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Kurzfassung

Das Ziel dieser Dissertation ist das Erlangen eines besseren Verständnisses für finanz-
mathematische Modelle zur Optionsbepreisung, wobei der Fokus auf stochastischen
Volatilitätsmodellen und exponentiellen Lévy-Modellen liegt. In diesen Modellklassen
bzw. auch in einzelnen praxisrelevanten Modellen untersuchen wir das asymptotische
Verhalten von Callpreisen, impliziten Volatilitäten und dazugehörigen Größen für kurze
Restlaufzeiten („small-time“), aber auch für extreme Ausübungspreise („large-strike“)
der Optionen. Diese Ergebnisse sind von praktischer Bedeutung zur Modellkalibrierung,
zur qualitativen Modellbeurteilung und zur Wahl und Gestaltung der Modellparameter.

Diese Dissertation ist in vier Teile aufgeteilt, die sich mit unterschiedlichen Modellklassen
bzw. einzelnen stochastischen Volatilitätsmodellen auseinandersetzen.

Teil I, Small-Maturity Asymptotics for the At-the-Money Implied Volatility Slope in Lévy
Models, basiert auf der gleichnamigen Publikation [53], einer gemeinsamen Arbeit mit
Stefan Gerhold und I. Cetin Gülüm, die im Journal „Applied Mathematical Finance“
erschienen ist. Der zusätzliche Appendix B beweist die Resultate im CGMY-Modell
ausführlich.
In diesem Teil betrachten wir die at-the-money Steigung der impliziten Volatilität, d.h.
die Ableitung der impliziten Volatilität nach dem Ausübungspreis, wenn die Restlaufzeit
der dazugehörigen Option gegen 0 konvergiert. Das Hauptresultat quantifiziert das Ver-
halten der Steigung in exponentiellen Lévy-Modellen mit unendlicher Aktivität, die eine
Brownsche Komponente aufweisen. Als technisches Nebenresultat, erhalten wir mit Hilfe
der Mellin-Transformation eine asymptotische Entwicklung von at-the-money digitalen
Callpreisen für kurze Restlaufzeiten. Abschließend diskutieren wir, in welchen Modellen
die at-the-money Steigung Auskunft über das Verhalten der Steilheit der Enden des
Volatilitäts-Smiles gibt.

Teil II, Option Pricing in the Moderate Deviations Regime, basiert auf der gleichnamigen
Publikation [45], einer gemeinsamen Arbeit mit Peter Friz und Stefan Gerhold, die im
Journal „Mathematical Finance“ erscheinen wird. Im zusätzlichen Appendix B sind
weiterführende Resultate angeführt.
Wir betrachten Callpreise für kleine Restlaufzeiten in Diffusionsmodellen, in einem
asymptotischen Regime („moderately out-of-the-money“), dass zwischen den beiden
gut untersuchten Fällen at-the-money und out-of-the-money interpoliert. Im Sinne der
Moderate-Deviation-Theorie erhalten wir Abschätzungen erster und höherer Ordnung
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für Callpreise und implizite Volatilitäten. Die entsprechenden asymptotischen Entwick-
lungen beinhalten nur einfache Ausdrücke der Modellparameter, und wir zeigen, wie
diese Ausdrücke für allgemeine lokale und stochastische Volatilitätsmodelle berechnet
werden können. Einige numerische Berechnungen für das Heston-Modell illustrieren die
Genauigkeit unserer Resultate.

Teil III, Moment Explosion in the Rough Heston Model, befasst sich mit einer Er-
weiterung des bekannten Heston-Modells, bei der die Pfade des Volalitätsprozesses we-
niger glatt als beim klassischen Heston-Modell sind. Wir sind am Explosionsverhalten
der momentenerzeugenden Funktion interessiert, die mit Hilfe der Lösung einer frak-
tionalen Riccati-Differentialgleichung gegeben ist. Nach der Transformation dieser Diffe-
rentialgleichung in eine nicht-lineare Volterra-Integralgleichung untersuchen wir die Ex-
plosionszeiten der Lösung bzw. der momentenerzeugenden Funktion für alle möglichen
Parameterwahlen. Im Falle einer endlischen Explosionszeit geben wir obere und un-
tere Abschätzungen dafür. Unter Verwendung dieser Abschätzungen zeigen wir die
Endlichkeit der kritischen Momente im Rough-Heston-Modell.

Teil IV, Large-Strike Asymptotics in the 3/2-Model, widmet sich dem 3/2-Modell. Zu-
nächst untersuchen wir die Dichtefunktion, die mittels Fourier-Transformation als ein
Wegintegral in der komplexen Ebene dargestellt werden kann. Durch die Wahl eines
transformierten Hankel-Weges und der expliziten Form der momentenerzeugenden Funk-
tion ist es möglich, das asymptotische Verhalten der Dichtefunktion am positiven Ende
zu bestimmen. Abschließend leiten wir daraus die asymptotische large-strike Entwick-
lung für die implizite Volatilität ab.

Die beiden Teile III und IV sind in Arbeit und bislang noch nicht publiziert worden.
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Abstract

The aim of this doctoral thesis is to get a better understanding of option pricing models,
with a focus on stochastic volatility models and exponential Lévy models. In these model
classes and in individual praxis-oriented models, we investigate asymptotic behaviour of
call option prices, implied volatility and related quantities, close to expiry (“small-time”)
and with extreme strike values (“large-strike”). Such results are of practical relevance
for model calibration, qualitative model assessment and parametrisation design.

The thesis consists of four parts addressing different model classes and individual stochas-
tic volatility models, respectively.

Part I, Small-Maturity Asymptotics for the At-the-Money Implied Volatility Slope in
Lévy Models, is based on the eponymous paper [53], a joint work with Stefan Gerhold
and I. Cetin Gülüm, published in the journal “Applied Mathematical Finance”. The
additional Appendix B proves the results in the CGMY in detail.
In this part, we consider the at-the-money strike derivative of implied volatility as the
maturity tends to zero. Our main results quantify the behaviour of the slope for infinite
activity exponential Lévy models including a Brownian component. As auxiliary results,
we obtain asymptotic expansions of short maturity at-the-money digital call options, us-
ing Mellin transform asymptotics. Finally, we discuss when the at-the-money slope is
consistent with the steepness of the smile wings, as given by Lee’s moment formula.

Part II, Option Pricing in the Moderate Deviations Regime, is based on the eponymous
paper [45], a joint work with Peter Friz and Stefan Gerhold, which will be published in
the journal “Mathematical Finance”. In the additional Appendix B, further results are
stated.
We consider call option prices close to expiry in diffusion models, in an asymptotic regime
(“moderately out of the money”) that interpolates between the well-studied cases of at-
the-money and out-of-the-money regimes. First and higher order small-time moderate
deviation estimates of call prices and implied volatilities are obtained. The expansions
involve only simple expressions of the model parameters, and we show how to calculate
them for generic local and stochastic volatility models. Some numerical computations
for the Heston model illustrate the accuracy of our results.

Part III, Moment Explosion in the Rough Heston Model, focuses on an extension of the
well-known Heston model, where the paths of the volatility process are rougher than in
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the classic Heston model. We are interested in the blow-up behaviour of the moment
generating function which is given by means of the solution of a fractional Riccati differ-
ential equation. After transforming this differential equation into a non-linear Volterra
integral equation, we analyse the explosion time of the solution resp. the moment gen-
erating function for any parameter choice. In case of a finite explosion time, we give
upper and lower bounds. Eventually, using these estimates, we show the finiteness of
the critical moments in the rough Heston model.

Part IV, Large-Strike Asymptotics in the 3/2-Model, deals with the 3/2-model. At first,
we consider the density function which can be expressed via Fourier transform as a con-
tour integral in the complex plane. Choosing a transformed Hankel-type contour and
using the explicitness of the moment generating function, we determine the asymptotic
behaviour of the positive tail of the density function. Finally, we derive the large-strike
asymptotics for the implied volatility.

Both Parts III and IV are work in progress and unpublished so far.
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Part I

Small-Maturity Asymptotics
for the At-the-Money Implied
Volatility Slope in Lévy Models

1



Chapter 1

Introduction

Recent years have seen an explosion of the literature on asymptotics of option prices
and implied volatilities (see e.g. Andersen and Lipton [4] and Friz, Gerhold, Gulisas-
hvili and Sturm [44] for many references). Such results are of practical relevance for
fast model calibration, qualitative model assessment, and parametrization design. The
small-time behaviour of the level of implied volatility in Lévy models (and general-
izations) has been investigated in great detail in Boyarchenko and Levendorskĭı [12],
Figueroa-López and Forde [32], Figueroa-López, Gong and Houdré [33], Figueroa-López,
Gong and Houdré [34], Roper [81] and Tankov [87]. We, on the other hand, focus on
the at-the-money slope of implied volatility, i.e. the strike derivative, and investigate
its behaviour as maturity becomes small. For diffusion models, there typically exists a
limiting smile as the maturity tends to zero, and the limit slope is just the slope of this
limit smile (e.g. for the Heston model, this follows from Section 5 in Durrleman [28]).
Our focus is, however, on exponential Lévy models. There is no limit smile here that one
could differentiate, as the implied volatility blows up off-the-money, see Tankov [87]. In
fact, this is a desirable feature, since in this way Lévy models are better suited to cap-
ture the steep short maturity smiles observed in the market. But it also implies that the
limiting slope cannot be deduced directly from the behaviour of implied volatility itself,
and requires a separate analysis. (Note that a limiting smile does exist if maturity and
log-moneyness tend to zero jointly in an appropriate way, see Mijatović and Tankov [70].)

It turns out that the presence of a Brownian component has a decisive influence: With-
out it, the ATM (at-the-money) slope explodes (under mild conditions). The blowup
is of order T−1/2 for many models, but may also be slower (e.g. CGMY model with
Y ∈ (1, 2); see Example 2.10). Our main results are on Lévy models with a Brownian
component, though. We provide a result (Corollary 2.6 in Section 2.4) that translates
the asymptotic behaviour of the moment generating function to that of the ATM slope.
When applied to concrete models, we see that the slope may converge to a finite limit
(Normal Inverse Gaussian, Meixner, CGMY models), or explode at a rate slower than
T−1/2 (generalized tempered stable model; this kind of behaviour seems to be the most
realistic one, see Bayer, Friz and Gatheral [6]). Note that several studies, e.g. Aït-
Sahalia [1], Aït-Sahalia and Jacod [2] and Carr and Wu [18], highlight the importance
of a Brownian component when fitting to historical data or option prices. In particular,
in many pure jump Lévy models ATM implied volatility converges to zero as T ↓ 0 (see
Proposition 5 in Tankov [87] for a precise statement), which seems undesirable.
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Chapter 1. Introduction

From a practical point of view, the asymptotic slope is a useful ingredientfor model
calibration: E.g. if the market slope is negative, then a simple constraint on the model
parameters forces the (asymptotic) model slope to be negative, too. Our numerical tests
show that the sign of the slope is reliably identified by a first order asymptotic approx-
imation, even if the maturity is not short at all. With our formulas, the asymptotic
slope (and, of course, its sign) can be easily determined from the model parameters. For
instance, the slope of the NIG (Normal Inverse Gaussian) model is positive if and only
if the skewness parameter satisfies β > −1

2 .

To obtain these results, we investigate the asymptotics of at-the-money digital calls; their
relation to the implied volatility slope is well known. While, for Lévy processes X, the
small-time behaviour of the transition probabilities P[XT ≥ x] (in finance terms, digital
call prices) has been well studied for x 6= X0 (see e.g. Figueroa-López and Houdré [35] and
the references therein), not so much is known for x = X0. Still, first order asymptotics of
P[XT ≥ X0] are available, and this suffices if there is no Brownian component. If the Lévy
process has a Brownian component, then it is well known that limT→0 P[XT ≥ X0] = 1

2 .
In this case, it turns out that the second order term of P[XT ≥ X0] is required to obtain
slope asymptotics. For this, we use a novel approach involving the Mellin transform
(w.r.t. time) of the transition probability (Sections 2.3 and 2.4). We believe that this
method is of wide applicability to other problems involving time asymptotics of Lévy
processes, and hope to elaborate on it in future work.

Finally, we consider the question whether a positive at-the-money slope requires the right
smile wing to be the steeper one, and vice versa. Wing steepness refers to large-strike
asymptotics here. It turns out that this is indeed the case for several of the infinite
activity models we consider. This results in a qualitative limitation on the smile shape
that these models can produce.

One of the few other works dealing with small-time Lévy slope asymptotics is the com-
prehensive recent paper by Andersen and Lipton [4]. Besides many other problems on
various models and asymptotic regimes, they study the small-maturity ATM digital price
and volatility slope for the tempered stable model (Propositions 8.4 and 8.5 in Andersen
and Lipton [4]). This includes the CGMY model as a special case (see Example 2.10 for
details). Their proof method is entirely different from ours, exploiting the explicit form
of the characteristic function of the tempered stable model. Using mainly the dominated
convergence theorem, they also analyse the convexity. We, on the other hand, assume a
certain asymptotic behaviour of the characteristic function, and use its explicit expres-
sion only when calculating concrete examples. Our approach covers, e.g., the ATM slope
of the generalized tempered stable, NIG, and Meixner models without additional effort.

The recent preprint Figueroa-López and Ólafsson [36] is also closely related to our work.
There, the Brownian component is generalized to stochastic volatility. On the other
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hand, the assumptions on the Lévy measure exclude, e.g., the NIG and Meixner models.
Section 2.5 has additional comments on how our results compare to those of Andersen
and Lipton [4] and Figueroa-López and Ólafsson [36]. Alòs, León and Vives [3] also
study the small time implied volatility slope under stochastic volatility and jumps, but
the latter are assumed to have finite activity, which is not our focus. Results on the
large time slope can be found in Forde, Jacquier and Figueroa-López [40]; see also
Gatheral [50], p. 63f.
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Chapter 2

Implied Volatility Slope
Asymptotics

2.1 Digital Call Prices

We denote the underlying by S = eX , normalized to S0 = 1, and the pricing measure
by P. W.l.o.g. the interest rate is set to zero, and so S is a P-martingale. Suppose that
the log-underlying X = (Xt)t≥0 is a Lévy process with characteristic triplet (b, σ2, ν)
and X0 = 0. The moment generating function (mgf) of XT is

M(z, T ) = E[ezXT ] = exp (Tψ(z)) ,

where
ψ(z) = 1

2σ
2z2 + bz +

∫
R

(ezx − 1− zx) ν(dx). (2.1)

This representation is valid if the Lévy process has a finite first moment, which we of
course assume, as even St = eXt should be integrable. If, in addition, X has paths of
finite variation, then

∫
R |x|ν(dx) <∞, and

ψ(z) = 1
2σ

2z2 + b0z +

∫
R

(ezx − 1) ν(dx),

where the drift b0 is defined by

b0 = b−
∫
R
x ν(dx).

The following theorem collects some results about the small-time behaviour of P[XT ≥ 0].
All of them are known, or easily obtained from known results. We are mainly interested
in the case where S = eX is a martingale, and so P[XT ≥ 0] has the interpretation of an
at-the-money digital call price. Still, we mention that this assumption is not necessary
for parts (i)-(iv). In part (iv), the following condition from Rosenbaum and Tankov [83]
is used:

(H-α) The Lévy measure ν has a density g(x)/|x|1+α, where g is a non-negative
measurable function admitting left and right limits at zero:
c+ := lim

x↓0
g(x), c− := lim

x↑0
g(x), with c+ + c− > 0.
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2.1. Digital Call Prices

Theorem 2.1. Let X be a Lévy process with characteristic triplet (b, σ2, ν) and X0 = 0.

(i) If X has finite variation, and b0 6= 0, then

lim
T↓0

P[XT ≥ 0] =

{
1, b0 > 0

0, b0 < 0.

(ii) If σ > 0, then limT↓0 P[XT ≥ 0] = 1
2 .

(iii) If X is a Lévy jump diffusion, i.e. it has finite activity jumps and σ > 0, then

P[XT ≥ 0] =
1

2
+

b0

σ
√

2π

√
T +O(T ), T ↓ 0.

(iv) Suppose that σ = 0 and that (H-α) holds for some α ∈ [1, 2). If α = 1, we
additionally assume c− = c+ =: c and

∫ 1
0 x
−1|g(x)− g(−x)|dx <∞. Then

lim
T↓0

P[XT ≥ 0] =

{
1
2 + 1

π arctan b∗

πc if α = 1,
1
2 + α

π arctan
(
β tan

(
απ
2

))
if α 6= 1,

where b∗ = b−
∫∞

0 (g(x)− g(−x))/x dx and β = (c+ − c−)/(c+ + c−).

(v) If eX is a martingale and the Lévy measure satisfies ν(dx) = e−x/2ν0(dx), where
ν0 is a symmetric measure, then

P[XT ≥ 0] = Φ(−σimp(1, T )
√
T/2),

where Φ denotes the standard Gaussian cdf.

Proof. (i) We have P[XT ≥ 0] = P[T−1XT ≥ 0], but T−1XT converges a.s. to b0, by
Theorem 43.20 in Sato [85].
(ii) If σ > 0, then T−1/2XT converges in distribution to a centered Gaussian random
variable with variance σ2 (see Sato [85]). For further CLT-type results in this vein, see
Doney and Maller [26] and Gerhold, Kleinert, Porkert and Shkolnikov [54].
(iii) Conditioning on the first jump time τ , which has an exponential distribution, we
find

P[XT ≥ 0] = P[XT ≥ 0|τ ≤ T ] · P[τ ≤ T ] + P[XT ≥ 0|τ > T ] · P[τ > T ]

= O(T ) + P[σWT + b0T ≥ 0](1 +O(T ))

= P[σWT + b0T ≥ 0] +O(T )

= Φ(b0
√
T/σ) +O(T ). (2.2)

Now apply the expansion

Φ(x) =
1

2
+

x√
2π

+O(x3), x→ 0. (2.3)
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Chapter 2. Implied Volatility Slope Asymptotics

(iv) By Proposition 1 in Rosenbaum and Tankov [83], the rescaled process Xε,α
t :=

ε−1Xεαt converges in law to a strictly α-stable process X∗,αt as ε ↓ 0. Therefore

lim
T↓0

P[XT ≥ 0] = lim
ε↓0

P[ε−1Xεα ≥ 0] = P[X∗,α1 ≥ 0],

and it suffices to evaluate the latter probability. For α = 1, X∗,11 has a Cauchy distribu-
tion with characteristic exponent

logE[exp(iuX∗,11 )] = ib∗u− πc|u|,

hence P[X∗,11 ≥ 0] = 1
π arctan b∗

πc . (Our b∗ is denoted γ∗ in Rosenbaum and Tankov [83].)
If 1 < α < 2, then X∗,α1 has a strictly stable distribution with characteristic exponent

logE[exp(iuX∗,α1 )] = −|du|α
(

1− iβ sgn(u) tan
(απ

2

))
,

where

dα± = −Γ(−α) cos
(απ

2

)
c± ≥ 0, dα = dα+ + dα−, β =

dα+ − dα−
dα

∈ (−1, 1).

The desired expression for P[X∗,α1 ≥ 0] then follows from Davydov and Ibragimov [20].
See Figueroa-López and Forde [32] for further related references.
(v) Under this assumption, the market model is symmetric in the sense of Fajardo [30]
and Fajardo and Mordecki [31]. The statement is Theorem 3.1 in Fajardo [30].

The variance gamma model and the CGMY model with 0 < Y < 1 are examples of
finite variation models (of course, only when σ = 0), and so part (i) of Theorem 2.1 is
applicable. Part (iii) is applicable, clearly, to the well-known jump diffusion models by
Merton and Kou. In Section 2.5, we will discuss two examples for part (iv) (NIG and
Meixner).

2.2 Implied Volatility Slope and Digital Options with Small
Maturity

The (Black-Scholes) implied volatility is the volatility that makes the Black-Scholes call
price equal the call price with underlying S:

CBS(K,T, σimp(K,T )) = C(K,T ) := E[(ST −K)+].

Since no explicit expression is known for σimp(K,T ) (see Gerhold [52]), many authors
have investigated approximations (see e.g. the references in the introduction). The
following relation between implied volatility slope and digital calls is well known, see
Gatheral [50]; we give a proof for completeness. (Note that absolute continuity of ST
holds in all Lévy models of interest, see Theorem 27.4 in Sato [85], and will be assumed
throughout.)
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2.2. Implied Volatility Slope and Digital Options

Lemma 2.2. Suppose that the law of ST is absolutely continuous for each T > 0, and
that

lim
T↓0

C(K,T ) = (S0 −K)+, K > 0. (2.4)

Then, for T ↓ 0,

∂Kσimp(K,T )|K=1 ∼
√

2π

T

(
1

2
− P[ST ≥ 1]− σimp(1, T )

√
T

2
√

2π
+O

((
σimp(1, T )

√
T
)2))

.

(2.5)

Proof. By the implicit function theorem, the implied volatility slope has the representa-
tion

∂Kσimp(K,T ) =
∂KC(K,T )− ∂KCBS(K,T, σimp(K,T ))

∂σCBS(K,T, σimp(K,T ))
.

Since the law of ST is absolutely continuous, the call price C(K,T ) is continuously
differentiable w.r.t. K, and ∂KC(K,T ) = −P[ST ≥ K]. Inserting the explicit formulas
for the Black-Scholes Vega and digital price, and specializing to the ATM case K = S0 =
1, we get

∂Kσimp(K,T )|K=1 =
Φ(−σimp(1, T )

√
T/2)− P[ST ≥ 1]√

Tϕ(σimp(1, T )
√
T/2)

,

where Φ and ϕ denote the standard Gaussian cdf and density, respectively. By Proposi-
tion 4.1 in Roper and Rutkowski [82], our assumption (2.4) implies that the annualized
implied volatility σimp(1, T )

√
T tends to zero as T ↓ 0. (The second assumption used in

Roper and Rutkowski [82] are the no-arbitrage bounds (S0 −K)+ ≤ C(K,T ) ≤ S0, for
K,T > 0, but these are satisfied here because our call prices are generated by the mar-
tingale S.) Using the expansion (2.3) and ϕ(x) = 1√

2π
+O(x2), we thus obtain (2.5).

The asymptotic relation (2.5) is, of course, consistent with the small-moneyness expan-
sion presented in De Leo, Vargas, Ciliberti and Bouchaud [21], where the second order
term (i.e. first derivative) of implied volatility is

√
2π/T

(
1
2 − P[ST ≥ K]

)
.

Lemma 2.2 shows that, in order to obtain first order asymptotics for the at-the-money
(ATM) slope, we need first order asymptotics for the ATM digital call price P[ST ≥ 1].
(Recall that S0 = 1.) For models where limT↓0 P[ST ≥ 1] = 1

2 , we need the second order
term of the digital call as well, and the first order term of σimp(1, T )

√
T . The limiting

value 1/2 for the ATM digital call is typical for diffusion models (see Gerhold, Kleinert,
Porkert and Shkolnikov [54]), and Lévy processes that contain a Brownian motion. For
infinite activity models without diffusion component, P[ST ≥ 1] may converge to 1/2
as well (e.g. in the CGMY model with Y ∈ (1, 2)), but other limiting values are also
possible. See the examples in Section 2.5.
From part (i) of Theorem 2.1 and Lemma 2.2 we can immediately conclude the following
result. Note that we assume throughout that X is such that S = eX is a martingale
with S0 = 1.

8
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Proposition 2.3. Suppose that the Lévy process X has finite variation (and thus, nec-
essarily, that σ = 0), and that b0 6= 0. Then the ATM implied volatility slope satisfies

∂Kσimp(K,T )|K=1 ∼ −
√
π/2 sgn(b0) · T−1/2, T ↓ 0.

Note that T−1/2 is the fastest possible growth order for the slope, in any model (see
Lee [67]).
If X is a Lévy jump diffusion with σ > 0, then by part (iii) of Theorem 2.1, (2.5), and
the fact that σimp → σ (implied volatility converges to spot volatility), we obtain the
finite limit

lim
T↓0

∂Kσimp(K,T )|K=1 = −b0
σ
− σ

2
. (2.6)

(It is understood that the substitution K = 1 is to be performed before the limit T ↓ 0.)
Notice that the expression on the right hand side of (2.6) does depend on the jump
parameters, because the drift b0, fixed by the condition E[exp(X1)] = 1, depends on
them. Moreover, (2.6) is consistent with the formal calculation of the variance slope

lim
T↓0

∂Kσ
2
imp(K,T )|K=1 = −2b0 − σ2

on p. 61f in Gatheral [50]. In fact (2.6) is well known for jump diffusions, see Alòs, León
and Vives [3] and Yan [90].

