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Abstract
This thesis presents an obstacle detection algorithm and compares different
stereo algorithms for robotic applications. Arising problems, such as reflections
of sunlight on surfaces and problems with roll angles, are pointed out during
the use of the obstacle detection algorithm in an robotic application.

The obstacle detection algorithm in this thesis uses disparity images as input
and calculates the v-disparity image, which is used for floor detection. The step
of floor detection makes also use of the Hough transform. Roll angle detection
and correction is presented. The approach of multi v-disparity is created to
compensate the problems caused by a roll angle. Noise reduction methods are
discussed as well as an approach to deal with bright reflections.

The obstacle detection is tested on different experiments that are presented.
The results show that the problems with the roll angle are eliminated due to the
approach of roll angle detection and correction that is presented in this thesis.
Wrong detections caused by reflections that appear due to bright illumination
are also removed by the obstacle detection algorithm. The evaluation shows
that obstacles with a height of 2cm are detectable up to a distance of 1m.
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Kurzzusammenfassung
Diese Arbeit behandelt die Implementierung eines Algorithmus zur Objekter-
kennung im Bereich der Robotik. Dafür wird eine Stereokamera eingesetzt.
Zudem werden unterschiedliche Stereo-Algorithmen verglichen.
Der präsentierte Algorithmus zur Objekterkennung verwendet dabei die

Information der Stereokamera, welche räumlich versetzte Bilder aufnimmt. Der
Unterschied zwischen den beiden Bildern gibt Auskunft über die Tiefe der
abgebildeten Objekte. Dadurch wird die Objekterkennung ermöglicht.
Die präsentierte Methode verwendet die sogenannte v- Disparity um den

Boden zu erkennen. Dafür wird zusätzlich die Hough Transformation eingesetzt.
Bei der praktischen Anwendung des Algorithmus zur Objekterkennung kommt
es zu falsch detektierten Objekten, welche durch Lichtreflektionen in stark
belichteten Räumen entstehen. Zur Vermeidung dieses Problems wurde eine
Strategie entwickelt, welche in dieser Arbeit vorgestellt wird.

Das Auftreten eines Rollwinkels der Stereokamera erschwert außerdem eine
zuverlässige Objekterkennung. Hierfür wird eine Methode gezeigt, wie der
Rollwinkel erfasst und in weiterer Folge korrigiert werden kann. Dieses Problem
kann zudem durch die Verwendung mehrerer v- Disparity-Bilder vermindert
werden. Es werden zusätzlich Möglichkeiten zur Reduzierung des Rauschens
beschrieben.
Der Algorithmus zur Objekterkennung wurde an diversen Experimenten

getestet. Die Resultate zeigen, dass die durch den Rollwinkel verursachten
Probleme mithilfe der entwickelten Methoden beseitigt werden. Falsch erkannte
Objekte, welche durch Lichtreflektionen in stark belichteten Räumen entstehen,
können durch den Algorithmus entfernt werden. Die Auswertung der Daten
zeigt, dass Objekte mit einer Höhe von 2cm auf einen Abstand von 1m erfasst
werden.
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1 Introduction
An autonomous robot requires the ability to navigate safely for an error-free
interaction with its environment. An unwary action or movement of the robot
may lead to danger for the robot itself, for the surrounding environment or,
in the worst case, for any human interacting with the robot. In order to
operate safely a robot needs to be aware of its environment and plan its actions
depending on its surroundings.
A way for the robot to obtain awareness of the environment is through the

use of a stereo vision system. This system delivers an image pair from cameras
and then adds depth information to the recorded scene. This helps the robot to
complete superior tasks, such as moving from one point to another or grasping
objects.

Even if the robot knows its surrounding area well from past experiences and
uses a map for navigation it is still necessary to obtain current information on
the area, as it is possible that a new obstacle has appeared since then. When
the robot fails to change its navigation properly to avoid an obstacle it may
result in a crash. Such a scenario can cause damage in any form and must be
avoided.

Another research topic that requires awareness of the environment is a driving
assistance system. It warns the driver of possible danger and needs to be able
to control an autonomous, evasive move in risky situations. In order to do this
task successfully detection of obstacles is required, and can be done with a
stereo vision system.

1.1 Motivation
A safe robot navigation arouses the need for reliable obstacle detection. It is
necessary to plan a path in such a way that robots can navigate through it
without danger. The use of a stereo vision system allows the sensing of the
environment. However, for reliable use the limits of such a system need to be
tested. The knowledge of the size of detectable obstacles enables the developer
to select the appropriate stereo vision system for the task at hand.
A stereo vision system can be compared to human vision. Just like human

vision, the stereo vision system in a robotic application allows an estimation of

1



1 Introduction 1.2 Problems and Goals 2

the depth of objects in the nearby environment. In order to do this a scene has
to be observed and needs to be classified in some way as well. One of these
classifications is the detection of potential obstacles.
Taking safety and reliability into consideration, it can be pointed out that

the recognition of possible danger from obstacles is a substantial requirement
for a robot, most notably if it is intended to act autonomously. Humans have
developed quite a few senses for spotting danger. One of the most relied upon
senses for that purpose is human vision. It helps us to perceive the environment
and plan actions accordingly. A robot requires a similar type of perception
for achieving awareness of its surroundings. The robot should be able to work
precisely, should not harm anybody around it and should be able to stay away
from threats to itself. Stereo vision can be used to obtain this awareness of the
robot’s surrounding environment.

Cameras are used as a vision system to get this awareness. Machine vision is
able to lend meaning to the generated images and interpret scenes for further
tasks. Stereo vision improves this awareness by calculating the depth of points
in images.

The requirements of a robotic vision system are dependent on the application.
It is important to figure out if the stereo vision system should prioritize speed,
precision, or reliability, and to what degree it is possible to maximize them all.
According to Kragic, Vincze, et al. [1], object detection is still an "open

challenge," along with a number of other tasks that are important for a robot
vision system. The tasks of a robot vision system are represented by the blocks
in Figure 1.1.

1.2 Problems and Goals
One common challenge of stereo vision systems is the handling of noisy depth
values. Due to different influencing factors, such as illumination and discretiza-
tion, noise will be unavoidable. It restricts the detection of small objects
because up to a certain size small obstacles are indistinguishable from noisy
data. However, if the characteristics of the noise are well known the perfor-
mance of a stereo system can be tuned accordingly. It is necessary to find a
way to test the limits of a stereo system for obstacle detection. For an accurate
characterization of the use of a stereo system it is important to know the
dimensions of detectable objects and at which distance the detection works
properly. This characterization helps developers to choose the right stereo
system for an application.
Another important part is the use of the right stereo algorithm, which the

purpose is the calculation of a disparity image. There are many different
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Figure 1.1: Main tasks of a robot vision system. Yellow blocks indicate working
tasks and red blocks indicate "Open challanges" according to [1].

possibilities for designing an algorithm for disparity calculation. Every stereo
algorithm has different requirements for a purposeful use. One of the most
important requirements is the speed of the stereo algorithm’s computation time
because a slow pace would restrict that of the obstacle detection process. This
thesis describes research on the advantages and disadvantages of different stereo
algorithms in order to achieve a better understanding of the aforementioned
influencing factors.

The problem of obstacle detection will not be the same for every environment.
Different conditions of a robotic environment can lead to problems for object
detection. Every scene presents its own unique set of challenges. However, being
familiar with the common problem-causing factors can help one to anticipate
which difficulties will most likely arise. The goal is to find and solve these
typical problems with the use of a stereo vision system in a robotic application.

The goals of the thesis can be listed as follows:

• Implementation of an obstacle detection algorithm within a stereo vision
system

• Testing the accuracy and reliability of the object detection

• Comparison of different stereo algorithms
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• Finding solutions for typical problems in a stereo vision system

1.3 Approach Overview
For reliable detection of obstacles, an obstacle detection algorithm has been
developed. In order to evaluate the reliability of the algorithm it is evaluated on
a number of experiments for the purpose of robot navigation. The experiments
are used to identify potential weaknesses of the obstacle detection algorithm.
This allows one to improve it through adjustments and then evaluate those
adjustments on a number of additional experiments.
One of the weaknesses arising from the approach suggested in this thesis is

caused by the existing roll angle. Due to this fact, strategies to account for the
roll angle are implemented. Automatic detection and correction help to solve
this issue.

Another problem is caused by reflections of light on the floor, which are often
responsible for wrongly identified obstacles. It is possible to detect those spots
and remove them accordingly. In order to solve the problems assumptions, such
as a flat floor in the environment, are made. The assumption of a flat floor
allows detection through the use of the Hough transform. For the roll angle
correction it is assumed that a certain area in the observed space of the stereo
vision system is free from obstacles.

1.4 Structure of Work
In Chapter 2 related state-of-the-art research topics are presented and compared
to this thesis.

The theory of stereo vision is then described in Chapter 3. The starting point
of that chapter presents the functionality of cameras and a brief description of
the physics behind cameras. The composition of a stereo vision system and
how it makes depth calculation possible is discussed. Detailed information of
the geometry of a stereo vision system is given. This helps one to understand
the rectification process, which is always a component of stereo vision systems.
Furthermore, an overview of stereo algorithms for disparity calculation is given.
In Chapter 4 the v-disparity [2] that represents a flat floor as a line is

introduced. In order to detect this line the Hough transform is used and
discussed. The floor detection in the v-disparity image enables one to remove
the floor from the disparity image and make it possible to detect obstacles.
Issues, such as problematic roll angles and complications caused by noise, are
described. Strategies to minimize these problems are recorded. A comparison of
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different stereo algorithms is also given. Finally, the obstacle detection process
is described in Chapter 4.

The algorithm is evaluated on real-life data in Chapter 5. A noise-measuring
experiment that helps to set the parameters of the obstacle detection algorithm
properly is presented. Another experiment is used to show different problems
for robotic indoor scenes using the obstacle detection algorithm. The limits
of the stereo vision system and how different stereo algorithms compare to
each other are tested. The strategies developed in Chapter 4 for the problems
associated with the roll angle and bright reflections of light on the floor are
tested and evaluated.
Chapter 6 summarizes the results of this thesis and gives an overview of

possible future research.



2 State of the Art
In this chapter related research is presented. An overview of specific research
topics is given with each of them summarized. Most of the presented topics in
this chapter show similar tasks such as the v-disparity calculation and a roll
angle correction, both of them are necessary for successful detection of surfaces
and obstacles. The main application of the presented methods is the use for
advanced driving assistance system (ADAS) and an autonomous navigation
for robots. In addition the advantages and disadvantages of different stereo
algorithms are discussed. Some of the presented research topics explain also
the mapping of obstacles that is needed for the process of path planning.

The occurring problems, such as difficulties under changing lighting conditions
and a correct floor detection are present in this research topic and overlap in
the studies. These topics occur in this thesis as well. One of the problems is
the dependancy of the v-disparity from the roll-angle of the stereo system. In
Section 4.2.2 this is discussed in detail and solutions are presented. Another
similarity between the presented scientific papers is the dependence on the
application of an obstacle detection algorithm. The focus on rather small
obstacles is not that important in ADAS but the presence of curvy and hilly
roads results in slightly different approaches when compared to a robot in an
indoor environment. In general it is important to know the environment of
the possible tasks of a driving assistance system or an autonomous system.
This can lead either to some sort of simplification or problems to be solved.
A robotic indoor environment can be better classified if assumptions of the
floor are taken. Because these assumptions make the floor detection easier to
calculate and therefore a faster floor detection can be achieved. The lighting
conditions need to be taken into account because the functionality of a camera
is highly dependant from it. If the lighting is not handled properly a stereo
system may have problems to calculate the disparity image and this results in
a wrong perception of the environment in a robotic task.
Another important step is choosing the right stereo algorithm for disparity

calculation and how to classify them properly. The interests of speed, precision
and stability against changing environment, such as change in lighting or change
of terrain, are important for any robotic application. However it is possible that
an improvement in any of those interests results in a decline of the performance
of another characteristic. For example if an improvement of a stereo system is

6
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wanted, a sophisticated stereo algorithm leads to a more precise disparity image
but at the same time the algorithm demands more processing power. This
conflict of interest is best solved by looking at the demands of the application
and therefore classifying the stereo algorithms according to those interests.

Multiple Lane Detection Algorithm Based on Novel Dense
Vanishing Point Estimation
Ozgunalp et al. [3] presented 2017 a lane detection algorithm for assisted
driving systems. It shows that challenges for assisted driving systems can be
handled through the use of stereo vision.
The goal of lane detection is achieved by estimating a number of vanishing

points which was carried out with stereo vision. It is used to estimate a
disparity map that is then transformed into a v-disparity map. The v-disparity
is an image that includes information about disparity values and the vertical
coordinate (v-coordinate) of a disparity map. Basically it reduces the complexity
of the disparity image by one dimension. Nevertheless it still includes enough
information to operate in a reliable vanishing point calculation within a disparity
map.

