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“Man darf nicht das, was uns unwahrscheinlich und unnatürlich erscheint, mit dem verwechseln, was
absolut unmöglich ist.”

Carl Friedrich Gauß
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Introduction

Banach algebras are mathematical objects which play a major role in functional analysis.
A Banach algebra is a Banach space A equipped with a continuous multiplication such
that

‖xy‖ ≤ ‖x‖‖y‖ for all x, y ∈ A. (1)

Like Banach spaces, Banach algebras are named after the famous mathematician Stefan
Banach, although he had never studied Banach algebras. In fact, it was Israel M.
Gelfand who introduced them under the name “normed rings” in his work Normierte
Ringe., Rec. Math. (Mat. Sbornik), in 1941. Many mathematicians would rather speak
of “Gelfand algebras”, and I tend to agree with them.
The theory of Banach algebras has led to many fundamental results, such as the Gelfand-
Mazur theorem (Theorem 1.3.18), which states that every complex Banach algebra that
is a division algebra is isomorphic to C. The basic notions and definitions as well as
classical results will be discussed in Chapter 1.
In general, Banach algebra theory is very elegant. But there is more to the axioms than
meets the eye. We have an algebraic structure - an algebra - and an analytic structure
- a Banach space -, and the two structures are linked by means of the inequality (1),
which guarantees that multiplication in Banach algebras is continuous. As it turns out,
the relationship between the analytic and the algebraic structure is much more subtle.
As for commutative Banach algebras, they allow for a powerful representation theory,
which is known as Gelfand theory after its creator. Suppose that A is a commutative
Banach algebra with identity e and let

∆(A) = {ϕ : A → C : ϕ is nonzero, linear and multiplicative}.

We can see that ∆(A) lies in the unit ball of the dual space A′, and restricting the weak*
topology (or Gelfand topology) of A′ to ∆(A) turns it into a locally compact Hausdorff
space (Theorem 2.3.3). The space ∆(A) equipped with the Gelfand topology is called
the Gelfand space. For x ∈ A we define x̂ : ∆(A) → C by x̂(ϕ) = ϕ(x). Then x̂ is a
continuous function, which is called the Gelfand transform and the mapping

ΓA : A → C(∆(A)), x 7→ x̂

the Gelfand representation. The remarkable insight of Gelfand was that x is invertible
in A if and only if x̂ is invertible as a continuous function in ∆(A), that is has no zeros
(Theorem 2.3.6).
The Gelfand transform can be thought of as an abstract Fourier transform. Using his
representation theory, Gelfand gave a strinkingly short and simple proof of Wiener’s
theorem (Theorem 2.3.20): If f is nonzero and has an absolutely convergent Fourier
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expansion, then 1/f has such an expansion as well. In Chapter 2 we will thoroughly
study the fundamental properties of the Gelfand transform and Gelfand representation.
We will also briefly discuss semisimple Banach algebras since they are needed for later
purposes.

To most mathematicians it is a well-known fact that the Gelfand space ∆(A) is com-
pact if a commutative Banach algebra A has an identity (Theorem 2.3.4). The obvious
question arising in this case is whether A must have an identity if ∆(A) is compact.
Indeed, this is true, but only for semisimple Banach algebras (Theorem 3.3.1). This
converse turns out to be a consequence of Shilov’s idempotent theorem (Theorem 3.2.1),
which was published and proved by Georgi E. Shilov in 1954 [Shi]. Shilov’s idempotent
theorem states that the characteristic function of a compact open subset of ∆(A) is the
Gelfand transform of an idempotent in A. Without a doubt, this theorem is one of the
major highlights in commutative Banach algebra theory and is presented in Chapter 3.
Unfortunately, to this day, it is not known how to prove the idempotent theorem without
recourse to the multivariable holomorphic functional calculus.

Finally, in Chapter 4 we will introduce the notion of a regular Banach algebra. We
will observe that the hull-kernel topology and the Gelfand topology on ∆(A) coincide
(Theorem 4.2.6), and present a much simpler proof of Theorem 3.3.1, provided that A
is a semisimple regular commutative Banach algebra (Corollary 4.2.16).

For the sake of completeness, some basic definitions and fundamental theorems in
topology and functional analysis are listed in the Appendix.

The main focus of this Master thesis will be on general Banach algebra theory, es-
pecially on commutative Banach algebras and the development of Shilov’s idempotent
theorem, followed by several applications that will illustrate the power of this remarkable
result. Many notions and ideas are based on the very insightful books of [Kan] and [Lar].
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1. Preliminaries

1.1. Banach algebras

This chapter is dedicated to developing the basic concepts and constructions of Banach
algebras. We shall be concerned here with introducing some of the basic definitions
needed in the succeeding development and in proving several essentially algebraic results.
It is quite possible that some of the definitions and results are already known to the
reader, whereas others may seem strange and surprising at first glance.
From now on, we will always consider Banach algebras over the complex number field C,
primarily due to two reasons: first, some fundamental theorems (such as Gelfand-Mazur)
only work for complex algebras, and second, we will need some tools from complex
analysis later on in order to develop the theory of the holomorphic functional calculus.
Also, we will provide many examples of Banach algebras, so one can get a better and
deeper understanding of the subject.

Definition 1.1.1 A linear space A over C is an algebra if it is equipped with a binary
operation, referred to as multiplication, from A×A to A such that

(i) x(yz) = (xy)z

(ii) x(y + z) = xy + xz; (x+ y)z = xz + yz

(iii) λ(xy) = (λx)y = x(λy)

for all x, y, z ∈ A and every λ ∈ C.

Definition 1.1.2 A normed linear space (A, ‖.‖) over C is called a normed algebra if it
is an algebra and the norm is submultiplicative, that is

‖xy‖ ≤ ‖x‖‖y‖ for all x, y ∈ A.

A normed algebra A is a Banach algebra if the normed space (A, ‖.‖) is a Banach space.

◦ The completion (Ã, ‖.‖) of a normed algebra (A, ‖.‖) is a Banach algebra. If
x, y ∈ Ã and (xn)n∈N, (yn)n∈N are sequences in A converging in Ã to x and y,
respectively, then it follows that (xnyn)n∈N is a Cauchy sequence in Ã, and the
product of x and y can be defined to be xy = lim

n→∞
xnyn.

◦ Let A be a Banach algebra. A subalgebra is a linear subspace B of A such that
x, y ∈ B implies xy ∈ B. If B is a closed subalgebra of A, then B is complete und
hence a Banach algebra (under the same operations and norms as A). We then
say B is a Banach subalgebra of A.

1



1. Preliminaries

◦ An algebra A is called commutative if

xy = yx for all x, y ∈ A.

We do not assume commutativity until Chapter 2.

◦ A is called unital or an algebra with identity if there exists e ∈ A such that

ex = xe = x for all x ∈ A and ‖e‖ = 1.

To avoid triviality we shall always assume A 6= {0}.

Remark 1.1.3 It is clear that e ∈ A is unique. Let ẽ be a unit, then ẽ = ẽe = e. Note
that ‖e‖ ≥ 1 already follows from submultiplicativity of the norm: ‖e‖ = ‖ee‖ ≤ ‖e‖‖e‖.

Lemma 1.1.4 Let A be a Banach algebra. Then the inequality ‖xy‖ ≤ ‖x‖‖y‖ for all
x, y ∈ A makes the multiplication a continuous operation in A.

Proof. If (xn, yn)→ (x, y) in A×A, i.e.

‖(xn, yn)− (x, y)‖ → 0 as n→∞,

then the sequences (xn)n∈N and (yn)n∈N are bounded and thus

‖xnyn − xy‖ = ‖xn(yn − y) + y(xn − x)‖ ≤ ‖xn‖ · ‖yn − y‖+ ‖y‖ · ‖xn − x‖

converges to 0.

The following theorem of Gelfand asserts that we can weaken one of the requirements
in the definition of a Banach algebra and still obtain the same sort of mathematical
object.
In fact, we will not require the validity of the norm inequality ‖xy‖ ≤ ‖x‖‖y‖ for all
x, y ∈ A, in order to obtain a Banach algebra. This weaker hypothesis was the one
originally used in [Gel], albeit for the case that A is without identity.

Theorem 1.1.5 (Gelfand) Let A be an algebra with identity e and with a norm ‖.‖
under which it is a Banach space. Then there exists a norm ‖.‖0 on A that is equivalent
to ‖.‖ and for which ‖xy‖0 ≤ ‖x‖0‖y‖0 holds for all x, y ∈ A, thus making A into a
Banach algebra.

Proof. Assign to each x ∈ A the left translation operator Lx : A → A, defined by

Lx(y) = xy, y ∈ A.

Since multiplication is continuous by the preceding lemma, Lx is continuous. Because
of Lx(e) = xe = x, the map x 7→ Lx is an isomorphism of A into B(A), the algebra of
all bounded linear operators. Let

‖x‖0 = ‖Lx‖ = sup{‖xy‖ : ‖y‖ ≤ 1}, x ∈ A.

2



1. Preliminaries

It is easy to verify that ‖.‖0 is a norm on A satisfying

‖xy‖0 = ‖Lxy‖
(ass.)

= ‖LxLy‖ ≤ ‖Lx‖‖Ly‖ = ‖x‖0‖y‖0.

Now we claim that (A, ‖.‖0) is complete. But first we note that

‖x‖ = ‖xe‖ = ‖Lxe‖ ≤ ‖Lx‖‖e‖ = ‖x‖0‖e‖ ⇒ ‖x‖0 ≥ ‖e‖−1‖x‖, x ∈ A.

Hence, if (xn)n∈N is a Cauchy sequence with respect to ‖.‖0, then it is also a Cauchy
sequence in ‖.‖. Therefore we have xn → x for some x ∈ A. It follows that Lxn → T
for some T ∈ B(A), because (Lxn)n∈N is a Cauchy sequence in B(A). By continuity of
the product in the first variable, we get Lxny → Lxy for each y ∈ A. So T = Lx, which
proves the claim.
Since we have established above that ‖.‖ ≤ ‖e‖‖.‖0, the closed graph theorem implies
that the two norms are equivalent.

Remark 1.1.6 In the preceding theorem we can see that there always exists an equi-
valent norm ‖.‖0 on A such that ‖e‖0 = 1. In fact

‖e‖0 = ‖Le‖ = sup
‖y‖=1

‖Le(y)‖ = 1.

Consequently in the following chapters we shall always assume, without loss of generality,
that the identity in a unital Banach algebra has norm 1.

Next, we wish to list a number of standard examples of Banach algebras, which can
be divided in two main classes: algebras of functions (with pointwise multiplication)
and algebras of operators (with composition of operators).1 We shall not prove all of
the assertions made about the following examples since the proof techniques are pretty
similar.

Example 1.1.7 The complex numbers C with the usual algebraic operations and with
absolute value as the norm are a commutative Banach algebra with identity. In Section
1.3 we will see that C is the only complex Banach algebra, which is a division algebra
(Gelfand-Mazur).

Example 1.1.8 Let X be a locally compact Hausdorff space. By Cb(X ), C0(X ), and
Cc(X ) we denote, respectively, the algebras of all continuous complex-valued functions on
X that are bounded, vanish at infinity, or have compact support. The algebra operations
are the usual ones of pointwise addition, multiplication, and scalar multiplication. We
can show that with the common supremum norm

‖f‖∞ = sup
x∈X
|f(x)|, f ∈ C0(X ),

1Actually there is another class: group algebras (with convolution product) which will not be covered
in this thesis.
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1. Preliminaries

the algebras Cb(X ) and C0(X ) are commutative Banach algebras, whereas Cc(X ) is
complete only when X is compact. If X is noncompact, then only Cb(X ) is unital where
the constant function 1 is the identity. Indeed, the pointwise product

(fg)(x) = f(x)g(x), f, g ∈ Cb(X ), x ∈ X

turns Cb(X ) into a commutative Banach algebra. The product is clearly commutative
and associative, it is linear in f and g and

‖fg‖∞ = sup
x∈X
|f(x)||g(x)| ≤ sup

x1∈X
|f(x1)| · sup

x2∈X
|g(x2)| = ‖f‖∞ · ‖g‖∞.

Example 1.1.9 Let X be a Banach space. Then B(X ), the algebra of all bounded
linear operators on X , is a Banach algebra, with respect to the usual operator norm. The
identity operator I is its unit element. If dimX = n < ∞, then B(X ) is isomorphic to
the algebra of all complex n-by-n matrices. If dimX > 1, then B(X ) is not commutative
(the trivial space X = {0} must be excluded).

Example 1.1.10 Let D = {z ∈ C : |z| < 1} and D = {z ∈ C : |z| ≤ 1} (closed unit disc
in the plane). The disc algebra is the following Banach subalgebra of C(D):

A(D) = {f ∈ C(D) : f is analytic on D}.

With the usual pointwise operations and the uniform norm

‖f‖∞ = sup
z∈D
|f(z)|, f ∈ A(D),

it is easily verified that the disc algebra is a commutative Banach algebra with identity.
We claim that A(D) is a unital Banach subalgebra of C(D), hence a unital Banach
algebra. Clearly, A(D) ⊆ C(D), and the unit of C(D), the constant function 1, is in
A(D). Moreover, if f, g ∈ A(D), then

◦ for λ ∈ C we have λf ∈ C(D) and (λf)|D = λ · f |D is analytic, so λf ∈ A(D).

◦ f + g ∈ C(D) and (f + g)|D = f |D + g|D is the sum of two analytic functions, so is
analytic, and therefore f + g ∈ A(D).

◦ f · g ∈ C(D) and (f · g)|D = f |D · g|D is the product of two analytic functions, so is
analytic, and therefore f · g ∈ A(D).

◦ if hn ∈ A(D) and hn → h ∈ C(D), then hn|T is a sequence of analytic functions
which converges uniformly to h|T, which is therefore analytic, hence h ∈ A(D).
(T := R/(2πZ) = {z ∈ C : |z| = 1} ... 1-torus)

Thus A(D) is a closed unital subalgebra of C(D), i.e. a unital Banach subalgebra of
C(D).

Example 1.1.11 Let X be a compact subset of C. We introduce three unital closed
subalgebras of (C(X ), ‖.‖∞) as follows.

4



1. Preliminaries

◦ The first one, denoted by A(X ), is the algebra of all functions f : X → C which
are continuous on X and holomorphic on the interior X ◦ of X . Obviously, A(X )
is complete since the uniform limit of a sequence of holomorphic functions is holo-
morphic.

◦ The second one, P (X ), is the subalgebra of C(X ) consisting of all functions which
are uniform limits of polynomial functions on X where the constant polynomial 1
is the identity.

◦ And finally, the third one, R(X ), is the subalgebra of C(X ) of all functions which
are uniform limits on X of rational functions p/q, where p und q 6= 0 are polyno-
mials.

Note that we always have P (X ) ⊆ R(X ) ⊆ A(X ) and that equality holds at either place
can be interpreted as a result in approximation theory.

Example 1.1.12 Let a, b ∈ R with a < b, and for each n ∈ N let Cn([a, b]) denote the
space of all n-times continuously differentiable complex-valued functions defined on the
closed interval [a, b], with the usual convention about one-sided derivatives at the end
points of the interval. With pointwise operations and the norm

‖f‖n =
n∑
k=0

1

k!
‖f (k)‖∞, f ∈ Cn([a, b]),

where f (k) denotes the kth derivative of f , Cn([a, b]) becomes a commutative Banach
algebra. To verify this, we first show that the norm is submultiplicative. For f, g ∈
Cn([a, b]),

‖fg‖n =

n∑
k=0

1

k!
‖(fg)(k)‖∞

=

n∑
k=0

1

k!

∥∥∥∥∥
k∑
j=0

(
k

j

)
f (j)g(k−j)

∥∥∥∥∥
∞

=
n∑
k=0

∥∥∥∥∥
k∑
j=0

1

j!(k − j)!
f (j)g(k−j)

∥∥∥∥∥
∞

≤
n∑
k=0

k∑
j=0

1

j!
‖f (j)‖∞

1

(k − j)!
‖g(k−j)‖∞

≤
n∑
l=0

n∑
j=0

1

j!
‖f (j)‖∞

1

l!
‖g(l)‖∞

= ‖f‖n‖g‖n.

Next, we claim that Cn([a, b]) is complete. To verify this, let (fm)m∈N be a Cauchy
sequence in Cn([a, b]). With a simple induction argument we eventually get fm → f in
Cn([a, b]).

5



1. Preliminaries

Example 1.1.13 Let (X ,S, µ) be a positive measure space, where X is a Banach space,
S a σ-algebra and µ a measure on S. Furthermore let L∞(X ,S, µ) denote the family
of all equivalence classes of essentially bounded µ-measurable complex-valued functions
on X . With the operations of addition, multiplication, and scalar multiplication of
equivalence classes obtained via pointwise operations on equivalence class representatives
and with the usual essential supremum norm

‖f‖∞ = ess sup
x∈X

|f(x)| = inf
M
{M ≥ 0 : µ({x ∈ X : |f(x)| > M}) = 0}, f ∈ L∞(X ,S, µ)

it can be shown that L∞(X ,S, µ) is a commutative Banach algebra with identity.

Example 1.1.14 Let l1(Z) denote the vector space of complex sequences (an)n∈Z in-
dexed by Z such that

‖a‖ =
∑
n∈Z
|an| <∞,

thus making it a Banach space. We define a product ∗ such that if a = (an)n∈Z and
b = (bn)n∈Z are in l1(Z) then the nth entry of a ∗ b is

(a ∗ b)n =
∑
m∈Z

ambn−m.

This series is absolutely convergent, and a ∗ b ∈ l1(Z) since

‖a ∗ b‖ =
∑
n

|(a ∗ b)n| =
∑
n

∣∣∣∑
m

ambn−m

∣∣∣
≤
∑
m,n

|am||bn−m| =
∑
m

|am|
∑
n

|bm−n| = ‖a‖‖b‖ <∞.

It is easy to verify that ∗ is associative and linear in each variable. Therefore l1(Z)
is a (commutative) Banach algebra with identity e0 = (. . . , 0, 1, 0, . . . ). Note that e =
(1, 1, 1, . . . ) is not in l1(Z).

Example 1.1.15 Given f ∈ C(T) and n ∈ Z, where T = {z ∈ C : |z| = 1} = {eit :
0 ≤ t ≤ 2π} denotes the 1-torus, we define the nth Fourier coefficient cn of f by

cn(f) =
1

2π

∫ 2π

0
f(eit)e−intdt.

Let W (T) denote the space of all absolutely convergent Fourier series
∑
n∈Z

cn(f)eint,

which is often referred to as the Wiener algebra. So we have f ∈ W (T) if and only if
(cn(f))n∈Z ∈ l1(Z) (the space of all sequences whose series is absolutely convergent in
Z).
Conversely, for (cn)n∈Z ∈ l1(Z), define f ∈W (T) by

f(eit) =
∑
k∈Z

cke
ikt, t ∈ [0, 2π].

6



1. Preliminaries

Then we get for each n ∈ Z

cn(f) =
1

2π

∫ 2π

0

(∑
k∈Z

cke
ikt

)
e−intdt =

1

2π

∑
k∈Z

ck

∫ 2π

0
eit(k−n)dt = cn.

We claim that W (T) with pointwise multiplication and equipped with the norm

‖f‖W (T) =
∑
n∈Z
|cn(f)|

is a commutative unital Banach algebra with the constant function 1 as its identity.
Indeed, clearly W (T) is a Banach space and isometrically isomorphic to l1(Z) with the
isomorphism given by the Fourier transform.
For f, g ∈W (T) and n ∈ Z we have

cn(fg) =
1

2π

∫ 2π

0
f(eit)e−int

(∑
k∈Z

ck(g)e−ikt

)
dt

=
1

2π

∑
k∈Z

ck(g)

∫ 2π

0
f(eit)e−it(n−k)dt =

∑
k∈Z

ck(g)cn−k(f),

which implies

‖fg‖W (T) =
∑
n∈Z
|cn(fg)| ≤

∑
j∈Z
|cj(f)| ·

∑
k∈Z
|ck(g)| = ‖f‖W (T) · ‖g‖W (T).

The Wiener algebra W (T) will reappear in Section 2.3 where it will play a major role in
Wiener’s theorem.

Example 1.1.16 Let

A =

{(
α β
0 α

)
: α, β ∈ C

}
be an algebra under the usual addition und multiplication of matrices. We claim that
A is a Banach algebra under the norm∥∥∥∥(α β

0 α

)∥∥∥∥ = |α|+ |β|.

We only show completeness, the rest is clear. Suppose that (An)n∈N ⊆ A is a Cauchy
sequence. Since

‖An −Am‖ = |αn − αm|+ |βn − βm| (m ∈ N),

we know that (αn) and (αm) are Cauchy sequences, hence αn → α and βn → β for some

α and β. It is then straightforward to see that An →
(
α β
0 α

)
.

7



1. Preliminaries

In the next theorem we want to establish a link between a so called derivation on a
Banach algera A and a continuous automorphism on A. But first we will show a slight
alteration of the well-known Leibniz rule.

Lemma 1.1.17 (Leibniz’s rule) A derivation on an algebra A is a linear mapping D
of A into A such that

D(xy) = x(Dy) + (Dx)y, x, y ∈ A.

Let D be a derivation on A. Then D satisfies (with the convention that D0 = I) the
Leibniz rule

Dn(xy) =

n∑
j=0

(
n

j

)
(Djx)(Dn−jy) for all x, y ∈ A, n ∈ N. (1.1)

Proof. We use induction on n.

◦ n = 1 :

D1(xy) =
1∑
j=0

(
1

j

)
(Djx)(D1−jy) =

(
1

0

)
D0xD1y +

(
1

1

)
D1xD0y

= x(Dy) + (Dx)y.

◦ n→ n+ 1 :

Dn+1(xy) = Dn(xy)D(xy)

=
n∑
j=0

(
n

j

)(
(Djx)(Dn−jy)

)(
D0xD1y +D1xD0y

)
=

n∑
j=0

(
n

j

)(
(Djx)(Dn−j+1y) + (Dj+1x)(Dn−jy)

)
=

n∑
j=0

(
n

j

)(
Dj+1xDn−jy +DjxDn+1−jy

)
=

(
n+ 1

0

)
x(Dn+1y) +

(
n+ 1

n+ 1

)
(Dn+1x)y

+

n∑
j=1

((
n

j − 1

)
+

(
n

j

))
(Djx)(Dn+1−jy)

=

n∑
j=1

(
n+ 1

j

)
(Djx)(Dn+1−jy)

=

n+1∑
j=0

(
n+ 1

j

)
(Djx)(Dn+1−jy).

8
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Corollary 1.1.18 Let D be a derivation on an algebra A. Then the following statements
hold.

(i) D(xn) = nxn−1Dx⇐⇒ xDx = (Dx)x, n− 1 ∈ N.

(ii) if D2x = 0, then Dn(xn) = n!(Dx)n, n ∈ N.

Proof.
(i) follows directly by induction.
(ii) Let D2x = 0. Then, by induction,

D(Dx)n = 0, n ∈ N.

Assume that Dn−1(xn−1) = (n−1)!(Dx)n−1. Then it follows that Dn(xn−1) = 0. Hence,
by the Leibniz rule (1.1), we get

Dn(xn) = Dn(xxn−1)

= xDn(xn−1) +

(
n

1

)
(Dx)Dn−1(xn−1) + . . . +

(
n

n

)
(Dnx)xn−1

= n(Dx)Dn−1(xn−1)

= n(Dx)(n− 1)!(Dx)n−1

= n!(Dx)n.

Example 1.1.19 For y ∈ A, let dy : A → A be defined by

dy(x) = xy − yx, x ∈ A.

Then dy is a derivation on A. Each such derivation is called an inner derivation. If A is
a normed algebra, each inner derivation dy is continuous and ‖dy‖ ≤ 2‖y‖. Obviously,
A is commutative if and only if 0 is the only inner derivation.

Theorem 1.1.20 (Singer-Wermer) Let D be a continuous derivation on a Banach
algebra A. Then

expD : A → A, (expD)(x) =
∞∑
n=0

1

n!
Dnx, x ∈ A,

is a continuous automorphism on A.

Proof. It is easy to check that expD is bounded:

‖ expD‖ = ‖
∞∑
n=0

1

n!
Dn‖ ≤

∞∑
n=0

1

n!
‖D‖n = exp ‖D‖.

Furthermore, expD is obviously linear.

9
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And since we have

(expD)(xy) =

∞∑
n=0

1

n!
Dn(xy)

(1.1)
=

∞∑
n=0

1

n!

n∑
j=0

(
n

j

)
(Djx)(Dn−jy)

=

∞∑
n=0

n∑
j=0

1

j!
(Djx)

1

(n− j)!
(Dn−jy)

=

( ∞∑
n=0

1

n!
Dnx

)( ∞∑
n=0

1

n!
Dny

)
= (expD)(x)(expD)(y)

for all x, y ∈ A, expD is multiplicative. Thus expD is an algebra homomorphism. It is
easy to see that for any commutative operators S and T

exp(S + T ) = exp(S) · exp(T ).

Thus expD has an inverse exp(−D) (which is also continuous) and therefore is an
automorphism.

Next we wish to examine in detail how to embed an algebra without identity into an
algebra with identity. Suppose that A is an algebra without identity and denote by Ae
the set of all pairs (x, λ), x ∈ A, λ ∈ C, that is a point set Ae = A×C. Then Ae becomes
an algebra if the linear space operations and multiplications are defined by

(i) (x, λ) + (y, µ) = (x+ y, λ+ µ)

(ii) µ(x, λ) = (µx, µλ)

(iii) (x, λ)(y, µ) = (xy + λy + µx, λµ) for all x, y ∈ A and λ, µ ∈ C.

We will only verify (iii) as (i) and (ii) are trivial. Let x, y, z ∈ A and λ, µ, ν ∈ C.

◦ Bilinearity:

(α(x, λ) + β(y, µ))(z, ν) = (αx+ βy, αλ+ βµ)(z, ν)

= (ανx+ βνy + αλz + βµz, αλν + βµν)

= (ανx+ αλz, αλν) + (βνy + βµz, βµν)

= α(x, λ)(z, ν) + β(y, µ)(z, ν) for all α, β ∈ C.

◦ Associativity:

((x, λ)(y, µ))(z, ν) = (xy + λy + µx, λµ)(z, ν)

= ((xy + λy + µy)z + λµz + ν(xy + λy + µy), λµν)

= (xyz + λyz + µyz + λµz + νxy + νλy + νµy), λµν)

= (x, λ)(yz + µz + νy, µν)

= (x, λ)((y, µ)(z, ν)).

10
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A simple calculation shows that the element e = (0, 1) is an identity for Ae:

(x, λ)(0, 1) = (1x+ λ0, λ1) = (x, λ)

= (λ0 + 1x, λ1) = (0, 1)(x, λ)

A is a subalgebra of Ae if we identify x with (x, 0): (., .)(., .) is clearly well-defined
and (x, 0)(y, 0) = (xy, 0). Moreover, the mapping x 7→ (x, 0) is an algebra isomorphism
of A onto an ideal of codimension 1 in Ae.2
Evidently, Ae is commutative if and only if A is commutative:

(x, λ)(y, µ) = (xy + λy + µx, λµ) = (yx+ µx+ λy, µλ) = (y, µ)(x, λ).

Now suppose that A is a normed algebra. We introduce a norm on Ae by

‖(x, λ)‖ = ‖x‖+ |λ|, x ∈ A, λ ∈ C.

This turns Ae into a normed algebra and a Banach algebra provided that A is complete.
Indeed, for x, y ∈ A and λ, µ ∈ C we have

‖(x, λ)(y, µ)‖ = ‖(xy + λy + µx, λµ)‖
= ‖xy + λy + µx‖+ |λµ|
≤ ‖x‖‖y‖+ |λ|‖y‖+ |µ|‖x‖+ |λ||µ|
= (‖x‖+ |λ|)(‖y‖+ |µ|)
= ‖(x, λ)‖+ ‖(y, µ)‖.

The norm of the unit e is one:

‖e‖ = ‖(0, 1)‖ = ‖0‖+ |1| = 1.

