16)

Yielding FOCS

1− λ
[ αB
1− αB

[µ(b) + µ(c)]u′(v + t(a)− a− k)

+ u′(v + t(b)− b− k)µ(b)− u′(v − c− k)µ(c)
]

= 0 (17)

−µ(a) + λ[
αB

1− αB
u′(v + t(a)− a− k)[µ(b) + µ(c)]]− γa = 0 (18)

−µ(b) + λ[u′(v + t(b)− b− k)µ(b)]− γb = 0 (19)

Note first that the constraint must bind. Then, solving for λ we have:

λ =
µ(a) + γa

u′(v + t(a)− ak)
1− αB
αB

1

µ(b) + µ(c)

=
γb + µ(b)

u′(v − b+ t(b)− k)µ(b)

Substituting these expressions into 17 it must be that:

1− [µ(a) + γa + µ(b) + γb + λu′(v − c− k)µ(c)] = 0

And therefore:

γa + γb + λu′(v − c− k)µ(c) = µ(c)

Case 1: γa = γb = 0

From here we get that

λu′(v − c− k) = 1
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⇐⇒

1 =
u′(v − b+ t(b)− k)

u′(v − c− k)

=⇒

t(b) = b− c < 0

Yielding a contradiction.

Case 2: γa = 0, γb > 0

In this case we have that t∗(b) = b

And it must be the case that:

γb + λu′(v − c− k)µ(c) = µ(c)

Substituting in and solving for γb yields:

γb =
µ(c)[u′(v − k)− u′(v − c− k)]

1 + µ(b)
µ(c)

u′(v−c−k)
u′(v−k)

But note that by concavity

u′(v − k) < u′(v − c− k)

since premiums must be positive as long as a contract is offered.

=⇒

γb < 0

which violates the KKT conditions.

Case 3: γb = 0, γa > 0

γa +
µ(a) + γa

u′(v − a+ t(a)− k)[µ(b) + µ(c)]

1− αB
αB

u′(v − c− k)µ(c) = µ(c)

And note that t(a) = a.

Then solving for γa we have:

γa =
µ(c)

[
1− µ(a)

µ(b)+µ(c)
1−αB

αB

u′(v−c−k)
u′(v−k)

]
1 + µ(a)

µ(b)+µ(c)
1−αB

αB

u′(v−c−k)
u′(v−k)

Consider the numerator of this fraction which simplifies to:
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u′(v − k)− µ(a)

µ(b) + µ(c)

1− αB
αB

u′(v − c− k)

Note that for any k > 0 by the concavity of u(·)

u′(v − c− k) > u′(v − k)

Also note that

αB ≤ µ(a) =⇒ µ(a)

µ(b) + µ(c)

1− αB
αB

≥ 1

Then, since the denominator of the above expression for γa is always positive.

This would imply that the γa multiplier is negative. A contradiction.

Case 4: γa > 0 and γb > 0

In this case transfers and damages are exactly equal and the premium is such

the constraint binds.

Consider the previous proposition. If αB ≤ µ(a) we find that t(a) = a and

t(b) = b. For the constraint to bind it must therefore be the case that the premium

k∗abB must be less than the premium k∗abA . Therefore, it becomes easy to see that

offering the {a, b} contract to the B type when he underestimates the contingency

a is dominated by simply offering it to the A type. I prove this result formally in

the next section. Further, it is important to note than for certain αA this contract

will appear to be loss-inducing according to the insuree, to avoid this I assume

alpha is parametrized in a way such that this does not occur.

Proposition 4.4. (Characterization of a solution to the problem of appealing to

both types on {a, b}.)
When αK ≤ µ(x) for the relevant x, the optimal contract is characterized by

by the system of equations:

t∗(a) = a

t∗(b) = b
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u(v − a+ t∗(a)− k∗) αB
(1− αB)

[
µ(b) + µ(c)

]
+ u(v − b+ t∗(b)− k∗)µ(b)

+u(v − c− k∗)µ(c) =

u(v − a)
αB

(1− αB)

[
µ(b) + µ(c)

]
+ u(v − b)µ(b) + u(v − c)µ(c)

Further the premium under this solution must be strictly less than the pre-

mium under the decision to appeal to solely the A type.

Proof. Consider the problem.

max k − t(a)µ(a)− t(b)µ(b) (20)

subject to

u(v − a+ t(a)− k)µ(a) + u(v − b+ t(b)− k)µ(b)

≥ u(v − a)µ(a) + u(v − b)µ(b) (21)

u(v − a+ t(a)− k)
αB

(1− αB)

[
µ(b) + µ(c)

]
+ u(v − b+ t(b)− k)µ(b)

+u(v − c− k)µ(c) ≥

u(v − a)
αB

(1− αB)

[
µ(b) + µ(c)

]
+ u(v − b)µ(b) + u(v − c)µ(c) (22)

t(a) ≤ a

t(b) ≤ b

The resulting first order conditions are:
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1− λ
[
u′(v − a+ t(a)− k))µ(a) + u′(v − b+ t(b)− k)µ(b)

]
− γ
[
u′(v − a+ t(a)− k)

αB
(1− αB)

[
µ(b) + µ(c)

]
+

u′(v − b+ t(b)− k)µ(b) + u′(v − c− k)µ(c)
]

(23)

= 0

− µ(a) + λ
[
u′(v − a+ t(a)− k)µ(a)

]
+

γ
[
u′(v − a+ t(a)− k)

αB
[
µ(b) + µ(c)

]
(1− αB)

]
− γa (24)

= 0

−µ(b) + (λ+ γ)
[
u′(v − b+ t(b)− k)µ(b)

]
= 0 (25)

γa(t(a)− a) = 0 (26)

γb(t(b)− b) = 0 (27)

λ
[
u(v − a+ t(a)− k)µ(a) + u(v − b+ t(b)− k)µ(b)

− u(v − a)µ(a)− u(v − b)µ(b)
]

= 0 (28)

γ
[
u(v − a+ t(a)− k)

αB
(1− αB)

[
µ(b) + µ(c)

]
+ u(v − b+ t(b)− k)µ(b)

+ u(v − c− k)µ(c)− u(v − a)
αB

(1− αB)

[
µ(b) + µ(c)

]
− u(v − b)µ(b)− u(v − c)µ(c)

]
= 0 (29)

There are a number of cases leading to different potential solutions of this

problem. I shall go through each.