V-disparity is used for detecting the horizon and calculating the y-coordinate
of the vanishing points Vp. This result helps to estimate the x-coordinate of Vp

in a robust way. For this matter the lane markings of the road are considered
as well. The v-disparity is also used to make a segmentation of images. The
purpose of this is to distinguish between features on the road and between
features that do not belong to the road.

The experimental set-up in this paper is a stereo camera rig that is mounted
on a car and used for data collection. Problems with the roll angle are mentioned
and a method for detecting and correcting it is presented. The detection of the
roll angle is done through fitting a plane inside of a small part of the disparity
image. The chosen area is in front and close to the vehicle and therefore
assumed as part of the road.
The transformation from disparity image to v-disparity image in Section

4.1 is equal to the paper of Ozgunalps. The use of the v-disparity is slightly
different because the authors in [3] use it for the vanishing point calculation
and in Section 4.6 it helps to detect the floor of a robotic environment.

Also the approach from Section 4.2.2 is similar to the approach from Ozgunalp.
But instead of a plane detection for the estimation of the roll angle a line
detection is used.
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Obstacle Detection in Stereo Sequences using Multiple
Representations of the Disparity Map
Burlacu et al. [4] presented 2016 a way of object detection with the use
of different disparity representations. The authors’ approach is a disparity
calculation using the ELAS (Efficient Large-Scale Stereo Matching) algorithm
presented by Geiger, Roser and Urtasun in [5]. Furthermore they use three
different transformations (v-disparity, u-disparity and θ-disparity) that represent
the disparity and are used to detect the obstacles. The v-disparity is a row-wise
and the u-disparity a column-wise histogram that reduces the disparity image
information by one dimension. The θ-disparity is a polar representation of the
disparity image. The v-disparity was used for the ground plane detection, the
u-disparity and the θ-disparity were used for the object detection. For this
purpose the ground plane detected with the v-disparity is removed from the u-
and θ-disparity.
Furthermore in the paper problems with the roll angle are described that

results in an impractical v-disparity map. For this purpose a stereo vision
motion procedure is used to calculate the camera position and to correct it then
by rotating the disparity image. For the evaluation virtual and real images are
worked with. The presented results show the accuracy for the object detection
with the use of either the u- or θ-disparity representations. The Results show
also that combining both methods increases the robustness of the algorithm.

In Section 4.6 the v-disparity map was also used to detect the ground plane.
But instead of the u- and θ disparity the disparity image was used to detect
objects that pop out of the ground plane.

A Fast Dense Stereo Matching Algorithm with an
Application to 3D Occupancy Mapping using Quadrocopters
Ait-Jellal and Zell [6] presented in 2015 a stereo matching algorithm and show
an application for quadrocopters. The main focus is the development of an
algorithm that is fast and efficient in calculation. This is done in a way that
the quadrocopter calculates the disparity and the 3D reconstruction on board.
The authors describe three steps for their stereo algorithm: 1.) an initial
disparity calculation, 2.) a mismatch detection and correction, 3.) the final
post-processing step through edge preserve filtering.

One part of the results in this work compare the presented stereo algorithm
with other common stereo algorithms. The middlebury dataset1 from Scharstein
and Szeliski [7] is used to evaluate the algorithm. The score of the stereo

1http://vision.middlebury.edu/stereo/
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algorithm was slightly better than the score from the global optimization based
algorithms graph cut [8] and constant time belief propagation [9]. The running
time of the algorithm was less than 20 milliseconds for any stereo pair of the
middlebury dataset.
Another part of the paper, besides the stereo algorithm, is the 3D recon-

struction of the disparity map. This is done by calculating an octomap as it
is described in the paper from Wurm et al. [10]. The focus here is on a safe
movement of Micro-Ariel Vehicles (MAV). For this purpose it is not necessary
to detect the geometry of every possible object in detail. Instead of a highly
detailed representation of the environment, the octomap only represents certain
cubic areas that include a possible obstacle. This results in an octomap with a
low resolution and therefore the octomap only delivers a rough representation
of the environment for sufficient obstacle avoidance. The 3D reconstruction
is tested with the stereo dataset from EuRoC Challange2 and results in fast
enough mapping for quadrocopters.

Obstacle detection using V-disparity: Integration to the
CRAB rover
Wandfluh [11] in 2009 shows the implementation for obstacle detection in
a robotic rover. The thesis gives an overview of a stereo system and an
autonomous robot called CRAB. The object detection is described with the use
of v-disparity and furthermore the handling of the generated map is described.
Also a test simulation is described which is carried out in an virtual environment.
The interplay of all components in the robotic system and addition of the object
detection are presented.

In the thesis of Wandfluh the algorithm for object detection works with the
use of the v-disparity for the floor detection and is presented in [12]. In further
steps the obstacle detection is covered and the mapping of the obstacles is
described. Wandfluh improved the algorithm with a roll angle detection and
correction for better floor detection. The results from the object detection are
then used to build a map which is needed to navigate the CRAB robot.
The testing of the map building process is also described in the thesis. It

also covers the results of these tests in a simulated environment.

2http://www.euroc-project.eu/
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Processing Dense Stereo Data Using Elevation Maps: Road
Surface, Traffic Isle, and Obstacle Detection
Oniga and Nedevschi [13] presented in 2010 a way to distinct between road,
traffic isles and obstacle points in stereo vision data. In their algorithm they fuse
results from a road surface-based classification and a density based classification.
This results in a classified map that structures stereo images of a road into the
mentioned classes.
For the road surface-based classification the paper presents a method to

fit a quadratic model of the road surface into the 3-D data. This is realized
by minimizing an error function between modelled and a selected number
of measured points. The points are chosen beforehand through a RANSAC
(random sample consensus) approach . Additionally a distance dependent offset
is added to get a spatial representation of the road. This data is used to
calculate a digital evaluation map (DEM) that is divided into equal sized cells
from which each of the cells contains the height information of the highest
point in the cell. The DEM is then used as a partial result of the classification
process.

The second approach in this paper is a density based classification. For this
purpose the disparity map is used to calculate a map that contains information
about the density of 3-D points inside each cell. With the road model the roads
expected density map is estimated. The next step is to calculate the difference
between the density map of the data and the estimated density map of the
road. All remaining positive values represent possible objects which are needed
for obstacle classification to distinguish between road and objects.

The data of both presented methods are fused into one optimized result. The
fusion of the partial results allows a more reliable classification and gets rid of
outliers.

Real-time Stereo Vision System at Nighttime with Noise
Reduction using Simplified non-local Matching Cost
Xu et al. [14] in 2016 show a way to improve stereo vision results under low
light conditions. The presented approach is intended to be used for advanced
driving assistance system (ADAS) under night conditions. The main problem
under such conditions is that the images from the stereo system are more
noisy than under normal circumstances, caused by the lack of light during the
exposure time. For the purpose of noise reduction the usage of a non-local
means (NLM) filter [15] turned out to be most suitable in this case. Besides
that other filters were tested but not implemented for real time simulation.
They also implemented an image pyramid to reduce the size of the input date
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for faster calculation time.
For an effective solution of the stereo correspondence problem an image

enhancement algorithm is introduced. This is necessary since a night scene
consists of mainly dark areas that need to be lightened up for better results.
In the evaluation of this work the main focus is on detecting road surface with
the help of the v-disparity algorithm. The data was tested on synthetic data
and real night time scenes. The results show clearly an improvement of the
road detection compared to common disparity algorithms. It is also stated that
the approach of the work results in dense and accurate disparity data.

The HCI Stereo Metrics: Geometry-Aware Performance
Analysis of Stereo Algorithms
Honauer, Maier-Hein and Kondermann [16] in 2015 classify different stereo
algorithm performances under consideration of different geometric features in a
scene. A metric for benchmarking stereo algorithms is presented. The goal is
to combine two aspects of benchmarking. One of these sides is a mathematical
way that evaluates the performances of the different algorithms and the other
one puts the attention more on the application of the algorithm.
The authors focus on principals as depth discontinuities, planar surfaces

and fine structures. Each of these recurring geometric characteristics might be
important depending on the applications of the stereo system. In total nine
different performance measures are presented that are used for the classifications.
The proposed metrics structures the type and strength of errors occurring.

Furthermore the results of different stereo algorithms are presented and dis-
cussed. The focus is set on a good distinction between the strengths of different
algorithms. The metric helps to look into specific geometric characteristics of
a scene and ranks the stereo algorithms according to the score in each of the
different challenges. Besides that the presented evaluation method supports
parameter tuning in order to optimize an existing stereo algorithm.

Compared to the state-of-the-art research topics this thesis also uses the
v-disparity approach for the floor detection. It implements a roll angle detection
and correction and additional the approach of multi v-disparity that splits
the disparity image into a number of sub disparity images. This thesis’ focus
is on the detection of rather small obstacles for the use in robotic indoor
navigation. Furthermore it compares the strengths and weaknesses of different
stereo algorithms that are used for the disparity calculation.



3 Methods
Sensors have a key role in terms of obstacle detection for robotic applications.
They gather information of the environment and help to use this data for the
purpose of obstacle detection. One type of sensors are cameras. They are able
to catch information of the surrounding world and in particular digital cameras.
The robot receives a digital representation of the gathered information.

A stereo system will deliver a pair of images as an input. This data is used
for further processing, which results into information about the depth of a
scene and enables to detect objects to a certain degree.

Before analyzing object detection it is essential to understand how a camera
actually works and how a stereo system is built up. These basic principals
are a framework that is used to detect objects in typical robotic scenes. The
first part of this chapter deals with three different camera models, followed
by stereo systems. A focus is on how the system is composed with a further
look into the calculation of depth. For this purpose the knowledge of geometric
relations is needed to work efficiently. Epipolar geometry is introduced and
important parameters like the essential and fundamental matrix are discussed.
Camera calibration is another essential step and is covered in this chapter as
well. Looking deeper into the topic of camera calibration, models are presented
that describe typical distortions caused by camera lenses. Moving on from
there to the matter of rectification of image pairs for stereo vision.

Finally the last part of this chapter is focused on stereo algorithms. A short
classification of stereo algorithms is discussed and an overview of the important
steps of the stereo matching process is given.
The equations of this chapter are established according to Bradski and

Kaehler [17].

3.1 Camera Models
In order to understand a stereo vision system a closer look is taken into basic
camera models. The models describe how points from a scene are projected
onto an image plane. It is necessary to understand how stereo systems try
to reverse this process and extract the depth information. At first a short
overview of the pinhole camera model is given and after that a model with a

12
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frontal image plane is discussed. Finally the functionality of digital cameras is
presented.

3.1.1 Pinhole Camera Model
The pinhole camera model describes how an object is projected onto an image
plane. It consists of two planes which are perfectly parallel in the model. They
are called the image plane and the pinhole plane. The distance between them
is the focal length f . The pinhole plane is almost optical opaque except for a
small hole which is big enough for a light ray to pass. Such a camera could be
easily built with a cardboard, where a light sensitive paper is placed on one
side inside the box and a pinhole is made on the opposite side. The optical
axis is defined as the axis which is normal to both planes and passes through
the center of the pinhole.

Figure 3.1: Pinhole Camera Model [17].

For further consideration a simple source point of light is placed in front
of the pinhole plane. The distance normal to the plane is Z and the normal
distance to the optical axis is X. The image plane is placed behind the pinhole
plane, so only light from the point source passing through the pinhole is visible
on the image plane. The normal distance of the point on the image plane to
the optical axis is called x. Because of the relations in similar triangles it is
calculated x from f ,X and Z according to:

− x = f
X

Z
(3.1)

Figure 3.1 shows the geometric relation between the distances. The position
of the projection from the point source will be flipped compared to the original
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position of the point source. Now if an entire object, that is made up of many
single point sources is considered, it is clear that as a result the object is also
upside down. The problem with a pinhole camera is that since of the small hole
it does not produce bright enough images for proper use. In order to get rid of
this problem it is necessary to move away from the simple pinhole camera and
adjust the model.