2.3 General Remarks on Mellin Transform Asymptotics
As mentioned after Lemma 2.2, we need the second order term for the ATM digital call
if we want to find the limiting slope in Lévy models with a Brownian component. While
this is easy for finite activity models (see the end of the preceding section), it is more
difficult in the case of infinite activity jumps. We will find this second order term using
Mellin transform asymptotics. For further details and references on this technique, see
e.g. Flajolet, Gourdon and Dumas [37]. The Mellin transform of a function H, locally
integrable on (0,∞), is defined by

(MH)(s) =

∫ ∞
0

T s−1H(T ) dT.

Under appropriate growth conditions on H at zero and infinity, this integral defines an
analytic function in an open vertical strip of the complex plane. The function H can be
recovered from its transform by Mellin inversion (see formula (7) in Flajolet, Gourdon
and Dumas [37]):

H(T ) =
1

2πi

∫ κ+i∞

κ−i∞
(MH)(s)T−sds, (2.7)

where κ is a real number in the strip of analyticity ofMH. For the validity of (2.7), it
suffices that H is continuous and that y 7→ (MH)(κ+iy) is integrable. Denote by s0 ∈ R
the real part of the left boundary of the strip of analyticity. A typical situation in

9
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applications is thatMH has a pole at s0, and admits a meromorphic extension to a left
half-plane, with further poles at s0 > s1 > s2 > . . . Suppose also that the meromorphic
continuation satisfies growth estimates at ±i∞ which allow to shift the integration path
in (2.7) to the left. We then collect the contribution of each pole by the residue theorem,
and arrive at an expansion (see formula (8) in Flajolet, Gourdon and Dumas [37])

H(T ) = Ress=s0(MH)(s)T−s + Ress=s1(MH)(s)T−s + . . .

Thus, the basic principle is that singularities si of the transform are mapped to terms
T−si in the asymptotic expansion of H at zero. Simple poles ofMH yield powers of T ,
whereas double poles produce an additional logarithmic factor log T , as seen from the
expansion T−s = T−si(1− (log T )(s− si) +O((s− si)2)).

2.4 Main Results: Digital Call Prices and Slope Asymp-
totics

The mgf M(z, T ) of XT is analytic in a strip z− < Re(z) < z+, given by the critical
moments

z+ = sup{z ∈ R : E[ezXT ] <∞} (2.8)

and
z− = inf{z ∈ R : E[ezXT ] <∞}. (2.9)

Since X is a Lévy process, the critical moments do not depend on T . We will obtain
asymptotic information on the transition probabilities (i.e. digital call prices) from the
Fourier representation in Lee [66]

P[ST ≥ 1] = P[XT ≥ 0]

=
1

2iπ

∫ a+i∞

a−i∞

M(z, T )

z
dz

=
1

π
Re

∫ ∞
0

M(a+ iy, T )

a+ iy
dy, (2.10)

where the real part of the vertical integration contour satisfies a ∈ (0, 1) ⊆ (z−, z+),
and convergence of the integral is assumed throughout. We are going to analyse the
asymptotic behaviour of this integral, for T ↓ 0, by computing its Mellin transform.
Asymptotics of the probability (digital price) P[XT ≥ 0] are then evident from (2.10).
The linearity of logM as a function of T enables us to evaluate the Mellin transform in
semi-explicit form.

Lemma 2.4. Suppose that S = eX is a martingale, and that σ > 0. Then, for any
a ∈ (0, 1), the Mellin transform of the function

H(T ) :=

∫ ∞
0

eTψ(a+iy)

a+ iy
dy, T > 0, (2.11)

10
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is given by
(MH)(s) = Γ(s)F (s), 0 < Re(s) < 1

2 , (2.12)

where
F (s) =

∫ ∞
0

(−ψ(a+ iy))−s

a+ iy
dy, 0 < Re(s) < 1

2 . (2.13)

Moreover, |(MH)(s)| decays exponentially, if Re(s) ∈ (0, 1
2) is fixed and

| Im(s)| → ∞.

See the Appendix A for the proof of Lemma 2.4. With the Mellin transform in hand, we
now proceed to convert an expansion of the mgf at i∞ to an expansion of P[XT ≥ 0] for
T ↓ 0. The following result covers, e.g. the NIG and Meixner models, and the generalized
tempered stable model, all with σ > 0. See Section 2.5 for details.

Theorem 2.5. Suppose that S = eX is a martingale, and that σ > 0. Assume further
that there are constants a ∈ (0, 1), c ∈ C, ν ∈ [1, 2) and ε > 0 such that the Laplace
exponent satisfies

ψ(z) =
1

2
σ2z2 + czν +O(zν−ε), Re(z) = a, Im(z)→∞. (2.14)

Then the ATM digital call price satisfies

P[XT ≥ 0] =
1

2
+ Cν̃T

ν̃ + o(T ν̃), T ↓ 0, (2.15)

where Cν̃ = ν̃
2π

(
1
2σ

2
)ν̃−1

Im(e−iπν̃c)Γ(−ν̃) with ν̃ = (2 − ν)/2 ∈ (0, 1
2 ]. For ν = 1, this

simplifies to
P[XT ≥ 0] =

1

2
+

Re(c)

σ
√

2π

√
T + o(

√
T ), T ↓ 0.

Together with Lemma 2.2, this theorem implies the following corollary, which is our
main result on the implied volatility slope as T ↓ 0.

Corollary 2.6. Under the assumptions of Theorem 2.5, the ATM implied volatility slope
behaves as follows:

(i) If ν = 1, then

lim
T↓0

∂Kσimp(K,T )|K=1 = −Re(c)

σ
− σ

2
,

with c from (2.14).

(ii) If 1 < ν < 2 and Cν̃ 6= 0, then

∂Kσimp(K,T )|K=1 ∼ −
√

2πCν̃T
ν̃−1/2, T ↓ 0.

11



2.4. Main Results: Digital Call Prices and Slope Asymptotics

Proof of Theorem 2.5. From (2.10) and (2.11) we know that

P[XT ≥ 0] =
1

π
ReH(T ). (2.16)

We now express H(T ) by the Mellin inversion formula (2.7), with κ ∈ (0, 1
2). This is

justified by Lemma 2.4, which yields the exponential decay of the transformMH along
vertical rays. (Continuity of H, which is also needed for the inverse transform, is clear.)
Therefore, we have

H(T ) =
1

2πi

∫ 1/4+i∞

1/4−i∞
Γ(s)F (s)T−sds, T ≥ 0. (2.17)

As outlined in Section 2.3, we now show that Γ(s)F (s) has a meromorphic continuation,
then shift the integration path in (2.17) to the left, and collect residues. It is well
known that Γ is meromorphic with poles at the non-positive integers, so it suffices to
discuss the continuation of F , defined in (2.13). As in the proof of Lemma 2.4, we put
h(y) := −ψ(a + iy), y ≥ 0. To prove exponential decay of the desired meromorphic
continuation, it is convenient to split the integral:

F (s) =

∫ y0

0

h(y)−s

a+ iy
dy +

∫ ∞
y0

h(y)−s

a+ iy
dy (2.18)

=: A0(s) + F̃ (s), 0 < Re(s) < 1
2 .

The constant y0 ≥ 0 will be specified later. It is easy to see that A0 is analytic in the
half-plane Re(s) < 1

2 , and so F̃ captures all poles of F in that half-plane. By (2.14), the
function h has the expansion (with a possibly decreased ε, to be precise)

h(y) = 1
2σ

2y2 + c̃yν +O(yν−ε), y →∞, (2.19)

where

c̃ :=

{
−ciν ν > 1,

−(c+ σ2a)i ν = 1.

The reason why F (or F̃ ) is not analytic at s = 0 is that the second integral in (2.18) fails
to converge for y large. We thus subtract the following convergence-inducing integral
from F̃ :

G̃1(s) :=

∫ ∞
y0

(1
2σ

2y2)−s

a+ iy
dy

= −πi(1
2a

2σ2)−s
eiπs

sin 2πs
−
∫ y0

0

(1
2σ

2y2)−s

a+ iy
dy (2.20)

=: G1(s) +A1(s).

Note that G1 is meromorphic, and that A1 is analytic for Re(s) < 1
2 . From the expansion

h(y)−s = (1
2σ

2y2)−s − 2c̃s

σ2

(
σ2

2

)−s
yν−2s−2 +O(yν−2 Re(s)−2−ε), y →∞, (2.21)

12
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for s fixed, we see that the function

F̃1(s) :=

∫ ∞
y0

1

a+ iy

(
h(y)−s − (1

2σ
2y2)−s

)
dy (2.22)

is analytic for −ν̃ < Re(s) < 1
2 , and, clearly, for 0 < Re(s) < 1

2 we have

F̃ (s) = F̃1(s) + G̃1(s). (2.23)

We have thus established the meromorphic continuation of F̃ to the strip −ν̃ < Re(s) <
1
2 . To continue F̃ even further, we look at the second term in (2.21) and define

G̃2(s) := −2c̃s

σ2

(
σ2

2

)−s ∫ ∞
y0

yν−2s−2

a+ iy
dy

= −2c̃π

σ2

(
σ2

2

)−s
saν−2s−2 e

(2s−ν+3)πi/2

sinπ(ν − 2s)
+

2c̃s

σ2

(
σ2

2

)−s ∫ y0

0

yν−2s−2

a+ iy
dy

=: G2(s) +A2(s)

and the compensated function

F̃2(s) :=

∫ ∞
y0

1

a+ iy

(
h(y)−s − (1

2σ
2y2)−s +

2c̃s

σ2

(
σ2

2

)−s
yν−2s−2

)
dy.

By (2.21), the function F̃2 is analytic for Re(s) ∈ (−ν̃ − ε/2, (ν − 1)/2). Moreover, by
definition we have

F̃1(s) = F̃2(s) + G̃2(s), −ν̃ < Re(s) < ν−1
2 ,

and so the meromorphic continuation of F̃ to the region −ν̃ − ε/2 < Re(s) < 1
2 is

established.
In order to shift the integration path in (2.17) to the left, we have to ensure that the
integral converges. This is the content of Lemma 2.7 below, which also yields the ex-
istence of an appropriate y0 ≥ 0, to be used in the definition of F̃ in (2.18). By the
residue theorem, we obtain

H(T ) = Ress=0(MH)(s)T−s + Ress=−ν̃(MH)(s)T−s

+
1

2πi

∫ κ+i∞

κ−i∞
(MH)(s)T−sds, T ≥ 0, (2.24)

where κ = −ν̃ − ε/4, andMH now of course denotes the meromorphic continuation of
the Mellin transform. We then compute the residues. According to (2.18) and (2.23), the
continuation ofMH in a neighbourhood of s = 0 is given by Γ(s)(A0(s)+F̃1(s)+G̃1(s)).
Therefore,

Ress=0(MH)(s)T−s = A0(0) + F̃1(0) +A1(0) + Ress=0Γ(s)G1(s)T−s

= Ress=0Γ(s)G1(s)T−s (2.25)
= π

2 + i(1
2γ − log(aσ/

√
2) + 1

2 log T ),
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where γ is Euler’s constant. Note that A0(0) = −A1(0) and F̃1(0) = 0 by definition. The
remaining residue (2.25) is straightforward to compute from (2.20) (e.g. with a computer
algebra system) and has real part 1

2π. Notice that the logarithmic term log T , resulting
from the double pole at zero (see the end of Section 2.3), appears only in the imaginary
part. Recalling (2.16), we see that the first term on the right-hand side of (2.24) thus
yields the first term of (2.15).
Similarly, we compute for ν > 1

Ress=−ν̃(MH)(s)T−s = Ress=−ν̃Γ(s)G2(s)T−s

=
Γ(−ν̃)

2π

[
2c̃s

σ2

(
σ2

2

)−s
πaν−2s−2e(2s−ν+3)πi/2T−s

]
s=−ν̃

.

In the case ν = 1, the function G1 also has a pole at −ν̃ = −1
2 , and we obtain

Ress=−ν̃(MH)(s)T−s = Ress=−1/2Γ(s)(G1(s) +G2(s))T−s

=

√
π

2

(
ic̃

σ
− aσ

)√
T .

A straightforward computation shows that the stated formula for Cν̃ is correct in both
cases. The integral on the right-hand side of (2.24) is clearly O(T−κ) = o(T ν̃), and so
the proof is complete.

Lemma 2.7. There is y0 ≥ 0 such that the meromorphic continuation of MH con-
structed in the proof of Theorem 2.5, which depends on y0 via the definition of F̃
in (2.18), decays exponentially as | Im(s)| → ∞.

Lemma 2.7 is proved in the Appendix A.

2.5 Examples

We now apply our main results (Theorem 2.5 and Corollary 2.6) to several concrete
models.
Example 2.8. The NIG (Normal Inverse Gaussian) model has Laplace exponent

ψ(z) = 1
2σ

2z2 + µz + δ(
√
α̂2 − β2 −

√
α̂2 − (β + z)2),

where δ > 0, α̂ > max{β+ 1,−β}. (The notation α̂ should avoid confusion with α from
Theorem 2.1.) Since S is a martingale, we must have

µ = −1
2σ

2 + δ(
√
α̂2 − (β + 1)2 −

√
α̂2 − β2).

The relation between µ and b from (2.1) is µ + βδ/
√
α̂2 − β2 = b, as seen from the

derivative of the Laplace exponent ψ at z = 0. The Lévy density is

ν(dx)

dx
=

δα̂

π|x|
eβxK1

(
α̂|x|

)
,
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where K1 is the modified Bessel function of second order and index 1.
First assume σ = 0. Since K1(x) ∼ 1/x for x ↓ 0, condition (H-α) is satisfied with
α = 1, with c+ = c− = δ/π. The integrability condition in part (iv) of Theorem 2.1 is
easily checked, and we conclude

lim
T↓0

P[XT ≥ 0] =
1

2
+

1

π
arctan

(µ
δ

)
, σ = 0.

Note that b∗ = µ = b − δα̂
π

∫∞
0 K1(α̂x)(eβx − e−βx)dx. By Lemma 2.2, the implied

volatility slope of the NIG model thus satisfies

∂Kσimp(K,T )|K=1 ∼ −
√

2/π arctan(µ/δ) · T−1/2, T ↓ 0, σ = 0, µ 6= 0.

Now assume that σ > 0. Since
√
α̂2 − (β + z)2 = −iz + O(1) as Im(z) → ∞, the

expansion (2.14) becomes

ψ(z) = 1
2σ

2z2 + (µ+ i)z +O(1), Re(z) = a, Im(z)→∞.

We can thus apply Theorem 2.5 to conclude that the ATM digital price satisfies

P[XT ≥ 0] =
1

2
+

µ

σ
√

2π

√
T + o(

√
T ), T ↓ 0, σ > 0.

By part (i) of Corollary 2.6, the limit of the implied volatility slope is given by

lim
T↓0

∂Kσimp(K,T )|K=1 = −µ
σ
− σ

2

=
δ

σ
(
√
α̂2 − β2 −

√
α̂2 − (β + 1)2), σ > 0. (2.26)

This limit is positive if and only if β > −1
2 .

See Figure 2.1 for a numerical example. Let us stress again that we identify the correct
sign of the slope, while we find that explicit asymptotics do not approximate the value
of the slope very accurately. Still, in the right panel of Figure 2.1 we have zoomed in
at very short maturity to show that our approximation gives the asymptotically correct
tangent in this example.
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Figure 2.1: The volatility smile, as a function of log-strike, of the NIG model with
parameters σ = 0.085, α̂ = 4.237, β = −3.55, δ = 0.167, and maturity T = 0.1 (left
panel) respectively T = 0.01 (right panel). The parameters were calibrated to S&P 500
call prices from Appendix A of Bu [15]. The dashed line is the slope approximation (2.26).
We did the calibration and the plots with Mathematica, using the Fourier representation
of the call price.

Example 2.9. The Laplace exponent of the Meixner model is

ψ(z) = 1
2σ

2z2 + µz + 2d̂ log
cos(b̂/2)

cosh 1
2(−âiz − ib̂)

,

where d̂ > 0, b̂ ∈ (−π, π), and 0 < â < π − b̂. (We follow the notation of Schoutens [86],
except that we write µ instead of m, and â, b̂, d̂ instead of a, b, d.) The Lévy density is

ν(dx)

dx
= d̂

exp(b̂x/â)

x sinh(πx/â)
.

We can proceed analogously to Example 2.8. For σ = 0 we again apply part (iv) of
Theorem 2.1, with α = 1, where now c+ = c− = d̂â/π. Consequently,

lim
T↓0

P[XT ≥ 0] =
1

2
+

1

π
arctan

(
µ

âd̂

)
, σ = 0,

and

∂Kσimp(K,T )|K=1 ∼ −
√

2/π arctan

(
µ

âd̂

)
· T−1/2, T ↓ 0, σ = 0, µ 6= 0.

Now assume σ > 0. The expansion of the Laplace exponent is

ψ(z) = 1
2σ

2z2 + (µ+ âd̂i)z +O(1), Re(z) = a, Im(z)→∞.

By Theorem 2.5, the ATM digital price in the Meixner model thus satisfies

P[XT ≥ 0] =
1

2
+

µ

σ
√

2π

√
T + o(

√
T ), T ↓ 0.
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The limit of the implied volatility slope is given by

lim
T↓0

∂Kσimp(K,T )|K=1 = −µ
σ
− σ

2

=
2d̂

σ
log

(
cos(b̂/2)

cosh 1
2(−(â+ b̂)i)

)
, σ > 0.

Example 2.10. The Laplace exponent of the CGMY model is

ψ(z) = 1
2σ

2z2 + µz + CΓ(−Y )((M − z)Y −MY + (G+ z)Y −GY ), (2.27)

where we assume C > 0, G > 0, M > 1, 0 < Y < 2, and Y 6= 1.
The case σ = 0 and Y ∈ (0, 1) need not be discussed, as it is a special case of Proposi-
tion 8.5 in Andersen and Lipton [4]. Our Proposition 2.3 could also be applied, as the
CGMY process has finite variation in this case.
If σ = 0 and Y ∈ (1, 2), then the ATM digital call price converges to 1

2 , and the slope
explodes, of order T 1/2−1/Y . This is a special case of Corollary 3.3 in Figueroa-López
and Ólafsson [36]. Note that Proposition 8.5 in Andersen and Lipton [4] is not applicable
here, because the constant CM from this proposition vanishes for the CGMY model, and
so the leading term of the slope is not obtained. Theorem 2.1 (iv) from our Section 2.1
is not useful, either; it gives the correct digital call limit price 1

2 , but does not provide
the second order term necessary to get slope asymptotics.
We now proceed to the case σ > 0, which is our main focus. The expansion of ψ at i∞
is

ψ(z) = 1
2σ

2z2 + cY z
Y + µz +O(zY−1), Re(z) = a, Im(z)→∞,

with the complex constant cY := CΓ(−Y )(1+e−iπY ). First assume 0 < Y < 1. Then we
proceed analogously to the preceding examples, applying Theorem 2.5 and Corollary 2.6.
The ATM digital price thus satisfies

P[XT ≥ 0] =
1

2
+

µ

σ
√

2π

√
T + o(

√
T ), T ↓ 0, (2.28)

and the limit of the implied volatility slope is given by

lim
T↓0

∂Kσimp(K,T )|K=1 = −µ
σ
− σ

2

=
1

σ
CΓ(−Y )((M − 1)Y −MY + (G+ 1)Y −GY ). (2.29)

Now assume 1 < Y < 2. In principle, Theorem 2.5 is applicable, with ν = Y ; how-
ever, the constant Cν̃ in (2.15) is zero, and so we do not get the second term of the
expansion immediately. What happens is that the Mellin transform of H (see the proof
of Theorem 2.5) may have further poles in −1

2 < Re(s) < 0, but none of them gives
a contribution, since the corresponding residues have zero real part. Therefore, (2.28)
and (2.29) are true also for 1 < Y < 2. For a rigorous proof, see Theorem B.2 in the
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Appendix B. Note that (2.28) and (2.29) also follow from concurrent work by Figueroa-
López and Ólafsson [36]. For 0 < Y < 1, they also follow from Proposition 8.5 in
Andersen and Lipton [4], but not for 1 < Y < 2, because then the constant CM from
that proposition vanishes when specializing it to the CGMY model.
In the following example, we discuss the generalized tempered stable model. The tem-
pered stable model, which is investigated in Andersen and Lipton [4], is obtained by
setting α− = α+.
Example 2.11. The generalized tempered stable process, see e.g. Cont and Tankov [19],
is a generalization of the CGMY model, with Lévy density

ν(dx)

dx
=

C−
|x|1+α−

e−λ−|x|1(−∞,0)(x) +
C+

|x|1+α+
e−λ+|x|1(0,∞)(x),

where α± < 2 and C±, λ± > 0. For α± 6∈ {0, 1} the Laplace exponent of the generalized
tempered stable process is

ψ(z) = 1
2σ

2z2 + µz + Γ(−α+)C+

(
(λ+ − z)α+ − λα+

+

)
+ Γ(−α−)C−

(
(λ− + z)α− − λα−−

)
.

For σ > 0, α+ ∈ (1, 2), and α− < α+ we have the following expansion:

ψ(z) = 1
2σ

2z2 + Γ(−α+)C+e
−iπα+zα+ +O(zmax{1,α−}), Re(z) = a, Im(z)→∞.

We now apply Theorem 2.5 with ν = α+, and find that the second order expansion of
the ATM digital call is

P[XT ≥ 0] =
1

2
+ Cν̃T

ν̃ + o(T ν̃), T ↓ 0,

with ν̃ = 1− α+/2 ∈ (0, 1
2) and the real constant

Cν̃ =
ν̃

2π

(
1
2σ

2
)ν̃−1

Γ(−α+)C+ Im(e−iπν̃e−iπα+)︸ ︷︷ ︸
=sin(−π(1+α+/2))

Γ(−ν̃).

By Corollary 2.6 (i), the ATM implied volatility slope explodes, but slower than T−1/2:

∂Kσimp(K,T )|K=1 ∼ −
√

2πCν̃T
ν̃−1/2, T ↓ 0.

Note that these results also follow from the concurrent paper Figueroa-López and Ólaf-
sson [36], which treats tempered stable-like models.
If σ > 0 and α+ < 1, then part (i) of Corollary 2.6 is applicable, and formulas analogous
to (2.28) and (2.29) hold.
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Chapter 2. Implied Volatility Slope Asymptotics

2.6 Robustness of Lee’s Moment Formula
As we have already mentioned, our first order slope approximations give limited accuracy
for the size of the slope, but usually succeed at identifying its sign, i.e. whether the smile
increases or decreases at the money. It is a natural question whether this sign gives
information on the smile as a whole: If the slope is positive, does it follow that the right
wing is steeper than the left one, and vice versa? To deal with this issue, recall Lee’s
moment formula in Lee [65]. Under the assumption that the critical moments z+ and z−,
defined in (2.8) and (2.9), are finite, Lee’s formula states that

lim sup
k→∞

σimp(K,T )√
k

=

√
Ψ(z+ − 1)

T
(2.30)

and

lim sup
k→−∞

σimp(K,T )√
−k

=

√
Ψ(−z−)

T
, (2.31)

where T > 0 is fixed, k = logK, and Ψ(x) := 2 − 4(
√
x2 + x − x). According to Lee’s

formula, the slopes of the wings depend on the size of the critical moments. In Lévy
models, the critical moments do not depend on T . The compatibility property we seek
now becomes:

lim
k→∞

σimp(K,T )√
k

> lim
k→−∞

σimp(K,T )√
−k

for all T > 0 (2.32)

if and only if
∂Kσimp(K,T )|K=1 > 0 for all sufficiently small T. (2.33)

That is, the right wing of the smile is steeper than the left wing deep out-of-the-money
if and only if the small-maturity at-the-money slope is positive. We now show that this
is true for several infinite activity Lévy models. By our methods, this can certainly be
extended to other infinite activity models. It does not hold, though, for the Merton and
Kou jump diffusion models. The parameter ranges in the following theorem are the same
as in the examples in Section 2.5.

Theorem 2.12. Conditions (2.32) and (2.33) are equivalent for the following models.
For the latter three, we assume that σ > 0 or µ 6= 0.