Case 1: λ = γ = γa = γb = 0
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This yields the contradiction µ(a) = µ(b) = 0

Case 2: λ > 0, γ > 0

Suppose both are positive. Then both constraints must bind at an optimum.

Hence it must be the case that.

u(v − a+ t(a)− k)µ(a) + u(v − b+ t(b)− k)µ(b)− u(v − a)µ(a)− u(v − b)µ(b) =

u(v − a+ t(a)− k)
αB

(1− αB)

[
µ(b) + µ(c)

]
+

u(v − b+ t(b)− k)µ(b) + u(v − c− k)µ(c)

− u(v − a)
αB

(1− αB)

[
µ(b) + µ(c)

]
− u(v − b)µ(b)− u(v − c)µ(c) (30)

⇐⇒

u(v − a+ t(a)− k)µ(a)− u(v − a)µ(a) =

u(v − a+ t(a)− k)
αB

(1− αB)

[
µ(b) + µ(c)

]
+ u(v − c− k)µ(c)

− u(v − a)
αB

(1− αB)

[
µ(b) + µ(c)

]
− u(v − c)µ(c) (31)

But note that since u(v− c− k)− u(v− c) < 0∀ k > 0 and since this must be

the case when a contract is offered then we have:

u(v − a+ t(a)− k)µ(a)− u(v − a)µ(a) =

[u(v − c− k)− u(v − c)]µ(c) + [u(v − a)− u(v − a+ t(a)− k)]
αB

(1− αB)

[
µ(b) + µ(c)

]
<

[u(v − a+ t(a)− k)− u(v − a)]
αB

(1− αB)

[
µ(b) + µ(c)

]
(32)

But

αB ≤ µ(a) =⇒ 1−αB ≥ 1−µ(a) = µ(b)+µ(c) =⇒ αB
(1− αB)

[
µ(b)+µ(c)

]
≤ µ(a)

Which gives the contradiction

[u(v − a)− u(v − a+ t(a)− k)]µ(a) =
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<

[u(v − a)− u(v − a+ t(a)− k)]x

Where x ≤ µ(a).

Case 3: λ = 0, γ = 0

This yields the contradiction 1 = 0 from equation 23.

Case 4: λ > 0, γ = 0

Then it must be the case that:

λ =
µ(a) + γa

u′(v − a+ t(a)− k)µ(a)

=

µ(b) + γb
u′(v − b+ t(b)− k)µ(b)

Substituting these expressions into 23 we have:

1− (µ(a) + γa + µ(b) + γb) = 0

⇐⇒

γa + γb = µ(c)

But, consider γa = 0

Then we must have must have γb = µ(c) and hence t(b) = b and from our

previous expressions then it must be that:

µ(b) + µ(c)

µ(b)
=

u′(v − k)

u′(v − a+ t(a)− k)
> 1

Hence by concavity we have

v − k < v − a+ t(a)− k

therefore

a < t(a)

yields a contradiction. A symmetric idea follows when γb = 0. So it must be the

case that γa, γb > 0 and hence t∗(a) = a, t∗(b) = b and the constraint for the A

type binds. Note however, that proposition 4.7 in section 4.2 implies that this

contract will never be accepted by the B type when αB < µ(a) and hence this is

no solution to this problem.

So we are left with:

Case 5: γ > 0, λ = 0
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From the first order conditions we get:

γ =
γa + µ(a)

u′(v − a+ t(a)− k)[µ(b) + µ(c)]

=

µ(b) + γb
u′(v − b+ t(b)− k)

And hence from 23

1− [γa + µ(a) + µ(b) + γb + γu′(v − c− k)µ(c)]

⇐⇒

γa + µ(a) + µ(b) + γb + γu′(v − c− k)µ(c)]

= µ(a) + µ(b) + µ(c)

There are a number of subcases here, and the proof follows exactly the same

reasoning as the previous proposition. The result therefore follows. Note that the

premium must be less than the premium when appealing directly to A. Hence

it must be the case that the A type’s participation constraint is satisfied and

non-binding.

Hence proposition 4.4 shows there is something of a tradeoff between catering

to a type and making them aware of a certain contingency. If they become

suspicious such that they underestimate a salient state then in order to attract

the A type a lower premium must be paid.

Figure 2 shows the insurers utility from following such a strategy as a function

of the updating process of the A type. Note that it should not be troubling that

the plane does not fluctuate in accordance with αB since αB = 0 here. In the

uppermost plane of the graph there is point where the function flattens out. This

is exactly the point where the B constraint binds.

Proposition 4.5. (Characterization of a solution to the problem of appealing to

either type across the whole space Ω = {a, b, c})
A solution to the problem of appealing to a single A here to be explicity type

by offering cover on all contingencies {a, b, c} is characterized by the system of

equations:

t∗(a) = a

t∗(b) = b
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Figure 2: Insurer Utility From Catering to both types over {b, c}

u′(v − c+ t(c)− k)

u′(v − k)

αA
1− αA

1− µ(c)

µ(c)
= 1

u(v − c+ t∗(c)− k∗)αA + u(v − k∗)(1− αA)µ(b)

µ(a) + µ(b)
+ u(v − k)

(1− αA)µ(a)

µ(a) + µ(b)

= u(v − c)αA + u(v − b)(1− αA)µ(b)

µ(a) + µ(b)
+ u(v − a)

(1− αA)µ(a)

µ(a) + µ(b)

for the A type.

Proof. WLOG I show for the A type. The proof and reasoning for the B type

are symmetric.

The insurer solves:

max
k,t(·)

k − t(a)µ(a)− t(b)µ(b)− t(c)µ(c) (33)

subject to
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u(v − c+ t(c)− k)
αA

1− αA
(1− µ(c)) + u(v − b+ t(b)− k∗)µ(b)

+ u(v − a+ t(a)− k)µ(a)

= u(v − c) αA
1− αA

(1− µ(c)) + u(v − b)µ(b) + u(v − a)µ(a) (34)

t(a) ≤ a (35)

t(b) ≤ b (36)

t(c) ≤ c (37)

Yielding first order conditions:

1− λ
[
u′(v − c+ t(c)− k)

αA
1− αA

(1− µ(c))

+ u′(v − b+ t(b)− k)µ(b) + u′(v − a+ t(a)− k)µ(a)] = 0 (38)

−µ(a) + λ[u′(v − t(a) + a− k)µ(a)]− γa = 0 (39)

−µ(b) + λ
[
u′(v − t(b) + b− k)µ(b)

]
− γb = 0 (40)

−µ(c) + λ
[u′(v − t(c) + c− k)αA

1− αA
(1− µ(c))

]
− γc = 0 (41)

γa(t(a)− a) = 0 (42)

γb(t(b)− b) = 0 (43)

γc(t(c)− c) = 0 (44)

(45)

λ = 0 yields the contradicition 0 = 1
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Solving for λ we find:

λ =
µ(a) + γa

u′(v − a+ t(a)− k)µ(a)
=

µ(b) + γb
u′(v − b+ t(b)− k)µ(b)

=
µ(c) + γc

u′(v − c+ t(c)− k)

1− αA
αA[1− µ(c)]

substituting these expressions into 38 we find.