3.1.2 Frontal Image Plane Model
Pinhole cameras do not produce bright enough images for proper use because
the amount of light gathered through the hole is way too small. A bigger
diameter of the pinhole would brighten up the image but comes with the
disadvantage of a blurry image. The image becomes blurry because instead
of one sharp light ray from the point source there will be many similar light
rays which will be projected close to each other on the image plane. A solution
for this is the use of a lens. It allows enough light to pass through it and
focuses all light rays in one projection center. It is possible to move the image
plane in front of the projection center with the advantage that points are no
longer mirrored around the optical axis. This set-up is described by Fig. 3.2.
Projected images now face the right direction. Adding the parameters cx and
cy, they indicate the offset from the image center and allow to correct pixel
coordinates if the image center does not fall onto the optical axis.
Points from the physical world Q(X,Y,Z) now are projected on the plane
with the coordinates q(x,y,f). The coordinates on the screen x and y can be
calculated through:

x = fx
X

Z
+ cx y = fy

Y

Z
+ cy (3.2)

The reversal from image coordinates x and y to the world coordinates X, Y
and Z do not deliver clear solutions but they deliver possible solutions along a
line. With the information of a second pair of image coordinates, in another
image plane, a clear solution for X, Y and Z can be calculated.

Digital cameras allow to process the data within a predictable time because
the data consists of a fixed number of image points. The equations above are
still valid in the model of a digital camera but have to be adjusted.

3.1.3 Digital Camera Model
So far models that describe how points are projected onto an image plane have
been explained. This is still important for the digital camera model but for the
processing of the data it is essential to know how a point is digitally represented.
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Figure 3.2: Frontal Image Plane Model [17].

The image plane of a digital camera consists of a computer chip, it is an array
of photosensitive cells. The light from an object falls onto one of the cells and
depending on the brightness of the object, a digital value is created for each
pixel. If three digital values are used to represent one single point it is possible
to gather information of color. These three values stand for (R) red, (G) green
and (B) blue values which span a color space for each point in the image. In
a digital image points can only fall onto discrete pixel coordinates instead of
continuous image coordinates. The projection geometry is still the same as in
Eq. (3.2), from here the pixel coordinates can be calculated by

u = x

ρw

+ u0 v = y

ρh

+ v0 (3.3)

The values ρw and ρh represent the width and height per pixel, the origin of
the pixel coordinate system is in the top left corner of the image, u0 and v0
represent the coordinates of the principal point.
So the data is a value of a grey level or three values for color information

(RGB). The pixels are uniquely distinguishable through these pixel coordinates
u and v.
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3.2 Stereo Vision
With the help of stereo vision a digital reproduction of a real world scene is
created. It is like a digital image with additional information. This information
consists of a depth value for each pixel. The most natural comparison to a
stereo vision system is the human vision. If one looks at objects within the
grasping range, one is able to estimate their depth and grasp them without any
problems. When one tries it with one eye closed, one will not be successful all
the time. It gets harder once somebody else rearranges the objects. Probably
one might still be able to estimate the depth to a certain degree since there
are many clues in certain scenes to gather additional information of depth.
Especially if the objects are familiar, with some effort one can assess and
estimate the size of it and is able to judge the scene as a whole which leads to
a feeling of depth.
However if both eyes are used it is an utterly easy task that is just natural

to humans. Stereo systems are similar to the human vision, cameras try to
imitate the eyes and a processor will do the work of the brain.

Figure 3.3: Stereo Vision System [17].

The equations from (3.2) show that stereo vision is needed to calculate a
point’s coordinates. It is necessary to use two images for an unambiguous result.
When trying to recreate a three dimensional scene from two dimensional image
the problem of gaining an infinite number of solutions for every point and so



3 Methods 3.2 Stereo Vision 17

for every object appears. A big object in the distance is not distinguishable
from a small object close to the camera. By locating a single point in world
coordinates from the image coordinates, the issue is that it results in an infinite
number of solutions along a line. Now the additional information of a second
image results in the advantage that it is possible to locate the point to a certain
accuracy. This is possible because the second image results in a second line
that represents the infinite number of all possible points according to the image
coordinates of the second image. Ideally both lines have one point in common,
this is the intersection of both lines and the location of the point. It is only
manageable to calculate this position to a certain accuracy because of discrete
image coordinates in a digital camera, as multiple similar positions deliver the
same result.
This process needs to be repeated for every point of the scene but is not

always possible. One reason is that not every point is visible in both images
and not every pair of points is detectable since the points are not uniquely
distinguishable from each other at times.

3.2.1 Composition of a Stereo System and Depth
Calculation

The task of a stereo system is to record an image pair. This requires two
cameras that are able to deliver the image pair time synchronised. Ideally
both cameras have the same parameters and they are aligned in such a way
that the image planes are coplanar. The y-axis of the coordinate system in
the optical center of the cameras is parallel as well and the optical center of
each camera falls on the x-axis of each other. This ideal composition is not
necessarily fulfilled in practice, but this issue will be corrected through the
camera calibration process.
Assuming a perfectly aligned calibrated stereo rig, the focus is on depth

calculation. The optical center of the left camera is Ol, the optical center of
the right camera is Or and the displacement between them is the vector T . In
this regard the principal points are cleft

x and cright
x , which are the points where

the principal ray intersects with the image plane. This point of intersection in
each camera has the same pixel coordinates in both cameras. The focal length
f of both cameras is the same as well.
Now a point P of the physical world is visible from both cameras and it is

projected onto the image plane of each camera. The horizontal pixel coordinate
of this point on the image plane of the left camera is xl and the same coordinate
on the right camera is xr. These coordinates are the same if the point has an
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Figure 3.4: Depth Calculation [17].

infinite distance Z. With these coordinates the disparity d is defined as

d = xl − xr (3.4)

The two triangles Ol −Or −P and xl − xr −P are similar triangles which lead
to a constant aspect ratio of

T − (xl − xr)
Z − f

= T

Z
⇒ Z = fT

xl − xr

(3.5)

In Fig. 3.4 the geometric relations can be traced. The Equation (3.5) shows
that depth and disparity are inversely related and nearby objects are easier to
distinguish than objects further back. Considering that the depth value will
be an integer value within a digital system, it is noticeable that the resolution
decreases with decreasing disparity. This relation is demonstrated in Fig. 3.5.

3.2.2 Epipolar Geometry
The focus is on a fundamental concept that looks further in the geometry of
a stereo system and helps to improve stereo algorithms. A pinhole model is
used for each camera and the relation between the two cameras is described
through the translation T and the rotation matrix R. In Section 3.2.1 it is
considered that the image planes of each camera are coplanar, this is still a
desirable arrangement but the mechanical construction of such a system will
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Figure 3.5: Relation between depth and disparity [17].

likely differ marginal. For further observations non perfectly aligned cameras
are assumed.
A point P from the physical world can be projected on the image plane of

each camera. If the line, from P to the optical center, is intersected with the
image plane of the related camera it results in the point pl in the left camera
and in the point pr in the right camera. As mentioned before the difference
between the pixel coordinates in the two images deliver the disparity. In Eq.
(3.4) it is considered that the disparity only depends on the x-coordinate of the
pixel coordinates. This is only the case if the cameras are perfectly aligned.
Moving further to a more general approach in which the point pair pl and

pr have an essential role. The approach of a stereo algorithm is the search
for corresponding points in an image pair. If one point of the point pair is
selected it will be necessary to find the other point and calculate the disparity
between them. This is a step shared by each local stereo algorithm and it is
also a part of the block matching algorithm described in Section 4.5.2. The task
of searching point pairs in images can demand huge computation power with
increasing image resolution, but with the help of epipolar geometry this task
gets reduced to an one dimensional search along a line. At first the epipolar
plane needs to be defined, along with the epipoles and finally the lines that
reduce the search task, the so called epipolar lines.
The epipolar plane is spanned by the Point P and the two optical centers
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Ol and Or. The epipoles are the intersection of the line between the optical
centers and the image planes of the cameras that lead to an epipole in the
left image plane el and one on the right er. Connecting pl with el will result
in the epipolar line on the left side and connecting pr with er will result in
the epipolar line on the right side. These epipolar lines can also be gathered
if the line P −Ol is projected onto the right image plane and also through a
projection of P −Or onto the left image. Figure 3.6 demonstrate the relation
of epipolar lines in a stereo vision system.
The epipolar lines now help to find a corresponding point pair in an image

pair. Starting with a point in one image, it is possible to find the corresponding
point in the second image because the projection of the point P can only lie on
the epipolar line as long as it is visible in both images. The difference in the
points’ position in one image compared to the other shows the disparity which
helps to calculate the depth according to Eq. (3.5).

Figure 3.6: Epipolar lines in a stereo vision system [17].

The reduction to an one dimensional search task comes with the additional
task of calculating the epipolar lines of each point. This task can be further
optimized if the image is rectified. A pair of two rectified images has the
advantage that a point in one image can be found in the same height along a
horizontal line on the other image.
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3.2.3 Essential Matrix
The essential Matrix E includes information about the geometric relation
between the two cameras of a stereo system. With the help of E points on the
image plane of the left camera can be related to points on the image plane of
the right camera. For the calculation of the essential matrix the optical center
of the left camera as the origin of our coordinate system is used (it would work
equally well if choosing the right camera). The coordinates of a point P seen
from the left camera is Pl and seen from the right camera is Pr. The vector T
and the matrix R take the relation between the cameras into account and help
to calculate Pr from Pl.

Pr = R(Pl − T ) (3.6)
The vectors Pl, Pr and T lie on the epipolar plane which can be specified
through the normal vector representation. The following equation can be used

(Pl − T )T (T × Pl) = 0 (3.7)

If the Equation (3.6) is rearranged it results into (Pl − T ) = R−1Pr. This can
be substituted into Eq. (3.7), with the consideration of R−1 = RT because of
the orthogonality of R the equation can be rewritten as:

(RTPr)T (T × Pl) = 0 (3.8)

Next the matrix S is introduced and it helps to rewrite the cross product:

(T × Pl) = SPl ⇒ S =

 0 −Tz Ty

Tz 0 −Tx

−Ty Tx 0

 (3.9)

With the matrix S the Eq. (3.8) can be rewritten and additional the essential
matrix is defined as E = RS

(Pr)TRSPl = 0 with RS = E ⇒ (Pr)TEPl = 0 (3.10)

Furthermore the substitution of Pl = plZl

fl
and Pr = prZr

fr
is considered and the

multiplication of Eq. (3.10) with flfr

ZlZr
results into:

pT
r Epl = 0 (3.11)

The matrix E is a 3-by-3 matrix and has rank 2. Due to this the solutions of
Eq. (3.11) will lead to an equation for a line. So the essential matrix does not
exactly relate two points to each other but more precisely it relates to each
point infinite points along a line. This helps to find corresponding point pairs.
E only considers the relation between two cameras and does not take care of
the intrinsic parameters of a camera. The relation between the points is in
physical coordinates.
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3.2.4 Fundamental Matrix
The fundamental Matrix F is very similar to the essential Matrix E. It contains
all the information of the relation between the two cameras and additional
information of the intrinsic parameters of both cameras. F relates two points
in pixel coordinates to each other or more precisely it relates to each point an
infinite number of points along a line. So it has the same purpose as the matrix
E but instead of using the points pl and pr in physical coordinates it uses the
points ql and qr in pixel coordinates. The relation between p and q is q = Mp
with M as the intrinsics matrix. Adding this relation to Eq. (3.11) it results in

qT
r (M−1

r )TEM−1
l ql = 0 (3.12)

F is now defined as
F = (M−1

r )TEM−1
l (3.13)

and the outcome is the relation between two points in pixel coordinates

qT
r Fql = 0 (3.14)

3.2.5 Stereo Calibration
Stereo calibration is an offline process used to get the intrinsic and extrinsic
parameters of a stereo system. Until now it was supposed that the relation
between both cameras in the stereo system are well known, but this is only
possible to a certain accuracy. The rotation and translation between two
cameras are measurable and represented in the rotation matrix R and the
translation vector T , but they can change over time if one camera position
is slightly changed. Stereo calibration is one way to receive this information
at a certain time. For this purpose usually a chessboard is used with well
known measurements. An advantage of the chessboard is that its corner points
are easy to recognize in the left and right image of the stereo system and the
pattern is well known so the points in both images can be assigned to each
other. The chessboard is then placed in front of the stereo system and pictures
of it are taken in different positions. Moving on a point P is now projected on
the left image with the coordinates Pl and the right image with the coordinates
Pr. Considering the rotation matrices Rr and Rl from the cameras to the
point in the scene as well as the translation vectors Tr and Tl, the projection is
calculated through:

Pl = RlP + Tl Pr = RrP + Tr (3.15)

Further relations are:

R = Rr(Rl)T T = Tr −RTl (3.16)
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Now with enough points Pr and Pl the relation between the two cameras R and
T can be calculated through an optimization under the constraints of Eq. (3.6),
Eq. (3.15) and Eq. (3.16). With enough points from the calibration process
it is possible to solve for the optimal solution for every parameter. Different
points do not always result in the same rotation matrix and translation vector
because of different errors (mostly rounding errors and noise). The task of
the optimization process is finding parameters so that the overall error will be
minimized. According to Bradski and Kaehler [17] the Levenberg-Marquardt
iterative algorithm, as implemented in [18] by J. J. Moré, delivers good and
robust results. Ideally it is possible to find the parameters which describe the
lens distortion with the help of stereo calibration. This allows to reverse the
distortion and correct these types of errors.

