
Ontology-Based Software
Development

Semantically Enhanced Information Management and Software Component Reuse in the Air
Traffic Management Industry

DISSERTATION

zur Erlangung des akademischen Grades

Doktor der technischen Wissenschaften

eingereicht von

Mag.rer.soc.oec. Dipl.-Ing. Eduard Gringinger, Bakk.techn.
Matrikelnummer 0126915

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung: Ao.Univ.Prof. Mag. Dr. Dieter Merkl

Diese Dissertation haben begutachtet:

Ao.Univ.Prof. Mag. Dr. Dieter
Merkl

Ao.Univ.Prof. Dipl.-Ing.
Dr.techn. Gerald Futschek

Professor Markus Stumptner

Wien, 27.04.2017
Eduard Gringinger

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Die approbierte Originalversion dieser
Dissertation ist in der Hauptbibliothek der
Technischen Universität Wien aufgestellt und
zugänglich.
http://www.ub.tuwien.ac.at

The approved original version of this thesis is
available at the main library of the Vienna
University of Technology.

http://www.ub.tuwien.ac.at/eng

Ontology-Based Software
Development

Semantically Enhanced Information Management and Software Component Reuse in the Air
Traffic Management Industry

DISSERTATION

submitted in partial fulfillment of the requirements for the degree of

Doktor der technischen Wissenschaften

by

Mag.rer.soc.oec. Dipl.-Ing. Eduard Gringinger, Bakk.techn.
Registration Number 0126915

to the Faculty of Informatics
at the Vienna University of Technology

Advisor: Ao.Univ.Prof. Mag. Dr. Dieter Merkl

The dissertation has been reviewed by:

Ao.Univ.Prof. Mag. Dr. Dieter
Merkl

Ao.Univ.Prof. Dipl.-Ing.
Dr.techn. Gerald Futschek

Professor Markus Stumptner

Vienna, 27.04.2017
Eduard Gringinger

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Erklärung zur Verfassung der Arbeit

Eduard Gringinger
Aichhorngasse 5/20, 1120 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwende-
ten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der Arbeit –
einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder dem Internet im
Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle als Ent-
lehnung kenntlich gemacht habe.

Wien, 27.04.2017 Eduard Gringinger

I

Acknowledgments

“Chi trova un amico, trova un tesoro!”
Italian proverb [Spencer and Hill, 1981]

First of all, I sincerely thank my parents for their support and motivation during my whole
life. From the beginning they gave me the freedom and time to learn, explore, and supported me
in whatever I did. In addition, I am very grateful for the patience, the support, and the incessant
encouragement of my grandmothers.

This thesis would have never come to live without the ongoing encouragement and help of
my adviser Dieter Merkl. I am really thankful for his guidance and to seed the claim to improve
my scientific work principles. I’m also very grateful for the advice of my mentor Hannes Bar-
dach. He gave me the freedom to pursue my own research interests while working full-time.

I want to thank all my colleagues and scientists for their creative input preparing papers
and there economic know-how. Furthermore, I want to thank, the various members of the in-
ternational scientific air traffic management community I had the privilege to meet, for all the
interesting discussions and valuable comments on my thesis. This includes the anonymous peer
reviewers who did not make me happy all the time, but nevertheless contributed to the quality of
the work. And finally I would like to thank my friends, without whom the world would not be
such a great place.

III

Abstract

This thesis addresses the reusability challenge to reuse software components across various do-
mains. By using ontology-based technologies, software development costs shall be lowered and
the semantic interoperability gap shall be closed. The main goal is to improve the quality of
the software products in order to save costs. Ontology-Based Software Development tries to
address significant problems of traditional software development in order to improve the code
quality and to avoid redundant development. It focuses on improving efficiency and increasing
the code reusability. The thesis follows the design science research paradigm to answer the de-
fined research questions. Domain-specific development leads to similar software solutions for
different areas. Usually this raises the costs for efficient software development and increases
the time-to-market. The motivation for this thesis is to show the benefits of an ontology-based
methodology to enhance software development with semantic technologies and further, to avoid
redundant development of similar software-components within large companies.

To meet the requirements, state-of-the-art information management techniques are evaluated
and picked to conquer the reusability challenge. The operational context and the special require-
ments, a safety critical environment is accompanied by, are described. The Ontology-Based
Software Development life-cycle is outlined in detail including the methodology, semantic con-
cept, and techniques for the underlying processes. The semantic information is captured in
models which are then transferred into the solution model. The various roles and responsibil-
ities which are required by the different processes are mentioned. The key principles used to
design the knowledge base are described. The ontology mediation further details the reasoning,
the semantic mapping and the semantic description transformation process. This thesis examines
if ontology-based development methods are capable of reusing software components efficiently.
A case study was carried out to evaluate and analyze the differences between classical devel-
opment processes and the newly introduced concept. The evaluation framework is intended to
provide evaluation measurements with appropriate metrics, which should enable an assessment
of the presented approach. The goal is to incorporate feedback from the evaluation into the
Ontology-Based Software Development processes in order improve the existing processes.

V

Kurzfassung

Diese Dissertation befasst sich mit der Wiederverwendbarkeit von Softwarekomponenten über
verschiedene Domänen hinweg. Darüber hinaus sollen Softwareentwicklungskosten gespart und
die semantische Interoperabilitätslücke durch Ontologie-basierte Technologien geschlossen wer-
den. Das Hauptziel ist, die Qualität der Produkte zu verbessern, um Kosten zu sparen. Ontology-
Based Software Development versucht, wesentliche Probleme in der traditionellen Software-
entwicklung zu lösen, um die Codequalität zu verbessern und eine redundante Entwicklung zu
vermeiden. Das vorgestellte Konzept konzentriert sich auf die Verbesserung der Effizienz und
die Erhöhung der Code-Wiederverwendbarkeit. Die Arbeit folgt dem Design Science Research
Paradigma, um die definierten Forschungsfragen zu beantworten. Domainspezifische Entwick-
lung führt oftmals zu ähnlichen Softwarelösungen in unterschiedlichen Bereichen. In der Regel
steigen dadurch die Kosten für die Softwareentwicklung und die Entwicklungszeiten erhöhen
sich. Die Motivation hinter dieser Arbeit ist es, die Vorteile einer Ontologie-basierten Methodik
zur Verbesserung der Softwareentwicklung mit semantischen Technologien zu demonstrieren
und die redundante Entwicklung ähnlicher Software-Komponenten in großen Unternehmen zu
vermeiden.

Um diesen Anforderungen gerecht zu werden, wird der letzte Stand der Technik hinsicht-
lich Information Management-Techniken ausgewertet und dementsprechend ausgewählt, um die
Herausforderung einer sinnvollen Wiederverwendbarkeit zu meistern. Um die speziellen Anfor-
derungen zu verdeutlichen, die ein sicherheitskritisches Umfeld mit sich bringt, wird der opera-
tionelle Kontext beschrieben. Der gesamte Ontology-Based Software Development Prozessab-
lauf wird ausführlich beschrieben. Dabei werden die angewendete Methodik, das semantischen
Konzept und die verwendeten Technologien erklärt. Die semantischen Informationen werden
in Modellen erfasst, die dann in ein sogenanntes Lösungsmodell übertragen werden. Darüber
hinaus werden die verschiedenen Rollen und Verantwortlichkeiten definiert, die von den unter-
schiedlichen Prozessen benötigt werden. Beschrieben werden auch die wichtigsten Grundsätze
für die Erstellung der Wissensbasis. Der Transformationsprozess generiert aus der semantischen
Informationsbasis ein Solution Model, das jeweils auf konkreten Anforderungen zugeschnitten
ist. Diese Arbeit untersucht ob Ontology-Based Software Development in der Lage ist Softwa-
rekomponenten effizient wieder zu verwenden. Eine Fallstudie soll die Unterschiede zwischen
klassischen Entwicklungsprozessen und dem neu vorgestelltem Konzept evaluieren und analy-
sieren. Das Evaluierungsframework soll mit entsprechenden Metriken Auswertungskennzahlen
liefern, die eine Bewertung des vorgestellten Ansatzes ermöglichen. Ziel ist es Feedback der
Evaluierung in die Ontology-Based Software Development Prozesse einfließen zu lassen um
Verbesserungen zu ermöglichen.

VII

Contents

1 Prologue 1
1.1 Motivation . 1
1.2 Definition of Ontology-Based Software Development 4
1.3 Problem Statement . 5
1.4 Scientific Context . 8
1.5 Research Question and Research Approach 10

1.5.1 Information Systems Research . 10
1.5.2 Evaluation Framework for Case Study 13

1.6 Structure of this Thesis . 14

2 Information Management Engineering 17
2.1 Introduction . 17
2.2 Definition of Information Management . 18
2.3 Definition of Ontology in Computer Science 20
2.4 State-of-the-Art of Ontology Engineering . 22

2.4.1 Ontology Languages . 23
2.4.2 Ontology Editors . 37
2.4.3 Semantic Reasoner . 41
2.4.4 Visualization Tools . 44

2.5 Conclusion . 46

3 Operational Context 47
3.1 Introduction . 47
3.2 Information Services moving towards Information Management 48
3.3 System Wide Information Management . 50

3.3.1 Principles . 50
3.3.2 Concept of Operations . 51
3.3.3 Technical Architecture . 52
3.3.4 Access Point . 54

3.4 Standardized Air Traffic Management Data Models 56
3.4.1 Air Traffic Management Information Reference Model 56
3.4.2 Information Service Reference Model 58
3.4.3 European Air Traffic Management Enterprise Architecture 58

IX

3.4.4 Aeronautical Information . 61
3.4.5 Meteorological Information . 63

3.5 Conclusion . 65

4 Ontology-Based Software Development 67
4.1 Introduction . 67
4.2 Ontology-Based Software Development Methodology 69

4.2.1 Project Approach . 71
4.2.2 Technological Approach . 72
4.2.3 Life-Cycle . 74

4.3 Ontology-Based Software Development Processes 79
4.3.1 Semantic Description Origination . 79
4.3.2 Semantic Mediation . 80
4.3.3 Solution Model Deployment . 80
4.3.4 Roles and Responsibilities . 82

4.4 Ontology Management . 83
4.4.1 Domain Information Model . 86
4.4.2 Software Components Model . 88
4.4.3 Ontology Versioning . 93
4.4.4 Ontology Refinement . 94
4.4.5 Ontology Consistency . 95

4.5 Ontology Mediation . 96
4.5.1 Semantic Sub-Description . 97
4.5.2 Rules and Policies . 99
4.5.3 Semantic Interface . 101

4.6 Conclusion . 107

5 Case Study Evaluation and Analysis 109
5.1 Introduction . 110
5.2 Aerodrome Map Evaluation . 111

5.2.1 Related Work . 112
5.2.2 Context Factors . 116
5.2.3 Adherence Metrics . 121
5.2.4 Outcome Metrics . 124

5.3 Integrated Digital Briefing Evaluation . 126
5.3.1 Context Factors . 127
5.3.2 Adherence Metrics . 131
5.3.3 Outcome Metrics . 133

5.4 Conclusion . 135

6 Epilogue 137
6.1 Results and Critical Reflection . 137
6.2 General Conclusions . 139
6.3 Open Problems and Future Perspectives . 140

X

A List of Abbreviations i

List of Figures v

List of Tables vii

List of Algorithms ix

Bibliography xi

B Curriculum Vitæ xxv

XI

CHAPTER 1
Prologue

“Basic research is when I am doing what I don’t know what I am doing.”
[von Braun, 1957]

This chapter introduces Ontology-Based Software Development. It provides an overview about
Ontology-Based Software Development issues, being the problem statement and motivation for
the choice of the subject of this thesis. Furthermore, the scientific context is explained and the
research question is defined. Applied evaluation methods for the accomplished case study are
described. Last but not least it gives a condensed overview about the structure of this thesis.

1.1 Motivation

A couple of years ago handling large sets of data was made possible through the enormous
performance growth of computer hardware. During the last years big data has become a new
ubiquitous buzz word. Gartner defined Big Data as

”high volume, high velocity, and/or high variety information assets that require
new forms of processing to enable enhanced decision making, insight discovery
and process optimization” [Gartner, 2012].

The use of ontologies for software development is an attempt to handle big data in a smarter
way [Rus and Lindvall, 2002]. Knowledge-based approaches gained popularity during the 70s
in combination with artificial intelligence [McCarthy, 1987]. The conventional approach focuses
on how to enrich the software development process through extra knowledge in order to make
software development an efficient, predictable activity which reuses already gained knowledge
for further projects and/or products. Earlier ontology-based procedures address organizational,
individual, and technology issues like how to store requirements and how to share knowledge
across developers [Gašević et al., 2009], [Siricharoen, 2007].

1

The main disadvantage of all these approaches is that they do not support domain indepen-
dent software development. The possibility to reuse software components is the main research
goal of this thesis but all those knowledge-based approaches are built around the software devel-
opment to support it from the outside. As software engineering is a knowledge-intensive domain
the main idea is to support the software engineering process during the implementation phase
in order to improve software development in its core tasks. In addition this cognizance can be
used to link it with the software development on the level of components. With this support,
software architects can identify reusable components across domains. Moreover it can be used
to support offers as customer requirements can be matched not only to data elements but also to
software elements. Figure 1.1 demonstrates what the customer expects from a software prod-
uct and on the other hand what the developer has to consider. The International Organization
for Standardization (ISO) 25010 standard1 was developed for the evaluation of software quality.
The fundamental objective of this software quality model is to address some of the quality char-
acteristics of the four main columns. Ontology-Based Software Development (OBSD) can be
deployed to increase the quality of the product, product strategy, product line, and architecture
life-cycle as shown in figure 1.1. The information exchange between applications and platforms
can raise the interoperability, flexibility and expandability.

Product

Strategy

Lifecycle

D
e
v
e
lo

p
m

e
n

t
C

o
n
s
id

e
ra

ti
o

n

Product

Product

Line

Substitutability

Extensibility

Interoperability

Flexibility

Stability

Testability

Modularity

Maintenance

Installability

Analyzability

Reusability

Portability

ISO 25010

Commonalities

Variabilites

C
u

s
to

m
e
r

E
x
p
e
c
ta

ti
o
n

Applicability

Effectiveness

Functionality

Portability

Maintainability

Reliability

Suitability of

an Application

Figure 1.1: How to create quality software.

This thesis addresses the combination of OBSD and semantically enhanced information
management beyond the work currently envisaged by the industry and several research projects
and programs. To verify, validate, and evaluate the domain independent idea of OBSD within a
case study, the Air Traffic Management (ATM) domain was chosen. There is a tremendous need

1http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=35733, accessed: 2016-11-27

2

from the industry as well as from the scientific community to develop better solutions through
scientific results. The static growth of data which is processed within a control room results in
the development of overlapping, or in the worst case, identical software components for various
domains. Often it is the case that the descriptive name is different but the functionality of such
components is quite the same. Motivation of this thesis is to show the improvement which an
ontology-based life-cycle can offer in a real business-case. Components dealing with commu-
nication, weather data, geographical information, tracking and tracing, validation and mediation
are all artifacts which have approximately the same requirements for several domains. Never-
theless, these components are often developed twice for each domain. The use of ontologies
provides high flexibility for the future integration of new legacy applications, systems and ser-
vices. Unified, open standards raise the reusability of components for different applications in
different domains. This thesis contributes to such solutions through innovative research integrat-
ing both areas. To reach this goal, a shift in software development paradigms has taken place.
New emerging Ontology-Based Software Development paradigms are dealing with the underly-
ing data itself. They place less emphasis on the process, but focus on domain independent code
reuse ability and efficiency starting at the core of software development covering the information
management.

Furthermore, an ontology-based approach tries to address significant problems in traditional
software development [Calero et al., 2006]:

• Loss of Knowledge: Due to steep learning curves and attrition a substantial part of the
knowledge gets lost. Miscommunication and the lack of semantic interoperability means
that information is lost or altered.

• Single Point of Knowledge: A serious internal problem of an organization are single
individuals with key knowledge as they have an incredible amount of leverage but might
not be able to share it.

• Reinvention of the Wheel: When companies grow knowledge interchange is a serious
issue. It is more than common that one department is developing software components
which are already implemented or covered by another division.

• Domain Specific Development: This leads to the development of domain specific soft-
ware resulting in different solutions for each specific environment. Usually this raises the
costs for efficient software development and increases the time-to-market.

• Lack of Feedback Cycles: In software engineering, inefficient feedback cycles increase
costs and cause delays. Processes should be able to handle changes and allow rapid feed-
back.

3

1.2 Definition of Ontology-Based Software Development

Ontology-based technologies are used for acquiring and storing semantic descriptions. Ontolo-
gies allow computer machines to process domain overlapping information, which up to now
only was defined in operational procedures independent of automation systems. An ontology
does not necessarily contain all information but can be split up in multiple ontologies referenc-
ing and inheriting properties from other ontologies. Ontologies can be used to enhance decision
making and enrich existing data with more logic [Gartner, 2012]. From a marketing perspective,
one would speak of smart big data [Buhl et al., 2013]. This smart way is the main driver for this
thesis. Section 2.3 provides a definition of ontology in computer science and gives an historical
insight.

For a better understanding among the various ideas how ontology-based approaches could
be used [Happel and Seedorf, 2006] created four categories for ontologies in the context of
software engineering (cf. figure 1.2). This simple classification scheme provides an overview
about different semantically enriched software engineering life-cycles. The Ontology-Driven
Architecture [Tetlow et al., 2006] from W3C was the starting point and attempts to outline how
semantic Web technologies can be applied in the field of software engineering. The basic prop-
erties of ontology-based software engineering can be described in a 2x2 matrix. On the one hand
there are processes during run-time and design-time and on the other there are two different on-
tology models, one capturing the software components and one describing the domain. [Happel
and Seedorf, 2006] describe an Ontology-Driven Development, which is processed at design-
time, covering the domain itself. The Ontology-Enabled Development in contradiction, supports
the developer during the design-time (e.g. component search). At run-time Ontology-Based Ar-
chitectures are used for business rule approaches whereas the ontology is the main part of the
application logic. Ontology-Enabled Architectures supply software infrastructure to support a
system at run-time. Through an additional semantic layer provided by ontologies, web services
gain automatic discovery and compose service-based work-flows.

OBSD [Gringinger et al., 2010a] extends the matrix outlined by combining Ontology-Driven
and Ontology-Enabled Development (cf. figure 1.2). It considers different fields of software de-
velopment during design time, including the definition of requirements, architecture and spec-
ification, modeling, reuse and re-engineering, quality management, maintenance and deploy-
ment [Dillon et al., 2008]. Core focus of OBSD is to compose software from reusable software
components. More and more software projects reuse code instead of developing it completely
new from scratch. To fulfill the dream of code component based software engineering the de-
velopers need the corresponding knowledge about the reusable parts in relationship to the re-
quirements. Often ambiguity requirements cause minimal errors, which can endanger a whole
project. However, a semantically enriched modeling process improves the mix-up of require-
ments and reusable code components by using ontology techniques. OBSD makes it easier to
select the precise requirements with the best fitting existing code components.