1− [µ(a) + γa + µ(b) + γb) + µ(c) + γc] = 0

⇐⇒

γa = γb = γc = 0

From here dividing the expressions for λ by one another we find t(a) = a,

t(b) = b and t(c) is characterized by:

u′(v − c+ t(c)− k)

u′(v − k)

αA
1− αA

1− µ(c)

µ(c)
= 1

Note that αA = µ(c) =⇒ t(c) = c as we would expect.

Further, αA < µ(c) =⇒ u′(v − c + t(c) − k) > u′(v − k) and by concavity

v − c+ t(c)− k < v − k =⇒ t(c) < c and vice versa.

The above figure shows the insurers utility from following the strategy of

offering B a complete contract as a function of how he updates. Note that

when B correctly estimates the contingency he becomes aware of the utility of

the insurer from following such a strategy takes a minimum. Intuitively this is

because, whilstB is less willing to take insurance covering him for the a state when

he underestimates he overestimates the contingencies of which he is originally

aware, ie. {b, c} which leaves the insurer some room to exploit this. Note that

as αB → µ(a) the utility of the insurer is decreasing. When αB < µ(a) then the

B type underestimates the likelihood of state a and hence he overestimates the

alternate states b and c. Hence the insurer can exploit this fact by promising

these transfers at a higher premium. The insurer knows the objective probability

of these transfers and hence in expectation his utility must be higher.

A full characterization of the solution to the problem of offering both types

{a, b, c} is unfortunately rather complex. As such it is omitted here.

Figure 4 shows how the utility of the insurer fluctuates as beliefs are updated.

It takes a minimum at the point where each of the types updating parameter
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Figure 3: Insurer utility from covering B across the entire set. Vertical line at
µ(a) = 0.25

matches the objective probability. In this case there is no room for exploitation

in either direction across either of the types.

4.2 Characterization of Optimal Strategies

Note that in the previous sections I have been implictly treating the series of

optimization problems as relatively unconnected. But, clearly the choice of which

contract is an optimal contract depends on the distribution of types. To see this,

compare figure 4 with figure 5, a graph of the equilibrium profit as a function of

the updating process for π = 0.2.

Note that the lower most plane of this figure is at a value of approximately

150. Jumps in the graph indicate that at different regions of beliefs, different

strategies dominate. For example a jump could indicate that given π = 0.2 as

the A type overestimates it becomes more lucrative to cater exclusively to him

and hence the strategy of the insurer switches at a given αA.

Now that I have characterized the solutions to the sequence of problems that

the insurer faces. I turn to analyze the optimal strategies resulting from these

solutions as functions of the distribution of types.

Proposition 4.6. A type who becomes suspicious after updating will always

reject the contract designed for the other.
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Figure 4: Insurer utility from covering both A and B across the entire set as a
function of the updating process

Proof. To see this, consider the contract designed for the A type on {a, b}. This

contract consists of transfers t∗(a) = a, t∗(b) = b and a premium such that the

participation constraint of the A type binds. Suppose the B type did accept the

A type’s contract. Note that the inequality must be strict by lemma 4.1. Then

it must be the case that:

u(v − k∗A)
αB

1− αB
(µ(b) + µ(c)) + u(v − k∗A)µ(b) + u(v − c− k∗A)µ(c)

>

u(v − a)
αB

1− αB
(µ(b) + µ(c)) + u(v − b)µ(b) + u(v − c)µ(c)

Suppose αB = µ(a) this implies that:

u(v − k∗A)µ(a) + u(v − k∗A)µ(b) + u(v − c− k∗A)µ(c)
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Figure 5: Optimal Profit as a Function of Updating

>

u(v − a)µ(a) + u(v − b)µ(b) + u(v − c)µ(c)

And since the A type’s constraint binds we have:

u(v − a)µ(a) + u(v − b)µ(b) + u(v − c− k∗A)µ(c)

>

u(v − a)µ(a) + u(v − b)µ(b) + u(v − c)µ(c)

But then u(v − c− k∗A)µ(c) < u(v − c)µ(c) yields a contradiction.

For the case when αB < µ(a) consider the following:

u(v − k∗A)
αB

1− αB
(µ(b) + µ(c)) + u(v − k∗A)µ(b) + u(v − c− k∗A)µ(c)

=
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u(v − a)[µ(a)[
αB

1− αB
(µ(b) + µ(c)) + µ(b)]]

+ u(v − b)[µ(b)[
αB

1− αB
(µ(b) + µ(c)) + µ(b)]]

+ u(v − c− k∗A)µ(c)

I first claim that

µ(a)[
αB

1− αB
(µ(b) + µ(c)) + µ(b)]

<

αB
1− αB

(µ(b) + µ(c))

but this is true

⇐⇒

µ(a)µ(b) < [
αB

1− αB
(µ(b) + µ(c))](1− µ(a))

=

[
αB

1− αB
(µ(b) + µ(c))2]

<

[
αB

1− αB
(µ(b) + µ(c))]

<

αB

< µ(a)

Where the second to last inequality holds since αB < µ(a) =⇒ 1 − αB >

µ(b) + µ(c).

Which holds true since µ(b) ∈ (0, 1).

