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Abstract

Random Forest is a cutting-edge method for unbalanced multiple-class classification.
The main problem with unbalanced data is that the classifier tends to focus more on the
bigger classes than on the smaller classes. To overcome this skewness, three sampling
methods, namely oversampling, undersampling and a combination of both are introduced
and compared based on the performance of the forest on a highly unbalanced data
set with eleven classes. It seems that oversampling improves the performance of the
forest dramatically, while undersampling often worsens it compared to the unbalanced
classification. A combination of both seems, however, more adequate for this specific
analysed data set since the effect of oversampling on the accuracy is much lower regarding
the test data set than the dramatic improvements for the training data set. The danger
of overfitting is lower if the data set is not only oversampled but retains its original
total size while the observations are oversampled or undersampled to the same amount
of observations. Analysing the data has shown that there are many noisy variables
which legitimated raising the value of available variables (mtry) from the default to the
median value between the default for classification mtry = ,/p and the default value for

regression miry = %p.
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Chapter 1

Introduction

In times of information overload and data acquisition mania, it seems important to
convert the right information into something meaningful at the right time. This is
essential when it comes to decision making. The main question is how to achieve this
conversion. Which information can be used? What information is useful for the current
decision?

The large fields of statistics, data mining and data analysis are addressing these issues
theoretically as well as empirically. In doing so the goal is to develop theoretically
(mathematically) well-founded algorithms, models and methods to convert information
into decisions or other more sophisticated information. The algorithms and methods
should be fast, efficient and able to deal with all sorts of information.

The question remains how such an algorithm can convert information into decisions and
predictions. One obvious approach is to look at examples and data were a decision and
a prediction have already been made and to construct an algorithm that can learn from
these samples to recognize some structure and to independently adapt to new data. The
keyword being learning relates to the subject of machine learning and computational sta-
tistics. Both these sub-fields have gained more and more popularity in the past. Evolved
from learning theory in artificial intelligence, machine learning studies the construction
of algorithms which have to learn from data to make predictions and decisions. They
are not explicitly programmed but rather follow strictly static instructions by making
data-driven predictions and decisions.

Random Forest is a machine learning method that converts the data, the information
into decisions by constructing an ensemble of decision trees and averaging them to make
a final classification or prediction. Random Forest is the trademark of Leo Breiman
[Breiman 2001b] and Adele Cutler [Breiman and A. Cutler 2016] who extended the
random subspace method of Tin Kam Ho [Ho 1998] by combining bagging and random
variable selection. It can be used for classification, regression as well as unsupervised
learning.



Being known for its efficiency and speed Random Forest has the additional feature of me-
asuring variable importance and has an inbuilt method to deal with unbalanced classes.
Most machine learning algorithms perform quite well on binary balanced classifications
but when the classes are unequal in size the situation changes. The imbalance problem
of especially a multiple-class classification is that almost every classifier tends to focus
more on the bigger classes while the smaller classes are usually neglected. This results
in insufficient performance regarding the prediction and classification of new data.

In this thesis Random Forests are used to investigate the imbalance problem of a
multiple-class classification. The analysed data set contains eleven highly unbalanced
classes. The main goal is to develop methods to balance the data to force the forest
to learn from and train on the balanced data in such way that the prediction of new
data improves compared to the unbalanced case. After a detailed and extended des-
cription of the Random Forests and its elements the decision trees is carried out three
sampling methods are introduced and compared afterwards. Also the inbuilt method of
the Random Forest is compared to the sampling methods.



Chapter 2

Random Forest

Random Forest is a cutting-edge and popular, widely used classification method that has
multiple advantages and additional features. Random Forest is very fast and efficient,
procrastinated for big data problems and versatile. First introduced by Breiman in 2001
[Breiman 2001b] it soon became one of the most successful ensemble learners.

It has been demonstrated repeatedly that Random Forest performs excellent in compa-
rison to other machine learning algorithms. Significant improvements in classification
accuracy result from growing an ensemble of trees [Breiman 2001b] which are then ag-
gregated to one forest.

This chapter explains an algorithm to train a forest and discusses some extensions.
Also the possibilities to use a Random Forest for regression and unsupervised learning
are explained. Random Forests are known for being very efficient even on very large
data sets and so-called micro data sets, which are defined by having often more variables
than observations. It is a powerful and flexible method to deal with various classification
problems.

2.1 A Decision Tree

The basic elements of a Random Forest are decision trees.

A decision tree partitions the feature variable space into a set of rectangles with edges
parallel to the axes. In each of these rectangles the response value is predicted. Each
rectangle contains a certain subset of the data set, which is split according to the par-
titioning of the variable-space. The rectangles are built step by step. In each step a
rectangle can be again divided into multiple rectangles. This simple concept comes with
great power. It is essential to declare how the rectangles are built, how the data is split
and how the splitting process is stopped. A commonly used method to grow a tree
is the CART-algorithm (Classification and Regression Trees), which was introduced by



Breiman, Friedman et al. in 1984. Another algorithm would be C4.5. There are many
other algorithms to grow a single decision tree. The difference between the algorithms
is mostly the use of another measure of impurity to split the data in each step.

The goal of growing a decision tree is to predict the class of a target variable based on
several input feature variables. A decision tree consists of branches, which represent
a conjunction of features, and leaves, which represent the rectangles, where the class
labels are predicted. The internal nodes (leaves are end-nodes) are labelled with an
input variable and represent a split. At each node the data set is split into branches
which will lead the way to the next node. There are many algorithms which use different
metrics to measure which variable is ’the best’ to split the data. 'Best’ means that the
data in the following nodes are separated in the purest way possible. So in general the
used metric measures heterogeneity or purity of the current and the following nodes and
compares them. This corresponds with the image that a ’good’ tree will be one with
observations of only one single class in each end-node.

A decision tree represents the decisions that are made to classify the data in a very easily
interpretable way. The top-down principle leads to an hierarchical order of the decisions.
After each decision there comes another one and so on. For the classification only the
raw data is used. So the entire information, such as priori probabilities, the number of
classes, etc., comes from the data.

The biggest advantage of the recursive decision tree is its interpretability. A single tree
can fully describe the partitioning of the variable feature space, and it mirrors human
decision making very closely.



Single decision tree to classify olive oils
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Figure 2.1: A single decision tree to classify the origin area of olive oil in Italy.

2.1.1 How to Grow a Binary Tree

A Dbinary decision tree is characterized by splitting each node into only two following
children nodes. Only binary partitions (binary splits) are considered. First the whole
space is split into two regions. If necessary, then both regions, or only one of them
is again split into two more regions. This process is continued until a stopping rule
is met. The result of this process is a partition of the feature variable space into m
regions Ry,...,Ry. In each resulting region the remaining data points are used to
predict the response value. In each region the classification model predicts the class of
the observations. The splitting process starts at the root of the tree, which contains
the whole data set. Those observations which satisfy the condition at the node are
assigned to the according branches. The end-nodes (leaves) correspond to the final
regions Ry, ..., Ry. Usually the data points in a region are classified according to the
majority class of all points. So there may be observations with a different class but also

those are labelled as the majority class.
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Figure 2.2: Let n be the number of nodes (incl. end-nodes) in the tree. Then S;,1 €
{1,...n} will be the [-th node. Z; is the set of data points that are currently in the node
S; and about to be split into the following right node SZR and the following left node SlL,
which represent two more nodes in the tree (the (21 + 1)-th and the (2! + 2)-th node).
ZZR and ZZL are disjunct sets, which contain the data points to the corresponding nodes.
So it holds that Zf'U ZF = Z; and Z*n ZF = {0},vl € {1,...n}.
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Figure 2.3: For a two-dimensional feature variable space the regions are rectangles, which
have edges parallel to the variable axes. Classifying the iris data set in R using only two
variables, namely 'petal length’ and 'petal width’ leads to a partitioning into five regions.
In every region the class will be predicted as the majority class of all observations in
this region. There are four data points which will be misclassified by the tree. Unlike
the class setosa the other two classes virginica and versicolor seem to be not that easily
separable.

Since the probably most crucial part of a decision tree is to perform the splits in each step,
a measure is taken into consideration to make sure that decisions are made consistently
and in an optimal way. This measure is commonly a measure of impurity.

Suppose the response variable Y can be assigned to K classes: 1,2,..., K. The criteria
for splitting nodes is a measure @ of impurity.

Such a measure of heterogeneity or im/purity is a function @y of the relative frequencies
Dt,1,---, Ptk in the node ¢.

Q::=[0,1] — R
(pt,lapt72) o 7pt,K) - R




This function is characterized by the following properties:
e it is symmetric within the classes
e it attains its maximum at (%, %, e %)
e it attains its minimum at (1,0,...,0),(0,1,...,0),...,(0,...,0,1)

The relative frequencies for each class k € {1,..., K} are given by:

t, |Zt| ’

where I() is the indicator function.

The following measures of impurity are the most commonly used:
e Misclassification rate
e Gini-Index
e Cross-entropy (Deviance)

All three criteria are quite similar. However the differentiability of cross-entropy and the
Gini-index is more amenable to numerical optimisation. In addition they are both more
sensitive to changes in the node probabilities. Therefore the Gini-index or cross-entropy
should be used to find the optimal split.

In a node Sj, which represents the Region R; = Z; with n; = |Z;| observations the
proportion of class k observations is given by:

R 1
b= — Y I(yi=k).
lxiERl

So Py repesents the relative frequency of class k in node S;. The observations in the
node S; are finally assigned to the majority class k(S;) = arg maxy, p  in the node S;.

The algorithms that are used to grow a tree often differ only in the used measure of
impurity. The CART-algorithm for example uses the Gini-index to perform the splits.
The Gini-index measures how often a randomly chosen element from the set would be
incorrectly labelled if it was randomly labelled according to the distribution of labels in
the underlying subset. The Gini-impurity can be computed by summing the probabilities
Dm,i of an observation with class ¢ being chosen times the probability 1—p,, ; of a mistake
in categorizing that observation. It reaches its minimum (zero) when all cases in the
node are assigned to one single class.

Suppose there are K classes let k € {1,2,..., K} and py,  be the proportion of obser-
vations in the node m that are labelled as class k.




The Gini-impurity G,, in node m can then be calculated as:

K K
G =Y Pmp(l = D) =1 = Do =D DmiDmc
k=1 k=1 k#c

The Cross-entropy can be calculated as:

K

= Dk 108(Drm i)

k=1

The Gini-index is then given as the reduction of the node impurity due to the split. Let
s be the split point for node m which results in the two children nodes mjy and mpg
with the corresponding Gini-impurities G(py,, ) and G(Ppy). The decrease in the node
impurity achieved by the split point s can be calculated as

G(ﬁm) - (GmL + GmR)

The Gini-index G,,(s) in node m for a split point s is then given by:

Gm(s) = GmL + GmR

The optimal split point can be found by minimizing the Gini-index.

Growing a tree using the CART-algorithm the splits are performed in nodes where
the Gini-index reaches its minimum. One big advantage of this approach is that both
categorical and continuous feature variables can be considered. To find the best split the
Gini-index is calculated for all possible points for each feature variable. The variables
should therefore be ordered prior to starting the learning algorithm. Then the best
split point for each feature variable is determined by comparing the Gini-index. After
that only the Gini-indices of the best candidate of each variable are again compared to
obtain the final optimal split. So at each node the split is performed (among all other
possible splits) such that the resulting children nodes give the greatest increase of purity.
Looking at all the possible candidates might seem quite computationally expensive. For
a categorical variable with C' categories there are 26~ — 1 possible split combinations.
For an ordinal or a continuous variable with K different values, there are K — 1 possible
candidates. The candidates of a continuous variable are represented by the actual values
that were observed. There is no need to take a look at other non-realised values, since
the binary split decides whether the current observation has a value of variable x lower
or greater than the split candidate. After the optimal candidate according to the Gini-
index has been found, the split is performed by assigning the observations of the current
node to the two children nodes. Since the Gini-index attains its (theoretical) minimum
when all cases in the node are assigned to only one single class, the resulting nodes after



the split are as pure as possible. This splitting-procedure is repeated until all regions,
with pure nodes, have a Gini-index of zero. The resulting tree is therefore grown to
its full length. Sometimes this means that all observations are the only data point in
their region. The end-nodes contain only a single observation. If the data itself is stable
enough, such that the observations in the nodes are almost strictly distinguishable and
separable already in the early root-nodes, the tree won’t be that large. If the data is
very noisy, then splitting the data until the nodes are absolutely pure (with respect to
the Gini-index for example) may, however, lead to a very large tree and therefore to a
very unstable and weak learner, since even the smallest changes in the data would result
in a completely different tree. This not very desirable behaviour can be adjusted by
interrupting the procedure of node-splitting by applying a stopping rule. The resulting
tree is then a pruned tree.

Some advantages of a decision tree (grown with the CART-algorithm):

e no variable selection or reduction (elimination) needed

simple to understand and interpret

invariant against monotonic transformations (less data preparation)

discrete and continuous variables, numerical and categorical data (no need for
dummy variables)

mirrors human decision making closely

2.1.2 Pruning

One major problem with decision trees is the danger of overfitting. Since a large tree
might overfit the data but a small tree might not capture an important relation or
structure within the data, one can try to optimally prune the tree to find some trade-off.

By default a tree is grown to its full length, so that every end-node contains only perfectly
separated classes with maybe only one observation. Every end-node has the maximum
purity (G,, = 0). Since these often very large trees are unstable one can apply a stopping
rule to the splitting process. This is defined as pruning. Pruning the tree can be used
to avoid the danger of overfitting to an extent.

Not letting the tree grow to its full length means that some sort of stopping rule is
applied to the procedure of splitting. This can be a certain number of end-nodes or a
total number of nodes (internal- and end-nodes) that are allowed in a tree, or a limit
of purity that has to be reached in each end-node. If the tree is pruned at a certain
number of nodes, the end-nodes might not be pure anymore. So the end-nodes contain
observations of two or more classes. Pruning the tree too sharply (setting the allowed
number of nodes too small) can effect that important relations within the data cannot be
detected anymore, because the tree is simply too short. To find the right parameter (the
number of nodes) one has to try different numbers of nodes and compare the resulting
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trees. This, however, can be quite computationally expensive and the results are highly
dependent on the training and test data sets.

A tree can also be pruned by choosing a minimum size of the end-nodes. In a full grown
tree the end-nodes might only contain a single data point, so its minimum size is 1.
Choosing a larger number as minimum size, for example 5, means that if there are 5 (or
less) observations in a node (after splitting) this node is not split any further. This rule
also results in smaller trees.

The argument maznodes in the R-function randomForest (from the package randomFo-
rest) represents the maximum number of end-nodes, which can be used to prune the tree.
The R-function randomForest (from the package randomForest) also has an argument
nodesize which indicates the minimum size of an end-node (default: nodesize=1).

Another possibility to prune a tree is to stop its growing if the impurity in a node m
is at least not less than a certain limit C'. So if @), < C then the node m won’t be
split again, hence, represents an end-node. However, it may be that the next split would
result in much purer nodes, resulting in a significant decrease of the impurity, so to stop
at a certain impurity limit is also not the ideal way of pruning.

A fourth way to prune a tree is cost-complexity pruning. This method tries to find a
trade-off between the size and the performance of a tree. First a full tree Ty is grown,
which is then pruned according to a criterion, which penalizes the complexity (the size)
of the tree. Removing inner nodes from the tree T yields a ’sub’-tree T" with T' < Tp.

Let @, be the impurity measure in the end-node m for the tree T', where |T| is the
number of end-nodes in this tree 7. The measure Q(7T') for the entire tree T is the sum
of impurity measures in the end-nodes:

7|

QT) = Qm.
m=1

The complexity criterion is then given by:

7|

ca(T) = Qum(T) + alT|.
m=1

The tuning parameter o controls the trade-off between the size of the tree and the
goodness-of-fit. A bigger « results in a smaller tree, whereas @ = 0 results in the
unpruned fully grown tree T7y. As « approaches infinity the optimal tree will be a
tree of size 1, a tree with only one single root-node. The optimal a can be found via
cross-validation. Further it can be shown that for every « there exists a single smallest
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'sub’-tree which minimizes c,. This is however not trivial. This smallest (optimal) tree
T'(«)*, which minimizes ¢, (for a given «) is defined by the following two conditions:

1. ¢o(T()*) = minp<7, (1)
2. If co(T) = co(T(a)*) = T(a)* < Tt

The second condition claims that if another subtree reaches the same minimal value for
the complexity criterion (for the same «) it has to be a larger tree than the smallest tree.
Therefore (by definition) and because there is always a finite number of subtrees for a
fully grown tree, if this smallest tree exists it must be unique. Due to the finite number
of subtrees it can be claimed that the tree T'(«)* which minimizes ¢, always exists.
Breiman showed [Breiman 2001b] that a nested sequence of subtrees exists such that
each tree minimizes the complexity criteria for a certain range of a. The algorithm to
find the smallest optimal tree among all values for «, the so called weakest-leak-cutting
method, is based on this finding. The weakest-leak-cutting method results in a nested
sequence of trees which are optimal for a distinct range of «.. Using a cross-validation it
can be evaluated which of those a-optimal trees performs best for the current situation.

Pruning the tree leads to a less overfitting decision tree, nevertheless is also a pruned
tree not the strongest learner to perform a classification. Another major problem with
decision trees is their high variance. A small change in the data often results in a
completely different tree. This also makes the interpretation somehow unstable. The
reason for this instability is the hierarchical structure of the tree. An error on top of the
tree can hardly be corrected in the following nodes. Bagging can dramatically reduce
the variance of unstable procedures, this leads to the idea of forests.