As (x, λ) = (x, 0) + λ(0, 1), it is customary to write elements (x, λ) as x+ λe.
In the succeeding chapters we shall always use the symbol Ae to denote the algebra
with identity obtained from an algebra without identity by the previously developed
construction. This process is usually referred to as that of adjoining an identity to A
and Ae is called the unitization of A. It should be noted that even when A has an
identity we can still contruct Ae, however the identity for A is not the identity for Ae.
This observation will be useful at times.
The general utility of Ae lies in the fact that algebras with identity are often easier to
deal with than algebras without identity, and one can often deduce properties of A by
examining a related property in Ae.
If A lacks an identity , then an approximate identity oftern serves as a good substitute.
We proceed by introducing this notion.

Definition 1.1.21 Let A be a normed algebra. A left (right) approximate identity for
A is a net (eλ)λ∈Λ in A such that eλx→ x (xeλ → x) for each x ∈ A.
An approximate identity for A is a net (eλ)λ∈Λ which is both a left and a right appro-

ximate identity. A (left or right) approximate identity (eλ)λ∈Λ is bounded by C > 0
if

‖eλ‖ ≤ C for all λ ∈ Λ.
2We will discuss ideals and their role in Banach algebra theory in Section 2.1.
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Definition 1.1.22 A has left (right) approximate units if, for each x ∈ A and ε > 0
there exists u ∈ A such that ‖x − ux‖ ≤ ε (‖x − xu‖ ≤ ε), and A has an approximate
unit if, for each x ∈ A and ε > 0, there exists u ∈ A such that ‖x − ux‖ ≤ ε and
‖x − xu‖ ≤ ε. A has a (left or right) approximate unit bounded by C > 0, if the
element u can be chosen such that ‖u‖ ≤ C.

Lemma 1.1.23 Let (eλ)λ and (fµ)µ be bounded left and right approximate identities for
A, repectively. Then the net

(eλ + fµ − fµeλ)λ,µ (λ, µ ∈ Λ),

is a bounded approximate identity for A.

Proof. Let gλ,µ = eλ + fµ − fµeλ. Then we get for any x ∈ A

‖gλ,µx− x‖ = ‖(eλ + fµ − fµeλ)x− x‖
= ‖(eλx− x) + fµ(x− eλx)‖
≤ (1 + ‖fµ‖)‖eλx− x‖,

and similarly

‖xgλ,µ − x‖ ≤ (1 + ‖eλ‖)‖x− xfµ‖.

Hence (gλ,µ)λ,µ is an approximate identity for A. Cleary (gλ,µ)λ,µ is bounded since

‖gλ,µ‖ = ‖eλ + fµ − fµeλ‖ ≤ ‖eλ‖+ ‖fµ‖+ ‖eλ‖‖fµ‖.

Proposition 1.1.24 Let A be a normed algebra and let C > 0. Then the following three
conditions are equivalent.

(i) A has left approximate units bounded in C.

(ii) Given finitely many elements x1, . . . , xn in A and ε > 0, there exists u ∈ A such
that ‖u‖ ≤ C and ‖xj − uxj‖ ≤ ε for j = 1, . . . , n.

(iii) A has a left approximate identity bounded by C.

Proof. See [Kan], Section 1.1, Proposition 1.1.11, p.7.

Example 1.1.25 We claim that the Banach space L1([0, 1]) with

(fg)(t) =

∫ t

0
f(t− s)g(s)ds, f, g ∈ L1([0, 1]), t ∈ [0, 1]

is a non-unital commutative Banach algebra. For that purpose we proceed as follows.
We show that L1([0, 1]) has no identity but there exists a net (ei)i∈I with

lim
i∈I

eif = f, f ∈ L1([0, 1]), sup
i∈I
‖ei‖ <∞.

12
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Let e be an identity. Then

1 = (e · 1)(t) =

∫ t

0
e(s)ds, t ∈ [0, 1]

which is impossible for e ∈ L1.

Let ei ≥ 0 with

∫ 1

0
ei dt = 1, i ∈ I and supp(ei) ⊆ [0, 1

i ]. Then for f ∈ C([0, 1])

(f − fei)(t) =

∫ 1
i

0
(f(t)− f(t− s))ei(s)ds −→ 0 uniformly in t.

(Recall that C([0, 1]) is dense in L1([0, 1]).)

1.2. Invertibility

A major key in understanding Banach algebras is the notion of invertibility3. It is closely
linked to the spectrum of a Banach algebra element which we will get acquainted with
in the next section.

Definition 1.2.1 Let A be a complex algebra with identity e. An element x ∈ A is
called invertible if there exists y ∈ A such that xy = yx = e. Then y is called the
inverse, denoted x−1, of x. Let G(A) denote the set of all invertible elements.

Remark 1.2.2 We mention some basic properties of G(A).

◦ For x ∈ A, 0x = x0 = 0 6= e implies 0 6= G(A), thus G(A) 6= A.

◦ If x ∈ A has a left and a right inverse, i.e. zx = e = xy for some y, z ∈ A, then it
follows from

z = ze = z(xy) = (zx)y = ey = y

that x ∈ G(A) and y = z = x−1. Hence inverses are unique.

◦ G(A) is a group, since it has an identity e, an inverse x−1 and multiplication is
associative.

◦ For x, y ∈ G(A) and λ ∈ C \ {0} we have

(xy)−1 = y−1x−1 and λx ∈ G(A) with (λx)−1 =
1

λ
x−1.

Definition 1.2.3 Let A be an algebra with identity. If each x ∈ A, x 6= 0, is invertible,
then A is called a division algebra.

3As Gelfand used to say: “It’s all about invertibility!”
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Example 1.2.4 If X is a compact topological space then

G(C(X )) = {f ∈ C(X ) : f(x) 6= 0 for all x ∈ X}.

Indeed, if f(x) 6= 0 for all x ∈ X then we can define g : X → C, x 7→ f(x)−1. The
function g is then continuous with fg = 1. Conversely, if x ∈ X and f(x) = 0 then
fg(x) = f(x)g(x) = 0 so fg 6= 1 for all g ∈ C(X ), thus f is not invertible.

Example 1.2.5 We claim that if X is a Banach space, then

G(B(X )) ⊆ {T ∈ B(X ) : kerT = {0}}.

If kerT 6= {0}, then T is not injective, so cannot be invertible. If X is finite-dimensional
and kerT = {0}, then T is surjective, therefore T is an invertible linear map. Since X
is finite-dimensional, the linear map T−1 is bounded, so T is invertible in B(X ). Hence

G(B(X )) = {T ∈ B(X ) : kerT = {0}}, if dimX <∞.

On the other hand, if X is infinite-dimensional then we generally have

G(B(X )) ( {T ∈ B(X ) : kerT = {0}}.

For example, let X = H be an infinite-dimensional Hilbert space with orthonormal basis
(en)n≥1. Consider the operator T ∈ B(H) definied by Ten = 1

nen for n > 0. It is easy
to see that kerT = {0}. However, T is not invertible. Indeed, if S ∈ B(H) with ST = I
then Sen = S(nTen) = nSTen = nen, and consequently ‖Sen‖ = n → ∞. Hence S is
not bounded, which is a contradiction.

Example 1.2.6 An element x 6= 0 of a Banach algebra A is called a topological divisor
of zero if there exists a sequence (xn)n∈N in A such that

◦ ‖xn‖ = 1 for all n ∈ N and

◦ xxn → 0 as n→∞.

As it turns out, topological divisors of zero are not invertible. Indeed, let A be a unital
Banach algebra and x ∈ A a topological divisor of zero. Suppose that x is invertible.
Then there exists x−1 ∈ A such that x−1x = e. Now

1 = ‖xn‖ = ‖exn‖ = ‖x−1xxn‖ ≤ ‖x−1‖‖ xxn︸︷︷︸
→0

‖ → 0,

which is impossible.
The converse is not necessarily true, i.e. not every element that is not invertible, is

automatically a topological divisor of zero. For more details, see [Zel], Section 14, p.57.

Next, we want to find conditions that guarantee the invertibility of an element of a unital
Banach algebra.
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Theorem 1.2.7 Let A be a Banach algebra with identity e and let x ∈ A with ‖x‖ < 1.
Then (e− x) ∈ G(A) and

(e− x)−1 =
∞∑
n=0

xn. (x0 := e)

Proof. Since ‖xn‖ ≤ ‖x‖n and ‖x‖ < 1 it follows that

∞∑
n=0

‖xn‖ ≤
∞∑
n=0

‖x‖n =
1

1− ‖x‖
,

hence the series

∞∑
n=0

xn is absolutely convergent. Let yN =
N∑
n=0

xn. We observe that

yN (e− x) = (e− x)yN = (e− x)(1 + x+ x2 + . . . + xN ) = e− xN+1 → e as N →∞.

Since multiplication is continuous by Lemma 1.1.4, we get that y(e− x) = (e− x)y = e,
which shows that (e− x) ∈ G(A) and (e− x)−1 = y.

The following corollary will turn out to be quite useful.

Corollary 1.2.8 If A is a unital Banach algebra, then G(A) is an open subset of A.

Proof. Let x ∈ G(A) and let rx = ‖x−1‖−1. We claim that the open ball B(x, rx) =
{y ∈ A : ‖x− y‖ < rx} is contained in G(A). If y ∈ B(x, rx) then ‖x− y‖ < rx and

y = (x− (x− y))x−1x = (e− (x− y)x−1)x.

Since ‖(x− y)x−1‖ < rx‖x−1‖ < 1, the element e− (x− y)x−1 is invertible by Theorem
1.2.7. Hence y is the product of two invertible elements, so y ∈ G(A). This shows that
every element of G(A) lies in an open ball which is contained in G(A), hence G(A) is
open.

Corollary 1.2.9 Let A be a unital Banach algebra. Then the mapping ψ : G(A)→ G(A),
x 7→ x−1 is a homeomorphism.

Proof. Since (x−1)−1 = x, the map ψ is a bijection with ψ = ψ−1. So we only need to
show that ψ is continuous.

If x, y ∈ G(A) with ‖x − y‖ < 1
2‖x

−1‖−1, then using the triangle inequality and the
identity

x−1 − y−1 = x−1(y − x)y−1 (1.2)

we get

‖y−1‖ ≤ ‖x−1 − y−1‖+ ‖x−1‖ ≤ ‖x−1‖‖x− y‖‖y−1‖+ ‖x−1‖ ≤ 1

2
‖y−1‖+ ‖x−1‖,

15
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so ‖y−1‖ ≤ 2‖x−1‖. Using (1.2) again, we obtain

‖ψ(x)− ψ(y)‖ = ‖x−1 − y−1‖ ≤ ‖x−1‖‖x− y‖‖y−1‖ ≤ 2‖x−1‖2‖x− y‖,

which shows that ψ is continuous at x.

Lemma 1.2.10 Let A be a Banach algebra with identity and (xn)n∈N ∈ G(A) such that

xn → x ∈ A \ G(A) as n→∞.

Then

(i) lim
n→∞

‖x−1
n ‖ =∞.

(ii) there exists (yn)n∈N ∈ A, ‖yn‖ = 1, such that lim
n→∞

xyn = lim
n→∞

ynx = 0.

Proof.

(i) Suppose that there exists a constant C > 0 such that ‖x−1
n ‖ ≤ C for all n, then

‖x−1
n (x−xn)‖ < 1 for n sufficiently large, which means that e+x−1

n (x−xn) ∈ G(A)
by Theorem 1.2.7 and x = xn(e+ x−1

n (x− xn)) ∈ G(A). Contradiction.

(ii) Let yn = 1
‖x−1
n ‖

x−1
n . Then

‖xyn‖ =
‖xx−1

n ‖
‖x−1

n ‖

=
‖(x− xn)x−1

n + e‖
‖x−1

n ‖

≤ ‖(x− xn)x−1
n ‖+ ‖e‖

‖x−1
n ‖

≤ ‖x− xn‖+
‖e‖
‖x−1

n ‖
−→ 0

as n→∞. Hence xyn → 0. Similarly we can show ynx→ 0.

Definition 1.2.11 Let A be an algebra. An element x ∈ A is called quasi-invertible, if
there exists some y ∈ A such that

xy + x+ y = yx+ x+ y = 0.

Then y, denoted by x−1, is called the quasi-inverse of x. Let Q(A) denote the set of all
quasi-invertible elements (note that 0 ∈ Q(A)).

Proposition 1.2.12 Let A be an algebra with identity e. Then (e + x) is invertible if
and only if x is quasi-invertible.
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Proof. Let y = ỹ − e. Then

(e+ x) ∈ G(A)⇐⇒ ∃ ỹ : (e+ x)ỹ = e = ỹ(e+ x)

⇐⇒ ∃ y : (e+ x)(y + e) = e = (y + e)(e+ x)

⇐⇒ ∃ y : y + e+ xy + x = e = y + yx+ e+ x

⇐⇒ ∃ y : xy + x+ y = 0 = yx+ x+ y

⇐⇒ x ∈ Q(A).

Remark 1.2.13 Let A be a unital algebra and x ∈ A.

◦ As inverses, quasi-inverses are unique. Indeed, let y, z ∈ A be two quasi-inverses
of x. Then

(e+ y)(e+ x) = (e+ z)(e+ x) = e,

so (e+ y) = (e+ z) by uniqueness of inverses and hence y = z.

◦ It is easily checked that if x is quasi-invertible then

(e+ x)−1 = (e+ x−1),

since
(e+ x−1)(e+ x) = e+ x+ x−1 + x−1x = e+ 0 = e.

Theorem 1.2.14 Let A be a Banach algebra with identity e and let x ∈ A with ‖x‖ < 1.
Then x ∈ Q(A).

Proof. By Theorem 1.2.7, ‖x‖ = ‖e − (e − x)‖ < 1 implies that (e − x) ∈ G(A), hence
x ∈ Q(A).

Similarly, one can show that Q(A) is an open subset of A (see Corollary 1.2.8) and
that the mapping Q(A)→ Q(A), x 7→ x−1 is continuous (see Corollary 1.2.9).

1.3. Spectrum, resolvent set and spectral radius

In this section we introduce the basic concept of the spectrum of an element of a Ba-
nach algebra and establish various important results about spectra. We begin with the
definition of a spectrum and then prove some fundamental theorems (such as Gelfand-
Mazur), the most important one of these being that the spectrum of a Banach algebra
is a nonempty compact subset of C. After that we will provide a proof for the spectral
mapping theorem and the spectral radius formula.

Definition 1.3.1 Let A be a Banach algebra with identity e. For x ∈ A the set

σA(x) = {λ ∈ C : λe− x /∈ G(A)}

is called the spectrum of x in A, and the complement ρA(x) = C\σA(x) the resolvent set
of x. When A does not have an identity, we define σA(x) and ρA(x) by σA(x) = σAe(x)
and ρA(x) = ρAe(x).
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Theorem 1.3.2 For a Banach algbera A and x ∈ A

σA(x) ∪ {0} = σAe(x).

Proof. Suppose that A does not have an identity. Then 0 ∈ σA(x) because otherwise
x−1x ∈ A. Hence we get σA(x) ∪ {0} = σA(x) = σAe(x).

Now suppose that A has an identity u. For y ∈ A we can verify that

(u− y) ∈ G(A)⇔ (e− y) ∈ G(Ae).

Indeed, if (u − y) ∈ G(A) and (u − y)−1 = z + u, z ∈ A, then (e − y)(z + e) = e =
(z+ e)(e− y). Conversely, if (e− y) ∈ G(Ae) and (e− y)−1 = z+ µe, z ∈ A, µ ∈ C, then
we get µ = 1 and (u− y)(z + u) = u = (z + u)(u− y).

This implies, for λ 6= 0 and x ∈ A, that

λu− x = λ(u− 1

λ
x) /∈ G(A)⇔ λe− x = λ(e− 1

λ
x) /∈ G(Ae),

which is equivalent to λ ∈ σA(x)⇔ λ ∈ σAe(x). Thus σA(x) \ {0} = σAe(x) \ {0}. And
since 0 ∈ σAe(x) this shows that σA(x) ∪ {0} = σAe(x).

Remark 1.3.3

◦ In most cases, whenever the algebra A under consideration is understood, we
simply write σ(x) and ρ(x) for x ∈ A.

◦ Let A be a unital Banach algebra and x ∈ A. For all λ 6= 0 we have

λ ∈ σ(x)⇔ (λe−x) /∈ G(A)⇔ (e−x
λ

) /∈ G(A)⇔ x

λ
/∈ Q(A) by Proposition 1.2.12.

Example 1.3.4 We have σ(λe) = {λ} for any λ ∈ C.

Example 1.3.5 Let X be a compact Hausdorff space. If f ∈ C(X ), then

σC(X )(f) = f(X ) = {f(x) : x ∈ X}.

Indeed,

λ ∈ σC(X )(f)⇐⇒ λe− f /∈ G(C(X ))

⇐⇒ (λe− f)(x) = 0 for some x ∈ X (by Example 1.2.4 )

⇐⇒ λ = f(x) for some x ∈ X
⇐⇒ λ ∈ f(X ).

Example 1.3.6 Let X be a locally compact, noncompact Hausdorff space and let f ∈
C0(X ). We claim that

σC0(X )(f) = f(X ) ∪ {0}.

18
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Since C0(X ) does not have an identity, we have {0}∪ f(X ) ⊆ σC0(X )(f). Conversely, let
λ 6= 0 such that λ /∈ f(X ). Then the function λ− f(x) is invertible in

C0(X )e = C0(X ) + C · 1X .

Define the function g by

g(x) =
f(x)

1− 1
λf(x)

, x ∈ X .

Then g is continuous on X by hypothesis. Furthermore, because f vanishes at infinity,
so does g. Hence g ∈ C0(X ) and(

1

λ
+ g(x)

)
(λ− f(x)) =

1 + f(x)(λ− 1
λ)

λ− f(x)
(λ− f(x)) = 1

for all x ∈ X and f ∈ C0(X ). This proves that σC0(X )(f) = f(X ) ∪ {0}.

Example 1.3.7 If X is a finite-dimensional Banach space and T ∈ B(X ), then

σ(T ) = {λ ∈ C : λ is an eigenvalue of T}.

Indeed,

λ ∈ σ(T )⇐⇒ T − λ /∈ G(B(X ))

⇐⇒ ker(λI − T ) 6= {0} (by Example 1.2.4)

⇐⇒ (λI − T )(x) = 0 for some nonzero x ∈ X
⇐⇒ Tx = λx for some nonzero x ∈ X
⇐⇒ λ is an eigenvalue of T.

If X is an infinite-dimensional Banach space, then a similar argument can be made:
σ(T ) contains the eigenvalues of T , but generally this inclusion is strict.

Lemma 1.3.8 Let A be a unital Banach algebra and x ∈ G(A). Then

σ(x−1) = {λ−1 : λ ∈ σ(x)}.

Proof. Since x and x−1 are invertible, 0 is not in σ(x) or σ(x−1). If λ ∈ C \ {0} then
λ−1 − x−1 = λ−1(x− λ)x−1 by (1.2). Since λ−1(x− λ) and x−1 commute we have

λ ∈ σ(x)⇔ x− λe /∈ G(A)⇔ λ−1 − x−1 /∈ G(A)⇔ λ−1 ∈ σ(x−1).

Lemma 1.3.9 Let A be a unital Banach algebra and let x, y ∈ A. Then

σ(xy) \ {0} = σ(yx) \ {0}.

Proof. Suppose that (e− yx) ∈ G(A). Then there exists z ∈ A such that

z(e− yx) = (e− yx)z = e.
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◦ First we verify z(e− yx) = e:

(e+ yzx)(e− yx) = ee+ eyzx− eyx− yzxyx
= e+ yzx− yx− yzxyx
= e+ x(yz − y − yzxy)

= e+ x(y(z − zxy)− y)

= e+ x(y(z(e− xy))− y)

= e+ y(ye− y)

= e.

◦ Now we check (e− yx)z = e:

(e− yx)(e+ yzx) = e− yx+ yzx− yxyzx
= e+ x(−y + yz − yxyz)
= e+ x(y(z − xyz)− y)

= e+ x(y(z(e− xy))− y)

= e.

In a similar way, we can prove that (e− xy) ∈ G(A). Now let λ ∈ C \ {0}. Then

xy − λe = −λ(e− xλ−1y) and yx− λe = −λ(e− yλ−1x),

i.e. xy − λe ∈ G(A) ⇔ yx − λe ∈ G(A). So we have λ ∈ ρ(xy) ⇔ λ ∈ ρ(yx) and
eventually

σ(xy) \ {0} = (C \ ρ(xy)) \ {0} = C \ (ρ(xy) ∪ {0})
= C \ (ρ(yx) ∪ {0}) = (C \ ρ(yx)) \ {0}
= σ(yx) \ {0}.

Definition 1.3.10 Let A be a Banach algebra. The spectral radius of an element x ∈ A
is the number

rA(x) = r(x) = sup{|λ| : λ ∈ σ(x)}.

Remark 1.3.11 Obviously, r(λx) = |λ|r(x) for λ ∈ C. The spectral radius is the radius
of the smallest closed circular disc in C, with center at 0, which contains σ(x). Clearly,
the definition given above makes no sense if σ(x) is empty. But this never happens, as
we shall see in Theorem 1.3.16.

Example 1.3.12 If X is a compact Hausdorff space and f ∈ C(X ), then

r(f) = sup{|λ| : λ ∈ σ(f)} = sup{|λ| : λ ∈ f(X )} = ‖f‖.
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Example 1.3.13 To see that strict inequality is possible, take X = C2 with the usual

Hilbert space norm and let T ∈ B(X ) be the operator with matrix

(
0 1
0 0

)
. Since

det(T − λI) = λ2, the only eigenvalue of T is 0 and so σ(T ) = {0} by Example 1.3.4.
Thus r(T ) = 0 < 1 = ‖T‖.

The following theorem is one the most fundamental results in the theory of Banach
algebras. The proof given here is the standard one involving an application of Liouville’s
theorem. This use of Liouville’s theorem is the first example of how the theory of
holomorphic functions of one complex variable enters the study of Banach algebras. An
alternative proof can be found in [Kan], Section 1.2, p.12.
Before we state the theorem, we first give a vector-valued version of Liouville.

Theorem 1.3.14 (Liouville) Every bounded entire function is constant. That is, every
holomorphic function f : C → C for which there exists a constant c ∈ R such that
|f(z)| ≤ c for all z ∈ C, is constant.

Lemma 1.3.15 Let X be a Banach space and suppose that f : C → X is an entire
function in the sense that 1

µ−λ(f(µ)− f(λ)) converges in X as µ→ λ, for every λ ∈ C.
If f is bounded, then f is constant.

Proof. Given a continuous linear functional ϑ ∈ X ′, let g = ϑ ◦ f : C→ C. Since

1

µ− λ
(g(µ)− g(λ)) = ϑ

( 1

µ− λ
(f(µ)− f(λ))

)
and |g(λ)| ≤ ‖g‖‖f(λ)‖,

the function g is entire and bounded. By Liouville’s theorem it is constant, so ϑ(f(λ)) =
ϑ(f(µ)) for all ϑ ∈ X ′ and λ, µ ∈ C. By the Hahn-Banach theorem it follows that
f(λ) = f(µ) for all λ, µ ∈ C. Hence f is constant.

We are now in a position to prove the fundamental theorem of Banach algebra
theory.

Theorem 1.3.16 Let A be a unital Banach algebra and x ∈ A. Then σ(x) is a nonempty
compact subset of C with σ(x) ⊆ {λ ∈ C : |λ| ≤ ‖x‖}.

Proof. The map f : C→ A, λ 7→ λe− x is continuous and

σ(x) = {λ ∈ C : f(λ) /∈ G(A)} = C \ f−1(G(A)).

Since G(A) is open by Corollary 1.2.8 and f is continuous, f−1(G(A)) is open and so
its complement σ(x) is closed. If |λ| > ‖x‖, then ‖λ−1x‖ = |λ|−1‖x‖ < 1 and hence
λe−x = λ(e−λ−1x) is invertible by Theorem 1.2.7, so λ /∈ σ(x). Thus σ(x) is contained
in the disc {λ ∈ C : |λ| ≤ ‖x‖}. In particular, σ(x) is bounded as well as closed, so σ(x)
is a compact subset of C.

We next show that σ(x) 6= ∅. If σ(x) = ∅, then the map

R : C→ A, λ 7→ (λe− x)−1
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is well-defined. For λ, µ ∈ C we can compute that

(λe− x)−1 = (λe− x)−1(µe− x)(µe− x)−1

= (λe− x)−1((µ− λ)e+ λe− x)(µe− x)−1

= ((µ− λ)(λe− x)−1 + e)(µe− x)−1

= (µ− λ)(λe− x)−1(µe− x)−1 + (µe− x)−1

and therefore, with λ 6= µ,

R(µ)−R(λ)

µ− λ
= −R(λ)R(µ).

Since R is continuous by Corollary 1.2.9, we conclude that R is an entire function with
derivate

R′(λ) = lim
µ→λ

R(µ)−R(λ)

µ− λ
= −R(λ)2.

Now ‖R(λ)‖ = ‖(λe−x)−1‖ = |λ|−1‖(e−λ−1x)−1‖ and e−λ−1x→ e as |λ| → ∞, so by
Corollary 1.2.9 we get (e−λ−1x)−1 → e. Consequently ‖R(λ)‖ → 0 as |λ| → ∞. So R is
a bounded entire function and therefore constant by Lemma 1.3.15. Since R(λ)→ 0 as
|λ| → ∞ we have R(λ) = 0 for all λ ∈ C. This is a contradiction since R(λ) is invertible
for any λ ∈ C.

Remark 1.3.17 Let A be a unital Banach algebra and x ∈ A. The map

Rλ(x) : ρ(x)→ A, λ 7→ (λe− x)−1

is called the resolvent of x in A.

The next theorem by Gelfand-Mazur is truly one of the most fundamental theorems
in the study of (commutative) Banach algebras. Its important role in the investigation
of such algebras will become apparent when we delevop Gelfand’s representation theory
for commutative Banach algebras in Chapter 2. The theorem turns out to be a simple
consequence of Theorem 1.3.16 and generalizes Frobenius’ classical theorem which states
that every finite-dimensional complex division algebra is isomorphic to the complex
number field.

Theorem 1.3.18 (Gelfand-Mazur) Let A be a Banach algebra with identity e, and
suppose that every nonzero element x of A is invertible. Then A is (isometrically)
isomorphic to the field of complex numbers.

Proof. Let x ∈ A. Since σ(x) 6= ∅ by Theorem 1.3.16, there exists λx ∈ C such that
λxe − x /∈ G(A). Since G(A) = A \ {0} by hypothesis, it follows that λxe = x. Then
λx is unique and the mapping x 7→ λx is an isomorphism of A onto C, which is also an
isometry, since |λx| = ‖λxe‖ = ‖x‖ for every x ∈ A.
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Remark 1.3.19 The Gelfand-Mazur theorem particularly asserts that every Banach
division algebra is commutative. If we drop our standard assumption that ‖e‖ = 1, then
we can only conclude that the isomorphism from A to C is continuous.
Mazur’s original proof, which depends on the submultilplicativity of the norm, can be
found in [Zel] pp.18.

This is good point at which to emphasize the advantages of considering only algebras
over C. If A is a normed division algebra over R, then it may be isomorphic to either
the complex numbers, the real numbers, or the quaternions H.

We additionally present two conditions on a Banach algebra A which ensure that it is
isomorphic to C.

Theorem 1.3.20 (Edwards) Let A be a unital Banach algebra. If

‖x−1‖ ≤ ‖x‖−1, x ∈ G(A),

then there exists an isometric isomorphism of A onto C.

Proof. In view of the Gelfand-Mazur theorem it is sufficient to show that A is a division
algebra, i.e. G(A) = A \ {0}.

Note that A\{0} is connected4, since any two points of A lie in a 2-dimensional linear
subspace of A, and C2 \ {0} is connected. By Lemma 1.2.8, G(A) is open in A, and
clearly also open in A \ {0}.

We show that G(A) is closed in A. To that end let xn → x be a convergent sequence
in A\{0} with xn ∈ G(A) for all n ∈ N. Therefore there exists ε > 0 such that ‖xn‖ ≥ ε
for all n ∈ N as well as ‖x‖ ≥ ε. But then we have

‖x−1
n ‖ ≤

1

‖xn‖
≤ 1

ε
, n ∈ N.