• Variance gamma with σ = 0, b0 6= 0

• NIG

• Meixner

• CGMY

Put differently, these models are not capable (at short maturity) of producing a smile
that has, say, its minimum to the left of logK = k = 0, and thus a positive ATM slope,
but whose left wing is steeper than the right one.
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2.6. Robustness of Lee’s Moment Formula

Proof. The critical moments are clearly finite for all of these models. Moreover, it is
well known that the lim sup in (2.30) and (2.31) can typically be replaced by a genuine
limit, for instance using the criteria given by Benaim and Friz [7]. Their conditions
on the mgf are easily verified for all our models; in fact Benaim and Friz [7] explicitly
treat the variance gamma model with b0 = 0 and the NIG model. We thus have to
show that (2.33) is equivalent to Ψ(z+ − 1) > Ψ(−z−). Since Ψ is strictly decreasing
on (0,∞), the latter condition is equivalent to z+ − 1 < −z−. It remains to check the
equivalence

z+ − 1 < −z− ⇐⇒ (2.33). (2.34)

The mgf of the variance gamma model is (see Madan, Carr and Chang [69])

M(z, T ) = eTb0z(1− θνz − 1
2 σ̂

2νz2)−T/ν ,

where σ̂, ν > 0 and θ ∈ R. Its paths have finite variation, and so Proposition 2.3 shows
that (2.33) is equivalent to b0 < 0. The critical moments are

z± = −νθ ±
√

2νσ̂2 + ν2θ2

νσ̂2
,

and we have −z− + 1− z+ = 1 + 2θ/σ̂2. This is positive if and only if

b0 = ν−1 log(1− θν − 1
2 σ̂

2ν) < 0,

which yields (2.34).
As for the other three models, first suppose that σ > 0. The examples in Section 2.5
show that (2.33) is equivalent to µ < −1

2σ
2. The critical moments of the NIG model are

z+ = α̂− β and z− = −α̂− β. Therefore, z+ − 1 < −z− if and only if β > −1
2 , and this

is indeed equivalent to

µ+ 1
2σ

2 = δ(
√
α̂2 − (β + 1)2 −

√
α̂2 − β2) < 0.

For the Meixner model, we have z± = (±π− b̂)/â, which yields −z−+1−z+ = 1+2b̂/â.
On the other hand,

µ+ 1
2σ

2 = −2d̂ log
cos(b̂/2)

cos((â+ b̂)/2)
,

which is negative if and only if cos(b̂/2) > cos((â + b̂)/2), and this is equivalent to
â+ 2b̂ > 0.
Finally, in case of the CGMY model, we have

µ+ 1
2σ

2 = −CΓ(−Y )
(
(M − 1)Y −MY + (G+ 1)Y −GY

)
.

Since, for Y ∈ (0, 1), Γ(−Y ) < 0 and the function x 7→ xY − (x + 1)Y is strictly
increasing on (0,∞), we see that µ + 1

2σ
2 < 0 if and only if M − 1 < G. This is the

desired condition, since the explicit expression (2.27) shows that z+ = M and z− = −G.
The case Y ∈ (1, 2) is analogous.
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Chapter 2. Implied Volatility Slope Asymptotics

It remains to treat the case σ = 0. First, note that the critical moments do not depend
on σ. Furthermore, from the examples in Section 2.5, we see that (2.33) holds if and
only if µ < 0. Now observe that adding a Brownian motion σWt to a Lévy model adds
−1

2σ
2 to the drift, if the martingale property is to be preserved. Therefore, the assertion

follows from what we have already proved about σ > 0.
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Chapter 3

Conclusion

Our main result (Corollary 2.6) translates asymptotics of the log-underlying’s mgf to
first-order asymptotics for the ATM implied volatility slope. Checking the requirements
of Corollary 2.6 only requires Taylor expansion of the mgf, which has an explicit ex-
pression in all models of practical interest. Higher order expansions can be obtained
by the same proof technique, if desired. They will follow in a relatively straightforward
way from higher order expansions of the mgf, by collecting further residues of the Mellin
transform. In future work, we hope to connect our assumptions on the mgf with prop-
erties of the Lévy triplet, which should give additional insight on how the slope depends
on model characteristics.
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Appendix

Appendix A Proofs of Lemmas 2.4 and 2.7

Proof of Lemma 2.4. Since S = eX is a martingale, we have ψ′(0) = E[X1] < 0. Then
ψ(0) = 0 implies that ψ(a) < 0 for all sufficiently small a > 0. In fact, it easily follows
from ψ(1) = 0 and the concavity of ψ that all a ∈ (0, 1) satisfy ψ(a) < 0. Let us fix such
an a. From

Re(−ψ(a+ iy)) = −ψ(a) +
1

2
σ2y2 +

∫
R
eax (1− cos(yx))︸ ︷︷ ︸

≥0

ν(dx)

we obtain that the function h(y) := −ψ(a+ iy), y ≥ 0, satisfies

Reh(y) > 1
2σ

2y2 ≥ 0, y ≥ 0. (3.1)

For 0 < Re(s) < 1
2 define the function

g(T ) = TRe(s)−1

∫ ∞
0

e−T Re(h(y))

|a+ iy|
dy, T > 0.

Using Fubini’s theorem and substituting T Re(h(y)) = u, we then calculate for Re(s) > 0∫ ∞
0

g(T ) dT =

∫ ∞
0

1

|a+ iy|

∫ ∞
0

e−T Re(h(y))TRe(s)−1 dT dy

=

∫ ∞
0

Re(h(y))−Re(s)

|a+ iy|

(∫ ∞
0

e−uuRe(s)−1 du

)
dy

= Γ(Re(s))

∫ ∞
0

Re(h(y))−Re(s)

|a+ iy|
dy.

From (3.1), we get∫ ∞
0

Re(h(y))−Re(s)

|a+ iy|
dy ≤ (1

2σ
2)−Re(s)

∫ ∞
0

y−2 Re(s)

|a+ iy|
dy.

The restriction Re(s) < 1
2 ensures that the last integral is finite and thus the integra-

bility of g. Using the dominated convergence theorem and Fubini’s theorem, the Mellin
transform of H can now be calculated as∫ ∞

0
H(T )T s−1 dT =

∫ ∞
0

1

a+ iy

∫ ∞
0

e−Th(y)T s−1 dT dy.
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Appendix A. Proofs of Lemmas 2.4 and 2.7

The substitution Th(y) = u gives us the result. Note that h(y) is in general non-real; it
is easy to see, though, that Euler’s integral

Γ(s) =

∫ ∞
0

us−1e−u du, Re(s) > 0,

still represents the gamma function if the integration is performed along any complex
ray emanating from zero, as long as the ray stays in the right half-plane. The latter
holds, since Re(h(y)) > 0.
It remains to prove the exponential decay of the Mellin transform MH(s) = Γ(s)F (s)
for large | Im(s)|. First, note that

Imψ(a+ iy) = by + σ2ay +

∫
R

(eax sinxy − xy) ν(dx)

= O(y), y →∞,

which together with (3.1) yields the existence of an ε > 0 such that | arg h(y)| ≤ 1
2π − ε

for all y ≥ 0. We then estimate, with Re(s) ∈ (0, 1
2) fixed,

|F (s)| ≤
∫ ∞

0

e−Re(s log h(y))

|a+ iy|
dy

=

∫ ∞
0

e−Re(s) log |h(y)|+Im(s) arg h(y)

|a+ iy|
dy

≤ e(π/2−ε)| Im(s)|
∫ ∞

0

(1
2σ

2y2)−Re(s)

|a+ iy|
dy.

The integral converges, and thus this estimate is good enough, since Stirling’s formula
yields |Γ(s)| = exp

(
− 1

2π| Im(s)|(1 + o(1))
)
.

Proof of Lemma 2.7. Recall that, in the proof of Theorem 2.5, we defined the following
meromorphic continuation of F (s), to the strip −ν̃ − 1

2ε < Re(s) < 1
2 :

A0(s) + G̃1(s) + F̃1(s), −ν̃ < Re(s) < 1
2 ,

A0(s) + G̃1(s) + G̃2(s) + F̃2(s), −ν̃ − 1
2ε < Re(s) < 1

2(ν − 1).

As noted at the end of the proof of Lemma 2.4, Stirling’s formula implies |Γ(s)| =
exp

(
− 1

2π| Im(s)|(1 + o(1))
)
. By (2.12), it thus suffices to argue that the continuation

of F (s) is O(exp((1
2π − ε)| Im(s)|)) for some ε > 0. The functions G̃1 and G̃2 are

clearly O(1). As for A0, defined in (2.18), we have

|A0(s)| ≤
∫ y0

0

e−Re(s log h(y))

|a+ iy|
dy

=

∫ y0

0

|h(y)|−Re(s)eIm(s) arg h(y)

|a+ iy|
dy.
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Now note that

|h(y)|−Re(s) ≤

{
(1

2σ
2y2)−Re(s) 0 < Re(s) < 1

2 ,

(max0≤y≤y0 |h(y)|)−Re(s) Re(s) ≤ 0,

and that
exp(Im(s) arg h(y)) ≤ exp((π2 − ε)| Im(s)|)

for some ε > 0, as argued in the proof of Lemma 2.4.
It remains to establish a bound for F̃1, defined in (2.22). (The bound for F̃2 is completely
analogous, and we omit the details.) In what follows, we assume that −ν̃ < Re(s) < 1

2 .
By (2.19), we have (where the O is uniform w.r.t. s, and y0 ≥ 0 is still arbitrary):

F̃1(s) =

∫ ∞
y0

1

a+ iy

(
(1

2σ
2y2)−s(1 +O(yν−2))−s − (1

2σ
2y2)−s

)
dy

=

∫ ∞
y0

1

a+ iy
(1

2σ
2y2)−s

(
(1 +O(yν−2))−s − 1

)
dy. (3.2)

We now choose y0 such that, for some constant C0 > 0,∣∣ log |1 +O(yν−2)|
∣∣ ≤ 1

4π,∣∣ arg(1 +O(yν−2))
∣∣ ≤ 1

4π,∣∣ log(1 +O(yν−2))
∣∣ ≤ C0y

ν−2,

hold for all y ≥ y0. (By a slight abuse of notation, here O(yν−2) of course denotes the
function hiding behind the O(yν−2) in (3.2).) For all w ∈ C we have the estimate

|ew − 1| ≤ |w|e|Re(w)|.

Using this in (3.2), we find∣∣(1 +O(yν−2))−s − 1
∣∣ =

∣∣exp(−s log(1 +O(yν−2)))− 1
∣∣

≤ |s log(1 +O(yν−2))| · exp(|Re(s log(1 +O(yν−2))|)
≤ C1|s|yν−2 exp(1

4π| Im(s)|),

where C1 = C0 exp(1
4π sups |Re(s)|), and thus

|F̃1(s)| ≤ C2|s|e
1
4π| Im(s)|

∫ ∞
y0

y−2 Re(s)+ν−3 dy

= exp
(

1
4π| Im(s)|(1 + o(1))

)
.

25



Appendix B. Implied Volatility Slope in the CGMY Model

Appendix B Implied Volatility Slope in the CGMY Model

This additional section is not part of the paper [53] on which the whole Part I is based.
It proves the at-the-money implied volatility slope result in Corollary 2.6 for the CGMY
model with parameter Y ∈ (1, 2). Note that in this model ν = Y and Cν̃ = 0, and
therefore Corollary 2.6 (ii) is not applicable.
The following lemma helps us to compute the integrals in the proof of Theorem B.2.

Lemma B.1. Suppose there are constants a ∈ (0, 1), β ≥ 0 and y0 ≥ 0. Then the
following result holds for Re(s) > −β/2∫ ∞

y0

(−z2)−s

z1+β

∣∣∣
z=a+iy

dy = eiπs
(a+ iy0)−2(s+β/2)

2i(s+ β/2)
. (3.3)

Proof. Let C∗ := C\(−∞, 0] and consider the principal branch of the complex logarithm
with arg(z) := Im(log(z)) ∈ (−π, π) for z ∈ C∗. If arg(z) ∈ (0, π), then for a complex
number w we have, using the principal branch,

(−z)w = zwe−iπw.

Note that arg((a+ iy)2) ∈ (0, π) for y > 0. Now we can calculate the integral∫ ∞
y0

(−(a+ iy)2)−s

(a+ iy)1+β
dy = eiπs

∫ ∞
y0

(a+ iy)−2s−β−1 dy

= eiπs
(a+ iy0)−2(s+β/2)

2i(s+ β/2)
,

and the last equality holds if and only if 2 Re(s) + β > 0.

Theorem B.2. For b 6= 0 and σ > 0, the ATM digital price in the CGMY model with
Y ∈ (1, 2) satisfies

P[XT ≥ 0] =
1

2
+

b

σ
√

2π

√
T + o(

√
T ), T → 0.

The implied volatility slope converges:

lim
T→0

∂K |K=1σimp(K,T ) = − b
σ
− σ

2

=
1

σ
CΓ(−Y )((M − 1)Y −MY + (G+ 1)Y −GY ).

Proof. The Laplace exponent of the CGMY model is

ψ(z) = 1
2σ

2z2 + bz + CΓ(−Y )((M − z)Y −MY + (G+ z)Y −GY ).

26



Appendix

From the expansion, for Re(z) = a, Im(z)→∞,

(M − z)Y = e−iπY zY +O(zY−1),

(G+ z)Y = zY +O(zY−1),

we have

ψ(z) = 1
2σ

2z2 + czY + bz +O(zY−1), Re(z) = a, Im(z)→∞,

with the complex constant c := CΓ(−Y )(1 + e−iπY ).
Observing the constant Cν̃ in Theorem 2.5 with ν = Y and ν̃ = 1− Y/2, we see that

e−iπν̃c = −2CΓ(−Y ) cos(πY/2) ∈ R, (3.4)

and thus Cν̃ = 0.
To find the second order term, we proceed as in the proof of Theorem 2.5. Let F , F̃ and
A0 be as in 2.18 and define the convergence-inducing function

G1(s) := (1
2σ

2(a+ iy0)2)−s
eiπs

2si
.

which is clearly analytic on the whole complex plane except for the single pole at s = 0.
On the half-plane Re(s) > 0, we compute with Lemma B.1

G1(s) =

∫ ∞
y0

(−1
2σ

2z2)−s

z

∣∣∣
z=a+iy

dy (3.5)

Note that G1 in (3.5) is slightly different from G̃1 defined in 2.20. The advantage of this
convergence-inducing function G1 is the ability of a direct computation of the integral
with Lemma (B.1) and the presence of just one singularity.
With N := max{n ∈ N : n(Y − 2) > −1} we expand the function (−ψ(z))−s, using the
generalized binomial theorem,

(−ψ(z))−s = (−1
2σ

2z2)−s
(

1 +
2c

σ2
zY−2 +O(z−1)

)−s
= (−1

2σ
2z2)−s

∞∑
n=0

(−s
n

)( 2c

σ2
zY−2 +O(z−1)

)n
= (−1

2σ
2z2)−s

(
1 +

N∑
n=1

cn(s)zn(Y−2) +O(z−1)

)
(3.6)

for Re(z) = a, Im(z)→∞, with the polynomial cn(s) =
(−s
n

)
(2c/σ2)n.

For n ∈ {1, . . . , N} we define the convergence-inducing function

Gn+1(s) := cn(s)(1
2σ

2)−seiπs
(a+ iy0)−2(s+nν̃)

2i(s+ nν̃)
,
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which is analytic on the whole complex plane except for a single pole at s = −nν̃. On
the half-plane Re(s) > n(Y − 2)/2 = −nν̃, we compute with Lemma B.1

Gn+1(s) = cn(s)

∫ ∞
y0

(−1
2σ

2z2)−s

z1−n(Y−2)

∣∣∣
z=a+iy

dy. (3.7)

With F̃ from (2.13), the integral representation (3.5) and (3.7) and the expansion (3.6),
the compensated function Fn+1(s) := F̃ (s)−

∑n
i=0Gi+1(s) is analytic at least for Re(s) >

max{−(n+ 1)ν̃,−1
2}. Clearly, the identity

F̃ (s) = Fn+1(s) +
n∑
i=0

Gi+1(s)

holds in the half-plane Re(s) > 0, and thus F̃ is continued meromorphically to the half-
plane Re(s) > max{−(n + 1)ν̃,−1

2}. For n ∈ {1, . . . , N} the residue of MH at the
simple pole s = −nν̃ is

Ress=−nν̃(MH)(s)T−s = Ress=−nν̃ Gn+1(s)Γ(s)T−s (3.8)

=
(
nν̃
n

)
(1

2σ
2)n(ν̃−1) (e−iπν̃c)n

2i
Γ(−nν̃)Tnν̃ ∈ iR, (3.9)

because of the real constant (3.4). So the real part of all the poles −nν̃ with n ∈
{1, . . . , N} is zero and therefore they give no contribution to the digital price in the
CGMY model.
We have to expand (−ψ(z))−s further. For Re(z) = a, Im(z)→∞,

(−ψ(z))−s = (−1
2σ

2z2)−s

(
1 +

N∑
n=1

cn(s)zn(Y−2) + d(s)z−1 +O(z−1−ε)

)
,

with some ε > 0 and

d(s) =

{
(−s)2b/σ2, if (N + 1)(Y − 2) 6= −1,

(−s)2b/σ2 + cN+1(s), if (N + 1)(Y − 2) = −1.

Continuing our procedure, we define the meromorphic function

GN+2(s) := d(s)(1
2σ

2)−seiπs
(a+ iy0)−2(s+1/2)

2i(s+ 1/2)

which has the integral representation

GN+2(s) = d(s)

∫ ∞
y0

(−1
2σ

2z2)−s

z2

∣∣∣
z=a+iy

dy

for Re(s) > −1
2 . The compensated function FN+2(s) = F̃ (s)−

∑N+1
i=0 Gi+1(s) is analytic

for Re(s) > (−1− ε)/2 and clearly

F̃ (s) = FN+2(s) +Gn+2(s)
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is a meromorphic continuation of F̃ on the half-plane Re(s) > (−1−ε)/2. With analogous
calculations as in (3.8) the residue at s = −1

2 is

1

π
Re
(
Ress=−1/2(MH)(s)T−s

)
=

b

σ
√

2π

√
T

At last, we want to mention that with similar arguments as in Lemma 2.7 a y0 ≥ 0
can be found such that this meromorphic continuation ofMH decays exponentially as
| Im(s)| → ∞.
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Part II

Option Pricing in the Moderate
Deviations Regime
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Chapter 1

Introduction

Consider a European call option struck at K with remaining time to expiry t > 0
and no-arbitrage price1 C(K, t). Today’s price of the underlying, the spot value S0, is
known and fixed. Discrete option data are available from the market, typically quoted
in (Black-Scholes) implied volatilities, see Figure 1.1 below. Many option pricing models
have been proposed to combine reasonable dynamics for the underlying, small number of
parameters and acceptable fits to the data. However, with the notable exception of the
Black-Scholes model, closed form expressions for call prices are scarce, and approximate
pricing formulae have been proposed as substitute: often used to improve calibration,
but also towards a better quantitative understanding of a given model. (A classic refer-
ence in this context is Gatheral [50].)

More specifically, small-maturity approximations of option prices have been studied ex-
tensively in recent years. Starting with Carr and Wu [18], it was understood that the
asymptotic behaviour of C(K, t) as t ↓ 0 exhibits very different behaviour in the respec-
tive cases K > S0 (“out-of-the-money”) and K = S0 (“at-the-money”). We argue that
there is a significant asymptotic regime in between, namely

√
t� K − S0 � 1.

It has received little attention, and, to the best of our knowledge, none at all in the
classical diffusion case. The aim of Part II is to fill this gap. This “moderately out-
of-the-money” regime in fact reflects the reality of quoted option prices: as seen in
Figure 1.1, the range of strikes tends to concentrate “around-the-money” as time to ex-
piry becomes small. At the same time, the regime offers excellent analytic tractability.

To put our results into perspective, we recall some well-known facts on option price
approximations close to expiry. We write c(k, t) for the normalized call price as a function
of log-moneyness k = log(K/S0)

C(S0e
k, t)/S0 = c(k, t). (1.1)

In general, c(k, t) depends tacitly on S0, the (fixed) spot value.2

1As we focus on stochastic volatility models, which are in general incomplete, it is understood that
call prices are computed w.r.t. some fixed pricing measure.

2There is no spot-dependence of the normalized call price in the Black-Scholes model. This holds
true, more generally, whenever dynamics for the log-price X = log(S/S0) are specified without further
spot dependence; this includes the Heston model and many other stochastic volatility models.
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We start with the at-the-money (short: ATM) regime k = 0. In the Black-Scholes
model, writing c(k, t) = cBS(0, t;σ) with volatility parameter σ > 0, we have the follow-
ing ATM call price behaviour

cBS(0, t;σ) ∼ σ
√
t√

2π
, t ↓ 0.

From Muhle-Karbe and Nutz [71], the same is actually true in a generic semimartingale
model with diffusive component (with spot volatility σ0 =

√
v0 > 0),

c(0, t) ∼ σ0

√
t√

2π
, t ↓ 0, (1.2)

and this translates to the generic ATM implied variance formula (even in presence of
jumps, as long as v0 > 0)

σ2
imp(0, t) = v0 + o(1), t ↓ 0.

(We use the notation σimp(k, t) for the Black-Scholes implied volatility with log-money-
ness k and maturity t.) Higher order terms in t will be model dependent. For instance, in
the Heston case, with variance dynamics dVt = λ(v̄−Vt) dt+ξ

√
Vt dWt, implied variance

has the ATM expansion

σ2
imp(0, t) = v0 + a(0)t+ o(t), t ↓ 0, (1.3)

a(0) = − ξ
2

12

(
1− ρ2

4

)
+
v0ρξ

4
+
λ

2
(v̄ − v0).

This is Corollary 4.4 in Forde, Jacquier and Lee [41], and we note that a(0) has no easy
interpretation in terms of the model parameters.

Relaxing k = 0 to kt = o(
√
t) amounts to what we dub “almost-ATM” (short: AATM)

regime.3 (In particular, kt ∼ tβ is in the AATM regime if and only if β > 1/2.) Again
for generic semimartingale models with diffusive component and spot volatility σ0 > 0,
it is easy to see from Caravenna and Corbetta [17] and Muhle-Karbe and Nutz [71] that
the ATM asymptotics (1.2) imply the almost-ATM asymptotics

c(kt, t) ∼
σ0

√
t√

2π
, kt = o(

√
t), t ↓ 0.

This fails when kt ceases to be o(
√
t). Indeed, for kt = θ

√
t with constant factor θ > 0,

we have, from Caravenna and Corbetta [17] and Muhle-Karbe and Nutz [71],

c(kt, t) ∼ E[N(−θ, σ2
0)+]
√
t, t ↓ 0,

3The term “almost-ATM” seems new, but this regime was considered by a number of authors including
Caravenna and Corbetta [17] and Muhle-Karbe and Nutz [71].
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Chapter 1. Introduction

where N(−θ, σ2
0) stands for a Gaussian random variable with mean −θ and variance σ2

0.
This, too, holds true in the stated semimartingale generality. In any case, the proof is
based on the Lévy case with non-zero diffusity v0, and the result follows from compar-
ison results which imply that the difference is negligible to first order. For a thorough
discussion of the regime k = O(

√
t) in the (local) diffusion case, see Pagliarani and Pas-

cucci [78].

Beyond this regime, call price asymptotics change considerably. For instance, take an
additional slowly diverging factor log(1/t),

kt = θ
√
t log(1/t).

Even in the Black-Scholes model, we now loose the
√
t-behaviour of call prices described

above and in fact
cBS(kt, t;σ) = t

1
2

+ θ2

2σ2 `(t),

for some slowly varying function `(t), see Mijatović and Tankov [70]. On the other
hand, in a genuine out-of-the-money (short: OTM) situation, with kt ≡ k > 0 fixed,
option values are exponentially small in diffusion models, and we are in the realm of
large deviations theory. For instance,

cBS(k, t;σ) = exp

(
−ΛBS(k)

t

(
1 + o(1)

))
, k > 0 fixed, t ↓ 0,

with ΛBS(k) = 1
2k

2/σ2 in the Black-Scholes model. Similar results appear in the lit-
erature, with different levels of mathematical rigor, for other and/or generic diffusion
models, see Berestycki, Busca and Florent [9], Carr and Wu [18], Forde and Jacquier [38]
and Paulot [79].