4

Ontology-Driven

Development

Ontology-Based

Architecture

Ontology-Enabled
Development

Ontology-Enabled
Architecture

OBSD

 Design-Time Run-Time

S
o

ft
w

a
re

D

o
m

ai
n

Figure 1.2: OBSD in the context of [Happel and Seedorf, 2006].

1.3 Problem Statement

When trying to integrate ontology-based information management into software engineering
several integration problems appear. This section covers these problems, describing the problem
statement and the motivation for the choice of the subject of this thesis.

1. The Reusability Challenge

Although the reusability of software components is not a new concept it is a constant
problem. To achieve the possibility to reuse software components and interconnect them
with domain information models and requirements is complicated. There are numerous
reasons why it is not a trivial problem.

The major difficulties lie in the technical areas, in particular:

• First of all mapping knowledge from a well-understood base to a new target domain
is not an easy task [Lung et al., 2007]. Domain specific development leads in the
worst case to various solutions for each specific environment. This increases soft-
ware development effort and lowers the efficiency. Software architects have to think
further than to the upcoming deadline. The target to achieve is reusable, modular
software components rather than monstrous and monolithic code.

• Another important aspect of reusable software components is to design them as a
black-box [Lung et al., 2007]. This means that each component can interact with the
rest with an interface as an abstraction. As a result, one does not necessarily have
to know the internals of a component to be able to reuse them. The right level of
abstraction is important.

5

• Semantic interoperability issues can cause the redundant development of compo-
nents in various domains, due to different definitions. Not to reinvent the wheel is
one of the biggest challenges.

Common libraries and components are usually developed with the consumer in focus in-
stead of the industry.

2. The Semantic Interoperability Gap

Insufficient knowledge distribution is a problem with many manifestations. For example
there are several standards which have various definitions for one and the same thing.
Consequently that the information cannot be distributed. The cultural gap between Stake-
holders due to the lack of semantic interoperability means that information is lost or al-
tered. As a consequence it is not verified that the exchanged information share the same
meaning at both their origin and their destination which is necessary to receive, combine,
and process information from many sources. Overlapping data models from several do-
mains which define the same information differently may have serious implications. To
find a reliable, common definition between the various stakeholders is not an easy task.
Moreover it is most of the time not a technical but a political problem. Semantic informa-
tion needs to be collected from the operational as well as from technical and political side
to find a common agreement.

3. The Modularity Fallacy

To find the right granularity while building software, based on Service Oriented Archi-
tecture (SOA) principles, is not an easy task [Zdun et al., 2007]. Defining services on
the SOA patterns is one thing but finding the right modularity from components down to
packages is another story. Implementing SOA modularity creates new and additional chal-
lenges for people, processes, and technology that must be addressed through sound and
effective governance. Without such governance, business agility is impossible, service
ownership remains locked within silos, service portfolio management remains ineffective,
and security is not providing an enterprise-wide view [Papazoglou and Heuvel, 2007]. Not
only on the governance side things have to change, also the meta-data and the software
documentation has to come to the next level to support the idea of modularity.

4. Insufficient Requirements

In order to be able to infer from the requirements to the reusability of software compo-
nents, the requirements must be of excellent quality. Software requirements are usually
dynamic, pervasive, and hardly specified. Consequently, applications are difficult to be
well-defined entirely in advance. If the requirements are unclear, incomplete, too gen-
eral, or simply not testable they cause trouble. A good requirement analysis includes the
interaction between customers and developers. Unfortunately, this is still often underesti-
mated.

6

5. Software Incompatibility

Software incompatibility is the inability of independent, heterogeneous systems to work
together as seamlessly as possible to replace or provide the necessary information in an
efficient and usable manner to the user without the need for separate agreements between
the systems. The worst case is that applications cannot process the same data within the
same product family. On the other hand with interoperability in place the best possible
case would be that an application is able to communicate seamlessly without additional
interfaces and data mediation with third party data systems. It is definitely a challenge to
ensure maximum compatibility.

6. Weak Offer Management Support

Without the knowledge of the capabilities of a software product, presales and offer man-
agement is incapable of estimating correctly the effort needed when reading the customer
requirements. The more accurately the estimation of the requirements for the costs of
software development is, the better. Of course it also helps if someone knows which com-
ponents are in development or are already developed. A weak offer management prevents
an application to develop from a single implementation towards an own product.

7. Dispensability of Ontology-Based Information Management

Some software architects and managers cannot afford to spend too much time on infor-
mation management. They worry that ontology-based information management will cost
more effort than it will bring back over time. First of all, there should be measurable
parameters in place to quantify what information management really caused at additional
costs. And Secondly the long-term factors of the benefits ontology-based information
management should be kept in mind.

8. The Lack of Ontology-Based Software Development Tools

Ontology-based techniques and tools are primarily developed for the Semantic Web. Ad-
dons, extensions, and plug-ins are mainly implemented to support the specific needs of
the Semantic Web. Most often software developers working with OBSD complain that
these tools are scarce. But even if there were already enough theoretical concepts, there is
a need for OBSD tools.

9. The Need of Standardized Domain Knowledge

In various domains appropriate domain models do not exist. But without them it is not
possible to conquer the semantic interoperability gap. Even if there are standardized ex-
change models most of the time the knowledge is not captured as an ontology. It is essen-
tial that there are suitable semantic models for each standardized data and service model.

7

1.4 Scientific Context

The idea for this thesis was born in 2009 and took place between January 2010 and Decem-
ber 2016. The work was embedded in the science framework of an international research pro-
gram and several projects. The Single European Sky ATM Research program (SESAR) was
founded by the European Union, European Organization for the Safety of Air Navigation (Eu-
rocontrol) and fifteen industry partners. The development phase of the SESAR program started
in June 2009 in order to ensure the modernization of the European ATM system. The work was
conducted in two work packages (WP) of the System Wide Information Management (SWIM)
thread, in the Information Management (WP 8) and System Wide Information Management
Technical Architecture (WP 14) WP. SWIM establishes concepts and mechanisms which com-
bine the forces of all suppliers of shared ATM information in terms of Eurocontrol’s strategy [Eu-
rocontrol, 2009]. SESAR addresses four key goals according to the masterplan [SJU, 2015]:

• Improve Safety by a factor of 10.

• Enable European sky to handle 3 times more traffic.

• ATM costs reduction by 50%.

• Reduction of the environmental impact per flight by 10%.

Information management establishes the governance framework in terms of regulatory and
support functions needed to perform system-wide information sharing. Sensitivity with regard
to some information continues to exist and is managed within the information management WP.
ATM information changes over time, but to varying degrees in terms of frequency or magnitude,
varying from almost static to very dynamic. Information management recognizes and accom-
modates this temporality of information for the aeronautical, weather, flight and environmental
domain in the ATM Information Reference Model (AIRM). It also covers the semantic descrip-
tion used in this thesis to build the ontologies. Another main purpose is to develop information
services based upon Service Oriented Architecture (SOA) principles for current and assumed
foreseen ATM business needs. The diversity of services are collected in the Information Service
Reference Model (ISRM). The information management strategy is based upon the following
main objectives [Gringinger et al., 2010b]:

• Seamless information interchange through globally and universally defined interfaces by
removing existing barriers between systems.

• Open standards such as information models published in the public domain shall be used.

• Information on demand and filtered by geographic and temporal information.

• Quality of information by ensuring information timeliness, accuracy and quality.

The SWIM Technical Architecture WP establishes and validates the infrastructure solution
of SWIM [Gringinger et al., 2012b]. The primary objectives are architectural description, tech-
nological options and system solutions regarding the requirements provided by the information
management WP. This includes the development of technical services and data models defined
in the information management WP.

8

Additional semantic work was accomplished during the science research project “Seman-
ticNOTAMs: Ontology-based representation and semantic querying of Digital Notices to Air-
men”, funded by the Austrian Research Promotion Agency (FFG) in 2012 (cf. [Gringinger,
2014], [Burgstaller et al., 2015], [Burgstaller et al., 2016], [Steiner et al., 2016b], and [Steiner
et al., 2016a]). Digital Notices to Airmen (DNOTAM) were exchanged in teletype format in the
past. Supporting the move to digital ATM along a common AIRM, Eurocontrol and FAA drafted
event specifications for DNOTAM according to the Aeronautical Information eXchange Model
(AIXM) 5.1. Intelligent filtering and querying of Digital DNOTAMs was identified as important
but is still an unsolved issue to fully exploit their potentials in future Air Traffic Management.
This is where the project sets in. The project intends to use a knowledge-based approach exploit-
ing semantic technologies for tackling the problem of efficient, flexible and context-aware filter-
ing and querying of DNOTAMs. Its results are part of new support systems (such as digital brief-
ing) that assist flight controllers and pilots in reducing their information overload. The project
complements the key technologies of SESAR, AIRM and ISRM, in that it investigates querying
and notification of DNOTAMs so far not considered in this frame and uses a knowledge-based
approach, novel to this domain. By employing a knowledge-based approach, knowledge about
what DNOTAMs are relevant for and how important they are in a given context (e.g. flight
phase, aircraft, time, space) is represented as data (and not in program code). Thereby, systems
can be easily modified and personalized. Moreover, not only DNOTAMs themselves but also
knowledge about filtering and querying can be digitally exchanged in the SWIM of SESAR be-
tween different services, thus, enabling cross-system reuse of filtering and query rules without
any need for reprogramming. The insights gained and results achieved in this project on filtering
and querying time- and safety-critical announcements to global air traffic are also valuable for
future adaption of terrestrial and nautical traffic management.

The principle goal subsumes three sub-goals, including the support of climate-protection-
oriented air transport systems, the support of efficient, secure and comfortable air transport sys-
tems, and the intensification of cooperative and challenging research projects at national and
international level.

• Intelligent filtering and querying of DNOTAMs based on contextual relevance in conjunc-
tion with immediate digital delivery reduces the time to promulgate information concern-
ing airspace status. This will allow more effective airspace utilization and allow improve-
ments in trajectory management. Optimized arrivals, departures and reduced queues help
to decrease environmental and noise pollutions.

• Intelligent filtering and querying of DNOTAMs reduce information overload of air traffic
controllers and pilots and assist them in organizing relevant DNOTAM information at
hand.

• Reduced stress level and situation-aware DNOTAM notification at situation-appropriate
alert levels contribute to avoid air traffic incidents and thus, to air safety.

9

1.5 Research Question and Research Approach

All these problem statements emerge from one main research question:

Is it possible to solve the reusability challenge to reuse software components
across various domains?

The main research question can further be divided into two sub-questions. As a result the main
research question will be satisfied by giving a solution to the two following problem statements:

1. Can software development costs be lowered with the help of ontology-based technologies?
2. Which strategy closes the semantic interoperability gap?

This work mainly focuses on the main research question covered in chapter 2, 4, and 5. The first
sub-question is examined in detail in chapter 4, and 5. The second sub-question is described in
chapter 3 and 4.

1.5.1 Information Systems Research

This thesis follows the design science research paradigm described by [Hevner and Chatterjee,
2010] to investigate the research questions above. The information systems research addresses
controversial discussions about the role of the information technology artifact and the lack of in-
formation systems research in a professional context cf. [Vaishnavi and Kuechler, 2013]. Since
the late 40s research in design methodologies were adopted from other domains for the infor-
mation technology and information systems domain. More and more technical disciplines and
specializations such as computer science and electrical engineering were added over time. In
the early 90s the information systems community recognized the importance of design science
research and after a number of review cycles [Hevner et al., 2004] published the design science
research paradigm. The design science research paradigm tries to solve a problem by build-
ing an application of the designed artifact. Within this work the development of new ideas are
accomplished by the creation and evaluation of prototypical artifacts. The design science re-
search cycles are shown in figure 1.3. The environment part on the left side defines the problem
statement within a specific domain including the involved people, organizational, and technical

Figure 1.3: Design science research cycles [Hevner and Chatterjee, 2010].

10

systems. The relevance cycle iterates between the domain environment and the design science
part of the research project. Not only does it provide requirements for the project as input (e.g.
problem statement), it also defines verification and validation rules for the final evaluation of
the research results. The design science research part identifies in an iterative way theories and
artifacts. The design cycle connects the building and validation of the design artifacts in a de-
sign science research project. The rigor cycle bridges these activities with the knowledge base
of scientific methods, meta-artifacts experience, and expertise. These three cycles are the main
part of design science research.

Furthermore, as part of information systems research, [Gregor and Hevner, 2013] proposed
a knowledge contribution structure for design science research (cf. figure 1.4). Improvement
specifies new solutions for known problems, whereas an Invention creates new solutions for
new problems. Exaptation conclude non-trivial extension of known solutions for new problems
and research contributions while Routine Design is rarely acknowledged as such. It is a known
issue that software components are developed for a certain domain and that even within the same
company in another domain more or less the same software components are built from scratch
just because the knowledge about the specific artifact was not shared. As Ontology-Based Soft-
ware Development is a quite new research area, new issues and problems have surfaced. To raise
the awareness of reusable software components inter-domain specific, this thesis uses novel tech-
niques, such as OBSD and semantically enriched information models. According to the knowl-
edge contribution structure, the research work in this thesis can be classified as an Improvement
and Invention providing new solutions to known and new problems (cf. figure 1.4). The OBSD
methodology was awarded with the innovation idea award2 at a conference hosted by the Insti-
tute of Electrical and Electronics Engineers (IEEE) and the American Institute of Aeronautics
and Astronautics (AIAA) cf. [Gringinger et al., 2010b]. As this thesis also tries to improve the
semantic interoperability gap, parts of it are located in the quadrant of improvement.

Improvement

Invention

Routine Design

Exaptation

OBSD

High

S
o

lu
ti
o

n
 S

p
a

c
e

 M
a

tu
ri

ty

Low

L
o

w

H
ig

h

Problem Space Maturity

Figure 1.4: Design science research structure adopted from [Gregor and Hevner, 2013].

2http://i-cns.org/2010/student-paper-award-winners-announced-for-icns-2010/, accessed: 2016-10-23

11

Figure 1.5 visualizes the iterative methodology process model. It offers the possibility to
start the research from a variety of contexts: problem-centered, objective-centered, design and
development centered, or client/context based. For this work the problem-centered initiation in
the gray oval was used as a starting point defining the problem statement and its motivation.
The next step was to think about appropriate artifacts to face this problem, followed by a design
and development phase. During the demonstration phase two artifacts were selected (cf. section
1.4). Verification and validation of these artifacts were done to evaluate the efficiency and effec-
tiveness. Finally the results of the research work were presented through various publications,
patents and this thesis.

Figure 1.5: Adopted design science research methodology process model [Peffers et al., 2006].

[Hevner et al., 2004] defined seven guidelines to assist researchers and readers for conduct-
ing top quality design science research. Based on those guidelines a more specific checklist of
questions was developed by [Gregor and Hevner, 2013], to evaluate a design research project.
The checklist ensures that a project addresses the key aspects of design science research. These
eight questions are briefly answered in section 6.1, accompanied by an explanation, how the
thesis answers these questions.

1. What is the research question?

2. What is the artifact? How is the artifact represented?

3. What design processes will be used to build the artifact?

4. How are the artifact and the design processes grounded by the knowledge base?

5. What evaluations are performed during the internal design cycles?

6. How is the artifact introduced into the application environment and how is it field tested?

7. What new knowledge is added to the knowledge base and in what form?

8. Has the research question been satisfactorily addressed?

12

1.5.2 Evaluation Framework for Case Study

When starting to work on a case study, or any form of research, it is important to consider
the validity of that research [Basili, 1992]. For this thesis evaluation metrics are used to demon-
strate artifact utility and improvement by analyzing the case study with ontology-based approach
against the previous developments without OBSD of the same product. For the purpose of com-
prising the result of the ontology-based approach, the case study is evaluated by means of using
an adopted version of the Extreme Programming Evaluation Framework (XP-EF) [Layman et al.,
2004b].

The XP-EF provides a benchmark for expressing agile case study information for researchers
and users to assess concretely the extent new software development practices and the results of
those adoptions [Layman et al., 2004b]. The XP-EF is a compilation of validated and proposed
metrics and was designed to allow companies or organizations recording case studies, the differ-
ences of changes or adoptions which took place, and capture results of this adoption regarding
the agile software development process [Layman et al., 2004a]. All metrics are parsimonious and
lightweight so that the data can be collected even without dedicated metrics knowledge [Layman
et al., 2004b]. The framework offers the possibilities for combining various case studies. Within
the context of this thesis the XP-EF was used exclusively to compare prior software development
against the OBSD processes.

The framework consists of three parts:

1. Context Factors

Since evaluation and empirical studies in the field of software development are non trivial
due to the variable framework conditions the context factors record fundamental infor-
mation about the background of the respective project cf. [Layman et al., 2004a]. This
is essential for the comparison purpose of the case study to completely understand the
differences and similarities between these different approaches.

2. Adherence Metrics

The adherence metrics are the second part of the evaluation framework and trace how far
the measures were taken on board. It is often the case that software development teams are
not as pleased with reusing components as stated in the first place. Whereas the reasons
for this can be manifold the XP-EF adherence metrics comprises objective and subjective
measures to qualitative analyze the component integration practices of the team and to
which extend the OBSD methodology was used.

3. Outcome Metrics

Finally the outcome measures evaluate business-oriented metrics [Layman et al., 2004a].
Conventional software development metrics like quality, productivity, etc. are taken into
account to assess and evaluate the projects outcome. As stated before, within this work
the XP-EF is used exclusively to compare old software development methodology against
the OBSD process. Therefore, the outcome metrics of the framework are an important
aspect.

13

1.6 Structure of this Thesis

Most work in this thesis was published as conference papers, in journals, white papers, technical
reports, as book chapters or are still under review. These core papers build the foundation of
this thesis. The published ones are also listed in the Appendix B. The following list contains a
short description of the contents of the chapters of this thesis. In addition the used methodology
is described in section 1.5.

• The prologue, chapter 1, examines the motivation and definition of Ontology-Based Soft-
ware Development. Furthermore, it provides the problem statement, the motivation for the
choice of the subject of this thesis and an overview about the scientific context. This thesis
follows the design science research approach by [Gregor and Hevner, 2013] that contains
good guidance on how to conduct, evaluate and present a scientific project. The evaluation
method and research contributions, following the design science research guidelines, are
outlined.

• Chapter 2 covers the technical context in which this research took place. The development
of ontology-based tools was steadily increased and enabled the idea of Ontology-Based
Software Development. Different ontology languages, as well as relevant semantic tools
for ontology development, are analyzed and compared. In order to meet the challenges
outlined in the prologue considerable extensions and improvements are necessary for an
efficient Ontology-Based Software Development environment. This chapter is a refined
version of the publications [Gringinger et al., 2010b] and [Gringinger et al., 2010a].

