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Abstract

This paper analyzes an extension of the portfolio choice model under
ambiguity of Gollier (2011) which uses the smooth model of ambiguity.
It introduces an additional information setting the investor can acquire
that can reduce the exposure to ambiguity. Within this framework it is
shown that acquiring information about the plausible return distributions
increases the ex ante welfare of the investor. The relation of the average
ex ante investment and the original investment level under no information
is also examined. Throughout various examples it is demonstrated that
this relation is not so clear. When the case of constant absolute ambiguity
aversion is considered, however it can be established that under certain con-
ditions information increases the average investment, as absolute ambiguity

aversion tends to infinity.



1 Introduction

Ambiguity has been in the main focus of the standard decision theory since the
striking realization of the famous experiment of Ellsberg (1961). It revealed that
even in a really simple setting decision makers tend to violate the subjective
expected utility maximization paradigm of Savage (1954). In other words there
might not be a unique personal probability assessment about the states of nature
because of uncertainty and as a result the reduction of compound lotteries can
fail. This problem has led to the development of various utility representations
incorporating ambiguity and attitude towards ambiguity. A common feature of
these models is that the decision makers have multiple priors about the possible
outcomes.

The conceptual difference of ambiguity models lies in the evaluation of these
prior beliefs. For example in the celebrated maxmin expected utility representa-
tion of Gilboa and Schmeidler (1989) the outcomes are evaluated using the prior
which gives the lowest expected utility. A similar model by Ghirardato et al.
(2004) is the so-called a-maxmin expected utility representation. It also uses the
worst possible prior to compute expected utility, but only with weight «. With
weight 1 — o however they take the expected utility under the best prior into
account, hence the weight o can be interpreted as a parameter of pessimism.

Although these models are well-founded there are two main problems with
them. The first is that they ignore the information contained in the rest of the
priors and only focus on the best or worst ones. The second problem is that the
attitude towards ambiguity is fixed by the set of priors and the model itself. These
problems are solved by the so-called smooth model of ambiguity by Klibanoff et al.
(2005). Under the smooth model all the priors are evaluated by taking some kind
of transformed average of them using subjective second-order beliefs. The other
attractive feature of the smooth model is that it separates tastes from beliefs
and therefore attitudes towards ambiguity can be analyzed independently of the
actual degree of ambiguity.

The extensive applicability of the smooth model provides a way to generalize
economic models built around the expected utility framework. These generaliza-
tions allow the decision makers to possess multiple prior distributions about the
outcomes instead of a single one as in subjective expected utility theory. One
such an extension is by Gollier (2011), who uses the smooth model to investigate
a standard portfolio choice problem under ambiguity. Ambiguity is introduced
in a way that the investor does not know with certainty which of the multiple

plausible return distributions of the risky asset will be the true one. In this model



Gollier finds sufficient conditions under which an increasing aversion towards am-
biguity reduces the demand for the asset with uncertain returns. As intuitive as
this result might sound, it does not hold in general. Gollier (2011) also shows in
a cleverly constructed counterexample that higher ambiguity aversion can in fact
lead to an increased demand for the uncertain asset, a phenomena similar to the
existence of Giffen goods.

This paper expands the model of Gollier (2011) by introducing an informa-
tional setting to the model. The key idea is that the investor could get the help
of a financial advisor who can narrow down the possible return distributions of
the ambiguous asset. This allows for decreasing the exposure to ambiguity while
keeping the ambiguity attitude fixed. Under this modified setting it can be ex-
amined how the ex ante welfare of an investment plan changes as a result of
more information. Furthermore the ex ante average demand for the ambiguous
asset can also be compared to that of the original case where no information is
available.

The structure of the paper is as follows. Section 2 presents the smooth model
of ambiguity in details. Section 3 introduces the standard portfolio choice model
under ambiguity of Gollier (2011). Section 4 extends this model by introduc-
ing information structures which can reduce exposure to ambiguity. Section 5

concludes.

2 The smooth model of ambiguity

The smooth model of ambiguity refers to the representation established by Klibanoff
et al. (2005). Building on the idea of Segal (1987) that is to relax the reduction
of compound lotteries assumption they axiomatize a utility representation of the

double expectation form

v - [ o ( / u(f)dw) dp = E,0E(uo f) 1)

where f is a Savage act defined over a state space S and u is a von-Neumann-—
Morgenstern utility function. It represents preferences > in the sense that for
any two acts f and g it holds that f = g < V(f) > V(g).

More formally the functional V' evaluates the act f : S — C, a mapping from
states to consequences, while the standard utility function u : C' — R evaluates
the consequences by assigning real numbers to them. The interpretation of this
form is done in a recursive flavor. First for a given probability measure 7 on S the

decision maker computes her expected utility. However the decision maker might



be subjectively uncertain about which is the true probability distribution accord-
ing to which the nature will decide among the states. This subjective uncertainty
is represented by pu, a personal belief of the decision maker about the "right"
probability distribution 7. Using this subjective probability measure the decision
maker computes in the second step the expected value of a ¢ — transformation
of the expected utility levels for every plausible priors. The transforming func-
tion ¢ : R — R is continuous and increasing and captures the attitude towards
ambiguity.

The representation theorem shows that such a transforming function ¢ exist
if the preference structure satisfies three assumptions. The first assumption re-
quires that the decision maker behaves as an expected utility maximizer on the
space of lotteries whose probabilities are objectively known. On a lower level this
assumption translates to the usual weak order, continuity and independence ax-
ioms underlying the expected utility theory. The second assumption states that
on second order acts — functions mapping distributions to consequences — the
decision maker maximizes subjective expected utility. In other words there is a
subjective probability assessment and a utility function on second order acts that
is consistent with the second order preferences. According to this assumption the
decision maker is capable of ranking bets about the right prior. Finally the third
axiom establishes the connection between first and second order preferences via
certainty equivalents.

These three assumptions on preferences are sufficient conditions for the ex-
istence of a strictly increasing function ¢ mapping expected utility values under
different to real numbers. This function has a central role in determining atti-
tudes towards ambiguity. If it is linear, then the decision maker is said to be
ambiguity neutral and she simply reduces the first and second order probability
distributions to a single compound distribution. In this case she behaves as a
Savagian subjective expected utility maximizer.

