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Ĵα,1 test (blue line) based on CAPM (top graph) and French-Fama 3 factors

(bottom graph) regressions over the period February 2001 to February 2006 23

8 the top graph is monthly rate of returns of Dow Jones Credit Suisse Core

Long/Short Equity Hedge Fund Index relative to German DAX returns

(red line), and p-values of GRS test (blue line) based on Ferenc-Fama 5

factors regressions over the period September 2006 to December 2011, and

bottom graph is Monthly rate of returns of Dow Jones Credit Suisse Core

Long/Short Equity Hedge Fund Index relative to FTSE 1oo returns (red
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Abstract

The purpose of this paper is testing efficiency of the Germany and UK stock mar-

ket. German DAX and FTSE 100 stock market data show that the stock returns

tend to have a leptokurtic probability distribution rather than normal distribution.

Moreover, the stock returns first and second serial correlation tends to increase dur-

ing the crisis which implies that when the market is not efficient the predictability of

stock return increase, and investors get the opportunities to gain profits. Applying

a test proposed by Gibbons et al. (1989) on all assets of Germany DAX with 110

months return data over the period August 1999 to April 2017 shows that the null

hypothesis of efficiency is rejected at the periods of the crisis. Furthermore, there is

a weak positive correlation between a twelve-month moving average P-Values of the

test and excess returns of long/short equity strategies over the period of January of

2006 to December of 2011. On the other hand, Applying a test proposed by Pesaran

and Yamagata (2012) on all assets of FTSE 100 with 60 months return data over

the period February 2000 to April 2017 shows that the null hypothesis of efficiency

rejected at the periods of the crisis. Furthermore, there is a weak positive correlation

between a twelve-month moving average P-Values of both tests and excess returns of

long/short equity strategies over the period of January of 2001 to December of 2006.

Keywords: Efficient Market Hypothesis, Predictability of stock markets, long/short

equity strategies, moving average P-Values, German DAX, FTSE 100, leptokurtic

distribution



1 Introduction

First of all, this paper is concerned with testing the efficiency of the Germany and UK

stock markets by testing the time series implication of capital asset pricing model (CAPM)

proposed by Sharpe (1964) and Lintner (1965) and Fama-French three factors model. The

Sharp-Lintner CAPM demonstrates that if the market is efficient expected excess return

of an individual asset only depends on excess market return and just coefficient of the

excess market return is non-zero. In the second stage, the paper considers the relationship

between the Long/Short trading strategies returns and market strategies. One of the

empirical properties of the stock returns is the increasing predictability during the crisis

periods, so it is predicted that there is an inverse relationship between the efficiency of the

market and returns of the Long/Short Strategies, which means that if the market is not

efficient the Long/Short strategy returns relative to the stock market return are higher,

however, inefficient market there is no significant difference between market return and

Long/Short strategy returns.

The paper contains seven sections. In the second section, the paper proposes some

stylized fact about the stock market returns. Financial economists have long been inter-

ested in variations of the stock market returns. Fama (1970) suggesting that the random

walk model can explain the behavior of the stock prices, and thus the stock returns are not

predictable. In the second section we started with a statistical model with stock returns

with standard normal innovation. Then we capture some statistical properties of the stock

returns. First, the stock returns tend to have a leptokurtic probability distribution rather

than normal distribution. Second, the stock returns first and second serial correlation

tends to increase during the crisis. It means that the stock returns are more predictable

during the crisis periods, or intuitively when the market is not efficient the predictability

of stock return increase, and investors get the opportunities to gain profits. To test this

hypothesis we need a theoretical framework for market efficiency and in the third section,

we introduce efficient market hypothesis.

The efficient market hypothesis (EMH) was introduced by Samuelson (1965) through

his works on random walk theory of asset prices. Samuelson proposed that when the

market is efficient informationally then market returns are unenforceable. There are many

versions of the efficient market hypothesis through a literature, so we use the simple

framework proposed by Pesaran (2010). The main conclusion of this framework is that

“market efficiency could coexist with heterogeneous beliefs and individual irrationality, so

long as individual errors are cross sectionally weakly dependant.” (Chudik et al. (2011))

In the fourth section, we introduce the empirical methods for testing efficiency of stock

markets. In order to testing efficiency, we stick to the Sharp-Lintner CAPM model and

Fama-French model for an individual portfolio. There is a large literature in empirical

asset pricing for testing various implications of these models. Jensen (1968) was propose
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the t-statistics to test the null hypothesis that the intercept of the OLS regression of

CAPM is zero which is the fine test for individual assets and portfolios. However, when

the larger number of the assets are considered at the same time the interpretation of

the result is hard. Moreover, when some error terms are dependent, so sometimes the

size of the overall test in presence of individual correlated t-statistics is high and out

of control. Gibbons et al. (1989) proposed a test in order to deal with this problem.