Hence we obtain

‖x−1
n − x−1

m ‖ ≤ ‖x−1
m (xn − xm)x−1

n ‖ ≤ ‖x−1
m ‖‖xn − xm‖‖x−1

n ‖ ≤
1

ε2
‖xn − xm‖

for all m ∈ N. Since (xn)n is a Cauchy sequence, (x−1
n )n is also a Cauchy sequence, and

so there exists some y ∈ A such that limn→∞ ‖x−1
n − y‖ = 0. But then

xy = lim
n→∞

(xn) lim
n→∞

(x−1
n ) = lim

n→∞
(xnx

−1
n ) = lim

n→∞
(e) = e,

and similarly yx = e, so y = x−1, and hence x ∈ G(A). Thus we see that G(A) is an open
and closed (“clopen”) subset of the connected set A \ {0}. Hence G(A) is either empty
or A \ {0} itself, but it cannot be empty since e ∈ G(A), whence G(A) = A \ {0}.

Corollary 1.3.21 (Mazur) Let A be a unital Banach algebra. If

‖xy‖ = ‖x‖‖y‖, x, y ∈ A,

then there exists an isometric isomorphism of A onto C.
4See Definition 2.4.10.

23



1. Preliminaries

Proof. If x ∈ G(A), then 1 = ‖e‖ = ‖xx−1‖ = ‖x‖‖x−1‖, whence ‖x−1‖ = ‖x‖−1.

Our next goal is to show the spectral radius formula which states that limn→∞ ‖xn‖
1
n

equals r(x). In order to establish this result we first need to prove another theorem,
which is of considerable interest in itself - the spectral mapping theorem for polynomials.
It represents a special case of a more general spectral mapping theorem in the context
of the holomorphic functional calculus for commutative Banach algebras (Section 3.1).

Definition 1.3.22 If x is an element of a unital Banach algebra A and p ∈ C[z] is a
complex polynomial, say p(z) = λ0 +λ1z+ . . . +λnz

n where λ0, λ1, . . . , λn are complex
numbers, then we write

p(x) = λ0e+ λ1x+ . . . + λnx
n.

Obviously p(x) is an element of A whenever x ∈ A. Consider the mapping

ϑx : C[z]→ A, p 7→ p(x).

It is easliy verified that ϑx is an algebra homomorphism. In particular, the range of ϑx
is a commutative subalgebra of A.

Theorem 1.3.23 (Polynomial spectral mapping theorem) If p is a complex poly-
nomial and x an element of a unital Banach algebra A, then

σ(p(x)) = p(σ(x)) = {p(λ) : λ ∈ σ(x)}.

Proof. If p is constant, say p = α, then p(x) = αe and hence σ(p(x)) = σ(αe) = {α} =
p(σ(x)).

So let p be non-constant and suppose that n = deg p ≥ 1. For now, fix any λ ∈ C and
let λ1, . . . , λn ∈ C be the roots of the polynomial q(z) = λ−p(z). Since C is algebraically
closed and by using the fundamental theorem of algebra we can write

λe− p(x) = (λ− p(z))(x) = α(λ1e− x) · . . . · (λne− x)

where α ∈ C \ {0}. Therefore λe− p(x) ∈ G(A)⇔ λie− x ∈ G(A) for all i = 1, . . . , n. It
follows that if λ ∈ σ(p(x)) then λi ∈ σ(x) for at least one i and hence λ = p(λi) ∈ p(σ(x)).
This shows σ(p(x)) ⊆ p(σ(x)).

Conversely, let µ ∈ σ(x) and put λ = p(µ). Then we get q(µ) = p(µ)− p(µ) = 0 and
thus µ = λi for some i. This means that λi ∈ σ(x) and consequently λe− p(x) /∈ G(A),
whence λ ∈ σ(p(x)).

Eventually, we are able to prove the spectral radius formula.

Theorem 1.3.24 (Spectral radius formula) The spectral radius of an element x of
a unital Banach algebra A is given by

r(x) = lim
n→∞

‖xn‖
1
n = inf

n∈N
‖xn‖

1
n .
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Proof. If λ ∈ σ(x) and n ∈ N, then λn ∈ σ(xn) by Theorem 1.3.23. So we have

|λ|n ≤ ‖xn‖ by Theorem 1.3.16. Hence |λ| ≤ ‖xn‖
1
n and r(x) ≤ infn∈N ‖xn‖

1
n . Now

consider the function

S :
{
λ ∈ C : |λ| < 1

r(x)

}
→ A, λ 7→ (e− λx)−1.

We observe that for |λ| < 1
r(x) we have r(λx) = |λ|r(x) < 1 by Theorem 1.3.23, so

(e − λx) ∈ G(A) and S(λ) is well-defined. Now, we can make the same argument as in
the proof of Theorem 1.3.16 to see that S is holomorphic. By Theorem 1.2.7 we have
S(λ) =

∑∞
n=0 λ

nxn for |λ| < 1
‖x‖ . If ϑ ∈ A′ with ‖ϑ‖ = 1, then the complex-valued

function f = ϑ ◦ S is given by the power series f(λ) =
∑∞

n=0 ϑ(xn)λn for |λ| < 1
‖x‖ .

Moreover, f is holomorphic for |λ| < 1
r(x) , so this series converges to f(λ) for |λ| < 1

r(x) .

Thus for R > r(x) we get

ϑ(xn) =
1

2πi

∫
|λ|= 1

R

1

λn+1
f(λ) dλ,

and obtain the estimate

|ϑ(xn)| ≤ 1

2π
· 2π

R
·Rn+1 · sup

|λ|= 1
R

|ϑ(S(λ))| ≤ RnM(R),

where M(R) = sup|λ|= 1
R
‖S(λ)‖, which is finite by the continuity of S on the compact

set
{
λ ∈ C : |λ| = 1

R

}
. Since S(λ) 6= 0 for any λ in the domain of S, we have M(R) > 0.

Hence

lim sup
n∈N

‖xn‖
1
n ≤ lim sup

n∈N
R(M(R))

1
n = R,

whenever R > r(x). We conclude that

r(x) ≤ inf
n∈N
‖xn‖

1
n ≤ lim inf

n∈N
‖xn‖

1
n ≤ lim sup

n∈N
‖xn‖

1
n ≤ r(x),

which completes the proof.

Next we want to show an interesting identity.

Corollary 1.3.25 If A is a unital Banach algebra and B is a closed unital subalgebra
of A, then

rA(y) = rB(y) for all y ∈ B.

Proof. The norm of an element of B is the same whether we measure it in B or in A.
By the spectral radius formula we get rA(y) = limn ‖yn‖

1
n = rB(y).
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Remark 1.3.26

◦ If X is a compact Hausdorff space, then it is evident that ‖f‖∞ = limn ‖fn‖
1
n∞ =

r(f), f ∈ C(X ). But for arbitrary Banach algebras it is not generally the case
that ‖x‖ = r(x), x ∈ A.

◦ Whether an element of A is or is not invertible in A is a purely algebraic property.
The spectrum and the spectral radius of some x ∈ A are thus defined in terms
of the algebraic structure of A, regardless of any metric (or topological) consi-

derations. On the other hand, limn ‖xn‖
1
n depends obviously on metric properties

of A. This is one of the remarkable features of the spectral radius formula. It
asserts the equality of certain quantities which arise in entirely different ways. So
by “enlarging” the algebra, the spectrum may change, but the spectral radius will
not.

Suppose that A is a Banach algebra with identity e and B is a closed subalgebra of
A which contains e. Given an element x of B, what can be said about the relationship
between σA(x) and σB(x)? The result, Theorem 1.3.28 below, together with its corollary,
provides considerable information on this relationship and will be employed several times
in Chapter 2.

For future references, we briefly recall the notion of topological boundary.

Definition 1.3.27 For any topological space X and subset Y of X , Y◦ denotes the
interior of Y and ∂(Y) denotes the topological boundary of Y; that is

Y◦ = X \ (X \ Y) and ∂(Y) = Y \ Y◦.

Theorem 1.3.28 (Shilov) Let A be a Banach algebra with identity e and B a closed
subalgebra of A containing e. If x ∈ B, then

(i) σA(x) ⊆ σB(x) and

(ii) ∂(σB(x)) ⊆ ∂(σA(x)).

Proof.

(i) Clearly, if λe− x /∈ G(B), then λe− x /∈ G(A).

(ii) It suffices to show that ∂(σB(x)) ⊆ σA(x), because then

∂(σB(x)) ⊆ σA(x) ∩ ρB(x) ⊆ σA(x) ∩ ρA(x) = ∂(σA(x)).

Let λ ∈ ∂(σB(x)) and set y = λe−x. Then y /∈ G(B) and there exists a sequence (λn)n∈N
in ρB(x) with limn→∞ λn = λ. Hence for yn = λne− x we have yn ∈ G(B) and yn → y.
Let zn = y−1

n , n ∈ N. Then ‖zn‖ → ∞ as n→∞. Indeed this is true, because otherwise
there exists C > 0 and a subsequence (znk)k such that ‖znk‖ ≤ C for all k and thus

‖e− znky‖ = ‖znk(ynk − y)‖ ≤ C‖ynk − y‖ → 0 as k →∞.
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So it follows that znky is invertible for large k, and hence y is invertible in B, which is a
contradiction. Therefore

‖znyn‖
‖zn‖

=
‖e‖
‖zn‖

=
1

‖zn‖
→ 0 as n→∞

and ∣∣∣∣∣‖zny‖ − ‖znyn‖‖zn‖

∣∣∣∣∣ ≤ 1

‖zn‖
‖zn(y − yn)‖ ≤ ‖y − yn‖ → 0 as n→∞.

Thus the elements wn = ‖zn‖−1zn, n ∈ N, of A satisfy ‖wn‖ = 1 and ‖wny‖ → 0 as
n→∞. This implies that y cannot be invertible in A or else

1 = ‖wn‖ = ‖(wny)y−1‖ ≤ ‖wny‖‖y−1‖ → 0 as n→∞.

Therefore we have λ ∈ σA(x).

The succeeding corollary applies, in particular, when σA(x) ⊆ R or when σA(x) is
countable.

Corollary 1.3.29 Let A be a Banach algebra with identity e and let x ∈ A. Then the
following conditions are equivalent.

(i) ρA is connected.

(ii) σA(x) = σB(x) for every closed subalgebra B of A containing x and e.

Proof. See [Kan], Section 1.2, p.15.

We close this chapter by mentioning that the spectral radius is subadditive and sub-
multiplicative on commuting elements.

Lemma 1.3.30 Let A be a normed algebra and suppose that x, y ∈ A are such that
xy = yx. Then

(i) r(xy) ≤ r(x)r(y) and

(ii) r(x+ y) ≤ r(x) + r(y).

Proof. (i) is easy to prove: since (xy)n = xnyn for all n ∈ N, and by applying the
spectral radius formula we get

r(xy) = lim
n→∞

‖xnyn‖
1
n ≤ lim

n→∞
‖xn‖

1
n · lim

n→∞
‖yn‖

1
n = r(x)r(y).

Proving (ii) however, requires more effort and is rather technical. Pick α > r(x) and
β > r(y), and let a = x/α and b = y/β. Then r(a) < 1 and r(b) < 1. Because x and y
commute we have
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‖(x+ y)n‖
1
n =

∥∥∥∥∥
n∑
k=0

(
n

k

)
xkyn−k

∥∥∥∥∥
1
n

≤

(
n∑
k=0

(
n

k

)
αkβn−k‖ak‖‖bn−k‖

) 1
n

.

Now let

kn = arg max
k

‖ak‖‖bn−k‖,

so

‖(x+ y)n‖
1
n ≤ (α+ β)‖akn‖

1
n ‖bn−kn‖

1
n

for all n ∈ N. Since 0 ≤ kn/n ≤ 1, we can choose a subsequence such that kni/ni → δ
for some δ as i→∞. Denote this subsequence by kn. If δ = 0, then

lim sup
n→∞

‖akn‖
1
n ≤ lim sup

n→∞
‖a‖

kn
n ≤ 1.

If δ 6= 0, then kni 6= 0 for i big enough and thus

lim sup
n→∞

‖akn‖
1
n = lim sup

n→∞

(
‖akn‖

1
kn

) kn
n

= r(a)δ < 1,

because r(a) ≤ ‖a‖ < 1. Therefore r(x+y) ≤ α+β and since this holds for all α > r(x)
and β > r(y), the conclusion follows.

Remark 1.3.31 It should be noted that by using the Gelfand homomorphism (Section
2.3), a much simpler proof can be given. Thus, if A is a commutative algebra, r is an
algebra seminorm on A.
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2. Gelfand Theory

The fundamental results presented in this chapter are the pioneering work of Gelfand
[Gel]. Our focus will be almost entirely on commutative Banach algebras. This restric-
tion is imposed because the main tool we shall utilize in the further study of Banach
algebras is the Gelfand representation theory, which is valid only for commutative alge-
bras. The reason for this will be quite obvious.

2.1. Ideals and multiplicative linear functionals

We first start with invastigating the link between maximal ideals of a unital Banach
algebra and the structure space ∆(A) of all multiplicative linear functionals. Algebras
in this section are not necessarily commutative.

Recall that if Y is a subspace of a complex vector space X , then the quotient vector
space X/Y is given by X/Y = {x+ Y : x ∈ X} with

◦ λ(x+ Y) = λx+ Y (scalar multiplication),

◦ (x+ Y) + (y + Y) = (x+ y) + Y (vector addidtion), and

◦ 0 + Y = Y (zero vector in X/Y)

for all x, y ∈ X , λ ∈ C.

Definition 2.1.1 If Y is a closed subspace of a Banach space X , then the quotient
Banach space X/Y is the vector space X/Y equipped with the quotient norm, defined
by

‖x+ Y‖ = inf
y∈Y
‖x+ y‖.

Proposition 2.1.2 Let X be a Banach space and let Y be a closed vector subspace of
X . The quotient norm is a norm on the vector space X/Y, with respect to which X/Y
is complete. Hence the quotient Banach space X/Y is a Banach space.

Proof. To see that the quotient norm is a norm, observe that

◦ ‖x+Y‖ ≥ 0 with equality if and only if infy∈Y ‖x+ y‖ = 0, which is equivalent to
x being in the closure of Y. Since Y is closed, this means that x ∈ Y, so y+Y = Y,
the zero vector of X/Y.

◦ For λ ∈ C \ {0} we have

‖λ(x+ Y)‖ = inf
y∈Y
‖λx+ y‖ = |λ| inf

y∈Y
‖x+ λ−1y‖

= |λ| inf
ỹ∈Y
‖x+ ỹ‖ = |λ|‖x+ Y‖.
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◦ The triangle inequality holds since Y = {s+ t : s, t ∈ Y} and so for x, z ∈ X

‖(x+ Y) + (z + Y)‖ = ‖(x+ z) + Y‖
= inf

y∈Y
‖x+ z + y‖

= inf
s,t∈Y

‖x+ z + s+ t‖

≤ inf
s∈Y
‖x+ s‖+ inf

t∈Y
‖z + t‖

= ‖x+ Y‖+ ‖z + Y‖.

It remains to show that X/Y is complete in the quotient norm. For any x ∈ X we can
see that

◦ if ε > 0 then there exists y ∈ Y such that ‖x+ y‖ < ‖x+ Y‖+ ε and

◦ ‖x+ Y‖ ≤ ‖x‖, since 0 ∈ Y.

Let xk ∈ X with
∑∞

k=1 ‖xk +Y‖ <∞. From the observation made above it follows that
there exist yk ∈ Y with

∞∑
k=1

‖xk + yk‖ <∞,

hence the series
∑∞

k=1 xk + yk converges in X , say to z ∈ X . Because∥∥∥z + Y −
( n∑
k=1

xk + Y
)∥∥∥ =

∥∥∥(z − n∑
k=1

xk + yk

)
+ Y

∥∥∥ ≤ ∥∥∥z − n∑
k=1

xk + yk

∥∥∥→ 0

as n→∞,
∑∞

k=1 xk+yk converges to z+Y. This shows that every absolutely convergent
series in X/Y is convergent with respect to the quotient norm, thus X/Y is complete.

Definition 2.1.3

◦ An ideal of a Banach algebra A is a subalgebra I of A such that for all i ∈ I and
x ∈ A we have xi ∈ I and ix ∈ I.

◦ If I 6= A and I 6= {0}, then I is called a proper ideal.

◦ A maximal ideal of A is a proper ideal that is not contained in any strictly larger
proper ideal of A. We henceforth denote by Max(A) the set of all maximal ideals
of A.

Remark 2.1.4 A Banach algebra A is called simple if A2 6= {0} and if the only ideals
in A are {0} and A.

Theorem 2.1.5 Let I be a closed ideal of a Banach algebra A and A/I a quotient
Banach space equipped with the product

(A/I)× (A/I)→ A/I, ((x+ I), (y + I)) 7→ (x+ I)(y + I) = xy + I (2.1)

for all x, y ∈ A. Then the following conditions hold.
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(i) A/I is a Banach algebra.

(ii) If A is commutative, then so is A/I.

(iii) If A is unital, then so is A/I and eA/I = eA + I.

Proof. (i) The product (2.1) is well-defined: if x1 + I = x2 + I and y1 + I = y2 + I, then
x1 − x2 ∈ I and y1 − y2 ∈ I. Hence x1(y1 − y2) + (x1 − x2)y2 ∈ I and so

(x1y1 + I)− (x2y2 + I) = x1y1 − x2y2 + I = x1(y1 − y2) + (x1 − x2)y2 + I = I,

thus x1y1 + I = x2y2 + I. It is easy to verify that the product is linear in each variable.
Now let x, y ∈ A. We have

‖x+ I‖‖y + I‖ = inf
i,j∈I
‖x+ i‖‖y + j‖

≥ inf
i,j∈I
‖(x+ i)(y + j)‖

= inf
i,j∈I
‖xy + xj + iy + ij︸ ︷︷ ︸

∈I

‖

≥ inf
i∈I
‖xy + i‖ = ‖xy + I‖

= ‖(x+ I)(y + I)‖,

and therefore A/I is a Banach algebra.
(ii) If A is commutative, then (x+ I)(y + I) = xy + I = yx+ I = (y + I)(y + I) for

all x, y ∈ A, so A/I is commutative.
(iii) Since (x+ I)(e+ I) = x+ I = (e+ I)(x+ I), the element e+ I is an identity for
A/I. On the one hand we have

‖e+ I‖ = inf
i∈I
‖e+ i‖ ≤ ‖e+ 0‖ = 1,

and on the other hand, since I is a proper ideal, e /∈ I, so e+ I 6= 0. Hence ‖e+ I‖ 6= 0.
Moreover,

‖e+ I‖ = ‖(e+ I)(e+ I)‖ ≤ ‖(e+ I)‖‖(e+ I)‖,

and cancelling ‖e+ I‖ gives ‖e+ I‖ ≥ 1.

Lemma 2.1.6 Let A be a unital Banach algebra. If I 6= {0} is an ideal of A, then I is
a proper ideal if and only if I ∩ G(A) = ∅.

Proof. We have e ∈ G(A), so if I ∩ G(A) = ∅, then e /∈ I, so I 6= A and I is a proper
ideal. Conversely, if I ∩ G(A) 6= ∅, let i ∈ I ∩ A. If x ∈ A, then x = (xi−1)i ∈ I, since I
is an ideal and i ∈ I. Therefore I = A.

Theorem 2.1.7 Let A be a unital Banach algebra.

(i) If I is a proper ideal, then the closure I is also a proper ideal of A.
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(ii) Any maximal ideal of A is closed.

(iii) Every proper ideal is contained in a maximal ideal.

Proof. (i) The closure of a vector subspace of A is again a vector subspace. If x ∈ A and
(in)n∈N is a sequence in I converging to i ∈ I, then xin → xi and inx → ix as n → ∞.
Since each xin and inx is in I, this shows that xi and ix are in I, which is therefore an
ideal of A. Because I is a proper ideal we have I ∩ G(A) = ∅ by Lemma 2.1.6 and since
G(A) is open by Corollary 1.2.8, this shows that I ∩ G(A) = ∅, so I 6= A.

(ii) Let M be a maximal ideal. Since M ⊆M and M is a proper ideal by (i) we must
have M = M , so M is closed.

(iii) Let I be a proper ideal and e ∈ A an identity. Let J be the set of all ideals J
of A such that I ⊆ J and e /∈ J . Then J is nonempty since I ∈ J . We order J by
inclusion and show that J satisfies the hypothesis of Zorn’s lemma. Let L be a totally
ordered subset of J and set

J =
⋃
L∈L

L.

Then e /∈ J and J is an ideal since L is totally ordered. So J ∈ J and J is an upper
bound for L. Hence by Zorn’s lemma J has a maximal element M , which is obviously
a maximal ideal.

Remark 2.1.8 If A is commutative, then every maximal ideal I has codimension 1.
Indeed, the Banach algebra A/I has no invertible elements except 0. Hence by Gelfand-
Mazur (Theorem 1.3.18), A/I is 1-dimensional, thus I has codimension 1.

Definition 2.1.9 Let A be a Banach algebra. A linear functional ϕ : A → C is called
multiplicative if ϕ 6= 0 and

ϕ(xy) = ϕ(x)ϕ(y) for all x, y ∈ A.

The kernel of ϕ is the set

kerϕ = {x ∈ A : ϕ(x) = 0}.

Throughout this thesis, for any Banach algebra A, ∆(A) denotes the set of all nonzero
multiplicative linear functionals on A and is called the Gelfand space or structure space
of A. Other common names given to ∆(A) are the maximal ideal space or spectrum of
A.

Example 2.1.10 Let A = C(X ) where X is a compact Hausdorff space. For each x ∈ X
define ψx : A → C by ψx(f) = f(x) for all f ∈ A. Then ψx is multiplicative.

Lemma 2.1.11 Let A be a Banach algebra with identity e. If ϕ ∈ ∆(A), then ϕ(e) = 1
and I = kerϕ is an ideal. If ϕ̃ ∈ ∆(A) with ker ϕ̃ = I, then ϕ = ϕ̃. For dimA > 1 it
follows that I is a maximal ideal.

Proof. Let ϕ be a multiplicative linear functional. Since ϕ 6= 0 we have ϕ(x) 6= 0 for
some x ∈ A such that

ϕ(x) = ϕ(xe) = ϕ(x)ϕ(e).
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Hence by cancelling ϕ(x) we get ϕ(e) = 1.
Let x ∈ A and i ∈ kerϕ. Then

ϕ(xi) = ϕ(ix) = ϕ(x)ϕ(i) = ϕ(x) · 0 = 0,

and thus xi, ix ∈ kerϕ. Hence I = kerϕ is an ideal and since ϕ 6= 0, I 6= A. If ϕ̃ is
another multiplicative linear functional with ker ϕ̃ = I, then for x ∈ A it follows from
ϕ(x)−ϕ(x)ϕ(e) = ϕ(x−ϕ(x)e) = 0 that x−ϕ(x)e ∈ I and therefore ϕ̃(x−ϕ(x)e) = 0.
Since ϕ̃(e) = 1 we get ϕ(x) = ϕ̃(x) and therefore uniqueness.

If dimA > 1, then kerϕ 6= {0}, so I is proper. Since I is a subalgebra of A with
codimension 1, there cannot exist a greater proper ideal, hence I ∈ Max(A).

Lemma 2.1.12 Let A be a Banach algebra with unit e. Then ϕ(x) 6= 0 for every
invertible x ∈ A.

Proof. By Lemma 2.1.11 we have ϕ(e) = 1. Hence if x ∈ A is invertible, then

ϕ(x)ϕ(x−1) = ϕ(xx−1) = ϕ(e) = 1, thus ϕ(x) 6= 0.

The next Lemma is due to Zelazko [Zel].

Lemma 2.1.13 (Zelazko) Let A be a real or complex algebra with identity e, and let
ϕ be a linear functional on A satisfying

ϕ(e) = 1 and ϕ(x2) = ϕ(x)2 (2.2)

for all x ∈ A. Then ϕ is multiplicative.

Proof. The proof is pretty straightforward. Utilizing the fact that ϕ is linear and satisfies
(2.2) we have for x, y ∈ A

ϕ(x2) + ϕ(xy + yx) + ϕ(y2) = ϕ(x2 + xy + yx+ y2)

= ϕ((x+ y)2) = (ϕ(x) + ϕ(y))2

= ϕ(x)2 + 2ϕ(x)ϕ(y) + ϕ(y)2

= ϕ(x2) + 2ϕ(x)ϕ(y) + ϕ(y2),

and hence ϕ(xy + yx) = 2ϕ(x)ϕ(y) for all x, y ∈ A. It remains to verify that ϕ(yx) =
ϕ(xy). Using the identity

(ab− ba)2 + (ab+ ba)2 = 2(a(bab) + (bab)a),

we get

ϕ(ab− ba)2 + 4ϕ(a)2ϕ(b)2 = ϕ((ab− ba)2) + ϕ(ab+ ba)2

= ϕ((ab− ba)2 + (ab+ ba)2)

= 2ϕ(a(bab) + (bab)a)

= 4ϕ(a)ϕ(bab).

for all a, b ∈ A. Now set a = x− ϕ(x)e, so that ϕ(a) = ϕ(x)− ϕ(x)ϕ(e) = 0 and b = y.
Thus we obtain ϕ(ay) = ϕ(ya) and eventually ϕ(xy) = ϕ(yx).
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Lemma 2.1.14 Let ϕ be a multiplicative linear functional on a unital Banach algebra
A. Then ϕ is continuous and ‖ϕ‖ = 1.

Proof. A linear functional in a Banach space is continuous if and only if its kernel is
closed. By Lemma 2.1.11 we know that kerϕ is a maximal ideal which itself is closed by
Lemma 2.1.7. Hence ϕ is continuous.

Since ϕ(e) = 1 by Lemma 2.1.11 and ‖e‖ = 1 we have ‖ϕ‖ ≥ |ϕ(e)| = 1. Now
if ‖ϕ‖ > 1, then there exists x ∈ A such that ‖x‖ < 1 and |ϕ(x)| = 1. Hence, for
n ∈ N, ‖xn‖ ≤ ‖x‖n → 0 as n→∞ and |ϕ(xn)| = |ϕ(x)n| = 1, which is a contradiction
to the continuity of ϕ. Thus ‖ϕ‖ ≤ 1.

Remark 2.1.15 We have |ϕ(x)| ≤ r(x). Indeed, if x ∈ A and λ ∈ C are such that
|λ| > r(x), then r(x/λ) < 1 and hence λe−x = λ(e−x/λ) is invertible in A by Theorem
1.2.7. This implies ϕ(x) 6= λ for all such λ, so |ϕ(x)| ≤ r(x).

The following theorem characterizes multiplicative linear functionals on (not necessar-
ily commutative) Banach algebras. It has been established independently by Gleason,
Kahane and Zelazko, using analytic tools. For a purely algebraic proof see [Kan], Section
2.1, p.45.

In order to prove the Gleason-Kahane-Zelazko theorem (GKZ), we first need a (rather
interesting) lemma from complex analysis.

Lemma 2.1.16 Suppose that f is an entire function of one complex variable such that

f(0) = 1, f ′(0) = 0 and 0 < |f(λ)| < e|λ|, λ ∈ C.

Then f(λ) = 1 for all λ ∈ C.

Proof. Since f has no zero, there is an entire function g(λ) such that f(λ) = exp(g(λ))
(recall that g(λ) = f ′(λ)/f(λ), hence one can show that f/eg is constant). Let u(λ)
and v(λ) be real and imaginary parts of g(λ), respectively. By hypothesis, we have
g(0) = 0 = g′(0). Also note that eu(λ) = |f(λ)| < e|λ|, hence u(λ) < |λ| for all λ ∈ C.

For |λ| ≤ r, r > 0, we have

|g(λ)| = |g(λ)| = |2u(λ)− g(λ)| ≤ |2r − g(λ)|.

The function

gr(λ) =
r2g(λ)

λ2(2r − g(λ))
for all 0 < |λ| ≤ r

is holomorphic in {λ : |λ| < 2r}, and |gr(λ)| ≤ 1 if |λ| = r. By the maximum modulus
principle it follows that |gr(λ)| ≤ 1 for |λ| ≤ r. Now fix λ and let r →∞. Then

|g(λ)| ≤ |λ
2||2r − g(λ)|

r2
→ 0.

But g(0) = 0, thus f = 1.
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Theorem 2.1.17 (Gleason-Kahane-Zelazko) Let A be a unital Banach algebra and
ϕ : A → C a linear functional. Then ϕ is multiplicative if and only if ϕ(e) = 1 and
ϕ(x) 6= 0 for every invertible element x ∈ A.