A more interesting case arises when ¢ is concave, that is when the decision
maker is ambiguity averse. The reduction of first and second order probabilities
does not hold in this case. Intuitively, under a concave ¢ the decision maker
dislikes any mean preserving spread in conditional expected utilities. The notion
of aversion to mean preserving spreads is closely related to risk aversion in the
expected utility framework. In fact the comparative statics of can be analogously
defined for ambiguity aversion.

For a clear comparative analysis an additional assumption is necessary. Namely
the separation of tastes and beliefs, which states that by varying the subjective

beliefs the risk attitude embodied in u won’t change and thus the same ¢ func-



tion can be used in the representation. Now it is possible to compare decision
makers through the concavity of ¢. However, it is important to mention that only
decision makers who share the same von-Neumann—Morgenstern utility function
u and the same subjective probabilities can be considered. Then we can say that

the agent (u, ¢;) is more ambiguity averse than agent (u, ¢s) if

¢1=hody (2)

for a strictly increasing and concave h, that is when ¢; is more concave than ¢,.
Alternatively if ¢; and ¢, are twice continuously differentiable then we can
express the same relation between ambiguity attitudes by

HU) )

CO(U) T dh(U)

for every expected utility U. Following the literature of risk theory these ratios are
measures of absolute ambiguity aversion. Constant absolute ambiguity aversion
is characterized either by the function ¢(U) = U or by ¢(U) = —%e‘”U for some
n # 0 and for every expected utility level U. Hereafter we will say ¢ admits
constant absolute ambiguity aversion (with parameter n) if it is of the second
form. If n — oo then we approach the maxmin expected utility model by Gilboa
and Schmeidler (1989), where acts are evaluated according to the worst possible
prior. In this case, the decision maker is extremely pessimistic.

Because of the crisp separation of attitude towards ambiguity and ambiguity
itself and of its analytical tractability the smooth model is a popular choice when
investments in ambiguous assets or insurance packages (Alary et al., 2013; Berger,
2014) is considered. Its similarity to the standard risk theory allows for an intu-
itive interpretation of results. The scope of the model can also be extended to

multi-period decision problems involving ambiguity (Klibanoff et al., 2009).

3 Portfolio choice under ambiguity

In this section we introduce the standard portfolio choice problem under am-
biguity used in Gollier (2011). The one period model considers the decision of
an investor who can allocate her wealth between two assets. The first asset has
a certain return, which is normalized to zero for simplicity. The second asset
however is not only risky but uncertain in the Knightian sense. Its return z is
governed by a distribution, but this distribution depends on some parameter 6,

which the investor cannot fully observe. This parameter is commonly known to



belong a parameter space O.

The ambiguous parameter § € © = {1,...,n} can simply be thought of as
an index, which determines the "true" distribution of returns from a finite set

= {Fi,...,F,} of possible cumulative distribution functions for the random
variable T of the excess return. Denote by Zy the random variable which is
distributed according to Fy. The supports of these priors are supposed to be
bounded in the closed interval [z, Z]| with x < 0 < Z. If the supports were not
bounded then the investor would face an unbounded loss or gain with positive
probability. Since the return of the safe asset is normalized to zero, the second
part of this assumption says that every prior carries the opportunity of both loss
and gain.

The investor is endowed with an exogenous level of initial wealth denoted by
wp- If o amount is allocated to the ambiguous asset then the investor’s wealth at
the end of the period is wg + ax upon the realization of the uncertain asset. The
investment problem generally should be written as (wg — «)(1 + rs) + (1 + z),
but since r,, the return of the safe asset is zero by assumption it simplifies to the
form above. To reflect for the fact that one cannot invest more money than they
originally have we restrict a not to exceed wy basically imposing a borrowing
constraint. This restriction could be mitigated but then one would need to make
assumptions on the lender. But since the portfolio choice analysis focuses on the
investor’s behavior these additional assumptions are not made.

The decision maker has a subjective probability assessment (qi,...,q,) over
the set II, that is >, , g9 = 1 and gy > 0. The investor believes with proba-
bility gy that the true excess return distribution will be Fjy. In the terminology
of Klibanoff et al. (2005) the vector (qi,...,q,) is her second-order belief and it
corresponds to the measure p in the representation (1). The fact that all subjec-
tive beliefs assign strictly positive probabilities reflect the convention that if one
of the gy was zero then the decision maker simply would not find distribution Fj
to be plausible and she could simply get rid of it.

It is assumed that the investor’s preferences can be represented with the
smooth model of ambiguity. In a recursive way first she computes the expected
utility of investing a amount in the ambiguous asset, conditional on the true
distribution being Fy (or equivalently the parameter being ). This conditional
utility is given by

Ula,0) = Eu(wy + aiy) = /u(wg + aZg)dFy(z))

The utility function u is supposed to be increasing and concave reflecting to risk



aversion, a standard assumption in risk theory. The concavity of u also implies
that U(-,0) is a concave function of the investment level a for every possible
parameter 6.

After computing expected utilities in the first step with all plausible distri-
bution functions Fy € II the investor uses her second order beliefs and a trans-
formation function ¢ to obtain the ex ante value of investing amount « in the

ambiguous asset

Vi) =¢ (Z (U (a, 9))> = ¢t <Z qod(Eu(wo + a:zg))> (3)

The transformation ¢! simply computes the certainty equivalent of the ambigu-
ous expected utility. The objective of the investor is to maximize her value by
picking an optimal investment plan «o*. Since the function ¢! is increasing, an

optimal level of investment is
a* € argmax Z 009 (U(c,0))
=1

As this function is concave in the level of investment and the all the priors are
bounded in a closed interval [x;Z] the first order condition is already sufficient,

therefore every optimal o* which is an inner solution has to satisfy

> a0 (U(", 0))Edgu (wo + a*Fg) = 0 (4)

If the agent is ambiguity neutral then her transforming function ¢ is linear. As
a consequence she will simply maximize subjective expected utility using the
reduced probability measures gy Fy for all parameters 6 € ©.