Further note that since µ(c) > 0

αB < µ(a) =⇒ αB
1− αB

(µ(b) + µ(c)) + µ(b) < µ(a) + µ(b) < 1

Hence we have:

u(v − k∗A)
αB

1− αB
(µ(b) + µ(c)) + u(v − k∗A)µ(b) + u(v − c− k∗A)µ(c)
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=

u(v − a)[µ(a)[
αB

1− αB
(µ(b) + µ(c)) + µ(b)]]

+ u(v − b)[µ(b)[
αB

1− αB
(µ(b) + µ(c)) + µ(b)]]

+ u(v − c− k∗A)µ(c)

<

u(v − a)[
αB

1− αB
(µ(b) + µ(c)) + u(v − b)µ(b)[

αB
1− αB

(µ(b) + µ(c)) + µ(b)]

+ u(v − c− k∗A)µ(c)

<

u(v − a)[
αB

1− αB
(µ(b) + µ(c)) + u(v − b)µ(b) + u(v − c)µ(c)

So the B type’s participation constraint is violated, hence he will never accept

A’s contract.

Proposition 4.7 gives a motivation for our labelling of a type who underes-

timates a contingency as a suspicious. Essentially after reading the A type’s

contract, which gives full insurance over A, B updates in such a way that he

would never accept the contract at such a premium. This means that the insurer

will never offer the A type’s contract to B.

Proposition 4.7. The value of the objective to the solution of the problem

offering A contingencies {a, b} is always higher than the value of the objective to

the solution of the problem of offering B contingencies {a, b}.

Proof. First note that from proposition 4.3 we have that t∗(a) = a and t∗(b) = b.

Hence it simply remains to show that k∗abB < k∗abA . But note that this follows

freely from proposition 4.6 since if we had k∗abB > k∗abB then the premium the B

type accepts is greater than the premium the A type accepts, and transfers are

the same in both cases, hence it must be the case that he accepts A’s contract

which contradicts the previous proposition 4.6.

Despite only specifying a result disregarding the distribution of types, propo-

sition 4.8 is useful in the following way. The insurer, with probability π knows
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he is dealing with an A type. Then, given that he is in this state, if the B type

will become suspicious of him (in that he underestimates the contingency which

is revealed) the insurer will always choose to offer {a, b} to the A type rather

than the B type. Conversely, with probability 1− π he is dealing with a B type,

and hence will offer {b, c} to him over offering it to the A type. Effectively, this

proposition allows us to ignore certain nodes in the underlying game tree. For a

numerical example, see section 5.

Proposition 4.8. The strategy of revealing a contingency to and catering to

both types dominates the strategy of catering to the single type in and only if

π <
k∗AB − aµ(a)− bµ(b))

k∗A − aµ(a)− bµ(b)

Proof. We know that k∗abAB < k∗abA and in both cases t∗(a) = a, t∗(b) = b. The

result follows from simple algebra.

The previous proposition implies that certain distributions of types encourage

the insurer to reveal contingencies out of self interest. Hence the fact that each

type’s level of awareness is private information can be seen as one potential driver

of completeness in the contractual form.

Proposition 4.9. For all distributions, if the insuree becomes suspicious after

updating then the strategy of concealing the additional contingency and appealing

to that insuree over the contingencies of which he is originally aware dominates

the strategy of revealing the contingencies.

Proof. WLOG I show this for the A type.

We want to show:

π(k∗abA − bµ(b)− aµ(a)) ≥ π(k∗abcA − t∗(c)µ(c)− bµ(b)− aµ(a)

It therefore remains to show that:

k∗abA ≥ k∗abcA − t∗(c)µ(c)

.

Suppose not:

k∗abA < k∗abcA − t∗(c) < k∗abcA − t∗(c)µ(c) < k∗abc

.

Then, since the A type constraint binds under k∗ab =⇒
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u(v − k∗abc)µ(a) + u(v − k∗abc)µ(b) < u(v − a)µ(a) + u(v − b)µ(b)

But then note that by proposition 4.4 the constraint of the A type when made

aware of c must also bind.

Then this means that

u(v − c+ t∗(c)− k∗abc) > u(v − c)

And hence it must be the case that t∗(c) > k∗abc.

But then note that our assumption would imply k∗ab < 0 which is a contra-

diction.

Note that this line of reasoning holds independently of the distribution π and

hence the statement of the proposition is fulfilled.

To this point I have shown a number of things. Suppose the B type becomes

suspicious after updating. Then, first, he will reject theA type’s contract. Second,

it will be better for the insurer to appeal to A over appealing to both types. Third,

if the A type becomes suspicious after revealing c it will be better to simply offer

the A type {b, c}.
This is summarized in the following theorem:

Theorem 4.1. αA < µ(c) and αB < µ(a) =⇒ the optimal strategy is to appeal

to either A or B directly over the initial set K.

Proof. See propositions 4.6-4.9. Note further that the actual distribution π de-

termines exactly which strategy is optimal for the insurer between appealing to

A over {a, b} and B over {b, c}. See figure 7 for further intuition.

The intuition is the following. Suppose the B type underestimates the prob-

ability of the contingency of which he becomes aware then, after reading the A

type’s contract he becomes suspicious that the premium is essentially too high

to warrant such coverage. Hence, he rejects the contract for the A type, and it

becomes too costly for the insurer to insure him over {a, b}. Similarly, if revealing

a contingency to the A type makes it costly to insure him on that contingency

the insurer will never reveal such a contingency.

Conjecture 4.1. ∃αA, αB, π such that it is optimal to appeal to both types on

{a, b, c} under a compatibility requirement even when both types underestimate

the contingency of which they are made aware.

43



The above conjecture is motivated by the fact that there is a trade off between

making an agent aware of a contingency-in that it is costly to insure them-and

being able to capture a larger share of the market. Under compatibility the insurer

is constrained to offering contracts which appear utility maximizing. As such,

perhaps it is possible that contracts can be offered which reveal all contingencies

to both types and still do better for the principal than all other contracts. This

is an area for future research.
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5 A Numerical Example

Now that I have introduced the general solution concept I turn to the following

numerical example. Again there are three states Ω = {a, b, c} with two types of

agents: A who are aware of {a, b} and B who are aware of {b, c}. Each agent

wants to insure a good of value v = 2000. Objective probabilities of a certain

contingency bringing damage to the good the beliefs held by the principal and

are given by. The objective probability measure of the principal is given by

µP (ω) =


0.25 ω = a

0.5 ω = b

0.25 ω = c

Therefore, the initial belief system of each type is

µA(ω) =

0.33 ω = a

0.67 ω = b

µB(ω) =

0.67 ω = b

0.33 ω = c

Suppose each underestimates the likelihood of the contingency they become

aware of. Specifically, suppose αA = 0.2 and αB = 0.1 then the updated beliefs

are given by

The good has value v = 2000 to each type of consumers and the damages are:

d(ω) =


500 ω = a

400 ω = b

600 ω = c

For each agent u(x) =
√
x and I will characterize the solution as a function

of π.