Throughout, we reserve the term out-of-the-money (OTM) for fixed OTM log-strike
k > 0, to distinguish this regime from the moderately out-of-the-money regime that we
now define. Our basic observation is that for

kt ∼ (const)tβ, t ↓ 0, (1.4)

the cases of β > 1
2 , resp. β = 0, are covered by the afore-discussed AATM, resp. OTM,

results. This leaves open a significant gap, namely β ∈ (0, 1
2), which we call moder-

ately out-of-the-money (short: MOTM). We have a threefold interest in this MOTM
regime,

kt ∼ (const)tβ, t ↓ 0, for β ∈ (0, 1
2). (1.5)

(i) First, it is related to the reality of quoted (short-dated) option prices, where strikes
of option price data with acceptable bid-ask spreads tend to accumulate “around the

4This is also true for Lévy models with a Brownian component and a finite variation jump part.
For Lévy models with jump part of infinite variation, the call price still decays algebraically, but slower
than O(t). See Theorem 1 and Proposition 2 in Mijatović and Tankov [70].
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Table 1.1: Asymptotic behaviour of short-maturity call options, t ↓ 0

Process Type

ATM
(at-the-money)

K = S0

AATM (almost

at-the-money)

log K
S0
∼ (const)tβ

β > 1/2

MOTM (moderately

out-of-the-money)

log K
S0
∼ (const)tβ

0 < β < 1/2

OTM
(out-of-the-money)

log K
S0
≡ k > 0

Black-Scholes O(
√
t),

elementary
O(
√
t),

elementary
exp

(
− const

t1−2β

)
,

elementary
exp

(
− const

t

)
,

elementary

Stochastic or
local volatility
(diffusion model)

O(
√
t) O(

√
t) exp

(
− const

t1−2β

)
exp

(
− const

t

)
Jump diffusion,
general semi-
martingale with
diff. component

O(
√
t) O(

√
t)

O(t) in finite variation
Lévy models4

O(t), see Bentata
and Cont [8]

money”, as illustrated in Figure 1.1. To account for this accumulation, we consider
strikes that move closer to the money as expiry shrinks, and the simplest way to do
so is to consider strikes of the order k = O(tβ) for some β > 0. There is no reason
why quoted strikes should always be almost-ATM (β > 1/2), which effectively means an
extreme concentration around the money; we are thus led to study the regime (1.5).
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Chapter 1. Introduction

Figure 1.1: SPX volatility smiles as of 14-Aug-2013 (courtesy of J. Gatheral). Strikes of
options with small remaining time to maturity (T = 0.0082) are about e0.02 − 1 ≈ 2%
around the money (spot); good data for a later time T = 0.26 already have a range of
≈ 30%. The highest maturity T = 2.35 has a range of ≈ 65% around the money.

(ii) The second reason is mathematical convenience. In contrast to the genuine OTM
regime (large deviation regime) in which the rate function Λ(k) is notoriously difficult
to analyse – often related to geodesic distance problems – MOTM naturally comes with
a quadratic rate function and, most remarkably, higher order expansions are always
explicitly computable in terms of the model parameters. The terminology moderately-
OTM (MOTM) is in fact in reference to moderate deviations theory, which effectively
interpolates between the central limit and large deviations regimes.5 This also iden-
tifies the AATM regime as bordering the central limit regime, where asymptotics are
precisely those of the Black-Scholes model, which in turn is the rescaled Gaussian (in
log-coordinates) limit of a general semimartingale model with diffusive component.

(iii) Finally, our third point is that MOTM expansions naturally involve quantities very
familiar to practitioners, notably spot (implied) volatility, implied volatility skew and so
on.

5We write CLT for central limit theorem and LDP for large deviation principle. For readers unfamiliar
with moderate deviations, we recall some of the basics towards the end of the introduction.
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In the Black-Scholes model, it is easy to check that we have the MOTM asymptotics

cBS(kt ≡ θtβ, t;σ) = exp

(
− θ2

2σ2t1−2β

(
1 + o(1)

))
, t ↓ 0.

Loosely speaking, our main results (Theorems 2.3 and 2.5 below) assert that such rela-
tions (even of higher order) are true in great generality for diffusion models, and that
all quantities are computable and then related to implied volatility expansions. We note
in passing that, for Lévy models, the regime (1.5) has been studied by Mijavtović and
Tankov [70]; then, call prices decay algebraically rather than exponentially. For recent
related results on fractional stochastic volatility models, see Forde and Zhang [42] and
Guennoun, Jacquier and Roome [55]. Guillin [56], which considers small-noise moderate
deviations of diffusions, should also be mentioned here; however, in Guillin [56] the dy-
namics depend on a “fast” random environment (with motivation from physics, and no
obvious financial interpretation), and the non-degeneracy assumption (D) is not satisfied
in our context. The recent related paper by Gao and Wang [48] contains a first order
moderate deviation principle (MDP) for diffusions under classical regularity assumptions
from SDE theory. The main difference to the bulk of our results is that we develop higher
order expansions, until Section 2.5 where we revisit first order MOTM estimates from
a moment-generating function perspective. However, in this case the underlying models
(e.g. Heston) fall immediately outside the scope of Gao and Wang [48], because of the
typical square-root structure of coefficients. (The matter is discussed in more detail at
the beginning of Section 2.5.)

To round off the introduction, we briefly recall some background on moderate deviations.
Consider the classical setting of a centered i.i.d. sequence (Xn)n≥1 with finite exponential
moments. Then the empirical means X̂n := n−1

∑n
k=1Xk converge to zero (law of

large numbers, LLN), and this is quantified by an LDP according to Cramér’s classical
theorem: P[X̂n > x] = exp(−I(x)n + o(n)) decreases exponentially as n → ∞ for
fixed x > 0, governed by a rate function I(x) = supy∈R

(
yx − logE[eyX1 ]

)
. On the

other hand, by the CLT,
√
nX̂n = n−1/2

∑n
k=1Xk has a Gaussian limit law. Moderate

deviations cover intermediate scalings, i.e. √nanX̂n with an → 0 and nan →∞. It turns
out (Theorem 3.7.1 in Dembo and Zeitouni [23]) that, for any such sequence an > 0,
the family √nanX̂n satisfies an LDP with speed 1/an and quadratic rate function. (A
natural scaling family is given by an = n2β−1, with parameter β > 0, so that one
considers √nanX̂n = nβ−1

∑n
k=1Xk. Interpolation between LDP, with LLN scaling,

and CLT scaling then amounts to considering 0 < β < 1/2.) This is sometimes called a
moderate deviation principle (MDP). Formally, an MDP is thus just a certain LDP with
appropriate scaling and speed function. Still, the terminology is often useful because of
the trichotomy

CLT – MDP for a range of scalings, with quadratic rate function – genuine LDP,

which occurs in many situations, not just for i.i.d. sequences of random variables. For ref-
erences to some other classical moderate deviations results (e.g. on empirical measures)
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Chapter 1. Introduction

see Sections 6.7 and 7.4 of Dembo and Zeitouni [23]. Several authors have investigated
moderate deviations in actuarial risk theory, see e.g. Fu and Shen [47] and references
therein.

The rest of Part II is organized as follows. Section 2.1 contains our main results, which
translate asymptotics for the transition density of the underlying into MOTM call price
asymptotics. The corresponding proofs are presented in Section 2.2. Section 2.3 and
Appendix A give the implied volatility expansion resulting from our call price approx-
imations. Section 2.4 applies our main results to standard examples, namely generic
local volatility models (Subsection 2.4.1), generic stochastic volatility models (Subsec-
tion 2.4.2), and the Heston model (Subsection 2.4.3). As usual, the square-root de-
generacy of the Heston model makes it difficult to apply results for general stochastic
volatility models, so we verify the validity of our results – if formally applied to Heston
– by a direct “affine” analysis. Finally, in Section 2.5 we present a second approach at
MOTM estimates, which employs the Gärtner-Ellis theorem from large deviations the-
ory. Throughout we take zero rates, a natural simplification in view of our short-time
consideration. Also, w.l.o.g. we normalize spot to S0 = 1.
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Chapter 2

The Moderate Deviations Regime

2.1 MOTM Option Prices via Density Asymptotics

We consider a general stochastic volatility model, i.e. a positive martingale (St)t≥0 with
dynamics

dSt = Stσt dWt

and started (w.l.o.g.) at S0 = 1. We assume that the stochastic volatility process (σt)t≥0

itself is an Itô-diffusion, started at some deterministic value σ0, called spot volatility.
Recall that in any such stochastic volatility model, the local (or effective) volatility is
defined by

σ2
loc(t,K) := E[σ2

t |St = K].

As is well-known, the equivalent local volatility model

dS̃t = S̃tσloc(t, S̃t) dWt

has the property that S̃t = St (in law) for all fixed times. See Brunick and Shreve [13] for
precise technical conditions under which this holds true.1 As a consequence, European
option prices C(K, t) match in both models. Recall also Dupire’s formula in this context

σ2
loc(K, t) =

∂tC(K, t)
1
2K

2∂KKC(K, t)
, t > 0,K > 0. (2.1)

We now state our two crucial conditions.

Assumption 2.1. For all t > 0, St has a continuous pdf K 7→ q(K, t), which behaves
asymptotically as follows for small time

q(K, t) ∼ e−
Λ(k)
t t−1/2γ(k), t ↓ 0, (2.2)

uniformly for K = ek in some neighbourhood of S0 = 1. The energy function Λ is
smooth in some neighbourhood of zero, with initial value Λ(0) = Λ′(0) = 0. Moreover,
limk→0 γ(k) = γ(0) > 0.

1The situation is very different with jumps, see Friz, Gerhold and Yor [46].

38



Chapter 2. The Moderate Deviations Regime

Assumption 2.2. For t ↓ 0 and K → S0 = 1, the local volatility function of (St)t≥0

converges to spot volatility
lim
K→S0
t↓0

σloc(K, t) = σ0. (2.3)

The latter assumption is fairly harmless (in diffusion models; see the beginning of Sec-
tion 2.4.2). The first assumption is potentially (very) difficult to check, but fortunately
we can rely on substantial recent progress in this direction, see Deuschel, Friz, Jacquier
and Violante [24], [25] and Osajima [77]. We shall see in Section 2.4.2 that both assump-
tions indeed hold in generic stochastic volatility models. Let us also note the fundamental
relation between spot-volatility σ0 (actually equal to implied spot volatility σimp(0, 0)
here) and the Hessian of the energy function Λ = Λ(k),

σ0 = Λ′′(0)−1/2.

(This is well-known, see Durrleman [27], and also follows from Proposition 2.4 below.)
Now we state our main result. We slightly generalize the log-strikes considered in (1.5),
replacing the constant factor by an arbitrary slowly varying function `.

Theorem 2.3. Under Assumptions 2.1 and 2.2, consider moderately out-of-the-money
calls, in the sense that log-strike is

kt = tβ`(t), t > 0, (2.4)

where ` > 0 varies slowly at zero and β ∈ (0, 1
2).

(i) The call price satisfies the moderate deviation estimate

c(kt, t) = exp

(
− Λ′′(0)

2

k2
t

t

(
1 + o(1)

))
= exp

(
− 1

2σ2
0

k2
t

t

(
1 + o(1)

))
, t ↓ 0. (2.5)

(ii) If we restrict β to (0, 1
3), then the following moderate second order expansion

holds true

c(kt, t) = exp

(
− 1

2
Λ′′(0)

k2
t

t
− 1

6
Λ′′′(0)

k3
t

t

(
1 + o(1)

))
= exp

(
− 1

2σ2
0

k2
t

t

(
1− S

σ2
0

kt
(
1 + o(1)

)))
, t ↓ 0, (2.6)

with spot-variance σ2
0, equal to σ2

imp(0, 0), and implied variance skew

S =
∂

∂k

∣∣
k=0

σ2
imp(k, 0).
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2.1. MOTM Option Prices via Density Asymptotics

In particular, for ` ≡ θ > 0, we have the (first order) expansion

t1−2β log c(θtβ, t) ∼ − θ2

2σ2
0

, t ↓ 0,

exhibiting a quadratic rate function θ 7→ θ2/2σ2
0, typical ofmoderate deviation problems.2

In a nutshell, (2.5) says that inserting the time-dependent log-strike (2.4) into the fixed-
strike OTM/LD approximation c(k, t) = exp

(
− Λ(k)

t (1 + o(1))
)
yields a correct result,

upon Taylor expanding Λ. Mind however, that this needs a proof using the specifics of
our situation, in light of the fact that validity of a large deviation principle does not
automatically imply a moderate deviation principle.
The quantities Λ′′(0),Λ′′′(0), . . . appearing above are always computable from the initial
values and the diffusion coefficients of the stochastic volatility model. This is in stark
contrast to the OTM regime, where one needs the function Λ, which is in general not
available in closed form (with some famous exceptions, like the SABR model). We quote
the following result on N -factor models from Osajima [77], and refer to Section 2.4.2 for
detailed calculations in a two-factor stochastic volatility model.

Proposition 2.4. Assume that (logS, σ1, . . . , σN−1) is Markov, started at (0, σ̄0) with
σ̄0 ∈ RN−1 and σ̄1

0 > 0, with stochastic volatility σ ≡ σ1, where the generator has (non-
degenerate) principal part

∑
aij∂ij in the sense that a−1 defines a Riemannian metric.

Then
Λ(k) =

1

2b1
k2 − b2

3b31
k3 +

(
− b3

4b41
+

b22
2b51

)
k4 +O(k5), k → 0,

where the coefficients are given by

b1 =

∫ 1

0
a11(t, σ̄0) dt

b2 =
3

2

∫ 1

0
(V a11)(t, σ̄0) dt

b3 = 2

∫ 1

0
(V 2a11)(t, σ̄0) dt+

1

2

∫ 1

0
Γ(a11, a11)(t, σ̄0) dt,

using the functions

(V f)(t, x) =
N∑
i=1

a1i(t, x)

∫ 1

t

∂f

∂xi
(s, x) ds,

Γ(f, g)(t, x) =
N∑

i,j=1

aij(t, x)

(∫ 1

t

∂f

∂xi
(s, x) ds

)(∫ 1

t

∂g

∂xj
(s, x) ds

)
.

2Recall that the MD rate function for a centered i.i.d. sequence (Xn)n≥1 is given by θ 7→
θ2/(2Var(X1)). This is the “moderate” version of Cramér’s theorem (Theorem 3.7.1 in Dembo and
Zeitouni [23]; see also the introduction, Chapter 1).
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Proof. See Osajima [77], Theorem 1(1), with T = 1.

The following result presents a higher-order expansion in the MOTM regime. It yields
an asymptotically equivalent expression for call prices (and not just logarithmic asymp-
totics).

Theorem 2.5. Under the assumptions of Theorem 2.3, the logarithm of the call price
has the refined MOTM expansion

log c(kt, t) = −
b1/βc∑
m=2

Λ(m)(0)

m!

kmt
t

+
(

2β − 3

2

)
log

1

t
− 2 log `(t) + log

(
γ(0)v2

0

)
+ o(1), t ↓ 0. (2.7)

This can be expressed equivalently as

c(kt, t) ∼ γ(0)v2
0

t3/2−2β

`(t)2
exp

(
−
b1/βc∑
m=2

Λ(m)(0)

m!

kmt
t

)
, t ↓ 0.

If 1/β is not an integer, then kmt /t tends to infinity for m = b1/βc, of order tβb1/βc−1

(up to a slowly varying factor). If on the other hand 1/β is an integer, then the last
summand of the sum

∑b1/βc
m=2 in (2.7) is of order `(t), which means that the following term

log(1/t) may be asymptotically larger. The upper summation limit b1/βc thus ensures
that no irrelevant (i.e. o(1)) terms are contained in the sum. Note that b1/βc = 2 for
β ∈ (1

3 ,
1
2), and b1/βc ≥ 3 for β ∈ (0, 1

3), and so (2.7) is consistent with (2.5), resp. (2.6).
The passage from the derivatives of the energy function to ATM derivatives of the
implied volatility in the short time limit is best conducted via the BBF formula that
was proved in Berestycki, Busca, and Florent [9]. (That said, theses relations are also a
direct consequence of our expansions, as is pointed out in Section 2.3.) In this regard,
we have

Theorem 2.6. Suppose that Λ is a function with the properties required in Assump-
tion 2.1, with Λ′′(0) = σ−2

0 = v−1
0 , and that the Berestycki-Busca-Florent formula

σ2
imp(0, k) = k2/2Λ(k) holds. Then the small-time ATM implied variance skew and

curvature, respectively, relate to Λ via

S :=
∂

∂k

∣∣∣
k=0

σ2
imp(k, 0) = −1

3

Λ′′′(0)

Λ′′(0)2
(2.8)

and
C :=

∂2

∂k2

∣∣∣
k=0

σ2
imp(k, 0) =

2
3Λ′′′(0)2 − 1

2Λ′′′′(0)Λ′′(0)

3Λ′′(0)3
. (2.9)
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2.2. Proofs of the Main Results

Proof. By the BBF formula and our smoothness assumptions on Λ, for k → 0,

σ2
imp(k, 0) =

k2

2Λ(k)

= k2

(
Λ′′(0)k2 +

1

3
Λ′′′(0)k3 +

1

12
Λ′′′′(0)k4 +O(k5)

)−1

=
1

Λ′′(0)
− 1

3

Λ′′′(0)

Λ′′(0)2
k +

( 1
9Λ′′′(0)2 − 1

12Λ′′′′(0)Λ′′(0)

Λ′′(0)3

)
k2 +O(k3).

This implies (2.8) and (2.9).

Proposition 2.4 combined with Theorem 2.6 allows to compute skew and curvature (and
higher derivatives of the implied volatility smile, if desired) directly from the coeffi-
cients of a general stochastic volatility model. Related formulae for “general” (even
non-Markovian) models also appear in the work of Durrleman (Theorem 3.1.1 in Durrle-
man [27]; see also Durrleman [28]). While not written in the setting of general Markovian
diffusion models, and hence not in terms of the energy function Λ, they inevitably give the
same results if applied to given parametric stochastic volatility models (see Section 3.1 in
Durrleman [27]). However, Durrleman’s work comes with some (seemingly) uncheckable
assumptions, the drawbacks of which are discussed in Section 2.6 of Durrleman [27].

2.2 Proofs of the Main Results
Proof of Theorem 2.3. As the density of St satisfies q = ∂KKC, we have, by Dupire’s
formula (2.1),

C(K, t) =

∫ t

0
∂sC(K, s) ds =

∫ t

0

1

2
q(K, s)K2σ2

loc(K, s) ds.

Then, for Kt = ekt with kt ↓ 0 as stated, we apply Assumption 2.2 as follows

C(Kt, t) =

∫ t

0

1

2
q(Kt, s)K

2
t σ

2
loc(Kt, s) ds

∼ σ2
0

2

∫ t

0
q(Kt, s) ds, t ↓ 0. (2.10)

And then, using local uniformity of our density expansion (2.2), as t ↓ 0,

C(Kt, t) ∼
σ2

0γ(0)

2

∫ t

0
e−

Λ(kt)
s s−1/2 dt (2.11)

=
σ2

0γ(0)

2
t

∫ 1

0
e−

Λ(kt)
xt (xt)−1/2 dx

=
σ2

0γ(0)

2
t1/2

∫ 1

0
e−

Λ(kt)
xt x−1/2 dx. (2.12)
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Because Λ is smooth at zero, and using the fact that Λ(0) = Λ′(0) = 0, we have

Λ(kt)

t
∼ 1

2
Λ′′(0)

k2
t

t
→∞ as t ↓ 0.

For small t, the integrand in (2.12) is thus concentrated near x = 1, and by the Laplace
method (Theorem 3.7.1 in Olver [74])∫ 1

0
e−

Λ(kt)
xt x−1/2 dx ∼ t

Λ(kt)
exp

(
− Λ(kt)

t

)
, t ↓ 0. (2.13)

Therefore,

C(Kt, t) ∼
σ2

0γ(0)

2

t3/2

Λ(kt)
exp

(
− Λ(kt)

t

)
∼ v2

0γ(0)
t3/2

k2
t

exp
(
− Λ(kt)

t

)
, t ↓ 0, (2.14)

which implies (recall the notation c resp. C from (1.1))

− log c(kt, t) =
Λ(kt)

t
− log

t3/2

k2
t

+O(1) (2.15)

=
1

t

(
1

2
Λ′′(0)k2

t +
1

6
Λ′′′(0)k3

t +O(k4
t )

)
+O

(
log

k2
t

t3/2

)
, t ↓ 0.

To prove (i) and (ii), we thus need to argue that k2
t /t dominates log(k2

t t
−3/2) if β ∈ (0, 1

2),
and that k3

t /t dominates log(k2
t t
−3/2) if β ∈ (0, 1

3). For m ∈ {2, 3}, we calculate

kmt /t

| log(k2
t t
−3/2)|

=
tmβ−1`(t)m

| log(t2β−3/2`(t)2)|

=
tmβ−1`(t)m

|(2β − 3
2) log t+ 2 log `(t)|

.

From Proposition 1.3.6 (i) in Bingham, Goldie, and Teugels [11], we know that log `(t) =
o(log t), and so

kmt /t

| log(k2
t t
−3/2)|

∼ tmβ−1`(t)m

|(2β − 3
2) log t|

, t ↓ 0.

This tends to infinity for m = 2 and β ∈ (0, 1
2), and for m = 3 and β ∈ (0, 1

3), as
desired.

Inspecting the preceding proof, it is easy to see that we can expand log c(kt, t) further.

Proof of Theorem 2.5. Taking logs in (2.14) yields

log c(kt, t) = −Λ(kt)

t
+ log

t3/2

k2
t

+ log
(
γ(0)v2

0

)
+ o(1), t ↓ 0.

Then (2.7) follows by Taylor expanding Λ. Note that kmt /t = o(1) form ≥ b1/βc+1.
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2.3. Implied Volatility

2.3 Implied Volatility

Corollary 2.1. Under the assumptions of Theorem 2.3, let kt = tβ`(t) with β ∈ (0, 1
3)

and ` > 0 slowly varying. Then the implied volatility has the MOTM expansion

σimp(kt, t) = σ0 − 1
6σ

3
0Λ′′′(0)kt

(
1 + o(1)

)
, t ↓ 0. (2.16)

Proof. We use our main result (Theorem 2.3) in conjunction with a transfer result of Gao
and Lee [49]. As the call price tends to zero, we are in case “(−)” of Gao and Lee [49]
(defined on p. 354 of that paper). The notation L, V therein means L = − log c(kt, t)
resp. V = t1/2σimp(kt, t), the dimensionless implied volatility. Then Corollary 7.2 of Gao
and Lee [49] implies that

V =
kt√
2L

(
1 +O(t1−2β−ε)

)
+O(t5/2−4β−ε), t ↓ 0. (2.17)

Here, ε > 0 denotes an arbitrarily small constant that serves to eat up slowly varying
functions inO-estimates (See Proposition 1.3.6 (v) in Bingham, Goldie, and Teugels [11]).
By part (ii) of Theorem 2.3, we have

2L =
1

σ2
0

k2
t

t
+

Λ′′′(0)

3

k3
t

t

(
1 + o(1)

)
, t ↓ 0.

Inserting this into (2.17) gives

σimp(kt, t) = t−1/2kt

(
σ0
t1/2

kt
− σ3

0Λ′′′(0)

6
t1/2
(
1 + o(1)

))
+O(t2−4β−ε), t ↓ 0,

which yields (2.16).