Proof. In Lemma 2.1.11 and 2.1.12 we have already shown that if ϕ ∈ ∆(A), then
ϕ(e) = 1 and ϕ(x) 6= 0 for all x ∈ G(A), the group of all invertible elements in A.

Conversely, assume that ϕ(e) = 1 and ϕ(x) 6= 0 for all x ∈ G(A). Then ϕ is multi-
plicative. We prove this in three steps.

Step 1: By Lemma 2.1.14 ϕ is bounded with ‖ϕ‖ = 1.

Step 2: Let N = kerϕ. We want to show that a ∈ N implies a2 ∈ N .

Let a ∈ N and ‖a‖ ≤ 1. Define f : C→ C

f(λ) =
∞∑
n=0

ϕ(an)λn

n!
, λ ∈ C.

As |ϕ(an)| ≤ ‖an‖ ≤ ‖a‖n ≤ 1 for all n ∈ N, f is entire and and satisfies |f(λ)| ≤
e|λ| for all λ ∈ C. Also, f(0) = ϕ(e) = 1, and f ′(0) = ϕ(a) = 0. The continuity of
ϕ implies that

f(λ) = ϕ
( ∞∑
n=0

(λa)n

n!

)
= ϕ(exp(λa)).

Since exp(λa) is invertible, f(λ) 6= 0 for all λ ∈ C, hence |f(λ)| > 0. Now by
Lemma 2.1.16, f(λ) = 1 for all λ ∈ C. This shows that

ϕ(a0)λ0

0!
+
ϕ(a1)λ1

1!
+
ϕ(a2)λ2

2!
+
ϕ(a3)λ3

3!
+ . . . = 1

where a0 = e. Thus ϕ(a2) = 0 = ϕ(a3) = . . . by uniqueness of power series, and
therefore a2 ∈ N .

Step 3: Again, let N = kerϕ. For x, y ∈ A we have

x = a+ ϕ(x)e, y = b+ ϕ(y)e,

where a, b ∈ N . Then, by applying ϕ to the product of x and y, we obtain

ϕ(xy) = ϕ(ab) + ϕ(a)ϕ(y) + ϕ(x)ϕ(b) + ϕ(x)ϕ(y) = ϕ(ab) + ϕ(x)ϕ(y).

Therefore we have to show that ϕ(ab) = 0. This is equivalent to the assertion that
ab ∈ N for a, b ∈ N . We have already proved the special case a2 ∈ N if a ∈ N , so by
substituting x = y we get

ϕ(x2) = ϕ(a2) + ϕ(x)ϕ(x) = ϕ(x)2, x ∈ A.

It follows now from Lemma 2.1.13 (Zelazko) that ϕ is multiplicative.
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Let A be a commutative Banach algebra with identity. The next theorem forms the
basic link between the structure space ∆(A) and ideals in A.

Theorem 2.1.18 For a unital commutative Banach algebra A, the mapping

ϕ 7→ kerϕ

is a bijection between ∆(A) and Max(A), the set of all maximal ideals in A.

Proof. If ϕ ∈ ∆(A), then kerϕ is a maximal ideal of A by Lemma 2.1.11. Hence the
mapping is well-defined.

The mapping ϕ 7→ kerϕ is injective, since if ϕ1 and ϕ2 are in ∆(A) with kerϕ1 =
kerϕ2, then for any x ∈ A we have x−ϕ2(x)e ∈ kerϕ2 = kerϕ1, so ϕ1(x−ϕ2(x)e) = 0,
hence ϕ1(x) = ϕ2(x). Thus ϕ1 = ϕ2.

We show that the mapping is surjective. Let M be a maximal ideal of A and let
q : A → A/M, x 7→ x + M be the corresponding quotient map. Observe that q is a
homomorphism and ker q = M . By Theorem 2.1.5 the map ψ : C→ A/M, λ 7→ λe+M
is an isomorphism. Let ϕ = ψ−1 ◦ q : A → C. Since ϕ is the composition of two
homomorphisms, it is a homomorphism, and ϕ(e) = ψ−1(q(e)) = ψ−1(e + M) = e, so
ϕ 6= 0. Hence ϕ ∈ ∆(A). Because ψ is an isomorphism, we have kerϕ = ker q = M .
This shows that ϕ 7→ kerϕ is a bijection from ∆(A) onto Max(A).

Lemma 2.1.19 Let A be a unital commutative Banach algebra and let x ∈ A. Then
the following assertions are equivalent.

(i) x /∈ G(A).

(ii) x ∈ I for some proper ideal I of A.

(iii) x ∈M for some maximal ideal M of A.

Proof.
(i) ⇒ (ii): If x /∈ G(A), consider the set I = {xy : y ∈ A}. Since A is commutative

by hypothesis, I is an ideal of A, and since A is unital we have x = xe ∈ I. If e ∈ I,
then xy = 1 for some y ∈ A, so x ∈ G(A), which is a contradiction. Hence e /∈ I and
therefore I is a proper ideal.

(ii)⇒ (iii): Suppose that x ∈ I where I is a proper ideal of A. By Lemma 2.1.7 (iii),
every proper ideal is contained in a maximal ideal, that is I ⊆ M for some maximal
ideal M of A, hence x ∈M .

(iii)⇒ (i): If M is a maximal ideal of A, then M is a proper ideal, so M ∩ G(A) = ∅
by Lemma 2.1.6. Thus x /∈ G(A) for all x ∈M .

Theorem 2.1.20 (Beurling-Gelfand) Let A be a commutative Banach algebra with
identity and x ∈ A. Then

(i) σ(x) = {ϕ(x) : ϕ ∈ ∆(A)}.

(ii) x ∈ G(A) if and only if ϕ(x) 6= 0 for all ϕ ∈ ∆(A).
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(iii) r(x) = sup
ϕ∈∆(A)

|ϕ(x)|.

Proof. (i)

λ ∈ σ(x)⇐⇒ λe− x /∈ G(A)

⇐⇒ ϕ(λe− x) = 0 for some ϕ ∈ ∆(A) by Theorem 2.1.17 (GKZ)

⇐⇒ λ = ϕ(x) for some ϕ ∈ ∆(A), since ϕ(λ) = λ by Lemma 2.1.14.

(ii)

x ∈ G(A)⇐⇒ x /∈M for all maximal ideals M of A by Lemma 2.1.19

⇐⇒ x /∈ kerϕ for all ϕ ∈ ∆(A) by Theorem 2.1.18

⇐⇒ ϕ(x) 6= 0 for all ϕ ∈ ∆(A).

(iii) Follows immediately from (i) and the definition of r(x).

Let A,B be Banach algebras. In general, if the map ϕ : A → B is linear and preserves
invertible elements, then ϕ need not be multiplicative. Recall that A =Mn(C), n ≥ 2,
is the set of all complex n× n matrices with matrix addition and matrix multiplication.
Equipped with the Frobenius norm defined by

‖A‖F =

(
n∑

i,j=1

|aij |2
) 1

2

, A ∈ A,

A is a non-commutative unital Banach algebra.

Example 2.1.21 Let A =

{(
α β
0 γ

)
: α, β, γ ∈ C

}
and B =M2(C). Define ϕ : A → B

by

ϕ

((
α β
0 γ

))
=

(
α α+ β
0 γ

)
.

It is clear that ϕ maps invertible elements into invertible elements, but

ϕ

((
1 0
0 1

))
=

(
1 1
0 1

)
6=
(

1 0
0 1

)
.

Hence ϕ is not multiplicative since

ϕ

((
1 1
0 1

)(
1 1
0 1

))
= ϕ

((
1 2
0 1

))
=

(
1 3
0 1

)
,

and

ϕ

((
1 1
0 1

))
ϕ

((
1 1
0 1

))
=

(
1 2
0 1

)(
1 2
0 1

)
=

(
1 4
0 1

)
6=
(

1 3
0 1

)
.
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Example 2.1.22 Let A = Mn(C) with I being the identity matrix. Then the map
ϕ : A → A given by

ϕ(A) = AT , A ∈ A,

maps I into I and invertible elements into invertible elements. But it is not multiplicative
since

ϕ(AB) = (AB)T = BTAT = ϕ(B)ϕ(A), B ∈ A.

Remark 2.1.23 Since the Gelfand space ∆(A) plays a major role throughout commu-
tative Banach algebra theory, it is important to understand how ∆(A) and ∆(Ae) are
related. Recall that Ae denotes the unitization of A.

Because ψ(e) = 1 for every ψ ∈ ∆(Ae), each ϕ ∈ ∆(A) has a unique extension
ϕ̃ ∈ ∆(Ae) given by

ϕ̃(x+ λe) = ϕ(x) + λ, x ∈ A, λ ∈ C.

Let ∆̃(A) = {ϕ̃ : ϕ ∈ ∆(A)}. Furthermore, let ϕ∞ : Ae → C denote the homomorphism
with kerϕ∞ = A, that is ϕ∞(x+ λe) = ϕ∞(x) + λϕ∞(e) = λ, x ∈ A. Then

∆(Ae) = ∆̃(A) ∪ {ϕ∞}.

In fact, if ψ ∈ ∆(Ae) and ψ 6= ϕ∞, then ψ|A ∈ ∆(A) and hence ψ = ψ̃|A. Identifying
∆(A) with ∆̃(A) ⊆ ∆(Ae), we always regard ∆(A) as a subset of ∆(Ae). In this sense

∆(Ae) = ∆(A) ∪ {ϕ∞}.

So far in the development of this chapter there is one obvious and vital question that
we have not faced: If A is a commutative Banach algebra, do there exist any complex
homomorphisms of A, that is, is ∆(A) 6= ∅? The answer is no. That is, there exist
commutative Banach algebras A such that the only homomorphism of A into C is the
zero homomorphism. One rather trivial instance of such a phenomenon is given by the
following example.

Example 2.1.24 Let (A, ‖.‖) be a Banach space over C and define a product on A
by setting xy = 0 for all x, y ∈ A. It is easily verified that with this multiplication A
becomes a commutative Banach algebra without unit. However, ∆(A) = ∅ because if ϕ
is a multiplicative linear functional on A, then

ϕ(x)2 = ϕ(x)ϕ(x) = ϕ(xx) = ϕ(0) = 0,

from which it is apparent that ϕ = 0. Note that, for any commutative Banach algebra
A, ∆(A) = ∅ whenever r(x) = 0 for every x ∈ A.

A less trivial example which shows that nonzero multiplicative linear functionals need
not exist, is the following one.
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Example 2.1.25 Define a bounded linear operator T on C([0, 1]) by

Tf(t) =

∫ t

0
f(s)ds, f ∈ C([0, 1]), t ∈ [0, 1].

Let A be the norm closure in B(C([0, 1])) of the set of all polynomials in T of the form

n∑
j=1

λjT
j , λ1, . . . , λn ∈ C, n ∈ N.

We show that A is a commutative Banach algebra without identity such that ∆(A) = ∅.
For f ∈ C([0, 1]) we have

|T 2f(t)| =
∣∣∣∣ ∫ t

0

(∫ s

0
f(u)du

)
ds

∣∣∣∣
≤
∫ t

0

(∫ s

0
|f(u)|du

)
ds

≤ ‖f‖∞
∫ t

0

(∫ s

0
du

)
ds

= ‖f‖∞
t2

2
, t ∈ [0, 1].

More generally, a straightforward induction argument reveals that

|Tnf(t)| ≤ ‖f‖∞
tn

n!
for all t ∈ [0, 1] and n ∈ N.

Consequently

‖Tnf‖∞ ≤
‖f‖∞
n!

,

from which we conclude that

‖Tn‖
1
n ≤

(
1

n!

) 1
n

for all n ∈ N.

Since (n!)
1
n →∞ as n→∞, we get r(T ) = limn→∞ ‖Tn‖

1
n = 0. Recall that the spectral

radius is continuous, and by Lemma 1.3.30 also subadditive and submultiplicative. Hence
it follows that r(S) = 0 for all S ∈ A and therefore ∆(A) = ∅.

If A is a commutative Banach algebra with identity, then the Gelfand space ∆(A)
cannot be empty. This is an immediate consequence of the next theorem.

Theorem 2.1.26 Let A be a unital commutative Banach algebra. Then ∆(A) 6= ∅.

Proof. Since {0} is a proper ideal in A, by Theorem 2.1.7 (iii) it is contained in some
maximal ideal, which by Theorem 2.1.18 is the kernel of a homomorphism from A onto
C.
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2.2. Semisimple Banach algebras

In this section we want to introduce so called semisimple Banach algebras. Since we
are interested in their role in Gelfand’s representation theory, we will only present some
fundamental results. For a more detailed approach we refer to [Lar], Chapter 5, pp.129.

Definition 2.2.1 Let A be a commutative Banach algebra. The radical of A, rad(A),
is defined by

rad(A) =
⋂
{M : M ∈ Max(A)} =

⋂
{kerϕ : ϕ ∈ ∆(A)},

where rad(A) is understood to be A if ∆(A) = ∅. Cleary, rad(A) is a closed ideal of A,
since maximal ideals are closed (Theorem 2.1.7 (ii)). The algebra A is called semisimple
if rad(A) = {0} and radical if rad(A) = A.

In Example 2.1.25 we have already seen an example of a radical Banach algebra with
nontrivial multiplication. On the other hand, it will follow from Corollary 2.3.8 in the
next section that A is semisimple if and only if for every x ∈ A, rA(x) = 0 implies that
x = 0.1 Since the spectral radius is subadditive and submultiplicative, this means that
A is semisimple if and only if rA is an algebra norm on A. Thus ∆(A) 6= ∅.

First we list some examples of semisimple Banach algebras.

Example 2.2.2 Let X be a compact Hausdorff space. Then C(X ) is a semisimple
Banach algebra.

Example 2.2.3 Let A = C1([0, 1]) with norm

‖f‖C1 = ‖f‖+ ‖f ′‖.

Then A is a semisimple commutative Banach algebra. Indeed, it can be easily checked
that A is a commutative Banach algebra with unit. We show semisimplicity of A by
verifying

r(f) = lim
n→∞

‖fn‖
1
n = 0⇒ f = 0.

In fact, r(f) = 0 means that λe− f is invertible for all λ ∈ C \ {0}. If f(x0) = λ 6= 0 for
some x0, then λe− f would not be invertible. Hence f(x) = 0 for all x ∈ [0, 1].

Example 2.2.4 Let A be the algebra of all continuously differentiable functions
f : [0, 1]→ C with pointwise multiplication and the norm ‖f‖ = ‖f‖∞ + ‖f ′‖∞. Let

I = {f ∈ A : f(0) = f ′(0) = 0}.

We claim that A/I is a 2-dimensional algebra which has a 1-dimensional radical. Thus
A is an example of a semisimple commutative Banach algebra which admits a non-
semisimple quotient.

1This characterization will turn out to be quite useful when we develop the Shilov idempotent theorem
in Chapter 3.
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In fact, ∆(A) is homeomorphic and isomorphic to [0, 1]. For a given x ∈ [0, 1], it is
apparent that I is a closed ideal. It is also easy to verify that

ϕ : A/I → C2 defined by ϕ(f) = (f(x), f ′(x))

is an isomorphism, where the multiplication of C2 is given by

(x1, y1)(x2, y2) = (x1x2, x1y2 + x2y1).

Clearly, the identity element of C2 is (0, 1) and all non-invertible elements have the form
(0, λ), λ ∈ C. In fact, those non-invertible elements represent the only maximal ideal in
A. Hence the radical is 1-dimensional.

We continue with a number of interesting properties of semisimple Banach algebras.

Theorem 2.2.5 Let ψ be a homomorphism from a commutative Banach algebra A into
a semisimple commutative Banach algebra B. Then ψ is contiuous.

Proof. We apply the closed graph theorem. It suffices to show that if xn ∈ A, n ∈ N,
are such that xn → 0 and ψ(xn)→ y for some y ∈ B, then y = 0.

Let ϕ ∈ ∆(B). Then ϕ ◦ψ ∈ ∆(A)∪ {0} and hence both, ϕ and ϕ ◦ψ, are continuous
by Lemma 2.1.14. Therefore we have

ϕ(y) = lim
n→∞

ϕ(ψ(xn)) = lim
n→∞

(ϕ ◦ ψ)(xn) = 0.

Since this holds for all ϕ ∈ ∆(B) and B is semisimple by hypothesis, we eventually get
y = 0.

Corollary 2.2.6 Every automorphism or endomorphism of a semisimple commutative
Banach algebra A is continuous.

Proof. Follows directly from Theorem 2.2.5.

Corollary 2.2.7 On a semisimple commutative Banach algebra all Banach algebra
norms are equivalent.

Proof. Let A be a semisimple commutative Banach algebra and let ‖.‖1 and ‖.‖2 be
two Banach algebra norms on A. By applying Theorem 2.2.5 with ψ to the identity
mappings (A, ‖.‖1)→ (A, ‖.‖2) and (A, ‖.‖2)→ (A, ‖.‖1), the statement follows.

We conclude this section by presenting a rather interesting example.

Example 2.2.8 Let C∞([0, 1]) denote the algebra of all infinitely many times differen-
tiable functions on [0, 1]. We show that C∞([0, 1]) admits no Banach algebra norm.

Suppose there exists a Banach algebra norm ‖.‖ on C∞([0, 1]). We use the same
method as in the corollary above and apply Theorem 2.2.5 to the identity mapping from
C∞([0, 1]) into C([0, 1]). Hence we can observe that there exists c > 0 such that

‖f‖∞ ≤ c‖f‖ for all f ∈ C∞([0, 1]). (2.3)
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2. Gelfand Theory

Now, using (2.3), we want to prove that the differentiation mapping D : f → f ′ from
C∞([0, 1]) into itself is continuous. To achieve that, we once again apply the closed
graph theorem. Let fn ∈ C∞([0, 1]), n ∈ N, be such that

lim
n→∞

‖fn‖ = 0 and lim
n→∞

‖f ′n − g‖ = 0

for some g ∈ C∞([0, 1]). Then

lim
n→∞

‖fn‖∞ = 0 and lim
n→∞

‖f ′n − g‖∞ = 0.

For each a, b ∈ [0, 1] we have∣∣∣∣ ∫ b

a
g(t)dt

∣∣∣∣ ≤ |fn(b)− fn(a)|+
∣∣∣∣ ∫ b

a
(f ′n(t)− g(t))dt

∣∣∣∣
≤ 2‖fn‖∞ + |b− a| · ‖f ′n − g‖∞ → 0 as n→∞.

So we have

∫ b

a
g(t)dt = 0 and hence g = 0 since a and b are arbitrary. Thus D is

continuous and there exists d > 0 such that

‖f ′‖ ≤ d‖f‖ for all f ∈ C∞([0, 1]).

Now let f(t) = e2dt, t ∈ [0, 1]. Because f ′(t) = 2d · e2dt = 2d · f(t) we get

2d‖f‖ = ‖f ′‖ ≤ d‖f‖,

which is a contradiction. Hence there cannot exist a Banach algebra norm on C∞([0, 1]).

2.3. The Gelfand representation

The purpose of this section is to develop the basic elements of Gelfand’s theory for
commutative (semisimple) Banach algebras. Associated with any such algebra A is a
locally compact Hausdorff space ∆(A), the structure space or Gelfand space of A, and a
norm-decreasing homomorphism ΓA from A into C0(∆(A)). If A has an identity, ∆(A)
is compact. The converse is true whenever ΓA is injective (A is semisimple), a fact
that can only be shown later (Section 3.3). This representation of A as an algebra of
functions on a locally compact Hausdorff space is fundamental to any thorough study of
commutative Banach algebras.

From here now on all Banach algebras are assumed to be commutative if not mentioned
otherwise.

Definition 2.3.1 Let A be a commutative Banach algebra and ∆(A) the set of all
nonzero (hence surjective) multiplicative linear functionals from A to C. We endow
the Gelfand space ∆(A) with the weakest topology, i.e. the relative w∗-topology, with
respect to which all the functions

∆(A)→ C, ϕ 7→ ϕ(x), x ∈ A,
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2. Gelfand Theory

are continuous. In view of the definition of the w∗-topology, we see that a neighbourhood
basis at ϕ0 ∈ ∆(A) consists of sets of the form

U(ϕ0, x1, . . . , xn, ε) = {ϕ ∈ ∆(A) : |ϕ(xk)− ϕ0(xk)| < ε, k = 1, . . . , n},

where ε > 0, n ∈ N and x1, . . . , xn are arbitrary elements of A. This topology on ∆(A)
is called the Gelfand topology.

Remark 2.3.2 In Lemma 2.1.14 we have already seen that every ϕ ∈ ∆(A) is a bounded
linear functional on A. Hence ∆(A) is contained in the unit ball of A′ (the dual space
of A). Evidently the Gelfand topology coincides with the relative w∗-topology of A′ on
∆(A). When adjoining an identity e to A,∆(Ae) = ∆(A) ∪ {ϕ∞} (Remark 2.1.23) and
according to the following theorem, the topology on ∆(A) is the one induced by ∆(Ae).

Theorem 2.3.3 Let A be a commutative Banach algebra. Then

(i) ∆(A) is a locally compact Hausdorff space.

(ii) ∆(Ae) = ∆(A) ∪ {ϕ∞} is the one-point compactification of ∆(A).

Proof.
(i) First we show that ∆(A) is a Hausdorff space. Let ϕ1 and ϕ2 be elements of ∆(A)

with ϕ1 6= ϕ2. Then for some x ∈ A

δ =
1

2
|ϕ1(x)− ϕ2(x)| > 0,

and so
U(ϕ1, x, δ) ∩ U(ϕ2, x, δ) = ∅.

Thus U(ϕ1, x, δ) and U(ϕ2, x, δ) are open disjoint neighbourhoods of ∆(A).
Next, we want to prove that ∆(A) is locally compact. For that consider ∆(Ae) and
∆(A) ⊆ ∆(Ae). Let U and Ue denote the basic neighbourhoods in ∆(A) and ∆(Ae),
respectively. Then, for ϕ ∈ ∆(A), ε > 0 and a finite subset F of A,

Ue(ϕ, F, ε) =

{
U(ϕ, F, ε) ∪ {ϕ∞} if |ϕ(x)| < ε for all x ∈ F,
U(ϕ, F, ε) otherwise.

Hence the Gelfand topology on ∆(A) and the relative topology on ∆(A) induced by the
the Gelfand topology on ∆(Ae) coincide. Since the singleton {ϕ∞} is a closed subset
of ∆(Ae), it follows at once that ∆(A) is an open subset of ∆(Ae) and hence is locally
compact.

(ii) Let x ∈ A and ε > 0. Then

Ue(ϕ∞, x, ε) = {ϕ∞} ∪ {ϕ ∈ ∆(A) : |ϕ(x)| < ε}
= ∆(Ae) \ {ϕe ∈ ∆(Ae) : |ϕe(x)| ≥ ε}.

The sets {ϕe ∈ ∆(Ae) : |ϕe(x)| ≥ ε}, x ∈ A, are closed in ∆(Ae) and hence compact.
The complement of a basic neighbourhood of ϕ∞ is a finite union of such compact sets.
Therefore ∆(Ae) is the one-point compactification of ∆(A).
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It turns out that if A has a unit, then the Hausdorff space is compact.

Theorem 2.3.4 Let A be a commutative Banach algebra. If A has an identity, then
∆(A) is compact.

Proof. Before we start with the actual proof let us recall what we have already shown.
We know that the w∗-topology is Hausdorff and ∆(A) is a Hausdorff space (Theorem
2.3.3). By Remark 2.3.2, ∆(A) is contained in the unit ball of A′, which is compact in
the w∗-topology by Banach-Alaoglu. A closed subset of a compact set is compact, so it
suffices to show that ∆(A) is w∗-closed in A′.

Let x ∈ A. Since the evaluation functional

fx : A′ → C, ϕ 7→ ϕ(x)

is w∗-continuous, we can conclude that the mapping

A′ → C× C× C, ϕ 7→ (ϕ(xy), ϕ(x), ϕ(y))

for all x, y ∈ A, is also w∗-continuous. Obviously the map C × C × C → C, (a, b, c) 7→
a− bc is continuous. Hence for x, y ∈ A, the set

Mx,y = {ϕ ∈ A′ : ϕ(xy)− ϕ(x)ϕ(y) = 0},

which is the kernel of the w∗-continuous mapping

(fxy − fxfy) : A′ → C, ϕ 7→ ϕ(xy)− ϕ(x)ϕ(y),

is w∗-closed. Thus ∆(A) ∪ {0} =
⋂
x,y∈AMx,y =

⋂
x,y∈A(fxy − fxfy)−1(0) is w∗-closed.

Since M1 = {ϕ ∈ A′ : ϕ(e) = 1} = f−1
1 (1) is w∗-closed, it follows that ∆(A) =

M1 ∩
⋂
x,y∈AMx,y is w∗-closed. Now, by Banach-Alaoglu the closed unit ball of A′ is

w∗-compact. And finally, since ∆(A) is a w∗-closed subset of the unit ball, it is w∗-
compact.

We have already mentioned that the converse - a commutative Banach algebra A has
an identity if ∆(A) is compact - holds true if A is semisimple. This fact will be proven
later in Theorem 3.3.1 when we apply the Shilov idempotent theorem (Theorem 3.2.1).
Interestingly enough, a much simpler proof is available when A is regular (Corollary
4.2.16).

We continue with the notion of the Gelfand representation.

Definition 2.3.5 Let A be a commutative Banach algebra. For x ∈ A, we define the
Gelfand transform of x by

x̂ : ∆(A)→ C, x̂(ϕ) = ϕ(x), ϕ ∈ ∆(A).

Since the Gelfand topology is the relative w∗-topology on ∆(A), it is immediately appa-
rent that x̂ is a continuous function on ∆(A). The mapping

ΓA : A → C(∆(A)), x 7→ x̂

is called the Gelfand representation or Gelfand homomorphism of A. We often denote
ΓA(A) by Â.
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Theorem 2.3.6 (Gelfand’s representation theorem) Let A be a unital commutative
Banach algebra.

(i) The Gelfand representation x 7→ x̂ is a continuous homomorphism from A onto
C(∆(A)) with norm 1.

(ii) x̂(∆(A)) = σA(x).

Proof.
(i) Clearly, ΓA is linear. For x, y ∈ A and ϕ ∈ ∆(A) we have

x̂y(ϕ) = ϕ(xy) = ϕ(x)ϕ(y) = x̂(ϕ)ŷ(ϕ) and ê(ϕ) = ϕ(e) = 1.

Hence ΓA is an algebra homomorphism. Now because

|x̂(ϕ)| = |ϕ(x)| ≤ ‖ϕ‖‖x‖ = ‖x‖,

it follows that ‖̂.‖ ≤ 1. And since ê(ϕ) = 1 we get ‖̂.‖ ≥ 1, so ‖̂.‖ = 1.

(ii) Let λ ∈ σA(x). Then by Theorem 2.1.17 (GKZ) and Theorem 2.1.18

λ ∈ σA(x)⇐⇒ λe− x /∈ G(A)

⇐⇒ λe− x is contained in a maximal ideal

⇐⇒ λe− x is contained in kerϕ

⇐⇒ ∃ϕ ∈ ∆(A) : ϕ(λe− x) = 0

⇐⇒ ∃ϕ ∈ ∆(A) : λ = ϕ(x)

⇐⇒ λ ∈ x̂(∆(A)),

hence x̂(∆(A)) = σA(x).

Remark 2.3.7

◦ The Gelfand representation theorem is equivalent to

x ∈ G(A)⇐⇒ x̂ ∈ G(C(∆(A))).

That is, ΓA maps invertible elements of A into the invertible elements of C(∆(A)).

◦ As it turns out, the theorem holds true for non-unital algebras. If A has no identity,
then

σA(x) \ {0} = σAe(x) \ {0} = x̂(∆(Ae)) \ {0}
⊆ x̂(∆(A)) = x̂(∆(Ae)) = σAe(x)

= σA(x).

Corollary 2.3.8 Let A be a unital commutative Banach algebra and x ∈ A. Then x̂ = 0
if and only if

rA(x) = lim
n→∞

‖xn‖
1
n = 0.
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Proof. Follows immediately from Theorem 2.3.6 (Gelfand’s representation theorem) and
Theorem 1.3.24 (spectral radius formula).

Definition 2.3.9 Let F be a nonempty set and A a unital algebra. A subset E of A
separates points of F if for each s, t ∈ F with s 6= t, there exists f ∈ E with f(s) 6= f(t),
and E strongly separates points of F if, further, for each s ∈ F , there exists f ∈ E with
f(s) 6= 0.