This test, which is called GRS test, is one of the most common tests in the empirical

asset pricing literature, and it is based on the assumptions the CAPM error terms are

normal ant the number of the asset is lower than the period of the data that used for the

regression. However, the GRS has some disadvantages. First, it is applicable for the small

number of the individual of portfolios, typically between 20 to 30 portfolios, and it needs

a long period observed data for regression. In order to solve these problems, Pesaran and

Yamagata (2012) present multivariate Jensen statistics for a large number of the assets

which can apply on relative short period.

In this paper we use German DAX and FTSE 100 stock returns. DAX and FTSE

100 data are downloaded from data stream database, and In section 5 the data and the

method of calculation of returns is explained in details. Section 6 of the paper presents

the empirical results. applying GRS test on all assets of Germany DAX with 110 months

return data over the period August 1999 to April 2017 shows that the null hypothesis

of efficiency rejected at the periods of the crisis. Furthermore, there is a weak positive

correlation between a twelve-month moving average P-Values of GRS test and excess

returns of long/short equity strategies over the period of January of 2006 to December of

2011. On the other hand, Applying the test proposed by Pesaran and Yamagata (2012)

on all assets of FTSE 100 with 60 months return data over the period February 2000 to

April 2017 shows that the null hypothesis of efficiency rejected at the periods of the crisis.

Furthermore, there is a weak positive correlation between a twelve-month moving average

P-Values of the test and excess returns of long/short equity strategies over the period of

January of 2001 to December of 2006. In the lats section concluding remarks are stated.
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2 Stylized facts about stock returns

2.1 Statistical Model of Returns

Suppose that the information set of Ωt = {R1, . . . , Rt} is given. The log returns of an

asset can be written as follows,

Rt+1 = ∆ln(Pt+1) = pt+1 − pt = µt + σtεt+1 t = 1, 2, , T

where µt and σ2
t is conditional mean and variance of returns. Moreover, εt+1 is a random

part of the returns and a distribution can be assigned to the εt+1. There are two famous

distribution assigned to εt+1 for modeling stock returns, standard normal distribution and

t student distribution which can be written as follow,

εt+1|Ωt ∼ IID Z Z ∼ N(0, 1),

εt+1|Ωt ∼ (

√
ν − 2

ν
)IID Tν , Tν ∼ Student’s t-distribution,

where Tν has ν degree of freedom. If returns density is normal distribution then the

probability density function can be stated as

f(rt+1) = (2πσ2
t )
−1/2exp[− 1

2σ2
t

(rt+1 − µt)2]

where µt = E(rt+1|Ωt) and σ2
t = E[(rt+1 − µt)

2|Ωt] are conditional mean and variance.

Where the return process is stationary, then µ = E(rt+1) and σ2 = E[(rt+1 − µt)
2].

Skewness and kurtosis estimators

ˆSkewness =
√
b1 = m̂3/m̂2

3/2

ˆKurtosis = b2 = m̂4/m̂2
2

where

m̂j =

∑T
t=1(rt − r̄)j

T
, j = 2, 3, 4

If a distribution is normal then
√
b1 = 0, and b2 = 3. For testing normality, the

Jarque-Bera statistics proposed by Jarque and Bera (1980) can be used. This statistic

given by

JB = T{1

6
b1 +

1

24
(b2 − 3)2}.

The joint null hypothesis is b1 = 0 and b2 = 3. The asymptotic distribution of the JB

statistics is a chi-square with 2 degrees of freedom, χ2
2. Thus, if a value of the statistics
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Table 1: Descriptive statistics for monthly returns on FTSE 100 and German DAX

Variables FTSE 100 DAX
Maximum 13.83 17.7
Minimum -23.68 -29.16

Mean 0.45 0.79
S.D 4.58 6.16

Skewness -0.76 -1.0
Kurtosis 5.64 6.05

JB Statistics 127.19 182.6
JB P-Value 2.2e-16 2.2e-16

is exceed 5.99 the null hypothesis will be rejected since, the JB would be statistically

significant at the 95 percent confidence level.

2.2 Empirical Properties of Returns

In order to consider empirical properties of the returns in this paper FTSE 100 and DAX

stock retruns will be considered. The first two graphs of Figure 2.2 shows price index of

the FTSE 100 and German DAX, the third and fourth graphs of Figure 2.2 shows FTSE

100 and German DAX stock returns.

Table 1 demonstrates descriptive statistics of the two stock returns. The kurtosis of

two stock returns are over 3 and suggest that the distribution of the returns are not normal.