We have no doubt that Corollary 2.1 is true for the whole MOTM regime, i.e. for all
β ∈ (0, 1

2), under very mild assumptions (Assumption A.1 in the Appendix A). For any
fixed β ∈ (0, 1

2), one can compute the implied volatility expansion using the results of
Gao and Lee [49]. However, for β close to 1

2 , more and more terms are needed for the
intermediate computations, and there does not seem to be a simple pattern that would
allow for a general proof. The details are discussed in Appendix A, where we push the
range of β for which (2.16) is proven rigorously to 0 < β < 3

7 ≈ 0.429. Note that the
expansion in Theorem 2.5 becomes finer (i.e. contains more explicit terms) if β is close
to zero. Suppose, on the other hand, that β is very close to 1

2 : Then the summands
m > b1/βc = 2 in (2.7), which are related to ATM derivatives of implied variance by
Theorem 2.6 (see also paragraph (iii) in the introduction), disappear into the o(1)-term
of (2.7).
Corollary 2.1 has some interesting consequences. Under the sheer assumption that im-
plied volatility has a first order Taylor expansion for small maturity and small log-strike
of the form

σimp(k, t) = σ0 + ∂kσimp(0, 0) k + o(k) +O(t), t ↓ 0, k = o(1), (2.18)
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Chapter 2. The Moderate Deviations Regime

then of course in the MOTM regime, we have t� kt, and so the k-term dominates the
O(t)-term, which in turn identifies the implied variance skew as

S = lim
t↓0

2σ0

kt

(
σimp(kt, t)− σ0

)
. (2.19)

On the other hand, Corollary 2.1 now implies that the right-hand side of (2.19) equals
−1

3σ
4
0Λ′′′(0). We have thus arrived at an alternative proof of the skew representation (2.8)

in terms of the energy function, without using the BBF formula. The curvature and
higher order derivatives of the ATM smile can be dealt with similarly, if desired.

2.4 Examples

2.4.1 Generic Local Volatility Models

Clearly, Assumption 2.2 is satisfied for any local volatility model, assuming continuity of
the local volatility function. We now discuss Assumption 2.1, and show how to compute
our MOTM expansions. First consider the time-homogeneous local volatility model

dSt = σ(St)St dWt, S0 = 1, (2.20)

where the deterministic function σ is C2 on (0,∞). An expansion of the pdf q(·, t)
of St has been worked out in Gatheral et al. [51]. They assume growth conditions on σ
and its derivatives, which can be alleviated by the principle of not feeling the boundary
(Appendix A of Gatheral et al. [51]). Proposition 2.1 therein states that

q(ek, t) ∼ e−ku0(0, k)√
2πt

exp

(
− Λ(k)

t

)
, t ↓ 0, (2.21)

uniformly in k, where the energy function is given by (cf. Varadhan [89])

Λ(k) =
1

2

(∫ k

0

dx

σ(ex)

)2

,

and
u0(0, k) = σ(1)1/2σ(ek)−3/2e−k/2. (2.22)

(Recall that we normalize spot to S0 = 1 throughout.) This shows that Assumption 2.1
is satisfied, with

γ(0) =
1√

2πσ(1)
. (2.23)

To evaluate the expansions from Theorem 2.3, we compute the derivatives of Λ

Λ′(k) =
1

σ(ek)

∫ k

0

dx

σ(ex)
, Λ′′(k) =

1

σ(ek)2
− ekσ′(ek)

σ(ek)2

∫ k

0

dx

σ(ex)
,

Λ′′′(k) = −3ekσ′(ek)

σ(ek)3
+

(
2e2kσ′(ek)2

σ(ek)3
− σ(ek)′′

σ(ek)2

)∫ k

0

dx

σ(ex)
,
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which yield

Λ′′(0) =
1

σ(1)2
=

1

σ(S0)2
,

Λ′′′(0) = −3σ′(1)

σ(1)3
= −3σ′(S0)

σ(S0)3
. (2.24)

Alternatively, these expressions can be obtained from Proposition 2.4. As the assump-
tions of Theorem 2.3 are satisfied, we obtain the following MOTM call price estimates,
where kt = θtβ and θ > 0

c(kt, t) = exp

(
− θ2

2σ(1)2t1−2β

(
1 + o(1)

))
, β ∈ (0, 1

2), t ↓ 0,

c(kt, t) = exp

(
− θ2

2σ(1)2t1−2β
− σ′(1)

2σ(1)3

θ3

t1−3β

(
1 + o(1)

))
, β ∈ (0, 1

3), t ↓ 0.

Recall from Theorem 2.6 that we denote by S the (limiting small-time ATM) implied
variance skew, and so the implied volatility skew is given by S/(2σ0), which equals
S/(2σ(1)) = S/(2σ(S0)) in the model (2.20). From (2.8) and (2.24), we find that the
local skew σ′(1) = σ′(S0) equals twice the implied volatility skew,

σ′(S0) = 2 · S
2σ(S0)

,

as observed in Remark 5.2 of Henry-Labordère [59]. Generic time-inhomogeneous local
volatility models

dSt = σ(St, t)St dWt

can be treated very similarly, using the heat kernel expansion in Section 3 of Gatheral
et al. [51], itself taken from Yosida [91].

2.4.2 Generic Stochastic Volatility Models

We now discuss the results of Section 2.1 in generic stochastic volatility models. Rigorous
conditions under which stochastic volatility models satisfy Assumption 2.1 can be found
in Deuschel, Friz, Jacquier and Violante [24] and Osajima [77]. The function Λ is given by
the Riemannian metric associated to the model: 2Λ(k) is the squared geodesic distance
from (S0 = 1, σ0) to {(K,σ) : σ > 0} with K = ek. Theorem 2.2 in Berestycki, Busca
and Florent [10] gives conditions under which Assumption 2.2, concerning convergence
of local volatility, is true.
Now we describe how the expressions appearing in the expansions from Theorem 2.3 can
be computed explicitly in a generic two-factor stochastic volatility model

dSt = St
√
Vt dWt, S0 = 1,

dVt = (. . . ) dt+ ξ
√
Vtν(Vt) dZt, V0 = v0 > 0, (2.25)
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Chapter 2. The Moderate Deviations Regime

where ν : R → R and d〈W,Z〉t = ρ dt. The Heston model (ν(v) ≡ 1) and the 3/2-
model (ν(v) = v; see Lewis [68]) are special cases. The infinitesimal generator L of the
stochastic process (S, V ), neglecting first order terms, can be written as

Lf ≈ 1

2
Tr

g11 g12

g21 g22

D2f

 , f ∈ C2(R2),

where D2f denotes the Hessian matrix of f , and the coefficient matrix g(v) = (gij(v))
is given by

g(v) =

 v ρξvν(v)

ρξvν(v) ξ2vν(v)2

 .

We define the constants b1 = g11(v0) = v0 and b2 = 3
4

∑2
i=1 g1i(v0)∂ig11(v0) = 3

4ρξv0ν(v0).
If we assume that the coefficients in (2.25) are nice enough to justify application of the
marginal density expansion obtained in Deuschel, Friz, Jacquier and Violante [24] or
part (2) of Theorem 1 in Osajima [77], then we get the desired small-time density ex-
pansion (2.2). Moreover, thanks to Proposition 2.4,

Λ(k) =
1

2b1
k2 − b2

3b31
k3 +O(k4)

as k → 0. Therefore, the quantities Λ′′(0) = v−1
0 = σ−2

0 and Λ′′′(0) = −3
2ρξν(v0)/v2

0 can
easily be computed, as well as the small-time ATM implied variance skew

S = −v
2
0

3
Λ′′′(0) =

ρξ

2
ν(v0).

Thus, all quantities appearing in our expansions (Theorem 2.3, Corollary 2.1) have very
simple expressions in terms of the model parameters.

2.4.3 The Heston Model

This section contains an application of the results of Sections 2.1 and 2.3 to the familiar
case of the Heston model, where many explicit “affine” computations are possible. At the
beginning of Section 2.4.2, we recalled some general results implying our Assumptions 2.1
and 2.2. The Heston model is not covered by these results, but satisfies Assumptions 2.1
and 2.2 nevertheless, and thus Theorems 2.3 and 2.5 are applicable to Heston. We will
explain how both assumptions can be verified rigorously by a dedicated analysis; full
details would involve rather dull repetition of arguments that are found in the literature
in a very similar form, and are therefore omitted. The model dynamics are

dSt = St
√
Vt dWt, S0 = 1,

dVt = λ(v̄ − V ) dt+ ξ
√
Vt dZt, V0 = v0 > 0,
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where v̄, λ, ξ > 0, and d〈W,Z〉t = ρ dt with ρ ∈ (−1, 1). According to Forde and
Jacquier [38], the first order OTM (large deviations) behaviour of the call prices is

t log cHe(k, t) ∼ −ΛHe(k), k > 0 fixed, t ↓ 0, (2.26)

where ΛHe is the (not explicitly available) Legendre transform of

Γ(p) =
v0p

ξ(ρ̄ cot(ξρ̄p/2)− ρ)

=
v0p

ξ
(
ρ̄
(

1
ξρ̄p/2 +O(p)

)
− ρ
)

=
v0p

1
p/2 − ξρ+O(p)

=
v0p

2/2

1− pξρ/2 +O(p2)

=
v0p

2

2

(
1 + pξρ/2 +O(p2)

)
, p→ 0. (2.27)

(We use the standard notation ρ̄2 = 1− ρ2.) This expansion implies

Γ′′(0) = v0 = σ2
0. (2.28)

The locally uniform density asymptotics (2.2) hold, as seen from an easy modification
of the arguments in Forde, Jacquier and Lee [41]. There, the Fourier representation of
the call price was analysed by the saddle point method to obtain a refinement of (2.26).
Proceeding analogously for the Fourier representation of the pdf of St, we get the density
approximation

qHe(e
k, t) =

e−k

2πt

∫ ∞−ip∗(k)

−∞−ip∗(k)
Re
(
eiku/tφt(−u/t)

)
du

= exp

(
− ΛHe(k)

t

)
U(p∗(k))√

2πΓ′′(k)
t−1/2

(
1 + o(1)

)
, t ↓ 0,

locally uniformly in k, where φt is the characteristic function of Xt = logSt, and p∗

and U are defined on p. 693 of Forde, Jacquier and Lee [41]. (Note that Forde, Jacquier
and Lee [41] use the notation Λ,Λ∗ instead of our Γ,ΛHe.) From (2.28) and the fact that
U(p∗(0)) = U(0) = 1, we see that the factor γ(k) from (2.2) converges to

γ(0) =
1√

2πσ0

(2.29)

as k → 0.
To verify Assumption 2.2 (convergence of local volatility), the Dupire formula (2.1) can
be subjected to an analysis similar to De Marco, Friz and Gerhold [22] and Friz and
Gerhold [43]. More precisely, ∂KKC(K, t) in the numerator of (2.1) is the pdf of St, the
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Chapter 2. The Moderate Deviations Regime

analysis of which we have just described. Virtually the same saddle point approach can
be applied to the numerator ∂tC(K, t), yielding convergence of the quotient to σ2

0.
We now calculate our MOTM asymptotic expansions for the Heston model. The Leg-
endre transform ΛHe is given by ΛHe(k) = supx{kx− Γ(x)} with maximizer x∗ = x∗(k).
From general facts on Legendre transforms,

Λ′′He(k) =
1

Γ′′(x∗(k))
.

We have x∗(0) = 0, which implies

Λ′′He(0) =
1

Γ′′(0)
=

1

v0
.

From Theorem 2.3, with kt = θtβ and θ > 0, we then obtain the MOTM call price
estimate

cHe(kt, t) = exp

(
− θ2

2v0t1−2β

(
1 + o(1)

))
, t ↓ 0. (2.30)

As for the second order expansion, from the expansion (2.27) of Γ, we clearly see that

Γ′′′(0) =
3

2
v0ξρ.

On the other hand, a general Legendre computation gives

Λ′′′He(k) = −
(

1

Γ′′(x∗(k))

)2

Γ′′′(x∗(k)) (x∗)′(k) = −(Λ′′He(k))3 Γ′′′(x∗(k)).

Therefore,
Λ′′′He(0) = −3

2

ξρ

v2
0

,

in accordance with the expression for generic two-factor models, found in Section 2.4.2.
For β ∈ (0, 1

3), Theorem 2.3 (ii) thus implies the second order expansion

cHe(kt, t) = exp

(
− θ2

2v0t1−2β
+

ξρ

4v2
0

θ3

t1−3β

(
1 + o(1)

))
, t ↓ 0. (2.31)

By Theorem 2.5 and (2.29), we obtain the following refined call price expansions, as
t ↓ 0:

log cHe(kt, t) = − 1

2σ2
0

k2
t

t
+
(3

2
− 2β

)
log t+ log

σ3
0√
2π

+ o(1), β ∈ (1
3 ,

1
2), (2.32)

log cHe(kt, t) = − 1

2σ2
0

k2
t

t
+

ξρ

4v2
0

k3
t

t
+
(3

2
− 2β

)
log t+ log

σ3
0√
2π

+ o(1), β ∈ (1
4 ,

1
3).

(2.33)
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From the relation (2.8) between implied variance skew and Λ′′′(0), we get the explicit
expression SHe = ξρ/2 for the skew. This agrees with Gatheral [50], p. 35. The implied
volatility expansion (2.19) becomes

σimp(kt, t) = σ0 +
ξρ

4σ0
kt
(
1 + o(1)

)
, t ↓ 0. (2.34)

Figure 2.1 shows a good fit of this approximation, even for maturities that are not very
small.

0.0 0.1 0.2 0.3 0.4
maturity

0.16

0.18

0.20

0.22

0.24

0.26

implied volatility

Figure 2.1: Illustration of our implied volatility expansion for the Heston model, with
` ≡ θ = 0.4 and β = 0.3. Thus, log-strike equals kt = 0.4 t0.3. The model parameters
are v̄ = 0.0707, κ = 0.6067, ξ = 0.2928, ρ = −0.7571, v0 = 0.0654 (i.e. σ0 = 0.2557)
and S0 = 1. The horizontal axis is time. The dashed curve is the exact MOTM implied
volatility σimp(kt, t). The solid curve is the approximation σ0 + ξρ

4σ0
kt on the right hand

side of (2.34).

2.5 Other Approaches at MOTM Asymptotics

In a recent paper, Gao and Wang [48] study small noise sample-path MDPs (moderate
deviation principles) for SDE solutions, and specialize to the small-time regime (Corol-
lary 4.1.2 in Gao and Wang [48]). Their asymptotic regime is in fact slightly more
general than (2.4), allowing for (in our notation) any kt satisfying

√
t � kt � 1 as

t ↓ 0. (In the financial context, this offers no useful additional flexibility; it allows, e.g.
to switch between two regimes kt = tβ1 and kt = tβ2 infinitely often as t ↓ 0.) However,
Gao and Wang [48] impose the assumptions of linearly bounded and locally Lipschitz
coefficients. These are the typical assumptions for small-noise LDPs in the literature,
but they are rarely satisfied in stochastic volatility models. In particular, their results
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are not directly applicable to the Heston model. The paper by Cai and Wang [16] is
also worth mentioning here: It presents moderate deviations for the CIR process (the
Heston variance process) and a generalization, where the exponent in the dynamics is
not necessarily 1/2. The paper uses estimates tied to the (generalized) CIR stochastic
differential equation.
In this section we discuss a different approach at small-time moderate deviations. While
yielding only first order results, its conditions are usually easy to check for models with
explicit characteristic function. Assumptions 2.1 and 2.2 are not in force here. Recall
that, in the classical setting of sequences of i.i.d. random variables, a moderate deviation
analogue of Cramér’s theorem can be deduced by applying the Gärtner-Ellis theorem to
an appropriately rescaled sequence (see Dembo and Zeitouni [23], Section 3.7). The MD
short time behaviour of diffusions can be subjected to a similar analysis. Consider the
log-price Xt = logSt with X0 = 0 and mgf (moment generating function)

M(p, t) := E[epXt ]. (2.35)

Assumption 2.1. For all β ∈ (0, 1
2), the rescaled mgf satisfies

lim
t↓0

t1−2β logM(tβ−1p, t) = 1
2σ

2
0p

2, p ∈ R. (2.36)

We expect that this assumption holds for diffusion models in considerable generality. It is
easy to check that (2.36) holds for the Heston model, either by its explicit characteristic
function, or, more elegantly, from the associated Riccati equations; see Appendix B.
Thus, the results of the present section provide an alternative proof of the first order
MOTM behaviour (2.30) of Heston call prices.
Heuristically, Assumption 2.1 can be derived from the density asymptotics in Assump-
tion 2.1, which in turn hold in quite general diffusion settings (see Deuschel, Friz,
Jacquier and Violante [24] and [25]).

M(tβ−1p, t) =

∫
et
β−1pxq(x, t) dx

≈
∫

exp
(
tβ−1px− Λ(x)

t

)
dx (2.37)

≈
∫

exp
(
tβ−1px− Λ′′(0)x2

2t

)
dx (2.38)

= exp
(
tβ−1px− x2

2σ2
0t

∣∣∣
x=σ2

0pt
β
(1 + o(1))

)
(2.39)

= exp
(

1
2σ

2
0p

2t2β−1
(
1 + o(1)

))
, t ↓ 0. (2.40)

In (2.37), we ignored that the density expansion (2.2) might not be valid globally in
space; this might be made rigorous by estimating q(x, t) by a Freidlin-Wentzell LD
argument for x sufficiently large. As for (2.38), we can expect concentration near x ≈ 0,
because Λ(x) increases with |x|. Finally, (2.39), and thus (2.40), follows from a (rigorous)
application of the Laplace method. If (2.40) is correct, then (2.36) clearly follows.
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The critical moment of St is defined by

p+(t) := sup{p ≥ 0: M(p, t) <∞}.

It is obvious that
lim
t↓0

t1−βp+(t) =∞ (2.41)

is necessary for (2.36), i.e. p+(t) must grow faster than tβ−1 as t ↓ 0. In the Heston
model, e.g., the critical moment is of order p+(t) ∼ (const)/t � tβ−1 for small t, as
follows from inverting (6.2) in Keller-Ressel [63]. On the other hand, we do not expect
our results to be of much use in the presence of jumps. Indeed, suppose that (2.35) is the
mgf of an exponential Lévy model. Then p+(t) ≡ p+ does not depend on t, and is finite
for most models used in practice. Therefore, (2.41) cannot hold, and so Assumption 2.1
is not satisfied. The Merton jump diffusion model is one of the few Lévy models of
interest that have p+ =∞, but it is easy to check that it does not satisfy (2.36), either.
After this discussion of Assumption 2.1, we now give an asymptotic estimate for the
distribution function of Xt (put differently, MOTM digital call prices) in Theorem 2.2.
Then we translate this result to MOTM call prices in Theorem 2.3. If desired, higher
order terms in (2.36) will give refined asymptotics in Theorem 2.2, using the recent
refinement of the Gärtner-Ellis theorem in Gulisashvili and Teichmann [58]. (Further
work will be required to translate the resulting expansions into call price asymptotics.)
For other asymptotic results on option prices using the Gärtner-Ellis theorem, see e.g.
Forde and Jacquier [38] and Forde and Jacquier [39].
Theorem 2.2. Under Assumption 2.1 (and without any further assumptions on our
model), for kt = θtβ with β ∈ (0, 1

2) and θ > 0, we have a first order MD estimate for
the cdf of Xt:

P[Xt ≥ kt] = exp

(
− 1

2σ2
0

k2
t

t

(
1 + o(1)

))
, t ↓ 0. (2.42)

Proof. Define
Zt := t−βXt, with mgf MZ(s, t) = E[esZt ],

and
at := t1−2β = o(1), t ↓ 0.

Then (2.36) is equivalent to

ΓZ(p) := lim
t↓0

at logMZ(p/at, t) = 1
2σ

2
0p

2, p ∈ R.

As ΓZ is finite and differentiable on R, the Gärtner-Ellis theorem (Theorem 2.3.6 in
Dembo and Zeitouni [23]) implies that (Zt)t≥0 satisfies an LDP (large deviation principle)
as t ↓ 0, with rate at and good rate function ΛZ , the Legendre transform of ΓZ . Trivially,
ΛZ is quadratic, too:

ΛZ(x) = sup
p∈R

(px− ΓZ(p))

= sup
p∈R

(px− 1
2σ

2
0p

2) =
x2

2σ2
0

, x ∈ R.
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Now fix θ > 0. Applying the lower estimate of the LDP to (θ,∞) yields

lim inf
t↓0

at logP[Zt ≥ θ] ≥ lim inf
t↓0

at logP[Zt > θ]

≥ −ΛZ(θ) = − θ2

2σ2
0

,

and applying the upper estimate to [θ,∞) yields

lim sup
t↓0

at logP[Zt ≥ θ] ≤ −
θ2

2σ2
0

,

and so
lim
t↓0

at logP[Zt ≥ θ] = − θ2

2σ2
0

.

This is the same as (2.42).

As in the LD/OTM regime, first order cdf asymptotics translate readily into call price
asymptotics. The proof of the following result is similar to Pham [80], p. 30f (concerning
the LD regime) and Caravenna and Corbetta [17], Theorem 1.5. In the MD/MOTM
regime, one can replace the condition (1.19) of Caravenna and Corbetta [17] by a mild
condition on the moments of the model.

Theorem 2.3. Let S = eX be a continuous positive martingale. Assume that, for all
p ≥ 1, its p-th moment explodes at a positive time (infinity included).3 By this we mean
that there is a positive t∗(p) such that the mgf E[exp(pXt)] is finite for all t ∈ [0, t∗(p)].
Let v0 = σ2

0 > 0. Then the following are equivalent

(i) For kt = `(t)tβ, with β ∈ (0, 1
2) and ` > 0 slowly varying at zero, it holds that

P[Xt ≥ kt] = exp

(
− 1

2v0

k2
t

t

(
1 + o(1)

))
, t ↓ 0.

(ii) Under the assumptions of (i), we have

c(kt, t) = exp

(
− 1

2v0

k2
t

t

(
1 + o(1)

))
, t ↓ 0. (2.43)

Proof. First assume (i). Let ε > 0 and define k̃t = (1 + ε)kt. Then

c(kt, t) ≥ E[(eXt − ekt)+ 1{Xt≥k̃t}]

≥ (ek̃t − ekt)+P[Xt ≥ k̃t]. (2.44)
3See Keller-Ressel [63] for a discussion of moment explosion in affine stochastic volatility models.
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The first factor is

(ek̃t − ekt)+ = (k̃t − kt +O(k2
t ))

+ = εkt +O(k2
t ), t ↓ 0.

For the second factor in (2.44), we apply (i) with k̃t.

lim
t↓0

t

k̃2
t

logP[Xt ≥ k̃t] = − 1

2v0
.

Therefore,

lim inf
t↓0

t

k2
t

log c(kt, t) ≥ lim
t↓0

t

k2
t

(
− 1

2v0

k̃2
t

t

(
1 + o(1)

))
= −(1 + ε)2

2v0
.

Now let ε ↓ 0 to get the desired lower bound for c(kt, t).
As for the upper bound, we let p > 1 and note that, by definition of p 7→ t∗(p), we have
E[Sp+1

t ] < ∞ for all t ∈ [0, t∗(p + 1)]. Define S̄t = sup0≤u≤t Su for t ≥ 0. By Doob’s
inequality (Theorem 3.8 in Karatzas and Shreve [62]), we have

P[S̄t∗(p+1) ≥ s] ≤
E[Sp+1

t∗(p+1)]

sp+1
, s > 0.

Hence S̄t∗(p+1) has a finite pth moment,

E[(S̄t∗(p+1))
p] = p

∫ ∞
0

sp−1P[S̄t∗(p+1) ≥ s] ds <∞.

By the dominated convergence theorem and the continuity of S, we thus conclude

lim
t↓0

E[Spt ] = Sp0 . (2.45)

Now let 1/p+ 1/q = 1 and apply Hölder’s inequality.

c(kt, t) = E[(eXt − ekt)+ 1{Xt≥kt}]

≤ E[((eXt − ekt)+)p]1/p P[Xt ≥ kt]1/q

≤ E[Spt ]1/p P[Xt ≥ kt]1/q.

By (2.45) and (i), we obtain

lim sup
t↓0

t

k2
t

log c(kt, t) ≤
1

q
lim sup
t↓0

t

k2
t

logP[Xt ≥ kt] = − 1

2qv0
.

Now let p ↑ ∞, i.e. q ↓ 1. The same argument yields the lower bound of the implication
(ii) =⇒ (i). The remaining upper bound of (ii) =⇒ (i) is shown very similarly to the
lower bound of the implication (i) =⇒ (ii).

In the light of the general MDP result by Gao and Wang [48] quoted at the beginning of
this section, it might be worth noting that Theorem 2.3 holds, with virtually the same
proof, if the assumption kt = `(t)tβ is replaced by

√
t� kt � 1.
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Appendix A Implied Volatility for β ≥ 1/3

Assumption A.1. We refine Assumptions 2.1 and 2.2 as follows

(i) Additionally to Assumption 2.1, the relative error in (2.2) is O(t), locally uni-
formly w.r.t. k.

(ii) Convergence of local volatility (see (2.3)) can be refined to

σloc(K, t) = σ0 +O(t), t ↓ 0,

uniformly for bounded K.