• Chapter 3 introduces the operational field of this thesis and discusses recent aspects of in-
formation management within the Air Traffic Management domain. It reflects on the used
concept, design, and technologies of a System Wide Information Management infrastruc-
ture based on a Service Oriented Architecture approach. The operational background
for the validation implementation is discussed. Specific information models for different
ATM domains are introduced and the way of how to derive related ontologies on top of
them is shown. This chapter is a refined version of the publications [Gringinger et al.,
2011], [Gringinger et al., 2012b], and [Gringinger et al., 2012a].

• In chapter 4, the concept of Ontology-Based Software Development is presented. The
approach describes the usage of ontologies for data representation and the semantic inter-
face for accessing the information stored in the Ontology-Based Software Development
ontologies. This covers the used methodology, semantic concept, and techniques that are
used for the development process, which derives a logical solution model. This model is
calculated from the semantic description based on software components model, domain
knowledge model, and customer requirements. This chapter is a refined version of the
publications [Gringinger et al., 2011] and [Gringinger, 2017] which is still under review
for the 7th SESAR Innovation Days.

14

• Chapter 5 describes the development and validation of an OBSD relevant case study ana-
lyzed with the evaluation framework XP-EF. For the case study of this thesis two product
developments were chosen using the Ontology-Based Software Development methodol-
ogy and compared the results of prior development of the the same product. It is shown
how an semantic-based development process facilitates software development and pre-
serves development costs. Furthermore, a summary of the results of the reusability case
study of the porducts developed by means of the adapted development process is out-
lined. This chapter is a refined version of the publications [Gringinger et al., 2013] and a
proceeding which is still under review for the SESAR Innovation Days 2017.

• Finally in the epilogue, chapter 6, general conclusions about the achieved results are drawn
and interesting topics for future research are outlined. In addition the eight design science
research questions raised in the prologue chapter 1 are answered and considerations about
possible future work and future research are given. The reflections represent the lessons
learned after the case study presented in chapter 5.

15

CHAPTER 2
Information Management Engineering

“Hell! There ain’t no rules around here! We are tryin’ to accomplish somep’n!”
[Edison, 1903]

The development of ontology-based tools is steadily increasing, especially due to the success
of the Semantic Web. This chapter analyzes and compares different ontology languages as well
as relevant semantic tools for ontology development. Therefore semantic standards, tools, and
extensions are examined in a technology evaluation for Ontology-Based Software Development.
Results show that considerable extensions and improvements are necessary for a successful setup
of an Ontology-Based Software Development life-cycle.

2.1 Introduction

Control rooms are typically found in the security, public safety, public transport, and ATM
domains. Today, each of these sectors uses domain specific concepts of operation, which result
in different solutions for every targeted environment. This limits the potential for cost efficient
software development and increases the time-to-market. Information management, like systems
for the ATM or other domains as mentioned before, typically consist of many heterogeneous sub-
components. Those sub-components are mostly implemented with diverse types and structures
of data, which result from the circumstance that such complex information management systems
are developed for specific business needs. But, when the business scope changes, for example
to combine two existing parts, some sort of integration is needed [Halevy, 2005]. To win the
challenges of the data and system integration, a life-cycle, which defines seamless information
interchange and connects it with reusable components, is needed. A specific example inter
domain development, is the European AIRM. In general, domain independent implementation
of components is a future goal and EUROCONTROL defines AIRM as a model, which contains
all of the ATM information to be shared in a semantic way [Gringinger et al., 2012b].

17

Exactly within these circumstances an ontology-based approach can bring the break through.
Semantic structures improve the productivity and increase the reusability of software through an
ontology-based based life-cycle. This chapter discusses corresponding software languages and
development tools, which are a critical part in building up an ontology-based life-cycle. Unified
and open standards raise the reuse of components for different applications. One issue was to
evaluate the best fitting ontology language. Some languages are very complex and need tools
for editing and developing Ontologies. More often, these tools are extensions or plug-ins for an
Integrated Development Environment (IDE). Existing and approved standards were compared to
make the right choice. The first chapter summarizes related work regarding ontology languages,
presenting generic ontology languages and tools, and conclude a short description of existing
ontologies which are related to Ontology-Based Software Engineering. In addition reasoner and
visualization tools have been investigated for OBSD.

2.2 Definition of Information Management

Information management is more and more important to assimilate the enormous data collected.
Standardized data models are developed to support information systems by providing the defini-
tion, relationship and format of data, controlling, processing, and evaluating [Haag et al., 1997].
The term “information” has various associations and definitions depending on the context. Orig-
inally, it comes from the Latin word “informatio” which means a certain image and concept. In
everyday language, the term is used nonspecific. Information simply tries to cover knowledge
about facts, processes or ideas. In the computer science industry “information” is used among
the terms “data” and “character”. Whereas “characters” serve as the basis and “data” formalizes
information for transfer, interpretation, or processing. It does not matter whether the process-
ing of data is handled by humans or automatically. The concept “information” originally came
from mathematics and has been further developed in the gray field of statistics and computer
science and was introduced by Claude E. Shannon as quantitative information theory [Shan-
non, 1948]. After that, a variety of ideas were developed explaining the value of information.
Shannon was one of the first who understood the value to describe information in a binary way.
Since than the progression in this domain is simply incredibly. The diversity and variety of
information management definitions means that this concept can be perceived in many ways.
Based on the subject of this thesis, “information” plays a particularly relevant role, as informa-
tion models, specifying data semantics, are created and matched with the corresponding data
models to gain more knowledge from the existing data. A new concept of global information
management is the Semantic Web. The emerging approach of the Semantic Web is an informa-
tion enhancement of the existing web with semantic techniques. The underlying approach is to
enrich web-based data with well-defined semantics to make it machine-readable. Semantic data
is then prepared through the use of ontologies to be processed by web applications [Allemang
and Hendler, 2008].

18

The heart of ATM and Air Traffic Control (ATC) lies in the control room, in the ATC en
route center, Terminal Radar Approach Control (TRACON), and ATC tower facilities. How-
ever, control rooms are also used in other mission critical domains such as public safety or
emergency control centers. In the past this led to the development of domain specific con-
trol rooms resulting in different solutions for each specific environment and raised the cost for
software development. Today, ATM is situated in a highly complex environment, requiring well-
defined but flexible means for communication and cooperation that can be more easily adapted
to future changes. These prerequisites are the foundation why the ATM domain is utilized in this
thesis as playground for validation and verification of the generic OBSD concept. The Aeronau-
tical Information Services-Aeronautical Information Management Study Group (AIS-AIMSG)
organized by International Civil Aviation Organization (ICAO) defines information as:

“Data that has been verified to be accurate and timely, is specific and organized for
a purpose, is presented within a context that gives it meaning and relevance, and
which leads to increase in understanding and decrease in uncertainty. The value of
information lies solely in its ability to affect a behavior, decision, or outcome”
[ICAO, 2010a].

and further determine information management as

“The management of resources and processes for the timely collection, integration,
exchange and delivery of quality-assured data, information and services”
[ICAO, 2010a].

The objective of information management is to enable digital, interactive and on-demand
information interchange between the stakeholders of the global aviation community to support
safe, efficient, and environmentally sound performance based ATM operations. This empow-
ers the decision makers and information users with the right information at the right time and
the right place. The scope of information management includes all types of shared ATM in-
formation including trajectories, surveillance data, meteorological, flight and aeronautical in-
formation of all types. The principles of ATM information management are supported by the
SWIM Infrastructure that consists of the implementation aspects, covering the definition of the
physical network, protocols and systems facilitating ATM information management. The SWIM
infrastructure is an essential enabler for ATM providing the interoperable technical infrastruc-
ture (ground/ground and air/ground) over which the information gets distributed. The ATM
information that is shared is provided from technical systems on the SWIM Infrastructure, and
enabled through services. All information exchanges between the participants’ technical sys-
tems will be performed using services. This infrastructure provides the means to transition from
point-to-point message exchanges towards system-wide information provision and usage based
on common definitions of data and associated services. The implementation of information man-
agement, including the management of its security and its safety is a cornerstone of the future
ATM system.

19

The benefits of semantically enhanced information management are:

• The provision of standardized and reusable information elements for the description of the
information exchanges between information providers and consumers in process models.

• The availability of high quality interoperable data unlock new automation potentials, e.g.
automated calculation of optimal trajectories.

• Improved decision making for the participants during all planning phases and operations
(pre-flight, real-time and post-flight). This is achieved by providing and integrating all
ATM information between the participants. Better quality of information will lead to
greater confidence in the decision making process.

• Semantic interoperability within ATM for a better understanding between the different
stakeholders.

• Enhanced up-to-date information distribution between all ATM participants provide a bet-
ter view of the operations for ATM service providers, airport operators, etc.

• To provide a base for harmonization, consolidation, review and change management ac-
tivities for various initiatives and realization efforts related to ATM information.

• A set of models to be used for consolidation activities, development of services and infor-
mation systems.

• Enabling the identification of gaps and overlaps in information and other models and
provides a semantic reference for linking models from different domains.

• It can be used as the reference for the definition of the payload (information content) of a
shared ATM service.

• Worldwide promotion of ATM information standards to ensure global harmonization.

2.3 Definition of Ontology in Computer Science

A precise definition of an ontology is not a trivial task. The origin of the word “ontology” is the
field of philosophy. Therefore, it is important to go back in time. The term itself is loan from
the Greek word ǒv (being) and λoγια (science, study, theory), which has a different meaning
in the philosophical context, where it refers to the study of being1. Greek philosophers from
the Platonic school stated that some categories of being are fundamental. Under the doctrine
of Plato, Aristotle (384-322 B.C.) hypothesized four ontological dimensions in his Metaphysics
book Theta [Aristotle, 2006]. In the Middle Ages, European academics used ontological argu-
ments to explain the existence of god in a scientific manner. The argument examines the concept
of God, and states that the greatest possible being is on the top in a scale of terms ranging from
the bottom to an infinity form of being. These ontological arguments are controversial in phi-
losophy since then [Oppy, 2007]. From a modern perspective this argument could be described
through an ontology language in a way that God is the overall Thing class, and all other beings
are underlying subclasses of Thing.

1https://en.wikipedia.org/w/index.php?title=Talk:Ontology&oldid=726018876, accessed: 2016-11-27

20

Computer scientists became interested in ontologies in the 1970s within the research field
of artificial intelligence [McCarthy, 1987]. They were tempted by the applicability to perform
certain kinds of automated reasoning on ontologies as computational models, with mathemat-
ical logic [Hayes, 1990]. Such ontologies could for example define classes, relations, formal
functions with a concept description and axioms that constrain the interpretation. The first defi-
nition of ontology in terms of computer science was created by Tom Gruber in the early 90s. He
defined ontology as an explicit and formal specification of a shared conceptualization [Gruber,
1995]. The word explicit implies that the type of concepts and their constraints are explicitly
defined and formally connoted, so that the ontology is readable by a machine. A shared concep-
tualization is specified to state axioms that do include the possible interpretations for the defined
terms, which contain the knowledge of a specific domain and were accepted by a group. This
early definition caused a great stir, therefore Gruber described the essential points of an ontology
in the Encyclopedia of Database Systems in 2009 as a definition of

“concepts, relationships, and other distinctions that are relevant for modeling a
domain” whereas “the specification takes the form of the definitions of representa-
tional vocabulary (classes, relations, and so forth), which provide meanings for the
vocabulary and formal constraints on its coherent use” [Gruber, 2009].

But there is no all-in-one terminology. Often “ontology” is defined by its use or in context of the
Semantic Web, where the World Wide Web Consortium (W3C) specified ontologies as

“formalized vocabularies of terms, often covering a specific domain and shared
by a community of users. They specify the definitions of terms by describing their
relationships with other terms in the ontology” [Motik et al., 2009b].

Corresponding to Benjamin, Borst and Akkermans [Benjamin et al., 1996], first ontologies
in technical domains were developed as reusable knowledge libraries. In the field of software
engineering, ontologies are often used to refer to what exists in a system model [Wongthongtham
et al., 2009]. Per default, all software applications have their own underlying paradigms in form
of standardized libraries, components, documentation and files, which also acts like an ontology.
However, often this is not enough or the description is poor for some reason, ontologies are
precisely made to support under those specific purpose [Chandrasekaran et al., 1999].

Through the initial work of Gruber and other computer scientists several markup ontology
languages were developed. Most ontologies are based on Description Logic (DL), which is a
conglomeration of knowledge representation formalisms [Baader et al., 2003]. Logical state-
ments relating to roles in form of axioms are the fundamental modeling concept, which is the
big difference to frame-based languages where a frame specification declares and completely
defines a class. DLs are used in artificial intelligence, information management and meta data
integration. Within the context of the Semantic Web several languages based on DL were de-
veloped, such as DARPA Agent Markup Language (DAML) [Hendler and McGuinness, 2000],
Ontology Inference Layer (OIL) [Fensel et al., 2001], DAML+OIL [van Harmelen et al., 2001],
Simple HTML Ontology Extensions (SHOE) [Heflin et al., 1999], Resource Description Frame-
work (RDF) [Klyne and Carroll, 2004], Web Ontology Language (OWL) [Horrocks et al., 2003]
et cetera. OWL for example, is still in a development phase, which means that the language

21

is evolved by the W3C continuously. The first W3C recommendation of OWL came out in
2004 [Patel-Schneider et al., 2004] and with the revision of OWL 1.1 in 2007 more expressive-
ness was added [Patel-Schneider et al., 2008]. But OWL 1.1 was only another step to the further
development which ended up in OWL 2, which was published by W3C in October 2009 and
obtains additional expressiveness through innovative ontological axioms to solve known prob-
lems that occur with OWL [Motik et al., 2009b]. Despite the new extensions, the main goal is to
facilitate ontology development. The background logic of OWL is SHOIQ [Patel-Schneider
et al., 2004], and SROIQ, [Horrocks et al., 2006] which is used in OWL 2.

2.4 State-of-the-Art of Ontology Engineering

Similar to object-oriented languages, a typical OWL ontology consists of instances to represent
knowledge items, properties, and classes. But, thinking in object-oriented terms during devel-
opment with OWL will almost always lead off target. It is important to understand that both
paradigms are developed among other circumstances and so have different semantic compe-
tence, but there are some parallels. A comparison with the Unified Modeling Language (UML)
shows that meta-models are closely related to ontologies and both are model languages to de-
scribe and analyze the relations between concepts. However, UML and OWL use classes in a
significantly different way [Wongthongtham et al., 2008]. In UML a class describes a set of
software objects which entails the same specifications of features, constraints and semantics. In-
stance objects share their behavior from the class definition, and all objects in UML are general
instances of titled classes. Instances of a class also have run-time semantics in a way that there
are notions of static values and variables [Hesse, 2008]. In OWL terms, a class is a labeled set
of domain related things. Resources (individuals in OWL terms) are simply identifiers, without
run-time semantics, state or storage. If an individual fits a criterion of the class, then it will
be within the membership of that class. Reasoning allows identifying individuals, from whom
you don’t even know that they are within a class. As mentioned before, OWL has an ultimate
class called Thing, whereas all other classes are subclasses of it and individuals can only be
instances of Thing [Motik et al., 2009b].

The real supremacy of an ontology-based approach lies in the capability to build rela-
tionships between instances and classes. The properties of those relationships allow reasoner
to make suggestions about them. Consider a brief example (cf. figure 2.1), :Storm (con-
cept) is a specific type of :Wind (value of property :MeteorologicalData), :Storm
could be a :Risk (relation), a :Pilot gets alerted through a :Risk (assertion). You can
see the labeled relationships isSortOf and isAlertedBy infer the fact that a :Pilot
is alerted by a :Storm, which is a specific :type of :Wind which in turn is a subclass
of :MeteorologicalData (reasoning). This reasoning is possible because of the inverse
property of isSortOf, which relates the two instances in the reverse direction. Several facts
could be inferred from these relationships. Instances can either belong to a set of meteorolog-
ical information events or a set of risks, but only specific kinds of events are critical. In terms
of ontology languages, classes are disjoint to each other. There are no instances that belong to
both. In figure 2.1 a :Storm is some sort of :Risk. However, with the knowledge of this
example one can conclude that some type of :Temperature is a :Risk. That is possible

22

because OWL follows the open world assumption, which defines that any assertion not stated is
indistinguishable. Individuals need not necessarily have a unique name because OWL does not
use the unique name assumption.

:Wind :Pilot

:MeteorologicalData

rdfs:subClassOf

isSortOf
:Storm :Risk

rdf:type
isAlertedBy

:Temperature

rdf:type

Figure 2.1: A simple ontology.

2.4.1 Ontology Languages

In the early 90s a couple of artificial intelligence based languages were developed. Knowl-
edge representation languages were first-order logic based such as Knowledge Interchange For-
mat (KIF) [Genesereth et al., 1992] or Ontolingua [Gruber, 1993]. In 1989 Frame Logic (F-
Logic) [Kifer and Lausen, 1997] was introduced by Michael Kifer at New York State University
and Georg Lausen at the University of Mannheim. It combines first-order logic with a frame-
based approach. In order of its object-oriented concept it includes revolutionary features such
as complex objects, inheritance, axioms and deductive rules. Even now F-Logic is supported by
modern ontology tools such as OntoStudio or Jena. SHOE [Heflin et al., 1999] was developed
in 1996 at the University of Maryland. It was created as an extension of HTML to combine
machine-readable semantic knowledge in HTML documents. SHOE enabled the possibility
to gather meaningful information about Web documents and their knowledge congregation by
adding additional tags from those of the HTML specification. As this chapter focuses on state-
of-the-art languages related with the Semantic Web, earlier ontology language approaches are
not described in detail.

In the last few years several ontology languages have been developed and many of them
are well known in the context of the Semantic Web, especially those created by the W3C. Such
languages are commonly called web-based ontology languages or ontology markup languages.
These languages are still in development phase, which means that they are continuously evolv-
ing. Most of them are based on the Extensible Markup Language (XML) syntax [Bray et al.,
2008]. XML was specified as an open standard by the W3C to improve the information ex-
change via the Web. Despite the fact that XML was designed for the electronic processing of

23

documents, it is widely used in a different range of application (e.g. for web services). There-
fore, the SHOE syntax was extended to use XML and later on, other ontology languages were
built on the XML syntax as well. Other languages also have been used for building ontologies,
such as the OIL [Fensel et al., 2001] or DAML+OIL [van Harmelen et al., 2001] which was
replaced by OWL. Contrary to traditional ontology languages the Resource Description Frame-
work and RDF Schema are markup ontology languages. OWL is built on the top of RDF(S),
which is the union of RDF and RDF Schema. The stack of ontology markup languages and the
relationships among them are shown in figure 2.2.

XML

RDF(S)

SPARQL

OWL

OWL 2

URI UNICODE

Logic

S
e
c
u
r
i
t
y

A
p
p
l
i
c
a
t
i
o
n

Figure 2.2: Stack of ontology markup languages.