2.2 The Randomness or From One Tree to a Forest

The instability of a single decision tree combined with the unhandy choice of how to
prune the tree and the danger of overfitting, which occurs too often, lead to the idea of
combining multiple trees to an ensemble of trees, called forest. The randomness in the
Random Forest comes from bagging and the random selection of feature variables.

The collection of multiple decision trees constructed with bagging and random selection
of variables creates a stronger classifier, which helps to avoid overfitting.

2.2.1 Bagging

Bagging (bootstrap aggregating) was properly developed by Breiman in 1996 [Breiman
1996).

Bagging combines multiple classifiers to an ensemble whose aggregation represents a
stronger classifier. Let’s assume there is a classifier ¢(D), which is used to classify
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the data set D. Now B bootstrap samples D1, Do, ..., Dp are randomly taken with
replacement from the original data set. Usually the size (n) of each bootstrap sample
is the same as the size of the original data set. It is also possible to produce smaller
bootstrap samples but nevertheless all bootstrap samples have to have the same size.
The classifier is then trained on each bootstrap sample. The ensemble of all classifiers
d1(D1), 2(D2),...,op(Dp) is aggregated to represent a stronger single classifier ®.

Bagging algorithm: Suppose there are going to be B bootstrap samples, K classes
and the number of observations in the original data set is n,

e All B samples D1, Ds, ... Dp each with size n, are sampled with replacement from
the whole data set.

e Each new sample is then used for training the classifier.

e Finally the trained models ¢1, ¢o,...,¢p are combined to a single classification
model .

To predict then the class of a single observation X; the majority vote of all classifiers in
the ensemble is considered to be the predicted class.

B
(X;) arg, mex b; (5(Xi) = cx)

whereby

ck - .. label of class k, ke{l,...,K}

This algorithm is used to build the Random Forest.

2.2.2 Definition

A Random Forest is defined as a classifier, consisting of multiple single decision trees.
These trees are grown on randomly sampled data sets and with a random selection of
feature variables at each node. The Random Forest decides (according to the input data)
which class to assign by majority vote.

Random Forest uses
e Bagging
e Random Variable Selection

The independence of the trees within the forest is very important for the performance
of the forest. Since it would be completely senseless to grow the same tree multiple
times, the approach of having different data sets for each tree is crucial. The more trees

13



in a forest the better the performance of the classification, but the possibility of two
trees being too similar increases with the number of trees. To avoid that the correlation
between trees increases with the number of trees, only a randomly selected subset of
variables will be available to perform the split at each node.

Suppose there are p variables. The number of randomly selected variables at each node
miry < p is set before the forest is built and stays the same for every node of every
tree in the forest. At each node only mtry variables are available to perform the best
split. Therefore, the probability of two trees being identical is almost zero not only
because they were grown on different data sets but also because the split points are
set on different variables. It seems that this parameter particularly is very important
regarding the performance of the forest (see Section 3.1). The importance, better the
effect and influence of this parameter seem, however, to depend on the current situation,
the structure and general behaviour of the data. The greater the number of variables in
each node available, the more similar the trees will get, the more the correlation between
the trees could increase.

The ensemble of multiple trees lets the prediction ability increase, since the misclassi-
fication of an observation in one single tree becomes negligible. Breiman showed that
Random Forests do not overfit [Breiman 2001b]. The overall error rate attains a limit
as more trees are added to the forest. One disadvantage of too many trees is that it
might get confusing, not that simple to interpret anymore. In the end it might be like
a ’black box’ where no one knows what’s going on inside. But the great advantage of
a Random Forest is that it works also on huge data sets very efficiently and takes less
computing time than other classification methods. Another really nice property is that
one can extract a measure of variable importance, which makes the Random Forest a
little bit more interpretable again.

The Random Forest also computes an unbiased estimator for the overall error rate, which
indicates the probability of an individual observation to be misclassified.

A Random Forest is built by growing multiple trees on bootstrap samples using only
a randomly chosen subset of variables at each node to perform the best split. The
algorithm is given by:

Random Forest Algorithm: Suppose there are going to be B trees in the forest,
which have to classify the data set D of size n into K classes with p feature variables.

1. e Start with b =1 (first tree).

e Take a random sample with replacement of size n from the data set D, this
is the bootstrap sample Dj.

e nrop is the number of different observations in the bootstrap sample Dy
(nrop =~ 2n), those cases are called the ’in-of-bag’ data.

e The remaining noop = n — nyop observations form the ’out-of-bag’ (OOB)
data.
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2. e Use the bootstrap sample Dy to grow an unpruned tree Tj.

e Hereby use at each node only a random selection of the p variables (for a
classification: /p, for regression: %) L

3. Only with the OOB data:

wid

e Compute the impurity of the tree T using the OOB data

T3]

M, =Y Qum(Th),
m=1

where |Tp| is the number of nodes in the tree Tj,.

e Permute for each variable j = 1,...,p the values z; and compute the resulting
tree impurity, denoted as II,;. Define the measure of variable importance 2
as 5bj = Hbj — Hb.

e Compute the misclassification rate mcry, based on the OOB data,

1 Noob

> H{Ty(x) = errus},
=1

merp =1— ——
’noob|

where crpy g is the true class label.

4. Repeat Step (1)-(3) for b= 2,..., B and compute for each variable j the measure
d1,,---,0p; for all trees and all variables.

5. Compute the mean of all misclassification rates M CRopoB

B
1
MCRooB = B Z mery.
b=1
6. Compute the overall variable importance score for the j-th variable:
1 B
0; = B Z O,
b=1

7. Assign each observation to that class, which is predicted by the majority of the
trees.

!Those values are recommended by Breiman [Breiman 2001a]. He had experienced that using those
lead to nearly optimal results.

2For a classification there are 4 variable importance measures [Breiman 2001a] one of which is,
however, not based on the OOB data. This measure is explained more detailed in Section 2.2.4.

15



The method of classifying an observation according to the majority vote can be mani-
pulated to another rule if necessary, see Section 3.2.

By definition a Random Forest contains only unpruned trees, since bagging and random
variable selection are considered to be enough to avoid overfitting while improving the
strength of the classification. However, also the trees in a forest can be pruned if ne-
cessary. Either by bounding the total number of nodes or end-nodes in each tree (this
has to be the same for every tree within the forest), or by lower bounding the minimum
number of observations allowed in a node.

Now some parts of the algorithm are explained and described in greater detail.

2.2.3 Out-Of-Bag Data

A nice feature of Random Forest is that within the forest there is some kind of cross-
validation possible while training the data to estimate the overall error rate, without
actually running a CV after training the forest. Since each tree is based on a different
sample, it can easily be determined which observations of the whole data set are not
in a specific single one. These observations are called out-of-bag data (OOB). Around
37% of the data are OOB data (the data in the specific sample is called in-of-bag data
(IOB)). With those OOB data one can easily validate many properties of the forest. For
example, an estimator of the quality for the forest can be calculated with the OOB data.

Misclassification rate

With the OOB data an unbiased estimator for the misclassification rate [mecr] can be
calculated within the forest. So basically another computation like a cross-validation to
estimate the general misclassification rate of the forest is redundant.

Since the class labels of the OOB data are known, one can easily check if the tree
which the OOB data belongs to, classifies the OOB data correctly. For each tree a
misclassification rate can be computed by simply counting the cases where an observation
of the OOB data was misclassified divided by the number of observations in the OOB
data set.

The misclassification rate of the forest is then the mean of the misclassification rates of
all trees. Since it is the probability of an individual observation to be misclassified, it
can be seen as a measure of quality of the forest.

For each tree Ty, b = 1,..., B the misclassification rate mcry is calculated using the
OOB cases.
1 Noob
mery = 1

B |noob‘

Z[{Tb({ﬂi) :CTRUE}, x; € OOB(Tb) b=1,...,B
i=1

where I{T,(x;) = crrugr} is the event that the predicted class Tp(x;) of an OOB obser-
vation z; is the true class crrup € {1,...,K}.
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The overall misclassification rate for the forest is given by:

1 B
MCr forest, DOB = E Z mcery
b=1

2.2.4 Variable Importance

Maybe the most important additional feature of Random Forest is the variable impor-
tance measure. There are a number of statistical modelling approaches and machine
learning algorithms, which perform all fine. But using Random Forest is especially then
attractive for use in classification problems when the goal is not only to produce an
accurate classifier but also to provide insight regarding the discriminative ability of indi-
vidual feature variables. So if it is important to know something about the dependency
or correlation within a data set, it is advisable to use Random Forest. The variable
importance measure is known for reflecting the strength of the relationship between
a feature variable and the respond variable quite well. Archer and Kimes showed in
their simulations that, as the strength of the relationship between the true predictor
and the dichotomous response increased, the proportion of times the true predictor had
the largest variable importance value increased [Archer et al. 2008]. The true predic-
tor was commonly ranked among those covariates with the highest variable importance.
Furthermore, other than most algorithms Random Forest doesn’t assume independence
among the feature variables. Since the importance of a feature variable may be due to
its possibly very complex interaction with other feature variables, defining the variable
importance is a difficult concept.

The Random Forest algorithm implemented in R (the R-function randomForest from
the package randomForest) computes two measures of variable importance [Liaw et al.
2002]. The first one is based on the Gini-index. At each split the decrease in the Gini-
node-impurity is calculated for all feature variables j = 1,...,p. The average of all
decreases in the Gini-impurity in the forest where variable j was investigated yields the
Gini-variable-importance measure ©; for the forest for this variable. In each node the
Gini-index using the Gini-impurity measure is calculated for every variable to find the
best split. Since the split will only be performed at the best point for each variable,
there is only one Gini-index measure for each variable to consider.

Let t, be the number of nodes in one tree T3, the decrease in Gini-index v;j, for the
feature variable j in the tree T is the sum of all individual node measures.

ty
v]7b = : : vj7b7m
m=1

The decrease in Gini-index for node my, is calculated as
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Vjbm = G(mp) — (G(mpp) + G(mep)),

where G(my) is the Gini-impurity measured in the node m; and G(myp ) and G(mpgy)
are the Gini-impurities measured for the children nodes mr; and mpgy where variable
j performed the split (not necessarily the best split, but the best split regarding the
variable whose importance is measured).

Finally the variable importance for the feature variable j is given by:

B

1
@j = E Z Uj,ln

b=1

where B is the number of trees in the forest.

The second measure of variable importance calculates the variable importance as the
mean decrease in accuracy using the OOB observations. The variable importance of a
single tree is calculated as following:

Let B be the number of trees in the forest (number of bootstrap samples D1, Do, ..., Dp)
and j = 1, ..., p the feature variables.

1. Start with b = 1.
2. Identify the OOB observations Dy oo = D \ Dj.

3. Predict the class for the OOB observations and sum the number of times the tree
T, predicts the correct class.

accp,j = 7|Db’é05\ > XieDyoon L {T6(Xi) = crruE}
e Start with j = 1.

e Then permute the values of the feature variables z; for all observations X; =
((l)l, NN T :z:p) S Db,OOB-

e Use T} again to predict the classes for the OOB observations (in Dy oon)
using the permuted x; values. Then sum the number of times the tree T
predicts the correct class. Compute the accuracy accy, ; of the tree

Torn i = 1 - V) —
4.5 = Dy 005 ZXiEDb,OOB I {Tb(XZ) - CTRUE}’

where X; = (z1, ... ,&j,...,2p)is an OOB observation where the j-th variable
value was randomly permuted.

e Finally subtract the number of correct votes in the permuted OOB data from
the number of correct votes in the unchanged OOB data.

Ub,j = ACChj — ACCyj
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e Repeat for j = 2,...,p and compute v, ; for all j.
4. Repeat step (1)-(3) for b=2,...,D.

The variable importance measure 9; for the feature variable j is then the average diffe-
rence in accuracy of the unchanged OOB observations versus the permuted OOB obser-
vations over the B trees.

B

1
17]' = E vad‘

b=1

The smaller the variable importance the less the ability of the variable to split the data
in pure groups, in terms of the Gini-index. In terms of accuracy the interpretation is
similar. The larger the variable importance the clearer (stricter) is the split according
to this variable.

A larger variable importance indicates that the corresponding feature variable is impor-
tant relative to the other variables for the classification. Therefore, rather than esti-
mating a specific relationship between the response variable and the feature variables
in data modelling, the variable importance measures are representing robust statistics
pertaining to a variable’s importance in the Random Forest’s emulation of the natural
mechanism behind the data.

The larger the number of trees in a forest, the more stable are the estimates of variable
importance. However, even though the variable importance measures may vary from
tree to tree, the ranking of the importance is already quite stable.

2.3 Further Use of Random Forests

Random Forests are not only used as classifiers, but also as regression models and for
unsupervised learning.

2.3.1 Regression

What makes Random Forest also popular is that it can be used to train a regression
model. The process of growing each tree within the forest stays more or less the same
as when doing a classification. The method differs, however, in predicting the response
variable, which is no longer a class label, but a numerical value. Therefore, it has to
use a different splitting rule, since measures of impurity like the Gini-index (see Section
2.1.1) are useless.

Observations (Xj;,Y;), where X; = (x1,...,z;) is the vector of the values for the feature
variables and Y; is the response variable, are looked at. The Random Forest is now
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trained to predict the values of Y; as a function of the X; (Y; = f(X;)). There is no need
to make assumptions about the form of the underlying relationship between the feature
variables and the response variable. This is a great advantage of Random Forest, which
makes it very useful for problems with non-linearly associated variables.

A regression tree is grown by starting with the full data set, which contains all the
observations. The split is performed where the partitioned rectangles are purest possible.
For a regression, pure means that the different values of the response should have a small
variance. The mean squared error is defined as measure of purity. So in each node ¢ the
mean squared error can be computed as following:

QtzL > i—w)?,

’Rt‘ (X:,Y:)ER:

where R; denotes the corresponding region of node ¢ which contains |R;| observations.
Since the minimum of a mean squared error is the mean value, y; represents the mean
value of all response values in the corresponding region R; of node t.

(X4, Yi)ER:

The split is performed at the point s which maximizes the reduction in the mean squared
error. This is equivalent to minimizing the mean squared error in the children nodes ¢,
and tg of the current node ¢.

mSaXQt —(Qr, + Q) & msin Qt; + Qs
where @ is the mean squared error in the node t and ()¢, and ()¢, are the mean squared
errors of the children nodes ¢;, and tg.

The building process of the tree is the same as for a classification, the only thing left to
define is how a response is predicted. Looking at the measure of purity which attains
its minimum at the mean value, the prediction is simply defined as the mean value of
all response values in the corresponding end-node. So y; is the predicted value of the
response for all observations X; in the end-node t.

The mean squared error of the whole tree T can then be computed as:

|7

MSE =73 Q,
t=1

where |T'| denotes the number of end-nodes of the tree T'.
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Knowing how to grow a single tree a Random Forest can be built. With a bootstrap
sample for each tree and only a subset of feature variables available at each node to
perform the split, a forest can be used to perform a more stable and better regression.

Let B be the number of trees in the forest, then the predicted response value for each
observations X is given by:

1 B
yi:Bbzlybv

where g is the response value for X; predicted by the b-th tree Tj.

As an unbiased error estimate the OOB observations are again used to compute the mean
squared error. For every tree Tj in the forest with B trees there are observations which
are not contained in the bootstrap sample of the tree T,. Those OOB observations
Xi00B() for the b-th tree are predicted by the corresponding tree and the predicted
response value is used to calculate the mean squared error of the whole forest.

Let X; oop(y) be an OOB observation of tree Tj. Then it could of course also be an OOB
observation for the tree Ty. Each tree gives a prediction for Y;, y;» = Thp(X; 00B()) and
Yid = Ta(X;00B(4))- One can then easily derive a prediction of all OOB observations
by simply averaging the predictions of those trees where the observation belonged to
the OOB data. Let n; oop be the number of times the observation X; was an OOB
observation. Then the OOB prediction y; oop for X; can be made.

B

: > I{Xi008®) € Dboos}Ts(Xi008B()),
i, 00B b—1

Yi,00B =

where X; is an OOB observation (X; € D\ Dy, = Dy oop) of tree Tj, which is denoted
by the indicator I{Xi,OOB(b) S Db7OOB}-

Since the true value of Y; is known the mean squared error of the whole forest based on
the OOB data is given by:

B
1
MSEoop = 3 Z (Y; — yioon)”-
b=1

The OOB observations are also used to compute a variable importance measure. Unlike
for classification, there is only one variable importance measure, which is again based
on the the mean squared error. A supposedly important variable is characterized by
causing a great decrease in the mean squared error. If the values of the feature variables
are then randomly permuted, the decrease is supposed to be less large. A variable
is more important if the difference between the original mean squared error and the
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mean squared error derived from the observations with randomly permuted values for
the regarding feature variable is large. The mean squared error of the original forest
was already computed only the mean squared error of the permuted forest has to be
calculated. To compute the variable importance for each of the p variables the following
is done:

1. Start with j = 1:
e Identify all OOB observations for each tree Ty, b=1,... B.
e Permute the value z; of the j-th variable for the OOB observation X; oop@)-
e Predict the response variable §; 008 for the permuted OOB observations
Xi,00B(b).,j>
Ui,00B,j = m S Tb(Xi,OOB(b),j)-

e Then calculate the mean squared error for the forest based on the permuted
observations,

P B ~
MSEooB,; = 5 Yp1 (Yi — fi008,4)".

e The variable importance v; for the j-th feature variable is the given by the
difference between the original mean squared error and the one derived using
the permuted OOB data.

v; = }(MSEOOB — MSEOOBJ) ‘

2. Repeat for j = 2,...,p and compute the variable importance v; for all feature
variables.

2.3.2 Unsupervised Learning

Since a Random Forest is an ensemble of classification and regression trees, it is not
immediately clear how it can be used for unsupervised learning. The trick is to assign
the whole data to only one class and construct a synthetic data which is assigned to
another class. Then the Random Forest tries to classify the combined data set.