From our characterization of the optimal strategy we know the B type will not

accept the contract on {a, b} that is designed for A since he becomes suspicious of

the insurers motives. Conversely, the A type will not accept the contract designed

for B over {b, c}. Finally, note that offering {a, c} is equivalent to offering set

{a, b, c}. For example, we can see this by simply normalizing b = 0. Therefore,

the corresponding nodes of the following game tree are ignored since they can

never be played at an optima.
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Nature

(
108.70
39.59

)
A

(
0

39.58

)
R

A

(
2.5
40.0

)
A

(
0

39.58

)
R

Both

{a, b}

(
12.00
39.15

)
A

(
0

39.15

)
R

A

(
2.68
39

)
A

(
0
39

)
R

Both

(
17.25
38.6

)
A

(
0
39

)
R

B

{a, b, c}

(
2.82

39.144

)
A

(
0

39.44

)
R

Both

(
118.38
37.27

)
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Figure 6: The Asymmetric Information/Asymmetric Awareness Game
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Figure 7: Optimal Profit When Both Types Underestimate

Solving the above is now a simple function of the distribution of types. Con-

sider the following figure showing the optimal profit of the insurer as a function

of π. Note that the graph is decreasing up to a point and then increasing. This is

due to the fact that since both types underestimate the existence of the respec-

tive contingencies of which they are made aware it is never profitable to cater

to both types simultaneously. Since doing so would require lower transfers and

lower premiums on the part of the insurer. The kink in the curve is the exact

point where it becomes profitable to cater only to the A type in this case.

The solution to the above game for π = 0.2 is for the insurer to cater to B on

{b, c} yielding an expected profit of

118.38× 0.8 + 0 ∗ 0.2 = 94.519

Note that in all cases B rejects the contract of A and vice versa. This is to be

contrasted with the case when both overestimate the existence of their respective

contingencies. The optimal profit as a function of π in the case with the same

damages when both overestimate at αA = αB = 0.5 is given below.

In the range of π ∈ (0.17, 66) the strategy of appealing to both types on {b, c}
dominates all other strategies.
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Figure 8: Optimal Profit When Both types Overestimate
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6 Conclusion

This paper has presented a basic analysis of a three contingency case of insur-

ance contracting when awareness and information interact. Two insurees each

aware of a subset of cardinality two of a simple three state state-space. Types of

insurees differ in terms of the contingencies of which they are originally aware.

These contingencies are private information, hence the insurer must structure the

terms of his contract to achieve a maximal payoff given this constrant. The main

contribution of this paper is the presentation of a general solution method in a ba-

sic model of insurance contracting. Following the approach of Filiz-Ozbay I first

presented the model itself before discussing characterizations of solutions for the

various sequence of optimization problems the insurer faces when presented with

such a problem. When presented with a contingency that was previous beyond

the conception of a given type, that type must form some belief over its likelihood.

It is shown that insuree’s who become suspicious of the insurer in the sense that

when they are presented with a new contingency demand a higher coverage are

those who underestimate more salient states in the model. The insurer faces a

general trade-off between making an agent aware of a contingency and catering

to more than one type of insuree. It is shown that agents who become aware of a

certain contingency and underestimate its likelihood will demand a lower trans-

fer. But, in order to cater to both types the insurer must lower his premium.

Hence in this case there exists a trade-off between information and awareness.

Though only a first tentative step in this domain, the possibility for future work

on this question is wide. Generalizing the model to arbitrary numbers of types

and arbitrary levels of awareness would be the first task of any such endeavour.

Further, characterizing α as a function of the characteristics of each type would

be an interesting possibility. Beyond this applying such a framework to problems

of moral hazard, signalling and screening would undoubtedly yield interesting re-

sults. Finally, this paper abstract, very informally, away from compatibility and

consistency requirements. A proper implementation of such requirements might

yield significantly different results.
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7 Appendix

rm(list=ls())

##### VARIABLES FOR EXAMPLES ################

Q <- c(0.25 ,0.5 ,0.25)

D <- c(500 ,200 ,700)

V = 2000

X <- c(1,1,1,1)

# ########## BELIEFS ####################

init_beliefs <- function(b) {

A <- numeric (2)

A[1] = b[1]/(b[1]+b[2])

A[2] = b[2]/(b[1]+b[2])

B <- numeric (2)

B[1] = b[2]/(b[2]+b[3])

B[2] = b[3]/(b[2]+b[3])

return(list("A"=A, "B"=B))

}

init_beliefs(Q)

up_beliefs <- function(b, uA=0, uB=0){

A <- numeric (3)

A[1] = ((1-uA)*b[1])/(b[1]+b[2])

A[2] = ((1-uA)*b[2])/(b[1]+b[2])

A[3]= uA

B <- numeric (3)

B[1] = uB

B[2] = ((1-uB)*b[2])/(b[2]+b[3])

B[3] = ((1-uB)*b[3])/(b[2]+b[3])

return(list("A"=A, "B"=B))

}

# ################ OBJECTIVE ####################

objective <- function(b, cover) {

if (cover=="b") {

obj <- function(x) {

return(-x[1]+b[2]*x[3])

}

}

if (cover=="ab") {

obj <- function(x) {

return(-x[1]+b[1]*x[2]+b[2]*x[3])

}

}

if (cover=="ac") {

obj <- function(x) {

return(-x[1]+b[1]*x[2]+b[3]*x[4])
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}

}

if (cover=="bc") {

obj <- function(x) {

return(-x[1]+b[2]*x[3]+b[3]*x[4])

}

}

if (cover=="abc" ){

obj <- function(x) {

return(-x[1]+b[1]*x[2]+b[2]*x[3] + b[3]*x[4])

}

}

return(obj)

}

objective(Q, cover="abc")(X)

# ############ UTILITY FUNCTIONS ############

utility <- function(b,v,d,offer ,cover ,uA=0,uB=0) {

if (offer=="A") {

if (cover=="b") {

z <- init_beliefs(b)$A

u <- function(x) {

return(sqrt(v-d[1]-x[1])*z[1]+ sqrt(v-d[2]-x[1]+x[3])*z[2])

}

}

if (cover=="ab") {

z <- init_beliefs(b)$A

u <- function(x) {

return(sqrt(v-d[1]-x[1]+x[2])*z[1]+ sqrt(v-d[2]-x[1]+x[3])*z[2])