Ontologies represent the information in a semantic space and contain following data:

• Concepts: To collect and process data, predefined structures must be established to store
the relevant information. First, concepts are defined as basic entities of the system. Ex-
amples for concepts are messages or network connections.

• Hierarchy of concepts: Concepts are further arranged in a hierarchy.

• Relation of concepts: Relations exist between single concepts that are called properties.

• Hierarchy of relations: Like concepts, also relations can be arranged in hierarchies in-
heriting properties from superior relations.

• Instances: Instances are the actual representations of concepts. The above entities (con-
cepts, hierarchy of concepts, relations and hierarchy of relations) form a structure (or
vocabulary) that is filled with the names and types existent in the system.

• Relation of instances: Instances of a specific concept are interconnected by property
instances. However, it is not necessary that predicates always link instances of concepts.

24

According to the “comparison criteria” identified by Gomez-Perez and Corcho [Gomez-
Perez and Corcho, 2002] the following sections will identify different concepts and components
in each language. Furthermore, the availability of tools such as editors, semantic reasoner etc.
is an important aspect for an adequate usage.

2.4.1.1 Frame Logic

F-Logic is a former deductive, object-orientated and frame-based ontology language. More
precisely it combines a trivial higher-order syntax and declarative first-order semantics. As
mentioned before, F-Logic was introduced first in 1989 [Kifer and Lausen, 1997] as a language
for deductive databases, but the theoretical description for formalizing ontologies to fit into the
semantic technology pool was renewed in 1995 in the F-Logic report [Kifer et al., 1995]. F-
Logic embraces the closed world assumption. In context of formal logic the presumption is
that any statement that is unknown to be true is false. F-Logic offers the possibility to develop
knowledge representations about objects, classes and their inward relationships. Comparable
to the pure logical languages a fundamental representation is based on the notion of terms and
predicates. F-Logic uses Prolog as base and so all objects have names and are specified via
logic terms to represent object identities. There are three main terms: constants, variables and
functions. A constant consists out of a starting letter, followed by letters, digits or the under-
score symbol out of the American Standard Code for Information Interchange (ASCII) character
set (e.g. Ontology_1). It is subdivided into strings, numbers and symbols. Variables are built
up in the same way with the distinction that they are followed by a logical quantifier FORALL
or EXISTS. Functions are made up of a symbol and a list which represents the arguments.
Additionally expressions are class status e.g. eclipse:application which means that
eclipse is an application, or types to specify that the name of an application is type of string
application[name?string]. There are many more which can be specified, such as sub-
classes, modules, etc. Several modern development environment tools exist, such as NeOn
Toolkit or OntoEdit which support F-Logic (cf. section 2.4.2).

2.4.1.2 Resource Description Framework

RDF was standardized through the W3C as an official recommendation [Klyne and Carroll,
2004]. It was developed to represent XML based meta data on the web. But the data does not
necessarily contain web information, it could contain other meta data as well. The data model is
shown as a set of resources. The Information itself is stored through RDF statements, which are
the fundamental structure of every expression in RDF. W3C formally defines a RDF statement
as a collection C of triples 〈s,p,o〉 consisting of a subject “s”, a predicate “p” and an object
“o” (cf. figure 2.3). The elements of these sets are Uniform Resource Identifiers (URI), literals
(L), plain literals (pL) or blank items (B) with s ∈ URIs ∪ B, p ∈ URIs, o ∈ URIs ∪ B ∪ L.

Since OWL is used in the Semantic Web, a generalization of the URI is used called Interna-
tional Resource Identifier (IRI). These IRIs can be very long and therefore are often abbreviated.
It is possible to generate a graph of any RDF data set by representing all elements as an edge
which connects subject and object via a predicate (cf. figure 2.3). The subject denotes the re-
source, the predicate denotes properties or aspects of the resource and expresses a relationship

25

between the subject and the object. The RDF format can be visualized as graph. In this the-
sis the graph visualization has been used to demonstrate different parts of ontologies using the
OntoViz and the OWLViz plug-ins for Protégé. Additional ontology languages such as RDF(S),
OIL or OWL are built upon RDF. The circumstance that the RDF data model does not allow to
describe the relationships between the resources 〈s,p,o〉 itself, was the reason for W3C to in-
troduce RDF Schema [Brickley and Guha, 2004]. The idea was to map RDF statements, which
are mere notations, to some reasoning model in order to fix the truth-value. It is a simple, not
very expressive, entailment to RDF with frame-based primitives. RDF(S) is the combination of
RDF with RDF Schema which is very common as a representation language in various tools (cf.
section 2.4.2).

:Object:Subject

:Predicate
rdf:type

rdf:type

rdfs:SubClassOf

Figure 2.3: A basic RDF triple as RDF(S) graph.

But there are different syntaxes for RDF, Beckett and McBride specified a XML Syntax for
RDF in 2004 [Beckett and McBride, 2004]. Others are Terse RDF Triple Language (Turtle)
and Notation 3 (N3) or RDFa. RDFa is the abbreviation of Resource Description Framework
– Attributes and its purpose is providing a way to embed RDF meta data to Extensible Hyper-
Text Markup Language (XHTML) documents. In October 2008 RDFa reached recommendation
status [Adida et al., 2008]. Main goal of N3 is to set up a readable alternative to RDF’s XML
syntax and to extend the expressiveness [Lee and Connolly, 2008]. Turtle, again, is a subset of
N3 which wrapped the most useful things to a human-machine readable language whereas the
main goal of the W3C was to keep it sufficient inside the RDF model [Beckett and Berners-Lee,
2008]. Turtle simplifies to code a RDF graph by enabling some nice shortcuts. For example
you can group same subjects triples together with “;” and “,”. Blank nodes can also be grouped
together by using “[“ and “]”. There are also tweaks so that untyped literals can have a lan-
guage tag and instead of writing rdf:type every time “a” is used as abbreviation. The Turtle
syntax style for the Triple patterns is also basis for the SPARQL Protocol And RDF Query
Language (SPARQL) [Prud’hommeaux and Seaborne, 2008]. Fundamental concepts of RDF
Schema are introduced in the following example. rdfs:subClassOf describes a relation
between classes, that the items of one class are inherited in the sub class. rdfs:domain and
rdfs:range express a property that determines class membership of individuals related by
that property. Figure 2.4 and 2.5 explain examples starting from from RDF, RDF(S) to OWL.
Assuming the following starting triples:

26

:WeatherData a rdfs:Class .
:ContentType a rdfs:Class .
:has rdfs:domain :WeatherData .
:has rdfs:range :ContentType .
:WeatherShort :has :UTF .

As a result one can conclude that WeatherShort is a subclass of weather data and has the
type UCS Transformation Format (UTF):

:WeatherShort a :WeatherData .
:UTF a :ContentType .

To define a relationship of weather data in more detail, WeatherData can have a subclass
WeatherPictureand SatellitePicture is a subclass described by the ContentType
class.

:WeatherPicture a rdfs:Class ;
rdfs:subClassOf :WeatherData .

:SatellitePicture a rdfs:Class ;
rdfs:subClassOf :ContentType .

:WeatherLong a :WeatherPicture ;
:has :Bitmap .

:WeatherData :ContentType

SatellitePicture

:Bitmap

:UTF:WeatherShort

:WeatherLong

:WeatherPicture

rdf:type rdf:type

rdf:typerdf:type

rdfs:subClassOf

has

has

rdfs:subClassOf

Figure 2.4: An example for a mixed usage of RDF and RDF(S).

27

With the further adoption one can infer that a satellite picture is a type of :Bitmap a
:SatellitePicture. But the corresponding inference does not make sense for weather data
because UTF is not a type of bitmap. For a correct model an owl:Restriction is needed,
which will be described later on. These languages are the fundamental keys for the success of
the semantic Web. It enables an evolutionary stage of the World Wide Web, where automated
software is used to distribute machine readable data to maximize efficiency and knowledge. The
trivial data model of RDF with its ability to design heterogeneous concepts is widely used in
ontology related applications.

2.4.1.3 Web Ontology Language

In 2001 the W3C sets up the web ontology working group to develop a more expressive markup
language for representing and sharing ontologies over the semantic Web and so OWL was born.
A first working draft about the syntax came out in 2002, which became afterward a W3C recom-
mendation [Patel-Schneider et al., 2004] in 2004. In comparison to F-Logic, OWL attempts the
open world assumption which embraces that a statement with an unknown value can’t be proven
to be true or not with the current knowledge. It can only be inferred something, if it is explicitly
defined as present or absent. If something is not defined as right, it can not be concluded that
it is wrong. Reasoning in DL is monotonic: If one can deduce that an individual is an instance
of a class and then more information will be added to the model, it can not happen, that this
knowledge is wrong. It is clearly the opposite of the closed world assumption. Furthermore,
OWL does not include the unique name assumption. Individuals represent objects in a domain.
If the unique name assumption does not apply, this means that an individual by two or more
different names can be referred. This further means that two individuals may be the same until
they are explicitly defined as not equal. OWL adds the possibility to extend some DL axioms
(TBox, ABox) to RDF and defines a rewriting how to express such DL axioms in RDF. OWL
also supplies the possibility to add some DL statements to an ontology. OWL DL is based on
the description logic SHIF(D) and SHOIN (D) [Horrocks et al., 2003]. Ian Horrocks et al.
defined SHOIN as

“most expressive means that one could reasonably expect from the logical basis
of an ontology language, and to constitute a good compromise between expressive
power and computational complexity/practicability of reasoning” [Horrocks et al.,
2006].

The whole semantics of OWL are defined in terms of its RDF reading (OWL Full seman-
tics), and in terms of its description logic reading (OWL Lite and OWL DL) [Patel-Schneider
et al., 2004]. Both, RDF Schema and OWL ontologies are RDF graphs themselves. OWL and
RDF Schema provide more or less a RDF vocabulary to describe RDF vocabularies. To express
unique relationships, something more than the RDF Schema vocabulary is needed. This is of-
fered by an uniquely identifying property: owl:InverseFunctionalProperty. OWL is
again an RDF vocabulary, extending RDF(S), with fixed semantics that adds more expressivity
on top of RDF Schema. OWL can be divided into three sub-languages, whereas the expressive-
ness increases beginning with OWL Lite to OWL DL and OWL Full. Using OWL Lite allows

28

the modeling of a classification hierarchy and simple constraints with cardinality 0 to 1. OWL
DL provides maximum expressiveness for complete processability and decidability. All OWL
language constructs can be used under certain conditions. It also requires a type discrimination,
as a class can not be a property of an individual or simultaneously. Furthermore, properties may
be either object or data related. OWL Full provides the greatest expressive power, but does not
guarantee the process-ability. This means that not all conclusions can be drawn. The three ba-
sic elements of the model are axioms, entities, and expressions. Axioms are statements within
the ontology, while entities are elements which are used to reference objects in the real world.
Expression are combinations of entities in order to achieve a higher complexity [Hitzler et al.,
2012].

In this section, classes, properties and individuals are explained. Further, the modeling with
these elements will be described. Classes are generally used to group individuals with the same
properties. An individual is an instance of a class. Membership in a group is not exclusive,
meaning that an individual may also occur in several classes. The following conditions represent
a class and an individual of this class:

:MeteorologicalData a owl:Class ;
:rdfs:subClassOf owl:Thing .

The classes owl:Thing and owl:Nothing are predefined. Classes may also be a special-
ization of other classes. This means that a specialized class can be assigned to a general one.

:Wind :rdfs:subClassOf ::MeteorologicalData .

A reasoner can infer that each type of :Wind is a :MeteorologicalData with the axiom
shown in figure 2.1. Individuals can be members of multiple classes. Sometimes it is desirable
that there is an exclusive member. This is for instance the case when classes are incompatible
such as :Wind and :Temperature. The class :MeteorologicalData is a disjoint class.
Defining as a disjoint classes ensures that an individual can not simultaneously be assigned to
two classes. If there are individuals who are members in two disjoint classes, the knowledge
base is inconsistent:

:Wind owl:disjointWith :MeteorologicalData .

Object properties can describe relationships between individuals. Each object can have a prop-
erty domain and range. The characteristics of object properties can be functional, inverse func-
tional, symmetric, and transitive. A functional property specifies that a maximum of one indi-
vidual can be linked through this property with another individual. With the information about
the relationships between two individuals, conclusions can be made on the individuals. Through
object properties individuals of a range can be associated to individuals of a domain. The do-
main allows an assignment of types to subjects, which occur together with a specific predicate
in the triple. OWL does not make the assumption that two individuals are different just on the
basis of their relationship. Whether it is equal or inequal must be defined as there is no ‘unique
name assumption in OWL.

Individuals can be described on the base of their class affiliation and/or the relationship with
other individuals. Individuals may, however, be described more specifically by their associated

29

properties, such as, for example, :WindSpeed or :AirPressure. The scope and range
of values can also be assigned to properties of data types. :AirPressure has an integer
value operatively associated with the type of :MeteorologicalData. To express greater
complexity, OWL provides the construct of a complex class. To combine atomic classes logical
expressions such as averages, union and complement can be used. The expressions
and, or are used in Protégé to define union or average. A main functionality of OWL
is the ability to define owl:Restriction. Using this mechanism via OWL, values could be
restricted for certain properties. For example the restrictions described in figure 2.4 can be used
to model the tricky situation. owl:allValuesFrom is another OWL restriction from that
all values for a specified property must come. Figure 2.5 defines restriction for a set of content
types via :allValuesFrom that only use bitmaps. Then it has to be declared that any weather
picture accomplish this condition through the rdfs:subClassOf:

:WeatherPicture rdfs:subClassOf
[a owl:Restriction ;

owl:onProperty :has ;
owl:allValuesFrom :SatellitePicture] .

:WeatherData :ContentType

:SatellitePicture

:Bitmap

:UTF

:has

:WeatherShort

:WeatherLong

:WeatherPicture

:supports_

all_Pictures

rdf:type rdf:type

rdf:typerdf:type

rdfs:subClassOf

has

has

owl:onProperty
rdfs:subClassOf

Figure 2.5: OWL enriched example.

In assumption :WeatherLong a :WeatherPicture. and :WeatherLong :has
:Bitmap. it is possible to conclude that:

:WeatherLong a [a owl:Restriction ;
owl:onProperty :has ;
owl:allValuesFrom :SatellitePicture] .

30

:Bitmap a :SatellitePicture .

Now WeatherShort is independent of WeatherPicture, so there is no relationship that
could assume WeatherShort has a type of picture, it is just contains text in UTF format. To be
correct all RDF(S) classes defined before should now be OWL classes (e.g. :WeatherData a
owl:Class). OWL 1.1 was established in 2007 to extend ones more the expressiveness [Patel-
Schneider et al., 2008]. But OWL 1.1 was only a sub step to the further development which
ended up in OWL 2.

2.4.1.4 Web Ontology Language 2

In October 2009 the W3C published a recommendation called OWL 2 [Motik et al., 2009b], [Hit-
zler et al., 2012]. The new extensions are based on the experience made with OWL and to solve
problems which occur with OWL. OWL 2 obtains additional expressiveness through innova-
tive ontological axioms. It also contains non-logical expansions such as a changed syntax, new
data types and declaration, a function to comment and easier ontology import. Figure 2.6 gives
an overview about the OWL 2 class hierarchy with no claim to completeness. It shows the
RDF(S) basis, for example that the OWL Property is an extension to the RDF Property. The
description logic behind OWL 2 is called SROIQ [Horrocks et al., 2006], which is a contin-
uation of SHOIN [Horrocks et al., 2003]. SROIQ was extended to solve the lack of some
main problems with SHOIN . For example SHOIN only supports simple number restric-
tions, e.g. WeatherData u ≥ 3 ContentTypes specifies all classes of weather data with
three or more types of content. Instead, SROIQ supports qualified number restrictions like
WeatherData u ≥ 3 ContentTypes.(Bitmap t UTF), which implies a class of weather
data with three or more types of content that are in the format bitmap or UTF. Nevertheless
SROIQ is still decidable [Grau et al., 2008]. Ontology tools like Protégé and semantic rea-

rdf:Resource

rdfs:Classrdf:Property

owl:Classowl:Property

owl:AnnotationProperty

owl:ObjectProperty

owl:DatatypeProperty

owl:unionOf

owl:intersectionOfowl:Restriction

owl:Thingrdfs:Literal

rdfs:Datatype

owl:Ontology

Figure 2.6: OWL 2 class hierarchy.

31

soners such as FaCT++ [Tsarkov and Horrocks, 2006] or Pellet [Sirin et al., 2007] are in the
meantime adapted to support the ontology development process with OWL 2.

2.4.1.5 Semantic Web Rule Language

The aim of the Semantic Web Rule Language (SWRL) is to facilitate the interchangeability of
rules and their processing through various rule engines [O’Connor et al., 2005]. This brings
benefits for business processes such as work-flow management, diagnostic investigations and
compliance monitoring. These business processes are already supported by rule-based systems,
whereas the rules are limited in their interchangeability. SWRL is designed as control and ex-
change language for the Semantic Web and has the status of a W3C submission. It combines
concepts of OWL with Datalog. SWRL rules can be used to derive new knowledge from an
OWL ontology. The rules are stored in an OWL knowledge base and can access OWL indi-
viduals, classes, properties and literals and are thus compatible with OWL. The specification
of SWRL does not pretend who the conclusions should be performed by the reasoner. This de-
pends on the implementation of the reasoners or the rule engine used. The so-called SWRLTab, a
SWRL editor, which is integrated in Protégé can be used to edited SWRL rules with Protégé. In
addition, SWRL tab accesses via the Protégé SWRL Application Programming Interface (API)
the ontology and can extend the derived knowledge. The API can also be used by plug-in de-
velopers. Furthermore, SWRL tab provides a way to integrate a rule engine for executing the
rules with the built-in SWRL Factory. In this case, the Jess rules engine is used2. Thus, Protégé
can expand with SWRL Tab and Jess to enable rule-based reasoning of the ontology. However,
SWRL Tab is not the only way to exchange SWRL rules, as rules can be saved as .owl file
to import and process them. When using SWRL, it is important to note that, like OWL, the
open world assumption is in place. Therefore no weak negation (negation as failure) is sup-
ported. Like many other rule languages, SWRL consists of an antecedent and a consequence.
The two parts of the rule are called body (antecedent) and head (consequence). There is cur-
rently no way to create complex constructs except the combination of atoms. A rule is true if the
queried antecedent, or precondition returns true. Therefore it is necessary that all the atoms of
the precondition are true. If the condition is true, the consequence is true. The components of a
rule, called atoms, can either be restricted classes, individuals, object properties, data properties,
built-ins or data-types. A class atom consists of an OWL class with an argument. The argument
can either be a variable or an OWL individual. A variable name must begin with a question
mark. The following class assignment specifies that all individuals of the class :Wind are also
within the class :MeteorologicalData.