The synthetic data can be simulated in two ways:

e Sample uniformly from the hypercube containing the original data by sampling
uniformly within the range of each variable.

e Sample from the product of the marginal distributions of the variables by inde-
pendent bootstrap of each variable separately.

An unsupervised forest will compute the proximity matrix, which is the main information
gain. The proximity matrix measures if real data points ended up frequently in the
same end-node of a tree. The (i, j)-th element of this proximity matrix is the fraction of

22



trees in which the observations ¢ and j fall into the same end-node. Intuitively similar
observations should end up in the same end-nodes more often than dissimilar ones. Hence
they’re assumed to be assigned to the same class. So although the forest assigns the data
set to the same class, the actual unsupervised classification is done by investigating the
end-nodes, hence the proximity matrix. Each end-node could represent a different class
(if it is only one tree). The proximity matrix can be considered as similarity measure
and clustering using this measure can be used to divide the original data points into
groups by further visual exploration. Using the proximities to cluster the data with any
method of choice seems to provide a reasonable outcome. Also using the proximities
to do metric scaling of the data results in interesting and useful pictures, as Breiman
[Breiman 2001a] claimed. The estimated OOB error rate (see 5.1.2) can be used as an
indicator of dependency within the data. If there are strong dependencies between the
feature variables and the class labels (as response variable) the error rate will be low.
Then Random Forests can be used to learn something about those dependencies and the
structure of the data by looking at the proximities.

2.4 Summary Random Forest

Since the Random Forest algorithm falls into the embarrassingly parallel category, one
can run several Random Forests on different machines and then aggregate the votes to
get the final results. This makes Random Forest so popular for Big Data analyses.

Random Forest does not require reduction of the feature variable space prior to clas-
sification and is very efficient at selecting from large numbers of feature variables. It
generates an unbiased estimate of the generalisation error internally as the forest is
trained. Random Forest is a very user-friendly method that can deal with unbalanced
multiple-class classification as well as small sample data without preprocessing procedu-
res. It is relatively robust to outliers and noisy data and gives a good deal of additional
information about the data besides an accurate prediction. The variable importance
measure may be the greatest additional feature of Random Forests. Most important of
all, Random Forest does not overfit [Breiman 2001b].
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Chapter 3

The Magic Numbers

The Random Forest algorithm, as it is implemented in the free software R, is now further
explained and discussed.

As for any algorithm the right setting of parameters of a Random Forest for the current
classification problem is important. The most important parameters are the number
of trees in a forest (ntree) and the number of variables available at each node (mtry).
Those parameters, however, of the Random Forest don’t seem to be extremely crucial
regarding the performance.

The R-package randomForest contains a function called randomForest which has several
parameters.

library(randomForest)
randomForest (

formula, # class_label ~ feature_variables,

data, # data set

mtry, # number of variables available at each node

ntree, # number of trees in the forest

classwt, # weighted misclassification rate

votes, # percentage of tree votes that are needed to
assign a certain class (default majority vote)

maxnode, # maximum number of nodes in each tree

nodesize, # minimum number of observations in a node

na.action, # function to handle missing values

)
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3.1 The Parameters

There are many different recommendations on how to set and how to tune the parameters
of a Random Forest. The main parameter, which this thesis follows up, are the size of
the forest and the number of variables which are provided at each node.

The size of the forest indicates the number of trees (ntree) in the forest. In R the default
value is 500. Regarding the misclassification error [mcr| and the estimated error rate
[oob] based on the out-of-bag data, it seems that the number of trees has no crucial
impact on the performance. As Breiman claims it does not hurt to put a large number
of trees in the forest since the overall error rate attains a limit as more trees are added
[Breiman 2001a]. Especially if there are many variables a larger number would make
the variable importance more stable. The main goal of randomness in the forest is to
create many different trees to avoid overfitting. Random Forest does not overfit as more
trees are added but produces a limiting value of the overall error [Breiman 2001b]. The
size of the forest should relate to the size of the data set. It should be set with respect
to the number of observations and the number of variables. Since every tree is built
based on a bootstrap sample the number of trees shouldn’t be too small in relation to
the number of observations to make sure that every observation will get classified at
least a few times. The number of trees necessary for a good performance increases as
the number of feature variables increases. For stable auxiliary information like variable
importance and proximities 1000 and more trees should be built [Breiman 2001a].

Typical for a classification is that there are only a few things that can be investigated
analytically when it comes to real data. Many things, like the optimal parameters, the
construction of training and test data sets are investigated by simulations and repeated
evaluation on different forests. In this thesis the free software R was used to investigate
Random Forests. As mentioned before the R-package randomForest [Liaw et al. 2015]
provides a function called randomForest, whose arguments and parameters and their
theoretical effects are discussed in this chapter.

Regarding the number of variables which will be provided at each node in every tree in
the forest there are as well many opinions about how to chose this parameter (mtry).
According to Breiman (2001b) this parameter has no effect on the performance. Svetnik
et al. (2003) mentioned that the performance of Random Forest doesn’t change much
over a wide range of values for mtry. The only exceptions are values near the extremes
mtry = p and mtry = 1. mtry = 1 would mean that the split in each node is set
randomly and only the exact point on the single randomly chosen variable is set in an
optimal way. The default values of mtry and ntree were chosen based on empirical
experiments and as Breiman showed lead very often to the best results [Breiman 2001b].
It seems, however, that the optimal parameter value depends on the shape and the
content of the data, but in most cases this parameter has at least some effect on the
performance of the Random Forest. Providing too less variables (eg 1 or 2) at each node
the error rates and the predictive ability of a forest will perform very poorly. It may
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also be recommended to tune the number of trees (ntree) and the number of available
feature variables (mtry) simultaneously. If there are only a few trees with a very small
subset of available variables this might lead to a bad performance. A value of mtry = p
(so at an extreme) is also not recommended because this would eliminate the random
variable selection entirely.

For a classification Breiman and Cutler (2017) recommend to set the number of variables
which will be provided at each node to the square root of the number of variables
(mtry = /p), for a regression it should be set to two third of the number overall
available (mtry = %p) Furthermore Breiman suggested trying the default, half and
twice the default and pick then the best, see [Liaw et al. 2002]. However, if the number
of feature variables is very high and the number of variables that are expected to be
important is very low, using a larger mtry may give better results. Since the two
ingredients involved in the overall error (the performance) of the forest are the strength
of the trees and the correlation between them and since the correlation increases with
decreasing the number of variables available at each node, miry should not be much
larger than the default value (,/p). Noisy data on the other hand will require a higher
mtry as the recommended ,/p. Therefore, this parameter should be tuned for every
classification problem individually.

There is extensive discussion in the literature about the influence of mtry, which is ad-
ditionally inconsistent throughout different methods of evaluation. A good performance
in terms of the misclassification rate might be much better in terms of accuracy with
another value for mtry. Cutler et al. (2007), however, reported that different values of
miry did not affect the correct classification rates of their model and that other perfor-
mance metrics (accuracy, sensitivity, and ROC, AUC) were stable under different values
of mtry. On the other hand, Strobl et al. (2008) reported that mtry had a strong influ-
ence on predictor variable importance estimates. The default values in the R-function
represent the recommendation of Breiman. Those are based on several empirical studies,
which has shown, that if there’s an optimal mtry it is around ,/p for classification and
around %p for regression.

For multi-class data sets with a large number of variables and comparatively small
number of observations, one can see that a compromise between mtry = |/p and mtry =
%p will lead to a better performance (see Section 6.5).

Generally it depends on the data and the number of classes, in particular if it is a binary
or a multiple-class classification. Try out different values for mtry and look at at least
two different error rates and the predictive ability. The final decision for the parameters
should be made regarding the further steps and what the Random Forest is supposed to
do in the future.

Due to the conflicting evidence reported in the literature and the absence of a reasonable
recommendation for the parameter mtry it should be tuned in any case.

To choose the ’optimal’ parameters for the specific classification problem, run multiple
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Random Forests on different training and test data sets and evaluate them. Choose
then the parameters where the forest performs best for the required purpose. There are
multiple evaluation methods (see Section 5), it depends, however, on the specific purpose
of the classification which error rate (or predictive ability) or combination of error rates
should be considered as the decision-maker.

The olives data set from the R-package classifly consists of the percentage composition of
8 fatty acids (palmitic, palmitoleic, stearic, oleic, linoleic, linolenic, arachidic, eicosenoic)
found in the lipid fraction of 572 Italian olive oils. There are 9 areas, 4 from southern Italy
(North and South Apulia, Calabria, Sicily), two from Sardinia (Inland and Coastal) and
3 from northern Italy (Umbria, East and West Liguria). A Random Forest is now built
on a training set, which contains 65% of all observations to assign the 572 observations
to one of the 9 areas. The default value for mtry would be mtry = /8 ~ 3. In Figure 3.1
the estimated misclassification rate based on the OOB observations is shown for different
settings of the parameters mtry and ntree. In Figure 3.2 the misclassification rate for
the remaining 35% of the observations, which form the test set, is shown for the same
setting of parameters as before. Since there is some randomness in each forest the error
rates are aggregated from 25 runs to also have a look at the variance of the error rates,
which, however, was relatively small.

The function randomForest from the R-package randomForest is used to build the forest.

library{classifly}

data(olives)

library(randomForest)

forest <- randomForest(Area ~., data=olives, mtry=3, ntree=100)
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Figure 3.1: The estimated error rate [oob] is not that high, the forest performs the
classification of the olives data set quite well. One can easly see, that too less trees
in the forest lead to worse error rates. But after all the number of trees doesn’t effect
the error rate much. The default value of ntree = 500 doesn’t have to be changed,
but since the difference between ntree = 500 and ntree = 100 doesn’t change much,
one can also run the classification with only 100 trees in the forest which will take less
computing time. The impact of the mtry parameter is more diverse (compared to the
ntree parameter) the default of mtry = 3 available variables at each node seems to be
a good setting for this data set.
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Figure 3.2: The results for the misclassification rate computed based on only the test set
(the observations that weren’t used to build the forest) are quite similar to the results
for the OOB error rate. Overall the misclassification rate [mcr| is a little bit smaller
than the OOB error rate and the combination of ntree = 100 and mtry = 3 seems to be
optimal for the olives data set.

30




0.07 - 1

mcr

0.06 -

0.05 -

1 2 3 4 5 6 7 8
mtry

Figure 3.3: Looking closer at the misclassification rate [mcr] for a forest with ntree = 100
trees in it, the optimal mtry is right at the default of mtry = 3. However, the differences
between different values of mtry are really not that big, which seems to imply that the
parameter isn’t that crucial, at least for this example. It is interesting to see that the
error rate increases with increasing mtry after the default mtry = 3.

3.2 Weights and Votes

The arguments classwt and cutoff can be used to overcome the imbalanced data problem
which is introduced and described in Section 4.2 and Section 4.3.

To deal with unbalanced data the R-function randomForest (R-package randomForest)
provides an argument classwt, which, if needed, relates to the priors of the classes and
has to add up to one. Since the forest tries to minimize the overall error rate especially
the smaller classes in a highly unbalanced data set might be under-represented and have
a higher error rate, while the error rate of the larger classes is quite small. To avoid this
behaviour the error rate can be weighted. So the overall error rate is balanced according
to the class priors.
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Let K be the number of classes, then the weights for error balancing are given by

w. — @ <nclassc)1
¢ K Ndata ’
for every class ¢ = 1,..., K, where ng,ss. is the number of observations in class ¢ and
Ndatq 1 the total number of observation in the data set. [Prinzie et al. 2008]

These weights are used to compute a weighted version of an impurity measure like the
Gini measure of impurity. If the trees in the forest are grown by splitting the nodes with
respect to the Gini-index the weighted Gini-index is given by:

K
Gm = Z we(l = Pm,c)Pm.c:

c=1

where (1 — py,, 1) represents the possibility of a mistake in classifying an observation of
the class ¢ which is then penalized by the weight w,.

Higher weights indicate smaller classes in order to reduce their error rate, while minimi-
zing the overall error rate.

Especially in medical research the smallest class might be the most important class in
that sense that a misclassified observation of this class is way worse than a misclassifica-
tion of an observation of another (bigger) class. This can be reflected by weighting this
error higher than the error of another class.

The argument cutoff can be used to change the voting rule for the forest. The end-nodes
of each tree contain the predicted class labels, those are then aggregated to obtain the
forest prediction. Each tree casts a vote for the predicted class label and usually the
majority vote determines the final label. This majority vote can be changed to another
rule. This may be only useful for a binary classification, where the focus should be
on one class rather than on both at the same time. For a multiple-class classification
determining those cut-off-values may not even be neither explainable nor reasonable.

3.3 Number of Nodes and Node-Size

The possibility of pruning the trees inside a forest is given by the arguments maxnode
and nodesize. By bounding the total number of nodes for each tree, the trees are getting
smaller. Since the whole idea of a forest is to avoid overfitting by growing multiple
full trees on different bootstrap samples of the original data, pruning the trees is not
advisable. The same goes for lower bounding the minimum number of data points in a
node, which also results in smaller, pruned trees. The main reason for pruning a tree is
to avoid overfitting, which is done by the algorithm of Random Forest, hence there is no
need for pruning the trees in a forest.

32



Pruning might be useful if one is applying some oversampling method to deal with
imbalanced data sets. The danger of overfitting might rise because of duplicates. But
there are other things then the devious method of pruning to deal with that danger.

3.4 The Knowledge of a Random Forest (in R)

Using the R package randomForest and its function randomForest to train a forest will
not only return the decisions and the predicted class labels but a wide range of additional
information that can be used.

Some further outcome of the R-function randomForest.

predicted, # The predicted class labels of the training data.

importance, # A measure of variable importance.

err.rate, # The error rate based on the 00B observations up
to the i-th tree in the forest.

confusion, # Confusion matrix for the training data.

votes, # For each observation the fraction of votes from
the forest for each class is given in a matrix.

proximity, # Matrix of the proximity among the training
data.

The most obvious outcome are the predicted class labels. Also the variable importance
was already discussed in Section 2.2.4. The estimated error rate based on the OOB data
is not only computed for the forest but for every new added tree (starting from one).
The output err.rate can be used to monitor the development of the estimated error
rate. The confusion table (see Section 5.1.1) is used to compute class error rates and
is used to see whether the observations of one class are always wrongly assigned to one
other or if the classification works well. The votes matrix can be used to compute the
margins. For each observation the proportion of votes for each class is recorded. In this
matrix one can not only see how confident with respect to the votes of the individual
trees the classification for each observation is but also which class got the second most
votes. The difference, the so-called margin, can be used as a measure of confidence. The
proximity matrix, which is the main part for the unsupervised learning procedure (see
Section 2.3.2), contains information about the similarity of two observations each. If the
data point ¢ and the data point j land in the same end-node the proximity is increased
by one. This is recorded for all trees and at the end all values are divided by the number
of trees and the proximity measure for a data point and itself is set to one. This measure
can therefore also be considered as a measure of outlyingness.
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3.4.1 Outlyingness

An outlier is defined as data point with small proximities to all other data points. One
can also define a measure of outlyingness out(X;) based on the proximities.

-1

out(X;) = Zproximity(Xi,Xk)z , where X;, X, € class c.
ket

out(X;) will be large if the proximities are generally small. This measure can be further
normalized by subtracting the median of the outlyingness out(X;) of the considered class
and dividing by the mean absolute deviation from the median. All values smaller than
zero are set to zero and a reason to suspect an observation being outlying is given if this
normalized measure is greater than 10 [Breiman 2001a].

3.4.2 Missing Data

The proximities can also be used to handle missing values. In the R-function random-
Forest there is an argument called na.action. If there are only a few missing values
those could just be omitted (na.omit) but in the package randomForest there are two
functions which handle missing values by imputation. The first one na.roughfix just
imputes the median value or rather the most common value for a categorical variable.
This is a fast but maybe dirty method. The other function rfImpute starts with the
imputed median values for missing values, then trains a forest on the imputed data and
computes the proximity matrix. The original missing values are then replaced by the
weighted average value for a continuous variable where the weights are the proximities
or by the value with the largest average proximity for a categorical variable. This proce-
dure is iterated several times and takes much computing time. It is only recommended
if there are more than 20% missing values [Breiman and A. Cutler 2016]. It has to be
noted that the estimated error rate tends to be optimistic when the data is imputed
[Liaw et al. 2015].
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Chapter 4

Unbalanced Data

The ideal data set has no missing values, almost infinitely many observations, indepen-
dent of course and of high quality with the right variables to run a classification on
equally sized classes (preferably two). Well the reality looks quite different. In many ca-
ses there are multiple classes, which are highly unbalanced. The problem though seems
to be that most classifiers cannot handle unbalanced data sets, or at least perform much
worse than on balanced data sets. Especially the smaller classes (which are often the
more crucial ones) suffer from lack of precision when it comes to classification. In many
cases the overall performance of the classifier isn’t much worse, the estimated error rate
of a Random Forest might not change at all. But when one takes a closer look at the
class error rates or the class’s predictive abilities there seems to be quite a diversity
of calculated values. These values show the real issue about unbalanced data. The
bigger classes often perform much better than the smaller classes, since there are more
observations the classifier is trained on.

Similar to finding the right error rate or evaluation method one should think about the
purpose of the classification, before running it. Is it to train a model and use it later
to predict the classes of new data? Is it just to detect certain relationships between
classes and variables, is it to find something completely different? Are all classes of same
importance? Is one class maybe more important? The choice of the evaluation method
and how to handle unbalanced data has to be done according to the answers to those
questions.

There are different methods that try to deal with unbalanced data. The most obvious
ones might be under- or oversampling or weighting the data points in some way.