}

}

if (cover=="ac") {

z <- up_beliefs(b, uA=uA, uB=uB)$A

u <- function(x) {

return(sqrt(v-d[1]-x[1]+x[2])*z[1]+ sqrt(v-d[2]-x[1])*z[2]+ sqrt(v-d[3]-x[1]+x[4])

*z[3])

}

}

if (cover=="bc") {

z <- up_beliefs(b,uA=uA , uB=uB)$A

u <- function(x) {

return(sqrt(v-d[1]-x[1])*z[1]+ sqrt(v-d[2]+x[3]-x[1])*z[2]+ sqrt(v-d[3]-x[1]+x[4])

*z[3])

}

}

if (cover=="abc") {

z <- up_beliefs(b,uA=uA , uB=uB)$A

u <- function(x) {

return(sqrt(v-d[1]-x[1]+x[2])*z[1]+ sqrt(v-d[2]+x[3]-x[1])*z[2]+ sqrt(v-d[3]-x[1]+

x[4])*z[3])

}

}

}

if (offer=="B") {

if (cover=="b") {
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z <- init_beliefs(b)$B

u <- function(x) {

return(sqrt(v-d[2]-x[1]+x[3])*z[1]+ sqrt(v-d[3]-x[1])*z[2])

}

}

if (cover=="ab") {

z <- up_beliefs(b,uB=uB , uA=uA)$B

u <- function(x) {

return(sqrt(v-d[1]-x[1]+x[2])*z[1]+ sqrt(v-d[2]-x[1]+x[3])*z[2] + sqrt(v-d[3]-x

[1])*z[3])

}

}

if (cover=="ac") {

z <- up_beliefs(b, uB=uB,uA=uA)$B

u <- function(x) {

return(sqrt(v-d[1]-x[1]+x[2])*z[1]+ sqrt(v-d[2]-x[1])*z[2]+ sqrt(v-d[3]-x[1]+x[4])

*z[3])

}

}

if (cover=="bc") {

z <- init_beliefs(b)$B

u <- function(x) {

return(sqrt(v-d[2]+x[3]-x[1])*z[1]+ sqrt(v-d[3]+x[4]-x[1])*z[2])

}

}

if (cover=="abc") {

z <- up_beliefs(b,uB=uB , uA=uA)$B

u <- function(x) {

return(sqrt(v-d[1]-x[1]+x[2])*z[1]+ sqrt(v-d[2]+x[3]-x[1])*z[2]+ sqrt(v-d[3]-x[1]+

x[4])*z[3])

}

}

}

if (offer=="both") {

if (cover=="b") {

ba <- init_beliefs(b)$A

bb <- init_beliefs(b)$B

u <- function(x) {

za <- function(x) {

return(sqrt(v-d[1]-x[1])*ba[1]+ sqrt(v-d[2]-x[1]+x[3])*ba[2])

}

zb <- function(x) {

return(sqrt(v-d[2]-x[1]+x[3])*bb[1]+ sqrt(v-d[3]-x[1])*bb[2])

}

return(c(za(x),zb(x)))

}

}

if (cover=="ab") {

ba <- init_beliefs(b)$A

bb <- up_beliefs(b,uB=uB)$B

u <- function(x) {

za <- function(x) {

return(sqrt(v-d[1]-x[1]+x[2])*ba[1]+ sqrt(v-d[2]-x[1]+x[3])*ba[2])

}

zb <- function(x) {
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return(sqrt(v-d[1]-x[1]+x[2])*bb[1]+ sqrt(v-d[2]-x[1]+x[3])*bb[2] + sqrt(v-d[3]-x

[1])*bb[3])

}

return(c(za(x),zb(x)))

}

}

if (cover=="ac") {

ba <- up_beliefs(b,uA=uA)$A

bb <- up_beliefs(b,uB=uB)$B

u <- function(x) {

za <- function(x) {

return(sqrt(v-d[1]-x[1]+x[2])*ba[1]+ sqrt(v-d[2]-x[1])*ba[2]+ sqrt(v-d[3]-x[1]+x

[4])*ba[3])

}

zb <- function(x) {

return(sqrt(v-d[1]-x[1]+x[2])*bb[1]+ sqrt(v-d[2]-x[1])*bb[2]+ sqrt(v-d[3]-x[1]+x

[4])*bb[3])

}

return(c(za(x),zb(x)))

}

}

if (cover=="bc") {

ba <- up_beliefs(b,uA=uA)$A

bb <- init_beliefs(b)$B

u <- function(x) {

za <- function(x) {

return(sqrt(v-d[1]-x[1])*ba[1]+ sqrt(v-d[2]+x[3]-x[1])*ba[2]+ sqrt(v-d[3]-x[1]+x

[4])*ba[3])

}

zb <- function(x) {

return(sqrt(v-d[2]+x[3]-x[1])*bb[1]+ sqrt(v-d[3]+x[4]-x[1])*bb[2])

}

return(c(za(x),zb(x)))

}

}

if (cover=="abc") {

ba <- up_beliefs(b,uA=uA,uB=uB)$A

bb <- up_beliefs(b,uB=uB,uA=uA)$B

u <- function(x) {

za <- function(x) {

return(sqrt(v-d[1]+x[2]-x[1])*ba[1]+ sqrt(v-d[2]+x[3]-x[1])*ba[2]+ sqrt(v-d[3]+x

[4]-x[1])*ba[3])

}

zb <- function(x) {

return(sqrt(v-d[1]+x[2]-x[1])*bb[1]+ sqrt(v-d[2]+x[3]-x[1])*bb[2]+ sqrt(v-d[3]+x

[4]-x[1])*bb[3])

}

return(c(za(x),zb(x)))

}

}

}

return(u)
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}

# ################## CONSTRAINTS$ #####################

res_util <- function(b,v,d,offer ,cover ,uA ,uB) {

return(utility(b,v,d,offer=offer ,cover=cover ,uA=uA ,uB=uB)(c(0,0,0,0)))

}

res_util(Q,V,D,offer="both", cover="abc", uA=0.2, uB=0.2)

part_constraint <- function(b,v,d,offer ,cover ,uA,uB) {

M = function(x) {

return(res_util(b,v,d,offer=offer ,cover=cover ,uA=uA,uB=uB) - utility(b,v,d,offer

=offer ,cover=cover ,uA=uA,uB=uB)(x))

}

return(M)