Wind(?n) → MeteorologicalData(?n)

If a class atom is used in the rule body, it determines whether the variable or the individual
is a member of the class. The classes atom only returns true if the variable is a individual of
the class. If the class atom occurs in the head of the rule, an allocation of the variable or the
individual to the class takes place. It should be noted that each variable which occurs in the

2http://herzberg.ca.sandia.gov, accessed: 2016-11-27

32

body must also occur in the rule head, as it will be attached in the rule body. An object prop-
erty atom consists of the OWL ObjectProperty and two arguments which represent either
a variable or an individual. Data Property atoms consist of the OWL DataProperty and two
arguments, the first of which is an individual or a variable, and the second is a (variable) data
value. The following example shows portion of a rule, where the value of the data properties
hasValidTime is bound to the variable ?vFrom. The data type is a DateTime in this case.
For SQWRL queries, string values may be relevant, these can be represented with double quotes.

MeteorologicalData(?n) ∧ hasValidTime(?n, ?vt) ∧ ValidTime(?vt)
∧ validFrom(?vt, ?vFrom)

Since SWRL does not support the unique name assumption, it offers use of the atom differentFrom
to specify that the selected individuals are different. In contrast, one can establish with sameAs
that there are two equal individuals. SWRL also supports so-called built-ins that further enhance
the expressiveness of the language. The number of arguments is not limited to two but supports
a plurality, or an optional number of arguments depending on the selected built-in. Firstly, there
are the core built-ins which are also part of the W3C submission. There are also built-ins which
can be developed custom wise. Core built-ins provide, for example, functions for manipulating
strings, to perform comparisons and mathematical tasks. Since the W3C submission more built-
ins were published in the scientific field. [O’Connor and Das, 2011] developed a library that
provides the possibility of temporal comparison. It offers the ability to calculate the duration
between two points in time in a desired granularity.

MeteorologicalData(?n) ∧ hasValidTime(?n, ?vt) ∧ ValidTime(?vt)
∧ validFrom(?vt, ?vFrom)

2.4.1.6 Semantic Query – Enhanced Web Rule Language

Semantic Query Enhanced Web Rule Language (SQWRL) allows the possibility to retrieve
information from existing ontologies which are defined in OWL [O’Connor and Das, 2008].
SQWRL is built on the top of SWRL and so gain the advantages and characteristics of the
SWRL rule language. These advantages are distinguished by the consistency, readability and
semantics. Furthermore, SQWRL provides various functionalities to deal with the already de-
scribed open world assumption. However this query language also has some limitations, which
will be discussed here briefly. According to wiki of Protégé it is not possible to use the results
of SQWRL for further ontology development. In other words such a mechanism could affect
OWL’s open world assumption and lead to a non-monotonic knowledge base. A SQWRL query
basically consists of two distinctive parts. The left part of a query consists of a SWRL body,
which restricts the query area in advance. Through rules, a certain part of the ontology can be
selected, on which queries can be executed. In addition variables are bound, which can be re-
peatedly used in a query. Furthermore, all available SWRL or SQWRL built-ins can be used.
The right part of a query reflects the actual query operation. It specifies which variables are
selected, or how to sort or group them. Basically, there are two different groups of operators.
On the one hand there are core operators and on the other hand there are collection operators.

33

Core operators allow rather simple queries like selection, counting, aggregation, grouping, and
sorting. If these operators are not sufficient, you can use the collection operators. These support
for negation, disjunction and advanced concepts of grouping and aggregation. The selection
operator is used to query and output objects of a certain ontology. It should be noted that this
operator can only access variables that are already bound. This operator returns results as a table
in which the queried variables form the columns of a table. In the following example, all types
of wind are selected, which are defined in the ontology.

Wind(?a) → sqwrl:select(?a)

To specify an additional variable as a parameter, first an additional variable must be bound by
the rules. For this, the query is restricted to all kinds of wind which have a specified wind type.

Wind(?a) ∧ WindType(?at) ∧ hasWindType(?a, ?at) →
sqwrl:select(?a, ?at)

With class descriptions it is possible to interrogate individuals who meet certain properties with-
out knowing these individuals in advance. This could be useful to retrieve all types of wind,
which have a certain wind speed.

(WindSpeed ≥ 20) → hasWindType(?at)

It is possible to use already existing SWRL statements in a SQWRL. This may contribute sig-
nificantly to structure and readability of the rules and queries. The makeSet operator provides
the basis to convert an open world assumption into a closed world one. This operator creates a
set, and can insert various individuals in this set. All individuals in a set represent a closed world.

sqwrl:makeset(<set>, <element>)

The first argument is a variable that refers to the newly created set, the second argument repre-
sents the individuals added to this set. It should be noted that with respect to a set only built-ins
are available that have the name-space sqwrl. The following example shows how such a set
can be applied. All kinds of wind are added to a set, and then printed out:

Aircraft(?a) ◦ sqwrl:makeSet(?s1, ?a) ◦ sqwrl:size(?size, ?s1) →
sqwrl:select(?size)

To check the status of a set of individuals (e.g. all kinds of wind from a set) the operator
element can be used. Negation as failure assumes that everything that can not be proven is
invalid. This approach encapsulates the open world assumption. With this construct, it is now
possible to retrieve all wind types that have not occurred. Because this operator is, as the name
suggests, the difference between two sets, and supplies all the individuals which occur in the
first set, but not in the second set:

34

Sqwrl:difference(<set>, <set>, <set>)

The first argument reflects the set in which the result is stored. The second argument is the
set which contains this value, whereas the third argument includes the set which does not re-
flect this value. It is important that the second argument contains the values to remain after the
negation. The third argument will contain the values that are to be deducted from the second
argument. This sequence must be followed, as it may lead to unintended results otherwise. Since
SWRL only supports the conjunction, it is obvious, that the insertion of the set operator , now
supports the disjunction . This operator returns as a result of a union of two sets:

Sqwrl:union(<set>, <set>, <set>)

Last but not least the operator groupBy can now be explicitly applied in a set, and provides a
wider range of applications and also contributes to the clarity and readability of queries.

2.4.1.7 SPARQL Protocol and RDF Query Language

SPARQL Protocol and RDF Query Language (SPARQL) is a standardized RDF query language
based on graph pattern matching. In the beginning of 2008 SPARQL became an official W3C
Recommendation [Prud’hommeaux and Seaborne, 2008]. Version 1.1 was released in 2013 by
the W3C [Harris et al., 2013]. It could accomplish the dream of the Semantic Web to utilize it as
a big data, where unambiguous queries could be made around the globe. With the use of an URI
every identifier in SPARQL is unique. A merge of several graphs can be queried at once and a
data set can also be implicit, depending on the implementation. One of the interesting features
of SPARQL is that a query may retrieve data from different sources with the GRAPH statement.
The formal semantics of SPARQL is over all based on simple entailment which means that
there are no special interpretations of the RDF(S) vocabulary except some extensions. But there
are also peculiarities in SPARQL’s semantics such as multi set semantics, joins over unbound
variables, etc [Prud’hommeaux and Seaborne, 2008]. The semantic itself is specified as an op-
erational way based on [Pérez et al., 2006], which first defined a relational algebra for SPARQL.
The basic framework of SPARQL has three query parts with different query statements which
take advantage of the solutions from pattern matching to form result sets as shown in table 2.1.
The prologue contains the PREFIX, while the head embraces either the CONSTRUCT, ASK or
SELECT statement. For example, the SELECT statement returns all, or a subset of the vari-
ables bound in a query pattern match. ASK queries are so called yes or no queries without
explicit output. With the CONSTRUCT statement an RDF graph is returned on the basis by sub-
stituting variables in a set of triple templates. The graph patterns at the WHERE part allow all
Turtle shortcuts [Angles and Gutierrez, 2008]. Different patterns can be expressed by following
functions: FILTER, UNION, OPTIONAL, GRAPH, NOT EXISTS. OPTIONAL allows partial
variable bindings in the solutions. The negated bound() function in the FILTER allows to
suppress unbound values. Extensions of SPARQL such as update statements (e.g. DELETE,
INSERT, etc.) and aggregate functions (e.g. MIN, MAX, SUM, AVG, etc.) have been introduced
by the W3C with the introduction of SPARQL 1.1 [Harris et al., 2013]. SPARQL is a language

35

Prologue PREFIX foo: <namespace-URI>

Head CONSTRUCT { template }

 SELECT variable list

 ASK

Body FROM <dataset-URI>

 FROM NAMED <dataset-URI>

 WHERE { query pattern }

 ORDER BY expression

 LIMIT integer > 0

 OFFSET integer > 0

Table 2.1: SPARQL - a standardized query language.

to query information from RDF. Since OWL builds on RDF, it is obvious that OWL can be con-
verted into RDF. This had several disadvantages as due to the necessary conversion from OWL
to RDF the knowledge of what is behind the individual constructs, which were defined in OWL,
is lost. Also, SPARQL can only query on this data base, but can no longer connect to this lost
knowledge. Another problem was the lack of standardized conversion. Different tools produce
different RDF data while the converted OWL ontology remains the same. This finally led to
different query results. To circumvent these problems, it is of advantage that the query language
used can deal directly with OWL ontologies. Besides SQWRL (cf. subsection 2.4.1.6) there
are languages such as OWL-QLand ASK 2.0 DL interface which satisfy these properties. Ac-
cording to [O’Connor and Das, 2008] there neither exists a useful implementation of OWL-QL,
nor does the DL Implementation Group’s (DIG) ASK Protocol represent a language that is as
expressive to define queries based on OWL ontologies. With the introduction of SPARQL 1.1
this changed, as it does include OWL entailment regimes (cf. [Glimm et al., 2013]). [Horridge
and Musen, 2016] presented a plug-in for Protégé which uses the entailment regime to query
OWL ontologies.

36

2.4.2 Ontology Editors

Not only the comparison between different languages is important, also the right choice of the
editor, plug-ins and extensions around a language is a significant task to be accomplished. In
general one can divide between two kinds of ontology related tools. Ones for the develop-
ment process and others for the productive use like reasoner or alignment tools. To the purpose
that the open source community pushed the ontology development in the last years a growing
number of free and open source ontology-engineering environments have been developed to
support the needs of Semantic Web. They provide support for each different ontology life cy-
cle step and most of them offer a component-based design to extent more functionality to the
basic environment. Import and export opportunities often allow language independent use of
ontology-models. For instance FlexViz3 is a Flex-based application for ontology modeling with
great potential. Of course some of those tools and frameworks deserve a closer look. Table 2.2
indicates a comparison between those editors.

Protege 3 Protege 5 Jena Framework OntoStudio NeOn Toolkit TopBraid Composer Altova SemanticWorks

Version 3.5 5.1.0 3.1.1 3.2.0 - Build 353 2.5.2 5.2 2012

Platform Java Java Eclipse Eclipse Eclipse .NET

Plug-ins ++ ++ ~ + + + no

API Protege-OWL OWL RDF, OWL NeOn API (OWL) OWL, F-Logic Jena API (RDF, OWL) ?

SPARQL yes yes yes yes Plugin yes no

yes yes no yes yes yes no

OBDA plugin (JDBC)

Form, Text

EU-funded project

14 partners

Eclipse Public

License (EPL)

OWL 2,

F-Logic

OWL 2,

F-Logic

reasoner plugin

User Interface

Multi User Support

Reasoner

T
o

o
l

Policy

Import

ExportL
a

n
g

u
g

e

Developer

Database Storage

A comparison of ontology development tools

Mozilla Public

License (MPL)

Mozilla Public

License (MPL)

Apache License

2.0
Commercial

Ontoprise TopBraid Altova

RDF, RDF(S),

OWL
OWL 2 RDF(S), N3, OWL

University of

Manchester,

Stanford University

University of

Manchester,

Stanford University
Apache

F-Logic, RDF(S), OWL,

OXML, UML 2.0, Database

Schema, Excel

RDF, RDF(S),

OWL

OWL 2,

RDF/XML,

Turtle, OBO

RDF(S), N3, OWL,

Turtle

 through HTTP

DIG interface

FaCT++,

Pellet, other

 internal reasoners,

Pellet
built-in semantic reasoner

Commercial Commercial

Pellet

RDF, RDF(S), OWL,

RDF/XML, N-Triples

RDF, RDF(S), OWL,

RDF/XML, N-Triples

embedded reasoning

RDF(S), N3, OWL, XML,

UML, Database Schema

RDF(S), N3, OWL
F-Logic, RDF(S),

OWL, OXML

Jena, AllegroGraph, Oracle,

Sesame
FilesFiles, JDBC yes JDBC

MS SQL Server,

JDBC

Form, Text , (UML-like) Graph Form, Text , GraphForm, Text Form, Text Form, Text Form

Table 2.2: Comparison of ontology editors.

2.4.2.1 Protégé

A well-known and most widely used open source ontology development tool is Protégé4. Pro-
tégé is based on Java and uses Swing for its user interface. The project was started at Stanford
University in cooperation with the University of Manchester. Comparable to the IDE Eclipse,
the open source community provides Protégé plug-ins, which range from visualization to map-
ping tools, to expand its capabilities. The plug-in library is one of Protégé’s powerful features.
It shows an ontology as a mind map. For example the OwlViz plug-in is a mapping visualization
designed for Protégé. Version 3.5 of Protégé allows ontology modeling via the Protégé-Frames
or the Protégé-OWL editors. The Frames editor has not been migrated into Protégé 4.3 yet. The

3http://sourceforge.net/projects/flexviz/, accessed: 2016-11-14
4http://protege.stanford.edu, accessed: 2016-11-14

37

main distinction of both versions is on the one hand the support of 3.5 of OWL and RDF(S)
including OWL Lite, DL and FULL and on the other hand that 4.3 uses OWL 2. Users and de-
velopers, who still have the need to access RDF or require a particular tool which is not already
ported, have to fall back to 3.5, others should give 4.3, or the fresh released 5.1.0 a try. There is
also a web-based editor called WebProtégé to simplify the collaborative ontology development.
Protégé can be extended by a set of plug-ins in order to allow the export of the data stored in an
ontology. The following sections list some of these plug-ins and show their export capabilities.

SWRLTab is an extension5 for Protégé to create, edit and read SWRL rules. It supports, with
a few exceptions, all OWL expressions. With the tool it is possible to access directly to the
OWL classes, properties and individuals. The tight integration of the OWL knowledge database
allows to perform syntactic and semantic checks already during the input of rules with the SWRL
editor. It ensures that all references to OWL entities are valid, and that all variables occurring in
the rule head also occur in the rule body. If an error is present, the input box is grayed out and
an error message appears. It is impossible to store faulty rules. The development process of rule
creation also allows the ability to activate certain rules or disable them. In the ontology itself the
SWRL rules are stored as OWL individuals. The “Hidden Display Frames” option in the Protégé
project options allows to view the classes and the associated SWRL rules. The class swrl:Imp
contains the rules whereas the subclasses of swrl:Atom will allow to find the individual atoms
of the rules. To access the SWRL Editor with Java, the SWRL Factory API is provided. This
makes it possible to create rules within a Java program. Also the SWRLTab itself uses the SWRL
Factory API to create rules. To execute the rules, and produce conclusions the SWRLTab alone is
insufficient. However, a rule engine can be integrated which then performs these tasks. There are
many rule engines that work very well with Java. As discussed further the Jess rule engine has
been selected. Version 3.5 of Protégé for example, permits the possibility to use Drools. With
the installation of Jess, SWRLJessTab and SQWRLQueryTab are automatically activated. These
two tools are plug-ins for the SWRLTab and are already included in the Protégé installation. It
is important that SQWRL queries can use the derived knowledge of SWRL rules. Consequently,
using SQWRLQueryTab is sufficient for the needs of an Ontology-Based Software Development
Life-Cycle.

The SWRLTab just supports version 3 of Protégé, version 4 is not supported but there is a
Protégé 5-based version. And there is an editor within Protégé 4 which is able to create and edit
SWRL rules but the editor is not as mature as SWRLTab and does not offer the possibility to
integrate a rule engine. On the other hand the editor allows the possibility that the used reasoner
can derive results through the SWRL rules. The main argument against the Protégé 4 editor is
that SQWRL queries are not supported. With the built-in Bridge of SWRLTab own built-ins for
SWRL can be created using Java. Following procedure is needed to create a built-in:

5http://protegewiki.stanford.edu/wiki/SWRLTab, accessed: 2016-11-27

38

1. OWL Generation At the beginning it is necessary to create an ontology for the desired
built-ins. Therefore a predicate name or the Java method name has to be defined as an
individual in the class swrl:BuiltIn. Usually built-ins which belong together are
defined in a set.

2. Built-In Creation in Java The actual implementation of the built-in is achieved using
Java. It should be noted that the package name should consist of a qualifier and the Java
package name edu.stanford.smi.protege.owl.swrl.bridge.builtins.
The dynamic loading and execution process of the built-in Bridge demands that the class
in which the built-ins are defined, is derived from AbstractSWRLBuiltInLibrary.

3. Deployment of a Java ARchive (JAR) Before a built-in can be used it must be provided
as a JAR file in Protégé plug-in folder. Protégé then automatically loads the added class
and runs the selected as needed.

4. Import OWL ontology To use the new built-ins, the OWL ontology with the built-in
OWL individuals must be imported in the desired project. After that it can be accessed
via the qualifier in the SWRLTab.

Self-developed built-ins can handle multiple parameters. Anyway, they must return either
true or false. The return value indicates whether the predicate is satisfied. In addition, there
is the possibility of binding values to a parameter to use them in a SWRL rule. Thus, calcu-
lated values from a rule can be returned by parameter binding. The parameters are passed in a
list of BuiltInArgument objects. The most common types are IndividualArgument,
DataValueArgument, ClassArgument and PropertyArgument. For individuals,
classes and properties, only the appropriate name is handed over. Please note that only indi-
vidual and data value arguments are permitted in OWL DL. The transfer of a class or property
argument is only allowed in OWL Full ontologies.

SQWRLQueryTab can define, edit and execute queries in Protégé. Already defined SWRL
rules can be enabled or disabled and have a direct effect on the queries. Creating queries is
supported by a graphical editor that makes it easier to access SWRL and SQWRL built-ins, and
offers the ability to perform syntax checks. The results of the queries are clearly displayed in
tabular form. The SQWRLQueryTab, in the version 3 of Protégé uses the Jess rule engine to
run queries. Furthermore, it is possible to execute queries using the SQWRLQuery API in Java
programs.

Snap-SPARQL was introduced by [Horridge and Musen, 2016] and has been implemented
as a side project of Protégé. It is open source and available via github6 and supports Protégé
5. With SPARQL 1.1 comes a specification of entailment regimes that includes OWL ontology
support. Combined with a reasoner (cf. subsection 2.4.3) the Java framework offers a GUI for
processing SPARQL 1.1 queries and the asserted reasoner is constantly improved and supports

6https://github.com/protegeproject/snap-sparql-query, accessed: 2016-11-27

39

OWL API 4.1.3. But there are some features that are not supported by Snap-SPARQL. For ex-
ample property path expressions or SPARQL Update are not supported. While the
property path expressions seems not a big deal when it comes to OWL the Update
function to add and remove axioms to an OWL ontology would make sense. Also complex OWL
class expressions are not supported.