If balancing methods are applied it is very important to split the data in a training
and test data set before balancing methods are applied. Otherwise one cannot assure
the independence of the training and test data sets anymore! Using balancing methods
and Random Forest will result in extremely good out-of-bag error rates. Those, ho-
wever, are no longer meaningful, since in most cases the out-of-bag data are no longer
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distinguishable from the in-of-bag data in terms of the original, unbalanced data.

Note also that by artificially balancing the data set, the prior probabilities are changed
and for example seen as equal for all classes. This might not be useful in some cases.

There have been some studies on learning from unbalanced data. The main problem
is that the evaluation might result in misleading conclusions since the classifier is of-
ten strongly biased to favour the bigger classes, while the smaller classes are somehow
neglected. This behaviour is extremely dangerous especially if the smaller class is more
important, or if a misclassification of an observation of the smaller class is considered
to be much worse than a misclassification in the bigger class. Such situations occur for
example in medical studies. To detect a disease is very important and more crucial than
falsely predicting it. Those classification problems are mainly binary classifications with
highly unbalanced classes. The imbalance problem could then be overcome by applying
cost-sensitive-learning. A high cost is assigned to a misclassification of the smaller class
while the overall cost is tried to be minimized. Chen, Liaw and Breiman (2004) in-
troduced the Weighted Random Forest, which performs quite well on unbalanced data.
Khalilia et al. (2011) also managed to achieve very good results by combining Random
Forests with repeated random subsampling. Random Forest is very popular when it
comes to unbalanced data and outperforms other learners as Khoshgoftaa et al. (2007)
showed. Batista et al. (2004), however, found that unbalanced classes are not the only
problem responsible for a decrease in performance.

There are many approaches to overcome the problem of unbalanced data. Most of them
deal with the challenge to create appropriate training and test sets. Many of those
methods are based on over- and undersampling. A different approach would be cost-
sensitive learning.
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The olives data set contains 572 observations of olive oils from 9 different areas. This
data set is imbalanced, the classes contain different numbers of observations. The biggest
class is the area of South-Apulia, which contains 206 observations. The smallest one is
North-Apulia which contains only 25 observations. (Coast-Sardinia: 33 obs., Sicily: 36
obs., East-Liguria: 50 obs., West-Liguria: 50 obs., Umbria: 51 obs., Calabria: 56 obs.,
Inland-Sardinia: 65 obs.)

Class Error Rates

0.4 Area

. Calabria

. Coast-Sardinia
0.3 . East-Liguria

l Inland—-Sardinia
0.2 North—Apulia
. Sicily

. South-Apulia

0.1 .Umbria
l . .West—Liguria
0.0 - ] - ] -

Area

cer

Figure 4.1: Although the overall error rate [oob] as seen in Figure 3.1 with 100 trees
and 3 out of 8 available variables at each node is quite low (=~ 0.05) one can see that
the class error rates [cer|] are much worse and very uneven and not well related to the
overall error rate. The bigger classes seem to perform better than the smaller classes.
Although the smallest class (North-Apulia) isn’t the worst in terms of its class error
rate, the imbalance in the class error rates is quite drastic and in no way reflected in the
overall error rate.

The real danger, when classifying imbalanced data is that the misclassification rate,
which is used to train the classifier (in some way) might be minimal, although some
classes aren’t classified once right (worst case), but no one will know without looking at
the class error rates.
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4.1 Balancing

There are many techniques and methods to balance a data set. In this thesis under- and
oversampling as well as same-size sampling (a combination of under- and oversampling)
are discussed. Later on individual votes and error weighting, which are both implemented
in the R-function randomForest, are introduced and shortly discussed.

4.1.1 Undersampling

As the name of the method implies, when undersampling is applied all classes are down
sized by sampling as many observations as there are in the smallest class from the
original class. After this procedure every class will have as many observations as the
smallest one has. Since the smaller classes lack from precision more than the bigger
classes, undersampling should be considered when the classification of these classes is
more crucial than classifying the bigger classes. For example, when one is trying to
detect whether a person has a disease or not, especially if it is a severe one, it might be
better to know for sure if this person has this disease taking into count that a disease
could be falsely predicted a little bit more likely.

The raw effects of undersampling are:
e The classification will take less computing time.
e The overall error rate will increase (slightly).
e The class error rates for the smaller classes will decrease.
e The class error rates for the bigger classes will increase.
e The predictive abilities will improve (especially for the smaller classes).
e The class error rates will slightly be more evenly throughout all classes.

e The overall error rate will represent the class error rates better.
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For the olives data set undersampling means, that from every class (Area) only 25
observation are randomly chosen.

Class Error Rates
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Figure 4.2: After undersampling the data, the class error rates are a little bit lower than
with the original imbalanced data. But the differences between the smaller and bigger
classes are still obvious.

4.1.2 Oversampling

Opposite to undersampling one can also oversample the smaller classes. The smaller
classes are so to say blown up via sampling with replacement. After this procedure
every class will have as many observations as the biggest class has. The effects are quite
similar to the effects of undersampling, maybe even better. The smaller classes will
perform better but the bigger classes, since there isn’t much change, will perform as
well (or bad) as before. Although there are more observations, which help growing the
Random Forest, one has to keep in mind that each decision tree in the Random Forest,
which is grown based on a different data set (see Section 2.2.1) and the data set contains
now duplicated observations, the trees in the forest might not be that different from each
other. Oversampling can increase the likelihood of occurring overfitting.

If correctly classifying the smaller class is most important while seeing the difference to
the other class is as well the forest should be trained more sensitive to the smaller class
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while no information of the other class should be neglected. In that case oversampling is
the best idea. It trains the forest extremely well with respect to the smaller class while
considering all the available information. An update algorithm to each new observation
is also necessary to involve really every information. This case could occur especially in
medical research settings, like disease detecting research.

The effects of oversampling are:
e The classification will take much more computing time.
e The overall error rate will decrease.
e The class error rates for the smaller classes will decrease.
e The class error rates for the bigger classes may not change at all.
e Risk of overfitting (due to duplicates).
e The predictive abilities will improve.
e The class error rates will be more evenly throughout all classes.

e The overall error rate will better represent the class error rates.
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For the olives data set oversampling means that suddenly every class contains 206
observations, which where sampled from the original class with replacement.

Class Error Rates

0.015
Area
. Calabria
. Coast—Sardinia
0.010 . East-Liguria
o Inland—Sardinia
8 North—Apulia
Sicily
0.005

South-Apulia

Area

Figure 4.3: After oversampling the data the class error rates are much lower than they
were when the original, imbalanced data was classified. Since the biggest class (South-
Apulia) wasn’t changed at all, its class error rate is more or less the same (~ 1,5%).
Because of the duplicates in the smaller classes, once an observation was classified cor-
rectly, its duplicates will also be classified correctly. Hence, the class error rates for
the oversampled classes is somehow forced to be low. The splits, however, are perfor-
med with more respect to the smaller clases and should lead to better results for new
observations.
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4.1.3 Same-Size Sampling

The so-called ntp-method (n-times-percentage) makes sure that the overall size of the
data set will stay the same and each class will be over or undersampled to the same
proportion of the overall size. If there are eight classes, after same-size sampling has
been applied each class will have the size of % times the overall number of observations
(n). So each class will have the same size and the overall number of observations will still
be the same as if no balancing was done. It is a combination of over- and undersampling.

For example if there are 5000 observations and 8 classes then there should be %?0 =625
cases sampled from each class. If there are more than enough observations in the class,
this class will be undersampled, if there are not enough observations, this class will be
oversampled.

The effects of same-size sampling will be a combination of the advantages of over- and
undersampling.

e The classification will take as long as it takes to classify the unbalanced data.
e The overall error rate will slightly decrease.
e The class error rates for the smaller classes will decrease.

e The class error rates for the bigger classes may not change at all (if they change,
they decrease).

e The predictive abilities will improve.
e The class error rates will be more evenly throughout all classes.

e The overall error rate will better represent the class error rates.
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There are 572 observations distributed over 9 Areas in the olives data set. Same-size
sampling will make sure that the total number of observations (572) stays the same
while the classes are over- or undersampled to contain exactly % ~ 64 observations.
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Figure 4.4: One can see, that the class error rates are much lower than those from the
original data, they are higher than after applying oversampling, but the error rates seem
to be more evenly throughout all classes.

4.2 Individual Voting

Another possibility to deal with unbalanced data is to change the vote criterion in the
forest from majority votes to an individual rule. However, this method might be only
meaningful for a binary classification. The votes are set as a parameter in the Random
Forest (cutoff ) and the forest will then make the final decision according to the individual
votes. For example if the votes for a binary classification are set to 0.4 and 0.6 (they
must add up to one) and 41% (or more) of the trees in the forest vote for class A then
the observation will be assigned to class A. But if only 39% (or less) vote for class A
then class B will be assigned. On the other hand at least 60% of all tree votes are needed
to assign class B to an observation.

Changing the votes tries to deal with the under-representation of the smaller class in
the forest. However, setting the votes for the smaller class too small (changing the votes
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too drastically) might make the forest vote too easily for the smaller class and the whole
learning on the data set unnecessary and meaningless and not interpretable anymore.
Therefore, before considering to change the votes, one should take a look at the actual
margin votes. It may be that those aren’t close to the split point of 50% at all. An useful
effect by changing the votes can only be achieved if the margin votes of the smaller class
are very low, and very often lower than the necessary 50% in a forest with majority
votes.

4.3 Changing Class Weights

Another way to deal with the imbalance of a data set is to change the class weights
(classwt argument in the R-function randomForest). If the classes are highly unbalanced,
the prior class probabilities are far from being equal. The prior class weight is used by
the bagging algorithm, the higher the prior class probability, the higher the probability
that an observation of this class will be in the bootstrapped sample ([IOB] for a tree).
The smaller a class the lower its prior class probability. This might lead to the dangerous
case that no observation from the smaller class will be in the bootstrap sample. This
might also be the reason why the smaller classes perform much worse than the bigger
classes. This is reflected in the class error rates, but usually not in the overall error rate.
So to make the overall error rate more sensitive to the class imbalance the observations
and their misclassification are weighted according to the prior class probabilities. The
forest, which is in some way trying to minimize the overall error rate (the Gini-index is
only a weighted version of the events of a misclassification), is trained with more respect
to the smaller, under-represented classes through the weighted overall error rate. So one
possibility to deal with unbalanced classes would be to raise the weights for the smaller
classes. There is no real recommendation on how exactly to set the class weights. The
weights should, however, be set in relation to the prior probabilities, though setting this
parameter is quite obscure. One simply has to try different weights to find out what’s
best for the classification problem one’s dealing with. Be aware that changing the weights
implies that the under-represented observations are more important although their prior
probabilities are much smaller. This might not be reasonable and could get dangerous
for some cases where all classes are equally important. If one really wants to imply that
the observations in the smaller classes are more important for the learning algorithm,
oversampling might be a better idea. Then there is also no need to determine which
weights are to use.
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Chapter 5

Evaluation

Since there are many evaluation methods, which are sometimes more or less the same
and sometimes they are based on completely different things, it might be best to look
not only at one evaluation measure but at several, different ones. Which measure to
consider depends on the purpose and the specific task.

5.1 Error Rates, Predictive Ability

A very common measure are error rates. They basically give the proportion of how many
cases were misclassified, either for the whole data set, or the training and test set sepa-
rately. Sometimes only the TRUEFE-positives or the FALSE-negatives or a combination of
them both together with the TRUE-negatives and the FALSE-positives are taken into
account. It is also possible to compute the error rates for each class separately (class
error rates [cer]).

5.1.1 Confusion Table

The basis of most error rates is the so-called confusion table (confusion matrix). In this
table one can see how many observations are assigned to the wrong or right class.
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predicted classes

predicted as Positive | predicted as Negative

True-positive False-negative Tpos + Fneg

true class:
Positive

true classes

False-positive True-negative Fpos + Tneg

true class
Negative

Tpos + Fpos Fneg + Thneg total

Figure 5.1: A confusion table for a binary classification. The classes are labelled as
"Negative’ and "Positive’.

There seems to be no consistent use and interpretation of the so-called FALSE-negatives,
TRUE-positives and so on. In this thesis FALSE-negative indicates an observation that
was falsely (FALSE) classified as negative, its true class label would have been positive
(in a binary classification). With these terms of use the class errors even for multiple-class
classifications, can easily be defined. The only difference to a binary classification is that
the true class of an observation cannot be obtained from just beeing a FALSFE-negative.
A FALSE-positive indicates on the other hand an observation which was incorrectly
(FALSE) classified as positive. TRUE-positive and TRUE-negative are observations,
that were correctly classified as positive or negative, respectively.

The rows of the confusion table represent the 'true’ classes, the columns represent the
classes, which were assigned by the classifier (forest). If an observation of the class
"Positive’ is assigned by the Random Forest to the class 'Negative’, it is counted as
a FALSE-negative. On the other hand if an observation with the label 'Negative’ is
assigned to the wrong class ’Positive’, it is counted as a FALSFE-positive.

5.1.2 Misclassification Rate

The most common error rate, the so-called misclassification rate [mer|, which is used by
algorithms to train the classifier by minimizing it, is defined as the proportion of the test
data which were assigned to the wrong class by the classification method. Regarding
Random Forests there is the so called out-of-bag estimated error rate [oob]. Since each
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tree uses just a fraction of the training data the remaining data can be used like a test
set. For each tree the training data will again be split into two fractions, the in-of-bag
data (IOB data) and the out-of-bag data (OOB data). The OOB data are the test data
for each tree and can be evaluated. The OOB data points are used as test set to calculate
the misclassification rate [mcr| of the tree.

MCR

Suppose there are K classes and N observations, then the misclassification rate for each
tree is given by:

N
1
:*E I(é #c¢i),
MCR N 2 (¢ # ci)

where Ty(X;) = ¢ € {1,2,...,K} is the class of the observation X; predicted by the
b-th tree Tp and ¢; € {1,2,..., K} the actual (true) class.

In terms of the confusion table the misclassification rate [mcr] is calculated by the
FALSE-positives and FALSE-negatives.

Tpos +Tneg  Fpos+ Fneg

MCR=1-
total total

A perfect classification with no mistakes relates to a misclassification rate [mer] of MCR=
0 if every observation was misclassified the misclassification rate would attain the upper
limit MCR= 1, which can be interpreted as 100% of the data being misclassified.

O0OB

The estimated error rate [oob] (with the out-of-bag data) is an unbiased estimator for
the misclassification rate [mcr] of a forest. It is the mean of the misclassification rates
of all trees.

Suppose there are ntree trees, and MCR; the misclassification rate for tree Ty (t =
1,...,ntree)

1 niree
OOB = MCR
nitree ; t

The error rates can also be computed for each class separately (class error rates [cer]).
It is then interpreted as the proportion of all misclassified cases in one class.

1
CER = o > H{F(X;) #C}

X, eC

The out-of-bag error rate [oob] as well as the class error rate [cer| are values between 0
and 1.
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5.1.3 Predictive Ability, Accuracy

The opposite to an error rate would be a predictive ability rate [aby]. Similar to an error
rate the predictive ability is calculated according to those cases, which were classified
to the true class (TRUE-positive proportion). The predictive ability is also commonly
known as accuracy. It is the reverse of the misclassification rate (ABY = 1— MCR).

ABY

Suppose there are K classes and N observations,

1 N
ABY:N;I(@-:Q),
1=

where Ty(X;) = ¢ € {1,2,..., K} is the class of the observation X; predicted by the
b-th tree Tp and ¢; € {1,2,..., K} the actual (true) class.

With regard to the confusion table the predictive ability rate [aby] (accuracy [ACC]) is
calculated by the TRUE-positives and TRUE-negatives.

T'pos + Tneg

ABY = ACC =
total

=1—-MCR

If all observations are classified correctly, that is, are assigned to their true class, then this
is related to a predictive ability of ABY= 1. If no observation was classified correctly then
the predictive ability reaches its lower limit at ABY= 0, which can also be interpreted
as 0% of the data were classified correctly.

5.1.4 F-Measure
Another commonly used measure of accuracy is the F-measure. It considers the precision
and the recall of a classifier and is also based on the confusion table.

The precision is defined as the number of correctly predicted positive cases divided by
the total number of all observations that are labelled as 'Positive’ by the classifier.

.. Tpos
recision = —————
P Tpos + F'pos

The precision is also called "Positive Predicted Value’ (PPV).

The recall of a classifier can be interpreted as the probability of a detection and is defined
as the number of correctly predicted positive cases divided by all observations which
should have been labelled as "Positive’. A low recall indicates many FALSE-negative
incidents.
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T'pos

l=—"———
reca Tpos + Fneg

So precision is the fraction of all observations that were correctly labelled as "Positive’
by the classifier, whereas recall is the fraction out of all "Positive’ data points, that were
picked up by the classifier. The best, however not realistic, classifier, which doesn’t make
any mistakes, would have a precision as well as a recall of 1. This situation is almost
impossible to achieve. It is trivial, however, (especially for a binary classification) to have
a perfect recall by simply forcing the classifier to label all observations as "Positive’, which
will in return make the classifier suffer from horrible precision and thus useless. One can
also easily increase precision by only labelling those observations as "Positive’, which the
classifier is most certain about, but this would come with horrible recall. The balanced
measure of both, precision and recall, makes a decision about what’s more important
for either precision or recall unnecessary.

For a multiple-class classification the precision is defined as the average per-class agreement
of the true class labels with those predicted by the classifier [Sokolova et al. 2009].

K

o1 Tpos(c)
precision = 7 Z Tpos(c) + Fpos(c)

c=1

The recall of a multiple-class classification is defined as the average per-class effectiveness
of the classifier to identify the true class labels.