(iii) In (2.2), γ(k) satisfies
γ(0) =

1√
2πσ0

.

While proving Assumption A.1 for stochastic volatility models would go well beyond the
scope of the present work, there are good reasons to believe that it holds in reasonable
generality. It does hold for local volatility models, which satisfy part (i) according to
Proposition 2.1 of Gatheral et al. [51]. For stochastic volatility models, the approach of
Deuschel, Friz, Jacquier and Violante [24] suggests that the relative error term in (2.2)
has a full expansion in (integer) powers of t, which would imply (i).
Part (ii) is clear in local volatility models, just assuming smoothness of the local volatility
function. In stochastic volatility models, it should be possible to refine the results of
Berestycki, Busca and Florent [10] (convergence to σ0) to a Taylor expansion.
Part (iii) is true for the Heston model (see (2.29)) and generic local volatility models
(see (2.23)); the gist of the saddle point argument we applied for Heston, and the resulting
expression (2.29), are not tied to that model.

Theorem A.2. Under Assumption A.1, the statement of Corollary 2.1 holds for β ∈
(0, 3

7).

To simplify notation in the following proof, we write f ∼` g(t) for two functions f and
g, if f(t)/g(t) ∼ `(t) as t ↓ 0 for some slowly varying function `. We will use this for
functions of algebraic growth order, which are then “almost” asymptotically equivalent.
The index ` in “∼`” is a generic symbol and does not stand for any concrete slowly
varying function.
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Appendix A. Implied Volatility for β ≥ 1/3

Proof of Theorem A.2. We start by improving the call price expansion from Theorem 2.5,
taking into account the asymptotic errors that were made in obtaining it. By part (ii) of
Assumption A.1, the relative error in (2.10) is O(t). Part (ii) of Assumption A.1 shows
the same for (2.11). The relative error in (2.14) is O(kt), as seen from

Λ(kt)
−1 =

2v0

k2
t

(
1 +O(kt)

)
, t ↓ 0.

The only remaining source of error is the application of the Laplace method in (2.13).
Here, it does not suffice to state the relative error; we have to do a little better than
in the proof of Theorem 2.5. By the higher order extension of the Laplace method
(Theorem 3.8.1 in Olver [74]), and because Λ(kt)/t → ∞ as t ↓ 0, we have the integral
expansion∫ 1

0
exp

(
−Λ(kt)

tx

)
x−1/2 dx =

∫ ∞
1

exp

(
−Λ(kt)

t
x

)
x−3/2 dx

= exp

(
−Λ(kt)

t

)
t

Λ(kt)

(
1− 3

2

t

Λ(kt)
+O

(
t2

Λ(kt)2

))
,

with error term t2/Λ(kt)
2 ∼` t2(1−2β). Therefore, our MOTM call price approximation

becomes

c(kt, t) =
γ(0)σ2

0

2

t3/2

Λ(kt)
exp

(
−Λ(kt)

t

)(
1− 3

2

t

Λ(kt)
+O(t2(1−2β)−ε)

)
,

where ε > 0 is arbitrarily small. The Taylor expansion Λ(k) = 1
2Λ′′(0)k2 + 1

6Λ′′′(0)k3 +
O(k4) implies

Lt := − log c(kt, t) =
Λ(kt)

t
− log

(
γ(0)σ2

0

2

t3/2

Λ(kt)

)
+

3

2

t

Λ(kt)
+O(t2(1−2β)−ε)

=
1

2
Λ′′(0)

k2
t

t
+ log

(
k2
t

t3/2σ4
0γ(0)

)
+

3

Λ′′(0)

t

k2
t

+
1

6
Λ′′′(0)

k3
t

t
+O(tmin{2(1−2β),β}−ε).

We now translate the refined call price expansion to implied volatility asymptotics. In
the proof of Corollary 2.1, we used Corollary 7.2 of Gao and Lee [49] to achieve the
transfer. This would suffice for the interval β ∈ (0, 2

5), too, but for the larger interval
β ∈ (0, 3

7) we have to take a closer look at the (arbitrary order) asymptotic machinery
developed in Gao and Lee [49]. Any unexplained terminology and notation in what
follows is as therein. Using Proposition 5.6, Lemma 5.8 and Example 5.13 of Gao and
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Lee [49] yields the following estimates in our MOTM regime

|G−(k, φ(k, L))− V | = O
(

k

L3/2

(
Ψ

LP
+

1

LN

))
(2.46)

|G−(k, φ(k, L))−G−(k, φ(k, L̂))| = O

(
k

L1/2

|L− L̂|
L

)
(2.47)∣∣∣∣∣∣G−(k, φ(k, L̂))− k√

2φ(k, L̂) + k

∣∣∣∣∣∣ = O
(

k

L1/2

k2

L2

)
(2.48)

with integers N,P ≥ 1, L = − log c(kt, t), an approximation L̂ of L, dimensionless
implied volatility V := t1/2σimp(kt, t), and error estimate Ψ. We suppress the time
dependence of k, L, l̂, V , and Ψ, in order to keep the notation of Gao and Lee [49]. Note
that, in the MOTM regime, k/L→ 0 as t ↓ 0.
We have k ∼` tβ and L ∼` t2β−1. The factor k/L1/2 ∼` t1/2 in (2.46)-(2.48) corresponds
to the t1/2-term of the dimensionless implied volatility V . The error term k2/L2 ∼`
t2(1−β) in (2.48) is of negligible order. Therefore, we have to deal with the iteration
scheme error (Ψ/LP+1/LN )/L in (2.46) and the approximation error |L−L̂|/L in (2.47).
We now define the iteration scheme, following Gao and Lee [49]. The choice N = 2 and
P = 2 suffices for our needs. Define a 2-ply regular iteration scheme H := {h, η1, η2} via
the sub-log functions

h(κ, λ) := α(κ, λ)− 3

2λ

η1(κ, λ) :=
3

2λ

η2(κ, λ) :=
3

2

(
log

(
1 +

α(κ, λ)

λ

)
− α(κ, λ)

λ

)
+

3

2λ

((
1 +

α(κ, λ)

λ

)−1

− 1

)
,

using the auxiliary function

α(κ, λ) := −3

2
log λ+ log

(
κ

4
√
π

)
.

The corresponding implied volatility approximation function is given by

φH(κ, λ) := λ+ α(κ, λ)− 3

2λ
(α(κ, λ) + 1).

The 2-residual Ψ of H yields a sufficiently small iteration scheme error in (2.46):

1

L

(
Ψ

L2
+

1

L2

)
∼` tmin{3(1−2β),β+2(1−2β)}. (2.49)
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Define κt := 1
2σ2

0

k2
t
t for t > 0 and the constant C := 1

3σ
2
0Λ′′′(0). By inserting Λ′′(0) = σ−2

0

and γ(0) = (
√

2πσ0)−1 (see part (iii) of Assumption A.1), we get the approximation

L̂t :=
1

2σ2
0

k2
t

t
+ `0(t) + 3σ2

0

t

k2
t

+
1

6
Λ′′′(0)

k3
t

t

= κt

(
1 + `0(t)κ−1

t +
3

2
κ−2
t + Ckt

)
,

where `0(t) := log(
√

2πk2
t /(σ

3
0t

3/2)) is slowly varying. Thus, the approximation error in
(2.47) is

|L− L̂|
L

∼` tmin{3(1−2β),1−β}. (2.50)

It remains to put together all ingredients. By (2.46), (2.47) and (2.48), combined with
(2.49) and (2.50), the following approximation of the dimensionless implied volatility
Vt := t1/2σimp(kt, t) holds∣∣∣∣∣∣ kt√

2φH(kt, L̂t) + kt

− Vt

∣∣∣∣∣∣ ∼` t1/2+min{3(1−2β),1−β}.

Further calculations show

kt√
2φH(kt, L̂t) + kt

(2.51)

=
kt√
2L̂t

(
1 +

kt

2L̂t
+

1

L̂t
α(kt, L̂t)−

3

2L̂2
t

(α(kt, L̂t) + 1)

)−1/2

=
kt√
2L̂t

(
1− 1

2L̂
α(kt, L̂) +

3

4L̂2

(
1
2α(kt, L̂t)

2 + α(kt, L̂) + 1
)

+O(tmin{3(1−2β),1−β}−ε)

)
,

because kt/L̂t ∼` t1−β, 1/L̂3
t ∼` t3(1−2β), and α(kt, L̂t) ∼` 1. Expansion of the appearing

functions yields

α(kt, L̂t) = −`0(t)− 3
2`0(t)κ−1

t +O(tmin{2(1−2β),β}−ε),

α(kt, L̂t)
2 = `0(t)2 +O(tmin{1−2β,β}−ε),

1

L̂t
= κ−1

t − `0(t)κ−2
t +O(tmin{3(1−2β),1−β}−ε),

1

L̂2
t

= κ−2
t +O(tmin{3(1−2β),β+2(1−2β)}−ε),

1√
2L̂

= (2κt)
−1/2

(
1− 1

2
`0(t)κ−1

t +
3

8
`0(t)2κ−2

t −
3

4
κ−2
t −

1

2
Ckt +O(tmin{3(1−2β),2β}−ε)

)
.
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Putting these formulas back into (2.51), we get

kt√
2φH(kt, L̂t) + kt

= σ0t
1/2

(
1− 1

2
Ckt +O(tmin{3(1−2β),2β,1−β}−ε)

)
(2.52)

= t1/2(σ0 − 1
6σ

3
0Λ′′′(0)kt) +O(t1/2+min{3(1−2β),2β,1−β}−ε).

For the second order expansion of the implied volatility to be correct, the error term
should be negligible compared to kt, which amounts to tmin{3(1−2β),2β,1−β} = o(kt). This
is true if and only if min{3(1−2β), 2β, 1−β} > β, which is equivalent to our assumption
β ∈ (0, 3

7).

For larger β, closer to 1
2 , the whole analysis has to be refined. A more precise iteration

scheme H has to be chosen, so that the iteration scheme error in (2.49) gets smaller.
Moreover, a better log-price approximation L̂t has to be taken into account, using even
more terms of the Laplace expansion, in order to decrease the approximation error in
(2.50). It should thus be possible to reduce the error in (2.52) to

O(tmin{n(1−2β),2β,1−β}−ε), t ↓ 0,

where n ∈ N can be arbitrarily large. In this fashion, for any fixed n, it should be
straightforward to provide a proof of the second order approximation (2.16) of the implied
volatility for β < n

2n+1 . That is, we have a clear procedure for any n > 2. For small n,
say n = 3, 4, . . . , this can be implemented by hand, and larger values (say, n = 17)
are still feasible with the aid of Mathematica or similar software. In practice, as the
calculations in each proof will be tied to that specific value of n, very large n remains
out of reach. Here one would need a new idea to provide an argument for general n,
which would then prove (2.16) for all β ∈ (0, 1

2). At this moment, despite some effort,
the details of such a construction elude us. Still, we believe that Assumption A.1 suffices
to treat the whole interval, i.e. that Theorem A.2 holds with 3

7 replaced by 1
2 .

Note that Tehranchi [88], which presents uniform (non-asymptotic) bounds on implied
volatility, does not seem to be applicable here: For β > 1

3 , the lower bound of Proposi-
tion 4.6 therein is not tight enough, as it yields a second order term that is asymptotically
larger than the second order term kt in (2.16).

Appendix B A Moderate Deviations Result in the Heston
Model

This additional section is not part of the paper [45] on which the whole Part II is based.
The goal of this section is to prove Assumption 2.1 for the moment generating function
(mgf) in the Heston model. The mgf of the log-price Xt = log(St) with X0 = 0 in the
Heston model, denoted as M(u, t) := E[euXt ], exhibits an exponential affine structure,
i.e.

logM(u, t) = λv̄φ(u, t) + v0ψ(u, t), (2.53)
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where φ(u, t) =
∫ t

0 ψ(u, s) ds and ψ is the solution of the Riccati differential equation

∂

∂t
ψ(u, t) = R(u, ψ(u, t)), (2.54)

ψ(u, 0) = 0, (2.55)

and the function R on the right-hand side of (2.54) is defined as

R(u,w) =
1

2
(u,w) ·A ·

(
u

w

)
+ b ·

(
u

w

)
(2.56)

with a symmetric, positive definite matrix A and a real vector b given by

A =

 1 ρξ

ρξ ξ2

 and b = (−1
2 ,−λ). (2.57)

Although the functions φ and ψ can be calculated explicitly, we will only use the Riccati
differential equation (2.54) with initial value (2.55), and the relationship between φ and
ψ, respectively.

Lemma B.1. Let β ∈ (0, 1
2) and p ∈ R. Then there exists a time t0 > 0 such that for

all t ∈ (0, t0) the values φ(ptβ−1, t) and ψ(ptβ−1, t) are well-defined.

Proof. The explosion time T ∗(u) in the Heston model, see (2.11) in Part III Chapter 2,
depends on the sign of the values e0(u) and e1(u), defined in (2.9) and (2.10) in Part III
Chapter 2. We have

e0(u) ∼ 1
2ξρu and e1(u) ∼ −1

4ξ
2ρ̄2u2 as |u| → ∞, (2.58)

with the correlation ρ̄ =
√

1− ρ2. The function u(t) := ptβ−1 goes to sgn p · ∞ as
t ↓ 0. Hence, for sufficiently small t > 0, the asymptotic relation for e1 in (2.58) yields
e1(u(t)) < 0 and the explosion time T ∗(u(t)) in this case is given by

T ∗(u(t)) =
1√

|e1(u(t))|

(
π

2
− arctan

(
e0(u(t))√
|e1(u(t))|

))
.

It is easy to check with (2.58) that the explosion time T ∗(u(t)) ∼ ct1−β as t ↓ 0 for some
c > 0. Therefore, t = o

(
T ∗(u(t))

)
as t ↓ 0, and it is possible to find t0 > 0 such that

t < T ∗(u(t)) for all t ∈ (0, t0). As a result, the mgf M(u(t), t) and hence φ(u(t), t) and
ψ(u(t), t) exist for all t ∈ (0, t0).

The solution ψ of the Riccati equation (2.54) with initial value (2.55) can be represented
implicitly, see e.g. Keller-Ressel [63],∫ ψ(u,t)

0

dw

R(u,w)
= t (2.59)

at least for t > 0 in a neighbourhood of 0 and large values |u|. Note that for large values
|u| the solution ψ is obviously non-stationary. Moreover, if |u| is large, both w 7→ R(u,w)
and t 7→ ψ(u, t) are positive at least for small positive values.
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Lemma B.2. Let β ∈ (0, 1
2) and p ∈ R. Then ψ(ptβ−1, t) = o(tβ−1) as t ↓ 0.

Proof. Define Ψ(t) := ψ(ptβ−1, t) ∧ g(t) where the function g satisfies g(t) = o(tβ−1)
as t ↓ 0 and will be specified later. From the integral representation (2.59) and the
convexity of R(u, ·) for every u ∈ R, we have

t =

∫ ψ(ptβ−1,t)

0

dw

R(ptβ−1, w)

≥
∫ Ψ(t)

0

dw

R(ptβ−1, w)

≥ Ψ(t)
1

max{R(ptβ−1, 0), R(ptβ−1,Ψ(t))}
. (2.60)

By (2.56), the following asymptotic relation holds

R(ptβ−1, 0) ∼ 1
2p

2t2β−2, t ↓ 0. (2.61)

Furthermore, Ψ(t) = o(tβ−1) as t ↓ 0 and (2.61) yield

R(ptβ−1,Ψ(t)) = R(ptβ−1, 0) + 1
2A22Ψ(t)2 +A12Ψ(t)ptβ−1 + b2Ψ(t)

= R(ptβ−1, 0) + o(t2β−2).

Thus,
R(ptβ−1,Ψ(t)) ∼ R(ptβ−1, 0), t ↓ 0. (2.62)

Combining (2.61) and (2.62) with the inequality (2.60) gives us, as t ↓ 0,

Ψ(t) ≤ tmax{R(ptβ−1, 0), R(ptβ−1,Ψ(t))} = O(t2β−1). (2.63)

Now, choose g(t) = tβ−1+ε and 0 < ε < β. With this choice g satisfies g(t) = o(tβ−1),
but g(t) 6= O(t2β−1) as t ↓ 0. Consequently, for the inequality (2.63) to hold, the function
ψ(ptβ−1, t) = O(t2β−1) as t ↓ 0 and the statement follows. Note that Ψ(t) = ψ(ptβ−1, t)
for sufficiently small t > 0.

With Lemma B.2 at hand, we are able to determine the asymptotic rate of ψ(ptβ−1, t)
as t ↓ 0.

Theorem B.3. Let β ∈ (0, 1
2) and p ∈ R. Then ψ(ptβ−1, t) ∼ 1

2p
2t2β−1 as t ↓ 0.

Proof. Define Ψ(t) := ψ(ptβ−1, t). Similar to (2.60), we have the inequality

t min
w∈[0,Ψ(t)]

R(ptβ−1, w) ≤ Ψ(t) ≤ t max
w∈[0,Ψ(t)]

R(ptβ−1, w). (2.64)

Because R(u, ·) is a convex quadratic function for every u ∈ R, the minimum can only
be attained at the boundary points or the global minimum, whereas the maximum value
is found at the boundary points. In (2.61) and (2.62) we determined the asymptotic
rate of the maximum, hence the right-hand side of (2.64) is asymptotically equivalent

61



Appendix B. A Moderate Deviations Result in the Heston Model

to 1
2p

2t2β−1 as t ↓ 0. We only have to show now, that the left-hand side of (2.64) has
the same asymptotic rate.
The global minimum of w 7→ R(u,w) is attained at wmin(u) = −(A12u + b2)/A22. If
A12 = 0, then wmin(u) ≡ w̄min is constant and by (2.56) a straightforward computation
shows

R(ptβ−1, w̄min) ∼ 1
2p

2t2β−1, t ↓ 0. (2.65)

If A12 6= 0, then
wmin(ptβ−1) ∼ −A12

A22
ptβ−1, t ↓ 0 (2.66)

Using Lemma B.2 and (2.66), it follows that wmin(ptβ−1) 6∈ [0,Ψ(t)] for sufficiently small
t > 0. In this case, the minimum on the left-hand side of (2.64) is attained at the
boundary. Either way, combined with (2.61) and (2.62), we have established

t min
w∈[0,Ψ(t)]

R(ptβ−1, w) ∼ 1
2p

2t2β−1, t ↓ 0,

which yields the desired asymptotic relation.

Corollary B.4. For all β ∈ (0, 1
2), the rescaled mgf in the Heston model satisfies

lim
t↓0

t1−2β logM(ptβ−1, t) = 1
2σ

2
0p

2, p ∈ R.

Proof. From Theorem B.3 we have ψ(λtβ−1, t) ∼ 1
2p

2t2β−1 as t ↓ 0. For large values
|u| the function w 7→ R(u,w) is positive in a neighbourhood of 0, hence t 7→ ψ(u, t) is
increasing for sufficiently small t > 0. Thus, we have

φ(ptβ−1, t) =

∫ t

0
ψ(ptβ−1, s) ds

≤ tψ(ptβ−1, t) ∼ 1
2p

2t2β, t ↓ 0,

so that φ(ptβ−1, t) = o(1) as t ↓ 0. Using the representation (2.53), an explicit compu-
tation yields

lim
t↓0

t1−2β logM(ptβ−1, t) = lim
t↓0

(
λv̄t1−2βφ(ptβ−1, t) + v0t

1−2βψ(ptβ−1, t)
)

= 1
2v0p

2,

where the spot variance v0 is the squared spot volatility, v0 = σ2
0.
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Chapter 1

Introduction

In times when markets are swamped by high-frequency data and trading is done by
computers with immense computational power, the need for appropriate financial mod-
els is rising fast. In recent years the importance of rough volatility models has grown
considerably because empirical data has shown that historical volatility time-series ex-
hibit a behaviour that is much rougher than the volatility processes in classic stochastic
volatility models driven by Brownian motion. Modern models try to overcome these
shortcomings by replacing the driving Brownian motion by a fractional Brownian mo-
tion. Microstructural foundations for rough volatility models can be found in El Euch,
Fukusawa and Rosenbaum [76] and Jaisson and Rosenbaum [61].

A recent rough volatility model, put forward by Rosenbaum and El Euch [29], deals with
the well-known Heston model and generalises the volatility process by adding an extra
smoothness parameter α ∈ (1

2 , 0). The square-root process given in integral form

Vt = v0 +

∫ t

0
λ(v̄ − Vs) ds+

∫ t

0
ξ
√
Vs dZt,

is replaced by the modified Heston-like rough volatility process

Vt = v0 +

∫ t

0
k(t− s)λ(v̄ − Vs) ds+

∫ t

0
k(t− s)ξ

√
Vs dZt

with parameter λ, v̄, ξ, v0 > 0 and kernel k(z) = zα−1/Γ(α). This integral kernel k in
the above SDE is motivated by the Mandelbrot-van Ness representation of fractional
Brownian motion WH with Hurst parameter H ∈ (0, 1)

WH
t =

1

Γ(H + 1
2)

∫ 0

−∞

(
(t− s)H−

1
2 − (−s)H−

1
2
)
dWs +

1

Γ(H + 1
2)

∫ t

0
(t− s)H−

1
2 dWs.

At this point, we want to mention that other extensions of the Heston model exist as
well, see e.g. Guennoun, Jacquier and Roome [55].

Rosenbaum and El Euch [29] show in their fractional version of the Heston model, which
we will call rough Heston model from now on, that the volatility paths are almost surely
Hölder-continuous with Hölder coefficient α − 1

2 − ε. The classic Heston model is re-
trieved in the case α = 1. Furthermore, the most important feature of the model is
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the availability of a semi-closed form of the characteristic function which resembles the
characteristic function of the Heston model, see Chapter 2 and 3 for the details. A char-
acteristic function at hand is an exceptional feature for every practitioner. It enables
to speed up the model calibration and pricing of derivatives with efficient numerical
schemes.

Our interest lies in the blow-up behaviour of the moment generating function and the
critical moments. In the Heston model the moment explosion time T ∗(u) = sup{t >
0: E[euXt ] < ∞} is explicitly given, see Andersen and Piterbarg [5]. Then the critical
moments u+(T ) and u−(T ) can be obtained by solving the equation T ∗(u+(T )) = T for
fixed T > 0. In the rough Heston model, however, an explicit expression for T ∗ may be
out of reach, but we prove that the moment explosion time T ∗(u) in the classic and in
the rough Heston model is finite for the same values of u ∈ R. In the cases when the
moment generating function explodes, i.e. when T ∗ is finite, we give upper and lower
bounds for T ∗. Furthermore, we obtain that the critical moments u+(T ) and u−(T ) in
the rough Heston are finite for any time T > 0.
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The Classic Heston Model

In the classic Heston model proposed by Heston [60] the asset price process (St)t≥0 is
described as

dSt = St
√
Vt dWt, S0 > 0, (2.1)

dVt = λ(v̄ − Vt) dt+ ξ
√
Vt dZt, V0 = v0 > 0, (2.2)

d〈W,Z〉t = ρ dt, (2.3)

where W and Z are correlated Brownian motions with correlation parameter |ρ| < 1,
mean reversion rate λ > 0, long-run variance v̄ > 0, volatility of variance ξ > 0 and
initial variance v0.
The moment generating function (mgf) of the log-price Xt := log(St/S0) for t ≥ 0 in
this model is given by

E[euXt ] = exp
(
v̄λI1

t ψ(u, t) + v0ψ(u, t)
)

(2.4)

where I1
t f =

∫ ·
0 f(s) ds is the classic Lebesgue integral and ψ is the unique solution of

the Riccati differential equation
∂

∂t
ψ(u, t) = R(u, ψ(u, t)), (2.5)

ψ(u, 0) = 0, (2.6)

where the function R on the right-hand side of (2.5) is defined as

R(u,w) = c1(u) + c2(u)w + c3w
2 (2.7)

with coefficients c1(u) = 1
2u(u− 1), c2(u) = ρξu− λ and c3 = 1

2ξ
2 > 0.