A primary result from Gollier (2011) shows that the demand for the ambiguous
asset is positive if the equity premium as defined by )", ¢EZy is positive. This
result is independent of the degree of the ambiguity aversion. To keep the analysis
simple we will assume in what follows that the equity premium and hence the
demand for the ambiguous asset is nonnegative. Together with our previous no-
borrowing assumption this means that we restrict the investment levels to belong
to the compact set [0, wy.

The main proposition of Gollier (2011) is that when the equity premium is
positive, then any increase in ambiguity aversion reduces the demand for the am-
biguous asset when the returns (Z1,...,Z,) can be ranked according to Monotone
Likelihood Order (MLR). The MLR order between two distributions with prob-



ability density functions f and g means that for every x; > x( in their support
then f =\r g if

f(ﬂﬁl) f(Q?o)
g(@) = glzo)

holds. The notion of increased ambiguity used here is the one stated in (2), that

is when we use a concave transformation of the function ¢.

4 Portfolio choice with additional information

Now we turn to the question of what happens if there is additional information
available about the priors. Imagine if the investor could get help from a profes-
sional she trusts to narrow down the possible distributions of the excess return.
To formulate this let (©;)", be a partition of the original parameter space O,
that is U”,©; = © and ©; N ©; = () for all i # j. This means that the expert
can narrow down the set of plausible priors by revealing that the true parameter
0 lies in one of the ©; partition sets. Our setup contains an implicit assumption,
namely that the expert cannot reveal a partition set which is not a subset of ©.
This assumption is not that restrictive as we are considering the ex ante welfare
of the investor and thus it is enough if she believes that the expert cannot reveal
priors that had not been thought of.

It is noteworthy that as a special case of this formulation we get back the
original case with no information. When m = 1 then the partition is trivially
the whole parameter space ©. In this case no additional information is acquired
from the expert. Another special case is when (0;), is the finest partition
of ©, that is when every ©; is a singleton set containing only one index. This
would mean that upon obtaining the information set ©; the investor would face
no ambiguity at all. To exclude this uninteresting case we require that |©;| > 2
for © = 1,...,m, meaning that the professional cannot fully eradicate ambiguity.
For further definitions we fix one information partition (6;);",.

Before the investor acquires the additional information she uses her subjective
beliefs (g1, ..., q,) to assign probabilities to hearing that the plausible parameters
are either from one of the ©; sets. We need these beliefs because we are looking
at the ex ante situation, when the investor has not obtained the actual parameter
restriction ©; yet, but she already knows what are the possible restrictions, in
other words she knows the acquirable partition (©;)",. The beliefs need to be
consistent with the original ones. So, the investor simply adds up the ones which
correspond to the parameter being in the same partition set. This can be written
as p; = Pr(0 € ©;) = >, qo for all i.



Upon hearing that the parameter 6 is either an element of one of the ©;

partition sets the investor updates her subjective beliefs according to Bayes rule

~ _ 4 _ de

Qo = =, fori=1,....m
Di ZjEGi Qj

Using these updated beliefs she computes the value of the contingent investment

given that information ©; is revealed to her

Vi(a) = ¢t <Z Q09 (Eu(wy + aig))) , fori=1,...,m. (5)

0cO;

The inner expression is still a concave function of the investment level therefore
an optimal contingent investment plan o € (0,wy) is again pinned down by the

first order condition of V;

D W' (U0, a7)EZgu (wo + afFe) = 0 (6)
0€O,;
If a* = (af,...,a,) is the vector containing the optimal contingent investment

plans of the scenarios when the respective information set ©; is obtained then

the ex ante value of this investment plan is
m
Vi) =Y nVi(a))
i=1

= po™! <Z G (Bu(wo + afff@»)

0cO;

The following proposition says that if the investor is ambiguity averse then she is
always better off by obtaining additional information about the plausible priors.
It is important to mention that the result is independent of the information

setting.

Proposition 1. For an ambiguity averse decision maker and for any information

partition (©;)™, with the corresponding optimal contingent investment plan o =

*

* ) we have

(of,...,«

V() > V(')

where V' is the original value function under no additional information and o* is

the corresponding demand for the ambiguous asset.

Proof. Since the increasing function ¢ is concave under ambiguity aversion this

1

implies that its inverse ¢~ ' is convex. As the probabilities (pi,...,p,) define a



convex combination we have

where the first inequality is true because ¢! is convex. The last inequality holds
because the values of o are already optimal when o is available. So by changing

from o to o the values of V; cannot be strictly increased. O

Note that the first inequality is strict if the transformation function ¢ is strictly

concave, because in this case ¢! is strictly convex.

Remark. If ¢ s strictly concave as in the case of constant absolute ambiguity

*

aversion and not all V(o]

¥) values are equal, then

Via*) > V(oY)

Although this result holds independently of the information obtained the same
cannot be told about the average ex ante demand for the ambiguous asset, defined

for a given information partition as
m
Ea* = Z pia (7)
i=1

The following example illustrates that it is not obvious whether the average ex
ante investment level is always higher than the investment under no additional

information.

4.1 Example 1

Let © = {1,2,3,4} be the parameter space so there are n = 4 possible re-

turn distributions. All distributions can yield one of the following excess returns



S = {-0.1,-0.05,0.1,0.2}. The 4 plausible distribution assign the following

probabilities to the values of returns respectively
e f1 =(0.35,0.2,0.3,0.15)
e fo,=1(0.35,0.25,0.25,0.15)
e f3=1(0.3,0.2,0.25,0.25)
e f1=1(0.15,0.15,0.3,0.4)
The investor’s subjective beliefs about these priors are
o ¢1 = 10%, g = 40%, q3 = 40%, q4 = 10%

The utility function admits constant absolute risk aversion with risk aversion pa-
rameter 3, and the transformation function ¢ admits constant absolute ambiguity

aversion with a general parameter 7
o u(z) =—e
. (L) = L

The initial wealth endowment is wy = 1.25. Finally consider the following two

information partitions
e O = {{1’ 2}’ {374}}
o ©"={{1,4},{2,3}}

We numerically solve the original investment problem when no additional infor-
mation is available as well as the case when each of the two different information
is obtained. Figure 1 shows how the optimal average investment level changes
when ambiguity aversion is increasing as measured by the parameter 7 of the
transforming function ¢. The range of 7 in the simulation was [1, 500].