}

defined_constraint <- function(v,d,offer ,cover) {

if (offer=="A"){

if (cover=="b") {

z = function(x) {

return(c(x[1]+d[1]-v,

x[1]+d[2]-v-x[3]))

}

}

if (cover=="ab") {

z = function(x) {

return(c(x[1]+d[1]-v-x[2],

x[1]+d[2]-v-x[3]))

}

}

if (cover=="ac") {

z = function(x) {

return(c(x[1]+d[1]-v-x[2],

x[1]+d[2]-v,

x[1]+d[3]-v-x[4]))

}

}

if (cover=="bc") {

z = function(x) {

return(c(x[1]+d[1]-v,

x[1]+d[2]-v-x[3],

x[1]+d[3]-v-x[4]))

}

}

if (cover=="abc") {

z = function(x) {

return(c(x[1]+d[1]-x[2]-v,

x[1]+d[2]-v-x[3],

x[1]+d[3]-v-x[4]))

}

}

}

if (offer=="B"){

if (cover=="b") {
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z = function(x) {

return(c(x[1]+d[2]-v-x[3],

x[1]+d[3]-v))

}

}

if (cover=="ab") {

z = function(x) {

return(c(x[1]+d[1]-v-x[2],

x[1]+d[2]-v-x[3],

x[1]+d[3]-v))

}

}

if (cover=="ac") {

z = function(x) {

return(c(x[1]+d[1]-v-x[2],

x[1]+d[2]-v,

x[1]+d[3]-v-x[4]))

}

}

if (cover=="bc") {

z = function(x) {

return(c(x[1]+d[2]-v-x[3],

x[1]+d[3]-v-x[4]))

}

}

if (cover=="abc") {

z = function(x) {

return(c(x[1]+d[1]-x[2]-v,

x[1]+d[2]-v-x[3],

x[1]+d[3]-v-x[4]))

}

}

}

if (offer=="both") {

if (cover=="b") {

z = function(x) {

return(c(x[1]+d[1]-v,

x[1]+d[2]-v-x[3],

x[1]+d[3]-v))

}

}

if (cover=="ab") {

z = function(x) {

return(c(x[1]+d[1]-v-x[2],

x[1]+d[2]-v-x[3],

x[1]+d[3]-v))

}

}

if (cover=="ac") {

z = function(x) {

return(c(x[1]+d[1]-v-x[2],

x[1]+d[2]-v,

x[1]+d[3]-v-x[4]))

}

}

if (cover=="bc") {

z = function(x) {

57



return(c(x[1]+d[1]-v,

x[1]+d[2]-v,

x[1]+d[2]-v-x[3],

x[1]+d[3]-v-x[4]))

}

}

if (cover=="abc") {

z = function(x) {

return(c(x[1]+d[1]-x[2]-v,

x[1]+d[2]-v-x[3],

x[1]+d[3]-v-x[4]))

}

}

}

return(z)

}

defined_constraint(V,D,offer="A", cover="b")(X)

constraint <- function(b,v,d,offer ,cover ,uA,uB) {

C = function(x) {

P = part_constraint(b,v,d,offer = offer ,cover = cover ,uA=uA,uB=uB)

D = defined_constraint(v,d,offer=offer ,cover=cover)

return(c(P(x),D(x)))

}

return(C)

}

constraint(Q,V,D,offer="A", cover="ac",uA=0.9,uB =0.1)

# #################### Optimization ############

library(nloptr)

profit <- function(UA,UB ,RA,RB,P,O) {

if (UA >= RA) {

if (UB >= RB) {

return(list("P"=-O, "Accept" = "both"))

}

else {

return(list("P"=-O*P, "Accept"="A"))

}

}

else {

if (UB >= RB) {

return(list("P"=-(1-P)*O, "Accept"="B"))

}

else {

return(list("P"=0, "Accept"="neither"))

}

}

}

opt <- function(b,v,d,offer ,cover ,uA=0,uB=0,pi=0.5) {

obj <- objective(b,cover=cover)

constr <- part_constraint(b,v,d,offer=offer ,cover=cover ,uA=uA ,uB=uB)
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lb <- numeric (4)

lb [1:4]=0

ub <- numeric (4)

ub= c(Inf , d[1:3])

x0= c(1,1,1,1)

local_opts <- list( "algorithm" = "NLOPT_LD_MMA", "xtol_rel" = 1.0e-7 )

opts <- list("algorithm" = "NLOPT_LN_COBYLA", "xtol_rel" = 1.0e-7, "maxeval"

= 10000, "local_opts" = local_opts)

res <- nloptr( x0=x0 , eval_f=obj , lb=lb, ub=ub, eval_g_ineq=constr , opts=opts)

UA = round(utility(b,v,d,offer="A", cover=cover ,uA=uA ,uB=uB)(res$solution) ,2)

UB = round(utility(b,v,d,offer="B", cover=cover ,uA=uA ,uB=uB)(res$solution) ,2)

RA = round(res_util(b,v,d,offer="A", cover=cover ,uA=uA ,uB=uB) ,2)

RB = round(res_util(b,v,d,offer="B", cover=cover ,uA=uA ,uB=uB) ,2)

P = profit(UA,UB,RA ,RB, pi , res$objective)$P

A = profit(UA,UB,RA ,RB, pi , res$objective)$Accept

#return(utility(b,v,d,cover=cover ,offer=offer ,uA=uA ,uB=uB)(res$solution))

return(list("insU" = -res$objective , "contract"=res$solution , "profit"=P, "

Accept"=A))

}

opt(Q,V,D,offer="both", cover="abc", uA=0.1, uB=0.2)$Accept

utility(Q,V,D,offer="A", cover="ab")(opt(Q,V,D,offer="both", cover="ab", uA=0.1,

uB=0.2)$contract)

# ########## Equilibrium ############

equilibrium <- function(b,v,d,uA,uB,pi) {

A = matrix(nrow = 5, ncol =7)

A[1,] = c(opt(b,v,d,offer = "A", cover="b", uA=uA, uB=uB, pi=pi)$profit ,

opt(b,v,d,offer = "A", cover="b", uA=uA, uB=uB , pi=pi)$Accept ,

opt(b,v,d,offer = "A", cover="b", uA=uA, uB=uB , pi=pi)$contract , "Ab")