The skewness of both returns are close to zero, however, there are pieces of evidence of

negative kurtosis for both stock returns. The large values of excess kurtosis reflected in

the JB statistics and the P-Value of the JB statistics are statistically significant at the

95% confidence level, which means hypothesis of normality will be rejected. Moreover,

the assumption of the normality of returns implied that the maximum and minimum of

the monthly returns with 99% confidence level in the region of ±2.33 × S.D which is

[-10.22,11.13] for FTSE 100 and [-13.5,15.14] for German DAX. However, it can be seen

that maximum and minimum of returns of both stock markets are not in the regions.

(Figure 2.2 and Table 1) Regarding the above observations, the stock returns tend to

departure from normality.

The stock returns which are uncorrelated to each other has two characteristics, they

have fat-tailed distribution, and they are difficult to predict. However, the absolute value

of the stock returns have a higher serial correlations. Figure 2.2 shows the first and second

order of serial correlation over the time period of Jan-1990 to May-2017. As it can be seen

the first order and second order correlation of the FTSE 100 over the period of Jan-100 to

Jan2000 are -0.001 and -0.1765 respectively. It increases to the -0.1264 for the first order

serial correlation and decreases to the -0.0993 for the second order of serial correlation.

On the other hand, German Dax stock markets first order serial correlation is volatile and

shows increases after the dot-com bubble and also there is increasing in absolute value
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Figure 1: Monthly price index and monthly returns on FTSE 100 and German DAX over
the period Jan-1990 to May-2017
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Figure 2: Histograms and normal density (blue solid line) for monthly returns on FTSE
100 and German DAX over the period Jan-1990 to May-2017.

of first order correlation of Dax after 2008 credit crunch. Therefore, increasing in serial

correlation of the FTSE 100 and German DAX demonstrate in the crisis period the stock

returns are mush more predictable.
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Figure 3: First order and second order serial correlation of monthly returns on FTSE 100
and German DAX over the period Jan-1990 to May-2017.
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3 The concept of efficient market hypothesis(EMH)

The efficient market hypothesis is based on several assumptions. First, it is assumed

that investors are rational and they permanently update their beliefs with newly available

information. Second, Investors make their decision by calculation of subjective expected

utility(Pesaran (2010, p.24)). Third, the difference in beliefs across investors cancel out

in the market(Pesaran (2010, p.24)).

In order to construct a theoretical model for the efficient market hypothesis, assume

that we start at a beginning of period t with Nt investors. Moreover, suppose that Rt+1

is return of an asset and rfi is risk-free rate. The following condition hold for investor i,

which is implied by the consumption-saving model of the risk-averse investor.

Êi(Rt+1 − rft |Ωit) = λit + δit (1)

In above formula, Êi(Rt+1−rft |Ωit) is a subjective expectation of excess return, Rt+1−
rft , with respect to the information set

Ωit = Ψit ∪ Φt

where Φt is a pubic information and availble for every investors. The expectation of

excess return is different among investors since the perceived conditional distribution

of the Rt+1 − rft is different. Moreover, the information set of investors, Ωit, and risk

preferences are different among the investors. Thus, we denote the expected return of

investor i with the subjective expectation. Furthemore λit > 0 is a investor risk premium,

and δit is trading cost per units of fund invested. If there is no trading cost in the model,

then λit can be written in term of the utility function

λit = Êi(Rt+1 − rft |Ωit) =
−Ĉovi(mi,t+1, Rt+1|Ωit)

Êi(mi,t+1|Ωit)

where Ĉovi(·|Ωit) is a subjective conditional covariance on information set of the ith in-

vestor, and mi,t+1 = βiu
′
i(ci,t+1)/u

′
i(ci,t) is stochastic discount factor. In the stochastic

discount factor the u′i(·) is the firts derivative of the utility function, ct is a real consump-

tion expenditures during the periodt to t+1, and βi is investor discount factor.

According to above explanation, since the difference in the conditional probability

distribution, the difference in the information sets and difference in the risk preferences

subjective expected excess return is different across the investors(Pesaran (2010, p.24)).