As we can observe in all 3 cases the optimal investment is decreasing as the
ambiguity aversion increases. However it can be observed how different informa-
tion affects the ex ante average investment. For smaller n values both partitions
result in a lower average investment level than in the case when no information
is obtained. Furthermore obtaining ©% will eventually yield a higher average in-
vestment level when ambiguity aversion is sufficiently high (approximately when
n is greater than 460 in the above example). On the other hand obtaining the
partition ©° yields a lower average demand for the ambiguous asset than under

no information on the whole range of the simulation. As we will show later under
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Figure 1: Average investment level under different information partitions

certain conditions on the utility function w and the priors, if ambiguity aversion is
high enough the average investment level under information will always be higher
than under no information independently of the quality of information obtained.

In order to get a better understanding why the average investment can be
lower for certain degrees of ambiguity aversion we look at the case when the
investor is ambiguity neutral. As we mentioned earlier under ambiguity neutrality
the transformation function is linear ¢(U) = U and we thus simply solve an
expected utility maximization problem with the reduced priors qgFy. Keeping
the above specification unchanged we compute the average investment levels for
a linear ¢.

When there is no information available about the parameter 6 the optimal
investment level for an ambiguity neutral investor is o = 0.677. But this is

higher than the average investment level under both information settings
E(af", a5") =1/2-0.243+ 1/2 - 1.07 = 0.656

and
E(ab* ab*) =1/5-1.24 +4/5-0.534 = 0.675

where o is the optimal investment level when partition 4 is obtained of infor-
mation structure ©F. As it can be noticed the higher investment in the favorable
parameter restriction cannot outweigh the lower investment level under the un-

favorable restriction. Probably this is also the reason why we got the same result

11
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Figure 2: Difference in values under different information
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for an ambiguity averse investor for lower values of 7.

This example has one more interesting feature. Let’s take the differences of
values under different information and that of no information, namely AV* =
V(ah) = V(a*) for k = a, b, where the index k refers to whether the partition ©°
or ©% was obtained. Figure 2a and 2b shows how these differences evolve with
increasing ambiguity aversion. The values were scaled up with a positive constant
which does not affect the order of ranking. As these figures reveal acquiring
different information can have the opposite welfare effects. The information ©¢ is
more valuable for more ambiguity averse investors, while ©° is more appreciated

when the ambiguity aversion is smaller.

4.2 Ex ante average investment

For further results on the relation between the average ex ante investment level
under information compared to the no information case, we first need to clarify
the relation between the expected utilities computed using different priors and
the corresponding optimal levels of investment. To answer this question, we put
the question of ambiguity aside for a while and look at pure risk theory. Namely,
we need conditions on when prior Fj, gives a higher expected utility than an
other prior Fy,, then the optimal investment level under the first prior is bigger

than under the second. Formally we seek conditions when
Eu(wy 4+ ae,) < Eu(wy + aZy,) = o < a; (8)

where o are the corresponding optimal investment level for the priors. Note
that the expectations also depend on the level of a. It is therefore possible that
for different values of investment level the inequality is reversed. Although if
the priors can be ranked according to first order stochastic dominance, then one
expectation will always be lower than the other for all values of . If u is concave
then a weaker condition of second order stochastic dominance is sufficient, as we
shall see in the following. If these conditions are satisfied then condition (8) can
be stated as

Eu(woy + aiZp,) < Eu(wy + a3Zp,) = af < o5

For the sake of self-containment we define here stochastic orders of the excess
return distributions. First order stochastic dominance (FSD) between two distri-
butions means that the dominant one yields an unambiguously higher return than
the dominated one. This is equivalent to saying F'(z) > G(x) for every value of

in the support. F'is said to second order stochastic dominate (SSD) G if for every

13



increasing and concave utility function u we have Epu(x) > Egu(z) where the
expectations are taken with respect to the corresponding distribution functions.
This concept captures the phenomenon that risk averse decision makers always
dislike mean-preserving spreads in the distributions.

We finally list here the different well-established risk attitudes for a better

understanding. Absolute risk aversion for a twice continuously differentiable util-
u//(z)
' (2)
R(z) = zA(z). If u is additionally three times continuously differentiable then
u///(z)
u(2)

ity function u is defined as A(z) = —

and relative risk aversion is simply

absolute risk prudence can be defined as P(z) = — and correspondingly
relative prudence is P"(z) = zP(z).
Using these stochastic orders and risk attitudes we present the following aux-

iliary result from Gollier (2004) which was first shown by Hadar and Seo (1990)

Lemma 1. Suppose the domain of u is R,.. Then a shift of distribution of returns

increases the demand for the risky asset if

1. this shift is FSD-dominant and if relative risk aversion is less than unity

2. this shift is SSD-dominant, relative risk aversion is less than unity and

increasing, and absolute risk aversion is decreasing

3. this shift is SSD-dominant, relative prudence is positive and less then 2

The problem with this result is that empirically relative risk aversion is un-
likely to be smaller than unity, as Gollier (2004) notes. On the other hand,
we could restrict the state space to contain only two states, in which case it is
straightforward that a distribution yielding a higher expected utility results in an
at least as high investment level. Note that in the case of two states, first order
stochastic dominance is also a total order, thus it suffices for a distribution to
first order stochastically dominate an other if it assigns higher probability to the

good state with the higher return. The next lemma summarizes this result.

Lemma 2. In the standard portfolio choice model with a increasing and concave
utility function w if the state space consists of only two states with returns {z; T},
where x < 0 < & then an FSD-dominant shift in the distribution does not decrease
the optimal level of investment. Furthermore it strictly increases it if under one

of the priors the optimal investment level is an inner solution

Proof. Let F} and F3 be two distributions on the state space which assign prob-
abilities p; and p, respectively to the return z, with ps > p;. This means that

F5 >psp F1. The expected utilities of investing a can be written as

(1 — p)u(wy + az) + pyu(wy + o)

14



Since we are maximizing a continuous function over a compact set « € [0, wp| the
maximum exists by the extreme value theorem. We need to distinguish between
the cases where the maximizing investment level is an inner solution and when it
is a boundary solution.