3.2.6 Lens Distortion
In Section 3.1.2 the advantages of lenses are shown but the use of lenses also
comes with the disadvantage of systematic errors and the possibility of distortion
errors due to inaccuracies in the production process. Two lenses produced under
similar circumstances may differ slightly from each other and create distortion
errors. Of course more complex production processes would result in smaller
errors to a certain degree. The errors can be described through mathematical
models that make it possible to correct the most common ones. For this purpose
camera calibration is used and delivers the necessary parameters.

Radial Distortion

Radial distortion appears due to the shape of the lens, light rays which pass
the lens further away from the center are bent more compared to rays closer
to the center. So a squared object is projected on a round lens at different
radial coordinates and not every point is projected equally onto the image plane
which results in a distorted object1. This error can be corrected through:

xcorrected = x(1 + k1r
2 + k2r

4 + k3r
6) (3.17)

ycorrected = y(1 + k1r
2 + k2r

4 + k3r
6) (3.18)

with x and y as original coordinates of a point on the image plane, r as distance
from the radial distance from the center and k1, k2 and k3 as the distortion
parameters. Figure 3.7 shows how the effect of radial distortion influence the
projection from a squared object.

1Also known as "barrel" or "fish-eye" effect
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Figure 3.7: Radial Distortion [17].

Tangential Distortion

This kind of distortion appears if the lens and the image plane are not perfectly
parallel to each other. The error is more severe if a point further away from
the image center is considered, but it can be corrected through:

xcorrected = x+ [2p1y + p2(r2 + 2x2)] (3.19)

ycorrected = y + [p1(r2 + 2 ∗ y2) + 2p2x] (3.20)

3.2.7 Rectification
Before stereo algorithms are discussed the focus is on rectification, an important
step to make the computation of the disparity much easier. As stated in Section
3.2.2 every point in one image of the stereo pair has the corresponding point
in the other image along the epipolar line. If the image pair is rectified it
ensures that point pairs always share their y-coordinate in the image. So
it is much easier to find point pairs in two different images since the search
process is always along the same horizontal line. Basically this would always
be possible if the stereo system is set up in a way that the principal rays of
both cameras are perfectly parallel and the image planes are arranged that
both their y-coordinates are exactly the same2. Such a configuration is hard
to adjust properly and so it is necessary to transform the images onto a new
plane in order to achieve an optimal result.
For this purpose an undistorted image which is shown in Section 3.2.6 is

needed as well as the rotation matrix Rrect which aligns the images along
2frontal parallel configuration: coplanar and row-aligned image planes
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horizontal lines and two projection matrices for each camera Pr and Pl. In
order to calculate Rrect the following vectors are substantial:

e1 = T

||T ||
e2 =

[
−Ty Tx 0

]T√
T 2

x + T 2
y

e3 = e1 × e2 (3.21)

they lead directly to the rotation matrix:

Rrect =

(e1)T

(e2)T

(e3)T

 (3.22)

The projection matrices are calculated under consideration of the focal lengths
fx, fy, a skew factor α3 and the parameters cx and cy:

Pl =

fx_l αl cx_l

0 fy_l cy_l

0 0 1


1 0 0 0

0 1 0 0
0 0 1 0

 (3.23)

for the left side and for the right side:

Pr =

fx_r αr cx_r

0 fy_r cy_r

0 0 1


1 0 0 Tx

0 1 0 0
0 0 1 0

 (3.24)

After aligning the images with Rrect the next step in the process of rectification
is the projection onto the left and the right images through Pl and Pr. These
rectified images are used to run stereo algorithms which do not need to calculate
each epipolar line for every single point. They just search along horizontal lines
in the two rectified images. To sum up these preparation steps the starting point
is a raw image pair taken from the stereo system which is later undistorted,
rectified and cropped. After these steps the result is a rectified image pair
where both images have the same size. In consideration of these conditions
stereo algorithms are following.

3.3 Stereo Algorithm
A stereo algorithm’s purpose is to calculate a disparity image from a stereo
image pair. This can be achieved by calculating the disparity between the left
and the right image for every pair of points. Undoubtedly this is only possible

3this value is in most set ups almost 0
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if it is clearly distinguishable that two points in different images represent the
same point of the physical world. So a part of the algorithm’s task is to find
corresponding pairs of points in the left and right image. As stated previously
this task gets much easier once the image pair is rectified. This allows to reduce
the search task to a search along a line. Starting with the selection of a point in
the left image and then searching along a horizontal line for the corresponding
point in the right image. For every possible point the similarity is calculated
and the point most similar is chosen and its disparity is determined.
In general this would work fine if every point of an image was clearly

distinguishable from its surrounding points and the corresponding point of the
pair of points in the other image would also be clearly distinguishable from
its surrounding points. A number of different characteristics of a scene such
as featureless regions, occlusions and multiple similar correspondences make
the problem much harder. One way to compare points is through their digital
values but these values are not unique and will result in different solutions for
almost every point. The problem can be reduced if not only values of single
points are compared to other points but rather is a comparison of regions
that compound a number of pixels is realised. This allows to differ diverse
image regions much better. If there is still a repeating pattern in an image
it will be still a problem to distinguish between the regions. This problem is
also present in homogeneous image regions that are present because of plane
surfaces without any texture in a scene. There are different approaches to deal
with these types of problems through different algorithm strategies that are
discussed in Section 4.5. A rough categorisation between sparse and dense
algorithms can be stated.

Sparse Output

The goal behind sparse stereo algorithms is recovering the coordinates of every
feature visible in both images of the stereo vision system. So only regions with
feature points can be recovered, which results in gaps in the disparity image.
Algorithms of this kind mostly ignore similar regions which are hard to differ
from each other.

Dense Output

Dense stereo algorithms calculate the coordinates of every pixel regardless
whether a feature exists in a certain area or not. Global and local methods are
commonly used to reach the goal of a dense disparity output.
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3.3.1 Stereo Correspondence
For the disparity calculation it is necessary to find corresponding points in the
image pair. Due to allocating an image area to a matching cost it is possible to
compare image areas and find correspondences. Scharstein and Szeliski [7] show
a taxonomy of different stereo algorithms. It includes a categorization for dense
stereo algorithms and the important steps for most algorithms. Scharstein and
Szeliski list the most common steps for a vast number of algorithms:

1. matching cost computation

2. cost (support) aggregation

3. disparity computation/optimization

4. disparity refinement

These steps are not always necessary and may vary depending on the specific
algorithm. For the matching cost computation a region in the left image and
a region from the right image is chosen. The regions contain either a fixed
number of pixels or it could also be a variable number of pixels, as long as
they have the same size in both images. The set of pixels in a certain area is
represented in W . (x,y) are the coordinates of a pixel and d is the possible
disparity. The matching cost can be a difference in intensities between two
regions. The aggregation of the cost is done through different functions:

• sum of absolute differences (SAD):
SAD(x,y,d) = ∑

(x,y)∈W |IR(x,y)− IT (x+ d,y)|

• sum of squared differences (SSD):
SSD = ∑

(x,y)∈W (IR(x,y)− IT (x+ d,y))2

• sum of truncated absolute differences (STAD)
STAD = ∑

(x,y)∈W min{|IR(x,y)− IT (x+ d,y)|,T}

The step of disparity computation can differ vastly between algorithm. In
a sparse algorithm disparity values for features are calculated. In a dense
algorithm disparity values for every pixel is computed. After that a refinement
can be done to increase the resolution of the algorithm.
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Local Methods

The important steps in local methods are the matching cost computation and
the aggregation. The functions such as SAD, SSD and STAD can be considered
for this. After this the disparity value with the minimal cost is chosen. This
process is repeated for every considered image region and results in a disparity
image. For some regions it is hard to calculate the right disparity value because
of occlusions or homogeneous image regions. It is also possible that only certain
regions of an image with detectable features are considered for the disparity
calculation. This results in a sparse disparity output. The step of disparity
refinement allows to correct wrongly calculated disparity values and can also
be used to calculate a dense disparity image from a sparse disparity output.

Global Methods

Global methods consider the fact that neighbouring pixels have usually similar
disparity values as long as the considered region does not represent the edge of
an object. The disparity of every pixel is calculated through the minimization
of a global energy function. It consists of a data term and a smoothness term.
The matching cost for these kind of algorithms can be calculated in the same
way as in local methods and is used for the calculation of the data term Edata(d).
The smoothness term Esmooth(d) takes the neighbouring pixels into account
and can be calculated through the sum of the difference between disparities.
The energy function is the sum of both terms:

E(d) = Edata(d) + λEsmooth(d) (3.25)

The minimization of the energy function can be calculated through different
algorithms. Common algorithms use methods like belief propagation [19] or
graph cuts [8] to find an optimal solution.



4 Approach
The knowledge of camera models, stereo systems and stereo algorithms helps
to understand physical connections and relations in the process of the disparity
calculation. For a better understanding of the object detection, the focus is set
on each single step of it. In this chapter the theory of those steps are discussed
as well as their part in the object detection.

An important part is the disparity image, because it is used as the input for
the process of object detection. One field of application of it is the v-disparity
calculation, that is the base for the floor detection. Because an advantage
of this image transformation from the disparity image is the transformation
of a plane floor into a single line. This makes it possible to reduce the floor
detection into a line detection, which will be less costly. In order to do this the
floor needs to be the dominant plane in the observed area. The assumption
that the floor is the dominant plane in a scene is valid for many indoor robotic
scenes. It is considered that for the navigation purpose in robotic applications
the stereo camera will be aligned in a way that the area in front of the robots
moving direction is observed.
After the v-disparity calculation the goal is to detect a dominant line in

the v-disparity image, which can be detected through different methods like
RANSAC or Hough transform. In this thesis the Hough transformation is
used because it showed fast and efficient results. This transformation will be
discussed in this chapter.

The detection of the floor in the v-disparity image helps to end up with the
objects in the disparity map. In order to do this the remapping process from
the v-disparity back to the disparity is discussed. This process helps to remove
the floor from the disparity image and only objects will be left in the scene.

One problem with the v-disparity image is that the floor is only transformed
into a perfect line if the image horizon is parallel to horizontal lines. This
is not the case if the roll angle is not zero. Because of that, two different
approaches are introduced. One of them being the multi v-disparity which
allows to correct small roll angle deviations, the other approach is an automatic
roll angle detection and correction through image transformation.
A closer look is also taken into noise reduction because the stereo system

is slightly influenced by noise and this leads to wrongly detected objects
that are unwanted in the result. The theory of noise reduction is discussed.

29



4 Approach 4.1 v-Disparity 30

Also wrongly detected pixels appear from bright light reflections on the floor
caused by saturated intensity values in the cameras. This effect leads the
stereo algorithm to partially wrong disparity images. A strategy to avoid such
problems is also discussed.

Due to different tested algorithms in Chapter 5 a look into the functionality
of the stereo algorithms is taken. Finally an overview over the object detection
algorithm is given.

4.1 v-Disparity
An intuitive method for object detection is the segmentation from the objects
in a 3D-space representation. So the disparity map is transformed into the
(X,Y,Z)-space, the floor in the 3D-space is detected and the objects segmented
from there. Nevertheless it is possible to calculate it more efficiently with the
consideration of the v-disparity.
The v-disparity image is a reduced form of the disparity image. A pixel

from the disparity image consist of the coordinates (u,v) and of a value that
represents the disparity. In the v-disparity the information of the u-coordinate
is lost but a dominant floor can be detected less costly than in the disparity
image. In the field of robot navigation it is advantageous if the object can be
detected in the disparity. For this purpose a remapping process can be used.

4.1.1 v-Disparity from Disparity
With the help of a stereo vision system the disparity map can be calculated
which assigns a disparity value to each pixel. So every pixel represents a
point in the physical world at a certain distance. The distance is indirectly
represented in the value of the disparity as shown in Eq. (3.5). The coordinates
of the pixel give information about their real world coordinates X and Y in
the (X,Y ,Z)-space. The horizontal coordinate in the disparity map is usually
called the u-coordinate and the vertical coordinate is the v-coordinate and gives
the name to the v-disparity. In order to get the v-disparity the disparity map
(disparity as a function of u and v) d(u,v) is transformed to another space f(d,v)
which is the v-disparity map. The v-disparity is similar to the disparity but
instead of the u-coordinate of a pixel it is replaced with the disparity value as
the new horizontal coordinate. The value f(d,v) represents the number of pixels
with the depth value d with the same u-coordinate as in the initial disparity
map.
Figure 4.1 shows the mapping from the disparity image to the v-disparity

image. The color of the pixel can be directly associated with the disparity
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value of the pixel. White pixels represent the maximum disparity value and the
different intensities of grey mean values between the maximum and minimum
disparity value. The brighter the grey is the bigger is the disparity value. A
black value means the minimum disparity value. In the case of this scene the
black spots are pixels without a calculated disparity value due to the sparse
output of the block matching algorithm.
The advantage of the v-disparity is now that the floor is represented by a

single line and objects in the disparity map are represented by pixels above
this line.