2.4.2.2 Jena Semantic Web Framework

Jena is a Java-based framework for building ontologies and was initialized by the HP Labs
Semantic Web Program7 and lies now in the Hands of the Apache Software Foundation and
offers good support. The open source environment provides a RDF and OWL API to read
and write RDF, RDF(S) and OWL in RDF/XML, N3 and N-Triples. A model can also be
queried through SPARQL. Developers have the ability to exploit Jena through plug-ins arbitrary.
Through the inference API various reasoners can be accessed in Jena.

2.4.2.3 OntoStudio

OntoStudio8 is a commercial engineering environment based on the NeOn toolkit. Therefore
OntoStudio has a modular design with a rich set of features that can be easily extended. It
was originally developed for F-Logic but it now supports import and export of OWL, RDF and
XML. OntoStudio includes a patented evaluator to implement rules during the modeling process
and provides the ability to query via SPARQL or F-Logic queries. Execution and testing can be
done through its embedded reasoning capabilities. OntoStudio also supplies a tool for testing and
debugging entire ontologies. The internal ObjectLogic is based on F -logic and allows a much
more compact representation of rules than Datalog and the model of object structures. Benefits
are a direct import of UML and Oracle, export of rules with the Rule Interchange Format (RIF)
and support of existing modeling-tool. Again, there is the possibility to define appropriate built-
ins, with the difference that one can model directly and without detours complex objects and
defined rules and closed world must not be simulated with open world languages. More difficult
is the formation of conceptual hierarchies (subsumption reasoning). Therefore a transformation
in OWL would be necessary.

2.4.2.4 NeOn project

The NeOn project9 was co-funded by the European Commission’s Sixth Framework Program
with 14 European partners involved. It started in the beginning of 2006 and had a duration of
4 years. Like Protégé it is an open source ontology engineering environment which supports
the whole life-cycle process. NeOn toolkit inherits an open and modular architecture from its
underlying platform, the Eclipse IDE. The NeOn toolkit provides an extensive set of plug-ins for
visualization, matching, reasoning, reuse, etc. The core installation set provides basic ontology
functionality such as editing, browsing, ontology and project management. Similar to Protégé

7http://jena.apache.org/ accessed: 2016-11-27
8http://www.semafora-systems.com/en/products/ontostudio/ accessed: 2016-11-27
9http://www.neon-project.org/, accessed: 2016-11-27

40

4.3 the NeOn toolkit is build on-top of the OWL API, de facto standard for implementing OWL
based application. As a result the newest ontology language OWL 2 is supported by the NeOn
toolkit.

2.4.2.5 TopBraid Composer

TopBraid Composer10 is a commercial visual modeling environment built on top of Jena dis-
cussed above and is a component of the TopBraid Suite. TopBraid Composer is built as an
Eclipse plug-in based on the Eclipse 3.6 platform and was designed for RDF Schema, OWL
and SWRL. It accompanies the developer as a multi-user modeling tool during the creation and
maintenance process of ontologies. SPARQL queries and rules are supported as well as scalable
database back-ends like Jena, Oracle, AllegroGraph or Sesame. Through its component-based
design TopBraid Composer provides extension points to integrate third-party Java components.
There is also a free version available with limited features. Finally, TopBraid Composer includes
the Pellet reasoner, which was developed at the University of Maryland. Additional features are
consistency checking, data source mapping, geography and location mapping.

2.4.2.6 Altova SemanticWorks

Another commercial tool is Altova SemanticWorks 201211 for ontology editing and creation. Se-
manticWorks supports visual document creation with RDF, RDF(S) and all three OWL dialects
(Lite, Full, & DL). Syntax and semantic consistency checking is instantaneous. It automatically
generates RDF/XML or N-Triples for export.

2.4.3 Semantic Reasoner

One aim of the semantic Web is to offer machine readable meta-data. Ontologies expressed by
W3C’s OWL improved this in the engineering field of the semantic Web [Motik et al., 2009b].
One key role of an ontology is the possibility to be processed by a reasoning system. To ex-
ploit such knowledge bases, semantic reasoning is essential as part of the ontology environ-
ment. The fact that relationships in OWL or OWL 2 are formal defined, offers the possibility
to use a reasoner [Tsarkov and Horrocks, 2006]. One main service that such reasoning sys-
tem can determine, is to test whether or not one class is a subclass of another class such as
in table 2.3. :MeteorologicalData has the subclass :Wind, this relationship is called a
necessary implication. Because :Storm is some sort of :Wind, and all types of :Wind are
:MeteorologicalData, then a :Storm is also a type of :MeteorologicalData. A
reasoner can conclude that the class of wind is a valid subclass of meteorological data, and that
it contains at least one member. Such a test allows a reasoner to compute the ontology’s in-
ferred class hierarchy and could discover if a given class has any instances. If it cannot have any
instances you can properly conclude that a class is inconsistent. Protégé 4.3 enables the oppor-
tunity to take advantage of different OWL 2 reasoners as a plug-in. This all sounds great, but
often semantic reasoners are incomplete in order to reach the required scalability, which means

10http://www.topquadrant.com/resources/products/docs/TBC-Getting-Started-Guide52.pdf, accessed: 2016-11-27
11http://www.altova.com/documents/SemanticWorks.pdf, accessed: 2016-11-14

41

that they could not guarantee to provide only valid output. An excellent insight provides a paper
from Giorgos Stoilos et.al. [Stoilos et al., 2010] published at the Oxford University Computing
Laboratory. This subsection compares and describes the capabilities of some state-of-the-art
reasoners, which support OWL and OWL 2 (cf. table 2.3).

Affiliation Version License API Expressiveness Semantics Rule Support Conformance

R
e

a
s
o

n
e

r

SWRL

SWRL, not full

SWRL full

not full

except keys and

some datatypes

fullSROIQ(D)

SROIQ(D)

SHIQ(D-)

SROIQ(D) direct

direct

direct

direct

fullOntotext AD

OWLAPI,

DIG, JENA

-

OWLIM

LGPL

commercial, time-

limited for education

LGPL OWLAPI 3.0

OWLAPI,

DIG, JENA

OWLAPI,

DIG
1.6.2

pre-release

2.0

1.3.8

3.3 LPGL, commercial

Pellet

FaCT++

RacerPro

HermiT
University of

Oxford

Clark & Parsia LLC 2.3.1 AGPL

University of

Manchester

Racer Systems

GmbH&Co.KG

SAIL OWL 2 RL RDF-based TRREE

Table 2.3: A comparison of semantic reasoning systems.

2.4.3.1 Pellet

Pellet is an open source, OWL 2 reasoning system written in Java. Original it was developed
inside the MINDSWAP group at the University of Maryland, Institute for Advanced Computer
Studies. Pellet is now commercial handled by Clark and Parsia LLC. The dual licensing model
of Pellet allows using it for open source applications under the terms of the GNU’s Not Unix!
(GNU) Affero General Public License (AGPL) version 3. For commercial usage it is recom-
mended to get in contact with Clark and Parsia. In the beginning of August 2011 the release
of Pellet 2.3.1 was announced and also the Pellet reasoner plug-in for Protégé 4.3 was updated.
Pellet can be used directly via the Pellet interface in Jena. Based on the tableau decision pro-
cedure, which was developed for DL and Expression Language (EL), Pellet supports reasoning
with the full expressiveness of the description logic SHOIN and SROIQ in order to support
the OWL 2 specification. It implements procedures for general ABoxes and TBoxes. The terms
Assertion Box (ABox) and Terminological Box (TBox) in context with DL are used to describe
two different types of statements in ontologies. TBox statements describe concept hierarchies,
for example, relations between concepts. An ABox, as compliant to a TBox, represents the
statements about relations between individuals and concepts. Pellet also incorporates various
optimization techniques described in the DL literature and contains several novel optimizations
for nominal, conjunctive query answering and incremental reasoning [Sirin et al., 2007].

2.4.3.2 FaCT++

FaCT++ is an efficient, open source DL reasoner for SROIQ compatible with OWL DL and
OWL 2. It was initially developed within the WonderWeb project together with Ian Horrocks
[Tsarkov and Horrocks, 2006] and is now supported by the SEALIFE research project. It is
implemented using C++ and licensed under the GNU Lesser General Public License (LGPL).
Just as Pellet, FaCT++ implements optimized tableaux algorithms for ABoxes and TBoxes. One

42

functionality of the tableaux calculus is, to check the consistency of an ontology. According to
W3C’s definition of OWL’s semantic, a collection of ontologies

“[...] is consistent with respect to data type map D if there is some interpretation
I with respect to D such that I satisfies each ontology and axiom and fact in the
collection” [Patel-Schneider et al., 2004].

FaCT++ can be used as back-end reasoner with the OWL API or as standalone via the DIG
interface. As Protégé 3 uses DIG and Protégé 4 the OWL API, both are supported. The latest
available version is 1.6.2, which was released in February 2013. Nevertheless OWL 2 is only
partially supported. No support for keys or partial data types, are some of the missing things.

2.4.3.3 RacerPro

RACER stands for Renamed ABox and Concept Expression Reasoner and was first introduced
in 1997 within a cooperation of the Concordia University Montreal and the Hamburg University
of Technology. RacerPro is the commercial derivative distributed by the Racer Systems GmbH
& Co. KG. In addition to the commercial license, there are also a trail and a discounted license
for time-limited educational purposes available. The current pre-release version 2.0 supports
OWL 2 and uses tableau algorithms as inference engine. OWL 2 is only supported on syntactic
level but is internally parsed as SHIQ . RacerPro implements ABoxes for instance data and
TBoxes to represent the knowledge axioms. It allows proving the consistency of these two
boxes individually, computation of the subsumption hierarchy, finding inconsistent concepts,
etc [Guohua et al., 2007]. As the kernel operates with SHIQ, new inventions of OWL 2 like
axiom anti-reflexivity are not supported for reasoning. RacerPro could be exploited via DIG to
use it with Protégé 3 and relies on the OWL API to use it with a RacerPro adapter for Protégé
4. RacerPro embraces an own semantic query language for knowledge reasoning called new
Racer Query Language (nRQL) [Haarslev et al., 2004]. Furthermore it offers the possible to
perform queries in SPARQL syntax, whereas it is internally mapped to nRQL rules. Plug-ins
allow extending RacerPro and with its own extension language called MiniLisp to define server
functions.

2.4.3.4 HermiT OWL Reasoner

HermiT is designed to process OWL and it offers the possibility to identify subsumption rela-
tionships between classes and determine whether an ontology is consistent or not. It is open
source software under the terms of the LGPL version 3 and distributed by the Free Software
Foundation. HermiT implements a novel hyper-tableau reasoning calculus for efficient reason-
ing, using the DL SROIQ with OWL 2 data type support. This approach allows free handling
with nominals in the presence of number restrictions and inverse roles. The most important
aspect is that the algorithm has much less non determinism than the previous tableaux algo-
rithms [Motik et al., 2007]. To reduce the size of the models which are constructed, they are
blocked anywhere. HermiT is pre-installed in Protégé 4.3 and the actual release is version 1.3.8,
which makes use of OWL API 3.4.3. The semantic itself is processed directly as well as all
conformance tests for OWL 2.

43

2.4.3.5 OWLIM

There are two different editions of OWLIM, SwiftOWLIM and BigOWLIM. They differ on
separate Triple Reasoning and Rule Entailment Engines (TRREE) and in terms of semantics,
SwiftOWLIM does not support OWL 2. The different TRREE implementations have impact
on performance and scalability [Kiryakov et al., 2005]. Both are not open source, however
SwiftOWLIM is free software under the LGPL version 2 and BigOWLIM requires a commercial
license which is distributed by Ontotext. An exception is the usage in scientific environments,
where the usage is free. The development of OWLIM is partly supported by the European
Union IST integrated project Semantic Knowledge Technologies and several other European re-
search programs like the European Union Sixth Framework Program. OWLIM is packaged with
Sesame and so benefits from the variety of supported query languages and ontology syntax (e.g.
SPARQL, N3, Turtle, etc). The native rule-entailment engine of BigOWLIM can be configured
through rule-set definitions. The rule-sets embrace RDF(S), OWL Lite and the OWL 2 RL pro-
file. An OWL 2 profile is a synonymous for an OWL sublanguage. To improve the efficiency of
reasoning, the W3C trimmed OWL 2 down to three different profiles with less expressiveness.
Each one of them is made for different purposes [Motik et al., 2009a]. OWL 2 RL focuses on
scalability instead of expressive power.

2.4.4 Visualization Tools

Visualization often deals with abstract data and offers a bundle of techniques to represent hier-
archical or semi-structured data. There are several numbers of studies where different ontology
visualization tools are compared [Catenazzi et al., 2009], [Lanzenberger et al., 2009a]. Consid-
ering the variety of methods and approaches to visualize ontologies, such tools can be separated
into two big groups. One category uses variations of simple lists, the other uses simple types of
visualizations like two-dimensional trees, node-links or even offers 3D information. The follow-
ing visualization tools are chosen to fit in that concept and therefore are compatible with Protégé
4.3 (cf. table 2.4).

Affiliation Version License Visualization Application

0.1.5 LPGL
Technical University in

Prague

tree, node Protégé 4.3

Protégé 4.2

Protégé 4.2

Protégé 4.2

comparison list
Protégé 4.1, NeOn

Toolkit, standalone

University Of Manchester,

CO-ODE Project
4.1.2 LGPL

Stanford University

Gdansk University of

Technology

University Of Manchester,

CO-ODE Project

-

LGPL

LGPL list, tag cloud

tree, node

tree, node

A comparison of visualization tools for protégé 4

Matrix
University Of Manchester,

CO-ODE Project
1.1.2 LPGL list, matrix Protégé 4.2

V
is

u
a
liz

a
ti
o
n

 T
o

o
ls

OWLViz

OntoGraf

SOVA

Cloud Views

OWLDiff

1.0.1

0.8.1

1.1.1

Table 2.4: A comparison of visualization tools.

44

2.4.4.1 OWLViz

OWLViz is a simple visual representation tool to view class hierarchies in an ontology and is one
of the further explained node-link and tree tools. OWLViz was established during the CO-ODE
project at the University Of Manchester. The visualization displays an ontology as a set of in-
terconnected nodes, which is sometimes disturbing, namely if the number of nodes is very high.
OWLViz hides role relationships, which is very useful. The color scheme is the native one from
Protégé, so it is easy to distinguish primitives and classes. Inconsistent concepts are highlighted
in red. A specific icon next to a class, signals if it is disjoint with the selected class. Particular
views can be saved as image files including jpeg, png and svg. OWLViz is bundled with Protégé
4.3 and is licensed under the LGPL. OWLViz uses the GraphViz algorithms delivered by AT&T,
and take advantage of the Batik SVG Toolkit from the Apache Software Foundation.

2.4.4.2 OntoGraf

OntoGraf was invented at the Stanford University and is in a very early development stage.
OntoGraf makes use of the visualization library from the Protégé 3 plug-in Jambalaya. OntoGraf
allows navigating through relationships of an OWL ontology. You can simple search or select
a term in the tree. Hovering of edges shows the relationships between the terms and they can
be explored through incremental expansion of the graph. Various layouts are supported and
OntoGraf also allows zooming. Relationships can be filtered in order to help reducing graph
complexity. For example you can narrow the focus by just showing the neighborhood of a term.
Within the spring layout, which is a force-directed non-deterministic layout, each expansion
re-orders the graph. OntoGraf can save a graph as a jpeg, gif, or png image.

2.4.4.3 OWLDiff

OWLdiff is one of the tools, which fall into the category of tools for list representation. The
objective for OWLdiff is to compare OWL 2 ontologies and provide merging functionality for
ontologies. It is developed under the LGPL at the Technical University in Prague. During
the ontology development process, OWLdiff might help to maintain the overview. Similar to
a versioning system OWLdiff provides abilities to compare changes and commit the resulting
file. In combination with the Pellet reasoner, OWLdiff can show two ontologies, which are
not semantically equivalent, in two separate trees. There are two algorithms in the background
representing dissimilarities between two ontologies. To find axiom modifications, which are not
visible in class hierarchies, OWLdiff uses a compare-exchange algorithm [Konev et al., 2008].
The second algorithm is much more trivial and finds simple added, missing, or changed axioms,
but cannot expose complex dependencies. OWLdiff is offered as a standalone application and
as plug-in for Protégé 4.3 and the NeON toolkit.

2.4.4.4 Simple Ontology Visualization API

SOVA stands for Simple Ontology Visualization API and is a brand new ontology visualization
tool, which is developed at the Gdansk University of Technology. It is licensed under the terms
of the LGPL and is made as a plug-in for Protégé. In this developmental stage, unfortunately

45

it is still an alpha version, some bugs appear. But the ability to show ontology elements like
(anonymous) classes, properties, individuals and relations between these objects, is useful.

2.4.4.5 Cloud Views

In contrast to the previous tools, Cloud View is not a standard visualization tool. It enables
Protégé to visualize an ontology as set of related tags with corresponding ratings, whereas the
importance of a tag is shown with its font size. This type of visualization is called tag cloud
[Seifert et al., 2008]. The weight of a tag is based on the class usage, depth in the hierarchy and
other criteria. The bigger the name, the higher is the rating. Cloud Views can easily filter out
low ranking entities. It is available under the license of LGPL as plug-in for Protégé 4.3.

2.4.4.6 Matrix

Just like OWLdiff, Matrix belongs to the category of list tools and was designed at the University
of Manchester within the CO-ODE project. It is available as plug-in for Protégé 4.3 under the
LGPL. Matrix allows a tabular view for individuals, properties and classes. So it is possible to
see either an item is in the same domain, range or if it is the inverse. Columns and values can be
easily added by drag and drop.

2.5 Conclusion

In order to meet the challenges of OBSD, seven different semantic languages and six different
modeling tools were presented in this chapter. Furthermore, a detailed review about state-of-
the-art semantic reasoner and corresponding visualization tools was given. An Ontology-Based
Software Development approach allows to improve software development. If benefits are wanted
the right choice of specific tools and languages must be selected. This does not only require the
simple use of such tools, but also the development of new language and tool extensions to design
and develop the needed environment. To be able to solve all these problems in the best suitable
way, OWL in combination with SQWRL and SPARQL was selected for this thesis. As main
tools Protégé was chosen, since the use of an open world language in a closed world but with
subsumption reasoning (OWL/Protégé) fits the OBSD methodology more, than for example
OntoStudio which directly uses a closed world language with a necessary transformation in
OWL to form conceptual hierarchies (ObjectLogic/OntoStudio). As mentioned above, within
this thesis, the chosen ontology environments were extended or tailored to meet the requirements
of OBSD. Existing extension mechanisms (e.g. the SWRL Built-in Bridge) however, are in some
cases insufficient for the needs of this thesis. In these cases, extensions of the OBSD ontologies
and rule language along OWL and SQWRL were needed, to use a more general language for
implementation. SPARQL was taken on board, as version 1.1 adds more functionality even the
Snap-SPARQL plug-in is in an early development stage. It turns out that none of the existing
ontology-based environments offer the all-in-one solution for OBSD. For the purpose of this
thesis it was necessary to implement extensions to better integrate the ontology-based tool chain
and future ontology-based tools shall be studied to identify potential new solution, that increase
the productiveness of the OBSD methodology.