If aj € (0,wp) then the concavity of u ensures that the first order conditions

are sufficient to check so o satisfies
(1 —p1)u'(wo + ajz)z + pru/(wo + a(Z)T = 0

or put it differently
1 ' (wo + ojz) T

1—pm - w'(wy + i) T
It is easy to check that the fraction on the left hand side is increasing in p; thus
if we switched to distribution F3 that is we increased p; to ps then the left hand
side would increase. By the concavity of u the right hand side is also increasing
in aj. To observe this take the derivative with respect to «j of the right hand

side

z u (w4 afx)u (we + )z — v (we + afz)u” (wo + & T)T
x [ (wo + i T)]?

>0

This directly implies that a3 > o} needs to hold for the optimal investment levels.
The same result can be shown if o € (0, wy).

There are two remaining cases to be checked. The first case is when o] = wy.
This means that the maximal expected utility is attained at the boundary. We

need to show that o = wy too. For this note that

EU = (1 — p;)u(wo + o) + p;u(wo + )

has a positive cross-derivate, that is aiﬁga

to po then the utility increases and it could furthermore be increased by a higher

> (. This means that if we increase p,

a. As we are already at the boundary this yields o = wg. The other case is
when aj = 0 but a symmetric reasoning can also show that aj = 0 in this case.
We conclude that af > aof. ]

For the next proposition we need the conditions of either of the above lemmas
to hold. We could also simply require condition (8) to be satisfied by the priors,

but this would be a stronger assumption. We follow the first approach.

Proposition 2. Let ¢ admit constant absolute ambiguity aversion with parameter

n. 1If either conditions of Lemma 1 are satisfied and all priors can be ranked

15



according to FSD order, or conditions of Lemma 2 are fulfilled, then for any

information partition (0;)", as n — oo we have in the limit that

Ea* > of
where Ea* = Y7 of is the average of the optimal contingent investment plan
and o is the investment under no information. Moreover if the conditions of

Lemma 2 hold and additionally for one of the partition sets the value

argmax{min Eu(wy + aZy)}
a€[0,wo) 0€O;

18 an inner solution, then the inequality is strict.

Proof. As showed by Klibanoff et al. (2005) if n — oo we approach the maxmin

expected utility representation, therefore the values converge to
V(o) = VMEV(q) = {oniél Eu(wy + aZy)
S
and respectively

Vila) = VMEY(q) = grelgl Eu(wy + aZy)
for2=1,...,m. In the limit the optimal contingent investment plan is therefore
obtained by maximizing the lowest expected utility for each partition set. Since
the function u is assumed to be concave and its domain is a closed interval the
problem has a solution. Denote « this optimal contingent investment level for
t = 1,...,m. Now note that the optimal o* which is the optimal investment
level when there is no additional information available has to coincide with one
of the a} values. This is because if VM®U(q) is minimal at § € ©, then one of the
VMEU(@) is also minimal at § € ©; C ©. Let assume without loss of generality

that a* = of. If Ea* < o* was true in the limit then

m
* * * *
Ea:E pic; < ] =«

i=1
would yield

S pial < (1—p)ai = Y pias

i=2 i=2
But from Lemma 1 and Lemma 2 we have that o] > oj foralli =1,...,m, so

we got a contradiction. We conclude that Ea* > o*.

Now if we additionally have that in one of the partition sets the optimal
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investment level under the worst prior is an inner solution, that is «f € (0, wy)

for some ¢ # 1 then by the second part of Lemma 2 we also have that

min Eu(wy + aZy) < min Eu(wy + a2
/€O ( ot 0) 0€O; ( 0+ 0)

and therefore o] < af. Note that the assumption that ¢ # 1 is without the loss
of generality for if of is an inner solution, then af > af for every ¢ = 2,...,m.
Now as a consequence we get that o > af for all 7 and o] > af for some ¢. In

this case we get that Ea™ > o*. O]

It is essential to observe that the first part of Proposition 2 is independent
of the information partition. The quality of information therefore is irrelevant in
the sense that in the limit the decision maker will always invest on the average
at least as much to the ambiguous asset as she had invested under no additional
information. On the other hand average investment is strictly higher in the
limit only if the information is valuable to the investor, a property of the given

information partition. The following example demonstrates this.

4.3 Example 2

Let there be two states of nature. In the bad state the return of the ambiguous
asset is —0.1 and in the good state the return is 0.3. The investor perceives four

possible probability distributions

o f, = (0.95,0.05)

o f»=1(08,0.2)
o f3=1(0.6,0.4)
o f1=(0.4,0.6)

and so the parameter space is again © = {1,2,3,4}. The subjective beliefs about
these priors are uniform so gy = 1/4 for § € ©. The initial wealth level is wy = 1,
the ¢ function admits constant ambiguity aversion and the utility function has

the form of constant relative risk aversion

where the risk parameter p = 3. We want to observe how acquiring different kind
of information affects the average investment in the ambiguous asset as ambigu-
ity aversion increases. For this purpose consider the following two information

partitions
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o O = {{173}7 {274}}
° @b = {{172}7 {374}}

Intuitively what is happening here is the following. Distributions f; and f, are
really unfavorable as both yield negative expected returns. If the decision maker
knew with certainty that the returns are distributed according to either f; or
f2, then her demand in both cases would be zero for the risky asset, since she
is risk averse. The other two distributions f3 and f; are the favorable ones with
positive expected return. Now if information ©! is considered then the reduction
of ambiguity is not so prominent because both possible parameter restrictions

elements of ©!  contain an unfavorable as well as a favorable distribution.
The other information © however separates the unfavorable and the favorable
distributions. The investor ex ante believes with probability 1/2 that the expert
is going to restrict the plausible distributions to those with negative expected
return, and with probability 1/2 that only the distributions with positive expected

returns are relevant.