However, by imposing rational expectation hypothesis it can be implied

Êi(Rt+1 − rft |Ωit) = E(Rt+1 − rft |Ωit)
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where E(Rt+1−rft |Ωit) is the objective conditional expectation. Thus, the rational expec-

tation or the objective conditional expectation do not differ systematically from equilib-

rium results. In other words, people do not make systematic errors when predicting the

future, and by the rational expectation hypothesis in our model, it assumed that expected

value of a variable is equal to the expected value predicted by the model. Moreover, it

can be inferred

E[Êi(Rt+1 − rft |Ωit)|Φt] = E[E(Rt+1 − rft |Ωit)|Φt] (2)

and since Φt ⊂ Ωit then we have

E[Êi(Rt+1 − rft |Ωit)|Φt] = E(Rt+1 − rft |Φt). (3)

Therefore, under the rational expectation condition (4) we have

E(Rt+1 − rft |Φt) = E(λit + δit|Φt) (4)

then E(λit + δit|Φt) is the same across the investors and it can be written

E(Rt+1 − rft |Φt) = E(λit + δit|Φt) = ρt ∀i

where the ρt is an average market measure of the risk premia and transaction cost. Thus

the rational expectation condition plus the premises that we assumed such as a rationality

of investors ensure that the different investors have the same expectation. Moreover, the

condition shows that in this setting the prediction of excess return depends on relationships

of the risk premium with macro and business cycle indicators.

One of the things that lead to departure from the RE equilibrium solution is herding

and correlated behaviour across some of the investors.(Pesaran (2010, p.26)) Each investor

has its own subjective estimation Êi(Rt+1− rft |Φt). If investor has a ωit market share the

departures of the
∑Nt

i=1 ωitÊi(Rt+1 − rft |Φt) from E(Rt+1 − rft |Φt) is a source of the stock

market predictability. we can write

ξ̄ωt =
Nt∑
i=1

ωitÊi(Rt+1 − rft |Φt)− E(Rt+1 − rft |Φt)

where
∑Nt

i=1 ωit = 1. Also, we can write

ξ̄ωt =
Nt∑
i=1

ωitξit

where

ξit = Êi(Rt+1 − rft |Φt)− E(Rt+1 − rft |Φt).

9



In the above formula, ξit shows the difference between individual expectation and the

unobserved correct expectation. This difference can be nonzero due to the irrationality

of investor, uncertainty, costly information and disparity of information across investors.

However, if Nt is sufficiently large, and so long as ξit, i = 1, 2, · · · , Nt are not cross-

sectionally strongly dependent1, and no investor or group of investors dominate the market

which means ωit = O(N−1t ) at any time, then the average expected excess returns across

the individual investors converge in quadratic means to the expected excess return of a

representative investor, and we have

Nt∑
i=1

ωitÊi(Rt+1 − rft |Ωit)
q.m−−→ E(Rt+1 − rft |Φt) Nt →∞

where, despite the individual deviation market is collectively efficient, and representative

agent paradigm would be applicable and predictability of excess return will be governed

soley by changes in business cycle conditions and available information(Pesaran (2010,

p.27)).

1Concepts of weak and strong cross section dependence are defined and explained in Chudik, Pesarsn,
and Tosetti (2010).
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4 Testing CAPM and Factor Models

For the individual stock portfolio, we use capital asset pricing model (CAPM), with

augmented with potential predictors,

Ri,t+1 = ai + b1ix1t + b2ix2t + · · ·+ bkixkt + βiRt+1 + εi,t+1

where xji, j = 1, 2, · · · , k are potential predictors, Ri,t+1 is excess return of the ith protfolio

and Rt+1 is excess return of the market portfolio. If CAPM holds, we have

ai = 0, b1i = b2i = · · · = bki = 0

the only variable βi would be significantly different from zero, and this variable denotes

the risk of holding the asset i with respect to the market portfolio.(Pesaran (2010, p.14))

4.1 The Panel Regression Model and GRS Test

The individual return regressions can be written as the following panel regressions,

yit = αi + β′ift + uit, for i = 1, 2, · · · , N ; t = 1, 2, · · · , T, (5)

where ft is m× 1 matrix of observed factors. When we stacking above the formula by the

time series observations then we have

yi = αiτT + Fβi + ui, (6)

where yi = (yi1, yi2, · · · , yiT )′, τT = (1, 1, · · · , 1)′, and ui = (ui1, ui2, · · · , uiT )′. Stacking

by cross sectional observation we have

yt = α + Bft + ut (7)

where yt = (y1t, y2t, · · · , yNt)′, α = (α1, α2, · · · , αN)′,B = (β1, β2, · · · , βN)′, and ut =

(u1t, u2t, · · · , uNt)′.
Assumption 1: The common factor ft are distributed independently of the error

terms, u′it for all i, t and t′, T−1G′G, with G = (F, τT ), is a positive definite matrix for

all T, and as T → ∞, and τ ′TMF τT > 0, where MF = IT − F (F ′F )−1F ′. (Pesaran and

Yamagata (2012, p.4))

Assumption 2: ut ∼ IID N(0,V), where V is an N×N symmetric positive definite

matrix.(Pesaran and Yamagata 2012)

We need these two assumptions for setting up our models the first assumption is more

likely satisfied while i is a single asset and not a portfolio. The implication of the second

11



assumption is that error terms are not serially correlated with each other, or E(uitujt′) = 0

for all i, j, and t 6= t′.