46

CHAPTER 3
Operational Context

“The important thing is not to stop questioning.”
[Einstein, 1955]

This chapter presents an overview about the operational context in which the case study evalua-
tion took place. It is essential for this thesis to introduce the concept, design, and technologies
of the generic System Wide Information Management concept based on Service Oriented Archi-
tecture principles which roughly scratches the surface of the relevant ATM domain. The SWIM
infrastructure, dedicated to the definition of the European SWIM technical architecture, allows
seamless interoperability and information sharing for future European ATM Systems. Further-
more, standardized ATM data and service models and their semantic enhancements, which were
used as a baseline for the semantic domain knowledge in this thesis, are explained.

3.1 Introduction

“The European Commission shares the industry’s frustration with the failure of Eu-
ropean states to progress the single European sky. Every year that single European
sky languishes in limbo is a EUR 5 billion knock to European competitiveness and
costs the environment 8.1 million tonnes of wasted carbon emissions,” 1

said Tony Tyler, International Air Transport Association (IATA) Director General and CEO.
EUROCONTROL’s SESAR program and Federal Aviation Administration’s (FAA) Next Gen-
eration Air Transportation System (NextGen) are transforming the global ATM as we know it
today and will break up with existing roles predicated by 50 year old technology [Ulfbratt et al.,
2008], [SJU, 2015]. Similar to SESAR, NextGen right now runs the risk to specify ATM sys-
tems based on architectures already out-of-date. While current functionality is based on histori-
cal grown technical restrictions, a performance-based and most efficient approach requires new

1http://www.iata.org/pressroom/pr/Pages/2013-06-11-01.aspx, accessed: 2016-11-14

47

paradigms and eventually has to lead to a balanced approach to prevent over-optimizing one area
at the expense of others [JPDO, 2011]. The main objective of ATMs information management is
to provide a framework which defines seamless information exchange between all providers and
users to share the information within a SOA. To cover the needs of existing research projects like
NextGen, SESAR or Collaborative Actions for Renovation of Air Traffic Systems (CARATS),
OBSD achieves the goal of reusability across domains. The OBSD approach, based on semanti-
cally enriched service models, addresses these issues and allow easier development and modular
applications for multiple domains.

This chapter describes the current results of SESAR SWIM in order of requirements and ca-
pability definitions that a compatible information system needs to fulfill. Those capabilities are
basically derived from major topics of interest within the SWIM technical infrastructure such
as interoperable communication, security, and governance. Following requirements and capa-
bilities, conceptual architecture was created utilizing artifact types from several commonly used
architectural views (structural, behavioral, deployment) depicting logical structure and interac-
tion among the major sub-systems and their components, as well as information exchange flows.
Based on previous logical architecture considerations, a list of appropriate technology standards
is given. The system will be deployed either as an extension to new services of certain service
providers or in case of existing legacy services as a SOA enabler. Therefore, the possible fields
of use are beyond the SESAR Air Traffic Management SWIM scenario.

The next section describes how Aeronautical Information Services (AIS) are connected to a
newly established technical platform that needs to be compatible with the SWIM infrastructure
in respect to its implementation and technology requirements. This creates the link between
the technical infrastructure and the business service identified and developed by SESAR. As an
important first step, the benefits of applying SOA for ATM opens the door for further capabilities
of using different traditional data domains in a SOA environment beyond the scope of traditional
AIS. The rest of the chapter introduces main concepts for the SWIM technical infrastructure and
provides further details on the architecture that served as a basis for OBSD.

3.2 Information Services moving towards Information
Management

The Air Navigation Service Provider (ANSP) industry has only recently realized that the ex-
change of information has become an important influence on their business and will have an
even greater influence on ATM performance in the future. Various events (e.g. Icelandic volcano
Eyjafjallajokul) have involuntarily highlighted this to all stakeholders. Today many AIS remain
focused on providing narrowly defined legacy aeronautical products as specified in International
Civil Aviation Organization (ICAO) Annex 15 [ICAO, 2010b]. ICAO has a number of Annexes,
several of them are relevant for AIS. The ICAO standards are the lowest common denomina-
tor and all other standardization committee build extension on the top (e.g. country-specific
extensions). Yet, there is an awareness among providers of aeronautical information that the
industry must transform from AIS to Aeronautical Information Management (AIM) to meet the
growing demands of the ATM business. The transformation includes a number of changes such
as the transition from manual, paper product environment to a digital, standards-based environ-

48

ment [SJU, 2015]. As mentioned in the Civil Air Navigation Services Organization (CANSO)
AIM business model,

“the mission of AIM is to provide interactive, on-demand aeronautical information
interchange between the global aviation community to support safe, efficient and
environmentally sound flight operations that maximizes system capacity.” [CANSO,
2013].

The challenge for AIM is to consider information, processes and services needed by ATM
today and in the future [SJU, 2015], [Ulfbratt et al., 2008]. One of the crucial elements of
ATM capacity, especially in the implementation and operational phase, is the availability of
quality assured aeronautical information. ANSPs face the need to replace the traditional product-
centric provision of aeronautical information by a data-centric and systems-oriented solution that
continuously provides reliable data to all ATM users and applications everywhere in the system,
at the right time in consistent high quality. If ANSPs have to raise airspace capacity, they will
have to adopt new and improved data management practices and incorporate this change into
planning. One key enabler for ATM will be a proper and flexible AIM, fully integrated within
the future ATM system based on SWIM principles.

The traditional product-centric provision of the current AIS will be replaced by a data-centric
environment, in which timely and reliable data is made available permanently and dynamically
for use in applications that perform the required tasks, be it flight planning, flight management,
navigation, separation assurance or any other strategic or tactical ATM activity. Although the
automation of AIS is in progress, not all relevant information is currently available in a form
suitable for automatic processing. These technical constraints are further impaired by human
behavior. Some data owners are extremely reluctant to share information and to adopt new in-
formation management practices because of the safety-critical nature of the ATM business, and
a fear that real-time requirements cannot be met. Therefore, SESAR provides an initial AIRM
representing the data shared between the stakeholders, which is updated periodically during the
project. The AIRM is intended to represent all the possible ATM information constructs that
can be present in the ATM world and part of the SESAR concept. The AIRM conceptual model
is neutral and may support any possible external view (i.e. ATM domain models) within the
range it is valid. This implies that the AIRM must stand clear from constraints with respect to
the ongoing ATM business which may change over time [Gringinger et al., 2010a]. The main
objective of ISRM is the service view by identifying the logical shared information services and
specifying the information models relating to ATM services. The purpose of the ISRM is to
develop aeronautical and meteorological business information services based upon SOA princi-
ples as well as current and foreseen ATM business needs. The ICAO annex 15 [ICAO, 2010b]
step by step transition of the traditional AIS service provision into an aeronautical information
business service based upon SOA principles ensures the states responsibilities for AIS services
in both the foreseen SOA for the European ATM network as to cater for global requirements
outside an SOA framework [Gringinger et al., 2011].

49

3.3 System Wide Information Management

According to the SESAR SWIM Concept of Operations, SWIM consists

“[. . .] of standards, infrastructure and governance enabling the management of
ATM information and its exchange between qualified parties via interoperable ser-
vices” [Cruellas and Roelants, 2013].

The SWIM concept is defined by the information elements (AIRM), the services (ISRM) and
technical infrastructure. The SWIM infrastructure consists of SWIM access points and (fed-
erated) SWIM capabilities like messaging, recording, registry, security, and supervision. The
SWIM Governance on the other hand defines trust, policies, validation criteria, security, man-
agement and the service life-cycle [Gringinger et al., 2012b]. The SWIM concept is encom-
passing all the processes and changes to assure that the full life-cycle of all ATM information is
managed systematically and in a system wide manner throughout the ATM enterprise ensuring
that the right information is available at the right time and at the right location.

3.3.1 Principles

The SWIM Concept of Operations document [Cruellas and Roelants, 2013] defines a set of guid-
ing principles for all stakeholders in respect of the design, provision, evolution of SWIM, and
with regard to the information/solution providers and consumers, the processes, standards, and
technologies. The ten SWIM principles are aligned with the operational business to supply the
right information, to the right people, at the right place, and at the right time. SWIM combines
the ATM stakeholders, shared information, common processes, and the underpinning use of
technology as indicated in the SWIM Concept of Operations document [Cruellas and Roelants,
2013]:

1. Accessibility: All involved stakeholders are able to consume and publish ATM informa-
tion via the SIWM infrastructure using common service and data standards.

2. Equity: No stakeholder dominates, or constrains, what may be offered by others.

3. Flexibility: The solution offers various capabilities to ensure that changes of the involved
stakeholders are covered.

4. Performance: Certain levels of performance and resilience have to be provided to cover
the requirements from various ATM stakeholders.

5. Quality, Integrity and Security: Each ATM stakeholder is owner of the information
created and therefore responsible for the data quality and integrity. Security metrics have
to be applied to ensure the safe exchange of the information via the applied services over
the technical infrastructure. An appropriate policy system ensures the correct use provides
and consumed information.

6. Implementation and Evolution: Release and roll-out is following a clear road-map to
ensure the operational, technical and governance functionality.

50

7. Cost: The main benefit is to reduce costs through open standards and common interfaces,
to lower the integration and implementation effort of all ATM stakeholders.

8. Service orientation: Service orientation principles like SOA are the fundamental part
of the SWIM concept to support the exchange of information via services between the
different ATM stakeholders.

9. Open standards: SWIM relies on applicable open and internationally recognized stan-
dards for the information, the content, the processes, and the provision of services.

10. Global applicability: SWIM relies on international and local agreements, to achieve a
seamless ATM information environment with adequate governance.

3.3.2 Concept of Operations

ICAOs global ATM operational concept foresees the roll-out of SWIM concept [ICAO, 2005].
The SWIM concept concerns and involves all participants who have a stake in, or a right to the
shared and exchanged ATM information. The scope of the SWIM concept covers the collection
and management of ATM information from one or more sources and the interoperable distribu-
tion of that information to one or more consumers. This implies SWIM activities which entail
retrieving, acquiring, maintaining and exchanging the shared ATM information on a system wide
basis. SWIM activities are performed with the support of a set of orthogonal SWIM functions
which concern the collaborative management of organizing and controlling ATM information
sharing and distributing. Furthermore, running SWIM relies on the availability of a SWIM
technical infrastructure and its services for exchanging ATM information between the SWIM
participants. The SWIM technical infrastructure is the technical enabler of SWIM. As presented
in figure 3.1, SWIM starts with the standardization of the information on the participants’ side,
which is referred to as SWIM data management.

INFORMATION MANAGEMENT

TECHNICAL INFRASTRUCTURE

o
rg

a
n

is
a

ti
o

n

A

s
y
s
te

m

A

o
rg

a
n

is
a

tio
n

B

s
y
s
te

m

B

L
O

G
IC

A
L

T
E

C
H

N
IC

A
L

Figure 3.1: SWIM = The ATM implementation of information management.

51

It covers the interoperability, through the alignment of processes and procedures. The SWIM
information itself may come from data-sets maintained and operated by different organizations.
The SWIM technical infrastructure covers the technical aspects, from the system interface stan-
dardization to the interaction, transport and the enabling technical services, such as registration,
authentication, supervision, and others.

• The SWIM information management deals with SWIM functions addressing the broad
range of processes that need to be put in place to deliver the SWIM concept. It offers
general principles, rules and recommendations regarding ATM information and contains
information modeling conventions and common meaning within the AIRM. Furthermore,
it offers the information services specifications called ISRM and a registry services.

• The SWIM technical infrastructure deals with all ATM data exchanged through the
whole SWIM network, although this information itself may come from data-sets main-
tained and operated by different organizations. It supports the technical implementation
and services to exchange ATM Information.

• The SWIM concept addresses information management, the technical infrastructure and
the information management functions. In order to exchange information, the participants
need to enable information sharing through services. These services are exposed on the
SWIM technical infrastructure.

3.3.3 Technical Architecture

This subsection describes the conceptual architecture, the concept, design and implementa-
tion of SESAR SWIM [Trausmuth and Klopf, 2010], [Di Crescenzo et al., 2010], [Gringinger
et al., 2012b]. The communication infrastructure follows the widely accepted concepts of SOA
based on the HTTP/SOAP communication protocol and technology specification stack com-
monly known as Web Services. This platform provides the best fit to majority of aviation use
cases in consideration of acceptance, technology maturity, and the adoption costs [van Mee-
nen et al., 2013]. The communication protocol of choice for AIM communication via SWIM
is the Hyper Text Transfer Protocol (HTTP) over the Transmission Control Protocol / Internet
Protocol (TCP/IP). On top of HTTP, the Simple Object Access Protocol (SOAP) provides the
means to exchange object data in XML format via the concept of services. Each service pro-
vides functionality and data according to a definition called Web Service Description Language
(WSDL). Protocols based on SOAP, such as WS-Security and WS-Policy, provide additional
functionality and features including encryption, authentication, and quality of service. These
protocols can be selected as needed, allowing the provided feature set to be tailored to specify
the needs of each service. The preferred information exchange model is either request/response
or publish/subscribe via the Web Services Notification (WSN) standard. The Organization for
the Advancement of Structured Information Standards (OASIS) specification for WSN defines
a web service-based mechanism for the distribution of information based on the idea of each
interested client subscribing to whatever information is desired, and a notification broker dis-
tributing incoming updates to every subscribed client. SOAP and Web Services constitute a
proven, industry-standard and vendor-neutral interface for integration of systems via services.

52

The technical features listed here have been prototyped in so-called SWIM access points in the
context of SESAR [Gringinger et al., 2012b].

The application aware infrastructure based on SOA principles consists a distributed commu-
nication platform semantically enriched with knowledge about interactions among collaboration
applications including the types of executed processes and exchanged data. The SWIM in-
frastructure provides capabilities to manage inter-system collaboration. It enforces constraints
and monitors and manages the information exchange according to the prior defined interac-
tion/business rules. Such rules are aggregated to policies. The SOA network elements apply
restrictions through Policy Enforcement Points (PEP). The policy descriptions are composed of
atomic rules called Policy Assertions. The SWIM infrastructure is being built from a network
of ATM application-aware communication elements, the underlying general purpose network
infrastructure and SWIM access points at the boundary. A SWIM access point can either be
deployed individually as stand-alone computer systems or embedded as part of ATM systems.

The network of SWIM access points (cf. figure 3.2) enables a high level of interoperability
among connected ATM systems regardless of utilized technology, design and implementations.
From an architectural point of view, the interaction dependencies are described through the
concepts of wire and application interfaces: The wire interfaces are essential for the system
interoperability and are mandatory in the inter-system communication. The application inter-
faces, which are supposed to remain an internal characteristic of an ATM system, describe the
interaction between an ATM business logic implementation and a SWIM access point instance.
Wire and application interface might be of the same or of different types. For example, the wire
interface might be the SOAP/HTTP and the application interface might be built upon the same
technology, when the back-end business logic already provides the service endpoints of that type.
The major advantages of such organized communication architecture are in decoupling of inter
organizational B2B collaboration from particular business services implementations while the
systems remain autonomous and still ready to integrate with reasonable integration expenses.

SWIM

Access

Point

SWIM Access

Point

Wire

Interface

SWIM

Wire

Interface

Wire

Interface

App.

Interface

App.

Interface
App.

Interface

ATM System

(Airport)

ATM System

(EAD)

ATM System

(Traffic Flow

Management)

ATM System

(Airline)

SWIM Access

Point

ATM System

(ATC)

SWIM Access

Point

Wire

Interface

Wire

Interface

Wire

Interface

Figure 3.2: High level overview of the SWIM network.

53

The communication responsibility is outsourced to a dedicated communication sub-system, a
SWIM access point instantiation.

3.3.4 Access Point

The SWIM infrastructure is a logical network of PEPs, which proxy the access to business ser-
vices and resources provided by ATM systems. PEPs control the whole information exchange
among the interconnected systems. Being equipped with additional functionality, such as com-
munication protocol mediators and message transformation engines, these access points act as
intermediaries between resources provided by service providers and their business partners. Fig-
ure 3.3 describes the structure of a SWIM access point, one key building block of the SWIM
technical infrastructure. Interactions between other access points (left side) and back-end service
implementations (right side) are added in order to provide a fully coherent system overview. The
green colored components implement the messaging capability according to the current SWIM
platform development within the SESAR program. The supervision, messaging, interface man-
agement, and security components are colored differetn gray scales. All those components are
reusable blocks in itself, e.g. a weather data model compliance component can be reused in
various domains.

• The Service Endpoint component manages the access to business logic service imple-
mentations (reverse proxy), or assists during consumption of an external service (proxy).
Service Endpoints use different communication stacks, one defining the message ex-

ATM Business Logic

Service End-Point

Policy

Enforcement

Identity

Management

Protocol &

Data Mediator

Service

Implementation

SWIM Node

Common

Purpose

Message

Broker

Security

Management &

Reporting

HMI

Logging

Recording

Reg./Rep.

HMI

Authorizaion

Messaging

Supervision

Interface Management

Security

apply

authorization

rules

forward

request

notify

publish,

subscribe

check

identity

issue token

invoke

broker identity

consume service

retrieve

log

apply

security

transf.

m anage

m anage

m anage

apply data &

protocol

transformation

apply

policy

SWIM

Figure 3.3: Structure of a SWIM access point.

54

change pattern used, and another one for service meta-data describing the policy rules.
The SWIM access point maintains many instances of the service endpoint component
for both communication directions (proxy, reverse proxy). During the communication
process, these instances collaborate with the policy enforcement component and are su-
pervised by the management component.

• The Policy Enforcement subsystem applies the policy definitions configured for service
endpoints. This includes evaluation of authorization rules, message structure, service
types, applied security measurements, level of quality of service, etc. Furthermore, a
policy might define message transformation execution or raise monitoring events. Based
on the OASIS eXtensible Access Control Markup Language (XACML) there are several
sub components which actively participate in policy enforcement.

• The Protocol and Data Mediator is a component similar to an Enterprise Service Bus
(ESB) but focused on single interaction mappings. It is used by PEP and service end-
point components in order to modify the structure of the communication payload or to
switch from one communication protocol to another. This approach is used whenever the
back-end service implementations are not fully compatible with business domain data and
service types.

• The Identity Management handles consumer authentication, which includes attribute
and pseudonym services, as well as identity token creation and evaluation. Furthermore,
it collaborates with external identity managers building security federation.