No information
Partition a
Partition b

0.4

0.1
s\
e S I
e
0 50 100 150 200

eta

Figure 3: Average investment level under different information partitions

Figure 3 presents the numerical results for the average demand for the am-
biguous asset under different information. As observable even if ©% does not bring
well-structured information it still manages to raise the average investment for
all degrees of ambiguity aversion. It is not surprising that the other information
partition ©° yields a higher average investment level since it separates the favor-

able priors from the unfavorable ones. As we mentioned before when n — oo,
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the contingent investment plans are assessed according to the maxmin expected
utility so in the limit the most unfavorable priors determine the welfare. In the
case of © this means that both contingencies are going to be evaluated using
the priors with negative expected returns, namely f; and f;. But because of the
borrowing constraint the demand cannot be negative so in both contingency of
©® the limit investment level is zero. The limit investment level of the no infor-
mation case is also zero as the universal worst prior is f;. This example shows
that even if information raises the average demand for the ambiguous asset for

all degrees of ambiguity aversion, in the limit they coincide.

=
5

_—

\\\

0 100 200 300 400 500
eta

(a) Partition a

\

\
0 100 200 300 400 500
eta

(b) Partition b

Figure 4: Difference in values under different information

Just like in Example 1 we compute and plot the differences of values between
the two information structures and the original value under no information. The

value differences are shown on Figure 4a and 4b. Under both information parti-
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tions the difference of the values is decreasing in the degree of ambiguity aversion.

4.4 Example 3

This example heavily draws on the second example in Gollier (2011), where he
shows that increasing ambiguity aversion can in fact raise the demand for the
ambiguous asset. The following example can be considered as an extended version
of his, in a sense that we need to modify it a little bit to fit it in our framework.
The original example consisted of two return distributions so in order to be able
to partition the parameter space into two disjoint sets with cardinality greater

than 2 we need at least four plausible distributions. They are the following
o 7, ~(—1,2/10;,-0.25,3/20;0.75,7/20; 1.25,3/10)
o iy~ (—1,1/5;0,1/5;1,3/5)
o i3~ (—1,2/10;,—0.25 —~,3/20 — §;0.75 4+ ~,7/20 4 6; 1.25,3/10)
e iy~ (—1—¢,1/5;0,1/5;1+¢,3/5)

The above notation should be read as Z; = —1 with probability 2/10 and so on.
We basically duplicate the excess return distributions z; and Z, with a slight
modification, embodied in the parameters 7, and . Since the original example
is so carefully constructed it is really sensitive to bigger changes in probabilities
and the return values, so we keep v = ¢ = ¢ = 0.05. The utility function is of the

form
e u(z) =min{z,3+0.3(z —3)}

This piecewise linear function has a kink at z = 3, it is concave however not
strictly. The ¢ function is of the constant absolute ambiguity aversion form with

parameter 7. The prior beliefs are
® (] — 2.5%, G2 = 475%, q3 = 2.5%, qy = 47.5%

This way we preserved the ratio of probabilities ¢; and ¢y from the original ex-

ample. The information the decision maker obtains is

o O = {{17 2}7 {3’4}}

This means that the first parameter restriction leads back to the original case of
Gollier (2011), while the other leads to a slightly modified one. The numerical

results are shown on Figure 5 for the simulation range 7 € [1, 300].
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No information
——— With information
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Figure 5: Average investment level under information

As in the original example it can be observed that after a certain level of 7
ambiguity aversion increases the investment. What is more important for us is
that when ambiguity aversion is high enough the average ex ante demand for
the ambiguous asset under information is always lower than the demand under
information.

Figure 6 shows how the contingent investment plans change with ambiguity.
Contingency 1 refers when the parameter restriction ©; = {1,2} is acquired
and Contingency 2 refers when ©, = {3,4} is acquired. For smaller degrees of
ambiguity aversion in all three cases the investment level is constant. In fact in
Contingency 2 the investment level is constant for all values of 7. In the other two
cases after a threshold level of n the optimal investment level starts to increase.
This threshold value of 7 is smaller when the set of parameters is smaller, that is

when the parameter restriction ©; is obtained.

4.5 Continuity of the demand

This result shows us that under certain conditions, if the ambiguity attitude tends
to infinity then the average investment level exceeds the investment level of the
original problem with no additional information. But there is a little bit more
to say. For that we need to show that the optimal investment level is continuous
in the parameter n. The way we will show this is by applying Berge’s Maximum
Theorem and check if its conditions are satisfied for our case. The version of the

theorem we are using is from Sundaram (1996).
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Figure 6: Contingent investment plans

The Maximum Theorem states that if we have a two metric spaces X and Y,
a continuous function f: X x Y — R and a continuous, nonempty and compact

valued correspondence C' : Y = X and we define

[ (y) = max f(x,y)

z€C(y)

C*(y) = argmax f(z,y)
z€C(y)

then f* is continuous and C* is upper hemicontinuous, nonempty and compact
valued. Moreover if f(-,y) is strictly concave in the first argument for every
value y € Y and C' is additionally convex valued, meaning that for every y € YV
its image is a convex set, then C* is single valued and hence it is a continuous
function.

Our maximization problem can be translated to the notation of the Maximum
Theorem as follows. First define f: R x (0,00) — R such that

1 -
flam) =) (—— exp(—nEu(wo + am)))
0cO "
This function is strictly concave in « for every value of n. To see this note that
u is concavely increasing and the expectation operator does not affect concavity.
Furthermore the transformation function ¢(x) = —% exp(—nz) is strictly concave
and also increasing. Finally the composition of strictly concave and increasing

function with a concave and increasing function is strictly concave. The constraint
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correspondence is C': (0,00) =% R such that
C(n) = [0,wo] Vn>0

This correspondence is obviously compact and convex valued. This means that
all the conditions of the Maximum Theorem are satisfied. Therefore the demand
for the ambiguous asset C*(n) = argmax,cq, f(a,n) is single valued and con-

tinuous. This result is summarized in the following lemma.

Lemma 3. If ¢ admits constant absolute ambiguity aversion with parameter n,
then the optimal investment level, given the degree of ambiguity aversion o*(n) is

a continuous function.

This lemma is also valid for all contingent investment plans meaning that for
an information partition set ©; the function «(n) is also continuous. A direct
consequence of Proposition 2 is that for every investor with constant ambiguity
aversion attitude there is a threshold value for the aversion parameter 7 such that
for any higher value the ex ante average investment level exceeds the investment

level of the no information case.