(a) Image from the stereo sys-
tems left camera of a scene

v v

du

(b) A sparse disparity image from the block matching
algorithm is mapped into the v-disparity image

Figure 4.1: Example for the v-disparity calculation

4.1.2 Remapping: Disparity from v-Disparity
If the floor is detected and removed from the v-disparity image, only objects
that pop out of the floor are left on it. However the problem is that the
u-coordinate of the image is lost and it is not possible to calculate all the world
coordinates of the objects. It is an issue concerning the task of path-planning
of a robot.

In order to avoid this problem a transformation back to the disparity image
needs to be done. This remapping process from the v-disparity image back to
the disparity image allows to calculate the world coordinates of the detected
obstacles. This is possible if the objects are still present in the disparity image
after the remapping process and requires the coordinates u and v as well as
the depth information.
One problem is that it is not achievable to create a transformation back to

the disparity image if only the v-disparity image is considered. This is the
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case because once the disparity image is transformed into the v-disparity image
the information of the u-coordinate is lost. This lost information can not be
restored just from the v-disparity image. However if additionally a look is
taken at the original disparity image of the scene it is possible to remap the
v-disparity image back to the disparity image. This remapping allows also
to remove all floor pixels in the original disparity image and the result only
includes objects that are potential obstacles. So in summary the objects are not
transformed back to the disparity image, but instead the floor is just removed
from there and all the objects are left in the image.
For this purpose the detected line from the Hough transform is considered

in the v-disparity image. Now these lines include every floor pixel of the
disparity image and its values of the v-coordinate and the disparity value. The
u-coordinate is not accessible but it is restored from the original disparity image.
A single pixel that represents a floor pixel in the v-disparity is considered and
compared to the original disparity image. Every pixel in the disparity map
with the same v-coordinate can be checked if its disparity value is equal to the
disparity value of the floor pixel in the v-disparity. If this condition is fulfilled
a floor pixel is detected in the disparity image. This is now done for every
detected floor pixel of the v-disparity.

Additionally a certain threshold is added because the noise in disparity values
result in the effect that the floor will not be transformed to a perfect line in the
v-disparity image. This allows to assign noisy pixels to the floor in the scene
to a certain degree. It mostly depends on the chosen threshold and the noise
intensity of the stereo system. If a floor pixel is detected its disparity value is
set to zero.

So in summary all the pixels in the disparity map are identified according to
their disparity value in the v-disparity image. Then those pixels are identified
in the input disparity image and set to zero if they are part of the floor.
This remapping process makes it possible to detect the floor as long as the

line that represents the floor was detected properly. However under certain
conditions the floor detection is difficult and needs to be treated differently.
This is the case if the stereo systems baseline is not perfectly parallel to the
floor.

4.2 Problems with the Roll Angle
The v-disparity works well for floor detection because it transforms the floor
perfectly into a line and this line is detectable. The remapping allows the
removal of the floor from the disparity image in a way that only objects are left
in the image. These characteristics have a limited field of activity, because they
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Figure 4.2: The roll-pitch-yaw angles

are highly dependable from the roll angle of the stereo camera. A disparity
image from the floor with a perfectly aligned camera results in a straight
line in the v-disparity image. The reason for this is that pixels with the same
v-coordinate has the same disparity value, as long as noise plays a minor role, so
they are transformed onto the same pixel in the v-disparity image. Nonetheless
if the roll angle is varied, pixels along a horizontal line differ in disparity values
and result in more than one point on the v-disparity image. The experiments
from Chapter 5 show that this is not a problem for small roll angle changes
which are smaller than 1°.

If Fig. 4.3 is compared to Fig. 4.4 it is visible how an applied roll angle to
the stereo systems effects the v-disparity. The v-disparity with no roll angle
allows a good detection of the line and the v-disparity image of Fig. 4.4 makes
it hard to pick out a line. Instead a huge number of lines can be fitted into the
v-disparity map since the floor results in a fanned out line.

(a) Image from the stereo sys-
tems left camera of a
scene

(b) Disparity map with the
lines of equal disparity
values

(c) v-Disparity with a
clearly detectable
line

Figure 4.3: A scene with a perfectly aligned stereo vision system
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(a) Image from the stereo sys-
tems left camera of a
scene

(b) Disparity map with the
lines of equal disparity
values

(c) v-Disparity with a
difficult detectable
broad line

Figure 4.4: A scene with a slight roll angle of the stereo vision system

One common method to avoid this problem is a roll angle correction by
simply transforming the disparity image through rotation. In [3] the roll angle
is measured in the calibration process in the first frame and then an affine
transformation is used to correct it. In the further process it is assumed that
the roll angle does not change significantly over time.

In this thesis a look is taken into two different ways to reduce the problems
with roll angle changes. One of them is the multi v-disparity approach. It
calculates more than one v-disparity and helps to reduce the effects of a slightly
changing roll angle. The other way is a roll angle detection with the help of
line fitting within a certain area of the disparity map. After the detection of
the angle it is corrected by a rotation of the disparity image.

4.2.1 Multi v-Disparity
The goal with this approach is not the correction of the roll angle it is rather
a reduction of the effect that is caused by the roll angle of the stereo system.
As mentioned previously the roll angle results in a distorted v-disparity. The
distortion affects the v-disparity map in a way that single lines that represent
the floor are fanned out. These lines are similar to the lines detected if there is
no roll angle but they are much thicker. These lines are still detectable but the
problem now is that they lead to either too many wrongly detected floor pixels
or too less detected floor pixels.
Now if the parameter for the thickness of the line is increased there is still

the issue that possible points of an object represented in the v-disparity are
covered by the line and are not considered in the remapping process. This
results in a lower percentage of detected objects. If the parameter of the line
thickness is too thin the remapping process does not consider all floor pixels
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and areas with floor are detected as objects.
The main reason for the worse ground plane detection is the bigger difference

in disparity values along a line of the disparity map. If the stereo system is
perfectly aligned and the fluctuation of disparity values caused by noise is not
considered, the values on the most left point and the most right point along a
horizontal line are equal. Small changes and noise still occur in very similar
values in disparity for these two points. If a roll angle is present a difference in
the disparity value at the left edge and on the right edge along a horizontal
line appears.
This can also be seen in the v-coordinate of the left pixel in a line of equal

disparity values and the v-coordinate of the right pixel. The bigger the roll
angle is the bigger the difference is in both v-coordinates of the edge pixel. This
has also effects on the v-disparity image because both values have the same
disparity value. The pixels fall one above the other in the v-disparity image
and each of them having a different v-coordinate. This leads to the effect that
the floor will be represented by a fanned out line. The difference is indicated
as δ and can be seen in Fig. 4.5. The v-coordinate of the left most pixel can
be considered as vleft and the one of the right as vright. This make it possible
to calculate δ as the difference between those coordinates δ = vright − vleft.

δ

(a) δ indicated in the disparity image (b) δ indicated in the v-disparity image

Figure 4.5: Effect of the roll angle visible in the disparity and v-disparity image

So this fanned out line in the v-disparity is still detectable. It is possible
to detect a broad line or a number of equal good fitting smaller lines. If all
pixels are considered as floor pixels it is difficult to differ between small objects
from the floor. Of course this is not an issue if the size of the object is much
bigger than δ. The effect is also dependable of the position of the obstacle.
Contingent upon a positive or negative roll angle either objects on the left or
right boarder are still detectable.

The concept of the multi v-disparity is to split the disparity into a number of
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sub disparity images. Now if the disparity is split into n equal sized sub disparity
images the δ value in each of the sub disparity images are approximately 1

n

of the δ value of the input disparity image. Each sub disparity image has the
same height as the input disparity map but only has 1

n
of the width. The

v-disparity image of each sub disparity image still has the same size but the
floor is represented by much less fanned out line. The effect of the roll angle is
reduced with an increasing n.

1

2

Figure 4.6: The multi v-disparity approach splits the disparity image in a
number of sub disparity images. In this example n=2.

Figure 4.6 shows how the disparity image is split into two different sub
disparity images. The left half of the image results in δ1 ≤ δ and the right
image in δ2 ≤ δ. The floor in the v-disparity of both sub disparity images has
the values δ1 and δ2. This enables to detect a smaller line and differ better
between floor and object pixels.

The disadvantage of the multi v-disparity is that n sub disparity images result
in as many v-disparity images and therefore the floor detection needs to be
calculated n times. This leads to the disadvantage of an increased calculation
time.

4.2.2 Roll Angle Detection and Correction
Another way to make the floor detection more stable against a variation of the
camera position is a roll angle correction. For this purpose it is necessary to
detect an appearing difference in the roll angle. Theoretical it is wanted that
the baseline of the camera is always parallel arranged to the ground. This setup
results in a roll angle that is zero. However if the mechanical setup changes
slightly it is likely that a roll angle appears.
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The approach now is to calculate the rotatory deviation of to floor compared
to the stereo system alignment and correct it through an image transformation.
For a better understanding of the approach for the roll angle detection a look is
taken into the disparity map of a perfectly aligned stereo rig and is compared
with the disparity map of a rotated stereo system. Therefore the floor in a scene
needs to be a dominant flat plane and can for now be considered free from any
objects. Also noise might be possible but for now its influence can be considered
without any effect. This is of course not always the case and therefore a look
is taken into strategies to decrease the influence of noise. This principal is
discussed after the explanation of the basics of the roll angle detection.

If the baseline of the stereo system camera is parallel to the floor the roll angle
is zero. Every point of the floor with the same depth value is projected onto the
same v-coordinate of each of the image planes. Considering the assumptions
made previously and not taking into account a discrepancy due to discrete pixel
values, the stereo system results in equal disparity values along a horizontal
line.
A turned stereo system changed along the roll angle leads to a slightly

different disparity map. Equal disparity values are horizontally orientated but
equal values along diagonal lines can be seen. The slope of these lines is directly
proportional to the roll angle. The goal is a roll angle calculation starting from
the slope estimation of the lines with equal disparity values.
Once the angle is detected it can be corrected through an image transfor-

mation. In order to do this the disparity image is transformed in a way that
the resulting new disparity map fulfils the requirements of equal disparity
values along a horizontal line as well as possible. With non-ideal data it is not
possible to meet the exact requirements. The task changes slightly to an error
minimization of the sum of differences of disparity values along a horizontal
line.