In order to construct the GRS statistic, we need to estimate αi which can be obtained

by the OLS regression. We have

α̂i = y′i

( MF τT
τ ′TMF τT

)
by using equation (2) we have

α̂i = (αiτ
′
T + β′iF

′ + u′i)
( MF τT
τ ′TMF τT

)
= αi + u′ic, for i = 1, 2, · · · , N,

while

c =
MF τT
τ ′TMF τT

.

Then we can write

α̂ = α +


u′1.c

u′2.c
...

u′N .c

 ,

where u′i.c =
∑T

t=1 uitct, and ct is a tth element of c. Then

α̂ = α +
T∑
t=1

utct,

where ut = (u1t, u2t, · · · , uNt)′, Under the Assumptions 1 and 2 we have

α̂ ∼ N
(
α,

1

τ ′TMF τT
V
)
.

It can be proved that if T ≥ N+m+1 then
( T

T −m− 1

)
V̂ would be a invertible unbiased

estimator of V (Pesaran and Yamagata (2012, p.5)), where V̂ is a sample covariance

matrix estimator

V̂ = T−1
T∑
t=1

ûtû
′
t

and ût = (û1t, û2t, · · · , ûNt)′. If Assumptions 1 and 2 hold, then ût have a multivariate

normal distribution with zero means, and hence by multivariate analysis (look at theorem

12



5.5.2 of Anderson (2003)).

Ŵα =
T −N −m

N

(τ ′TMF τT
T

)
(α̂− α)′V̂

−1
(α̂− α)

has a non-central distribution F with (T-N-m) and N degrees of freedom, and non-

centrality parameter is µ2
α =

T −N −m
N

(τ ′TMF τT
T

)
α′V̂

−1
α. Under H0 : α = 0,

Ŵ0 =
T −N −m

N

(τ ′TMF τT
T

)
α̂′V̂

−1
α̂ (8)

is the Gibbons, Ross, and Shanken(GRS) statistics(Gibbons et al. (1989)). According to

the Pesaran and Yamagata (2012, p.5) we have, T−1
(τ ′TMF τT

T

)
=
(

1+ f̄ ′Ω̂−1f̄
)−1

, where

f̄ = T−1
∑T

t=1 ft, and Ω̂ = T−1
∑T

t=1(ft − f̄)(ft − f̄)′. Hence we can write GRS test as

GRS = Ŵ0 =
T −N −m

N

(
1 + f̄ ′Ω̂−1f̄

)−1
α̂′V̂

−1
α̂. (9)

4.2 Jα Test for Large N Assets

There are several reasons which explain why the GRS test cannot be used for a stock

market with a large number of the assets. First, the most important limitation of the

GRS test is that the T must be larger than N, and if we grouped the assets into a portfolio

then GRS test practically applicable to 20-30 portfolio over long periods, and grouping

portfolio lead to loss of power because of the following reason. Suppose that Np of N

assets are grouped by using portfolio weight wp such that τ ′Nwp = 1 for p = 1, 2, · · · , P ,

and w′pws = 0 for p 6= s, with
∑P

p=1Np = N . The GRS test then applied to the P portfolio

excess return defined by w′pyt for p = 1, 2, · · · , P where P is small fraction of N. The null

hypothesis is

Hp
0 : w′pα = 0, p = 1, 2, · · · , P.

In the case of H0 : α = 0 when the null hypothesis is not rejected, then it is clear w′pα = 0

because all the companies are considered in the test. However, when Hp
0 fails to reject,

H0 may be rejected. (Pesaran and Yamagata (2012, p.6))

The second problem is that, when there is a p such that
Np

Nm

→ cp and cp > 0 it means

that the excess return on the portfolio p will be a non-negligible component of the excess

return on the market portfolio and the regression of the former on the latter may lead to

the endogeneity problem. (Pesaran and Yamagata (2012, p.6))

Third, entry and exit of the firms in the market and possible structural change in the

market when T is large can lead to the new type of bias and unpredictable consequence for

the test outcomes. Hence, the construction of the test for efficiency which can be applicable

for a large number of the assets over the short periods of time is essential.(Pesaran and
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Yamagata (2012, p.6)) propose Jα test for large number of the assets when T < N. In this

section, we introduce the Jα test. For introducing the test we need further assumptions.