1 & Tpos(c)

Il =—
reca K Z Tpos(c) + Fneg(c)

c=1

The F-measure is defined as a weighted average of precision and recall, it reaches its
maximum at 1, which would be the best case and its minimum at 0, the worst case.
In other words, the F-measure conveys the balance between precision and recall. Since
there’s a trade-off between precision and recall, the F-measure is reasonable. Usually
the harmonic mean between recall and precision is measured, this is the so-called F}-
measure.

1 recall - precision

recall + precision

recall + precision

A more general way to calculate the F-measure is not to calculate the average, but a
weighted average between precision and recall. The so-called Fg-measure is an effecti-
veness measure of retrieval with respect to the consideration that one attaches S times
as much importance to recall than to precision. So if one wants to focus more on recall
than on precision without ignoring precision totally the Fz-measure considers this.
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recall - precision (1+ B8%)Tpos
recall 4+ #2precision (1 + $2)Tpos + B2Fneg + Fpos

Fg = (1+6?)

5.2 ROC and AUC

The ROC curve and the AUC are both performance measures for classifiers. The
Receiver-Operating-Characteristic [ROC] is a graph of the TRUE-positive-rate and the
FALSE-positive-rate of a binary classification. The Area-Under-Curve [AUC] is a single
scalar, which represents the area under the ROC curve.

Since the AUC is independent of how the observations are distributed on the two classes,
it is considered to be very useful to evaluate the performance of classifiers on unbalanced
data. But there also have been recommendations against using the AUC as a perfor-
mance measure [Rice 2010].

5.2.1 ROC

The Receiver-Operating-Characteristic is a graph for visualizing the performance of a
binary classifier. The ROC space is the two-dimensional space where the TRUE-positive-
rate is plotted on the Y-axis and the FALSE-positive-rate is plotted on the X-axis.

The TRUE-positive-rate is defined as:

Tpos
Tpos + Fneg

Considering that the label of one class is 'positive’ the TRUE-positive-rate refers to the
proportion of the observations that were classified correctly as 'positive’ with respects to
all observations that should have been classified as 'positive’. In other words, it can be
interpreted as the proportion of how many positive data points will be hit, that’s why
it is also called hit-rate.

The FALSE-positive-rate (fall-out) is defined as:

Fpos
Fpos + Thneg

Considering that the other class is labelled as 'negative’ the FALSFE-positive-rate refers
to the proportion of the observations that were classified incorrectly as ’positive’ (their
true class would be 'negative’) with respect to all observations that belong originally to
the class 'negative’. So the FALSFE-positive-rate can be considered as the proportion of
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how many observations of the class 'negative’ will be misclassified. It is also known as
the false alarm rate.

For a so-called discrete classifier the ROC is only one single point in the ROC space. A
discrete classifier returns only the predicted class label, whereas a probabilistic classifier
returns a probability or score which represents the degree to which an observation belongs
to its true class. A probabilistic classifier can be used with a threshold to produce a
discrete classifier. Each threshold value produces a different ROC value which represents
a point of the ROC curve in the ROC space. The ROC curve of a probabilistic classifier
is defined as the graph of the TRUFE-positive-rate against the FALSFE-negative-rate for
several threshold values. The scores of the probabilistic classifier can also be used to
draw the ROC curve. The observations are sorted by the score for their true class. If
the observation belongs to the class 'positive’ then the value for the X-coordinate is zero
while the value of it’s Y-coordinate is one over the total number of *positive’ observations,
both following the coordinates of the observation ranked before. The curve drawn by
this procedure is also the ROC curve and can be used to identify where the classifier
performs better, in the more ’conservative’ upper-right area or the ’liberal’ left area.
As baseline serves the diagonal which represents the ROC curve of a random classifier.
In Figure 5.2 the ROC curve for 20 observation with 10 observations of class 'positive’
and 10 observations of class 'negative’ is shown. It seems that the underlying classifier
performs better in the more conservative area. The classifier is better in identifying
observations from the class ’positive’ rather than identifying observations from the class
‘negative’.

Rank Class Score Rank Class Score
1 positive 0.9 11 positive 0.4
2 positive 0.8 12 negative | 0.39
3 negative | 0.7 13 positive | 0.38
4 positive 0.6 14 negative | 0.37
) positive | 0.55 15 negative | 0.36
6 positive | 0.54 16 | negative | 0.35
7 negative | 0.53 17 positive | 0.34
8 negative | 0.52 18 negative | 0.33
9 positive | 0.51 19 positive | 0.30

10 negative | 0.505 20 negative | 0.1

Table 5.1: Ranked scores of 20 observations which belong either to the class "positive’
or the class 'neagative’.
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ROC curve for ranked observations
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Figure 5.2: ROC curve for 20 observations which are ranked by their score shown in
Table 5.1. The diagonal line represents the ROC curve of a random classifier and is used
as baseline.

5.2.2 AUC

The AUC (better AUROC to avoid confusions) is defined as the area under the ROC
curve. (It could also be the area under any other curve.) It can be interpreted as the
probability that a classifier will rank a randomly chosen positive example higher than
a randomly chosen negative example. It is often used to compare different classifiers
based on only one single scalar. The ROC curve has to be reduced to measure the
performance based on a single scalar. The common method is to compute the area
under the ROC curve. A higher AUC value means that the classifier performs better in
average. The comparison should, however, be based on multiple AUC values which can
be computed by doing a cross-validation rather than comparing only one value without
any information about its confidence.

The ROC and therefore also the AUC are both based on the confusion table of a binary
classification. There are ways to compute the ROC curve and the AUC also for a
multiple-class classification, but there is not really a unique recommended way to do
that. Analysing the ROC curve is commonly employed in medical studies in which
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two-class diagnostic problems are common. Regarding a multiple-class problem, the
situation becomes much more complex if one wants to analyse ROC curves for all classes
at once. For a multiple-class classification one can either draw the ROC curves for
each class against all others or try to compute volumes under the curves instead of an
area. But then the great advantage of the AUC being insensitive to class distributions
gets compromised. Although the AUC is widely used and could be referred to as the
standard method to asses the accuracy of the performance of a classifier it is lately also
criticised. As Lobo et al. (2008) pointed out the great disadvantages of AUC (and ROC)
is that it summarizes the performance over regions of the ROC space (over threshold
settings) one would hardly ever operate in. And it ignores the predicted probability
values. Furthermore is the AUC only able to discriminate between very good models
and very bad models. To discriminate between only good models the AUC is unsuitable.

Due to the controversial discussion about the AUC and because the ROC and AUC
are only useful for a binary classification, these performance measures are not further
discussed.

In this thesis only the misclassification rate [mer], the class error rates [cer|, the predictive
ability [aby] and the OOB error rate [oob] are considered for evaluation.
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Chapter 6

The Data and the Results

This chapter contains some simulations and experiments on a certain data set - the so-
called comecs data set. The introduced balancing methods and their effects on a highly
unbalanced data set are discussed. Due to the special structure of the data itself not
only multiple-class classifications are possible but also binary classifications in different
settings. Also the splitting into training and test data sets can be done in different ways.
Their usefulness, also for other data sets, and the effects are analysed and discussed.

At the beginning the data set, the different ways of splitting the data and the classifica-
tion versions are introduced. Then the balancing methods are again shortly explained.

6.1 Overview - Comecs Data Set!

The so-called comecs data set [CoMeCS - Project 2017] contains spectral measurements
from ten different meteorites. Several corns from each meteorite are placed on four
gold plates which represent the so-called targets. Each gold target contains multiple
corns from two or more meteorites. (No target contains corns from all meteorites.) The
targets with the corns are then used for time-of-flight secondary ion mass spectrometry
measurements. Since gold as element is quite distinctive in its spectral composition,
it should be easily distinguishable from the corns. Therefore, there is an eleventh class
called substrate which represents the gold targets. The spectral measurements were taken
along rectangular grids or along a line. 729 spectra from 11 classes/groups (10 meteorite
classes and the substrate class) were measured. In the analysis and the classification
only inorganic mass bins from 1 to 300 are considered. Due to chemical reasons, 297 of

!The meteorite samples were provided by F. Brandstétter, L. Ferri¢re, and C. Koeberl (Natural
History Museum Vienna, Austria), C. Engrand (Centre de Sciences Nucléaires et de Sciences de la
Matiere, Orsay, France) prepared the samples, and M. Hilchenbach (Max Planck Institute for Solar
System Research, Gottingen, Germany) took the TOF-SIMS measurements. [CoMeCS - Project 2017]
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the 300 spectra were considered as possible feature variables for the classification. The
data set is highly unbalanced, since non of the 11 classes are of equal size.

There are 1035 observations, which seems quite few for 297 variables, which are named
after the measured mass bin (ml, m2, ..., m300 - the mass bins m23, m115 and m197
were removed). The eleven classes are of different sizes, the smallest (tieschitz) has 27
observations, the largest class (substrate) has 240 observations and the largest meteorite-
class (allende) has 170 observations.

Name Size | Date of Fall Place
allende 170 | 8th Feb 1969 Chihuaha, Mexico
lance 77 | 23rd Jul 1872 Centre, France
mocs 66 3rd Feb 1882 Cluj, Romania

murchison || 85 | 28th Sep 1969 | Murchison, Victoria, Australia
ochansk 44 | 30th Aug 1887 Ochansk (Perm), Russia
pultusk 78 | 30th Jan 1868 Ostroleka, Poland
renazzo 66 | 15th Jan 1824 | Renazzo (ca. Ferrara), Italy
tamdakht 94 | 20th Dec 2008 Quarzazate, South Morocco
tieschitz 27 15th Jul 1878 | ca. Olomouc, Czech Republic
tissinst 88 | 18th Jul 2011 | Tissint (Tata), South Morocco
substrate || 240

Table 6.1: Classes of the comecs data set

All spectra were taken from four gold-targets, where multiple corns from all meteorites
were placed. Each meteorite has at least two corns, except the meteorite called ochansk.
This special structure is the reason for multiple versions of splitting the data into training
and test data sets. But this comes with further complications, because there is also an
imbalance. Not only are the classes itself of unequal size but also the number of corns for
each class is different. There are 4 corns for the class allende which also contain different
numbers of observations. The class pultusk on the other hand has 11 corns distributed
on two targets.

So every meteorite has a different number of observations, unequally distributed on a
different number of corns, which are again placed on a different number of gold-targets.
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. . Number of Number Number of Total number of
class targetid | cornid . .
observations of corns targets observations
4B7 2 53
4B7 3 56
allende A 7 T 4 2 170
4B8 2 15
4B7 5 61
lance 4B8 4 16 3 2 77
4B8 5 0
4B8 3 8
4B8 6 12
mocs 488 8 13 6 2 66
4B8 9 15
4B9 8 18
4B8 7 0
] 4B7 1 60
murchison 2 2 85
4B8 1 25
ochansk 4E1 7 44 1 1 44
4B8 10 10
4B8 11 2
4B8 12 13
4B8 13 11
4B9 1 7
pultusk 4B9 2 2 11 2 78
4B9 3 10
4B9 4 8
4B9 5 13
4B9 6 1
4B9 7 1
4E1 10 42
renazzo 261 1 2 2 1 66
4B8 14 18
4B8 15 17
4B9 10 8
4B9 11 10
tamdakht 4B9 12 1 9 2 94
4B9 13 1
4B9 14 13
4B9 15 13
4B8 9 13
tieschitz i 8 9 2 1 27
4E1 9 27
4E1 1 16
4E1 2 24
.. 4E1 3 43
tissint 6 1 88
4E1 4 1
4E1 5 3
4E1 6 1
4B7 122
substrate 488 36 4 240
4B9 36
4E1 46

Table 6.2: Table of the meteorite-classes and the target-class with the individual number
of corns and observations.
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Figure 6.1: [CoMeCS - Project 2017] Target 4B7 contains 5 corns. Corn No 1 belongs to
the meteorite-class murchison, corns No 2, 3 and 4 belong to the meteorite-class allende
and corn No 5 belongs to the meteorite-class lance.

Figure 6.2: [CoMeCS - Project 2017] Target 4B8 contains 15 corns. Corn No 1 belongs
to the meteorite-class murchison, corn No 2 belongs to the meteorite-class allende, corns
No 3, 6, 7, 8 and 9 belong to the meteorite-class mocs, corns No 4 and 5 belong to the
meteorite-class lance, corns No 10, 11 12 and 13 belong to the meteorite-class pultusk
and corns No 14 and 15 belong to the meteorite-class tamdakht.
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Figure 6.3: [CoMeCS - Project 2017] Target 4B9 contains also 15 corns. Corns No 1, 2, 3,
4, 5, 6 and 7 belong to the meteorite-class pultusk, corn No 8 belongs to the meteorite-

class mocs and corns No 9, 10, 11, 12, 13, 14 and 15 belong to the meteorite-class
tamdakht.

Figure 6.4: [CoMeCS - Project 2017] There are 11 corns on Target 4E1. Corns No 1, 2,
3, 4, 5 and 6 belong to the meteorite-class tissint, corn No 7 belongs to the meteorite-
class ochansk, corns No 8 and 9 belong to the meteorite-class tieschitz and corns No 10
and 11 belong to the meteorite-class renazzo.
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As one can see in Figure 6.4, the spectra are measured along a grid. The spectra of the
target itself are also measured according to that grid. Since the corns are much smaller
than the mesh size of the underlying grid, the measurements could also be from the gold-
target. Therefore, a classification was done beforehand to determine whether a measured
observation is really from the claimed meteorite-corn or if it is an observation from the
target and therefore belongs to the class substrate (or at least it shouldn’t belong to
the claimed meteorite-class). This was done with kNN to estimate the distribution of
the distances and a method with orthogonal distances in the substrate-PCA space. An
intersection of the results of those two methods is then considered as the final saying if
an observation is significantly different from the target or not. The observations selected
through this procedure are then considered to be the actual data set were different
classification methods can be trained on to test on one hand if a classification is possible
in that sense that the classes itself have a low class error rate. But also to test how
especially Random Forest behaves on this highly unbalanced data set and to see what
are the effects of applying balancing methods.

6.2 Training and Test Data Sets

To test and to analyse these classification methods (Random Forest) a separation into
training and test data sets is needed first. For the comecs data set containing spectral
measurements of meteorites three different versions of this separation are possible be-
cause of the special structure of this data set. There might be more versions but in this
thesis only the following three are considered, analysed and discussed later on.

o 65%-35% rule
e leave-one-corn-out
e count-the-corns

The most important thing to consider is that the data has to be split before anything
is done. This means that any balancing method or parameter setting has to wait, until
the data is separated.

6.2.1 65%-35% Rule

The most commonly known approach is to divide the data according to a percentage
rule. For example 65% of the data are taken as training data and the remaining 35% are
used as the test data set. Since the comecs data set is highly unbalanced, the percentage
rule is applied to each class separately. So from every class (from every meteorite- and
the substrate-class) 65% of the data points in this class are considered as training data
and the remaining observations from this class represent the test data. This assures that
the training and test data sets have the same structure of prior probabilities, since the
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distribution of the observations among the classes is the same in both data sets. This
is important because otherwise it may happen that, especially from the smaller classes,
there are classes missing in either the training or test data set, which would make the
whole classification useless.

6.2.2 Leave-One-Corn-Out [LOCO]

Another possibility for separating the data into training and test sets is given by the
special structure of the data. It was interesting to see if there are differences in the
performance of predicting the class of the observations of only one corn. So for each
class one corn is left out as test data set. This was, however, not possible for the
meteorite-classes ochansk, which has only observations from one single corn and tieschitz,
because its second corns data points were considered as not significantly different from
the background and therefore those observations were excluded from the data set.

The training sets are again highly unbalanced. The number of observations of each corn
are itself very uneven, as one can see in Table 6.2 and Table 6.3. The corns are labelled
with their class, the target-number and the corn-number (on that target).

Name/Class | Number of corns
allende 4 corns
lance 3 corns
mocs 6 corns
murchison 2 corns
ochansk 1 corn
pultusk 11 corns
TeNnazzo 2 corns
tamdakht 9 corns
tieschitz 1 corn
tissint 6 corns

Table 6.3: Number of corns for each class

6.2.3 Count-The-Corns [CTC]

It can be assumed that the spectra of the observations within one corn are very similar,
hence the classification of only one corn is considered to work quite well. The more
flurry task is to determine whether two corns of one class differ much from another. Do
they transport the same information so that the classifier will more likely assign them
to the same class? To figure that out one has to make sure that the observations in
the training data set belong to corns, whose data points are not in the test data set.
The separation into training and test data sets is done based on the corns rather than
on the individual data points. The training and test sets are therefore separated such
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that some corns from the same class are considered as training corns and the remaining
corns of that class are considered as test corns. This method though adds another case
of imbalance. Since there are different numbers of corns for each class and the corns are
of different size the imbalance of the data might become more confusing. Nevertheless
the training data sets can then also be balanced to do a classification with a Random
Forest.

6.3 Classification

The specific structure of the comecs data set allowed to look at different classifications.
Not only a multiple-class classification but also two kinds of binary classification and the
effects of applying balancing methods were investigated, analysed and discussed. Since
most classifiers are predestined to do binary classifications and therefore usually perform
much better on those compared to multiple-class classifications, it was interesting to see
in particular how the application of balancing methods would effect this.

The following three classification versions were investigated:
e multiple-class classification (11 classes)

e binary classification - one against all: For each class all other classes are combined
to a single class, so that there are only two classes left. This classification can show
how distinct one meteorite in terms of its spectra is from all others.

e binary classification - one against one: Only two different classes (from all eleven)
are considered. So every class is tested against every other.