Angle Estimation from non ideal Environments

The non ideal data includes noise and possible objects in the scene. The noise
arises in the possibility of different disparity values for points with the same
depth value. An object in the scene will also influence the result of a roll-angle
detection dependent of the geometry of the object. If the object is small enough
it effects the detection only slightly and is marginal compared to the influence
of the noise.
This error can not be ignored if the object exceeds a certain size. If the

purpose of the object detection in a robotic application is considered this
problem can be handled. One goal of the object detection is a safe path
planning. This results in paths without obstacles and enables the assumption
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that certain parts in the disparity map as free from obstacles. The consequence
is that there is no object in the area close to the robot. In the disparity image
this is the area close to the bottom of the image. The considered area is further
reduced if a look is taken at disparity values in the center of the image. This
is done because if the robot moves past an object on either side it might be
visible to a certain degree in the boarders of the image. Now this area can be
used for the roll angle detection.
For typical indoor robotic environments the assumption of an almost flat

floor can be taken. If focused on the area of the floor as described above, this
assumption can be expanded for a higher number of possible environments such
as roads or more rough terrain. The reason for this is that the floor sections of
this environments can be considered locally flat. The next step is described
on a single horizontal line of the specific chosen area. Every pixels disparity
value is taken and listed as yi values, sorted by the u-coordinate of each pixel.
The u-coordinate is recorded as the xi values and can be renumbered from 1 to
n without any change in result for the roll-angle detection. n is the number
of considered disparity values. The v-coordinate is not important because for
now the focus is on a single line with a constant v-coordinate. The goal is to
fit a line in the data that minimizes the quadratic error. The following steps
go into detail about the calculation of the linear least square model. The fitted
line is expressed through the equation:

ŷi = α̂ + β̂xi (4.1)

and is calculated through linear least square fitting. The quadratic error is
calculated with

S =
n∑

i=1
(yi − ŷi)2 =

n∑
i=1

(yi − α̂− β̂xi)2 (4.2)

and the minimal error needs to fulfil the conditions:
∂S

∂α̂
= 0 ∂S

∂β̂
= 0 (4.3)

The conditions from Eq. (4.3) result in the following equations after simplifica-
tion:

n∑
i=1

(yi − α̂− β̂xi) = 0 (4.4)

n∑
i=1

xi(yi − α̂− β̂xi) = 0 (4.5)

For further simplification the sum can be simplified with:
n∑

i=1
xi = nx̄

n∑
i=1

yi = nȳ (4.6)
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in which x̄ and ȳ stand for the mean value of Eq. (4.4) and Eq. (4.5) have two
unknown variables α̂ and β̂ that are to be expressed. Rearranging Eq. (4.4)
and using the relations from Eq. (4.6) results in:

nȳ = α̂n+ β̂nx̄⇒ ȳ = α̂ + β̂x̄⇒ α̂ = ȳ − β̂x̄ (4.7)

From the second condition for a minimum Eq. (4.5) rearranged to:
n∑

i=1
xiyi = α̂

n∑
i=1

xi + β̂
n∑

i=1
x2

i (4.8)

Now the result from Eq. (4.7) is used in Eq. (4.8) and rearranged with Eq.
(4.6) to:

n∑
i=1

xiyi = nx̄ȳ − β̂nx̄2 + β̂
n∑

i=1
x2

i (4.9)

Now the unknown variable β̂ from the line equation (4.1) can be expressed and
rewritten as follows:

β̂ =

n∑
i=1

xiyi − nx̄ȳ
n∑

i=1
x2

i − nx̄2
=
n

n∑
i=1

xiyi −
n∑

i=1
xi

n∑
i=1

yi

n
n∑

i=1
x2

i −
n∑

i=1
xi

n∑
i=1

xi

(4.10)

With this result it is also achiveable to calculate the right value for α̂ from Eq.
(4.7) and get a solution for Eq. (4.1) that minimizes the quadratic error. For
the purpose of the roll angle detection and correction it is only necessary to
consider the slope β̂ of the line. From there the roll angle Φ can be calculated.

Φ = arctan β̂ with Φ ∈ [−π2 ...
π

2 ] (4.11)

For a more stable detection of the angle it is necessary to not just look at a
single line of data. If the number of considered rows is increased for the row
angle detection it is realizable to compensate single outlier values that appear
due to noise. The approach is to build the mean values of disparity values with
the same u-coordinate. This can be done because the noise results in normally
distributed values of the disparity. These arithmetical averaged values are the
data in yi and keep the outliers within a closer limit. This concludes in a more
stable estimation of Φ under an increased noise level.

Affine Image Transformation for the Angle Correction

The estimated roll angle Φ can be corrected through an affine image trans-
formation. The basic principal is that disparity values from the input image
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with the coordinates (u1,v1) get transformed into new coordinates (u2,v2). One
feature of an affine image transformation is that parallel lines are still parallel
even after the transformation.

So if the focus is placed on points with equal disparity values in a disparity
map, it is apparent that these points lie along a line. If the disparity map
is recorded from a flat floor, there are a number of parallel lines created by
equal disparity values. The goal is now that after the image transformation
all these lines are still parallel to each other. Since this is not be the issue,
it is desirable that all lines should also be horizontal compared to the image
coordinate system. A problem with affine transformation is that angles are not
preserved correctly. Nevertheless since the focus is on small angle correction
this is not a matter.
An affine transformation consists of the following steps:
• Rotation

• Translation

• Scaling
To correct the angles the image simply needs to be rotated. In order not to
exceeded the original image size it is necessary to crop the image. The image
transformation is a matrix multiplication and uses the 2× 3 matrix M :

M =
[
a b (1− a)xcenter − bycenter

−b a bxcenter + (1− a)ycenter

]
(4.12)

with
a = s cos Φ b = s sin Φ (4.13)

The coordinate values xcenter and ycenter represent the image center of the input
image. s is a scale factor and is set to the value s = 1. A positive value of
Φ rotates the image counter-clockwise. Now the relation between the output
image with coordinates (xoutput,youtput) and the input image with coordinates
(xinput,yinput) is related through:[

xoutput

youtput

]
=

[
a b (1− a)xcenter − bycenter

−b a bxcenter + (1− a)ycenter

] xinput

yinput

1

 (4.14)

After this affine image transformation the roll angle is corrected in a way that
the ground plane in the v-disparity is fanned out to a minimum. This enables
a unambiguously line detection in the v-disparity that represents the ground
plane.

In 4.7 the process of the roll angle correction is summarized and can be listed
as the following steps:
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Figure 4.7: The steps of the angle detection and correction approach.

• Choose an area from the disparity image

• Fit a line in the data through error minimization

• Calculate the angle Φ of the lines slope

• Correct the image through transformation

• Use the newly generated disparity image for the further process

4.3 Line Detection with Hough Transform
The Hough transform is used to estimate the best fitting line in the v-disparity
algorithm. This is done to detect the floor in the scene. After this the floor
can be removed from the v-disparity map and only points that are part of an
obstacle remain. After a remapping process of this point into the disparity map
only objects are left and can be located in the image. The distance between
the stereo system and an object is then calculated through Eq. (3.5) with the
disparity values of the object.

For a recognition of complex pattern the Hough transform is first mentioned
in the patent of Hough [20]. It transforms a point from an image space into an
parameter space. The parameter space describes every possible line for a single
point. In order to do this a line is expressed through the parameters ρ and θ:

x cos θ + y sin θ = ρ (4.15)

The coordinates (x,y) can be replaced through the pixel coordinates (u,v). The
point of the image is represented through a sinusoidal function in the parameter
space (θ,ρ). When a second point is considered and transformed this leads to a
second sinusoidal function in the parameter space. In the image space only one
line can be considered that goes through two different points. In the parameter
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space this line can be found at the intersection of the sinusoidal function of
both image points. With the basic understanding of the Hough transformation
the best fitting line for a higher number of points can be found.

Figure 4.8: Hough transformation for three different points [21].

If more points are considered in an image space and transformed to the
parameter space it leads to as many sinusoidal functions. Each of them
intersect at one point with every other function. In the image space this means,
it is assured that a line can be spawn between one point and every other point
in the image. Figure 4.8 is a example for the transformation from the input
space to the Hough space.
If there is one dominant line in the image, it means that a high number

of functions intersect at the same point in the parameter space. The line
is then identified through these parameters. Usually there is not just one
dominant plane in the v-disparity map. In order to get a representing line in
the v-disparity, all possible lines are considered that exceed a certain threshold.
The threshold stands for the minimum number of intersections at a specific
point.

Another important step is to dismiss results that are clearly not a represen-
tation of the floor in the v-disparity map. The floor is not parallel or close to
parallel to the image plane of the stereo system. This assumption is valid since
in a robotic system the stereo system is used to take images of the space in
front of the robot and not just straight down to the floor. If this would be
the case the floor would only consist of pixels with equal or similar disparity
values and therefore be represented by vertical lines in the v-disparity image.
However this is not the case for most robotic applications. So this means that
the floor can not be represented through vertical lines in the v-disparity or
lines similar to this. Now every possible line with a value for θ close to 90 ◦
can be dismissed.
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The remaining number of possible lines have similar parameters and are close
to each other. For the best representation of the detected floor these lines are
averaged.

4.4 Noise Reduction
The disparity value of a single point at a constant distance varies over time.
One of the reasons for this can be seen in the variation of lighting conditions
over time. Two consecutive images have slightly changed values of intensity
and this can emerge in slightly changed disparity values for a number of
pixels. Experiments in Chapter 5 show that the disparity values are normally
distributed with the standard deviation σ. The consequences can be seen in the
v-disparity because the coordinate values of the floor pixels vary along a fitted
line. This usually is detected as an object in the v-disparity. However for this
purpose a threshold is added in the remapping process. The disadvantage of
such a threshold is that it makes it harder to detect small objects particularly
if it is an object with a small height. The choice of the value for the threshold
is a conflict of interests. If it is too small the object detection algorithm detects
objects wrongly and if it is too big little objects are not detected at all.
The approach in this thesis is that the threshold is chosen close to σ. Due

to this there is still a number of wrongly remapped pixels but ensures that
smaller objects can still be detected. In order to get rid of the wrongly detected
objects a post processing step is carried out. For this purpose different filters
have been tested and two of them have proven to be useful. One of them is the
median blur filter and the other one is a morphological operation filter.
The goal of the filter is to get rid of wrongly detected objects. After the

remapping process all detected floor pixels in the disparity map are set to zero.
The probability that two pixels of a wrongly detected object are close to each
other is low. The wrongly detected pixels have similarities to salt and pepper
noise. So the goal of the filter is to get rid of this kind of noise but still obtain
the correct size of the rightly detected objects.

4.4.1 Median Blur Filter
The median blur filter iterates every pixel of an image with a kernel. The center
pixel inside the kernel is replaced with the median value. For this purpose the
pixels inside the kernel are sorted by value. The center pixels value inside the
kernel is then replaced by the middle value of the sorted pixels. The size of the
kernel is n× n with n bigger than 1 and uneven.

Experiments show that in the disparity map after the floor removal the noisy
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pixels are mostly singled out inside a close neighbourhood of the pixels. Floor
pixels are all set to zero and if a wrongly detected pixels is surrounded by floor
pixels the wrongly detected pixel will also be set to zero. This only fails if the
number of wrongly detected pixels inside the neighbourhood is larger than 50
percent.
Another question is how this filter influences rightly detected objects. The

biggest concerns are the edges of the object because it is possible that some of
the edge pixels are possible surrounded by more floor pixels than object pixels.
This results in a wrong dismissal of a rightly detected object pixel. The result
of the filtering is that the object sizes are slightly reduced in the disparity map.

4.4.2 Morphological Operations
Several morphological operations can be used to transform images. In order to
get rid of noise the morphological opening and closing operations are consid-
ered. Both of these operations are a combination of two other morphological
operations. One of them is called dilation the other one is called erosion. The
difference of opening and closing is just the order of dilation and erosion. The
opening operation is an erosion followed by a dilation and the closing operation
has the inverse order. Both of these operations have slightly different effects to
pixels inside a kernel.

• dilation: expands a shape and fills holes inside the shape

• erosion: expands the background and fills holes inside the background
The kernel center iterates through every pixel of the whole input image and
changes the pixels values inside a closed pixel neighbourhood. The size of the
considered neighbourhood is equal to the kernel size. If the two operations
are performed after another a shape will preserve its original size, because the
shape gets increased and then decreased or the other way around. This also
results in a removal of the noise because single pixels do not expand in the
dilation step and in the erosion step they are removed. Another characteristic
of this operation is that holes inside an object get filled. So if a floor pixel is
surrounded by pixels with any disparity value its disparity value is changed
to a interpolated disparity value of the surrounding pixels. The opening and
closing operation can be used to reduce the noise. Both operations are useful
in the object detection algorithm.

4.4.3 Problems with Reflections on the Floor
An issue that appears while detecting objects with a stereo vision system
results from reflections of either sunlight or other bright light sources such as
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light bulbs. Usually such reflections result in a number of wrongly detected
pixels inside the area of reflection. The reason for this is mainly the saturated
intensity values of the pixels. Due to the saturation the areas of reflection can
not be distinguished for the calculation of the disparity image. The experiments
from Chapter 5 show that the calculated disparity values inside the area of
reflection is smaller than the expected disparity values compared to points of
equal distance to the stereo system.

In order to avoid wrongly detected pixels in the area of reflection the approach
is to dismiss every pixel that has smaller disparity values than the detected floor.
This can be done by remapping the v-disparity image to the disparity image
after the floor was detected. For this purpose pixels with smaller disparity
values than floor pixels are set to zero while remapping.

4.5 A Comparison of Different Stereo Algorithms
One important step in a stereo vision system is the stereo algorithm that
calculates the disparity map. The basic idea of a stereo algorithm is discussed
in Section 3.3 but now three different stereo algorithms are introduced. All
of these algorithms are tested for the purpose of object detection. The choice
of the efficient large-scale stereo matching (ELAS) and the block matching
algorithm is taken mainly because of the availability of these algorithms in
the robot operation system (ROS) [22]. The semi-global matching was chosen
because of the used stereo system. It uses an on-board processor to calculate the
disparity with the semi-global matching algorithm. The other two algorithms
run on an Intel® Core™ i7-2860QM CPU @ 2.50GHz × 8 processor that takes
the input images from the same stereo camera as the semi-global matching
calculation. Before the performance of the different algorithms is compared in
Chapter 5, a brief overview of the functionality is given.