The solution of (2.5) and (2.6) can be calculated explicitly, see Heston [60]. Depending
on the coefficients, the solution, and hence the moment generating function (2.4), can
blow up in finite time.1 The moment explosion time T ∗He(u) = sup{t ≥ 0: E[Sut ] < ∞}
for every u ∈ R in the Heston model is given by

T ∗He(u) =


∫∞

0
1

R(u,w) dw, R(u, ·) has no roots on [0,∞),

∞, otherwise.
(2.8)

1We say that a continuous function h blows up in finite time if a finite time T ∗ > 0 exists such that
limt→T∗− |h(t)| = ∞. Such a time T ∗ is called blow-up time or explosion time.
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The roots of R(u, ·) are located at the points 1
c3

(
−e0(u)±

√
e1(u)

)
with

e0(u) = 1
2c2(u) = 1

2(ρξu− λ) (2.9)
e1(u) = e0(u)2 − c3c1(u) = e0(u)2 − 1

4ξ
2u(u− 1) (2.10)

In the case c1(u) ≤ 0, equivalently u ∈ [0, 1], R(u, ·) always has at least one real non-
negative root, therefore T ∗He(u) =∞, i.e. there is no explosion in finite time.
In the case c1(u) > 0, explicit calculations of the integral in (2.8) yield the well-known
formulas, see e.g. Anderson and Piterbarg [5],

T ∗He(u) =



1√
|e1(u)|

(
π
2 − arctan

(
e0(u)√
|e1(u)|

))
, e1(u) < 0,

1

2
√
e1(u)

log

(
e0(u)+

√
e1(u)

e0(u)−
√
e1(u)

)
, e1(u) ≥ 0, e0(u) > 0,

∞, e1(u) ≥ 0, e0(u) < 0.

(2.11)

Note that if c1(u) > 0 and e1(u) ≥ 0, then e0(u) 6= 0 due to the relationship (2.10).
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The Rough Heston Model

In the rough Heston model, put forward by Rosenbaum and El Euch [29], the asset price
process (St)t≥0 is described as

dSt = St
√
Vt dWt, S0 > 0, (3.1)

Vt = v0 +

∫ t

0
k(t− s)λ(v̄ − Vs) ds+

∫ t

0
k(t− s)ξ

√
Vs dZt, (3.2)

d〈W,Z〉t = ρ dt, (3.3)

where W and Z are correlated Brownian motions with the same parameters λ, v̄, ξ, v0

and ρ as in the classic Heston model (2.1)-(2.3), with an additional smoothness parameter
α ∈ (1

2 , 1).
In Rosenbaum and El Euch [29], a semi-explicit representation of the moment generating
function (mgf) of the log-price Xt = log(St/S0) for t ≥ 0 in this model was established.
For correlation parameter ρ ∈ (−1/

√
2, 1/
√

2), the mgf is given by

E[euXt ] = exp
(
v̄λI1

t ψ(u, t) + v0I
1−α
t ψ(u, t)

)
(3.4)

where ψ is the unique continuous solution of the fractional-order Riccati differential
equation

Dα
t ψ(u, t) = R(u, ψ(u, t)), (3.5)

I1−α
t ψ(u, 0) = 0, (3.6)

with the same function R as in the Heston model, defined in (2.7), and fractional integral
Iα and fractional derivate Dα, defined in (3.7) and (3.8).

3.1 Fractional Integral and Fractional Derivative
Fractional calculus generalises the concept of integration and derivation by defining frac-
tional powers of the ordinary differential and integral operator. In the literature, several
kinds of fractional integrals and derivatives, defined in various ways, are considered. One
of the most common types is the Riemann-Liouville fractional integral and derivate.
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Chapter 3. The Rough Heston Model

Definition 3.1 (Riemann-Liouville fractional integral and derivate). The left-sided
Riemann-Liouville fractional integral Iαt of order α ∈ (0,∞) started at 0 with respect to
the integration variable t is given by

Iαt f(t) :=
1

Γ(α)

∫ t

0
(t− s)α−1f(s) ds (3.7)

whenever the integral exists, and the left-sided Riemann-Liouville fractional derivative
Dα
t of order α ∈ [0, 1) started at 0 with respect to the integration variable t is given by

Dα
t f(t) :=

d

dt
I1−αf(t) (3.8)

whenever this expression exists.

The fractional derivative Dα
t can be defined for α > 1 as well, but our focus is only

on fractional derivatives with α ∈ (0, 1). Some useful results, which we will use later,
are summarised in the next lemma. For further information on fractional calculus, see
Samko et al. [84] and Kilbas et al. [64].

Lemma 3.2. Let α ∈ (0,∞) and T > 0.

(i) The fractional integral and derivative of power functions can be easily calculated

Iαt t
ν = tν+α Γ(ν + 1)

Γ(ν + α+ 1)
for ν > −1, (3.9)

Dα
t t
ν = tν−α

Γ(ν + 1)

Γ(ν − α+ 1)
for ν > −1 + α. (3.10)

(ii) The fractional integral operators satisfy the semigroup property on C([0, T ]),
i.e.

Iα1
t Iα2

t = Iα1+α2
t for α1, α2 ∈ (0,∞). (3.11)

(iii) For f ∈ C([0, T ]) the following equation holds

Dα
t I

α
t f(t) = f(t). (3.12)

(iv) For f ∈ C([0, T ]) such that Dα
t f ∈ C([0, T ]) the following equation holds

Iαt D
α
t f(t) = f(t)− I1−α

t f(0)

Γ(α)
tα−1. (3.13)

Proof. (i) and (ii) are straightforward computations using the relationship between the
gamma and beta function. (iii) and (iv) are special cases of Theorem 2.4 in Samko et
al. [84].

We state the following uniqueness and existence theorem for initial value problems with
fractional differential equations and the relationship to Volterra integral equations.
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Theorem 3.3. Let 0 < α < 1 and G ⊆ R be an open set. Let f : (a, b] × G → R be a
function such that f(·, w) ∈ C1−α([a, b]) for any w ∈ G. The space C1−α([a, b]) denotes
the subspace of continuous functions

C1−α([a, b]) := {g : (t− a)1−αg(t) ∈ C([a, b])}.

(i) If f is Lipschitz-continuous, then there exists a unique solution ψ ∈ C1−α([a, b])
to the initial value problem

Dα
t ψ(t) = f(t, ψ(t)), (3.14)

I1−αψ(a) = ψ0 ∈ R. (3.15)

(ii) If ψ ∈ C1−α([a, b]), then ψ satisfies the fractional integral equation (3.14) with
initial value (3.15) if and only if ψ satisfies the Volterra integral equation

ψ(t) =
ψ0

Γ(α)
(t− a)α−1 +

1

Γ(α)

∫ t

a
(t− s)α−1f(s, ψ(s)) ds.

Proof. The proof can be found in Kilbas et al. [64], Theorem 3.10 and 3.11.

3.2 Blow-up Behaviour of the Moment Generating Func-
tion

Our main interest lies in the blow-up behaviour of the solution ψ of the fractional-order
Riccati differential equation (3.5) with initial value (3.6). Rather than dealing with
the differential equation, it is more tempting to deal with the corresponding integral
equation because in the literature the blow-up behaviour of non-linear Volterra integral
equations is well-studied, see Brunner and Yang [14], Mydlarczyk [72] and Mydlarczyk
and Okrasiński [73].

Due to the continuity of R(u, ·) and the solution ψ(u, ·), it follows from (3.5) that the
fractional derivative Dα

t ψ(u, ·) is continuous as well. With equation (3.13) or with The-
orem 3.3 (ii) the Riccati differential equation (3.5) with initial value (3.6) can be trans-
formed into a non-linear Volterra integral equation

ψ(u, t) =

∫ t

0
k(t− s)R(u, ψ(u, s)) ds (3.16)

with the weakly singular kernel k(z) := 1
Γ(α)z

α−1.

By defining the function h(u, t) := c3ψ(u, t) and completing the square, h(u, ·) solves

h(u, t) =

∫ t

0
k(t− s)G(u, h(u, s)) ds (3.17)
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Chapter 3. The Rough Heston Model

with non-linearity G(u,w) = c3R(u,w/c3). Note that G satisfies

G(u,w) = (w + e0(u))2 − e1(u) (3.18)

and the same coefficients e0(u) and e1(u) as in (2.9) and (2.10).

Recall the blow-up time T ∗He(u) in the Heston model (2.11). If c1(u) < 0, the solution
ψ(u, ·) does not blow up in finite time. In the case c1(u) > 0, the blow-up behaviour
depends on the parameters e0(u) and e1(u).
In order to characterise the blow-up behaviour of the rough Heston model w.r.t. the
parameter u, we distinguish between the following cases for u ∈ R:

(A) c1(u) > 0, e0(u) ≥ 0

(B) c1(u) > 0, e0(u) < 0 and e1(u) < 0

(C) c1(u) > 0, e0(u) < 0 and e1(u) ≥ 0

(D) c1(u) ≤ 0

We will see later that the moment explosion time in the rough Heston model T ∗(u)
blows up in finite time if and only if the parameter u ∈ R satisfies the conditions in the
cases (A) and (B). Note that cases (A) and (B) combined are exactly the cases in which
the moment explosion time T ∗He(u) in the classic Heston model is finite, cf. (2.11). In
summary it can be said that the mgf of the classic and the rough Heston model blows
up for the same values u ∈ R.

At first, we want to give a result from Brunner and Yang [14] which characterises the
blow-up behaviour of non-linear Volterra integral equations when the corresponding
functions are positive and increasing.

Proposition 3.1. Assume that G : [0,∞) → [0,∞) is continuous and the following
conditions hold:

(G1) G(0) = 0 and G is strictly increasing.

(G2) limw→∞G(w)/w =∞.

(P) φ : [0,∞)→ [0,∞) is a positive, non-decreasing, continuous function.

(K) k : (0,∞) → [0,∞) is locally integrable and K(t) :=
∫ t

0 k(z) dz > 0 is a non-
decreasing function.

Furthermore, assume limt→∞ φ(t) = ∞ and k(z) = czα−1 for α > 0 and c > 0. Then
the solution h of the Volterra integral equation

h(t) = φ(t) +

∫ t

0
k(t− s)G(h(s)) ds
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3.2. Blow-up Behaviour of the Moment Generating Function

blows up in finite time if and only if∫ ∞
U

(
w

G(w)

)1/α dw

w
<∞ (3.19)

for all U > 0.

Proof. This is a special case of Corollary 2.22 in Brunner and Yang [14] where G does
not depend on time.

In case (A), it is possible to define the functions φ and G such that all the assumptions
of Proposition 3.1 are satisfied and only the integral-condition (3.19) has to be checked
to determine whether the solution h of (3.17) blows up in finite time or not.

Theorem 3.2. In case (A), the solution h of (3.17) starts at 0, is positive thereafter
and blows up in finite time.

Proof. Fix u ∈ R such that c1(u) > 0 and e0(u) ≥ 0 and suppress the parameter u
in the notation. Note that e2

0 − e1 > 0 in this case. If we write the Volterra integral
equation (3.17) in the form

h(t) = φ(t) +

∫ t

0
k(t− s)Ḡ(h(s)) ds

with non-linearity Ḡ(w) = w2 + 2e0w and φ(t) =
e20−e1

Γ(1+α) t
α, using (3.18) and (3.9), then

the conditions c1 > 0 and e0 ≥ 0 guarantee that φ and Ḡ are positive and strictly
increasing on (0,∞) with φ(0) = Ḡ(0) = 0. Hence, the solution h is positive for positive
values with h(0) = 0. It is easy to check that all the assumptions (G1), (G2), (P) and
(K) of Proposition 3.1 are satisfied. Moreover, limt→∞ φ(t) =∞ and∫ ∞

U

(
w

Ḡ(w)

)1/α dw

w
≤
∫ ∞
U

w−1−1/α dw <∞

for all U > 0. By Proposition 3.1, the solution h blows up in finite time.

In case (B), Proposition 3.1 can not be applied directly to the solution h of (3.17). Hence,
the Volterra integral equation has to be modified in order to satisfy the assumptions of
Proposition 3.1 in a way that h is still a subsolution of the modified equation, i.e. h
satisfies the modified equation (3.17) with “≥” instead of “=”. At first, we need a
comparison lemma for solutions and subsolutions.

Lemma 3.3. Let G : [0,∞)→ (0,∞) be an strictly increasing, continuous function and
T > 0. Suppose that g is the unique continuous solution of the Volterra integral equation

g(t) =

∫ t

0
k(t− s)G(g(s)) ds, t ∈ [0, T ].
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If h is a continuous subsolution,

h(t) ≥
∫ t

0
k(t− s)G(h(s)) ds, t ∈ [0, T ],

then h(t) ≥ g(t) holds for all t ∈ [0, T ].

Proof. The idea of the proof is based on the proof of Lemma 2.4 in [14].
For any c ∈ (0, T ) define hc(t) := h(t+ c) for t ∈ [0, T − c]. From the positivity of G, it
follows that hc(0) = h(c) > 0 and

hc(t) ≥
∫ t

0
k(t− s)G(hc(s)) ds, t ∈ [0, T − c].

Since g(0) = 0, it follows that g(0) < hc(0). We want to show g < hc on the whole interval
[0, T − c]. Therefore, suppose that t ∈ (0, T − c] exists such that 0 ≤ g(s) < hc(s) for all
s ∈ [0, t) and g(t) = hc(t). However, because G is strictly increasing, we have

0 = hc(t)− g(t) ≥
∫ t

0
k(t− s)(G(hc(s))−G(g(s))) ds > 0,

which is a contradiction. Hence, the inequality g(t) < hc(t) = h(t + c) holds for all
t ∈ [0, T − c]. Since c ∈ (0, T ) was arbitrary, the result follows easily.

Theorem 3.4. In case (B), the solution h of (3.17) starts at 0, is positive thereafter
and blows up in finite time.

Proof. Fix u ∈ R such that c1(u) > 0, e0(u) < 0 and e1(u) < 0 and suppress the
parameter u in the notation. Note that in this case, the non-linearity G is obviously
positive by (3.18). However, G is strictly decreasing on [0,−e1]. Therefore, to deal with
this problem, let 0 < a < −e1 and define the modified non-linearity Ḡa as

Ḡa(w) =

w
a+e1
e0

+ a, 0 ≤ w < −e0,

G(w), w ≥ −e0.

(3.20)

Then Ḡa is a positive, strictly increasing, Lipschitz-continuous function that starts at a
and Ḡa ≤ G. Let h̄ be the unique continuous solution, cf. Theorem 3.3, of the Volterra
integral equation

h̄(t) =

∫ t

0
k(t− s)Ḡa(h̄(s)) ds = φ(t) +

∫ t

0
k(t− s)Ḡ(h̄(s)) ds

with Ḡ = Ḡa − a and φ(t) = a
Γ(1+α) t

α, using (3.9). Due to the positivity of φ and Ḡ on
(0,∞), the solution h̄ is positive on (0,∞) as well. The functions φ, Ḡ and k satisfy the
assumptions (G1), (G2), (P) and (K) in Proposition 3.1. Furthermore, limt→∞ φ(t) =∞
and Ḡ satisfies (3.19). By Proposition 3.1, h̄ blows up in finite time. Because h satisfies
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(3.17) and Ḡa ≤ G, it follows that h is a subsolution of the modified Volterra integral
equation

h(t) ≥
∫ t

0
k(t− s)Ḡa(h(s)) ds.

Now, Lemma 3.3 implies h(t) ≥ h̄(t). Consequently, h blows up as well.

Cases (C) and (D) are those cases where the solution h of (3.17) does not blow up in
finite time. In fact, h does not blow up at all, as we will see later. The following lemma
provides the key idea for both cases.

Lemma 3.5. Let G : [0,∞)→ [0,∞) be a Lipschitz-continuous function that is positive
on [0, a) and G ≡ 0 on [a,∞) for an a > 0. Then the unique continuous solution h, cf.
Theorem 3.3, of the Volterra integral equation

h(t) =

∫ t

0
k(t− s)G(h(s)) ds

is bounded with 0 ≤ h(t) ≤ a for all t ≥ 0.

Proof. The non-negativity of G implies h ≥ 0. Suppose t > 0 exists such that h(t) > a.
By the continuity of h, there exists 0 < t0 < t that satisfies h(t0) = a and h(s) > a for
all s ∈ (t0, t). From G ≡ 0 on [a,∞), we have∫ t

t0

k(t− s)G(h(s)) ds = 0.

Since G is non-negative and k is decreasing,

0 < h(t)− h(t0)

=

∫ t

t0

k(t− s)G(h(s)) ds+

∫ t0

0
(k(t− s)− k(t0 − s))G(h(s)) ds

=

∫ t0

0
(k(t− s)− k(t0 − s))G(h(s)) ds ≤ 0,

which is a contradiction. As a result, h is bounded with 0 ≤ h(t) ≤ a for all t ≥ 0.

Theorem 3.6. In case (C), the solution h of (3.17) is non-negative and bounded, and
exists globally.

Proof. Fix u ∈ R such that c1(u) > 0, e0(u) < 0 and e1(u) ≥ 0 and suppress the
parameter u in the notation. Note that the inequality 0 ≤ e1 = e2

0 − c1c3 < e2
0 implies

a := −e0 −
√
e1 > 0. Moreover, from (3.18), it follows that a is the smallest positive

root of G. Define the non-linearity Ḡ as

Ḡ(w) :=

G(w), 0 ≤ w ≤ a,

0, w > a.
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Then Ḡ is a non-negative, Lipschitz-continuous function that starts at e2
0 − e1 > 0.

Therefore, Lemma 3.5 yields that the unique continuous solution h̄ of

h̄(t) =

∫ t

0
k(t− s)Ḡ(h̄(s)) ds.

is bounded with 0 ≤ h̄(t) ≤ a for all t ≥ 0. Since Ḡ = G on [0, a], the function h̄ solves
the original Volterra integral equation

h̄(t) =

∫ t

0
k(t− s)G(h̄(s)) ds

and from the uniqueness of the solution we obtain h = h̄.

Theorem 3.7. In case (D), the solution h of (3.17) is non-positive and bounded, and
exists globally.

Proof. Fix u ∈ R such that c1(u) ≤ 0, which means u ∈ [0, 1], and suppress the parameter
u in the notation. Note that e1 = e2

0−c1c3 > e2
0 > 0 implies a :=

√
e1−e0 > 0. Moreover,

from (3.18), it follows that a is the smallest positive root of G. Define h− := −h, then
h− solves

h−(t) = −
∫ t

0
k(t− s)G(−h−(s)) ds. (3.21)

If we define the non-linearity Ḡ as

Ḡ(w) :=

−G(−w), 0 ≤ w ≤ a,

0, w > a,

then Ḡ is a non-negative, Lipschitz-continuous function that starts at e1− e2
0 > 0. With

Lemma 3.5 we obtain that the unique continuous solution h̄ of

h̄(t) =

∫ t

0
k(t− s)Ḡ(h̄(s)) ds

is bounded with 0 ≤ h̄(t) ≤ a for all t ≥ 0. Furthermore, h̄ solves (3.21) because
Ḡ(w) = −G(−w) for all w ∈ [0, a]. The uniqueness of the solution yields h̄ = h− = −h.
Hence, the solution h is bounded with −a ≤ h(t) ≤ 0.

We have shown in which cases the solution h of the Volterra integral equation (3.17),
respectively the solution ψ of the fractional-order Riccati differential equation (3.5) with
initial value (3.6), blows up in finite time. The question remains, whether the blow-up
behaviour of ψ is transferred to the moment generating function (3.4) or not. The answer
is given by the following lemma.
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3.3. Lower and Upper Bounds for the Moment Explosion Time

Lemma 3.8. If f is a non-negative, continuous function that blows up in finite time
with explosion time T ∗, then Iαt f blows up in finite time as well, with the same explosion
time T ∗.
If f is a bounded continuous function, then Iαt f does not blow up in finite time.

Proof. First, suppose that the non-negative, continuous function f explodes at T ∗ and
let M > 0. Then we can find a small time ε ∈ (0, T ∗/2) such that f(t) ≥ M for all
t ∈ (T ∗ − ε, T ∗). Hence,

Iαt f(t) ≥
∫ t

T ∗−ε
k(t− s)f(s) ds ≥M (T ∗ − ε)α

Γ(1 + α)
≥M (T ∗/2)α

Γ(1 + α)

for all t ∈ (T ∗ − ε, T ∗).
Now, suppose f is continuous and bounded with M > 0. Then we have

|Iαt f(t)| ≤ M

Γ(1 + α)
tα

for all t ≥ 0.

Let T ∗mathrmHe be the moment explosion time in the classic Heston model (2.1)-(2.3) and
T ∗ be the moment explosion time in the rough Heston model (3.1)-(3.3). Then we can
summarise our findings in the following corollary.

Corollary 3.9. For every u ∈ R, the moment explosion time T ∗(u) blows up in finite
time if and only if the moment explosion time T ∗He(u) blows up in finite time.

3.3 Lower and Upper Bounds for the Moment Explosion
Time

If we take a closer look at the cases (A) and (B) where the moment explosion time T ∗
is finite, we can establish lower and upper bounds for T ∗.

Theorem 3.1. In case (A) or (B), the blow-up time T ∗(u) of the solution h(u, ·) of
(3.17) satisfies

T ∗(u) ≥ Γ(1 + α)1/α max
r>1

(rα − 1)1/α

r(r − 1)

∫ ∞
a(u)

(
w

G(u,w)

)1/αdw

w
(3.22)

where a(u) = 0 in case (A) and a(u) = −e0(u) > 0 in case (B).

Proof. The idea of the following proof is based on the proof of Lemma 2.19 in Brunner
and Yang [14].
Fix u and suppress u from now on for ease of notation. It follows from Theorem 3.2
and 3.4 that in either case the solution h is non-negative, starts at 0 and limt→T ∗− h(t) =
∞. For any n ∈ N0 choose

tn := min{t > 0 : h(t) = (crn)α + a}
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with r > 1 and c > 0.
Using the inequality k(tn − s) < k(tn−1 − s) for s ∈ (0, tn−1), the non-negativity of G
and that G is strictly increasing on [a,∞), we have for n ∈ N

h(tn) =

∫ tn−1

0
k(tn − s)G(h(s)) ds+

∫ tn

tn−1

k(tn − s)G(h(s)) ds

≤ h(tn−1) +G(h(tn))

∫ tn

tn−1

k(tn − s) ds

= h(tn−1) +
1

Γ(1 + α)
G(h(tn))(tn − tn−1)α.

Thus, we obtain for n ∈ N

tn − tn−1 ≥ Γ(1 + α)1/α

(
h(tn)− h(tn−1)

G(h(tn))

)1/α

= Γ(1 + α)1/α(rα − 1)1/α crn−1

G((crn)α + a)1/α

= Γ(1 + α)1/α (rα − 1)1/α

r(r − 1)
· crn+1 − crn

G((crn)α + a)1/α

≥ Γ(1 + α)1/α (rα − 1)1/α

r(r − 1)

∫ crn+1

crn

(
1

G(sα + a)

)1/α

ds

Finally,

T ∗ = t0 +
∞∑
n=1

(tn − tn−1)

≥ Γ(1 + α)1/α (rα − 1)1/α

r(r − 1)

∫ ∞
cr

(
1

G(sα + a)

)1/α

ds

Maximization over c > 0, then r > 1, and substitution w = sα + a yield the inequality
(3.22).

For α ↑ 1, the right-hand side in (3.22) simplifies to∫ ∞
a(u)

1

G(u, x)
dx =

∫ ∞
a(u)/c3

1

R(u, x)
dx.

In case (A), we have a(u) = 0 and therefore the right-hand side of (3.22) is exactly the
moment explosion time (2.8) of the Heston model.

Theorem 3.2. In case (A) or (B), the blow-up time T ∗(u) of the solution h(u, ·) of
(3.17) satisfies

T ∗(u) ≤ 4Γ(1 + α)1/α

∫ ∞
0

(
w

Ĝ(u,w)

)1/αdw

w
(3.23)

where Ĝ = G in case (A), and Ĝ ≡ −e1 on [0,−e0) and Ĝ = G on [−e0,∞) in case (B).

77



3.3. Lower and Upper Bounds for the Moment Explosion Time

Proof. The idea of the following proof is based on the proof of Lemma 2.12 in Brunner
and Yang [14].
Fix u and suppress u from now on for ease of notation. From Theorem 3.2 and 3.4, in
either case the solution h is positive on (0,∞), starts at 0 and limt→T ∗− h(t) =∞. For
any n ∈ N0 choose

tn := max{t < T ∗ : h(t) = (crn)α} (3.24)

with r > 1 and c > 0.
Define Ḡ := G in case (A) and Ḡ := Ḡa from (3.20) in case (B). Since Ḡ ≤ G and Ḡ is
positive and strictly increasing, we have for n ∈ N

h(tn) ≥
∫ tn

0
k(tn − s)Ḡ(h(s)) ds

≥
∫ tn

tn−1

k(tn − s)Ḡ(h(s)) ds

≥ 1

Γ(1 + α)
Ḡ(h(tn−1))(tn − tn−1)α.