6.4 Unbalanced Data

One difficulty when using Random Forest is that the performance declines especially in
case of a multiple-class classification if the data is unbalanced. The more unbalanced the
multiple classes are the more effect can be seen in the evaluation. As mentioned before
the comecs data set is highly unbalanced not only in terms of the classes itself but also
in terms of the number of corns and their number of data points.

6.4.1 Balancing

In this thesis the following balancing methods were investigated, analysed and their
effects are discussed later on.

e oversampling

e undersampling
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e same-size sampling (ntp)

This balancing methods were applied to the usual training and test set splitting as well
as to all other versions. Since the comecs data set is not only unbalanced regarding the
classes itself but also regarding the number of corns for each class and the number of
targets on which the corns are distributed, the effects of those methods differ and are
sometimes even unexpected.

If balancing methods are applied it is very important to split the data into a training
and test data set before balancing methods are applied. Otherwise one cannot assure the
independence of the training and test data sets! Using balancing methods and Random
Forest will result in extremely good out-of-bag error rates. Those, however, are no longer
that representative since in most cases the out-of-bag data are no longer distinguishable
from the in-of-bag data.

6.4.1.1 Oversampling

In the case of oversampling each class will afterwards have the same size, so the same
number of observations as the biggest class of the data set has. So basically each class
will be blown up by sampling with replacement to the size of the biggest class. For
the comecs data set this means that every class will have 240 observations (the class
substrate contains this many observations), which are sampled with replacement.

6.4.1.2 Undersampling

In case of undersampling each class will afterwards have the same size, so the same
number of observations as the smallest class of the data set has. Each class will be
sampled down to the size of the smallest class. For the comecs data set this means that
every class will have 27 observations (the class tieschitz contains 27 observations).

6.4.1.3 Same-Size Sampling

The so called ntp-method (n times percentage) makes sure that the overall size of the
dataset will stay the same and each class will be blown up or sampled down to the same
proportion of the overall size. So if there are eleven classes, each class will afterwards
have the size of % times the overall number of observations (n). So each class will
have the same size and the overall number of observations will still be the same as if
no balancing was done. For the comecs data set this means that every class is blown
up or sampled down to a size of % ~ 94 observations. Only two classes have to be
undersampled, namely allende and substrate. All other classes (lance, mocs, murchi-
son, ochanks, pultusk, renazzo, tieschitz and tissint) have to be oversampled except the

meteorite-class tamdakht, which has exactly 94 observations and won’t be changed.
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6.4.2 Evaluation

To make all classification versions and methods of data separation into training and test
data sets comparable the evaluations are carried out by rates based on the confusion
table, such as:

e out-of-bag estimated error rate [oob]
e class error rates [cer]

e misclassification rate [mcr]

e predictive ability [aby]

The first two ([oob] and [cer]) are calculated based on the training data. The misclassi-
fication rate [mer] and the predictive ability [aby]| are calculated using the test data.

The out-of-bag estimated error rate is the misclassification rate of a forest using the
OOB data for each tree as individual internal test data. The OOB error rate is then
the average of all individual tree error rates and therefore an unbiased estimate of the
overall error of the forest. So there is no need for a cross-validation.

Although a separated test set wouldn’t be necessary since the out-of-bag estimate is as
accurate as using a test set of the same size as the training set, an independent test
set is nevertheless used to calculate the misclassification rate (again) to also compare
different classifications and to see whether applying a balancing method changes this
very powerful property of Random Forests.

The other rate which is calculated using the test set is the so-called predictive ability.
It represents the proportion of each individual class which is classified correctly by the
trained forest. It is directly reverse to the proportion of each class which is classified
incorrectly.

6.5 Results

In this chapter the effects of applying balancing methods on the performance of Random
Forest are investigated. Because there is a randomness in a Random Forest for each
combination of classification version and balancing method not only one forest but 25
forests were built to look also at the variability of the error rates.

6.5.1 The Magic Numbers

First of all one has to decide how many trees will be in the forest and how many feature
variables will be available at each node to perform the best split. The parameters ntree
and miry are the most important ones. For a classification the default value of ntree
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would be ntree = 500, the default value of mtry would be the square root of the total
number of feature variables, mtry = /297 ~ 17. To chose the parameters, one can
try to run multiple forests and compare them. In Figure 6.5 the overall error rates for
different numbers of trees (ntree) are shown for an miry of 17, the default. It seems
that the number of trees in a forest doesn’t have that much impact on the performance.
Looking a little bit closer shows that there are differences, although they are very small,
see Figure 6.6.

As one can see in Figure 6.6, the smallest value of the out-of-bag error rate for a forest
with mtry = 17 available variables at each node is attained at ntree = 700. Looking
at the misclassification rate the situation changes slightly. The minimum is attained at
ntree = 400. Although the differences are again quite small.
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Figure 6.5: Estimated error rate [oob] based on the OOB data (training data) for mtry =
17 and different values of ntree. These are the mean values of 25 forests.
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Figure 6.6: Estimated error rate [oob] based on the OOB data (training data), as the
mean value of 25 grown forests, with mtry = 17 and different values of ntree.
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Figure 6.7: Misclassification rate [mcr| based on the test data set as the mean value of
25 grown forests with mtry = 17 and for different values of nitree.
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To set a value for ntree the values and their development of the misclassification rate
(Figure 6.7) based on the test data and the out-of-bag error rate (Figure 6.6) based on
the training data were compared. Since the decrease of the out-of-bag error rate isn’t
perfectly matched to the decrease of the misclassification rate, the number of trees in the
forest was set to 600. Although the minimum values for both error rates is not reached
at this point, the misclassification rate and the out-of-bag error rate are more or less
the same at this point which was the main reason for setting ntree at this point. The
parameter is now fixed at ntree = 600.

Comparing the error rates for different values of miry in Figure 6.8 and Figure 6.9 shows
that there is a reduction in the error rates as the number of available feature variables at
each node increases. Up to a certain point, which is here at mtry = 58. After that the
error rate seems to increase again. The minimum for both error rates ([mcr] based on the
test data set and [oob] based on the training data set) seems to be at the value exactly
between /p ~ 17 and %p ~ 99, the default for regression. Since both error rates agree
and there are some approaches where the number of available feature variables at each
node was increased due to noise in the data, the value for mtry is fixed at mtry = 58.
The general results and also the details of them later on don’t differ really when mtry is
set to 17. But since there are a lot of variables especially with respect to the number of
observations and some of the variables are quite noisy the parameter for mtry was fixed
at the median between the default for classification and the default for regression.
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Figure 6.8: Misclassification rate [mcr| based on the test data set, as the mean value of
25 grown forests, with ntree = 600 and different values of mtry.
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Figure 6.9: Estimated error rate [oob] based on the OOB data (training data), as the
mean value of 25 grown forests, with ntree = 600 and different values of mtry.

A little comment: The results, the effects and almost every outcome don’t really
change when the parameter mtry is altered.

More detailed values for much more combinations of ntree and mtry are in the appendix,
Al

The magic numbers are now fixed at ntree = 600 and mtry = 58 for all further
forests, without exception.
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6.5.2 Using Random Forest to Classify the Meteorites

With the determined parameters ntree = 600 and mtry = 58 a Random Forest is now
ready to be trained on the comecs data set. First 65% of each of the 11 classes are
considered as training data and the remaining 35% (of each class) represent the test
data set.

As seen in the previous section the out-of-bag error rate [oob] (misclassification rate of
the trained forest) and the misclassification rate [mcr] obtained based on the test data
set the forest performs quite well. But since the data is quite unbalanced, the situation
changes when looking at the class error rates [cer] and the predictive abilities [aby].

6.5.2.1 Doing Nothing

Not balancing the (unbalanced) data set will result in uneven class error rates for the
forest itself and more or less poorly predictive abilities for the test data.

Looking at the estimated error rate [oob] in Figure 6.10, which was calculated within the
forest using the OOB data, the forest performs quite well. According to the out-of-bag
error approximately 12% of the data are misclassified. This changes when looking at the
class error rates in Figure 6.11.
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Figure 6.10: Estimated error rate [oob] based on the OOB data (training data). This is
the mean value of 25 grown forests.
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Figure 6.11: Due to the unbalanced classes the class error rates [cer| obtained from the
forest (based on the training data) are quite uneven, some better, some worse. Also here
the mean value (for each class) is aggregated based on 25 forests.

One can obtain that the error rates for each individual class are not that good. Espe-
cially the class error rate for the meteorite-class mocs is really bad. Nearly 37% of the
observations of this class were misclassified, although it is not one of the smallest classes
(with 85 observations). The smallest class, the meteorite-class tieschitz performs quite
well, compared to the others. Its error rate is approximately 14%. The meteorite-class
ochansk has also a quite high error rate.

The challenges of unbalanced data are here quite observable. Although the forest itself
performs really well in terms of the OOB error rate, the situation changes in terms of
class error rates. Interesting to see is also, that not the smallest class has the worst class
error rate. But this might be because of the actual data set and may not be the general
behaviour. However, in case of a binary classification this effect of unbalanced data on
the class error rate of the smaller class is applicable. As seen in Figure 4.1 also for the
olives data set the class error rate of the smallest class wasn’t the worst one.

However, the effects of unbalanced classes on the performance of a forest can easily
be seen. The unevenness and inequalities of the class error rates might be the most
unpleasant effect since one wishes for a good performance of a classifier for every class
as well as for the whole forest.
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Looking at the evaluation of the test data set, the situation is more or less the same as
it was regarding the training data set. The misclassification rate [mer|, shown in Figure
6.12, which represents the proportion of the test data which were misclassified (assigned
to the wrong class) is quite low, around 12%.
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Figure 6.12: Misclassification rate [mcr] based on the test data as the mean of 25 forests.

So the forest performs also quite well on the test data set - in terms of the misclassification
rate. Looking at the performance of the forest for each class individually, the situation
changes again. The predictive ability (which is so to say 1 minus the class error rate based
on the test data) represents the proportion of each class, which were not misclassified -
they were assigned to the right class. A predictive ability of 1 would be the best case.
As one can see in Figure 6.13 in terms of the predictive ability [aby] the mean values
(of 25 forests) are very uneven, some are better, some are worse. The interesting thing
is that the predictive ability shows the same behaviour as the class error rate for the
training data did. The worst value can be obtained for the meteorite-class mocs, which
had also the worst class error rate. Also again the classes ochansk and pultusk perform
not that well. The smallest class tieschitz, however, performs quite well.
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Figure 6.13: Predicitve ability [aby] for each class again as the mean of 25 forests,
calculated using the test data set.

6.5.2.2 Balancing the Data

The inequality and unevenness in the class-wise evaluation is considered to change when
the data is balanced, at least for the training data (class error rates).

First the effects on the performance of the forest itself, so based on the training data, are
analysed concerning the out-of-bag error rate. Applying oversampling one can expect
a decrease of the overall error rate, since the original performance of the forest on the
unbalanced data set was already quite good. Because the number of observations are
artificially increased by sampling (from the classes) with replacement the observations
that were already classified correctly are almost surely again correctly classified and
therefore, the error rate will decrease.

Applying undersampling causes different effects on the performance. Since all classes,
except the smallest one, have to be down sized one risks the loss of important information.

The effects of applying same-size sampling (ntp) on the performance of the forest are
considered to be quite similar to those of applying oversampling, since more classes have
to be blown up and only a few have to be down sized.
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Figure 6.14: Effects of balancing methods on the out-of-bag error rate, which is based
on the training data set. The values are the mean values aggregated from 25 forests.

As one can see in Figure 6.14, applying balancing methods will change the overall error
rate. Oversampling and same-size sampling, where the total number of observations
stays the same, causes a decrease of the overall error rate. Undersampling, however,
leads to an increase.

Applying balancing methods is considered to effect the class error rates (which were
calculated based on the training data) in that way that the overall error rate becomes
more informative. More evenly distributed class error rates would reflect the equal
importance of all classes and that the forest is trained with the same respect to each
class. The effects on the overall error rate due to balancing should be reflected in the
class error rates.
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Figure 6.15: Effects of applying balancing methods on the class error rates [cer] (training
data). Shown are the mean values from 25 forests.

As one can see in Figure 6.15, it’s conspicuous how balancing effects the class error
rates [cer] especially when applying oversampling and same-size sampling (ntp). The
class error rates are more evenly distributed and are related to the overall error rate
[oob], so they reflect the overall error rate as well as the overall error rate reflects them,
which is a very desirable characteristic when it comes to multiple-class classification.
Undersampling performs not that well. The extremely good performance of oversam-
pling, however, has to be observed with caution. Be aware that oversampling in this
case means that every class has now 240 observations (the class substrate contains 240
observations). This is almost ten times as many data points as the smallest class con-
tains (the meteorite-class tieschitz contains 27 observations). This might increase the
danger of overfitting, or it might not be appropriate at all for some cases, because one
changes the prior probabilities of certain classes, which may not be wanted.
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Figure 6.16: Effects of balancing on the misclassification rate [mcr|, which was calculated
using the test data set. The values are the aggregated mean values of 25 forests.

Regarding the misclassification rate [mcr], which is based on the test data set, it is
interesting to see in Figure 6.16 that the effects of balancing are not that drastic, not
that obvious compared to those on the training data (as seen in Figure 6.14). Applying
oversampling or same-size sampling (ntp) the misclassification rate stays more or less
the same. Only applying undersampling seems to cause an increase, which relates to the
effects on the overall error rate and the class error rate based on the training data set.
So looking at the misclassification rate balancing the data at least doesn’t worsen the
situation.
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Figure 6.17: Effects of balancing on the mean values (of 25 forests) of the predictive
abilities [aby] (based on the test data set).

Regarding the test data, the results of the evaluation in terms of the class-wise predictive
abilities don’t change that much in comparison to the unbalanced case as one can obtain
from Figure 6.17. The rates are still uneven but at least better when oversampling or
same-size sampling (ntp) is applied. Also the order of the classes in regarding their
performance doesn’t change. However, it did change in terms of the class error rates
(training data) as seen in Figure 6.15. The worst class is now a different one than it
was for the unbalanced case. Since the values are the aggregated means of 25 forests in
total, one can also take a look at the variability.

As one can see in Figure 6.18, the variance of the predictive abilities [aby] increases
slightly when balancing methods are applied, especially when the data is undersampled.

Although at first glance these effects may not be good, comparing Figure 6.16 and Figure
6.17 shows that the misclassification rate in each case relates to the predictive abilities,
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which is very important.

So it seems that oversampling and in this case also same-size sampling might lead to
overfitting, but overall spoken it improves the performance of the classification itself and
improves it for the test data set, although these effects are not that obvious as for the
training data set. Undersampling, however, performs very poorly.

To show the effects on the predictive abilities more detailed in Figure 6.19 and Figure
6.20 the rates [aby] for the meteorites mocs and ochansk, which performed very poorly in
the unbalanced case, are pictured. The predictive ability for both classes really improves
when oversampling or same-size sampling is applied.
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Figure 6.18: Effects on the raw predictive abilities [aby] (test data).
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Figure 6.19: Predictive ability [aby] for the meteorite-class mocs.
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Figure 6.20: Predictive ability [aby] for the meteorite-class ochansk.
78



6.5.2.3 Computing Time

One further interesting part regarding various balancing methods is not only the effect on
the performance and the data itself but also the computing time that is needed. Random
Forests are known for being fast also on very big data sets. The computing time increases
as the number of observations, the size of the data increases, as the number of trees in
the forest and also if the number of available feature variables at each node increases.
Nevertheless, this increase in time it takes to grow a forest is not dramatic.

The simulations were performed using a 3.20GHz CPU with 16GB RAM.

Growing a forest with ntree = 600 tress and mtry = 58 variables available at each node
will take approximately about 6.3 seconds. If the data is balanced with the same-size
sampling method, where the total number of observation stays the same, the forest will
also need around 6.3 seconds to grow. If the data is oversampled, which will increase
the total number of observations from 1035 to 2640, the computing time increases to
approximately 18 seconds. Undersampling on the other hand reduces the total number
of observations to 264, which changes the computing time to 1.4 seconds. Growing not
only one but 25 forests will cause a decrease in time.

The computing times were measured for the R function nmitree where the data was
divided into a training and test data set according to the percentage rule. The code can
be found in the appendix, 7.

If the parameters ntree and miry are changed then the computing time also changes.
Growing a forest with only ntree = 100 trees in it and mtry = 58 variables available
at each node takes approximately 1.09 seconds. Oversampling will increase this to 3.01
seconds, while undersampling decreases the time to 0.28 seconds. Those computing
times stay more or less the same if the parameter miry is altered.

niree ‘ miry H non ‘ ntp ‘ over ‘ under
600 58 6.30 | 6.28 | 18.04 | 1.39
600 17 6.86 | 6.45 | 18.41 | 1.31
100 58 1.09 | 1.08 | 3.01 0.28

Table 6.4: Computing times (in seconds) for growing a forest with different numbers of
available variables and trees in the forest and for different balancing methods.

So it seems that the time it takes to grow a forest increases directly with the number
of trees in the forest. The number of available variables has only little influence on the
computing time.
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6.5.3 Binary Classification - One Class Against All

The main problem of an unbalanced multiple-class classification, or at least the easiest
to detect, seems to be the inequality and unevenness of the individual class error rates
first of all especially for the training data. The classifier focuses more on the bigger
classes such that the misclassification of an observation of the smaller classes doesn’t
have that much impact on the total misclassification rate. Hence, a maybe not obvious
but possible way to avoid this unevenness is to do a binary classification rather than a
multiple-class classification. The multiple classes have to be divided into two classes.
For the comecs data set there are two possible ways to do a binary classification. The
first one would be to label only one meteorite-class as class A and all other classes as
class B. This means, however, that one is trying to distinct one class from the blurry
class of all others. Since the classes are different from each other and the information of
all those differences is still contained in the big class, this binary classification may not
be the best option. The training and test data sets are again divided according to the
65%-35% rule (see 6.2.1).