Theorem 2.3.10 Let A be a commutative Banach algebra and Γ the Gelfand represen-
tation of A.

(i) Γ maps A into C0(∆(A)) and is norm decreasing.

(ii) Γ(A) strongly separates the points of ∆(A).

(iii) Γ is isometric if and only if ‖x‖2 = ‖x2‖ for all x ∈ A.

Proof.
(i) By Theorem 2.3.3, ∆(Ae) is the one-point compactification of ∆(A). Since ϕ∞ :
Ae → C is a homomorphism with kernel A, we have ϕ∞(x) = x̂(ϕ∞) = 0 for x ∈ A, and
hence x ∈ C0(∆(A)). Moreover, by Theorem 2.3.6 (Gelfand’s representation theorem)
and Theorem 1.3.24 (spectral radius formula) we get

‖x̂‖C0(∆(A)) = ‖x̂‖∞ = sup
ϕ∈∆(A)

|x̂(ϕ)| = sup{|λ| : λ ∈ x̂(∆(A))} = r(x) ≤ ‖x‖,

thus Γ is norm decreasing.
(ii) Obviously, Γ(A) strongly separates the points of ∆(A), that is, Γ(A)(ϕ) 6= {0}

for each ϕ ∈ ∆(A), and if ϕ1, ϕ2 ∈ ∆(A) with ϕ1 6= ϕ2, then x̂(ϕ1) 6= x̂(ϕ2) for some
x ∈ A.

(iii) If ‖y‖2 = ‖y2‖ for all y ∈ A, then ‖x2n‖ = ‖x‖2n for every x ∈ A and n ∈ N.
Therefore

‖x̂‖∞ = r(x) = lim
n→∞

‖x2n‖
1
2n = ‖x‖.

Conversely, if Γ is an isometry, then

‖x2‖ = ‖x̂2‖∞ = ‖x̂‖2∞ = ‖x‖2.

Remark 2.3.11 The Gelfand representation of a commutative Banach algebra A need
not be injective. However, when it is, then rad(A) =

⋂
ϕ∈∆(A) kerϕ = {0}, hence A is

semisimple.

Lemma 2.3.12 Let A be a commutative Banach algebra and for x ∈ A let

r = inf
x 6=0

‖x2‖
‖x‖2

and s = inf
x 6=0

‖x̂‖∞
‖x‖

.

Then s2 ≤ r ≤ s.
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Proof. Since ‖x̂‖∞ ≥ s‖x‖,

‖x2‖ ≥ ‖x̂2‖∞ = ‖x̂‖2∞ ≥ s2‖x‖2

for every x ∈ A. Thus s2 ≤ r. It remains to show r ≤ s. Clearly, ‖x2‖ ≥ r‖x‖2, so

‖x4‖ ≥ r‖x2‖2 ≥ r3‖x‖4. By induction we eventually get ‖x2k‖ ≥ r2k−1‖x‖2k , k ∈ N,
hence

‖x2k‖
1

2k ≥ r1− 1

2k ‖x‖.

Letting k →∞ and by the spectral radius formula and Theorem 2.3.10 we get for x ∈ A

‖x̂‖∞ = r(x) ≥ r‖x‖.

It follows immediately that s ≥ r.

Theorem 2.3.13 Let A be a semisimple commutative Banach algebra. Then Γ(A) =
Â = {x̂ : x ∈ A} is closed in C(∆(A)) if and only if there exists a constant K > 0 such
that ‖x‖2 ≤ K‖x2‖ for all x ∈ A.

Proof. We use Lemma 2.3.12.
Let K > 0 and ‖x‖2 ≤ K‖x2‖ for all x ∈ A. This implies that r ≥ 1

K > 0, thus
s > r > 0, i.e. s‖x‖ ≤ ‖x̂‖∞ for all x ∈ A. Suppose that (x̂n)n∈N is a Cauchy sequence
in C(∆(A)). Then (xn)n is a Cauchy sequence in A. Thus there exists x ∈ A such that
xn → x as n → ∞. Since Γ is continuous, x̂n → x̂ as n → ∞, whence it follows that
Γ(A) is closed.

Conversely, it suffices to show that s 6= 0, then r ≥ s2 > 0. The Gelfand transform
x 7→ x̂ is a continuous isomorphism between two Banach spaces, A and C(∆(A)), as
Γ(A) is closed and A is semisimple. By the open mapping theorem, Γ−1 exists and is
continuous, that is, there exists c > 0 such that ‖Γ−1(x̂)‖∞ ≤ c‖x̂‖∞ for all x̂ ∈ C(∆(A)).
Thus ‖x‖ ≤ c‖x̂‖∞ for all x ∈ A.

We continue with a number of examples in order to get a better understanding of the
Gelfand representation.

Example 2.3.14 Let X be a locally compact Hausdorff space. For x ∈ X , the map

ϕx : C0(X )→ C, f 7→ f(x)

is a nonzero homomorphism, so {ϕx : x ∈ X} ⊆ ∆(C0(X )). We claim that we have
equality.

For x ∈ X , let
Mx = kerϕx = {f ∈ C0(X ) : f(x) = 0},

which is a maximal ideal of C0(X ) by Theorem 2.1.18. Now let I be an ideal of C0(X ).
If I *Mx for every x ∈ X , then for each x ∈ X there exists fx ∈ I with fx 6= 0. Since I
is an ideal, gx = |fx|2 = fxfx ∈ I, and because gx is continuous and non-negative with
gx(x) > 0, there exists an open set Ux with x ∈ Ux and gx(y) > 0 for all y ∈ Ux. As x
varies over X , the open sets Ux cover X . Since X is locally compact, there exist n ∈ N
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and x1, . . . , xn ∈ X such that Ux1 , . . . , Uxn cover X . Let g = gx1 + . . . + gxn . Then
g ∈ I and g(x) > 0 for all x ∈ X , so g is invertible in C0(X ). Hence I = C0(X ).

This shows that every proper ideal I of C0(X ) is contained in Mx for some x ∈ X .
Let ϕ ∈ ∆(C0(X )). Since kerϕ is a maximal ideal, we must have kerϕ = Mx for some
x ∈ X , so ϕ = ϕx by Theorem 2.1.18.

Now consider the map Φ : X → ∆(C0(X )), x 7→ ϕx where ϕx(f) = f(x) for f ∈
C0(X ). We have just shown that Φ is surjective. Since X is locally compact and
Hausdorff, C0(X ) separates the points of X by Urysohn’s lemma. Hence if ϕx = ϕy for
x, y ∈ X , then f(x) = f(y) for all f ∈ C0(X ), so x = y. Therefore Φ is a bijection.

We claim that the map x 7→ ϕx is a homeomorphism. Indeed, given x ∈ X and
an open neighbourhood Vx of x, by Urysohn’s lemma there exists f ∈ C0(X ) such
that f(x) 6= 0 and f |X\Vx = 0, and hence Vx contains the Gelfand neighbourhood
{y ∈ X : |ϕy(f)− ϕx(f)| < |f(x)|} of x.
If f ∈ C0(X ), then

f̂ : ∆(C0(X ))→ C, ϕx 7→ ϕx(f) = f(x), x ∈ X .

This means that if we identify ∆(C0(X )) with X , then f̂ = f . Hence the Gelfand
homomorphism Γ : C0(X )→ C0(X ) is the identity mapping.

Example 2.3.15 Consider the matrices I =

(
1 0
0 1

)
and T =

(
0 1
0 0

)
in M2(C). Then

A = span{I, T} is a unital commutative Banach subalgebra of M2(C). Indeed, since A
is a finite dimensional vector subspace of the Banach space M2(C) = B(C2), it is closed.

Moreover, the unit of M2(C) is I, and I ∈ A. Since T 2 =

(
0 1
0 0

)(
0 1
0 0

)
= 0, we have

for α, β, γ, δ ∈ C

(αI + βT )(γI + δT ) = αγI + (αδ + γβ)T ∈ A.

Hence A is a unital commutative Banach subalgebra of M2(C).
Furthermore, we want to examine the Gelfand space ∆(A). Let ϕ ∈ ∆(A). By

Lemma 2.1.11, ϕ(I) = 1. Since T 2 = 0, we have ϕ(T )2 = ϕ(T 2) = 0, so ϕ(T ) = 0.
Hence ϕ(γI + δT ) = ϕ(γ)ϕ(I) + ϕ(δ)ϕ(T ) = γ for all δ, γ ∈ C. This is the unique
multiplicative linear functional, that is ∆(A) = {ϕ}.

We claim thatA is not semisimple, i.e. the Gelfand representation ofA is not injective.
Indeed, note that we have T̂ (ϕ) = ϕ(T ) = 0, thus T̂ = 0 and ΓA is not injective.
Alternatively, we can observe that ‖T̂‖ = r(T ) = 0 by Theorem 2.3.10, so T̂ = 0.

Example 2.3.16 Let A = Cn([a, b]), and for each t ∈ [0, 1] define ϕt ∈ ∆(A) by
ϕt(f) = f(t). We claim that

Φ : [a, b]→ ∆(A), t 7→ ϕt

is a homeomorphism.
We proceed in a similar way as in Example 2.3.14. Φ is clearly injective and continuous.

Let M be any maximal ideal in A. Then, by Theorem 2.1.18, we find s ∈ [a, b] such that

M = {f ∈ A : f(s) = 0}.
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Thus M = kerϕs. Therefore Φ is a a homeomorphism since [a, b] is compact and ∆(A)
is Hausdorff. As in Example 2.3.14, we identify [a, b] with ∆(A). Hence the Gelfand
homomorphism of A is the identity mapping.

Example 2.3.17 Recall the disc algebra A(D) = {f ∈ C(D) : f is analytic on D}
(Example 1.1.10). Let w ∈ D. Then ϕw : A(D)→ C, f 7→ f(w) is a multiplicative linear
functional on A(D). We claim that every such functional arises in this way.

Consider the function z ∈ A(D) defined by z(w) = w,w ∈ D. If ϕ ∈ ∆(A(D)), then
ϕ(e) = 1 and |ϕ(z)| ≤ ‖z‖ = 1, hence ϕ(z) ∈ D. Note that the polynomials D → C
form a dense unital subalgebra of A(D). Now if p : D → C is a polynomial, then
p = λ0e+ λ1z + . . . + λnz

n for constants λi, i = 0, . . . , n. Hence

ϕ(p) = λ0 + λ1ϕ(z) + . . . + λnϕ(z)n = p(ϕ(z)).

Since the polynomials are dense in A(D), we have ϕ(f) = f(ϕ(z)) for all f ∈ A(D).
Thus ϕ = ϕϕ(z) and hence ∆(A(D)) = {ϕw : w ∈ D}. Just as in Example 2.3.14, we can

easily verify that the map w 7→ ϕw is a homeomorphism from D onto ∆(A(D)).

Example 2.3.18 Recall the commutative Banach algebra l1(Z) with product ∗ from
Example 1.1.14. We claim that l1(N0) is a closed Banach subalgebra of l1(Z).

Define

ι : l1(N0)→ l1(Z), x = (xn)n∈N0 7→ ι(x) =

{
xn, n ∈ N0,

0 otherwise (Z \ N0).

Let x ∈ l1(N0), so ‖x‖l1(N0) =
∑
n∈N0

|xn| <∞. Hence we get

‖ι(x)‖l1(Z) =
∑
n∈Z
|ι(x)| =

∑
n∈N0

|xn|+
∑

n∈Z\N0

0 = ‖x‖l1(N0).

Thus ι is isometric. Next we want to verify that ι is closed under addition, limit operation
and multiplication (convolution).

◦ ι is closed under addition: Let y = (yn)n∈N0 and λ > 0. Then ι(x + λy) =
ι(x) + λι(y).

◦ ι is closed under limit operation: Let (xk)k in ι(l1(N0)) and y ∈ l1(Z) such that
xk → y as k →∞. Thus

‖xk − y‖l1(Z) =
∑
n∈Z
|xkn − yn| =

∑
n∈Z\N0

|yn|+
∑
n∈N0

|xkn − yn|.

Clearly, ∀ε > 0 ∃N ∈ N ∀m ≥ N : ‖xm−y‖l1(Z) < ε. Suppose that
∑

n∈Z\N0

|yn| > 0.

Then ∑
n∈Z\N0

|yn|+
∑
n∈N0

|xkn − yn| <
∑

n∈Z\N0

|yn|.
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Therefore
∑
n∈N0

|xkn − yn| < 0, which is a contradiction. Hence
∑

n∈Z\N0

|yn| = 0 and

so |yn| = 0 for all n ∈ Z \ N0. Thus y ∈ ι(l1(N0)).

◦ ι is closed under convolution: By applying the Cauchy product we get

ι(xy) = ι(
( ∑
n∈N0

xn
∑
n∈N0

yn

)
) = ι(

( ∑
k∈N0

xkyn−k

)
n∈N0

) =
∑
k∈Z

ι(x)kι(y)n−k = ι(x)ι(y),

since
∑

k∈Z\N0

ι(x)kι(y)n−k = 0.

Now we want to determine the structure space of l1(N0). We claim that for every
z ∈ C, |z| ≤ 1, the functional ϕz : l1(N0)→ C defined by

ϕz((an)n∈N0) =
∑
n∈N0

anz
n

is in ∆(l1(N0)). Indeed, let (an)n, (bn)n be sequences in l1(N0) and λ > 0. Then

◦ ϕz is linear:

ϕz(an) + λϕz(bn) =
∑
n∈N0

anz
n + λ

∑
n∈N0

bnz
n =

∑
n∈N0

(an + λbn)zn = ϕz(an + λbn).

◦ ϕz is multiplicative:

ϕz(anbn) =
∑
n∈N0

∑
k∈N0

akbn−kz
n =

∑
n∈N0

anz
n
∑
n∈N0

bnz
n = ϕz(an)ϕz(bn).

It should be noted that there exists a multiplicative functional on l1(N0) which cannot
be extended to a multiplicative functional on l1(Z). Indeed, every multiplicative linear
functional ϕ ∈ ∆(l1(N0)) can be written as ϕz = ϕ for some z ∈ C, |z| < 1. But for
z ∈ D, ϕz does not have an extension on l1(Z). This is an important observation because
the Hahn-Banach theorem is not valid for multiplicative functionals.

The next example will lead to an interesting application of Banach algebra theory.

Example 2.3.19 Consider the space l1(Z) and recall that l1(Z) with product ∗ is a
commutative Banach algebra (Example 1.1.14). For n ∈ Z, let en = (δmn)m∈Z. Then
en ∈ l1(Z), and the linear span of {en : n ∈ Z} is dense in l1(Z). Moreover, it is easy to
check that

en ∗ em = en+m, n,m ∈ Z.

In particular, e0 ∗ em = em, hence e0 is the unit element for l1(Z).
Now we want to determine the Gelfand space of l1(Z). If ϕ ∈ ∆(l1(Z)), then ϕ(e0) = 1.

Additionally, en ∗ e−n = e0, so en = (e−n)−1 and |ϕ(en)| ≤ ‖en‖ = 1 for each n ∈ Z.
Hence

1 ≤ |ϕ(e−n)|−1 = |ϕ(e−n)−1| = |ϕ(en)| ≤ 1.
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Thus we have equality, particularly |ϕ(e1)| = 1. Recall the 1-torus T = {z ∈ C : |z| = 1}.
Then ϕ(e1) ∈ T. Since en = en1 , we have ϕ(en) = ϕ(e1)n. So for x ∈ l1(Z) we get

ϕ(x) = ϕ
(∑
n∈Z

xnen

)
=
∑
n∈Z

xnϕ(e1)n.

Therefore ϕ is determined by the complex number ϕ(e1) ∈ T.
Conversely, we claim that given any z ∈ T, there exists a multiplicative linear func-

tional ϕz ∈ ∆(l1(Z)) with ϕz(e1) = z. For that purpose let A0 = span{en : n ∈ Z},
which is a dense subalgebra of l1(Z). Let ϕ0 : A0 → C be the unique linear map such
that ϕ0(en) = zn for all n ∈ Z. If x, y ∈ A0, then

ϕ0(x ∗ y) = ϕ0

( ∑
n,m∈Z

xmyn−men

)
=
∑
n,m∈Z

xmyn−mz
n

=
∑
m,n∈Z

xmz
myn−mz

n−m =
∑
m∈Z

xmz
m
(∑
n∈Z

yn−mz
n−m

)
= ϕ0(x)ϕ0(y).

Hence ϕ0 is a homomorphism and since

|ϕ0(x)| =
∣∣∣∑
n∈Z

xnz
n
∣∣∣ ≤∑

n∈Z
|xn||zn| = ‖x‖l1(Z),

ϕ0 is continuous. Thus ϕ0 extends to a continuous linear homomorphism ϕz : l1(Z)→ C,
which is multiplicative on l1(Z). Clearly, ϕz(e1) = z.

This shows that the map Φ : T → ∆(l1(Z)), z 7→ ϕz is a bijection. By routine
arguments (as in Example 2.3.14) we can show that Φ is a homeomorphism.

In Example 1.1.15 we have seen that the Wiener algebra W (T) is isomorphic to l1(Z),
the isomorphism being given by f 7→ (cn(f))n∈Z where

cn(f) =
1

2π

∫ 2π

0
f(eit)e−intdt, n ∈ Z.

By the preceding Example 2.3.19 we can identify ∆(W (T)) with T as follows. For z ∈ T
let

ϕz(f) =
∑
n∈Z

cn(f)zn, f ∈W (T).

Then z 7→ ϕz is a homeomorphism between T and ∆(W (T)). By identifying

f̂(z) =
∑
n∈Z

cn(f)zn = f(z) for all f ∈W (T),

the Gelfand representation of W (T) is the identity mapping. Hence the Gelfand trans-
form f̂ can be viewed as an abstract inverse Fourier transform of f .

As a simple consequence we obtain the following classical result by Wiener whose
proof is quite simple yet beautiful. It should be noted that Wiener’s original proof was
hard Fourier analysis and a good deal more complicated.
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Theorem 2.3.20 (Wiener) If f ∈ W (T) is such that f(z) 6= 0 for all z ∈ T, then
1/f ∈ W (T). That is, if f is nonzero and has an absolutely convergent Fourier series,
then 1/f has an absolutely convergent Fourier series as well.

Proof. By the previous considerations, we know that ∆(W (T)) can be identified with
T. Now by Theorem 2.1.20 (ii) (Beurling-Gelfand), f is invertible in W (T) if and only
if 0 /∈ σ(f). By Theorem 2.3.6 (Gelfand’s representation theorem) and Example 2.3.19
we get σ(f) = f̂(∆) = f(T). By hypothesis we have 0 /∈ f(T), so 0 /∈ σ(f) and hence f
is invertible in W (T). Thus 1/f ∈W (T).

We continue with a result concerning homomorphisms and isomorphisms between
commutative Banach algebras.

Theorem 2.3.21 Let A and B be commutative Banach algebras. If A and B are alge-
braically isomorphic, then ∆(A) and ∆(B) are homeomorphic.

Proof. Suppose Φ : A → B is an algebra isomorphism. Let Φ′ : ∆(B) → ∆(A) denote
the dual mapping, i.e.

Φ′(ϕ)(x) = ϕ(Φ(x)), x ∈ A, ϕ ∈ ∆(B).

By routine arguments it can be easily verified that Φ′ is a bijection. We claim that Φ′

is a homeomorphism. First note that Φ′ is continuous provided that all functions

∆(B)→ C, ϕ 7→ Φ′(ϕ)(x), x ∈ A,

are continuous. Indeed, it follows immediately from the definition of Φ′ and the defini-
tion of the topology on ∆(B) that such functions are continuous. Similarly, (Φ′)−1 is
continuous.

Remark 2.3.22 If B is semisimple, then by Theorem 2.2.5 Φ is continuous, and Φ is
completely determined by the equation Φ̂(x)(ϕ) = x̂(Φ′(ϕ)) where ϕ ∈ ∆(B), x ∈ A and
Φ′ is the homeomorphism defined in the proof of Theorem 2.3.21.

The converse of Theorem 2.3.21 need not be valid. Generally speaking, the question of
precisely which homeomorphisms between ∆(B) and ∆(A) induce isomorphisms between
A and B is a rather intricate one, even in the case that A = B. For some specific algebras
the answers are known, for instance, when A = C0(X ) and B = C0(Y) where X and Y
are locally compact Hausdorff spaces.

Corollary 2.3.23 For locally compact Hausdorff spaces X and Y the following condi-
tions are equivalent.

(i) C0(X ) and C0(Y) are isometrically isomorphic.

(ii) C0(X ) and C0(Y) are algebraically isomorphic.

(iii) X and Y are homeomorphic.
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Proof.
(i)⇒ (ii) is trivial and (ii)⇒ (iii) is a consequence of Theorem 2.3.21 and Example

2.3.14. Finally, for (iii)⇒ (i) let Φ : X → Y be a homeomorphism. Then f 7→ f ◦ Φ is
an isometric algebra isomorphism from C0(Y) to C0(X ).

We conclude this section with a result which can be efficiently used to identify the
Gelfand topology.

Proposition 2.3.24 Let X be a locally compact Hausdorff space and let A be a family
of functions in C0(X ) which strongly separates the points of X . Then the topology of X
equals the weak topology with respect to the functions x 7→ f(x), f ∈ A.

Proof. The general idea is to utilize the one-point compactification technique. We know
that the given topology on X is stronger than the weak topology. Hence it suffices to
show that for x ∈ X and an open neighbourhood U of x in X , there exists a set V such
that x ∈ V ⊆ U and V is open in the weak topology. Now let X̃ be X if X is compact,
and let X̃ = X ∪{∞} be the one-point compactification of X if X is noncompact. Every
f ∈ C0(X ) extends to a continuous function on X̃ , also denoted f , by setting f(∞) = 0.
By hypothesis, A strongly separates the points of X , so for every y ∈ X̃ \U there exists
fy ∈ A such that

εy = |fy(y)− fy(x)| > 0.

Hence for each y ∈ X̃ \ U ,

Vy = {z ∈ X̃ : |fy(z)− fy(y)| < εy/2}

is an open neighbourhood of y in X̃ . Since X̃ \ U is compact, there exist finitely many
y1, . . . , yn ∈ X̃ \ U such that

X̃ \ U ⊆
n⋃
k=1

Vyk .

Let
V = {z ∈ X : |fyk(z)− fyk(x)| < εyk/2 for all 1 ≤ k ≤ n}.

Then x ∈ V und V is contained in U . Indeed, if z ∈ V and z /∈ U , then z ∈ Vyk for some
k ∈ N and therefore

|fyk(x)− fyk(yk)| = |fyk(x)− fyk(z) + fyk(z)− fyk(yk)|
≤ |fyk(x)− fyk(z)|+ |fyk(z)− fyk(yk)|

< 2
εyk
2

= εyk ,

which is a contradiction to the definition of εyk .
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2.4. Finitely generated Banach algebras

In this final section we briefly discuss so called finitely generated Banach algebras. Many
naturally occuring Banach algebras are generated by finitely many elements (for exam-
ple l1(Z)). Such algebras admit a satisfying description of their structure spaces. In
particular, we are interested in the notion of the joint spectrum as it will be needed
later.

Definition 2.4.1 Let A be a commutative Banach algebra with identity e. A subset E
of A is said to generate A if every closed subalgebra of A containing E and e coincides
with A. Equivalently, the set of all finite linear combinations of elements of the form

xn1
1 xn2

2 · . . . · x
nr
r , xi ∈ E, ni ∈ N0, r ∈ N,

is dense in A.
A is called finitely generated if there exists a finite subset of A that generates A. In
particular, an element x of A is a generator for A if the algebra generated by x equals
A, i.e. A(x) = A. An algebra that has a generator is called monothetic.

Definition 2.4.2 Let A be a commutative Banach algebra with identity and let
x1, . . . , xn ∈ A. Then the joint spectrum of x1, . . . , xn is the subset σA(x1, . . . , xn) of Cn
defined by

σA(x1, . . . , xn) = {(ϕ(x1), . . . , ϕ(xn)) : ϕ ∈ ∆(A)}.

Since ∆(A) is compact and the mapping

∆(A)→ Cn, ϕ 7→ (ϕ(x1), . . . , ϕ(xn))

is continuous, σA(x1, . . . , xn) is a compact subset of Cn. Evidently, by Theorem 2.3.6
(Gelfand’s representation theorem) the joint spectrum of a single element x reduces to
the spectrum σA(x) of x.

If x1, . . . , xn generate a Banach algebra A, then ∆(A) is canonically homeomorphic
to the joint spectrum of x1, . . . , xn, which is a compact subset of Cn. Hence it is an
important issue to identify the compact subsets of Cn arising in this manner of joint
spectra.

Lemma 2.4.3 Let A be a unital commutative Banach algebra, and suppose that E ⊆ A
generates A. Then the mapping

Φ : ∆(A)→
∏
x∈E

σA(x), ϕ 7→ (ϕ(x))x∈E

is a homeomorphism between ∆(A) and Φ(∆(A)) ⊆
∏
x∈E σA(x). Particularly, if E is

finite, say E = {x1, . . . , xn}, then we have a homeomorphism

∆(A)→ σA(x1, . . . , xn), ϕ 7→ (ϕ(x1), . . . , ϕ(xn)).
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Proof. Clearly Φ is surjective, hence we need to show that Φ is injective. Assume that
ϕ1, ϕ2 ∈ ∆(A) are such that ϕ1(x) = ϕ2(x) for all x ∈ E. Let B denote the smallest
Banach subalgebra of A containing E and the identity. Then B is dense in A , and
ϕ1(y) = ϕ2(y) for all y ∈ B. Now, since elements in ∆(A) are continuous, it follows
immediately that ϕ1 = ϕ2. Thus Φ is injective.

We know that
∏
x∈E σA(x) carries the weak topology with respect to the projections

py :
∏
x∈E

σA(x)→ σA(y), y ∈ E.

Since py◦Φ(ϕ) = ϕ(y), the functions py◦Φ, y ∈ E, are continuous. Hence Φ is continuous.
Therefore

Φ : ∆(A)→ Φ(∆(A)), ϕ 7→ (ϕ(x))x∈E

is a continuous bijection between a compact space and a Hausdorff space, and hence is
a homeomorphism.

Example 2.4.4 LetA denote the disc algebra A(D) (Example 1.1.10), and y the element
of A given by y(z) = z, z ∈ D. Then y is a generator for A. For given x ∈ A and
ε ∈ (0, 1), let xε be defined by

xε(z) = x(εz), z ∈ D.

Then xε ∈ A(y) and limε ‖x− xε‖∞ = 0, so that x ∈ A(y). Now it follows from Lemma
2.4.3 that the mapping ϕ 7→ ϕ(y) is a homeomorphism of ∆(A) onto D. Because

ϕ(x) = x(ϕ(y)), x ∈ A, ϕ ∈ ∆(A),

we get x(z) =
∑∞

n=0 anz
n with |z| < 1, and hence xε =

∑∞
n=0 anε

nyn. Therefore

ϕ(xε) = xε(ϕ(y)) = x(εϕ(y)), ε ∈ (0, 1).

Example 2.4.5 Let A denote the Wiener algebra W (T) (Example 1.1.15), and let g be
the element of A given by

g(t) = eit, t ∈ [0, 2π].

Then g ∈ G(A) and g−1(t) = e−it, t ∈ [0, 2π]. For f ∈ A we have

f(t) =
∑
n∈Z

cn(f)eint, t ∈ [0, 2π],

where cn is the nth Fourier coefficient of f with norm

‖f‖W (T) =
∑
n∈Z
|cn(f)|.

Thus the series

f =
∑
n∈Z

cn(f)gn (2.4)
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is convergent in norm and hence {g, g−1} is a set of generators for A.
Next, we can observe that σ(g) = T = {eit : 0 ≤ t ≤ 2π} = {z ∈ C : |z| = 1}. Indeed,

since W (T) is an algebra of functions, we have T ⊆ σ(g). Conversely, the inequalities

r(g) ≤ ‖g‖W (T) = 1 and r(g−1) ≤ ‖g−1‖W (T) = 1

show that
|z| ≤ 1 and |z−1| ≤ 1

whenever z ∈ σ(g). Hence σ(g) ⊆ T.
For given f ∈ A we apply ϕ ∈ ∆(A) to (2.4),

ϕ(f) =
∑
n∈Z

cn(f)(ϕ(g))n = f(t),

where eit = ϕ(g) with t ∈ [0, 2π]. Therefore σ(f) = {f(t) : t ∈ [0, 2π]}. Moreover,
f ∈ G(A) if and only if f(t) 6= 0 for t ∈ [0, 2π] (Wiener’s theorem).