Proposition 3. Let the assumptions of Proposition 2 be satisfied. If ¢ admits
constant ambiguity aversion with parameter n and as n — oo we have that Ea* >

a* for a fized information partition, then Jng € (0,00) such that

Ea*(n) > a*(n)

for every n > nq.

The sketch of the proof is as follows. Proposition 3 of Klibanoff et al. (2005)
basically establishes that if for a maxmin expected utility maximizing agent the
act f yields a strictly higher utility than act g, then if the constant absolute
ambiguity aversion parameter is high enough, the smooth model would also yield
a strictly higher utility, given that the set of priors are the same. By assumption
if Ea* > o* this implies that o > o* for every ¢ = 1,...,m and o > a* for
some j as it was established in Proposition 2. But this means that for n large

enough we have (1) > a*(n) and o;(n) > a*(n) for all i = 1,...,m.
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5 Conclusion

In this paper we examined how the presence of information can affect the invest-
ment decisions in the portfolio choice model of Gollier (2011). Our first result
shows that for ambiguity averse investors information is always valuable in the
sense that ex ante welfare is never decreased when additional information is ac-
quired. Under certain conditions on the transforming function ¢ and the values
Vi(af) it is even strictly increased. This fact is independent of the quality of
the given information, it only relies on the concavity of ¢. Intuitively this result
basically says that more information is always valuable.

The relation between ex ante average investment levels under different in-
formation settings is not so clear unfortunately. In various examples we show
how different information and risk attitudes can change investment plans when
ambiguity aversion is increased. It should be noted, however that we restricted
our examples to the case of constant absolute ambiguity aversion because of its
functional form is characterized by one parameter only. Furthermore it was estab-
lished by Klibanoff et al. (2005) that when the parameter of ambiguity aversion
tends to infinity, then we reach the maxmin expected utility model of Gilboa and
Schmeidler (1989). Using the results of standard risk theory we put conditions
on when average investment is increased in the limit when additional informa-
tion is obtained. In future research one could examine our extended framework
under more general assumptions on the transforming function ¢. One possible
approach could focus on finding conditions under which the relation between the
average investment under information and the original investment level can be

unambiguously determined.
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6 Appendix

In the examples we used the 0.5.1 version of the Julia programming language.
The numerical optimization problems were solved using the Optim package. First

we set up the model structure with all the methods necessary.

using Optim

using Plots; gr()

type Model

u # Utility function
phi # Transformation function
Fs # Priors (plausible distributions)
qs # Subjective beliefs about the priors
S # Returns
w0 # Initial wealth
function Model(u,phi,Fs,qgs,S,w0)
Qassert size(Fs) == size(gs) == size(S) error
if disapprox(sum(gs),1.0) == false
error ("The gqs don’t add up to 1")
end
for i in 1:length(S)
Qassert length(S[i]) == length(Fs[il])
if isapprox(sum(Fs[i]) ,1.0) == false
error("Distribution ",i," doesn’t add up to 1")
end
end

new(u,phi,Fs,qs,S,w0)
end

end

# Computes the equity premium
function equity_p(M::Model)
ep = 0
for i in 1:1length(M.S)
ep += M.gs[i]l#*sum(p*s for(p,s) in zip(M.Fs[i],M.S[i]))
end
return ep

end

# Expected utility under prior n, given investment level alpha
function U(M::Model, alpha, theta)
dot(M.Fs[thetal,M.u.(M.w0 + alpha*xM.S[thetal))

end

# Value function under no additional information
function VO(M::Model ,eta=10)
V(alpha) = sum(q * M.phi(U(M,alpha,theta),eta) for (q,theta) in zip(M.qgs,1:
length(M.qs)))

end

# Value function of the info partition that contains indexes of omne info set
function V_info(M::Model,partition,eta=10)

gs = M.gs[partition]

q_hats = gqs/sum(qgs)

V(alpha) = sum(q * M.phi(U(M,alpha,theta),eta) for (q,theta) in zip(q_hats,
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partition))

end

# Computes the optimal investment of the value function V
function optimal_alpha(M::Model,V,eta=10)

f = V(M,eta)

o = optimize(x -> -f(x),0,M.w0)

end

# Determines the optimal investment level under prior theta
function maxmin_alpha(M::Model, theta)
optimize (x->-U(M,x,theta) ,0,M.w0) .minimizer

end

We defined the following utility and transforming ¢ functions

function phi(U,eta)
-1/eta*exp(-Uxeta)

end

function phi_inverse(U,eta)
-1/eta*log(-etax*U)

end

function crra(x,rho=3)
(x~(1-rho))/(1-rho)

end

function cara(x,rho=3)
-exp(-rho*x)/rho

end

The code of the examples are the following

Example 1
w0 = 1.25
s = [[-0.1,-0.05,0.1,0.2] for i in 1:4]

F1 = [0.35,0.2,0.3,0.15]
F2 = [0.35,0.25,0.25,0.15]
F3 = [0.3,0.2,0.25,0.25]
F4 = [0.15,0.15,0.3,0.4]

Fs = [F1,F2,F3,F4]

qs = [0.1,0.4,0.4,0.1]

M1 = Model(x->cara(x,3),phi,Fs,qs,S,w0)

etas = 1:500

alphas0O = Vector(length(etas))
alphasl = Vector(length(etas))
alphas2 = Vector(length(etas))
alphas3 = Vector(length(etas))
alphas4 = Vector(length(etas))
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for

end

eta in etas

alphasO[etal = optimal_alpha(M1,V0,eta).minimizer

alphasi[etal] = optimal_alpha(M1,(M,eta)->V_info(M,[1,2],eta),eta).minimizer
alphas2[etal] = optimal_alpha(M1,(M,eta)->V_info(M,[3,4],eta),eta).minimizer
alphas3[etal] = optimal_alpha(M1l,(M,eta)->V_info(M,[1,4],eta),eta).minimizer
alphas4[etal] = optimal_alpha(M1l,(M,eta)->V_info(M,[2,3],eta),eta).minimizer

plot(etas,alphas0,xlims=(0,length(etas)+8),label="No information",xlab="eta")

plot!(etas,(qs[1]+qs[2])*alphasl+(qs[3]+qs[4])+*alphas2,
plot!(etas,(qs[1]+qs[4])*alphas3+(qs[2]+qs[3])+*alphaséd,

v_d
v_d

for

end

plo

plo

iff1 Vector (length(etas))
iff2 = Vector(length(etas))

i in 1:length(etas)

label="Partition a")

label="Partition b")