4.5.1 Efficient Large-Scale Stereo Matching ELAS
This algorithm was developed by Geiger, Roser and Urtasun [5]. The main
purpose of it is to calculate the disparity for high-resolution images at a high
frame rate close to real time. The functionality of this algorithm can be
summarized with the following steps:

• Computation of the disparities for a sparse set of support points

• Generation of a two dimensional mesh via delaunay triangulation

• Calculation of a generative model
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• Dense disparity calculation through solving local energy functions

At first the disparities of a set of points with unique texture are calculated.
The points are chosen through the horizontal and vertical sobel filter response.
The sobel filter is used to detect edge point, so mainly significant edge points
are included in the set of support points. This set of points is further reduced
to avoid ambiguities. It is done by a threshold for all points that exceed a
certain ratio between the best and second best match. The set of points is
further reduced by removing every point with a disparity that is not similar to
its nearest neighbours.
After that the Delaunay triangulation [23] is used to calculate a rough

estimation of the disparity values for pixels inside the set of support points.
These results are used to generate a probabilistic model for every point inside
of a set of support points. The generative model gives a probability for each
possible corresponding pixel pair and the thereby resulting disparity.
The dense disparity is then calculated through the minimization of a local

energy function. The energy function considers only disparity values that are
close enough to the estimated value of the delaunay triangulation and takes
also into account if points are along an epipolar line. In order to do this the
algorithm requires rectified images.
The implementation of the algorithm is available as a package1 in ROS.

4.5.2 Block Matching BM
The basic idea of the block matching algorithm is given in [17] and describes
roughly the implementation of [24]. The block matching algorithm is a sparse
algorithm that is able to detect good matching points. So points inside a
region without any uniqueness are recognised with this algorithm. The main
advantage of block matching is that it’s functionality allows a fast calculation
of disparity values. All the important steps of block matching are included in
Section 3.3.1. Basically the steps can be summarized as following:

• Prefiltering: normalize image brightness and enhance the texture

• Correspondence search along horizontal epipolar lines using the SAD cost
aggregation

• Selection of the disparity with the best fitting correspondence

• Postfiltering: eliminate bad correspondance matches

1http://wiki.ros.org/elas_ros

http://wiki.ros.org/elas_ros
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The implementation of the algorithm is available for ROS2. It can be tuned
through a number of parameters such as correlation window size, prefilter
size or an uniqueness ratio. The trade-off is mostly between accuracy and
density of the disparity map. The parameters need to be tuned according to
the application and are all experimental determined for satisfying results in
Chapter 5.

4.5.3 Semi-Global Matching SGM
The semi-global matching algorithm from Hirschmüller[25] is a reliable dense
stereo algorithm. The algorithm combines a pixelwise local approach and an
approximation of a global energy function with a smoothness constraint. It
consists of following steps:

• Pixelwise matching cost calculation

• Cost aggregation

• Disparity computation

• Disparity refinement

The semi-global matching is an iterative algorithm that calculates the disparity
through a repetition of the steps listed above. For this purpose the input image
pair is downscaled and an initial disparity map of the same size is needed. The
initial disparity is used to calculate an improved disparity map which serves as
initial disparity in the next step. The calculated disparity image is scaled up
and is used as the input in the next iteration step.
For the pixelwise matching cost calculation the mutual information [26]

between a set of image pairs can be used. As cost for matching intensities a
probability distribution of corresponding intensities is used. The exact method
is described in [27].
The cost aggregation includes a number of one-dimensional constrains that

deals with non smooth neighbouring pixels. These constrains are represented
by a global energy function that takes all values of the disparity image into
account. Under these considerations a disparity dependent cost is calculated
for each pixel. The minimum cost represents the best fitting disparity for one
pixel.
The disparity is then calculated through finding the minimal cost for every

pixel. After this step outliers in the disparity image are removed through

2http://wiki.ros.org/stereo_image_proc

http://wiki.ros.org/stereo_image_proc
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the refinement step. It is done to remove peak values and also to manage
untextured image regions.
The stereo system that recorded the data for the experiments in Chapter

5 uses the semi-global matching algorithm for a disparity image calculation.
This data is used as input for the object detection algorithm. It was calculated
on an on-board processor.

4.6 An Overview of the Obstacle Detection
Algorithm

Through a combination of approaches from this chapter an object detection
algorithm is presented. The algorithm’s output delivers a disparity image where
the possible obstacles are visible. This output can be used to navigate a robot
around those obstacles. It can also be used for an emergency stop if an object
appears unexpectedly within the robot’s path.
The input for the object detection algorithm is the disparity image that is

calculated within the stereo vision system. Therefore a rectified image pair is
delivered by the cameras of the stereo system and processed into the disparity
image.
The steps of the obstacle detection algorithm can be listed as follows:

• Roll angle detection and correction

• v-disparity calculation from disparity image

• Hough transform for line detection

• Floor pixel removal in the v-disparity

• Removal of pixel values that represent reflections on the floor

• Remapping from the v-disparity to the disparity image

• Noise reduction

The algorithm starts with the roll angle detection and correction. Therefore
a certain image region in the central bottom of the input disparity image is
selected. The disparity values in the selected area are considered to fit a line of
equal disparity values inside it and the angle of slope is calculated. In order
to correct this angle the disparity image is transformed with an affine image
transformation.
The corrected disparity image is used for the v-disparity image calculation.

After the transformation is done, another one takes place. This is the Hough
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transform that is used to calculate the most dominant line in the v-disparity
image. In order to detect a line that does not represent the floor, conditions of
the θ value of the Hough transform are considered. It should not be close to
zero because that would mean a close to vertical line in the v-disparity and
most likely represents a wall in an indoor environment. Another condition is
that the detected line needs to exceed a certain threshold value for intersections
in the Hough transforms. This guarantees that only a dominant plane can be
detected as floor.
Once the line detection is carried out successfully the algorithm continues

with the removal of the floor pixels in the v-disparity image. If the line detection
failed for some reason the algorithm stops and waits for further disparity inputs.
After the removal of the floor pixels in the v-disparity, the remapping process
starts. That means the removal of the floor in the input disparity image.
Additional pixels, that result from reflections of light on the floor, are detected
and removed. This removal of the pixels can be done because the reflections
lead to disparity values that suggest that the pixels are further away than the
detected floor.
After the remapping a filter is applied to reduce the noise in the disparity

image. This can be done by either a median blur filter or a morphological open
or closing operation.
Figure 4.9 is the block diagram of the implemented approach for the ob-

stacle detection. It represents the approach with the roll angle detection and
correction.

Disparity
Calculation 

Roll Angle
Detection &
Correction 

v- Disparity
Calculation

Hough
Transform

Line Detection 
& Removal

RemappingNoise 
Removal

Disparity Map
with detected 

Obstacles

Right Image

Left Image

Figure 4.9: Obstacle detection approach with roll angle correction

In Fig. 4.10 the multi v-disparity approach is shown. The number of partial
v-disparity calculations can vary and in the results of Section 5.4 two sub
disparity images are used.
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Figure 4.10: Obstacle detection approach with the multi v-disparity



5 Experiments
For an evaluation of the object detection algorithm a number of experiments
are performed. The purpose of these experiments is to identify the algorithm’s
weaknesses. The results are then used to improve the performance of the
obstacle detection algorithm. One of the experiments is applied in order to
estimate the noise model of the stereo system. With these results the thresholds
can be adjusted and they help to improve the performance for further results.
The testing of the algorithm in an indoor environment helps to discover limits
and give an insight into some of the occurring weaknesses. The knowledge
gathered from the experiments helps to find strategies for avoidance and removal
of problems such as an occurring roll angle to the stereo system or problems
caused by reflections of light on the floor.
Other experiments are used to evaluate the performance of different stereo

algorithms and allow to classify them for the purpose of obstacle detection.
It advantageous to classify the reliability, speed and accuracy of the obstacle
detection algorithm.
The problems of the roll angle are evaluated in another experiment that

classifies the quality of the different strategies from Section 4.2.1 and Section
4.2.2. Another experiment tests strategies that handle light reflections on the
floor.

All the experiments are performed with the stereo system described in Section
5.1.

5.1 Stereo Camera
The results of the experiments in this chapter are highly dependant of the
used stereo system. Cameras with different specifications will result in different
frame rates, noise models and success rates for the purpose of object detection.
For all the experiments the same stereo system was used. For this reason a few
of the important specifications of the stereo system are listed:

• Frames per second ≈ 12 fps

• Resolution: 640 px × 480 px

51
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• Base width: 16 cm

• grey scale image

The stereo system is able to calculate the disparity image on board but for
this purpose the images need to be downscaled. The on board calculation
time was not as fast as the availability of the input image. The following
specifications have to be considered.

• Number of disparity images per second ≈ 3 fps

• Resolution: 320 px × 240 px

• On board semi-global matching

The stereo system is also able to calculate its own odometry compared to a
starting point. However this requires more processing power and reduces the
disparity frame rate further. Due to this the internal odometry of the stereo
system is not used in the experiments.

5.2 Measuring the Noise of the Stereo System
The measuring of the noise in the disparity calculation of a stereo systems helps
to estimate the accuracy of the object detection algorithm. A well known noise
model is applied for better noise reduction and gives a rough feeling for the
limits in object size. A goal of these experiments is to know the noise behaviour,
dependable on the distance between a considered point and the stereo system.

Nguyen, Izadi and Lovell [28] show a way for the noise model estimation that
structures the noise into axial and lateral noise. In this thesis the main focus is
on the axial noise. The axial noise is the variation of the disparity value along
the z-axis which can be equated in a variation of depth.

For the noise model estimation only the semi-global matching stereo algorithm
is taken into account. The block matching and ELAS algorithm deliver poor
results in calculating the disparity of the ambiguous plane surface properly.
Also the semi-global matching algorithm has some troubles with a smooth
disparity calculation but still is reliable enough for a proper evaluation.

5.2.1 Experimental Setup
For this experiment a plane surface is placed in front of the stereo system.
The surface is placed parallel to the stereo vision system and the data of the
disparity is recorded for twelve different distances between surface and the
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stereo system. The smallest distance Z for the plane is 35cm and the other
distances are incremental increased in 15cm steps up to 230cm. Figure 5.1
shows the set-up.

stereo system

Z

plain surface

axial noise

Figure 5.1: Set-up noise-measuring.

From the recorded data five frames of every distance are chosen to evaluate the
axial noise of the disparity values. Furthermore regions without any disparity
values due to ambiguities are discounted and the areas close to the edge of the
plane are not taken into account as well. The image editing software GIMP
(GNU Image Manipulating Program) is used to calculate the histogram of the
valid pixels. The pixel value is a normalized disparity value in the range of 0 to
255. Figure 5.3 shows the valid area in light blue, the discounted pixels inside
this area in magenta and the result of the histogram of a single frame. It is
clear that in the histogram only pixels with a valid disparity value are selected
for the evaluation. The orange area in the histogram shows the disparity values
of the considered pixels.

5.2.2 Results
The results include the change of standard deviation of disparity values along
the distance. In the disparity images from 5.2 it is recognizable that big areas
of the disparity are not calculated. One reason for this are occlusions close
to the boarder of the plane. The scene behind the plane is clearly visible in
the left image but not visible in the right image. This makes it impossible
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Figure 5.2: Input images from the left camera of the stereo system and disparity
images from the stereo system.

Figure 5.3: Left: disparity image, center: Disparity Image with selected area,
right: Histogram

to calculate the disparity values of these areas. It can be observed that these
types of error decrease if the plane is further away. The reason for this is that
the occluded area is smaller at a greater distance. It is detectable that the
reflections on the floor make a calculation of the disparity value harder and the
calculated value is most of the time wrongly calculated or not at all calculated.
Figure 5.4 shows that the axial noise increases with the distance.

5.3 Obstacle Detection for a Robot Indoor
Scenario

The requirements for an object detection algorithm are dependant on the
application. In these experiments the goal is to find out how well the algorithm
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Figure 5.4: Result from noise-measuring

runs in an indoor environment. The aim is to discover what types of problems
appear in this set-up and where does the algorithm fail to perform properly.

5.3.1 Experimental Setup
In this experiment the stereo system is mounted on a remote-controlled robot
and navigatsd through a predefined path in an indoor scene. The navigation
takes place in a hallway with several small objects spread out over a certain
area. The size of the object differ slightly and have at least a height of 2cm,
with the biggest object smaller than 8cm.