We now aim at characterizing those compact subsets of Cn which arise in this way
as structure spaces of commutative Banach algebras generated by n elements, n ∈ N
(Theorem 2.4.8). To achieve that, we first need the geometrical notion of polynomial
convexity.

Definition 2.4.6 A compact subset K of Cn, n ∈ N, is called polynomially convex if for
every z ∈ Cn \K there exists a polynomial p such that

p(z) = 1 and |p(w)| < 1 for all w ∈ K.

Lemma 2.4.7 Every compact convex subset K of Cn is polynomially convex.

Proof. The proof is pretty straightforward and can be found in [Kan], Lemma 2.3.5,
p.61.

Theorem 2.4.8 For a compact subset K of Cn the following conditions are equivalent.

(i) There exists a unital commutative Banach algebra A which is generated by n ele-
ments x1, . . . , xn ∈ A such that K = σA(x1, . . . , xn).

(ii) K is polynomially convex.

Proof. See [Kan], Theorem 2.3.6, p.62.

Remark 2.4.9 Suppose that K ⊆ Cn is polynomially convex and let A = P (K) be the
algebra of all functions f : K → C that are uniform limits of polynomial functions on
K. Then A is generated by the functions

fj(z) = zj , z = (z1, . . . , zn) ∈ K, 1 ≤ j ≤ n.

It follows now by Theorem 2.4.8 that ∆(P (K)) = K.

We conclude this chapter with a theorem by Shilov, which states that a compact
subset of C is polynomially convex if and only if its complement is connected.
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Definition 2.4.10 A topological space X is called connected if it cannot be divided into
two disjoint nonempty open sets. That is, for all nonempty open subsets E,F of X

E ∩ F = ∅ ⇒ E ∪ F 6= X .

Theorem 2.4.11 A compact subset K of C is polynomially convex if and only if C \K
is connected.

Proof. See [Kan], Theorem 2.3.7, p.64.

Remark 2.4.12 Let n ∈ N. One can prove (by employing the maximum modulus
principle for polynomials of several complex variables) that if K ⊆ Cn is polynomially
convex, then Cn \K is connected. However, the following example shows that for n ≥ 2
there exist compact subsets of Cn which fail to be polynomially convex, even though
Cn\K is connected. To date, the problem of a topological characterization of polynomial
convex subsets of Cn for n ≥ 2 remains open.

Example 2.4.13 Let n ≥ 2 and

K = {z = (z1, . . . , zn) ∈ Cn : |zj | = 1, 1 ≤ j ≤ n}.

Now assume that K is polynomially convex. We can find a polynomial p in n variables
such that |p(z)| < 1 for all z ∈ K and p(0, 1, . . . , 1) = 1. Let q be a polynomial in one
variable defined by

q(w) = p(w, 1, . . . , 1), w ∈ C.

Then |q(w)| < 1 for all w ∈ C with |w| = 1 and q(0) = p(0, 1, . . . , 1) = 1. This is a
contradiction to the maximum modulus principle. Hence K is not polynomially convex.
Nevertheless, we claim that Cn \K is connected. Recall Definition 2.4.10 and let

Ej = {z = (z1, . . . , zn) ∈ Cn : |zj | > 1}

and
Fj = {z = (z1, . . . , zn) ∈ Cn : |zj | < 1},

1 ≤ j ≤ n. It follows that

Cn \K =
n⋃
j=1

(Ej ∪ Fj).

The sets Ej and Fj are arcwise connected2 and we have

Ej ∩ Ek 6= ∅, Fj ∩ Fk 6= ∅, and, for j 6= k, Ej ∩ Fk 6= ∅.

Thus Cn \K is connected.

2A topological space X is said to be arcwise connected if any two distinct points can be joined by an
arc.
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Idempotent Theorem

Our primary objective in this chapter is to establish and prove the Shilov idempotent
theorem (Section 3.2), which states that for a commutative Banach algebra A, the
characteristic function of a compact open subset of ∆(A) is the Gelfand transform of an
idempotent in A. We then continue with some important applications (Section 3.3) of
this powerful theorem such as the converse of Theorem 2.3.4. But before we can do so,
we first need a new tool from complex analysis - the so called holomorphic functional
calculus (Section 3.1).

Let A be a commutative Banach algebra. The single-variable holomorphic functional
calculus associates with a complex-valued function f , which is defined and holomorphic
in a neighbourhood of the spectrum of an element x of A, an element f(x) of A. In order
to prove the idempotent theorem we need a generalization - the (weaker) several-variable
holomorphic functional calculus.

3.1. The holomorphic functional calculus and applications

We begin with developing the single-variable holomorphic functional calculus which pro-
vides an efficient method to construct from a given algebra element new elements with
specified properties. Most results in this section will be given without any proof. For
a more detailed approach on holomorphic functions and several complex variables we
refer, for instance, to [Gun] and [Ran].

Definition 3.1.1 Let A be a unital Banach algebra and x ∈ A. Suppose that U is an
open set containing σA(x)(⊆ C), and denote by R(U) the set of all rational functions
on U . That is,

f ∈ R(U) if and only if f = (p/q)|U ,

where p and q are polynomials with q(z) 6= 0 for all z ∈ U . By the polynomial spectral
mapping theorem we have σA(q(x)) = q(σA(x)) and hence 0 /∈ σA(q(x)). Therefore by
Theorem 2.1.20 (ii) (Beurling-Gelfand), q(x) is invertible in A. We define f(x) ∈ A by

f(x) = p(x)q(x)−1.

Since σA is nonempty, U is a nonempty open set and the representation p/q of f is unique
apart from common factors of numerator and denominator. Furthermore, polynomials
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in x and the inverses of such polynomials commute with each other. Thus f(x) is
independent of the choice of p and q. Now let

R(x) =
⋃
{R(U) : U is open and U ⊇ σA(x)}.

Then R(x) is an algebra and f(x) ∈ A is well-defined for every f ∈ R(x).

Lemma 3.1.2 Let A be a unital Banach algebra and x ∈ A. Then the mapping

R(x)→ A, f 7→ f(x)

is a homomorphism and satisfies

ϕ(f(x)) = f(ϕ(x)) for all ϕ ∈ ∆(A) and σA(f(x)) = f(σA(x)).

Proof. We apply the spectral mapping theorem and use the fact that ϕ(q(x)−1) =
1/ϕ(q(x)) for all ϕ ∈ ∆(A) and polynomials q 6= 0.

Definition 3.1.3 For an open subset U of C let H(U) denote the set of all holomorphic
functions on U . Let x ∈ A and

H(x) =
⋃
{H(U) : U is open and U ⊇ σA(x)}.

Then, with pointwise operations, H(x) is the algebra of all functions that are holomorphic
in some neighbourhood of σA(x).

Next, we wish to extend the homomorphism from R(x) into A to a homomorphism
from H(x) into A. Proofs of the following lemmas can be found, for example, in [Bon],
Section 7, pp.31 and in [Kan], Section 3.1, pp.141. We essentially exploit Cauchy’s
integral formula in one variable to define functions of Banach algebra elements.

Definition 3.1.4 For a rectifiable closed curve γ : [a, b] → C and z ∈ C \ γ([a, b]), the
number

w(γ, z) =
1

2πi

∫
γ

dw

w − z

denotes the winding number of γ relative to the point z.

Lemma 3.1.5 Let U be an open subset of C and K a compact subset of U . Then there
are closed, piecewise smooth curves γ1, . . . , γn in U \K such that for any holomorphic
function f on U and z ∈ K,

f(z) =
1

2πi

n∑
j=1

∫
γj

f(w)

w − z
dw.

In particular,
n∑
j=1

w(γj , z) = 1.
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Lemma 3.1.6 If f : U → C is a holomorphic function, then for every compact subset
K of U and ε > 0 there exists a rational function r, the poles of which are contained in
C \K, such that

‖f |K − r|K‖∞ ≤ ε.

Lemma 3.1.7 Let A be a Banach algebra with identity e, x ∈ A, and U an open
neighbourhood of σA(x). Suppose that γ1, . . . , γn are closed, piecewise smooth curves
in U \σA(x) having the properties of Lemma 3.1.5. Then for any rational function f on
U ,

f(x) =
1

2πi

n∑
j=1

∫
γj

f(z)(ze− x)−1dz.

Lemma 3.1.8 Let U be an open neighbourhood of σA(x) and let f be a holomorphic
function on U . Moreover, let γ1, . . . , γn and δ1, . . . , δm be systems of closed, piecewise
smooth curves in U \ σA(x) with the properties of Lemma 3.1.5. Then

n∑
j=1

∫
γj

f(z)(ze− x)−1dz =
m∑
k=1

∫
δk

f(z)(ze− x)−1dz.

Definition 3.1.9 Let A be a unital Banach algebra. For x ∈ A and f ∈ H(x) we
define f(x) ∈ A as follows. Suppose that f is a holomorphic function on the open set
U containing σA(x), and choose closed, piecewise smooth curves γ1, . . . , γn in U \ σA(x)
with the properties of Lemma 3.1.5. Then, define f(x) ∈ A by

f(x) =
1

2πi

n∑
j=1

∫
γj

f(z)(ze− x)−1dz.

Hence, by Lemma 3.1.8, this definition does not depend on the choice of U and of the
curves γ1, . . . , γn. Also, by Lemma 3.1.7, it extends the definition of f(x) for rational
functions f to functions holomorphic in U . The set of mappings

H(x)→ A, f 7→ f(x), x ∈ A,

is referred to as the single-variable holomorphic functional calculus.

The basic properties of the mapping f 7→ f(x) are listed in the next theorem.

Theorem 3.1.10 (Single-variable holomorphic functional calculus) Let A be a
unital commutative Banach algebra. For x ∈ A the following assertions hold.

(i) The mapping f 7→ f(x) is a homomorphism from H(x) into A.

(ii) If f is an entire function and f(z) =
∑∞

k=0 akz
k, then

f(x) =

∞∑
k=0

akx
k,

the series being absolutely convergent.
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(iii) Suppose that f and fn, n ∈ N, are holomorphic functions on some open set U
containing σA(x) and that fn converges uniformly to f on every compact subset of
U . Then

‖fn(x)− f(x)‖ → 0.

(iv) For f ∈ H(x) we have ϕ(f(x)) = f(ϕ(x)) for all ϕ ∈ ∆(A), and thus

σA(f(x)) = f(σA(x)).

Proof. (i) We show that f 7→ f(x) is a homomorphism.

◦ Clearly, f 7→ f(x) is linear.

◦ f 7→ f(x) is multiplicative: Let f and g be holomorphic on an open neighbourhood
U of σA(x) and choose curves γ1, . . . , γm : [0, 1] → U \ σA(x) as in Lemma 3.1.5,
and let Γj = γj([0, 1]), 1 ≤ j ≤ m. Then there exist sequences (fn)n∈N and (gn)n∈N
of rational functions, each of which has its poles outside of σA(x)∪ (

⋃m
j=1 Γj) such

that fn → f and gn → g uniformly on
⋃∞
j=1 Γj . Hence fngn → fg uniformly on⋃∞

j=1 Γj . Now by Lemma 3.1.2 we know that for a rational function r ∈ R(x), the
mapping R(x)→ A, r 7→ r(x) is a homomorphism. Thus for x ∈ A we get

‖f(x)g(x)− (fg)(x)‖ ≤ ‖f(x)− fn(x)‖ · ‖g(x)‖
+ ‖fn(x)‖ · ‖g(x)− gn(x)‖
+ ‖(fngn)(x)− (fg)(x)‖,

which converges to 0 as n→∞. Hence (fg)(x) = f(x)g(x).

(ii) Let R > ‖x‖ and γ(t) = Re2πit, t ∈ [0, 1]. Then γ has the properties of Lemma 3.1.5
and the series

∑∞
k=0 z

−(k+1)xk converges uniformly on γ([0, 1]). Therefore we have

f(x) =
1

2πi

∫
γ
f(z)(ze− x)−1dz

=

∞∑
k=0

1

2πi

∫
γ
f(z) · z−(k+1) · xkdz

=

∞∑
k=0

1

2πi

∫
γ

f(z)

zk+1
xkdz

=

∞∑
k=0

f (k)(0)

k!
xk (Taylor)

=

∞∑
k=0

akx
k.

(iii) follows immediately from the estimate∥∥∥∥∫
γ
g(z)(ze− x)−1dz

∥∥∥∥ ≤ L(γ) ·
∥∥g|γ([0,1])

∥∥ · sup
z∈γ([0,1])

‖(ze− x)−1‖,
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where L(γ) denotes the length of the rectifiable curve γ.
(iv) Let ϕ ∈ ∆(A) and z ∈ C \ σA(x), x ∈ A. Then

1 = ϕ(e) = ϕ((ze− x)(ze− x)−1) = ϕ(ze− x)ϕ((ze− x)−1)

= (ϕ(z)ϕ(e)− ϕ(x))ϕ((ze− x)−1) = (z − ϕ(x))ϕ((ze− x)−1).

This implies ϕ((ze− x)−1) = (z−ϕ(x))−1, and since ∆(A) is a subset of the dual space
A′ we have

ϕ(f(x)) =
1

2πi

n∑
k=1

∫
γk

ϕ(f(z)(ze− x)−1)dz

=
1

2πi

n∑
k=1

∫
γk

f(z)(z − ϕ(x))−1dz

= f(ϕ(x)).

By Theorem 2.3.6 (Gelfand’s representation theorem) we eventually get

σA(f(x)) = f̂(x)(∆(A)) = f(x̂(∆(A))) = f(σA(x)).

In order to prove Shilov’s idempotent theorem (Theorem 3.2.1), we need to construct
a functional calculus for holomorphic functions in n variables, n ≥ 2, similarly to the
single-variable calculus, but weaker and less explicit.

Definition 3.1.11 A complex-valued function f defined on an open subset U of Cn is
called holomorphic in U if each point w ∈ U has an open neighbourhood V,w ∈ V ⊆ U ,
such that the function f has a power series expansion

∞∑
k1=0

· . . . ·
∞∑

kn=0

ak1,...,kn(z1 − w1)k1 · . . . · (zn − wn)kn ,

which converges for all z ∈ V .

Theorem 3.1.12 (Several-variable holomorphic functional calculus) Let A be a
unital commutative Banach algebra and let x1, . . . , xn ∈ A. Let f be a complex-valued
function of n variables which is defined and holomorphic on some open set containing
the joint spectrum σA(x1, . . . , xn) of x1, . . . , xn. Then there exists x ∈ A such that

x̂(ϕ) = f(x̂1(ϕ), . . . , x̂n(ϕ)) (3.1)

for all ϕ ∈ ∆(A).

Remark 3.1.13

◦ (3.1) can be written as

ϕ(x) = f(ϕ(x1), . . . , ϕ(xn)) for all ϕ ∈ ∆(A).
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◦ When A is semisimple, there exists exactly one such element x ∈ A.

Indeed, suppose there exist two distinct elements x, y ∈ A such that

ϕ(x) = ϕ(y)⇔ ϕ(x)− ϕ(y) = 0⇔ (x− y) ∈ kerϕ for all ϕ ∈ ∆(A).

Now, by Theorem 2.1.18, the mapping ϕ 7→ kerϕ is a bijection between ∆(A) and
Max(A), the set of all maximal ideals in A. Hence

(x− y) ∈
⋂
{M : M ∈ Max(A)} =

⋂
{kerϕ : ϕ ∈ ∆(A)} = rad(A).

Since rad(A) = {0} for semisimple algebras, we conclude that x = y. Thus x ∈ A is
unique.

To prove the multi-variable calculus (see Theorem 3.1.18), the following result, which
is due to Oka, is employed. Let Dn denote the closed polydisc in Cn, that is

Dn = {z ∈ Cn : |zj | ≤ 1, j = 1, . . . , n}.

Theorem 3.1.14 (Oka’s extension theorem) Let n,m ∈ N. Let p1, . . . , pm be poly-
nomials in n complex variables and let π : Cn → Cn+m denote the mapping defined
by

π(z) = (z, p1(z), . . . , pm(z)), z ∈ Cn.

If f is holomorphic on an open neighbourhood of π−1(Dn+m), then there exists a holo-
morphic function F , defined on some open neighbourhood of Dn+m such that

F (π(z)) = f(z) for all z ∈ π−1(Dn+m).

Proof. See [Werm], Chapter 7, pp.38.

For a proof of the following lemmas and propositions we refer to [Kan], Section 3.1, pp.
149. As in the case n = 1, for an open subset U of Cn, H(U) denotes the algebra of
holomorphic functions on U .

Proposition 3.1.15 Let n,m ∈ N and cj > 0 for 1 ≤ j ≤ n+m, and let p1, . . . , pm be
polynomials in n variables. Let

D = {z ∈ Cn+m : |zj | ≤ cj , j = 1, . . . , n+m},

and define π : Cn → Cn+m as above. Then, given f is holomorphic on an open neighbour-
hood of π−1(D), there exists a function F which is holomorphic on an open neighbourhood
of D such that

F (π(z)) = f(z) for all z ∈ π−1(D).

In the following A is always a commutative Banach algebra with identity e and An
denotes the Cartesian product of n copies of A.

Lemma 3.1.16 Let x = (x1, . . . , xn) ∈ An and let U be an open neighbourhood of
σA(x) in Cn. Then there exists a finitely generated closed subalgebra B of A containing
e, x1, . . . , xn such that σB(x) ⊆ U .
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Lemma 3.1.17 Let {x1, . . . , xn} be a set of generators of A and (λ1, . . . , λn) ∈ Cn \
σA(x1, . . . , xn). Then there exists a polynomial p such that

|p(λ1, . . . , λn)| > 1 + ‖p(x1, . . . , xn)‖.

Proposition 3.1.18 Let x = (x1, . . . , xn) ∈ An and let U be an open neighbourhood
of σA(x) in Cn. Then there exist xn+1, . . . , xN ∈ A with the following property. Given
f ∈ H(U), there exists a function F , holomorphic on some open neighbourhood of the
polydisc {z ∈ CN : |zj | ≤ 1 + ‖xj‖, 1 ≤ j ≤ N}, such that

f(ϕ(x1), . . . , ϕ(xn)) = F (ϕ(x1), . . . , ϕ(xN ))

for all ϕ ∈ ∆(A).

Now we are in a position to prove the several-variable holomorphic functional calculus.

Proof. (of Theorem 3.1.12)
Let A be a unital commutative Banach algebra and x1, . . . , xn ∈ A, and let f be

holomorphic on some open neighbourhood of σA(x1, . . . , xn). Now by Proposition 3.1.18
there exist xn+1, . . . , xN ∈ A and a function F defined and holomorphic on an open
neighbourhood of the polydisc

D = {z = (z1, . . . , zN ) ∈ CN : |zj | ≤ 1 + ‖xj‖, 1 ≤ j ≤ N}

such that

f(ϕ(x1), . . . , ϕ(xn)) = F (ϕ(x1), . . . , ϕ(xN )) for all ϕ ∈ ∆(A).

The function F admits a power series expansion

F (z1, . . . , zN ) =
∑

k∈(N0)N

λk · zk11 · . . . · z
kN
N ,

with k = (k1, . . . , kN ), which is convergent on a neighbourhood of D and therefore
absolutely convergent on D. Hence the series∑

k∈(N0)N

|λk| · ‖z1‖k1 · . . . · ‖zN‖kN

converges. As a consequence the series
∑

k∈(N0)N λk · z
k1
1 · . . . · z

kN
N converges in norm

to an element y of A. Then, for all ϕ ∈ ∆(A), we obtain

ŷ(ϕ) = ϕ(y) =
∑

k∈(N0)N

λk · ϕ(x1)k1 · . . . · ϕ(xN )kN

= F (ϕ(x1), . . . , ϕ(xN ))

= F (x̂1(ϕ), . . . , x̂N (ϕ))

= f(x̂1(ϕ), . . . , x̂N (ϕ)).
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The multi-variable holomorphic functional calculus was originally proved by Shilov
[Shi] under the hypothesis that A be finitely generated, and was extended to the ge-
neral case by Arens and Calderon. There are many applications of the (single-variable)
calculus, such as concerning

◦ the structure of the group G(A) of invertible elements of A,

◦ approximation theory (Runge’s theorem),

◦ the question of whether compactness of ∆(A) forces A to be unital and

◦ the existence of idempotents.

We won’t discuss all of them since only the latter two are of particular interest. The
next theorem, which we will need for the succeeding corollary, characterizes the behaviour
of the functional calculus with respect to compositions.

Theorem 3.1.19 Let A be a commutative Banach algebra and suppose that ∆(A) is
compact. Let x ∈ A be such that x̂(ϕ) 6= 0 for all ϕ ∈ ∆(A), and let f be a holomorphic
function on some open neighbourhood of x̂(∆(A)). Then there exists y ∈ A so that
ŷ = f ◦ x̂.

Proof. By hypothesis, x̂(∆(A)) is a compact subset of C \ {0}. Now we choose disjoint
open sets U and V in C such that x̂(∆(A)) ⊆ U, 0 ∈ V , and f is a holomorphic function
on U . Next we define g : U ∪ V → C by g|U = f and g|V = 0 and let y = g(x) ∈ A. By
the single-variable holomorphic functional calculus (Theorem 3.1.10 (iv)) we get

ŷ(ϕ) = ϕ(y) = ϕ(g(x)) = g(ϕ(x)) = f(ϕ(x)) = f(x̂(ϕ)) = f ◦ x̂(ϕ)

for all ϕ(x) ∈ ∆(A) since x̂(∆(A)) ⊆ U .

Corollary 3.1.20 Let A be a semisimple commutative Banach algebra. Suppose that
∆(A) is compact and that there exists x ∈ A such that x̂(ϕ) 6= 0 for all ϕ ∈ ∆(A). Then
A has an identity.

Proof. Let f be the function f(z) = 1/z on C \ {0}. Since x̂(∆(A)) ⊆ C \ {0}, there
exists y ∈ A by Theorem 3.1.19 such that

ϕ(y) = f(ϕ(x)) =
1

ϕ(x)

for all ϕ ∈ ∆(A). Then the element u = xy ∈ A satisfies

ϕ(ua) = ϕ(u)ϕ(a) = ϕ(xy)ϕ(a) = ϕ(x)ϕ(y)ϕ(a) = ϕ(x)(1/ϕ(x))ϕ(a) = ϕ(a)

for all a ∈ A and ϕ ∈ ∆(A). Moreover,

ϕ(ua)− ϕ(a) = 0⇔ (ua− a) ∈ kerϕ,

and since A is semisimple (i.e. rad(A) = {0}), it follows immediately that ua = a for
all a ∈ A. Hence u is an identity for A.
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In general it is true that a semisimple commutative Banach algebra with compact struc-
ture space is unital. The proof, of course, will require the Shilov idempotent theorem
which in turn is based on the several-variable holomorphic functional calculus.

We conclude this section by presenting an application of the holomorphic functional
calculus which concerns the existence of idempotents.

Definition 3.1.21 An element x of an algebra A is called an idempotent if it satisfies
x2 = x. Note that the identity element e is always an idempotent since e · e = e.

Theorem 3.1.22 Let A be a commutative Banach algebra A with identity e. Let x ∈ A
and suppose that σ(x) =

⋃m
j=1Cj, where the sets Cj , 1 ≤ j ≤ m, are nonempty, pairwise

disjoint and closed in σ(x). Then there exist idempotents e1, . . . , em in A such that

e =
m∑
j=1

ej , ej 6= 0 and ejek = 0 for 1 ≤ j, k ≤ m, j 6= k.

Moreover, each ej is contained in the closed linear span of all elements of the form
(λe− x)−1, λ ∈ ρ(x).

Proof. Since the spectrum σ(x) is compact, so are C1, . . . , Cm. Thus there exist pairwise
disjoint open subsets U1, . . . , Um of C such that Cj ⊆ Uj .

Let U =
⋃m
j=1 Uj and define a function fj on U for each j by

fj(z) =

{
1 if z ∈ Uj ,
0 if z ∈ U \ Uj .

Then the holomorphic functions fj satisfy f2
j = fj and

∑m
j=1 fj(z) = 1 for all z ∈ U .

Now, let ej = fj(x) ∈ A, 1 ≤ j ≤ m. It follows that e2
j = f2

j = fj = ej , ejek = fjfk = 0
for j 6= k and

e = 1U (x) =

m∑
j=1

fj(x) =

m∑
j=1

ej .

Applying the single-variable holomorphic functional calculus (Theorem 3.1.10) we see
that 1 ∈ fj(σ(x)) = σ(fj(x)) = σ(ej). Thus ej 6= 0 for each j.

By the definition of fj(x), this element is a norm limit of finite linear combinations of
elements of the form (λe− x)−1 with λ ∈ ρ(x) = C \ σ(x).

Corollary 3.1.23 Let A and e be as in Theorem 3.1.22. If, for some x ∈ A, the
spectrum σ(x) is not connected, then there exists an idempotent ẽ in A such that ẽ 6= 0
and ẽ 6= e.

3.2. Shilov’s idempotent theorem

We have finally gathered all the necessary tools for proving one of the most beautiful
results in general banach algebra theory - the celebrated Shilov idempotent theorem. In
1954, Shilov devised the functional calculus precisely to prove the idempotent theorem.
It remains just possible that after more than 60 years a quite different proof might be
found.
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Theorem 3.2.1 (Shilov’s idempotent theorem) Let A be a commutative Banach
algebra and let C be a compact open subset of ∆(A). Then there exists an idempotent a
in A such that â equals the characteristic function of C, i.e. â = 1C .

Before we present the actual proof, we first give an overview of our approach.
Let A be a unital commutative Banach algebra and suppose that the Gelfand space
∆(A) is a disjoint union of two non-empty compact subsets U1 and U2 of ∆(A), i.e.

∆(A) = U1 ∪ U2.

Then there exists an element a in A such that

ϕ(a) = 0 for all ϕ ∈ U1 and ϕ(a) = 1 for all ϕ ∈ U2.

Next, we want to find elements a1, . . . , an ∈ A whose joint spectrum is likewise a disjoint
union of two compact subsets C1 and C2, that is

σA(a1, . . . , an) = C1 ∪ C2.

We show that C1 and C2 are indeed disjoint, so we can find disjoint open neighbourhoods
W1 and W2 of C1 and C2 in Cn, respectively.

Furthermore, let f : W1 ∪W2 → C be a holomorphic function on the neighbourhood
W1 ∪W2 of the joint spectrum σA(a1, . . . , an) such that

f |W1 = 0 and f |W2 = 1.

Then, by the multi-variable holomorphic functional calculus

ϕ(a) = f(ϕ(a1), . . . , ϕ(an))

⇐⇒ â(ϕ) = f(â1(ϕ), . . . , ân(ϕ)).

for all ϕ ∈ ∆(A). It turns out that if A is semisimple, the element a is already an
idempotent. In the next step we drop the semisimplicity of A and show that there exists
a unique idempotent element in A. Finally, by employing the unitization technique, we
show that the idempotent theorem holds true even for nonunital Banach algebras.

We start with the actual proof by presenting a very helpful lemma.

Lemma 3.2.2 Let A be a commutative Banach algebra and let ϕ1, ϕ2 ∈ ∆(A) with
ϕ1 6= ϕ2. Then there exists x ∈ A such that

ϕ1(x) = 1 and ϕ2(x) = 0.

Proof. The proof is straightforward and is based on the standard argument used in the
proof of the classical Stone-Weierstrass theorem.

By Theorem 2.3.10 (ii), the set Â = {x̂ : x ∈ A} of Gelfand transforms strongly
separates the points of ∆(A). Hence there exist elements a1, a2 ∈ A and b ∈ A such
that

ϕ1(a1) 6= 0, ϕ2(a2) 6= 0 and ϕ1(b) 6= ϕ2(b).
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Now let
cj =

aj
ϕj(aj)

for j = 1, 2 and
c = c1 + c2 − c1c2 ∈ A.

Since ϕj is linear und multiplicative we get

ϕj(c) = ϕj(c1 + c2 − c1c2) = ϕj(c1) + ϕj(c2)− ϕj(c1)ϕj(c2) = 1 + 1− 1 · 1 = 1

for j = 1, 2, so ϕ1(c) = ϕ2(c) = 1. Let

x =
b− ϕ2(b)c

ϕ1(b)− ϕ2(b)
∈ A.