Regarding the training of the forest, there are not many differences between the results
for the original multiple-class classification and the binary classification. It is interes-
ting to see that a binary classification aims much better results than the multiple-class
version. There one can see the difficulties not only of unbalanced data but the raw
differences between a binary and a multiple-class classification. Since the bigger class
which represents all classes except one contains now so much more observations compa-
red to the smaller one, the class error rate for the small class is quite high. Be aware
that the class error rates shown in Figure 6.22 are now calculated for each classification
individually. Since there are only two classes and the focus lies on the smaller single
class, its error rate is the only one concerned. Applying balancing methods lead to a
drastic reduction of those error rates, especially oversampling seems to boost those ra-
tes. Since the predictive ability for the individual classes (for each binary classification
individually) doesn’t really seem to improve, oversampling results in a massive overfit.
Although the single smaller class is oversampled, it seems that learning from the balan-
ced data doesn’t improve the classification of the test data set, it seems to worsen it.
But as mentioned before doing a binary classification in this setting means a great part
of the information is used to classify the bigger class. All classes in the "big’ class still
differ from each other but the forest has to assign them to the same class. So a lot of
information has to be used to do that while there is less information left to classify the
single smaller class.

Doing a binary classification in this way is not meaningful.
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Figure 6.21: Effects of balancing on the estimated error rate [oob] based on the OOB
data for the 11 binary classifications.
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Figure 6.22: Effects of balancing on the class error rate [cer| for current ’smaller’ class
based on the training data (11 binary classifications).
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Figure 6.23: Effects of balancing on the misclassification rate [mcr] based on the test
data for the 11 binary classifications.
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Figure 6.24: Effects of balancing on the predictive ability [aby] for the current ’smaller’
class based on the training data (11 binary classifications).
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6.5.4 Binary Classification - Each Class Against One Other

Since the binary classification using all other classes as one big class isn’t really use-
ful, another possible way of doing a binary classification and therefore, using the great
strength of the classifier to do a binary classification better than a multiple-class classi-
fication, is to select only two classes from the data set as the two classes in the binary
classification. So one class is for example the meteorite-class allende and the other one
could be lance. This leads to a large number of binary classifications, since every class
will be ’tested’ against each other class. This leads to 55 binary classifications. Since
showing the results for all of them would go beyond the scope of this thesis some re-
sults of the binary classification of allende vs lance and of mocs vs pultusk are shown
exemplarily. Applying balancing methods again leads to slightly smaller out-of-bag error
rates for the training data, only undersampling performs badly. This effect can also be
seen for the misclassification rate, which is based on the test data set. This version of
a binary classification may be used to determine if two meteorites differ much or less
from each other and maybe also to determine how a classifier performs when classifying
a meteorite-class against the substrate-class. But since unbalanced binary classificati-
ons were investigated quite frequently so far and weren’t topic of this thesis, this is not
pursued any further.

A great advantage of a binary classification is that the overall error rate represents
the class error rates much better than it does regarding a multiple-class classification.
Because there are only two options, either class A or class B, there are also only two
possible ways of a misclassification.

The overall error rate [oob] for the binary classification allende against lance is shown
in Figure 6.25. The error rate is already quite small for the unbalanced data set (the
meteorite-class allende contains 170 observations, while lance contains 77), it can be
assumed that around 6% of the observations will be classified incorrectly with this forest
in general. Oversampling and same-size sampling reduce the overall error rate.

This effect can also be seen in Figure 6.26 for the binary classification mocs against
pultusk. The error rate for the unbalanced case (the meteorite-class mocs contains 66
observations, while pultusk contains 78) is approximately 14%. Although those two
classes are already of almost equal size, oversampling and same-size sampling decrease
the out-of-bag error rate [oob] drastically to approximately 4% and 1%.
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Figure 6.25: Out-of-bag error rate [oob], which is based on the training data for the
binary classification of allende against lance, as the mean value of 25 forests.
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Figure 6.26: Out-of-bag error rate [oob], which is based on the training data for the
binary classification of mocs against pultusk, as the mean value of 25 forests.
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Evaluating the forest of the binary classification based on the test data set leads to
similar results. The effects of balancing on the binary classification allende against lance
can be seen in Figure 6.27. The misclassification rate [mcr| which is approximately 6%
for the unbalanced data decreases (slightly) when the data is oversampled. It increases,
however, when same-size sampling is applied.

Undersampling seems to perform badly in any case.

The misclassification rates for the binary classification mocs against pultusk are shown in
Figure 6.28. The error rate for the unbalanced data is approximately 12%. Oversampling
reduces that to a misclassification rate of approximately 10%.

All in all one can say that oversampling performs quite well for a binary classification of
only two meteorite-classes.
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Figure 6.27: Misclassification rate [mcr|, which is based on the test data for the binary
classification of allende against lance, as the mean value of 25 forests.
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Figure 6.28: Misclassification rate [mcr|, which is based on the test data for the binary
classification of mocs against pultusk, as the mean value of 25 forests.

The results for all 55 classifications can be found in the appendix, A.2 in Figure 3 and
4.

6.5.5 Leave-One-Corn-Out

The special structure of the comecs data set with multiple corns on four different targets
allows another version of splitting the data into training and test data sets, the so-called
leave-one-corn-out method. Each corn, which contains a certain number of observations
(again different for every corn), represents an independent test data set. Since the
meteorite-classes ochansk and tieschitz have only one corn those were removed from the
data set, also the substrate-class was removed because the classification of the background
is not that interesting in this setting. The remaining observations are now distributed
on 41 corns. As shown in Table 6.3 every class of the remaining 8 classes has a different
number of corns. Each of the 41 corns is then a new test set. This leads to 41 multiple-
class classifications. Also in this case for every corn 25 forests were built to get more
reliable evaluation-rates. The corns are labelled with their meteorite-class, the target-id
and the corn-number (corn-id) on that target.

Looking at the out-of-bag error rate and the class error rates, which are calculated based
on the training data, the forest performs quite well. This is, however, not very surprising,
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since there are now even more observations - actually all observations except those of one
single corn, which contains at least one observation and not more than 56 observations.
The balancing is only applied to the training data set and in this case all the classes are
balanced. So the balancing considers not only the class of the corn in the test set but all
classes at once. In Figure 6.29 and 6.30 the effects of applying balancing methods can
be seen as very similar to those of the original version in Section 6.5.2.2. The out-of-
bag error rate decreases when the data is oversampled and when same-size sampling is
applied. Also undersampling seems to perform slightly better in this setting, although
it may not be the best option. Each balancing method is applied to all observations
except to those of one single corn. So the forest can be trained on a data set which
contains almost all the information. If undersampling is applied there’s less information
that will be dropped compared to the original case. The class error rates are more even.
Balancing the data also causes a decrease of the class error rates whereby oversampling,
again, seems to have the largest possible effect. All balancing methods lead to more
evenly and equally distributed class error rates whereby applying oversampling, again,
seems to have the largest effect. Also same-size sampling and undersampling perform
quite well.

The situation changes when looking at the misclassification rate and the individual class-
wise predictive abilities, which were calculated based on the test data set, which is in
this setting represented by only one single corn. Since the different corns are as well of
very different sizes, the evaluation on each corn has to be treated and interpreted with
caution. The corn tissint_4F1_6 - which is placed on target with id 4E1 and has the corn
id number 6 - contains only one single data point. The corn allende_4B7_3 - target-id:
4B7, corn id: 3 - contains 56 data points, it is the corn with the most observations. In
Table 6.5 the corns with only one single data point are listed.

corn label
pultusk_4B9_6
pultusk_4B9_7
tamdakht_4B9_12
tamdakht_4B9_13
tissint_4E1_4
tissint_4E1_6

Table 6.5: Label of those corns which contain only one single observation.

Since the test data set contains only observations of a single corn and therefore of one
single class, the misclassification rate can be interpreted as individual class error rate of
the current corn’s class. And since the predictive ability is directly reverse proportional
to the class error rate, it is, therefore, sufficient to take a look on only one of the test
evaluation-rates. Here it stays that mer = 1 — aby. Nevertheless, looking at both ([mer]
and [aby]) in Figure 6.31 and Figure 6.32 the meteorite-classes mocs and lance seem to
perform extraordinary badly. They have the smallest predictive ability and the highest
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misclassification rate. The reason for that is not really known. It may be that the
individual corns of those classes differ too much from each other and should better be
considered as different classes rather than as the same class. Since the corns are known
to be from the same class, because they belong to the same meteorite, these differences
might result from errors in the measurements or from an inhomogeneity of the meteorite
itself. The other meteorite-classes perform quite well in terms of the misclassification
rate and the predictive ability.

The different numbers of observations contained in each corn may lead to the conside-
ration to balance the data based on the corn-sizes. This, however, is not useful in this
setting, since only one corn is in the test set and all the others in the training set are
labelled with the right class. So the problems from unbalanced learning for the forest
are based on the unbalanced classes itself and not the different corn-sizes.

A further possible version of a classification in this setting where the corns itself could
be balanced would be to run an unsupervised classification on each meteorite-class indi-
vidually. This may give some insight in whether the corns differ much form each other,
or if a corn-based classification is actually useful.
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Figure 6.29: Out-of-bag error rate [oob] where each corn represents the test set for a
classification. So for each corn a new forest was grown.
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Figure 6.30: Individual class error rate [cer] for the class of the current test data set
which consists of only one corn.
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Figure 6.31: Misclassification rate [mcr] where each corn represents the test data set for
a classification.
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Figure 6.32: Individual predictive ability [aby] for the class of the current test data set
which consists of only one corn. One can obtain from this figure whether a corn seems
to differ much from the other corns in its meteorite-class.



6.5.6 Count The Corns

The binary version of classifying the meteorites (the comecs data set) has shown that
there might be some differences among the corns within one class. This leads to the
idea to divide the data into a training and test data set based on the corns. Also to
compare the Random Forest with other classification methods like kNN, this setting of
training and test data sets makes sense. For each class (the 10 meteorite-classes and
the substrate-class) around 2/3 or 3/4 of the corns are considered as training data and
the remaining corns represent the test data. Since each class has a different number of
corns, also the number of corns in the different sets and therefore, the proportion differs.
As seen in Table 6.2 the meteorite-classes ochansk and tieschitz have only one corn and
were, therefore, removed from the data set entirely for this of classification version. The
numbers of corns in the training and test data sets are listed in Table 6.6.

class label | Number of corns | #corns in the training set | #corns in the test data sets
allende 4 3 1
lance 2 1 1
mocs 6 4 2
murchison 2 1 1
pultusk 11 7 4
renazzo 2 1 1
tamdakht 9 6 3
tissint 6 4 2
substrate 4 3 1

Table 6.6: Number of corns in the training and test set

The highly unbalanced data set is again balanced with three different methods. It is
expected that the out-of-bag error rate for the forest based on the training data decreases
when oversampling is applied. Also the class error rates should decrease and be more
evenly distributed. Since the effect of balancing the data on the test set where already
quite small compared to the effects on the training set, the effects are expected to be
slightly less. This is caused by the differences of the observations of the different corns
within one class.
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Figure 6.33: Out-of-bag error rate [oob] based on the training set as the mean value of
25 forests. The training and test data sets are separated corn-wise.

Looking at the actual out-of-bag error rates in Figure 6.33, one can see the immediate
effects of balancing. The overall error rate decreases sharply especially when oversam-
pling is applied. As already seen in Section 6.5.2.2, undersampling doesn’t improve the
classification, neither in terms of the out-of-bag error rate nor in terms of the class error
rates. The class error rates are as expected more equally distributed and smaller when
oversampling is applied.
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Figure 6.34: Class error rates [cer] based on the training set as the mean value of 25
forests. The training and test data sets are separated corn-wise.

Looking at the evaluation of the test data set, the situation changes. As already seen in
Section 6.5.2.2, where the data was divided into training and test data sets according to
the raw percentage-rule, the effects of balancing on the test set are by far not that drastic
as they were regarding the training set. The misclassification rate (see Figure 6.35) seems
to decrease only very, very slightly. Also the predictive abilities (see Figure 6.36) for
each class don’t really seem to improve and are far from being even. What’s, however,
interesting to see is that the two meteorites-classes lance and mocs, which performed
not that well in almost every situation (compared to the other classes) and especially as
seen in Section 6.5.5, performed again very poorly. So it seems that the corns of those
two classes in particular have differences in the composition of spectra which relate to
very different observations. These two classes seem to be very inhomogeneous.
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Figure 6.35: Misclassification rate [mcr] based on the test data as the mean value of 25
forests. The training and test data sets are separated corn-wise.
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Figure 6.36: Individual predictive abilities [aby] for each class based on the test data as
the mean value of 25 forests. The training and test data sets are separated corn-wise.

It seems that learning better from other corns due to balancing (oversampling in parti-
cular) but improving the prediction(classification) of new corns only a little bit is caused
by the corns differences in their composition. Applying oversampling tends to overfit,
which may be severe for some other cases. However, balancing, more precisely overs-
ampling, does result in slightly better and slightly more equally distributed predictive
abilities even though those improvements are somewhat hard to detect.

6.5.6.1 Each Class Against Each

The effects of the suspected differences between the corns of one class can also be seen
when a binary classification is done. The advantages of a binary classification as already
mentioned in Section 6.5.4 are mainly that the classifier can be trained better on only
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two classes rather than on multiple classes. For the comecs data set a binary classifi-
cation would only be useful if two classes each are tested against each other. A binary
classification with one small and another big class which contains all classes except one
is not appropriate. Since the meteorite-classes lance and mocs had such low predictive
abilities and performed in general badly regarding a classification based on corns (see
Section 6.5.5), the results for the classification of lance vs murchison and of mocs vs
tamdakht are analysed and discussed.

The problem with differences within one class is that the possibility of one corn being
more similar to a corn of another class rather than to the corns of its actual class makes
it even harder to distinguish between the classes. Hence, the classification will suffer
from lack of precision if there is a large heterogeneity within one class. Especially the
prediction of new corns is expected to be really difficult. As shown in Figure 6.37, the
predictive ability of the class lance is quite low. It seems that only approximately 24% of
the observations of the meteorite-class lance are assigned correctly by the trained forest.
That means that the remaining 75% of this class were falsely classified as observations
from the meteorite-class murchison. Same-size sampling improves this lack of precision
while oversampling and undersampling seems to worsen it. The reason for that might
be that the differences between corns of the meteorite-class lance are bigger then the
differences to the corns of the meteorite-class murcison, so the trained forest will assign
the 'new’, more different observations to the wrong class more likely.

lance_vs_murchison
non ntp over under

100-
0.75-
025- I
AnAE

Figure 6.37: Predictive ability [aby] for the meteorite-class lance drawn from the binary

classification lance vs murchison. The training and test sets were divided regarding the
corns.
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Also predicting the class mocs, shown in Figure 6.38, works not really well. It is very
surprising that of all methods undersampling improves the predictive ability (see Figure
6.38). There maybe only few observations that differ much so applying undersampling
could remove those.

mocs_vs_tamdakht
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Figure 6.38: Predictive ability [aby] for the meteorite-class mocs drawn from the binary
classification mocs vs tamdakht. The training and test sets were divided regarding the
corns.

The results of the evaluation for all 55 classifications are shown more detailed in the
appendix, A.3.

6.5.7 Votes

Random Forest has one parameter which represents also a possibility to deal with unba-
lanced data. The parameter called cutoff sets the voting rule for the forest. By default
every forest assigns each observation according to the majority vote of the individual
trees. Each observation is classified by every tree in the forest, so every tree results in a
class label for the current observation. If the majority of the trees classified the observa-
tion as class A, then the observation will be assigned to this class (see Section 4.2). Due
to the imbalance the smaller classes might be underrepresented in the forest, hence, they
might be missing in some trees or rather the belonging bootstrap samples. In the worst
case the whole class is missed in a tree, hence, this tree hasn’t even got the chance to get
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it right. This means that the forest is not that well trained on the smaller classes. One
could, therefore, change the rule of voting in the forest to focus a little bit more on the
underrepresented classes. Changing those votes, however, is only meaningful for a binary
classification. It is actually possible to set the cutoff parameter also for a multiple-class
classification, but there has to be an individual vote-rule for every class, which all have
to sum up to one. Setting those is extremely difficult. For a binary classification it is
still not easy to find the right parameter, but the decision on how to change them may
be a little bit easier, since there are simply less possibilities. Changing the votes should
lead to smaller class error rates for the smaller class but larger class error rates for the
bigger class. So changing the votes might not be useful in every situation. However,
especially regarding medical issues, such as cancer or general disease studies, the smaller
class might be the only one of importance. The consequences of not detecting a disease
might be much more severe than falsely predicting one. What’s, therefore, also of high
importance is that the prediction of new observations can be trusted, again in that sense
that the focus lies on the more important, smaller class.

Although a binary classification for the comecs data set is not that reasonable, the effects
of changing the votes are nevertheless shown for a cutoff set from 50% (non) to 10%
exemplarily for the meteorite-class allende. Comparing the individual class error rate
with the overall error rate in Figure 6.39 there seems to be an reverse effect. While the
individual error rate for the smaller class decreases, the overall error rate increases. This
it why changing the votes means changing the focus on the classes from the bigger class
to the smaller one rather than trying to focus on them equally. This holds for both,
the evaluation of the training data and the evaluation of the test data. Also interesting
to see that if a class already performs quite well, the benefits of changing the votes for
the individual class are less than the worsening of the overall error rate. So one has to
chose the cutoff such that the improvements for the individual (maybe more important)
class are related to the decline of the performance regarding the bigger class. This is
why changing the votes might only be really useful for disease studies and similar. For
the comecs data set this is only useful if one is trying to focus on each meteorite-class
individually rather than focus on all classes at once.