(Pesaran and Yamagata (2012, p.6))

Assumption 3 : ut ∼ IID(0, V), where V is an N ×N symmetric positive definite

matrix, such that V = QQ′ , and εt = (ε1t, ε2t, · · · , εNt)′ = Q−1ut. εit is an IID process

over i and t, with means zero and unit variances, and for some ε > 0, E(|εit|4+ε) exists,

for all i and t. (Pesaran and Yamagata (2012, p.7))

Assumption 4: Q and Q−1 are non-singular lower triangular matrices with bounded

absolute maximum column and row sum matrix norms.(Pesaran and Yamagata (2012,

p.7))

Theorem 1. Consider the CAPM regressions, (1), suppose Assumptions 1 and 3 hold,

and V is known. Then under H0 : αi = 0 for all i; and as N →∞, for any T > m + 1

Jα(V ) =
N−1/2

[(
τ ′TMF τT

)
α̂′V̂

−1
α̂−N

]
√

2 + γ̄2,εqT
→d N(0, 1), (10)

where α̂′ = (α̂′1, α̂
′
2, · · · , α̂′N) , α̂′i is the OLS estimator of αi in (1), γ̄2,ε = E(γ2,εi) > 0,

γ2,εi = E(ε4it)− 3 εt = Q−1ut, and qT = Op(T
−1) is defined by

qT =
( T∑
t=1

c4t

)
/
( T∑
t=1

c2t

)2
(11)

(Pesaran and Yamagata (2012, p.8))

It can be shown that the off-diagonal elements of V are less important when N →∞
and so we can replace the full covariance matrix with N × N diagonal matrix D =

(σ2
1, σ

2
2, · · · , σ2

N) with σ2
i . Then we have

Theorem 2. Consider the CAPM regressions, (1), suppose Assumptions 1, 3 and 4 hold,

and V is known. Then under H0 : αi = 0 for all i; and as N →∞, for any T > m + 1

Jα(D) =
N−1/2

[(
τ ′TMF τT

)
α̂′D−1α̂−N

]
√

2N−1Tr(R2) +
(
N−1

∑N
i=1 a

2
iiγ2,εiqT

) →d N(0, 1), (12)

where V = D−1/2RD, and as in theorem 1 α̂′ = (α̂′1, α̂
′
2, · · · , α̂′N) , α̂′i is the OLS estimator

of αi in (1), γ̄2,ε = E(γ2,εi) > 0, γ2,εi = E(ε4it)−3 εt = Q−1ut, and qT = Op(T
−1) is defined

by (7). Moreover, A = Q′D−1Q which aii is the ith diagonal element of A. It is easily seen

that Tr(A) = Tr(R) and Tr(A2) = Tr(R2), where R = (ρij). (Pesaran and Yamagata

(2012, p.12))
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For constructing a simple applicable statistic suppose the error terms are Gaussian

and uncorrelated and consider the following standardized test statistics

Ĵα,1 =
N−1/2

∑N
i=1

(
t2i −

ν

ν − 2

)
( ν

ν − 2

)√2(ν − 1)

(ν − 4)

(13)

then we have following theorem.

Theorem 3. Consider the regression model (1), and suppose that Assumptions 1, 3 and

4 hold. Further assume that: (i) f ′tft ≤ K < ∞ for all t, and; (ii) E(|εit|8+ε) < K < ∞
for some ε > 0. Consider the statistic, Ĵα,1, defined by (9). Then, under H0 : αi = 0

for all i,Ĵα,1 →d N(0, 1), if N/T 3 → 0, as N → ∞ and T → ∞, jointly. (Pesaran and

Yamagata (2012, p.15))
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5 Data Description

In this paper we consider the application of the GRS test on the assets of the German

DAX index, besides considering the application of the Ĵα for the assets of FTSE 100 in the

UK, and all data are given from Data Stream The German DAX contains 30 securities,

so GRS test can be used for applying to these securities. We use monthly data for DAX

from June 1990 to April 2017, and due to the entry and exit the companies and not the

availability of replaced data we just use 23 of securities in our analysis. The FTSE 100

contain approximately 100 securities and so GRS test could not be used for the assets

and we use Ĵα test for these securities. We use monthly data for DAX from June 1990 to

April 2017, and due to the entry and exit the companies and not the availability of data

we just use 71 of securities in our analysis.

In order to compute the asset i return in the month t we use rit = 100(Pi,t −
Pi,t−1)/Pi,t−1 + DYit/12. Where Pi,t is the end of the month price of the asset, and

DYit is per cent per annum dividend yield on the asset.

The time series of the risk-free rate of return and market return and other market

factors are obtained by the Ken French data library web page2. The monthly US Treasury

bill rate is used for the risk-free rate of return which can be shown by (rft), for the

market return since we use French/Fama 3 Factor and French/Fama 5 Factor for developed

markets (European) the region’s value-weight market portfolio used as a proxy, and it can

be shown by (rmt). The equal-weighted average of the returns on the three small stock

portfolios for the region minus the average of the returns on the three big stock portfolios

is used for (SMBt). The equal-weighted average of the returns for the two high B/M

portfolios for a region minus the average of the returns for the two low B/M portfolios

denotes by (HMLt), and all data are monthly percentages. In 5 factors model, RMW

(Robust Minus Weak) is the average return on the two robust operating profitability

portfolios minus the average return on the two weak operating profitability portfolios,

and CMA (Conservative Minus Aggressive) is the average return on the two conservative

investment portfolios minus the average return on the two aggressive investment portfolios.