Then, by applying ϕ1 and ϕ2 to x, we have

ϕ1(x) =
ϕ1(b)− ϕ2(b)ϕ1(c)

ϕ1(b)− ϕ2(b)
= 1

and

ϕ2(x) =
ϕ2(b)− ϕ2(b)ϕ2(c)

ϕ1(b)− ϕ2(b)
= 0.

Thus x has the required properties.

The several-variable holomorphic functional calculus (Theorem 3.1.12) will be employed
in the next result.

Proposition 3.2.3 Let A be a unital commutative Banach algebra and let U1 and U2

be disjoint open subsets of ∆(A) such that ∆(A) = U1 ∪ U2. Then there exists x ∈ A
such that

x̂|U1 = 0 and x̂|U2 = 1.

Proof. Let ϕ ∈ U1 and ψ ∈ U2. By Lemma 3.2.2 there exists aϕ,ψ ∈ A such that

ϕ(aϕ,ψ) = 0 and ψ(aϕ,ψ) = 1.

Now let

Vϕ,ψ =

{
α ∈ U1 : |α(aϕ,ψ)| < 1

2

}
and Wϕ,ψ =

{
β ∈ U2 : |β(aϕ,ψ)| > 1

2

}
.

Clearly, these sets are open neighbourhoods of ϕ and ψ, respectively, where Vϕ,ψ ⊆ U1

and Wϕ,ψ ⊆ U2. Now, fix ψ ∈ U2. By hypothesis, U1 is an open subset of ∆(A). Since
the structure space ∆(A) of a unital commutative Banach algebra is compact (Theorem
2.3.4), U1 is also compact. Hence there exists a finite subset Fψ of U1 such that

U1 =
⋃
ϕ∈Fψ

Vϕ,ψ.
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So, if α ∈ U1, then |α(aϕ,ψ)| < 1
2 for at least one ϕ ∈ Fψ. Now, define an open

neighbourhood Wψ of ψ in U2 by

Wψ =
⋂
ϕ∈Fψ

Wϕ,ψ.

By the same argument made above, U2 is compact. Thus there exist ψ1, . . . , ψn ∈ U2

such that

U2 =

n⋃
j=1

Wψj .

Now, consider the finite subset

E = {aϕ,ψj : 1 ≤ j ≤ n, ϕ ∈ Fψj}

of A and enumerate E, for example E = {x1, . . . , xk}. Let

Cj = {(ϕ(x1), . . . , ϕ(xk)) : ϕ ∈ Uj}

for j = 1, 2. Then C1 and C2 are compact since U1 and U2 are compact. Because
U1 ∪ U2 = ∆(A) by premise, we have

C1 ∪ C2 = {(ϕ(x1), . . . , ϕ(xk)) : ϕ ∈ U1 ∪ U2} = σA(x1, . . . , xk).

Now, assume C1 and C2 are not disjoint, i.e. C1 ∩C2 6= ∅. Then there exist α ∈ U1 and
β ∈ U2 such that

α(aϕ,ψj ) = β(aϕ,ψj ) (3.2)

for each 1 ≤ j ≤ n and all ϕ ∈ Fψj . Now, β ∈ Wψj for some j and then α ∈ Vϕ,ψj for
some ϕ ∈ Fψj . By the definition of Wψj , β is in Wϕ,ψj and hence

|α(aϕ,ψj )| <
1

2
and |β(aϕ,ψj )| >

1

2
,

which is a contradiction to (3.2). Therefore C1 and C2 are disjoint compact subsets of
Ck and consequently we can find disjoint open neighbourhoods W1 and W2 of C1 and
C2 in Ck, respectively.

Next, define a function f : W1 ∪W2 → C by

f |W1 = 0 and f |W2 = 1.

Then f is holomorphic on the neighbourhood W1∪W2 of σA(x1, . . . , xk). By the several-
variable holomorphic functional calculus (Theorem 3.1.12) there exists x ∈ A such that

x̂(ϕ) = f(ϕ(x1), . . . , ϕ(xk))

for all ϕ ∈ ∆(A). Hence x̂(ϕ) = 0 for all ϕ ∈ U1 and x̂(ϕ) = 1 for all ϕ ∈ U2.
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When A is semisimple, the element x of A in the preceding proposition is an idem-

potent because x̂2 = x̂. Therefore the idempotent theorem has been verified so far for
semisimple unital commutative Banach algebras.

Next, we drop the hypothesis of A being semisimple and show that there exists a
unique idempotent element in A.

Lemma 3.2.4 Let A be a commutative Banach algebra with identity e and let b ∈ A be

such that b̂2 = b̂. Then there exists a ∈ A such that â = b̂ and a2 = a.

Proof. Recall that for any x ∈ A the geometric series
∑∞

n=0 x
n converges in A whenever

r(x) < 1. Let x = 4(b2 − b). Since b̂2 = b̂ by hypothesis, it follows that

x̂ = 4(b̂2 − b) = 4(b̂2 − b̂) = 0.

Thus x ∈ rad(A) and hence r(x) = 0. Because
∣∣(−1/2

n

)∣∣ ≤ 1 for all n ∈ N0, the series

∞∑
n=0

(
−1/2

n

)
xn

converges in A. Now recall the binomial formula

(x+ y)n =
n∑
k=0

(
n

k

)
xkyn−k

and the well-known equation

(1 + x)n =
n∑
k=0

(
n

k

)
xk.

Therefore it is only logical that we denote the element
∑∞

n=0

(−1/2
n

)
xn by (e + x)−1/2.

We claim that
(e+ x)−1/2(e+ x)−1/2(e+ x) = e.

Indeed, (
(e+ x)−1/2

)2
(e+ x) = (e+ x) ·

∞∑
n=0

(
−1/2

n

)
xn ·

∞∑
m=0

(
−1/2

m

)
xm

= (e+ x) ·
∞∑
m=0

( ∑
k+l=m

(
−1/2

k

)(
−1/2

l

)
︸ ︷︷ ︸

=(−1)m for m∈N0

)
xm

= e+

∞∑
m=1

(−1)mxm +

∞∑
m=0

(−1)mxm+1 (x0 = e)

= e+
∞∑
m=0

(−1)m+1xm+1 +
∞∑
m=0

(−1)mxm+1
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= e+

∞∑
m=0

(
(−1)m+1 + (−1)m

)
xm+1

= e.

Hence
(
(e+ x)−1/2

)2
= (e+ x)−1. Now, set

a =

(
b− 1

2
e

)
(e+ x)−1/2 +

1

2
e.

Then we get

a(a− e) =

((
b− 1

2
e

)
(e+ x)−1/2 +

1

2
e

)
·

((
b− 1

2
e

)
(e+ x)−1/2 − 1

2
e

)

=

(
b− 1

2
e

)2

·
(

(e+ x)−1/2
)2
− 1

4
e

=

(
b2 − b+

1

4
e

)
· (e+ x)−1 − 1

4
e

=

(
1

4
x+

1

4
e

)
· (e+ x)−1 − 1

4

=
1

4
· e+ x

e+ x
− 1

4

= 0.

Thus a(a − e) = 0 ⇔ a2 = a, and hence a is an idempotent. It remains to verify that
â = b̂. For that purpose let

y =

(
b− 1

2
e

)
·
∞∑
n=1

(
−1/2

n

)
xn.

Then we obtain

a =

(
b− 1

2
e

)
· (e+ x)−1/2 +

1

2
e

=

(
b− 1

2
e

)
·

( ∞∑
n=0

(
−1/2

n

)
xn

)
+

1

2
e

=

(
b− 1

2
e

)
·

(
e+

∞∑
n=1

(
−1/2

n

)
xn

)
+

1

2
e

= be− 1

2
ee+ y +

1

2
e

= b+ y.

Now, since x ∈ rad(A) and rad(A) is a closed ideal, it follows that y ∈ rad(A). Hence

ŷ = 0 and therefore â = b̂+ y = b̂+ ŷ = b̂.
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3. Functional Calculus and Shilov’s Idempotent Theorem

Lemma 3.2.4 completes the proof of Shilov’s idempotent theorem when A is unital.
Now assume that A has no identity and consider the unitization Ae of A. As usual, by
embedding ∆(A) into ∆(Ae) = ∆(A)∪{ϕ∞} (recall that ϕ∞ denotes the homomorphism
from Ae into C with kernel A, that is ϕ∞(x+ λe) = ϕ∞(x) + λϕ∞(e) = λ for all x ∈ A
and λ ∈ C), C is still an open and closed set. Hence there exists an idempotent u in Ae
such that

û|C = 1 and û|∆(A)\C = 0.

Since û(ϕ∞) = ϕ∞(u) = 0, it follows immediately that u is in A.

Remark 3.2.5 The proof of Shilov’s idempotent theorem amounted to solving the
equation x2 − x = 0 in a commutative Banach algebra A, with the solution having a
specified Gelfand transform. There is a considerable extension of this idea - an interesting
approach was chosen in [Pal], pp.405, utilizing an implicit function theorem which in turn
is also based on the heavy machinery of several-variable complex analysis.

3.3. Applications of the idempotent theorem

In this section we present a number of applications of Shilov’s idempotent theorem. The
first one has been announced several times throughout this thesis. It is the ultimate
solution to the question of whether compactness of ∆(A) forces A to be unital.

Theorem 3.3.1 Let A be a semisimple commutative Banach algebra. If ∆(A) is com-
pact, then A has an identity.

Proof. By premise, ∆(A) is compact. Thus by the idempotent theorem (Theorem 3.2.1)
there exists e ∈ A such that ê = 1 on ∆(A). Hence we get

̂(xe− x)(ϕ) = x̂(ϕ)ê(ϕ)− x̂(ϕ) = 0

for all x ∈ A and ϕ ∈ ∆(A). Since A is semisimple we have rad(A) = {0} and therefore
xe− x = 0⇔ xe = x for all x ∈ A, whence e is an identity for A.

We have already mentioned the fact that there is a considerably simpler proof of Theorem
3.3.1 given that A is a regular Banach algebra. This result will be shown at the end of
Chapter 4 in Corollary 4.2.16.

Definition 3.3.2 A topological space X is called totally disconnected if the connected
components in X are the one-point sets.

Remark 3.3.3 If X is a totally disconnected compact Hausdorff space, then the compact
open subsets of X form a base for its topology (see [Rud], Appendix A, p.395).

Corollary 3.3.4 Let A be a commutative Banach algebra and suppose that ∆(A) is
totally disconnected. Then Â = {â : a ∈ A} is dense in C0(∆(A)).

Proof. Let f ∈ C0(∆(A)) and ε > 0. Since f vanishes and infinity and every point
of ∆(A) has a neighbourhood basis of compact open sets, there exists a compact open
subset K of ∆(A) such that

|f(ϕ)| < ε for all ϕ ∈ ∆(A) \K.
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3. Functional Calculus and Shilov’s Idempotent Theorem

Next, we can write K as a disjoint union of compact open sets E1, . . . , Ek, that is
K =

⋃k
j=1Ej , such that

|f(ϕ)− f(ψ)| < ε for all ϕ,ψ ∈ Ej , 1 ≤ j ≤ k.

Hence there exist c1, . . . , ck ∈ C with the property that the function

g =

k∑
j=1

cj1Ej

satisfies the condition
|f(ϕ)− g(ϕ)| < ε for all ϕ ∈ K.

Now by Shilov’s idempotent theorem (Theorem 3.2.1) there exist aj ∈ A, 1 ≤ j ≤ k,
such that

âj = 1Ej .

So for a =
k∑
j=1

cjaj we get

â =
k∑
j=1

cj âj =
k∑
j=1

cj1Ej = g

and hence
‖â− f‖∞ < ε.

Thus Â is dense in C0(∆(A)).

We now investigate the relation between (not necessarily finite) coverings of ∆(A)
through disjoint open subsets.

Definition 3.3.5 Let A be a commutative Banach algebra. For a subset M of A, the
hull of M is defined as

hul(M) = {ϕ ∈ ∆(A) : ϕ(M) = {0}}.

Lemma 3.3.6 Let A be a commutative Banach algebra, I a closed ideal of A and
q : A → A/I the quotient homomorphism.

(i) The map ϕ 7→ ϕ ◦ q is a homeomorphism from ∆(A/I) onto hul(I).

(ii) The map ϕ 7→ ϕ|I is a homeomorphism from ∆(A) \ hul(I) onto ∆(I).

Proof. See [Kan], Section 2.2, p.58.

So by the preceding lemma, for each y ∈ A there is a unique continuous function fy
on ∆(I) such that ŷx(ϕ) = fy(ϕ)x̂(ϕ) for all ϕ ∈ ∆(I) and x ∈ A.

In what follows, Λ always denotes the index set for λ ∈ Λ.
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Theorem 3.3.7 Let A be a nonunital commutative Banach algebra and let ∆(A) =⋃
λ∈Λ Fλ be a decomposition of ∆(A) into open and compact subsets Fλ, λ ∈ Λ. Then

there exists a family of closed ideals Iλ, λ ∈ Λ, with the following properties.

(i) ∆(Iλ) = Fλ for each λ.

(ii) Iλ ∩

( ∑
µ∈Λ,µ 6=λ

Iµ

)
⊆ rad(A) for each λ.

(iii)
∑

λ∈Λ Iλ is dense in A provided that every proper closed ideal of A is contained in
a maximal ideal.

Proof.

We start by applying Shilov’s idempotent theorem (Theorem 3.2.1). For each λ ∈ Λ
there exists an idempotent uλ in A such that

ûλ|Fλ = 1 and ûλ|∆(A)\Fλ = 0.

Let Iλ = Auλ. Then Iλ is an ideal. We claim that Iλ is closed. Indeed, let (xn)n∈N be
a sequence in Iλ and xn → x in A as n → ∞. Then xn = xnuλ → xuλ and therefore
x = xuλ ∈ Iλ.

(i) By Lemma 3.3.6 we have

∆(Iλ) = ∆(A) \ hul(Iλ) = {ϕ ∈ ∆(A) : ϕ(x) 6= 0 for some x ∈ Iλ}.

If ϕ(x) 6= 0 and x = yuλ, y ∈ A, then it follows directly from ϕ(x) = ϕ(y)ϕ(uλ) 6= 0 that
ϕ(uλ) 6= 0. Hence ∆(Iλ) ⊆ Fλ. Conversely, if ϕ ∈ Fλ, then ϕ(uλ) 6= 0. Thus ϕ /∈ hul(Iλ)
and so Fλ ⊆ ∆(Iλ).

(ii) Fix λ and let J =
∑

µ∈Λ
µ 6=λ

Iµ and L = Iλ ∩ J . We have to verify that L ⊆ rad(A).

That is equivalent to hul(L) = ∆(A). We show this identity by contradiction. Suppose
that there exists ϕ ∈ ∆(A) \ hul(L) and choose x ∈ L with ϕ(x) 6= 0. Since x ∈ Iλ, x =
xuλ and therefore ϕ(uλ) 6= 0. Hence ϕ ∈ Fλ by (i). We want to show that also ϕ ∈ Fµ
for some µ ∈ Λ, µ 6= λ. For x ∈ J , and since J is a sum of ideals Iµ, we can write x as a
sum

x =
n∑
j=1

cjxj

for xj ∈ Iµj , µ1, . . . , µn ∈ Λ, µj 6= λ for all j and c1, . . . , cn ∈ C. Now, since xj = xjuλj ,
we have

0 6= ϕ(x) = ϕ

( n∑
j=1

cjxj

)
=

n∑
j=1

ϕ(cj)ϕ(xj) =

n∑
j=1

cjϕ(xjuλj ) =

n∑
j=1

cjϕ(xj)ϕ(uλj ),

and hence ϕ(uλj ) 6= 0 for some j, so that ϕ ∈ Fλj by (i). This contradicts the fact that
Fλ ∩ Fµ = ∅ for λ 6= µ.

(iii) By (i) we know that ∆(Iλ) = Fλ and so by premise we have ∆(A) =
⋃
λ∈Λ Fλ =⋃

λ∈Λ ∆(Iλ). Thus no element of ∆(A) annihilates
∑

λ∈Λ Iλ and so it follows that this
ideal is dense in A by hypothesis.
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We continue with a converse of Theorem 3.3.7.

Theorem 3.3.8 Let A be a nonunital commutative Banach algebra and let {Iλ : λ ∈ Λ}
be a family of unital closed ideals of A satisfying property (ii) of Theorem 3.3.7 and
such that the ideal

∑
λ∈Λ Iλ is dense in A. Then ∆(A) =

⋃
λ∈Λ ∆(Iλ) and the sets

∆(Iλ), λ ∈ Λ, are open and disjoint.

Proof. Clearly, by Lemma 3.3.6, each ∆(Iλ) = ∆(A) \ hul(Iλ) is open in ∆(A). Now
let λ, µ ∈ Λ, so that λ 6= µ, and suppose that there exists ϕ ∈ ∆(Iλ) ∩∆(Iµ). Choose
x ∈ Iλ and y ∈ Iµ such that ϕ(x) 6= 0 and ϕ(y) 6= 0. It follows that xy ∈ Iλ ∩ Iµ and
Iλ ∩ Iµ ⊆ rad(A) by hypothesis. But this is a contradiction to ϕ(rad(A)) = {0}. Thus
∆(Iλ) ∩∆(Iµ) = ∅ for λ 6= µ.

Finally, we have to check the identity ∆(A) =
⋃
λ∈Λ ∆(Iλ). If ϕ ∈ ∆(A) and ϕ

annihilates all Iλ, then ϕ
(∑

λ∈Λ Iλ
)

= {0}. On the other hand, since ϕ is continuous
and the ideal

∑
λ∈Λ Iλ is dense in A, this is impossible.

We conclude this chapter by characterizing the link between finite coverings of ∆(A)
and decomposition of A into the direct sum of ideals. Note that

⊕
denotes the direct

sum.

Theorem 3.3.9 Let A be a unital commutative Banach algebra.

(i) If ∆(A) is a disjoint union ∆(A) =
⋃n
j=1 Fj of open (and closed) subsets Fj,

then there exist unital closed ideals I1, . . . , In of A such that A =
⊕n

j=1 Ij and
∆(Ij) = Fj for j = 1, . . . , n.

(ii) Conversely, if A is the direct sum of closed ideals I1, . . . , In, then the sets ∆(Ij)
are closed and open (“clopen”) in ∆(A) and ∆(A) is the disjoint union of the sets
∆(Ij), 1 ≤ j ≤ n.

Proof. We only consider the case n = 2. The final conclusion follows from a straightfor-
ward induction argument for both (i) and (ii).

(i) Since A has an identity, the Gelfand space is compact by Theorem 2.3.4. Hence
F1 and F2 are compact. By the Shilov idempotent theorem (Theorem 3.2.1) there exists
an idempotent e1 ∈ A such that ê1 = 1F1 . Let e denote the identity element of A and
set e2 = e − e1. Then, since e is always an idempotent (ee = e), e2 is an idempotent
and ê2 = 1F2 . Let Ij = ejA for j = 1, 2. Then, by the same argument as in the proof of
Theorem 3.3.7, I1 and I2 are closed ideals of A and ∆(Ij) = Fj for j = 1, 2. Now,

e1 + e2 = e = e2 = (e1 + e2)2 = e2
1 + 2e1e2 + e2

2 = e1 + e2 + 2e1e2.

Hence e1e2 = 0 and therefore, if x ∈ I1 ∩ I2, then x = xe2 = xe2e1 = 0. Thus I1 + I2 is
the direct sum of I1 and I2. Eventually, if x ∈ A, then

x = xe = x(e1 + e2) = xe1 + xe2 ∈ I1 + I2,

which completes the proof of (i).
(ii) As in the proof of Theorem 3.3.8, it follows immediately that ∆(A) = ∆(I1)∪∆(I2)

and ∆(I1) ∩∆(I2) = ∅. Obviously, ∆(I1) and ∆(I2) are clopen in ∆(A).
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As a final result we observe that a similar statement can be made for nonunital Banach
algebras.

Corollary 3.3.10 Let A be a commutative Banach algebra.

(i) Suppose that ∆(A) is a disjoint union ∆(A) =
⋃n
j=1 Fj, where F1 is closed and

F2, . . . , Fn are compact. Then there exist closed ideals I1, . . . , In of A such that
A =

⊕n
j=1 Ij ,∆(Ij) = Fj for j = 1, . . . , n and I2, . . . , In are unital.

(ii) Conversely, let I1, I2, . . . , In be closed ideals of A such that A =
⊕n

j=1 Ij and
I2, . . . , In are unital. Then ∆(A) is the disjoint union of the closed set ∆(I1) and
the compact sets ∆(I2), . . . ,∆(In).

Proof.
(i) Unlike Theorem 3.3.9, we can assume that A does not have an identity. Recall

Remark 2.1.23 and let Ae be the algebra obtained by the technique of adjoining an
identity e to A. Let E1 = F1 ∪ {ϕ∞} and Ej = Fj for j = 2, . . . , n. Then

∆(Ae) = ∆(A) ∪ {ϕ∞} =
n⋃
j=1

Ej

is a disjoint union of open and closed subsets. Hence by Theorem 3.3.9 there exist closed
unital ideals J1, . . . , Jn of Ae such that Ae =

⊕n
j=1 Jj and ∆(Jj) = Ej for j = 1, . . . , n.

Clearly, we have Jj ⊆ A for j = 2, . . . , n. Indeed, because otherwise ϕ∞(x) 6= 0 for
some x ∈ Jj and hence ϕ∞ ∈ ∆(Jj). But this is impossible since ∆(Jj) = Ej ⊆ ∆(A).
We define closed ideals I1, . . . , In of A by

I1 = J1 ∩ A and Ij = Jj for j = 2, . . . , n.

We want to verify that ∆(I1) = F1. Notice that I1 ⊆ J1 and therefore ∆(I1) ⊆ ∆(J1) =
E1. Since ϕ∞(I1) = {0}, we get ∆(I1) ⊆ E1 \ {ϕ∞} = F1. Conversely, let ϕ ∈ F1 ⊆
∆(J1) and choose x ∈ J1 with ϕ(x) 6= 0. Since ϕ ∈ ∆(A), there exists y ∈ A such that
ϕ(y) 6= 0. Thus xy = J1 ∩ A = I1 and ϕ(xy) 6= 0, whence ϕ ∈ ∆(I1).

Finally, we have to show the equality A =
⊕n

j=1 Ij , that is A is the direct sum of
closed ideals I1, . . . , In. Let x ∈ A. Then there exist elements x1 ∈ J1, . . . , xn ∈ Jn such
that x = x1 + . . . + xn. Since x, x2, . . . , xn ∈ A, we have x1 ∈ J1 ∩ A = I1. Therefore
A = I1 + . . . + In. By the same argument as in the proof of Theorem 3.3.9 (i) this sum
is direct.

(ii) Same argument as in the proof of Theorem 3.3.9 (ii).
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In this final chapter we adress the concept of regularity, which plays a major role in
the study of the ideal structure of a commutative Banach algebra A. We introduce a
new topology on ∆(A), the hull-kernel topology, and observe that it coincides with the
Gelfand topology. We are particularly interested in some specific properties of regular
commutative Banach algebras, such as normality and the existence of partitions of unity.
For further details on this topic we refer to [Lar], Chapter 7. As a final result, we present
a much simpler proof of Theorem 3.3.1, provided that A is regular (Corollary 4.2.16).

4.1. The hull-kernel topology

Let A be a commutative Banach algebra. Recall Theorem 2.1.18 where we have seen
that there is a bijection between ∆(A), the set of all multiplicative linear functionals of
A onto C, and Max(A), the set of all maximal ideals in A, given by ϕ 7→ kerϕ. This is
the way we always identify ∆(A) and Max(A).

So far we have only considered the Gelfand topology on ∆(A). Now we introduce
a new topology on ∆(A) = Max(A), the so-called hull-kernel topology, which is much
more appropriate for studying the ideal structure of A and, in general, is weaker than
the Gelfand topology.

We begin with a number of preliminary definitions.

Definition 4.1.1 Let A be a commutative Banach algebra. For E ⊆ ∆(A) = Max(A),
the kernel of E, denoted by k(E), is defined as

k(E) = {x ∈ A : ϕ(x) = 0 for all ϕ ∈ E} =
⋂
{M ∈ Max(A) : M ∈ E}

if E 6= ∅, whereas k(∅) = A. For ϕ ∈ ∆(A) we write k(ϕ) instead of k({ϕ}) = kerϕ.
If B ⊆ A, then the hull h(B) of B is defined by

h(B) = {ϕ ∈ ∆(A) : B ⊆ k(ϕ)} = {M ∈ Max(A) : B ⊆M}.

Also, for x ∈ A, we simply write h(x) instead of h({x}) = hulx.

Remark 4.1.2 Obviously, k(E) is a closed ideal in A since maximal ideals are closed
(Theorem 2.1.7 (ii)) and h(B) is a closed subset of ∆(A) since the functions x̂, x ∈ A,
are continuous on ∆(A).

Next, we list some elementary properties of the formation of hulls and kernels.

Lemma 4.1.3 Let A be a commutative Banach algebra. Let B,B1, and B2 be subsets
of A and let E,E1, and E2 be subsets of ∆(A). Then
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(i) B1 ⊆ B2 =⇒ h(B1) ⊇ h(B2).

(ii) h(B) = h(B) and B ⊆ k(h(B)).

(iii) h(B) = h(k(h(B))).

(iv) E1 ⊆ E2 =⇒ k(E1) ⊇ k(E2).

(v) E ⊆ h(k(E)) and k(E) = k(h(k(E))).

(vi) h(k(E1 ∪ E2)) = h(k(E1)) ∪ h(k(E2)).

Proof. All of the proofs are rather elementary. Clearly, (i), (ii) and (iv) follow directly
from the definitions made above.

(iii) If M ∈ h(k(h(B))), then M ⊇ k(h(B)) ⊇ B, whence M ∈ h(B). Conversely,
suppose ϕ ∈ ∆(A) is such that k(ϕ) /∈ h(k(h(B))). Then there exists some x ∈ k(h(B))
such that ϕ(x) 6= 0 and hence ϕ /∈ h(B).

(v) Since E ⊆ ∆(A), we have E ⊆ h(k(E)), and therefore by (iv) it follows that
k(E) ⊇ k(h(k(E))). Conversely, let B = k(E) in (ii). Thus we get k(E) ⊆ k(h(k(E))).

(vi) Obviously, h(k(E1)) ∪ h(k(E2)) ⊆ h(k(E1) ∩ k(E2)) = h(k(E1 ∪ E2)). On the
other hand, let

ϕ ∈ h(k(E1 ∪ E2)) = h(k(E1) ∩ k(E2)) ⊆ h(k(E1)k(E2))

and assume that ϕ /∈ h(k(E2)). Choose y ∈ k(E2) with ϕ(y) 6= 0. Then

ϕ(x)ϕ(y) = ϕ(xy) = 0

for all x ∈ k(E1). Thus ϕ ∈ h(k(E1)).

We know that h(B) is a closed subset of ∆(A) (Remark 4.1.2). The idea behind the
hull-kernel topology is to use such closed sets as the closed sets in a topology. With this
in mind we make the following definition.

Definition 4.1.4 Let A be a commutative Banach algebra. For E ⊆ ∆(A) the hull-
kernel closure E of E is defined to be E = h(k(E)). The correspondence E → E,E ⊆
∆(A), is a closure operation, that is, satisfies the following conditions.

(1) E ⊆ E and E = E.

(2) E1 ∪ E2 = E1 ∪ E2.

This is easily verified: (2) is exactly the property (vi) in Lemma 4.1.3 and (1) follows
from (v) : E ⊆ h(k(E)) = E and

E = h(k(h(k(E)))) = h(k(E)) = E.

Thus, there is a unique topology on ∆(A) such that, for each subset E of ∆(A), E =
h(k(E)) is the closure of E. This topology is called the hull-kernel topology (hk-topology).
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Example 4.1.5 Let X be a locally compact Hausdorff space. Then the hk -topology on
X = ∆(C0(X )) coincides with the given topology. Let E be a closed subset of X and
x0 ∈ X \ E. It follows by Urysohn’s lemma that there exists f ∈ C0(X ) such that

f(x0) 6= 0 and f(x) = 0

for all x ∈ E. Hence E = h(k(E)) is a hk -closed set.