The results for all meteorite-classes are shown in the appendix, A.4.
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Figure 6.39: Effects of changing the votes on the predictive ability [aby], the misclassifi-
cation rate [mcr], the class error rate [cer] and the overall error rate [oob] for the binary
classification where the meteorite-class allende represents the smaller class in the binary
classification.

6.5.8 Variable Importance

A very nice feature of Random Forests among all the others is that while the forest is
trained a so-called variable importance measure can be calculated. A higher variable
importance in terms of the mean decrease in accuracy (or others, see 2.2.4) means
that if this variable performs the split, the following nodes are purer than if a less
important variable would have performed the split. The effects of balancing the data
especially on the rank of the variables according to their variable importance measure are
shown in Figure 6.40. The five most important variables according to the importance
measure don’t change that much when balancing methods are applied. Their rank,
however, changes. It can also be seen that the different balancing methods show quite
few differences. Since balancing means that certain classes become suddenly bigger and
the classification of those are certainly done better with different feature variables, this
effect isn’t surprising, although interesting.
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The variables called m40, m56 and m27 seem to be very important in terms of the mean
decrease in accuracy for both the unbalanced and the balanced classification. Taking a
look at the actual variables for all observations gives a clear image why those might be
important. Since a variable is considered to be more important if the split results in
the purest possible nodes, a distinction between the classes according to that variable
should be visible.

In Figure 6.42 one can see that the variable m&52 can be very useful to distinguish
between the class substrate and all other meteorite-classes. Since it is the biggest class
with 240 observations correctly classifying most of the observations will increase the mean
decrease in accuracy more than if an entire, much smaller class is classified correctly.
The situation changes of course when the data is balanced. The classes contain then the
same number of observations. As seen in Figure 6.40, the variable m56 is no longer the
most important one, although still among the ’top five’. The most important variable
for the balanced classification seems to be the variable called m40. Looking at the
distribution of this variable over all data points in Figure 6.41 this is reasonable since
the meteorite-class murchison, ochansk and tissint can be very easily distinguished from
all others. Also a quite important variable for the balanced classification seems to be
the variable m27, which is shown in Figure 6.43.

m40 — Calcium lon
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lance ¢ murchison - pultusk - substrate tieschitz

Figure 6.41: The variable m/0 for all observations.
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Figure 6.43: The variable m27 for all observations.

Unlike the more important variables, the less important variables seem to be very noisy
and blurry throughout all classes. There is not really a distinction possible between
the classes looking at the variable m200 in Figure 6.44. Also the distribution of the
values for the variable m244 are widely scattered (see Figure 6.45). Since this excessive
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scattering occurs in many other variables as well, the data can be referred to as noisy

data, which complicates the classification.

m200 — Mercury lon

. ‘. i i
i . o © 1 o f °® f °®
.o Y Q .-~ O .o~ O L .
e . o ° a:. o ° a:. o . .
®e Ce s & [ PP . = ) 'y
.ﬁ ‘.o.:' ‘--. © ‘--‘ = ° o ..o
Tt % T e Taegmlenoidlel ¥
> . ° L o 3 ° 5 . : ° 5 Y : e . X
o R s e SR SN s, Ale
o2 '.:.. . .‘ 'o" .:.‘.\ ¢ .. * o. o. *. o ;.’. .: c' .Q.\'
o ° 9% o g0 o o o oo 0TS¢ o o ®o
e ARG Tt e e N T g
* o te g Soot ° . ° % N
e o o & L] o0 o0 o0 °
- allende - mocs « ochansk < renazzo - tamdakht - tissint

< lance < murchison - pultusk - substrate - tieschitz

Figure 6.44: The variable m200 for all observations.
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Figure 6.45: The variable m244 for all observations.
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Chapter 7

Conclusions

Regarding the comecs data set it can be concluded that oversampling leads to the best
results with respect to the training data as well as to the test data. The class error rates
of the training data are much lower and also the predictive abilities for the independent
test data improve. This holds for almost every version of classification that has been
done. The main problem of imbalance, being that the class error rates are so to say also
unbalanced and not reflected in the overall error rate, can be overcome very effectively
by oversampling and also same-size sampling. Same-size sampling is almost as good
as oversampling sometimes even better in terms of the effects of balancing. This and
the tendency of oversampling cause overfitting lead to the conclusion that same-size
sampling may be the most appropriate balancing method for this classification problem.
Also, it takes less computing time than oversampling.

Dealing with unbalanced multiple-class classification in general is a hard task. The
purpose of the classification, the importance of the multiple classes and the effects of
different balancing methods are different for every data set. Balancing methods that are
based on a method of random subsampling seem to be more reasonable for multiple-
class problems than cost-sensitive learning, which seems to be more suitable for binary
classifications.

The special structure of the comecs data allowed a corn-wise classification and a binary
classification with only two meteorite-classes. A binary classification where all except
one class are merged into one big class is not meaningful and not recommended, because
a lot of information is used very inefficiently. A lot of information has to be used to
classify the bigger class rather than distinguish the smaller single class from all others.

The binary classification with only two meteorite-classes together with the leave-one-
corn-out version of separating the data into a training and test set can be used to detect
differences in the spectra compositions of the corns within one class. Some corns seem
to be more similar to another class than to corns in the class they belong to. Computing
proximities and using them to do either a visual exploration or a clustering could be
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done to investigate those assumptions.

Not using a sampling method but a vote criterion to overcome the imbalance problem
is not useful for the comecs data set. It might be useful and appropriate for a binary
classification together with ROC curves. Especially in medical studies where one class
may be more important than the, other often much bigger, class, because by changing
the votes the focus can be relocated to the more important class.

Additional simulations have shown that the parameters ntree and mtry have only little,
almost negligible impact on the performance of the Random Forest. The main differences
can be seen in the computing time. Using the default parameter of mtry = 17 instead of
miry = 58 does not change the performance much. The results and effects are more or
less the same only the error rates are slightly higher in general. Since the comecs data
seem to be quite noisy and together with the huge amount of feature variables compared
to the small amount of observations the larger number of miry is legitimate.

All in all Random Forest has proved to be very sufficient and fast for classifying the
multiple, unbalanced classes of the comecs data set.

108



Appendix A

A.1 The Magic Numbers
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Figure 1: Estimated error rate [oob] based on the out-of-bag data (training data), as the
mean value of 25 grown forests for different values of mtry and nitree.
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Figure 2: Misclassification rate [mcr| based on the test data set as the mean value of 25
grown forests, for different values of mtry and ntree.



A.2 Binary Classification - Each Class Against Each
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Figure 7: Effect of changing the votes on the out-of-bag error rate [oob] for the 10 binary
classifications of the meteorite-classes.
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Figure 8: Effect of changing the votes on the individual class error rate [cer] of the
current ’smaller’ class for all 10 binary classifications of the meteorite-classes.
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Figure 9: Effect of changing the votes on the misclassification rate [mcr] for the 10 binary
classifications of the meteorite-classes.
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current ’smaller’ class for all 10 binary classifications of the meteorite-classes.
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Appendix B

#R code Random Forest
# unbalanced mulitple-class classification
# comecs data set

#training and test set - 65/35 % rule
# separates the data in to trainng and test data sets
# according to the percentage rule
sets <- function(selected_data) {
rowid <- seq_len(nrow(selected_data))
ind <- tapply(rowid, selected_data$names,
function(i){
sample (i, size = 0.65*length(i))
b
ind <- unlist(ind)
train_set <- selected_datal[ind,]
test_set <- selected_datal[-ind,]
return(list(train = train_set,
test = test_set))
} # end fct sets

#### count the corns/grains ####
# corn-wise separation into training and test data sets
sets_grain <- function(selected_data) {
#allende 3|1, lance 1|1, mocs 3|2, murchison 1|1, ochansk 110,
#pultusk 7|4, renazzo 1|1, substrate 3|1, tamdakht 613,
#tieschitz 1|1, tissint 4|2
corns <- tapply(droplevels(selected_data$group), selected_data$names,
function(i){
grains <- unique (i)
size <- round(length(grains)=*2/3, 0)
if (size == 0) {size <- 1}
sample (grains, size = size)
B
corns <- unlist(cormns)
ind <- selected_data$group %in’ corms
test_set <- selected_datal['ind,]
train_set <- selected_datal[ind,]
return(list(train = train_set,
test = test_set))
} # end fct sets_grain

#### balancing the data ####

# non ... unbalanced

# ntp ... same-size sampling
# over ... oversampling

# under ... undersampling

sets_balance <- function(data, sampling=’non’, perc=1/11, class) {




90
91

92
93
94
95
96
97

99
100
101
102
103
104
105
106

if (sampling == ’non’){
balanced <- data

}

else {

N <- nrow(data)
rowid <- seq_len(N)
class_tab <- table(datal[,class])
if (sampling == ’ntp’){
size <- round(percx*N,0)

}

else if(sampling == ’over’){
size <- max(class_tab)

}

else if (sampling == ’under’){
size <- min(class_tab)

}

ind <- tapply(rowid, datal,class],
function(i){
sample (i, size = size, replace=TRUE)
»
ind <- unlist(ind)
balanced <- datalind,]
}
return(balanced)
} #end fct sets_balance

#### multiple-class classification ####
nmtree <- function(n, p, kmax, sampling, perc, selected_data) {
mcr <- seq_len(kmax)
oob <- seq_len(kmax)
grp_names <- levels(selected_data$names)
ncols <- length(grp_names)
ctab <- matrix(nrow=kmax, ncol=ncols, data=NA)
aby <- matrix(nrow=kmax, ncol=ncols, data=NA)
vip <- matrix(nrow=kmax, ncol=ncols, data=NA)
colnames (ctab) <- levels(selected_data$names)
colnames (aby) <- levels(selected_data$names)
for (k in 1:kmax) {
data_k <- sets(selected_data) #data_k <- sets_grain(selected_data)
train <- data_k$train
test_k <- data_k$test
train_k <- sets_balance(data=train, sampling=sampling, perc=perc, class=’names

?)

k_tree <- randomForest(names ~. , data=train_k, ntree=n, mtry=p, importance=
TRUE)

mtab <- table(test_k$names, predict(k_tree, test_k))
mcr [k] <- 1-sum(diag(mtab))/sum(mtab)
oob[k] <- k_tree$err.ratel[n,’00B’]
ctab[k,] <- c(k_tree$confusion[,’class.error’])
for (i in grp_names) { abyl[k,i] <- mtab[i,i]/sum(mtab[i,]) }
vip[k,] <- c(order(k_tree$importancel[,’MeanDecreaselccuracy’], decreasing=TRUE
y[11)
}
return(list (mcr=mcr, oob=oob, cer=ctab, aby=aby, vip=vip))
} # end fct nmtree

#### binary classification - one class against all ####

binary <- function(n, p, kmax, sampling, perc, selected_data) {
names <- levels(selected_data$names)
ncols <- length(names)
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109
110
111
112
113
114
115
116
117
118
119
120
121

122
123
124
125
126

127
128
129
130
131
132
133
134
135

136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157

158
159
160
161
162
163
164

mcr <- matrix(nrow=kmax, ncol=ncols, data=NA)
oob <- matrix(mrow=kmax, ncol=ncols, data=NA)
cer <- matrix(nrow=kmax, ncol=ncols, data=NA)
aby <- matrix(nrow=kmax, ncol=ncols, data=NA)
vip <- matrix(nrow=kmax, ncol=ncols, data=NA)
colnames (mcr) <- names
colnames (oob) <- names
colnames (cer) <- names
colnames (aby) <- names
colnames (vip) <- names
for (k in seq_len(kmax)) {
data_k <- sets(selected_data) #data_k <- sets_grain(selected_data)
train <- data_k[[1]]
test_k <- data_k[[2]]
train_k <- sets_balance(data=train, sampling=sampling, perc=perc, class=’names
)
for (i in names) {
train_k$class <- as.factor(train_k$names==i)
test_k$class <- as.factor (test_k$names==i)

k_tree <- randomForest(class ~. , data=train_k[, -c(298)], ntree=n, mtry=p,
importance=TRUE)

mtab <- table(test_k$class, predict(k_tree, test_k))
if (dim(mtab) [1] == 1) {aby_val <- 0}
else {aby_val <- c(mtab[’TRUE’,’TRUE’]/sum(mtab[’TRUE’,]))}
mcr [k,i] <- c(l-sum(diag(mtab))/sum(mtab))
aby[k,i] <- aby_val
oob[k,i] <- c(k_tree$err.rate[n, ’00B’])
cer[k,i] <- c(k_tree$confusion[’TRUE’, ncol(k_tree$confusion)])
vip[k,i] <- c(order(k_tree$importance[,’MeanDecreaseAccuracy’], decreasing=
TRUE) [11)
}
}
return(list (mcr=mcr, oob=oob, cer=cer, aby=aby, vip=vip))
} # end fct binary

#### binary classification - each class against each ####
allall <- function(n, p, kmax, sampling, perc, selected_data) {
names <- levels(selected_data$names)
group_id <- names[combn(length(names) ,2)]
lgroup_id <- length(group_id)
ncols <- lgroup_id/2
loopid <- seq_len(ncols)
mcr <- matrix(nrow=kmax, ncol=ncols, data=NA)
oob <- matrix(nrow=kmax, ncol=ncols, data=NA)
cer <- matrix(nrow=kmax, ncol=ncols, data=NA)
aby <- matrix(nrow=kmax, ncol=ncols, data=NA)
vip <- matrix(nrow=kmax, ncol=ncols, data=NA)
for (k in seq_len(kmax)) {
data_k <- sets(selected_data) #data_k <- sets_grain(selected_data)
train <- data_k[[1]]
test_k <- data_k[[2]]
train_k <- sets_balance(data=train, sampling=sampling, perc=perc, class=’names
)
for(i in loopid){
groups_i <- group_id[2*i - c(1,0)]
train_i <- train_k[train_k$names %in’ groups_i , ]
test_i <- test_k[test_k$names %in’), groups_i , 1]
train_i$grp <- factor(train_i$names,
labels = c(TRUE,FALSE))
test_i$grp <- factor(test_i$names,

121




165
166
167
168
169
170
171
172
173
174
175

176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217

218
219

220
221
222
223

labels = c(TRUE,FALSE))

k_tree <- randomForest(grp ~. , data=train_il[,-c(298)],
ntree=n, mtry=p, importance=TRUE) #names..

mtab <- table(test_i$grp, predict(k_tree, test_i))

mcr [k,i] <- c(l-sum(diag(mtab))/sum(mtab))

aby[k,i] <- c(mtab[’TRUE’,’TRUE’]/sum(mtab[’TRUE’,]))

oob[k,i] <- c(k_tree$err.ratel[n, ’00B’])

cer[k,i] <- c(k_tree$confusion[’TRUE’, ncol(k_tree$confusion)])

.298

vip[k,i] <- c(order(k_tree$importance[,’MeanDecreaseAccuracy’], decreasing=

TRUE) [11)
} # end for i
selid <- seq(l,lgroup_id -1, by = 2)
thenames <- paste(
group_id[selid],
group_id[-selid],
sep = "_VS_")
colnames (mcr) <- thenames
colnames (oob) <- thenames
colnames (cer) <- thenames
colnames (aby) <- thenames
colnames (vip) <- thenames
} # end for k

return(list (mcr = mcr,
oob = oob,
cer = cer,
aby = aby,

vip = vip))
} #end fct allall

#### each corn represents a test set for another classification ####
corn <- function(mn, p, kmax, sampling, perc, selected_data) {
ind <- selected_data$names %in% c(’ochansk’, ’substrate’, ’tieschitz’

)

data_corn <- droplevels(selected_datal[!ind,]) #ochansk, substrate, tieschitz

corns <- levels(droplevels(data_corn$group))
ncols <- length(corns)
mcr <- matrix(nrow=kmax, ncol=ncols, data=NA)
oob <- matrix(nrow=kmax, ncol=ncols, data=NA)
cer <- matrix(nrow=kmax, ncol=ncols, data=NA)
aby <- matrix(nrow=kmax, ncol=ncols, data=NA)
vip <- matrix(nrow=kmax, ncol=ncols, data=NA)
colnames (mcr) <- corns
colnames (oob) <- cormns
colnames (cer) <- corns
colnames (aby) <- corms
colnames (vip) <- corms
for (k in seq_len(kmax)) {

data_k <- data_corn

for (i in corms) {

name_i <- sub (" (.*?)_.x", "\\1", i)

test_i <- data_k[data_k$group == i, -c(298)] #col 298 ... group

train <- data_k[data_k$group != i, -c(298)]

train_i <- sets_balance(data=train, sampling=sampling, perc=perc,
names’)

k_tree <- randomForest(mnames ~. , data=train_i, ntree=n, mtry=p,
TRUE)

mtab <- table(test_i$names, predict(k_tree, test_i))
if (dim(mtab) [1] == 1) {aby_val <- 0}
else {aby_val <- c(mtab[name_i,name_i]/sum(mtab[name_i,]))}
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class="

importance=




224
225
226
227
228

229
230
231
232

}
}

mcr [k,i] <- c(l1-sum(diag(mtab))/sum(mtab))

oob[k,i] <- c(k_tree$err.ratel[n, ’00B’])

cer[k,i] <- k_tree$confusion[name_i, ncol(k_tree$confusion)]

aby[k,i] <- aby_val

vip[k,i] <- c(order(k_tree$importance[,’MeanDecreaselAccuracy’],
TRUE) [11)

return(list (mcr=mcr, oob=oob, cer=cer, aby=aby,

} # end fct

corn

vip=vip))

decreasing=

R_Code.r
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