A[2,] = c(opt(b,v,d,offer = "A", cover="ab", uA=uA , uB=uB, pi=pi)$profit ,

opt(b,v,d,offer = "A", cover="ab", uA=uA, uB=uB, pi=pi)$Accept ,

opt(b,v,d,offer = "A", cover="ab", uA=uA, uB=uB, pi=pi)$contract , "Aab")

A[3,] = c(opt(b,v,d,offer = "A", cover="bc", uA=uA , uB=uB, pi=pi)$profit ,

opt(b,v,d,offer = "A", cover="bc", uA=uA, uB=uB, pi=pi)$Accept ,

opt(b,v,d,offer = "A", cover="bc", uA=uA, uB=uB, pi=pi)$contract , "Abc")

A[4,] = c(opt(b,v,d,offer = "A", cover="ac", uA=uA , uB=uB, pi=pi)$profit ,

opt(b,v,d,offer = "A", cover="ac", uA=uA, uB=uB, pi=pi)$Accept ,

opt(b,v,d,offer = "A", cover="ac", uA=uA, uB=uB, pi=pi)$contract , "Aac")

A[5,] = c(opt(b,v,d,offer = "A", cover="abc", uA=uA , uB=uB , pi=pi)$profit ,

opt(b,v,d,offer = "A", cover="abc", uA=uA, uB=uB, pi=pi)$Accept ,

opt(b,v,d,offer = "A", cover="abc", uA=uA, uB=uB, pi=pi)$contract , "Aabc")

OA <- A[which.max(A[,1]) ,1]
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stratA <- A[which.max(A[,1]) ,7]

AcceptA <- A[which.max(A[,1]) ,2]

contractA <- A[which.max(A[,1]) ,3:6]

B = matrix(nrow = 5, ncol =7)

B[1,] = c(opt(b,v,d,offer = "B", cover="b", uA=uA, uB=uB, pi=pi)$profit ,

opt(b,v,d,offer = "B", cover="b", uA=uA, uB=uB , pi=pi)$Accept ,

opt(b,v,d,offer = "B", cover="b", uA=uA, uB=uB , pi=pi)$contract , "Bb")

B[2,] = c(opt(b,v,d,offer = "B", cover="ab", uA=uA , uB=uB, pi=pi)$profit ,

opt(b,v,d,offer = "B", cover="ab", uA=uA, uB=uB, pi=pi)$Accept ,

opt(b,v,d,offer = "B", cover="ab", uA=uA, uB=uB, pi=pi)$contract , "Bab")

B[3,] = c(opt(b,v,d,offer = "B", cover="bc", uA=uA , uB=uB, pi=pi)$profit ,

opt(b,v,d,offer = "B", cover="bc", uA=uA, uB=uB, pi=pi)$Accept ,

opt(b,v,d,offer = "B", cover="bc", uA=uA, uB=uB, pi=pi)$contract , "Bbc")

B[4,] = c(opt(b,v,d,offer = "B", cover="ac", uA=uA , uB=uB, pi=pi)$profit ,

opt(b,v,d,offer = "B", cover="ac", uA=uA, uB=uB, pi=pi)$Accept ,

opt(b,v,d,offer = "B", cover="ac", uA=uA, uB=uB, pi=pi)$contract , "Bac")

B[5,] = c(opt(b,v,d,offer = "B", cover="abc", uA=uA , uB=uB , pi=pi)$profit ,

opt(b,v,d,offer = "B", cover="abc", uA=uA, uB=uB, pi=pi)$Accept ,

opt(b,v,d,offer = "B", cover="abc", uA=uA, uB=uB, pi=pi)$contract , "Babc")

OB <- B[which.max(B[,1]) ,1]

stratB <- B[which.max(B[,1]) ,7]

AcceptB <- B[which.max(B[,1]) ,2]

contractB <- B[which.max(B[,1]) ,3:6]

both = matrix(nrow = 5, ncol =7)

both[1,] = c(opt(b,v,d,offer = "both", cover="b", uA=uA , uB=uB , pi=pi)$profit ,

opt(b,v,d,offer = "both", cover="b", uA=uA , uB=uB, pi=pi)$Accept ,

opt(b,v,d,offer = "both", cover="b", uA=uA , uB=uB, pi=pi)$contract , "bothb")

both[2,] = c(opt(b,v,d,offer = "both", cover="ab", uA=uA, uB=uB , pi=pi)$profit ,

opt(b,v,d,offer = "both", cover="ab", uA=uA, uB=uB , pi=pi)$Accept ,

opt(b,v,d,offer = "both", cover="ab", uA=uA, uB=uB , pi=pi)$contract , "bothab")

both[3,] = c(opt(b,v,d,offer = "both", cover="bc", uA=uA, uB=uB , pi=pi)$profit ,

opt(b,v,d,offer = "both", cover="bc", uA=uA, uB=uB , pi=pi)$Accept ,

opt(b,v,d,offer = "both", cover="bc", uA=uA, uB=uB , pi=pi)$contract , "bothbc")

both[4,] = c(opt(b,v,d,offer = "both", cover="ac", uA=uA, uB=uB , pi=pi)$profit ,

opt(b,v,d,offer = "both", cover="ac", uA=uA, uB=uB , pi=pi)$Accept ,

opt(b,v,d,offer = "both", cover="ac", uA=uA, uB=uB , pi=pi)$contract , "bothac")

both[5,] = c(opt(b,v,d,offer = "both", cover="ac", uA=uA, uB=uB , pi=pi)$profit ,

opt(b,v,d,offer = "both", cover="ac", uA=uA, uB=uB , pi=pi)$Accept ,

opt(b,v,d,offer = "both", cover="ac", uA=uA, uB=uB , pi=pi)$contract , "bothabc")

Oboth <- both[which.max(both [,1]) ,1]

stratboth <- both[which.max(both [,1]) ,7]

Acceptboth <- both[which.max(both [,1]) ,2]

contractboth <- both[which.max(both [,1]) ,3:6]

Z = matrix(nrow=3,ncol =7)

Z[1,] = c(OA,stratA , AcceptA , contractA)

Z[2,] = c(OB, stratB , AcceptB ,contractB)

Z[3,] = c(Oboth , stratboth , Acceptboth ,contractboth)
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prof <- Z[which.max(Z[,1]) ,1]

contract <- Z[which.max(Z[,1]) ,4:7]

strat <- Z[which.max(Z[,1]) ,2]

accept <- Z[which.max(Z[,1]) ,3]

return(list("eprof"=prof , "econtract"=contract , "estrat"=strat , "eaccept"=accept

))

}
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