Thus, we obtain for n ∈ N

tn − tn−1 ≤ Γ(1 + α)1/α

(
h(tn)

Ḡ(h(tn−1))

)1/α

= Γ(1 + α)1/α crn

Ḡ((crn−1)α)1/α

= Γ(1 + α)1/α r2

r − 1
· cr

n−1 − crn−2

Ḡ((crn−1)α)1/α

≤ Γ(1 + α)1/α r2

r − 1

∫ crn−1

crn−2

(
1

Ḡ(sα)

)1/α

ds

Finally,

T ∗ = t0 +
∞∑
n=1

(tn − tn−1)

≤ t0 + Γ(1 + α)1/α r2

r − 1

∫ ∞
cr−1

(
1

Ḡ(sα)

)1/α

ds

Note that from the definition of t0, it depends on c > 0 and r > 1. The fact that h is
only zero at t = 0 implies that t0 → 0 as c ↓ 0. Taking the limit c ↓ 0, then minimizing
over r > 1 and substitution w = sα yields

T ∗ ≤ 4Γ(1 + α)1/α

∫ ∞
0

(
w

Ḡ(w)

)1/α dw

w

In case (A), we are finished. In case (B), we have Ḡ = Ḡa. Then the dominated
convergence theorem for a ↑ −e1 yields the inequality (3.23).

78



Chapter 3. The Rough Heston Model

3.4 Critical Moments
With the upper bound for the moment explosion time T ∗ in Theorem 3.2, we can show
the finiteness of the critical moments

u+(T ) := sup{u ∈ R : E[euXt ] <∞}
u−(T ) := inf{u ∈ R : E[euXt ] <∞}

for every T > 0.

Theorem 3.1. In the rough Heston model (3.1)-(3.3) the critical moments u+(T ) and
u−(T ) are finite for every T > 0.

Proof. Only the finiteness of u+(T ) is proven. The proof for u−(T ) is similar. Denote
the upper bound of T ∗(u) in (3.23) by B(u) for all u ∈ R in the cases (A) and (B). At
first, we show that for sufficiently large u, we are always in case (A) or (B), depending
on the sign of the correlation parameter ρ. From (2.9) and (2.10), it is easy to see that

e0(u) ∼ 1
2ξρu and e1(u) ∼ −1

4ξ
2ρ̄2u2 as u→∞, (3.25)

with the correlation ρ̄2 = 1− ρ2. Thus, eventually e1(u) < 0 for sufficiently large u. In
the next step, we show that the upper bound B(u) converges to 0 as u → ∞. Indeed,
in case (A) the integral in (3.23) satisfies∫ ∞

0

(
w

G(u,w)

)1/αdw

w
=

∫ u

0

(
w

G(u,w)

)1/αdw

w
+

∫ ∞
u

(
w

G(u,w)

)1/αdw

w

≤ G(u, 0)−1/α

∫ u

0
w−1+1/α dw +

∫ ∞
u

w−1−1/α dw

≤ cu−1/α, u→∞,

for some c > 0, using the monotonicity G(u,w) ≥ G(u, 0), the inequality G(u,w) ≥ w2

and G(u, 0) = c3c1(u) ∼ 1
2c3u

2 as u→∞.
If we are eventually in case (B) as u→∞, then −e1(u) > 0 and −e0(u) > 0 holds for all
sufficiently large u. Note, that in this case, G(u, ·) attains its global minimum at −e0(u)
and the minimum value is −e1(u). Thus, the integral in (3.23) satisfies∫ ∞

0

(
w

G(u,w)

)1/αdw

w
=

∫ −2e0(u)

0

(
w

G(u,w)

)1/αdw

w
+

∫ ∞
−2e0(u)

(
w

G(u,w)

)1/αdw

w

≤ (−e1(u))−1/α

∫ −2e0(u)

0
w−1+1/α dw + 41/α

∫ ∞
−2e0(u)

w−1−1/α dw

= α
(

(−e1(u))−1/α(−2e0(u))1/α + 41/α(−2e0(u))−1/α
)

≤ cu−1/α, u→∞
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for some c > 0, using the monotonicity G(u,w) ≥ −e1(u), the inequality G(u,w) ≥
(w + e0(u))2 ≥ w2/4 on [−2e0(u),∞) and (3.25).
Altogether, we have limu→∞B(u) = 0. From 0 ≤ T ∗(u) ≤ B(u), the same is true for
the moment explosion time T ∗, i.e. limu→∞ T

∗(u) = 0.
Let T > 0. Then there exists u0 ∈ R such that T ∗(u) < T for all u ≥ u0. This inequality
implies E[euXT ] =∞ for all u ≥ u0, and therefore u+(T ) ≤ u0.
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Conclusion

We investigated the blow-up behaviour of the moment-generating function (mgf) in the
rough Heston model and we see that the mgf E[euXt ] in this model explodes in finite
time for the same u ∈ R as in the classic Heston model.
Furthermore, we give a lower and upper bound for the explosion time T ∗ in the cases
where the mgf blows up. Moreover, we show that the critical moments u+ and u− are
always finite in the rough Heston model.
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Part IV

Large-Strike Asymptotics in the
3/2-Model
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Chapter 1

The 3/2-Model

The logarithmic stock price process (Xt)t≥0 in the 3/2-model is given as the solution of
the following SDE

dXt = −1
2Vt dt+

√
Vt dWt, X0 = x0 ∈ R,

dVt = κVt(θ − Vt) dt+ ξV
3/2
t dZt, V0 = v0 > 0,

d〈W,Z〉t = ρ dt,

with correlated Brownian motions W and Z and parameters κ > 0, θ > 0, ξ > 0 and
|ρ| < 1. Define ρ̄ :=

√
1− ρ2 and κ̄ := 2κ+ ξ2.

The moment-generating function (mgf) of XT for T > 0 can be computed as

M(u, T ) := E[euXT ] = eux0
Γ(µu − αu)

Γ(µu)
zαuT 1F1(αu, µu,−zT ), (1.1)

at least for all u ∈ C in the vertical strip a < Re(u) < b with a ≤ 0 and b ≥ 1, and with
the confluent hypergeometric function 1F1 and the auxiliary functions

αu :=
1

ξ2
(γu − χu), γu :=

√
χ2
u − ξ2u(u− 1),

µu :=
1

ξ2
(ξ2 + 2γu), χu := 1

2 κ̄− ρξu,

zT :=
2

ξ2βT
, βT :=

v0

κθ
(eκθT − 1).

(1.2)

Without loss of generality, from now on, we assume x0 = 0. Define the two real numbers

u± :=
1

2ξρ̄2

(
ξ − ρκ̄±

√
(ξ − ρκ̄)2 + κ̄2ρ̄2

)
, (1.3)

which are the unique roots of the quadratic term under the square root of γ. After
factorization of the polynomial, we have the following representation of γ

γu = ξρ̄
√

(u+ − u)(u− u−). (1.4)

Throughout this part, we make the technical assumption

µu+ − αu+ > 0
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1.1. Large-Strike Asymptotics for the Density Function

which is always satisfied if ρ < 0. Under this assumption, the right boundary b of the
vertical strip, where equation (1.1) holds, can be extended until b = u+. Note that the
mgf has a branch cut along [u+,+∞) due to the branch cut of (1.4).
For further information on the 3/2-model, see e.g. Lewis [68].

1.1 Large-Strike Asymptotics for the Density Function

We are interested in large-strike asymptotics of the density function ϕ(k, T ) := ϕXT (k)
of XT for T > 0. With large-strike asymptotics we mean the asymptotic behaviour, if
k →∞ with fixed T > 0. The density function ϕ can be expressed via Fourier-transform
as

ϕ(k, T ) =
1

2πi

∫ a+i∞

a−i∞
e−kuM(u, T ) du, k ∈ R, (1.5)

with a ∈ (u−, u+).
For the analysis, we adjust the integration path in (1.5) similar to Friz and Gerhold [43]
and split it into two parts, the critical path C(k) and the neglectable path N (k), de-
pending on the strike parameter k ≥ 1. The critical contour C(k) embraces the critical
moment u+, see the left panel of Figure 1.1.

Re

Im

C(k)

N(k)

u+

2 log (k)

k

1

k

Re

Im

H(k)

2 log (k)

1

Figure 1.1: In the left panel, the critical path C(k) and the neglectable path N (k)
(dashed line) are illustrated in the complex plane, whereas the right panel displays the
transformed path H(k) after the transformation w 7→ u+ − w

k , where k ≥ 1 is the strike
parameter.

The critical path C(k) starts at u+ +2 log(k)/k− i/k, goes horizontally to u+− i/k, then
clockwise along the half-circle with center u+ and radius 1/k until it reaches u+ + i/k,
and again horizontally to the end point u+ + 2 log(k)/k + i/k.
The remaining part, denoted by N (k), starts at the points u+ + 2 log(k)/k ± i/k and
goes straight to u+ + 2 log(k)/k + i∞ resp. u+ + 2 log(k)/k − i∞.
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In our further analysis, we deal with the following representation of the density function

ϕ(k, T ) =
1

2πi

∫
C(k)∪N (k)

e−kuM(u, T ) du, k ∈ R. (1.6)

Theorem 1.1 (Large-strike asymptotics). Assume µu+ −αu+ > 0. Then the first order
term in the large-strike expansion of the density function of XT in the 3/2-model, with
T > 0 fixed, is given by

ϕ(k, T ) ∼ ce
−ku+

k3/2
, k →∞, (1.7)

where c > 0 can be computed explicitly.

Proof. At first, only the integral over the critical part C(k) in (1.6) is considered. We
will show that this integral contains the whole asymptotic information of ϕ as k → ∞
with T > 0 fixed. Change of variables u = u+ − w/k yields, as k →∞,

1

2πi

∫
C(k)

e−kuM(u, T ) du =
e−ku+

k

(
1

2πi

∫
H(k)

ewM
(
u+ −

w

k
, T
)
dw

)
(1.8)

where H(k) is the transformed path of C(k), see the right panel of Figure 1.1. With
Lemma 1.3 the latter integral can be computed asymptotically, as k →∞,

1

2πi

∫
H(k)

ewM
(
u+ −

w

k
, T
)
dw

= M(u+, T )
1

2πi

∫
H(k)

ew dw︸ ︷︷ ︸
O
(

1
k2

)
+
m1√
k

1

2πi

∫
H(k)

eww1/2 dw︸ ︷︷ ︸
→1/Γ

(
−1

2

)
=− 1

2
√
π

+
1

2πi

∫
H(k)

ewO
(w
k

)
dw︸ ︷︷ ︸

O
(

1
k

)
.

The first integral is an easy computation. In the second and third integral, we used
Hankel’s integral representation for the gamma function, see [75]. Therefore,

1

2πi

∫
C(k)

e−kuM(u, T ) du ∼ ce
−ku+

k3/2
, k →∞,

for c = −m1

2
√
π
. Combined with Lemma 1.2 we have the desired expansion of the density

function ϕ.

Lemma 1.2. The integral over N (k) in (1.6) satisfies

1

2πi

∫
N (k)

e−kuM(u, T ) du = o
(
e−ku+k−3/2

)
, k →∞,

Proof. By symmetry, it suffices to consider only the integral over the upper part of N (k).
We choose the representing path uk(t) := u+ + 2 log k/k + it with t ∈ [1/k,∞),

1

2πi

∫
uk

e−kuM(u, T ) du =
e−ku+

k2

(
1

2π

∫ ∞
1/k

e−itkM(uk(t), T ) dt

)
.
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By showing the boundedness of the latter integral, the proof is finished.
After the triangular inequality for integrals, we split the integral into two parts∣∣∣∣∣

∫ ∞
1/k

e−itkM(uk(t), T ) dt

∣∣∣∣∣ ≤
∫ t1

1/k
|M(uk(t), T )| dt+

∫ ∞
t1

|M(uk(t), T )| dt, (1.9)

where t1 ≥ 1 will be determined later.
For the first integral in (1.9), note that 2 log k/k ∈ [0, 1] for any k ≥ 1. Recall that
M(·, T ) has a branch cut along [u+,∞), but a continuous extension M̃ ofM exists on the
half-plane Im(s) ≥ 0. Hence |M(·, T )| attains a maximum value on [u+, u+ +1]+ i(0, t1],∫ t1

1/k
|M(uk(t), T )| dt ≤ t1 max

u∈[u+,u++1]+i(0,t1]
|M(u, T )| <∞

In order to show the boundedness of the second integral in (1.9) and to determine t1 ≥ 1,
we have to take a closer look at the mgf and the auxiliary functions defined in (1.2).
The fact 2 log k/k ∈ [0, 1] for k ≥ 1 ensures uk(t) = it + O(1) for t → ∞ uniformly for
all k ≥ 0. Thus, the following asymptotic expansions of the auxiliary functions χ and γ
in (1.2) hold

χ(uk(t)) = −iξρt+O(1),

γ(uk(t)) =
√
−ξ2ρ2t2 + ξ2t2 +O(t) = ξρ̄t+O(1),

and simple computations then yield

α(uk(t)) = 1
ξ (ρ̄+ iρ)t+O(1), (1.10)

µ(uk(t)) = 2
ξ ρ̄t+O(1),

µ(uk(t))− α(uk(t)) = 1
ξ (ρ̄− iρ)t+O(1), (1.11)

for t→∞ uniformly for all k ≥ 1.
Due to (1.10), (1.11) and ρ̄ > 0, there exists t0 ≥ 1, such that Re(µ(uk(t))−α(uk(t))) > 1
and Re(α(uk(t))) > 1 for all k ≥ 1 and t ≥ t0. In particular, in this region we have
Re(µ(uk(t))) > Re(α(uk(t))) > 0 so that we can use representation (1.25) of the confluent
hypergeometric function, which reduces the mgf to

M(uk(t), T ) =
z
α(uk(t))
T

Γ(α(uk(t)))

∫ 1

0
e−zT yyα(uk(t))−1(1− y)µ(uk(t))−α(uk(t))−1 dy. (1.12)

Note that the absolute value of the integral is bounded by 1. Furthermore, we have
uniformly for all k ≥ 1

|zα(uk(t))
T | = exp

(
1
ξ ρ̄ log(zT )t(1 + o(1))

)
, t→∞. (1.13)

Our choice Re(α(uk(t))) > 1 guarantees | arg(α(uk(t)))| < π
2 and Stirling’s formula

(1.26) is applicable to Γ(α(uk(t))) for all t ≥ t0 and all k ≥ 1. Combined with (1.10) we
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have, uniformly for all k ≥ 1,

|Γ(α(uk(t)))| ∼
√

2π|e−zzzz−1/2|
z=

1
ξ (ρ̄+iρ)t

=
√

2πξ x−1/2 exp
(

1
ξ ρ̄t log( tξ )− 1

ξρ arg(ρ̄+ iρ)t− 1
ξ ρ̄t
)

= exp
(

1
ξ ρ̄t log t(1 + o(1))

)
, t→∞. (1.14)

Putting (1.13) and (1.14) back into formula (1.12), we can find a sufficiently large t1 ≥ t0
such that

|M(uk(t), T )| ≤ exp
(
−(1 + ε)1

ξ ρ̄t log t
)

(1.15)

for all t ≥ t1 and all k ≥ 1, with a constant ε > 0. The integrability of the right-hand
side of (1.15) proves that the third integral in (1.9) is bounded.

Lemma 1.3. Assume µu+ − αu+ > 0. Near the critical moment u+, the following
expansion of the mgf holds uniformly for all w ∈ H(k),

M
(
u+ −

w

k
, T
)

= M(u+, T ) +m1

√
w

k
+O

(w
k

)
, k →∞,

where m1 can be computed explicitly.

Proof. First, we expand the functions χ and γ in a neighbourhood of u+. Using repre-
sentation (1.4) of γ we only have to expand √u− u− =

√
(u+ − u−)− (u+ − u) near

u+. Thus, as u→ t+,

γu = ξρ̄
√
u+ − u−(u+ − u)1/2 +O

(
(u+ − u)3/2

)
, (1.16)

χu = χu+ + ρξ(u+ − u). (1.17)

With these results, expansions for α and µ near u+ can easily be computed,

αu = αu+ +
ρ̄

ξ

√
u+ − u−(u+ − u)1/2 +O(u+ − u), u→ u+ (1.18)

µu = µu+ + 2
ρ̄

ξ

√
u+ − u−(u+ − u)1/2 +O

(
(u+ − u)3/2

)
, u→ u+. (1.19)

Define uk(w) := u+ − w
k , w ∈ H(k), for k ≥ 1. From the uniform convergence

supw∈H(k) |uk(w)− u+| → 0 for k →∞, we have

∆α := α(uk(w))− αu+ =
ρ̄

ξ

√
u+ − u−

(w
k

)1/2
+O

(w
k

)
, k →∞ (1.20)

∆µ := µ(uk(w))− µu+ = 2
ρ̄

ξ

√
u+ − u−

(w
k

)1/2
+O

((w
k

)3/2
)
, k →∞, (1.21)

uniformly for all w ∈ H(k). Define the function

M̃(α, µ) :=
Γ(µ− α)

Γ(µ)
(zT )α1F1(α, µ,−zT ),
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for all (α, µ) ∈ C2 where µ − α, µ 6∈ Z−0 . In this region M̃ is jointly analytic in both
variables. Note the relation M(u, T ) = M̃(αu, µu). Since µu+ = 1 and µu+ − αu+ > 0,
we can make a Taylor expansion of M̃ at the point (αu+ , µu+). Combining this with
(1.20) and (1.21) gives us, uniformly for all w ∈ H(k),

M(uk(w), T ) = M̃(α(uk(w)), µ(uk(w)))

= M̃(αu+ , µu+) + ∆α
∂

∂α
M̃(αu+ , µu+) + ∆µ

∂

∂µ
M̃(αu+ , µu+) +O

(
(∆α)2

)
+O

(
(∆µ)2

)
= M(u+, T ) +

(
∂M̃

∂α
+ 2

∂M̃

∂µ

)
(αu+ , µu+)

ρ̄

ξ

√
u+ − u−︸ ︷︷ ︸

=:m1

(w
k

)1/2
+O

(w
k

)
, k →∞.

1.2 Large-Strike Asymptotics for the Implied Volatility
From large-strike asymptotics for the density function, it is possible to obtain large strike
asymptotics for the implied volatility, see Gulisashvili [57] and Friz, Gerhold, Gulisashvili
and Sturm [44]. The statement is, that if the density function ϕ satisfies, for fixed T > 0,

c1k
−ξh(k) ≤ ϕ(k) ≤ c2k

−ξh(k),

for all sufficiently large k, with ξ > 2, h slowly varying and constants c1, c2 > 0, then
the implied volatility σimp(K,T ) satisfies

σimp(K,T )

√
T√
2

=

√
logK + log

1

K2−ξh(K)
+ 1

2 log log
1

K2−ξh(K)
(1.22)

−

√
log

1

K2−ξh(K)
+ 1

2 log log
1

K2−ξh(K)

+O
(
(logK)−1g(K)

)
,

as K →∞, for every positive function g on (0,∞) and limx→∞ g(x) =∞.

In the 3/2-model with Theorem 1.1, we have established the large-strike asymptotics for
the density ϕXT of the log-price XT = log(ST ). Because the density ϕST of ST is given
by

ϕST (K) =
ϕXT (logK)

K
, K > 0,

we clearly have the large-strike asymptotics for ϕST
ϕST (K) ∼ cK−(u++1)h(K), K →∞, (1.23)

with the slowly varying function h(K) = (logK)−3/2. Note that the critical moment
u always satisfies u+ ≥ 1, and u+ = 1 if and only if 2ξρ = κ̄. Hence, the previous
statement is applicable.
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Theorem 1.1. Assume µu+ − αu+ > 0 and 2ξρ 6= κ̄. The large-strike expansion of the
implied volatility function in the 3/2-model, with T > 0 fixed, is given by, as K →∞,

σimp(K,T )

√
T√
2
∼ (
√
u+ −

√
u+ − 1)

√
logK (1.24)

+
1

2

(
1
√
u+
− 1√

u+ − 1

)
log logK√

logK
+O

(
log log logK√

logK

)
.

Proof. Note that if f(K) = O(g(K)), K → ∞, holds for every positive function g that
tends to ∞ for K →∞, then f has to be bounded, f(K) = O(1) as K →∞.
A straightforward calculation, using (1.22) and (1.23), shows

σimp(K,T )

√
T√
2

=
√

logK − log(K1−u+h(K))− 1
2 log

(
− log(K1−u+h(K))

)
−
√
− log(K1−u+h(K))− 1

2 log
(
− log(K1−u+h(K))

)
+O

(
(logK)−1

)
=
√
u+ logK + log logK +O(log log logK))

−
√

(u+ − 1) logK + log logK +O(log log logK)

+O
(
(logK)−1

)
,

=
√
u+

√
logK

(
1 +

log logK

u+ logK
+O

(
log log logK)

logK

))
−
√

(u+ − 1)
√

logK

(
1 +

log logK

(u+ − 1) logK
+O

(
log log logK

logK

))
+O

(
(logK)−1

)
,

as K →∞. Summing up the matching terms yields the statement.
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Appendix

Appendix A Auxiliary Results
We state the following lemmas which are used in the proof of the large strike expansion
of the density function. The first lemma describes a representation of the confluent hy-
pergeometric function 1F1, whereas the second lemma is the well-known Stirling formula
for the Gamma function. For further details, see e.g. [75].

Lemma A.1. If Re(µ) > Re(α) > 0, then the confluent hypergeometric function 1F1

has the following integral representation

1F1(α, µ, z) =
Γ(µ)

Γ(α)Γ(µ− α)

∫ 1

0
ezyyα−1(1− y)µ−α−1 dy. (1.25)

Lemma A.2 (Stirling). The Gamma function satisfies

Γ(z) =
√

2πe−zzzz−1/2(1 + o(1)), z →∞ with | arg(z)| < π − ε. (1.26)

where ε > 0

90



Bibliography

[1] Y. Aït-Sahalia, Telling from discrete data whether the underlying continuous-time
model is a diffusion, Journal of Finance, 57 (2002), pp. 2075–2113.

[2] Y. Aït-Sahalia and J. Jacod, Is Brownian motion necessary to model high-
frequency data?, Ann. Statist., 38 (2010), pp. 3093–3128.

[3] E. Alòs, J. A. León, and J. Vives, On the short-time behavior of the implied
volatility for jump-diffusion models with stochastic volatility, Finance Stoch., 11
(2007), pp. 571–589.

[4] L. Andersen and A. Lipton, Asymptotics for exponential Lévy processes and
their volatility smile: survey and new results, Int. J. Theor. Appl. Finance, 16
(2013). Paper no. 1350001, 98 pages.

[5] L. B. G. Andersen and V. V. Piterbarg, Moment explosions in stochastic
volatility models, Finance and Stochastics, 11 (2007), pp. 29–50.

[6] C. Bayer, P. Friz, and J. Gatheral, Pricing under rough volatility, Quantita-
tive Finance, 16 (2016), pp. 887–904.

[7] S. Benaim and P. Friz, Smile asymptotics II: Models with known moment gen-
erating functions, J. Appl. Probab., 45 (2008), pp. 16–32.

[8] A. Bentata and R. Cont, Short-time asymptotics for marginal distributions of
semimartingales. Preprint, available at http://arxiv.org/abs/1202.1302, 2012.

[9] H. Berestycki, J. Busca, and I. Florent, Asymptotics and calibration of local
volatility models, Quant. Finance, 2 (2002), pp. 61–69. Special issue on volatility
modelling.

[10] H. Berestycki, J. Busca, and I. Florent, Computing the implied volatility in
stochastic volatility models, Comm. Pure Appl. Math., 57 (2004), pp. 1352–1373.

[11] N. H. Bingham, C. M. Goldie, and J. L. Teugels, Regular variation, vol. 27
of Encyclopedia of Mathematics and its Applications, Cambridge University Press,
Cambridge, 1987.

91

http://arxiv.org/abs/1202.1302


Bibliography

[12] S. I. Boyarchenko and S. Z. Levendorskĭı, Non-Gaussian Merton-Black-
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