2http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/Data Library/f-f factors.html
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CAPM Fama-French 3 Fama-French 5
P-Value P-Value P-Value P-Value P-Value P-Value

of GRS of Ĵα,1 of GRS of Ĵα,1 of GRS of Ĵα,1
Mean 0.09 0.01 0.11 0.02 0.16 0.01

Median 0.01 0.00 0.02 0.00 0.01 0.00
Min 0.00 0.00 0.00 0.00 0.00 0.00
Max 0.52 0.7 0.68 0.8 0.85 0.74
SD 0.13 0.09 0.18 0.12 0.26 0.09

Table 2: Summary statistics for P-Values of GRS and Ĵα,1 tests

6 Empirical Results

6.1 Test Results

In order to test CAPM and factor models, we use the GRS test for the German DAX

index and use Ĵα,1 for The FTSE 100. Ĵα,1 test can be used for Gaussian and uncorrelated

securities of FTSE 100. In this paper, the test is applied from August 1999 to April 2017

to the assets at the end of the each month. For the German DAX the sample period of

GRS test, (T), is 110 months and for FTSE 100 the sample period of Ĵα,1 is 60 months,

which reduces the effect of the structural change in the market as soon as possible. We

estimate the CAPM regression below for the test

ri,τt − rf,τt = αiτ + βiτ (rm,τt − rf,τt) + ui,τt (14)

and we estimate Fama-French (FF) three-factor regression as below,

ri,τt − rf,τt = αiτ + β1,iτ (rm,τt − rf,τt) + β2,iτSMBtτ + β3,iτHMLtτ + ui,τt (15)

and we estimate Fama-French (FF) three-factor regression as below,

ri,τt − rf,τt = αiτ + β1,iτ (rm,τt − rf,τt) + β2,iτSMBtτ + β3,iτHMLtτ

+β4,iτRMWtτ + β5,iτCMAtτ + ui,τt (16)

for t = 1, 2, · · · , 110 (or t = 1, 2, · · · , 60), i = 1, 2, · · · , Nτ , and the end of the month

τ = 1999M8, 1999M9, · · · , 2017M4. For the German DAX the asset with less than

110 months returns and for FTSE 100 the assets with less than 60 months returns are

eliminated.

Table 2 reports the descriptive statistics of the P-Value of the GRS test and Ĵα,1 test

for both CAPM and FF model. As it can be seen, the P-Value range from 0 to 1, and for

the German DAX the median and mean of the P-Values for the CAPM is 0.01 and 0.09

and for the Fama-French model of the DAX index, they are 0.02 and 0.11 respectively.
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Figure 4: Reported histogram of the p-values of GRS Ĵα,1 tests, which are computed using
CAPM regressions, French-Fama 3, and French-Fama 5 factors regressions
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For FTSE 100 the median and mean of the P-Value for CAPM is 0.00 and 0.01, and for

the Fama-French model of the FTSE 100 index, they are 0.00 and 0.02 respectively.

The top graph of the Figure 6.1 present plots of the evolution of P-Values of GRS

test for German DAX index based on the CAPM and FF regressions from the end of the

month of 1999M08 to 2017M04. As it can bee seen in the graph during the end of the

dot-com bubble the market efficiency rejected and after the second period of the rejection

of market efficiency in the German DAX index in coinciding with the financial crisis 2008

and after that. The bottom graph of the figure 6.1 is the evolution of P-Values of the

Ĵα,1 test. It can be seen that after the dot-com bubble and bubble collapse the market

efficiency null hypothesis is rejected.

6.2 Long/Short Equity Returns and P-Values

Figure 6.1 shows how the P-Values of a the CAPM, French-Fama 3 factors, and French-

Fama 5 factors vary through the time, especially on the crisis period the null hypothesis

of CAPM and factor models is rejected in both markets. It is also interesting to see

the relationship of this variation with trading strategies. The trading strategies target is

exploited profit of the nonzeros α from the portfolios of assets. One of the most common

strategies is the Long/Short equity strategy. In this strategy, assets are ordered based

on their predicted returns. Thus, the investor takes a long position which the alpha are

positive and take the short position for the negatively estimated alpha. What we are

interested in here is a relationship between the evidence of inefficiencies and return of

Long/Short strategies. Theoretically, while αi = 0 for asset i, then L/S strategy might

not perform better than the market return. However, we could expect a higher return on

L/S strategies relative to the market, when alphas are not zero and investor can exploit

profit. Therefore, a priori there is an inverse relation between P-Value and L/S strategies

returns.