Example 4.1.6 Recall the disc algebra from Example 1.1.10. The hk -topology on
D = ∆(A(D)) is weaker than the usual topology on D since the set of zeros of a nonzero
holomorphic function in a region cannot have an accumulation point within that region.
Therefore every hk -closed subset of D has an at most countable intersection with the
open unit disc D.

The next lemma is similar to Lemma 3.3.6.

Lemma 4.1.7 Let A be a commutative Banach algebra, I a closed ideal of A and let
q : A → A/I denote the quotient homomorphism.

(i) The map ϕ 7→ ϕ ◦ q is a homeomorphism for the hull-kernel topologies between
∆(A/I) and the closed subset h(I) of ∆(A).

(ii) The map ϕ 7→ ϕ|I is a homeomorphism for the hull-kernel topologies between the
open subset ∆(A) \ h(I) of ∆(A) and ∆(I).

Proof. The proof is similar to the one in Lemma 3.3.6, see [Kan], Section 4.1, p.196.

Lemma 4.1.8 Let A be a commutative Banach algebra without identity and let a ∈ A be
such that â is continuous in the hull-kernel topology on ∆(A). Then â is also continuous
on ∆(Ae), with respect to the hull-kernel topology.

Proof. By Remark 2.1.23, ∆(Ae) = ∆(A) ∪ {ϕ∞} where each ϕ ∈ ∆(A) is identified
with its canonical extension x + λe 7→ ϕ(x) + λ, x ∈ A, λ ∈ C and ϕ∞ denotes the
homomorphism Ae → C with kernel A. By h and k we denote the hull and kernel
operations with respect to A and by he and ke those with respect to Ae.

Let E be a subset of ∆(Ae). From the definitions of hulls and kernels we get that

he(ke(E)) ⊆ h(k(E ∩∆(A))) ∪ {ϕ∞}. (4.1)

Furthermore, let F 6= ∅ be a closed subset of C and E = {ϕ ∈ ∆(Ae) : ϕ(a) ∈ F}. By
premise on a we get that E ∩ ∆(A) is hk -closed in ∆(A). In order to show that E is
hk -closed in ∆(Ae), we need to distinguish the two cases 0 ∈ F and 0 /∈ F .

Case 1: If 0 ∈ F , then ϕ∞ ∈ E and so h(k(E ∩ ∆(A))) = E ∩ ∆(A). Hence by (4.1) we
have

he(ke(E)) ⊆ (E ∩∆(A)) ∪ {ϕ∞} = E.

Thus E is hk -closed in ∆(Ae).
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Case 2: If 0 /∈ F , then ϕ∞ /∈ E and therefore E ⊆ ∆(A). Let δ = inf{|λ| : λ ∈ F}. Then
δ > 0 and |ϕ(a)| ≥ δ for all ϕ ∈ E and a ∈ A. Note that E is compact and since
E = ∆(A/k(E)) and ϕ(a) = â(ϕ) 6= 0 for all ϕ ∈ E, we can apply Theorem 3.1.19:
There exists some b ∈ A such that ϕ(b) = 1/ϕ(a) for all ϕ ∈ E. Now let

x = e− ab ∈ Ae.

Then x satisfies

ϕ∞(x) = ϕ∞(e− ab) = ϕ∞(e)− ϕ∞(a)ϕ∞(b) = 1

and

ϕ(x) = ϕ(e− ab) = ϕ(e)− ϕ(a)ϕ(b) = 1− ϕ(a)
1

ϕ(a)
= 0,

for all ϕ ∈ E. Thus ϕ∞ /∈ he(ke(E)) and so

he(ke(E)) ⊆ h(k(E ∩∆(A))) = h(k(E)) = E.

Hence E is hk -closed in ∆(Ae), which completes the proof.

Before we present the next lemma, we first need to introduce the notion of modularity.

Definition 4.1.9 Let A be a Banach algebra and I an ideal of A. Then I is called
modular, if A/I is unital, that is, there exists u ∈ A such that the two sets

A(1− u) = {x− xu : x ∈ A} and (1− u)A = {x− ux : x ∈ A}

are both contained in I. Such an element u is called an identity modulo I. The ideal I
is called a maximal modular ideal if it is modular and also a maximal proper ideal.

Lemma 4.1.10 Let I be a closed ideal of the commutative Banach algebra A and let
E be a hull-kernel-closed subset of ∆(A) such that E ∩ h(I) = ∅ and k(E) is modular.
Then I contains an identity modulo k(E).

Proof. By hypothesis, k(E) is modular, that is, A/(I + k(E)) is unital, and because E
is hk -closed in ∆(A), we get

h(I + k(E)) = h(I) ∩ h(k(E)) = h(I) ∩ E = ∅.

Hence I + k(E) = A. Now let u ∈ A be such that ux − x ∈ k(E) for all x ∈ A. Then
u = v + y for v ∈ I and y ∈ k(E). It follows that

vx− x = (u− y)x− x = ux− x− yx ∈ k(E)

for all x ∈ A. Thus v is an identity of I modulo k(E).
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4.2. Regular Banach algebras and applications

In this section we present a powerful result (Theorem 4.2.12), which has some very useful
applications such as proving Theorem 3.3.1 without recourse to the Shilov idempotent
theorem.

We begin with the basic notion of regularity. Let T be a T1 topological space, that is,
every singleton set in T is closed, and let F be a family of complex-valued functions on
T . Recall from point set topology that F is called regular if for any given closed subset
E of T and t ∈ T \ E, there exists f ∈ F with f(t) 6= 0 and f |E = 0. This leads to the
following definition.

Definition 4.2.1 A commutative Banach algebra A is called regular if its algebra of
Gelfand transforms is regular in the above sense, that is, given any closed subset E of
∆(A) and ϕ0 ∈ ∆(A) \ E, there exists x ∈ A such that

ϕ0(x) 6= 0 and ϕ(x) = 0

for all ϕ ∈ E.

Example 4.2.2 For a compact Hausdorff space X , C(X ) is a regular Banach algebra.
Indeed, it is a well-known fact that X is a regular and also a normal1 topological space.
The first assertion is equivalent to saying that for each closed set E ⊆ X and each point
t ∈ X \ E, there exists some f ∈ C(X ) such that

0 ≤ f(s) ≤ 1, s ∈ X , f(t) = 1

and
f(s) = 0, s ∈ E.

The second assertion, combined with Urysohn’s lemma, reveals that, if E1 ⊆ X and
E2 ⊆ X are disjoint closed sets, then there exists f ∈ C(X ) such that

0 ≤ f(s) ≤ 1, s ∈ X ,

f(s) = 1, s ∈ E1,

and
f(s) = 0, s ∈ E2.

Recall that the Gelfand representation of the commutative Banach algebra A = C(X )
is just Â = C(X ). Thus C(X ) is regular since the Gelfand homomorphism is just the
identity mapping.

Example 4.2.3 C0(X ) is also regular. If E ⊆ X = ∆(C0(X )) is closed, then it is closed
in the hk -topology, that is, E = h(k(E)) (see Example 4.1.5).

Example 4.2.4 It is also easily seen that for a, b ∈ R, a < b, and n ∈ N, Cn([a, b]) is
regular since, when ∆(Cn([a, b])) is identified with [a, b], the Gelfand homomorphism is
nothing but the identity.

1see Appendix Definition A.1.2.
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The disc algebra A(D) is an example of a non-regular Banach algebra.

Example 4.2.5 Recall Example 4.1.6 with identification D = ∆(A(D)). Then A(D)

fails to be regular. Indeed, consider the set E =
{

1
n : n ∈ N

}
. Evidently, E ⊆ D, hence

E∪{0} is closed in the Gelfand topology. But recalling that the Gelfand transformation
on A(D) is again the identity mapping, we see that

k(E) = {f ∈ A(D) : f(1/n) = 0, n ∈ N} = {0},

since the zeros in an open set of a nonconstant analytic function are isolated. Thus

E = h(k(E)) = h({0}) = ∆(A(D)) = D 6= E ∪ {0}.

The next theorem relates regularity of a commutative Banach algebra A to properties
of the hull-kernel topology on ∆(A).

Theorem 4.2.6 For a commutative Banach algebra A, the following conditions are
equivalent.

(i) A is regular.

(ii) The hull-kernel topology and the Gelfand topology on ∆(A) coincide.

(iii) The hull-kernel topology on ∆(A) is Hausdorff, and every point in ∆(A) has a
hull-kernel neighbourhood with modular kernel.

Proof. We only show (i) ⇒ (ii), since this implication will turn out to be quite useful
later on. For a complete proof we refer to [Kan], Section 4.2, Theorem 4.2.3, p.199.

Suppose that A is regular and let E be a subset of ∆(A) that is closed in the Gelfand
topology. Then, by definition, for every ϕ ∈ ∆(A) \ E, there exists xϕ ∈ A such that

x̂ϕ|E = 0 and x̂ϕ(ϕ) 6= 0.

It follows that k(E) * kerϕ for every ϕ ∈ ∆(A) \ E, and hence E = h(k(E)), which
means that E is closed in the hk-topology. Thus the two topologies on ∆(A) coincide.

Now recall Proposition 2.3.24 where we have proved that the Gelfand topology on
∆(A) equals the weak topology with respect to the functions x̂, x ∈ A. Therefore the
equivalence of (i) and (ii) in Theorem 4.2.6 can be reformulated as follows.

Corollary 4.2.7 Let A be a commutative Banach algebra. Then A is regular if and
only if x̂ is hull-kernel continuous on ∆(A) for each x ∈ A.

Remark 4.2.8 In [Lar], Section 7.1, Theorem 7.1.2, p.165, it is claimed that a commu-
tative Banach algebra A is regular provided that the hk -topology on ∆(A) is Hausdorff.
For a unital algebra this is obviously true. Nevertheless, this strengthening of the im-
plication (iii)⇒ (i) in Theorem 4.2.6 does not seem to be correct (even though we are
unaware of a counterexample).

We continue with some hereditary properties of regularity such as adjoining an identity
and forming closed ideals and quotients.
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Theorem 4.2.9 Let A be a commutative Banach algebra.

(i) Let I be a closed ideal of A. If A is regular, then so are the algebras I and A/I.

(ii) A is regular if and only if Ae, the unitization of A, is regular.

Proof.
(i) Since A is regular, the Gelfand topology coincides with the hk -topology on ∆(A)

by Theorem 4.2.6. Now, by Lemma 4.1.7 (ii), the map ϕ 7→ ϕ|I is a homeomorphism for
the hk -topologies between the open subset ∆(A)\h(I) of ∆(A) and ∆(I). Similarly, the
same is true of the Gelfand topologies by Lemma 3.3.6 (ii). Hence the Gelfand topology
and the hk -topology coincide on ∆(I). By further application of Theorem 4.2.6 we
eventually get that I is regular. Similarly, using Lemma 4.1.7 (i) and Lemma 3.3.6 (i)
as well as applying Theorem 4.2.6, it follows that A/I is regular.

(ii) If Ae is regular, so is A by (i). On the other hand, suppose that A is regular. Then,
by Corollary 4.2.7, for every a ∈ A, â is hk -continuous on ∆(A). Hence, by Lemma
4.1.8, â is also hk -continuous on ∆(Ae). This of course implies that x̂ is hk -continuous
on ∆(Ae) for each x ∈ Ae. Thus Ae is regular by Corollary 4.2.7.

Remark 4.2.10 One can show that the converse of (i) in the preceding Theorem, that
is, A is regular whenever A has a closed ideal I such that both I and A/I are regular,
holds. However, this result is much more difficult to prove and involves the existence of
a greatest closed regular ideal in a commutative Banach algebra. For more details, see
[Kan], Section 4.3, pp.207.

It is also worth mentioning that a closed subalgebra of a regular algebra need not
be regular. In fact, C(D) is regular, whereas the closed subalgebra A(D) is not (see
Example 4.2.5).

Lemma 4.2.11 Let I be an ideal in the regular commutative Banach algebra A. Given
any ϕ0 ∈ ∆(A) \ h(I), there exists u ∈ I such that û = 1 in some neighbourhood of ϕ0.

Proof. Since A is regular by premise, it follows from Theorem 4.2.6 that the hk -topology
on ∆(A) is Hausdorff and ϕ0 has a hk -neighbourhood with modular kernel. Hence we
can choose a neighbourhood V of ϕ0 such that V ∩ h(I) = ∅ and k(V ) is modular. Now
we can apply Lemma 4.1.10 which yields the existence of some u ∈ I such that û|V = 1.

The following theorem is one of the most striking results on regular commutative
Banach algebras. We will need it later in order to prove some very useful applications.

Theorem 4.2.12 Let A be a regular commutative Banach algebra, and suppose that I
is an ideal in A and C is a compact subset of ∆(A) with C ∩h(I) = ∅. Then there exists
x ∈ I such that

x̂|C = 1 and x̂ = 0 on some neighbourhood of h(I).
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Proof. We start with the existence of some y ∈ I with ŷ|C = 1. As C is compact
by hypothesis, by Lemma 4.2.11 there exist open subsets Vi of ∆(A) and ui ∈ I for
i = 1, . . . , k such that

ûi|Vi = 1 and C ⊆
k⋃
i=1

Vi.

Now, we define elements yi of A inductively by y1 = u1 and

yi+1 = yi + ui+1 − yiui+1, i = 1, . . . , k − 1. (4.2)

It will be immediately clear why (4.2) was defined this way. A straightforward induction
argument reveals that yi ∈ I and

ŷj |⋃j
i=1 Vi

= 1.

Indeed, this is true. By applying ϕ to (4.2) we get

ϕ(yj+1) = ϕ(yj) + ϕ(uj+1)− ϕ(yj)ϕ(uj+1)

=

{
1 + ϕ(uj+1)− ϕ(uj+1) for ϕ ∈

⋃j
i=1 Vi,

ϕ(yj) + 1− ϕ(yj) for ϕ ∈ Vj+1.

Thus ŷi+1 = 1 on
⋃j+1
i=1 Vi. Now y = yk, and y has the desired properties.

Next, we want to show that x̂, x ∈ I, vanishes on some neighbourhood of h(I). To
that end we choose an open subset V of ∆(A) with C ⊆ V and V ⊆ ∆(A) \ h(I). We
observe that

C ∩ h(k(∆(A) \ V )) = C ∩ (∆(A) \ V ) = ∅,

since ∆(A) \ V is hk -closed. Therefore we can argue in a similar way as before. For the
ideal J = k(∆(A) \ V ) we obtain z ∈ J with ẑ|C = 1. So, by the first part of the proof,
there exists y ∈ I such that ŷ|C = 1. Now let x = yz ∈ I. Then x satisfies

x̂(ϕ) = ϕ(x) = ϕ(yz) = ϕ(y)ϕ(z) = ŷ(ϕ)ẑ(ϕ) = 1 · 1 = 1,

for all ϕ ∈ C and
supp x̂ ⊆ supp ẑ ⊆ V ⊆ ∆(A) \ h(I).

Thus x̂ = 0 in a neighbourhood of h(I).

We conclude this chapter by presenting a series of interesting applications of the
preceding theorem. We start with a corollary which characterizes the notion of normality
of a regular Banach algebra.

Corollary 4.2.13 Every regular commutative Banach algebra A is normal in the sense
that whenever E ⊆ ∆(A) is closed, C ⊆ ∆(A) is compact and E ∩ C = ∅, then there
exists x ∈ A such that supp x̂ ⊆ ∆(A) \ E and x̂|C = 1.

As it turns out, this corollary is just the case n = 1 for the following result. In a regular
commutative Banach algebra A there exist partitions of unity on ∆(A) subordinate to
a given finite open cover of a compact set.
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Corollary 4.2.14 Let A be a regular commutative Banach algebra. Suppose that C is a
compact subset of ∆(A) and U1, . . . , Un are open subsets of ∆(A) such that C ⊆

⋃n
j=1 Uj.

Then there exist x1, . . . , xn ∈ A with the following properties.

(i) (x̂1 + . . . + x̂n)|C = 1.

(ii) x̂j |∆(A)\Uj = 0 for each j = 1, . . . , n.

Proof. We proceed in a similar way as in the proof of Theorem 4.2.12 and choose open
subsets Vj of ∆(A), 1 ≤ j ≤ n, such that

Vj ⊆ Uj and C ⊆
n⋃
j=1

Vj .

Moreover, let

Ij = k(∆(A) \ Vj), j = 1, . . . , n and I = I1 + . . . + In.

Then we get h(Ij) = h(k(∆(A) \ Vj)) = ∆(A) \ Vj and therefore

h(I) = h(I1 + . . . + In) =
n⋂
j=1

h(Ij) =
n⋂
j=1

(∆(A) \ Vj) = ∆(A) \
n⋃
j=1

Vj .

Hence h(I) ∩ C = ∅. Then, by Theorem 4.2.12, there exists x ∈ I with x̂|C = 1. Write
x as x = x1 + . . . + xn where xj ∈ Ij . Then x1, . . . , xn satisfy (i) and (ii).

Corollary 4.2.15 Let A be a regular commutative Banach algebra such that its range
under the Gelfand homomorphism Γ : A → C0(∆(A)) is closed under complex conjuga-
tion. Suppose that C and E are disjoint closed subsets of ∆(A) with C compact. Then
there exists x ∈ A such that

x̂|C = 1, 0 ≤ x̂ ≤ 1 and supp x̂ ⊆ ∆(A) \ E.

Proof. By Theorem 4.2.12 there exists y ∈ A such that ŷ|C = 1 and by the second part
of the proof of said theorem we have supp ŷ ⊆ ∆(A) \ E. By hypothesis, there exists
z ∈ A such that ẑ = ŷ where − denotes the complex conjugation. Now let f be an entire
function defined by

f(w) = sin2

(
π

2
w

)
, w ∈ A,

and let x = f(yz). It follows from the the single-variable holomorphic calculus (Theorem
3.1.10) that

x̂(ϕ) = ϕ(x) = ϕ(f(yz))

= f(ϕ(yz)) = f(ϕ(y)ϕ(z))

= sin2

(
π

2
ϕ(y)ϕ(z)

)
= sin2

(
π

2
|ϕ(y)|2

)
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for all ϕ ∈ ∆(A). Hence we obtain

x̂|C = sin2

(
π

2

∣∣∣ŷ|C∣∣∣2) = sin2

(
π

2
· 1
)

= 1, 0 ≤ x̂ ≤ 1

and
supp x̂ ⊆ ∆(A) \ E.

As a final application we present a much simpler proof of Theorem 3.3.1, provided
that A is regular.

Corollary 4.2.16 Let A be a semisimple regular commutative Banach algebra. If ∆(A)
is compact, then A has an identity.

Proof. By Theorem 4.2.12 there exists u ∈ A such that û|∆(A) = 1. Hence

x̂− ux = x̂− ûx̂ = 0

on ∆(A) for all x ∈ A. Since A is semisimple by hypothesis, we get x−ux = 0⇔ x = ux
for all x ∈ A, whence u is an identity for A.

Of course, the conclusion of Corollary 4.2.16 holds true without assuming that A be
regular as we have witnessed in Theorem 3.3.1. However, since the proof of Shilov’s
idempotent theorem is based on the several-variable holomorphic functional calculus
and therefore requires much more effort, it appears to be justified to give a simpler proof
in the case of a regular semisimple algebra.
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In this short appendix we will provide and repeat some fundamental notions and theo-
rems of topology and functional analysis which are needed in Banach algebra theory. No
proofs will be given since they can be found in several textbooks, such as in [Rud].

A.1. Topology

Definition A.1.1 Let X be a topological space. Then

◦ C(X ) denotes the set of all continuous complex-valued functions on X .

◦ Cb(X ) denotes the subspace of all bounded functions in C(X ).

◦ Cc(X ) denotes the set of all functions in C(X ) with compact support

supp(f) = {f ∈ C(X ) : f(x) 6= 0 for all x ∈ X}.

◦ C0(X ) denotes the set of all functions f ∈ C(X) which vanish at infinity, that is if
for each ε > 0 there exists a compact subset Kε of X such that |f(x)| < ε for all
x ∈ X \Kε.

Obviously, Cc(X ) ⊆ C0(X ) ⊆ Cb(X ) and all these spaces coincide with C(X ) when X is
compact. Also, all these spaces are algebras under pointwise operations.

On Cb(X ) we can introduce the supremum norm defined by

‖f‖∞ = sup{|f(x)| : x ∈ X}.

This norm turns Cb(X ) and C0(X ) into Banach spaces. If X is a locally compact
Hausdorff space, then Cc(X ) is dense in C0(X ).

Definition A.1.2 A topological space X is called normal if it is Hausdorff and for each
pair {A,B} of disjoint closed subsets of X there exist open subsets U and V of X such
that A ⊆ U,B ⊆ V and U ∩ V = ∅.

Theorem A.1.3 (Urysohn’s lemma)

(i) Let X be a normal topological space, and let A and B be disjoint closed subsets of
X . Then there exists a continuous function f : X → [0, 1] such that f |A = 1 and
f |B = 0.

(ii) Let X be a locally compact Hausdorff space, and let C be a compact subset of X
and U an open set containing C. Then there exists f ∈ Cc(X ) with f |C = 1,
0 ≤ f(x) ≤ 1 for all x ∈ X and supp(f) ⊆ U .
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Theorem A.1.4 (Tietze’s extension theorem) A Hausdorff space X is normal if
and only if every real-valued function, which is defined and continuous on a closed subset
of X , admits a continuous extension to all of X .

Definition A.1.5 A family F of complex-valued functions on a topological space X
is said to strongly separate the points of X if for each x ∈ X , there exists f ∈ F with
f(x) 6= 0 and for each x, y ∈ X with x 6= y, there exists g ∈ F such that g(x) 6= g(y).
The family F is called self-adjoint if it contains with a function f the conjugate complex
function f .

Theorem A.1.6 (Stone-Weierstrass theorem) Let X be a locally compact Hausdorff
space, and let A be a self-adjoint subalgebra of C0(X ). Suppose that A strongly separates
the points of X . Then A is uniformly dense in C0(X ).

Definition A.1.7 Let X and Y be two topological spaces. A function f : X → Y is
called a homeomorphism if it satisfies the following properties.

◦ f is a bijection.

◦ f is continuous.

◦ f−1 is continuous (f is an open mapping).

Theorem A.1.8 (Arzela-Ascoli) Let X be a locally compact Hausdorff space and
F ⊆ C0(X ). Suppose that F satisfies the following two conditions.

(i) The set F (x) = {f(x) : f ∈ F} is bounded for every x ∈ X .

(ii) F is equicontinuous; that is, for each x ∈ X and ε > 0, there exists a neighbourhood
U of x such that |f(y)− f(x)| < ε for all f ∈ F and y ∈ U .

Then F is relatively compact in (C0(X ), ‖.‖∞).

Theorem A.1.9 (Baire’s category theorem) Let X be either a locally compact Haus-
dorff space or a complete metric space.

(i) If X is the union of countably many closed subsets, then one of them contains a
nonempty open set.

(ii) The intersection of a countable collection of dense open subsets of X is dense in
X .

A compact space C is a compactification of a topological space X if there exists a
continuous injective mapping from X onto a dense subset of C. Let X be a locally
compact Hausdorff space. Then there exists a compact Hausdorff space X̃ together with
an embedding ι : X → X̃ such that X̃ \ ι(X ) is a singleton. X̃ is uniquely determined
up to homeomorphisms and is called the one-point compactification of X . The space X̃
can be constructed as follows. Let X̃ = X ∪{∞} as a set and take the open sets in X̃ to
be the open sets in X together with the complements in X̃ of the compact subset of X .

Note that each f ∈ C0(X ) extends to a continuous function on X̃ , also denoted f , by
setting f(∞) = 0.

Let X be a compact space and Y a Hausdorff space. If f is a continuous and injective
mapping from X into Y, then f is a homeomorphism from X onto its range f(X ).
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Proposition A.1.10 If f is a continuous open map of a locally compact Hausdorff
space X onto a Hausdorff space Y and if K is a compact subset of Y, then there exists
a compact subset C of X such that f(C) = K.

Proposition A.1.11 Let X be a locally compact Hausdorff space. A subset Y of X is
locally compact (in the induced topology) if and only if there exist a closed subset A of
X and an open subset B of X such that Y = A ∩B. In particular, a dense subset of X
is locally compact if and only if it is open in X .

A closure operation on a set X is an assignment A→ A from P(X ), the collection of
all subsets of X , to itself such that

∅ = ∅, A ⊆ A = A and A ∪B = A ∪B for all A,B ⊆ X .

If such a closure operation is given, there exists a unique topology on X such that for
each A ⊆ X , A equals the closure of A in X with respect to this topology.

Lemma A.1.12 (Zorn) Suppose a partially ordered set X has the property that every
chain has an upper bound in X . Then the set X contains at least one maximal element.

A.2. Functional analysis

Definition A.2.1 For a normed space E, let E′ denote the dual space of E; that is
E′ = B(E,C), the vector space of all continuous linear functionals on E. Thus E′ is a
Banach space when equipped with the norm

‖f‖ = sup{|f(x)| : x ∈ E, ‖x‖ ≤ 1}, f ∈ E′.

The space E embeds isometrically into the second dual space E′′ as follows. For each
x ∈ E, define x̂ : E′ → C by x̂(f) = f(x) for f ∈ E′. Then x̂ ∈ E′′, and it is a
consequence of the Hahn-Banach theorem (see below) that ‖x̂‖ = ‖x‖.

Definition A.2.2 The weak topology σ(E,E′) on E is the coarsest topology with respect
to which all the functionals f ∈ E′ are continuous on E. Similarly, the weak*-topology
(or w*-topology) σ(E′, E) is the coarsest topology on E′ with respect to which all the
linear functionals x̂ on E′, x ∈ E, are continuous. Thus a neighbourhood basis of f0 ∈ E′
in the w∗-topology is formed by the sets

U(f0, F, ε) = {f ∈ E′ : |f(x)− f0(x)| < ε for all x ∈ F},

where ε > 0 and F is any finite subset of E.

We now collect some fundamental results about dual spaces and bounded linear op-
erators.

Theorem A.2.3 (Hahn-Banach) Let E be a normed space and F a (not necessarily
closed) linear subspace of E. If f is a bounded linear functional on F , then there exists
g ∈ E′ such that g(x) = f(x) for all x ∈ F and ‖g‖ = ‖f‖.
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Corollary A.2.4 If F is a linear subspace of E and x an element of E, which is not
contained in the closure of F , then there exists g ∈ E′ such that g|F = {0} and g(x) 6= 0.

Theorem A.2.5 (Banach-Alaoglu) Let E be a normed space. Then the unit ball

E′1 = {f ∈ E′ : ‖f‖ ≤ 1}

of E′ is w∗-compact.

However, E′1 is compact in the norm topology only if E is finite-dimensional.

Corollary A.2.6 If M is a w∗-closed linear subspace of E′ and f ∈ E′ \M , then there
exists x ∈ E such that f(x) 6= 0 but g(x) = 0 for all g ∈M .

Theorem A.2.7 (Closed graph theorem) Let E and F be Banach spaces, and let
T : E → F be a linear map. Then the following conditions on T are equivalent.

(i) T is continuous.

(ii) The graph GT = {(x, Tx) : x ∈ E} of T is closed in E × F .

(iii) If xn → 0 in E and Txn → y in F , then y = 0.

Theorem A.2.8 (Open mapping theorem) Let E and F be Banach spaces, and let
T : E → F be a continuous linear mapping. If T is surjective, then T is open. In
particular, if T ∈ B(E,F ) is bijective, then T−1 ∈ B(F,E).

Corollary A.2.9 If a vector space E is a Banach space with respect to two norms, say
‖.‖1 and ‖.‖2, and if there is a constant c such that ‖x‖2 ≤ c‖x‖1 for all x ∈ E, then
the two norms are equivalent, that is, there is a constant d such that ‖x‖1 ≤ d‖x‖2 for
all x ∈ E.

Theorem A.2.10 (Uniform boundedness principle) Let E be a Banach space, F
a normed space, and {Tλ : λ ∈ Λ} a family of continuous linear maps from E into F .
Suppose that {Tλx : λ ∈ Λ} is bounded in F for each x ∈ E. Then there exists a constant
C ≥ 0 such that ‖Tλ‖ ≤ C for all λ ∈ Λ.
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[Blu] M. BLÜMLINGER: Funktionalanalysis 2, Lecture Notes, TU Wien (2014)
http://www.asc.tuwien.ac.at/blue/
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