V_diff1[i] = (qs[1]+qs[2])*phi_inverse(V_info(M1,[1,2],etas[i]) (alphasi[i]),

etas[i]) +

(qs [3]+qgs[4])*phi_inverse(V_info(M1,[3,4],etas[i]) (alphas2[i]),

etas[i]) -

phi_inverse(VO(M1,etas[i]) (alphasO[i]),etas[i])

V_diff2[i] = (gs[1]+qs[4])#*phi_inverse(V_info(M1,[1,4],etas[i]) (alphas3[i]),

etas[i]) +

(qs[2]1+qs[3])*phi_inverse(V_info(M1,[2,3],etas[i]) (alphas4[i]),

etas[i]) -

phi_inverse(VO(M1,etas[i]) (alphasO[i]),etas[i])

t(etas ,10000xV_diffl,

xlab="eta",

legend=:none,
xlims=(0, length(etas)+8))

t(etas ,10000%V_diff2,
xlab="eta",
legend=:none,
x1lims=(0, length(etas)+8),

color="red")

Example 2

w0 = 1

S = [[-0.1,0.3] for i in 1:4]
F1 = [0.95,0.05]

F2 = [0.8,0.2]

F3 = [0.6,0.4]

F4 = [0.4,0.6]

Fs = [F1,F2,F3,F4]

gs = [0.25,0.25,0.25,0.25]
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M3 = Model(x->crra(x,3),phi,Fs,qs,S,w0)

etas = 1:500

alphas0 = Vector(length(etas))
alphasl = Vector(length(etas))
alphas2 = Vector(length(etas))
alphas3 = Vector(length(etas))
alphas4 = Vector(length(etas))

for eta in etas

alphasO[etal = optimal_alpha(M3,V0,eta).minimizer
alphasi[eta]l] = optimal_alpha(M3,(M,eta)->V_info(M,[1,3],eta),eta).minimizer
alphas2[eta] = optimal_alpha(M3,(M,eta)->V_info(M,[2,4],eta),eta).minimizer

alphas3[etal] = optimal_alpha(M3,(M,eta)->V_info(M,[1,2],eta),eta).minimizer
alphas4[etal] = optimal_alpha(M3,(M,eta)->V_info(M,[3,4],eta),eta).minimizer

end

plot(etas,alphas0,label="No information ",xlims=(0,205) ,xlab="eta")
plot!(etas,(gqs[1]1+qs[3])*alphasl1+(qs[2]+qgs[4])*alphas2,label="Partition a")
plot!(etas,(qs[1]1+qs[2])*alphas3+(qs[3]+qs[4])+*alphas4,label="Partition b")

V_diff1 Vector (length(etas))
V_diff2 = Vector(length(etas))

for i in 1:length(etas)
V_diff1[i] = (qs[1]+qs[3])*phi_inverse(V_info(M3,[1,3],etas[i]) (alphasi[i]),
etas[i]) +
(qs [2]1+qs[4])*phi_inverse(V_info(M3,[2,4],etas[i]) (alphas2[il),
etas[i]) -
phi_inverse(VO(M3,etas[i]) (alphasO0[i]) ,etas[i])

V_diff2[i] = (qs[1]l+qs[2])*phi_inverse(V_info(M3,[1,2],etas[i]) (alphas3[i]),
etas[i]) +
(qs [3]+qs[4])*phi_inverse(V_info(M3,[3,4],etas[i]) (alphas4[i]),
etas[i]) -
phi_inverse(VO(M3,etas[i]) (alphasO[i]),etas[i])

end

plot (etas ,1000*V_diffl,legend=:none,x1lims=(0,length(etas)+8),xlab="eta")

plot (etas ,1000xV_diff2,legend=:none,xlims=(0, length(etas)+8),color="red",xlab="

eta")
Example 3
w0 = 2
S1 = 1,-0.25,0.75,1.25]

[_
$2 = [-1,0.,1]

$3 = [-1,-0.3,0.8,1.25]
S4 = [-1.05,0.,1.05]

S = [S1,52,83,54]

F1 = [2/10,3/20,7/20,3/10]
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F2 = [1/5,1/5,3/5]
F3 = [2/10,3/20-0.05,7/20+0.05,3/10]
F4 = [1/5,1/5,3/5]

Fs = [F1,F2,F3,F4]
gs = [0.025,0.475,0.025,0.475]
M4 = Model(z->min(z,3+0.3%(z-3)),phi,Fs,qs,S,w0)

etas = 1:300

alphas0 = Vector(length(etas))
alphasl = Vector(length(etas))
alphas2 = Vector(length(etas))
alphas3 = Vector(length(etas))
alphas4 = Vector(length(etas))

for eta in etas
alphasO[etal] = optimal_alpha(M4,V0,eta).minimizer
alphasl[etal] = optimal_alpha(M4,(M,eta)->V_info(M,[1,2],eta),eta).minimizer
alphas2[eta] = optimal_alpha(M4,(M,eta)->V_info(M,[3,4],eta),eta).minimizer
alphas3[eta]l] = optimal_alpha(M4,(M,eta)->V_info(M,[1,4],eta),eta).minimizer
alphas4[eta] = optimal_alpha(M4,(M,eta)->V_info(M,[2,3],eta),eta) . minimizer
end

plot(etas,alphas0,label="No information ",xlims=(0,length(etas)+8),xlab="eta")
plot!(etas,(qs[1]+qs[2])*alphas1+(qs [3]1+qs[4])*alphas2,label="With information")

plot (etas,alphas0,label="No information",xlab="eta", ylims = (0.9,1.4),xlims=(0,
length(etas)+8))

plot!(etas,alphasl,label ="Contingency 1")

plot!(etas,alphas2,label ="Contingency 2")
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