For L/S strategies returns monthly data of Dow Jones Credit Suisse Core Long/Short

Equity Hedge Fund Index is used in this paper. This index present aggregate perfor-

mance of long/short equity funds. The monthly return in this index is shown by rht

and we denote performance of the L/S strategies return relatve to the market return by

r̃ht = rht − rt, where rt are returns of German DAX and FTSE 100 index, and monthly

P-Value of Ĵα,1 denotes by π̂t. Figure 6.2 and figure 6.2 denotes twelve-month mov-

ing averages of returns and P-Values which are calculated by r̃ht(12) =
1

12

∑11
j=0 r̃h,t−j,

and π̂t(12) =
1

12

∑11
j=0 π̂t−j. Figures 6.2 and 6.2 shows the relationship and Long/Short

strategies returns for German DAX index. The weakly negative correlation between two

variables show that our supposition of the inverse relationship is true since the correlation

between the variables in CAPM model is -0.008, in the French-Fama 3 factors model is

-0.08, and in the French-Fama 3 factors model is -0.19 Figures 6.2 and 6.2 demonstrates
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Figure 5: The top graph is plots of the evolution of p-values of GRS test base on CAPM
and FF regressions of assets in the German DAX using 110 month estimation at the end
of months 1999M08-2017M04. The bottom graph is plots of the evolution of p-values of
Ĵα,1 test base on CAPM and FF regressions of assets in the German DAX using 60 month
estimation at the end of months 2000M01-2017M04
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the relationship and Long/Short strategies returns for FTSE 100 index. The positive

relationship between two variables show that there is no inverse relationship since the

correlation between the variables in Fama-French 3 factors model is 0.19, in Fama-French

5 factors model is 0.20, and in CAPM model is 0.20.

7 Conclusion

In this paper first, we considered the empirical properties of the stock returns. There is

strong evidence of deviation from normality besides fattailness of the returns. Moreover,

increasing the first or second order cross-correlation of assets lead to the hypothesis that

during the crisis periods predictability of assets increases. In order to test this hypothesis,

first, we use efficient market hypothesis (EMH) concept proposed by Pesaran (2010) to

explain a market efficiency. Using an asset regression models, such as CAPM and FF

model, and applying GRS and Ĵα,1 tests which proposed by Gibbons, Ross and Shaken

(1989), and Pesaran and Yamagata (2012) on German DAX and FTSE 100 we tested

efficiency of market on these stock markets.

Applying GRS test on all assets of Germany DAX with 110 months return data over

the period August 1999 to April 2017 shows that the null hypothesis of CAPM test rejected

at the periods of the crisis. Furthermore, there is a weak negative correlation between

a twelve-month moving average P-Values of GRS test and excess returns of long/short

equity strategies over the period of January of 2006 to December of 2011. On the other

hand, Applying Ĵα,1 test on all assets of FTSE 100 with 60 months return data over the

period February 2000 to April 2017 shows that the null hypothesis of CAPM rejected

at the periods of the crisis. Furthermore, there is a weak positive correlation between a

twelve-month moving average P-Values of Ĵα,1 test and excess returns of long/short equity

strategies over the period of January of 2001 to December of 2006.
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Figure 6: Monthly rate of returns of Dow Jones Credit Suisse Core Long/Short Equity
Hedge Fund Index relative to German DAX returns (red line), and p-values of GRS
test (blue line) based on CAPM (top graph) and Ferenc-Fama 3 factors (bottom graph)
regressions over the period September 2006 to December 2011
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Figure 7: Monthly rate of returns of Dow Jones Credit Suisse Core Long/Short Equity
Hedge Fund Index relative to FTSE 100 returns (red line), and p-values of Ĵα,1 test (blue
line) based on CAPM (top graph) and French-Fama 3 factors (bottom graph) regressions
over the period February 2001 to February 2006
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Figure 8: the top graph is monthly rate of returns of Dow Jones Credit Suisse Core
Long/Short Equity Hedge Fund Index relative to German DAX returns (red line), and p-
values of GRS test (blue line) based on Ferenc-Fama 5 factors regressions over the period
September 2006 to December 2011, and bottom graph is Monthly rate of returns of Dow
Jones Credit Suisse Core Long/Short Equity Hedge Fund Index relative to FTSE 1oo
returns (red line), and p-values of Ĵα,1 test (blue line) based on Ferenc-Fama 5 factors
regressions over the period September 2006 to December 2011
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