5.3.2 Results
The results of this experiment show disadvantages of the obstacle detection
algorithm. As a satisfying result of the algorithm the floor is removed completely
and only the objects on the plane are visible.
In Fig. 5.7 a decent result of the object detection algorithm is visible. It

shows the input image from the left camera of the stereo system, the disparity
map from the stereo system, the calculated v-disparity image and the calculated
disparity map in which only obstacles are visible.
The identified problems of the obstacle detection algorithm in the robotic

scenario can be listed as follows:

• Reflections of light on the floor
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Figure 5.5: Robot and the point cloud of the stereo system overlaid to the map

• Problems with Hough transform when only a small area of the floor is
visible

• Loss of reliability due to differences in roll angle

Fig. 5.8 shows that the reflections of sunlight on the floor are misinterpreted
as obstacles. The reason for this is that the disparity calculation fails, due to
saturation of the intensity values in this image areas. The stereo system is not
able to adjust the exposure time properly because darker areas and bright areas
are present in the image. Theis results in wrongly matched disparity values for
the saturated areas.

Another problem occurs when there is no dominant floor visible in the input
image pair. This is because of the fact that the robot is navigated close to the
wall. Figure 5.9 is an example where the algorithm still manages to detect the
floor properly, but it perfectly shows that the line in the v-disparity is not as
dominant compared to the result from Figure 5.7. The problem arises from the
Hough transform, because the points of the floor in the v-disparity image are
too few. This causes that it is not possible to detect the line which represents
the floor. With adjustment to the parameters in the Hough transform it is still
possible to detect the floor in every single frame of this experiment. Figure
5.9 shows also how the disparity calculation fails in ambiguous image regions
such as the radiator. This is not a problem for robot navigation because the
surrounding image region is still calculated correctly.
The issue with the roll angle is pointed out as well. Due to the robot’s

movement the angular difference measured to the floor changed slightly over
time. Also the stereo system was not mounted perfectly parallel to the floor. So
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Figure 5.6: Different image pairs of the robot scenario

Figure 5.7: A good result of the object detection algorithm

Figure 5.8: A scene with reflections of the sunlight on the floor

this results in scattered points in the v-disparity image and make the remapping
much harder. Figure 5.10 shows that disparity map with the floor was not able
to remove the whole floor properly. In the v-disparity image it is not possible
to detect every floor pixel correctly. Some of the pixels are detected as objects
and are not removed after the remapping process.
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Figure 5.9: A scene with no dominant floor in the image

Figure 5.10: A scene with problems from the roll angle

5.4 Object Detection with Different Roll Angles
One of the results from Section 5.3 is that an occurring roll angle causes a
number of wrongly detected pixels. In order to analyze this effect different
roll angle changes are applied and data is recorded. For the testing of the
different strategies to avoid the problem with the roll angle, the strategies are
implemented in the object detection algorithm. This experiment is used to
analyze the effects of the roll angle and how the multi v-disparity compares to
the roll angle detection and correction.

5.4.1 Experimental Setup
The experimental setup is similar to the one in Section 5.5 with the same objects
as in Table 5.1 and under the same lighting conditions. The arrangement of
the obstacle is the same as in Section 5.5. Additionally the stereo vision system
is rotated by 1°and also 2°. The obstacles in the scene are stacked cylinders
with a total height of 2.25cm and a diameter of 2.8cm. Figure 5.11 shows the
arrangement for this experiment.

5.4.2 Results
The first Figure 5.12 shows how the roll angle affects the obstacle detection
result without correcting the problem at all. Depending if the roll angle was
applied clockwise or counter-clockwise, wrongly detected pixels appear on the
boarder of the disparity image, in this example, on the left side. It is also
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Figure 5.11: Arrangement of the scene for the evaluation of the experiment
with roll angle

detectable in Fig. 5.12 that the objects on the right side are not detected
because of the roll angle.

(a) Roll angle = 0° (b) Roll angle = 1° (c) Roll angle = 2°

Figure 5.12: Results without a roll angle correction

The results from Fig. 5.13 are calculated with the use of the obstacle detection
with a roll angle correction. It is visible that the results are as well as they
would be if the stereo vision system was perfectly aligned.

Figure 5.15 shows a reduction of the effects visible in Fig. 5.12 but there
are still a number of wrongly detected obstacles. The reason for this can be
better described with the results from Fig. 5.14. It displays the results from
the obstacle detection before noise reduction is accomplished. It shows clearly
that the effects from the roll angle are now split into two vertical halves of
the disparity image. If the number of sub disparity images are increased for
the multi v-disparity the effect is further reduced. Additionally this means an
increased calculation time because for every single sub disparity, every step of
the obstacle detection algorithm needs to be executed again. Nevertheless if
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(a) Roll angle = 0° (b) Roll angle = 1° (c) Roll angle = 2°

Figure 5.13: Results with a roll angle correction

the terrain does not allow a proper roll angle correction this approach can be
improved further.

(a) Roll angle = 0° (b) Roll angle = 1° (c) Roll angle = 2°

Figure 5.14: Results with multi v-disparity before noise reduction is done.

(a) Roll angle = 0° (b) Roll angle = 1° (c) Roll angle = 2°

Figure 5.15: Results with multi v-disparity

5.5 Object Detection for Small Objects
In order to evaluate the performance of the different stereo algorithms the
obstacle detection algorithm was tested on a scene with small objects arranged
within it. For this purpose the obstacle detection used the disparity images
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of different stereo algorithms as input. The data is collected from an indoor
environment and allows to test the performance of the block matching, ELAS
and the semi-global matching algorithm. The intersection over union metric
(IoU) is used to compare the success of the detection algorithm.

5.5.1 Experimental Setup
The stereo system was mounted static above the floor while observing an area
of approximately 2.2m2. In the observed area objects were placed at different
distances, measured to the stereo systems. Figure 5.16 displays the arrangement
of the stereo vision system.

73,5 cm

25 cm

165 cm

Figure 5.16: The set-up of the experiment for the detection of small obstacles.

The distances of the objects are indicated along the floor. Three different
objects have been used:

object geometry size
Backgammon stone cylinder ø2.8cm × 0.75cm

Glass Object 1 cuboid 3cm× 3cm× 2.3cm
Glass Object 2 sphere ø4cm

Table 5.1: List of objects
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The backgammon stones were stacked in a set of either 2, 3 or 4 stones. The
size of the stacks is delivered in the results of these experiments.

5.5.2 Intersection Over Union
The intersection over union (IoU) is used to evaluate the performance of the
object detection algorithms. The IoU is also used in [29] for evaluation of
pedestrian detection system on a moving vehicle. IoU allows to compare the
success rate of a detected object. For the calculation of the IoU two inputs are
needed, one of them is the bounding box of a marked object in the input image
and the other one is the bounding box of the object in the output image. Now
both bounding boxes are overlaying and they build the area of overlap I and
the area of union U . The IoU can then be calculated from:

IoU = I

U
(5.1)

If the bounding box of the detected object perfectly overlaps with the bounding
box of the input the IoU value is 1. If there is no overlap at all the score is 0.
As a well matching results a score is over 0.5 and an insufficient matching result
is below that. If small objects are considered it is more difficult to perform
high IoU values for the detection because in general the area of union of the
bounding box is rather small compared to the whole image size. Now if the
detection has a slight offset or an error in size of one or two pixels, it leads
to a low IoU value. If the bounding box of an object of small size is assumed
with the size of 6 pixel × 6 pixel and the bounding box of the detected object
perfectly overlaps it results in a perfect IoU score of 1. If an offset is applied to
the position of the bounding box of the detected object of 1 pixel in either the
vertical and horizontal direction the score drops down to approximately 0.53
and if the offset is increased to a total of 2 pixels in either direction the score
is approximately 0.29. So with the consideration of possible errors calculated
in Section 5.2 three different scores are considered:

• IoU ≤ 0.25 are considered as insufficient matching results

• 0.25 < IoU < 0.5 are considered as reasonable results

• IoU ≥ 0.5 are considered as satisfying matching results

5.5.3 Results
The results of the performance of the obstacle detection algorithm under the
use of different stereo algorithms are visible in Table 5.2. The obstacle in the
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scene are stacked cylinders with a total hight of 2.25cm and a diameter of
2.8cm. Table 5.2 show that the best result came from the ELAS algorithm for
obstacles at close distance but the matching results decreased over the distance.
The SGM algorithm performed most consistent with almost constant result
over the distance. The BM algorithm delivered only reasonable results.

object height distance ∅ IoU SGM (σ) ∅ IoU BM (σ) ∅ IoU ELAS (σ)
2.25cm 40cm 0.600 (0.0912) 0.443 (0.167) 0.610 (0.113)
2.25cm 55cm 0.583 (0.070) 0.379 (0.165) 0.547 (0.099)
2.25cm 70cm 0.563 (0.072) 0.458 (0.140) 0.531 (0.098)
2.25cm 85cm 0.568 (0.094) 0.227 (0.208) 0.299 (0.165)

Table 5.2: comparison of IoU to different stereo algorithms.

Calculation Time for the Obstacle Detection

In Table 5.3 the calculation times of the different stereo algorithms are compared
with each other. The roll angle correction of the obstacle detection algorithm is
not used and allows slightly faster calculation times. The values are averaged
over 20 frames and the standard deviation σ is also given. The hardware that
runs the obstacle detection is mentioned in Section 4.5. The reason for the
good result of the semi-global matching is that it uses half the resolution for
the disparity image compared to the BM algorithm and the ELAS algorithm.

∅ time in ms SGM (σ) ∅ time in ms BM (σ) ∅ time in ms ELAS (σ)
4.58 ms (0.36) 11.48 ms (1.46) 10.65 ms (1.33)

Table 5.3: comparison of the calculation time for the obstacle detection using
different stereo algorithms

The obstacle detection has not a big impact on calculation time compared
to other parts of the stereo vision system. Compared to the stereo algorithm’s
calculation time for the disparity image the obstacle detection’s calculation time
is significantly faster. The semi-global matching delivers disparity images at a
rate of approximately 3 Hz and the other two approximately 12 Hz. A faster
rate of disparity image inputs allows a faster obstacle detection calculation. The
advantage of the semi-global matching is that it is done completely off-board
and therefore does not require additional computational resources.
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5.6 Challenge of Reflections on the Floor
Section 5.3 shows that there are problems with reflections of the sunlight on
the floor. This causes wrongly detected objects that can be avoided with the
use of the strategy from Section 4.4.3 which removes pixels with bigger distance
than the detected floor. For the evaluation of this improvement of the obstacle
detection algorithm, different scenes with reflections of the floor are recorded.
Objects are placed in the spots with the reflections on the floor.

5.6.1 Experimental Setup
The experimental setup is similar to the one in Section 5.5 but additional light
sources are added as the environmental influences.

5.6.2 Results
The experiments show that the error caused by reflections of light can be
compensated. It is also presented that the obstacle detection is not influenced
by removing the error caused by the reflections. Figure 5.17 and Fig. 5.18 show
a comparison of the results when the remapping process treats the reflections
and when it does not.
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(a) Image of the left camera (b) Disparity

(c) Result without removal of reflections (d) Result with removal of reflections

Figure 5.17: Experiment with bright reflections on the floor scene 1

(a) Image of the left camera (b) Disparity

(c) Result without removal of reflections (d) Result with removal of reflections

Figure 5.18: Experiment with bright reflections on the floor scene 2



6 Conclusion
This thesis implements an obstacle detection algorithm based on stereo vision
and evaluates the algorithm for real-life robotic indoor scenarios. This allows to
classify the accuracy, speed and reliability of the interaction between software
and hardware. The focus is on detecting rather small obstacles. The evaluation
reveals strengths and weaknesses of the introduced algorithm. For better
results the algorithm is improved and test scenarios are recorded to evaluate
this progress. It is documented how the limits of a stereo vision system can
be evaluated. A comparison of different stereo algorithms is given in order to
understand their influence on the results of a stereo vision system.
The functionality of the obstacle detection algorithm is traced in Chapter

4 and defines the single steps. It is noticeable that the composition of sub
tasks allows to fulfill the more sophisticated task of obstacle detection. The
importance of experiments, that tune the parameters properly, can be un-
derstood with the experiment regarding noise-measuring. A compensation of
external influences shows better results. Roll angle changes that may appear
from the robots’ movements lead to errors, that can be compensated though.
Furthermore the lighting conditions can cause errors but a strategy is shown to
account for that.

Some problems are still challenging and arouse interest for further research.
One of these topics could investigate further the matter of floor detection. If
the floor is not a flat dominant plane the presented algorithm can result in
wrong obstacle detections. The idea behind the multi v-disparity of segmenting
the disparity image serves as basis for an improvement in this case.
The experiments’ results also show that objects are not equally good de-

tectable in every single frame. If more frames are considered for the obstacle
detection it can lead to an improved reliability, albeit this approach may result
in a slower calculation time.

The obstacle detection algorithm can be implemented in a robotic system in
order to improve safe robot navigation and might be useful for other robotic
tasks, such as obstacle recognition.
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