• The Security component implements basic security concepts such as message integrity
and confidentiality. The recording component is responsible for data collecting and re-
porting.

• The Management and Reporting component uses data previously collected by the au-
diting component and provides it to the SWIM environment for further integration. It can
be accessed either via a Human-Machine Interface (HMI) or via specialized interfaces
exposed to other SWIM participants.

• The common purpose Message Broker is a subsystems which implements a communi-
cation subsystem that is based on Message Exchange Pattern that decouples systems and
allows payload agnostic inter-system information exchange.

55

3.4 Standardized Air Traffic Management Data Models

The main goal of AIM is to provide the right information to operators at the time and place
when they need it. To ensure this, the concept of net-centric ATM operations is used, supported
by potent information filtering. It is important to select the essential data out of the huge space
of ATM information that is available before distributing it. Current aeronautical information
requirements are declared by ICAO standards and recommended practices, especially in Annex
15 [ICAO, 2010b], which defines the aeronautical information services. These requirements in
combination with the digital age a model for the European AIS Database (EAD) called AIXM
was created in Europe. In 2003 EUROCONTROL and FAA established a cooperation, which
led to the current AIXM version 5.1. The actual version overcomes limitations of the previous
version 4.5, as it models more than only static data. In 2008, an ICAO Study Group has been
formed whose main objective is to globally harmonize aeronautical information data exchange.
AIXM 5.1 also covers temporary data updates such a Notices to Airmen (NOTAM). As described
in the European ATM Master Plan [SJU, 2015], digital NOTAM is a primary objective within
SESAR. The European Commission delivers additional requirements through the aeronautical
data quality interoperability regulation, which was developed for the single European sky phase
1 project.

3.4.1 Air Traffic Management Information Reference Model

As described in the European Air Traffic Management Master Plan [SJU, 2015], the information
management work package defines the AIRM and the information service model by establishing
a framework, which defines seamless information interchange between all providers and users
of shared ATM information. A specific example implementing inter-domain data models is the
European AIRM. SESAR defines the AIRM as a model which contains all of the ATM infor-
mation to be shared in a semantic way [Gringinger et al., 2012a]. The AIRM represents civil,
military, and civil-military information constructs relevant to the ATM domain. In a service-
oriented approach, data exchange and its fundamental data models and the processing of data
are decoupled, in order to prevent over-reliance by the end-user applications on the data models.
To fulfill these SOA requirements, known elements such as airspace, aerodrome, flight proce-
dure as well as common definitions such as geometry and time are considered in the frame of
the AIRM. The baseline of information management was defined by the SESAR program cov-
ering more or less all the various information, logical and physical model standards into one
common reference model called the AIRM. Through harmonized conceptual and logical data
models AIRM provides a definition of all ATM information. It is used as a common reference
for the different models (cf. figure 3.4) that are developed as part of SESAR.

A first version of the AIRM, so called initial load, was established in summer 2010 based on
existing data models such as the ICAO Weather Information Exchange Model (IWXXM), and
the Weather Information Exchange Model (WXXM), which are both maintained by the World
Meteorological Organization (WMO), the Flight Information Exchange Model (FIXM), AIXM,
and industry standards, like the Geography Markup Language (GML), [OGC, 2007] or ISO
19103, the geographic information conceptual schema language, ISO 19107, the geographic in-
formation spatial schema, and ISO 19108, the geographic information temporal schema. In fact

56

Aeronautical

Information
ATM Information

Reference Model

Meteorological

Information

Flight

Information

Flow

Management

Surveillance

Information

Environment

Information

Capacity

Demand

Airport

Information

WXXM FIXM

AIXM

Figure 3.4: AIRM semantic and common syntax.

GML is not part of the AIRM. AIRM uses only the conceptual schemata from the ISO 19100
series e.g. ISO 19108. GML appears at the physical modeling level. Further increments of the
AIRM are planned for release every six months. The AIRM is defined using UML and used in
the context of service modeling based on the Service oriented architecture Modeling Language
(SoaML). It also includes the consolidated logical data model, which provides a reference model
of the SESAR data concepts for service architects and system implementers. The ISRM models
the information to be exchanged between ATM systems, and defines interfaces and interactions
at the logical level. It derives service payloads from the AIRM, and is fully SOA based upon the
North Atlantic Treaty Organization (NATO) service-oriented view defined in the NATO Archi-
tecture Framework (NAF) version 3. The idea has always been to verify and potentially evolve
or replace it with content derived from actual operational requirements, so that it can fulfill its
role as a documentation of the semantics used in the SESAR operational documents to become
a valid implementation of NATO Operational View2 (NOV) 7 in the SESAR Enterprise Archi-
tecture (EA) framework.To facilitate reusability and software development itself, ontologies are
used during the prototype development. Semantic interoperability is significant for the ATM
system development. In this regard the AIRM will be open to a change in its scope and will be
capable of absorbing new requirements as they are identified. The European AIRM is used as a
specific example for inter domain implementation. Referring to EUROCONTROL,

”AIRM is required to define the semantics of all the ATM information to be shared”
[Eurocontrol, 2009],

an ontology-based approach is a breakthrough. Improving efficiency, increasing reusability of

2http://nafdocs.org/meta-model/, accessed: 2016-11-14

57

code through semantic structures and a component based framework are among the key goals
of the Pan-European SESAR Joint Undertaking (SJU) as well as the FAA’s NextGen program.
Eurocontrol plans to evolve the AIRM up to ICAO level, which will satisfy the dream of OBSD
to cover various domains on a global level. To implement a successful case study around the
AIRM, OBSD is used to gain reusable software components. In a first step the Aerodrome Map
Information Service (AMIS) was implemented to validate and demonstrate the usefulness the
ontology of the underlying domain model and to have a first case study in place (cf. chapter 5).

3.4.2 Information Service Reference Model

The logical shared information service model is the main objective of the ISRM, and specifying
the information models relating to ATM services (cf. subsection 3.4.1). ISRMs purpose is to
develop aeronautical and meteorological business Information Service based on SOA principles
as well as current and foreseen ATM business needs. A step by step transition of traditional
AIS provision [ICAO, 2010b] into an aeronautical information business service based on SOA
principles will ensure the individual responsibilities for AIS services in both the foreseen SOA
for the European ATM network, and to cater for global requirements outside an SOA framework
[Eurocontrol, 2009]. The service modeling process translates operational requirements into a
construction plan for the SWIM infrastructure implementation. Service modeling defines the
information exchange protocols (service contracts) required to support the operational processes
and provide the technical capabilities derived from operational requirements. The ISRM [Pola
and Solberg, 2013] focuses on the logical service architecture providing a logical viewpoint on
services, comprising the service contracts, interfaces, operations, behavior (interactions), input
and output parameters and orchestration of services. The outcome of service modeling is a
comprehensive description of services on a logical level and constitutes the major part of the
contribution of service modeling domain projects to the ISRM.

3.4.3 European Air Traffic Management Enterprise Architecture

In SESAR, the European Air Traffic Management Enterprise Architecture (EAEA) [Vaudrey,
2013], based on the NATO Architecture Framework (NAF) Version 3.1 [NATO, 2010] defines
the artifacts of the ATM target architecture. NAF defines several views, each addressing a spe-
cific perspective where the ISRM is created under the service-oriented views. The EAEA meta-
model is the key enabler to architectural coherency within SESAR. The coherence of the EAEA
architecture is achieved by defining which architectural meta-elements can be used in which
EAEA views and sub views. Within ISRM, only a subset of EAEA views, sub views and archi-
tectural elements are created and/or used, namely:

• NATO Operational View (NOV) identify information exchange needs and corresponding
services and is used, analyzed, and refined as ISRM input. This was essential input for the
rules and policies used in OBSD.

• NATO Service-Oriented Views (NSOV) are descriptions of services needed to directly
support the operational domain and are implemented within SESAR as the ISRM

58

• NATO System Views (NSV) are split into NSV-11b, the physical data model represents the
payload of the service messages to whom the ISRM is referring to. NSV-11a is considered
during the service message modeling and represents the logical data model part of the
European AIRM. The association between NSV-11a and NSV-11b is extremely significant
to gain the benefits from the ontology-based approach.

While ISRM services are using the UML/SoaML [OMG, 2012] modeling languages for ex-
pressing the service-oriented views, the domain language elements are used in coherence with
the EAEA meta-model [Vaudrey, 2013], to ensure a seamless integration into the overall EAEA.
For the NAF views on services that require formal notation, the service models are described in
the UML/SoaML languages. SWIM applications have to be complaint with the ISRM model.

3.4.3.1 Relation to Service-Oriented Architecture

The logical information service models which are integrated into the ISRM are just one building
block of the entire service-oriented architecture and services landscape. Consequently, they will
be tightly connected and interrelated with other building blocks and have to be set in the context
of an overarching SOA strategy, a common service life-cycle model and according collaboration
and governance procedures.

3.4.3.2 Relation to Operational Focus Area

The concept of the Operational Focus Area (OFA) is defined by the SESAR Program Manage-
ment Plan [SJU, 2012] as:

“A limited set of dependent operational and technical improvements related to an
Operational Sub-Package, comprising specific interrelated operational improve-
ments designed to meet specific performance expectations of the ATM Performance
Partnership.”

The key challenge of ISRM modeling is to derive a single service portfolio consistent with the
OFA requirements. From a SESAR working perspective, the OFAs are suitable as a means
for identification and refinement of operational requirements, non-functional requirements and
derivation of related operational processes and capabilities as a basis for service model creation.
The SESAR program comprises 16 work packages which split up into more than 300 sub-work
packages. All of these sub work packages are working in projects with defined responsibilities,
tasks and deliverables. These tasks are ideally performed in tight collaboration and communi-
cation with the SESAR operational work packages, system work packages and the SWIM work
packages (WP 8, 13 and 14) [Gringinger et al., 2012b]. ISRM projects are collaborating infor-
mally with the other work packages in order to align to the OFA and acquire the needed input for
ISRM service modeling. ISRM related work packages implement a pragmatic service modeling
approach based on a proposal which comprises:

• Extraction and refinement of relevant requirements from OFA related documentation such
as Detailed Operational Description, Operational Services and Environment Definition

59

• Definition of detail operational processes (where needed and feasible) to identify interac-
tion and information exchange needs and potential for support through services

• Definition of a hierarchy of capabilities as a means of structuring requirements and iden-
tify candidate services to support interaction needs

3.4.3.3 Service Implementation Process

Services can be applied whenever two or more ATM stakeholders are interacting with each other.
Given the number of stakeholders in ATM and the amount of interaction needed to perform
ATM, one can see that applying a service-oriented way of collaborating is something that will
affect ATM at its core. Due to this complexity and many involved stakeholders it is vital to have
a structured and well-governed way of identifying, designing, and developing services.

Currently this process is, in Europe, performed as part of the SESAR program. To support
governance of the process and provide structure, a technique called EA is applied. EA is the
process of translating business vision and strategy into effective enterprise change by creating,
communicating and improving the key requirements, principles and models that describe the
enterprise’s future state and enable its evolution3. In case of SESAR this provides a best-practice
framework for describing how the federated enterprise of the European ATM shall evolve during
the coming years.The service-related activities are very important inputs to service identification
since they provide the business and operational requirements and contexts. More specifically,
the business modeling provides a high level description of how the EAEA evolves over time
by describing what capabilities the different ATM stakeholders will have during the different
evolutionary steps. The operational modeling provides a description of who the actors are and
how they will collaborate with each other. This is done by modeling the operational activities
they perform and describing the information exchanges that takes place between actors.

It is of importance that data and service related work packages [Blomqvist et al., 2012]
are involved in the operational modeling in order to ensure that the operational modeling de-
liverables are of such quality that they can be used to identify and design services. Also, it is
important for data and service related work packages to support the operational modeling by
providing expertise in the area of information modeling and ensuring alignment with the AIRM.
The service modeling process is divided into four major steps and will be described in detail
afterward:

• Requirements Analysis

• Service Identification

• Service Design

• Development and Implementation

3http://www.gartner.com/it-glossary/enterprise-architecture-ea/, accessed: 2016-09-27

60

In the Requirements Analysis step the inputs are analyzed and essential requirements re-
garding interaction and information exchange are extracted and refined. From a modeling point
of view, detailed process diagrams representing specific parts of operational processes are cre-
ated where necessary and reasonable to analyze interaction of activities and identify correspond-
ing information exchange needs. Operational requirements and derived information exchange
requirements are initially created as model elements of a requirements tracing model to ensure
back-traceability from identified services, based on refined operational processes and refined
operational requirements. Identified information exchange needs are then transformed into a hi-
erarchical set of interrelated (service level) capabilities to be potentially provided by services. To
ensure the back-traceability of those capabilities to requirements and thus enable requirements
coverage checks, a mapping of capabilities to requirements is created. The capability modeling
step is not needed if the requirement represents a single capability of the service. In this case the
requirement can be directly traced to the service contract.

The Service Identification step performs an iterative drill down from process level to ser-
vices level and aims to produce a portfolio of candidate services. During the drill down, parts
of the operational processes to be potentially supported by services will be identified and classi-
fied. If needed, the high level capability hierarchy provided by the Requirements Analysis step
will be refined to capabilities that can be immediately exposed by single services. This will be
the input for assessment, decision, and responsibility assignment of services through the ISRM
governance process. To ensure the back-traceability of candidate services to the capabilities they
expose a mapping of candidate service contracts is created.

The Service Design step further elaborates on the services of the initial service portfolio that
have been decided to be exposed. It produces an integrated and consolidated services specifica-
tion comprising the static structure as well as dynamic and behavioral aspects of the service. It
therefore creates a detailed description of the service interfaces, intended service contracts, de-
tailed interaction behavior, as well as the Quality of Service (QoS) aspects offered and requested,
and service policies to be obeyed.

The Service Development/Implementation describes the implemented Aerodrome Map
Information Service, abbreviated AMIS, which supports pilots, air traffic controllers, airport
personnel, as well as pre-flight planning personnel. The four sub services are described in detail
in section 5.2.

3.4.4 Aeronautical Information

The AIXM is a specification to enable the encoding and distribution of aeronautical information
in accordance with the ICAO convention. In order to enable the transition to the AIM, AIXM
has evolved from version version 4.5 to 5.1 [Eurocontrol, 2010]. The AIXM conceptual model
is specified using UML. AIXM UML provides a semi-formal description of the AIXM data
model. For encoding and exchanging aeronautical information, the AIXM XML schema defines
how to represent aeronautical information in an XML format and serves as the exchange model
for aeronautical data. It is an implemented XML schema of the conceptual model. Therefore,
it can be used to send aeronautical information to others in the form of XML encoded data, en-
abling systems to exchange aeronautical information. This information combined with implicit
operational knowledge is key for OBSD. The ISO provides standards e.g. for meta-information

61

or, Geographic Information System (GIS). Open Geospatial Consortium (OGC) defines geospa-
tial standards, e.g. OGC Web services like the Web Map Service (WMS) or the Web Feature
Service Interface Standard (WFS). As shown in figure 3.5 AIXM is built on top of those layers.

XML

Aeronautical Components (AIXM)

ISO / OGC

W3C

GML / ISO 19136

ISO 19139

FAA, EUROCONTROL, SESAR, etc.

EAD

Individual

Organizations

Standards
Data Model

Component Agility

High (Months)

Low (Years)

Figure 3.5: Layers of the Aeronautical Information Exchange Model (AIXM).

For the aeronautical domain AIXM is the starting point to build an aeronautical ontology.
An ontology-based approach has the capability to build relationships between instances and
classes. The properties of those relationships allow reasoner to make suggestions about them.
Figure 3.6 shows a small sample: :RunwayClosure (concept) is a specific event of :Notam
(type of property :AeronauticalInformationEvent), :RunwayClosure could be
an :Issue (relation), an :Airmen gets alerted through an :Issue (assertion). The labeled
relationships isSortOf and isAlertedBy infer the fact that an :Airmen is alerted by a
:RunwayClosure, which is a specific :type of :Notam, which in turn is a subclass of
:AeronauticalInformationEvent (reasoning). This reasoning is possible because of
the inverse property of isSortOf, which relates the two instances in the reverse direction.

rdf:type

:Notam :Airmen

:AeronauticalInformationEvent

isSortOf
:RunwayClosure :Issue

isAlertedBy

:Snowtam

rdfs:subClassOf

Figure 3.6: Snippet of the aeronautical ontology.

62

Several facts could be inferred from these relationships. Instances can either belong to a
set of aeronautical information events or the set of risks, but only specific kinds of events are
critical. In terms of ontology languages, classes are mutually disjoint. There are no instances
that belong to both. In figure 3.6, a :RunwayClosure is some sort of :Issue. However,
with the knowledge of this example we could not conclude that some type of :Snowtam is
an :Issue. That is possible because OWL follows the open world assumption, which defines
that any assertion not stated is indistinguishable. Individuals need not necessarily have a unique
name because OWL does not use the unique name assumption.

3.4.5 Meteorological Information

WXXM supports data-centric environment, meteorological information collection, dissemina-
tion and transformation throughout the data chain. Similar to the AIXM, the conceptual model
is a high level view of the meteorological domain related packages (e.g. ICAO Annex 3, ISO
191**), that make up the data model. The conceptual model is implementation independent
using a combination of plain text and UML package diagrams. The logical data model is tech-
nology agnostic as well and capable of supporting multiple physical representations. It de-
scribes in abstract form (UML) the association between exchange and information model. The
physical representation is mapped to the logical data model by the exchange schema, which is
implementation-dependent. It is a XML based schema which is a machine-generated “phys-
ical” representation of the model. The geospatial aspects are modeled using version 3.2.1 of
GML [OGC, 2007]. For this work the conceptual and logical model are used to build up the
necessary ontology. The base layer of the conceptual model serves as a foundation of basic
concept packages (cf. figure 3.7).

For example, the ISO data types package contains ‘Speed as a type, which is a very generic

Data Model

Operational and Knowledge Domains

XML

General Purpose Weather Components

Aviation-Specific Weather Components

GML - ISO 19136 , ISO19123

Observations & Measurements - ISO 19156

Geographic MetaData - ISO 19139

FAA EUROCONTROL Specific Extensions

Operational Data Model

WXXM

OWL

netCDF Climate and Forecast Ontology

Aviation-Specific Ontology

JPL SWEET

Weather/Oceanography Ontology

Wordnet Ontology

FAA EUROCONTROL Specific Extensions

Ontology Model

Weather OWL

Rapidly Changing Information

(Measurements)

Relatively Static Information

(Types, Associations, Classifications)

Link to

concepts in

knowledge

domain

Figure 3.7: Operational and knowledge domains.

63

Figure 3.8: Constructing the weather ontology.

type. The weather layer above than specifies a type WindSpeed, which would provide the base
layer’s Speed type with some weather-related specificity. More and more specific packages
like an aviation weather layer or organization add-ons are put on top of it. Just as the general
weather layer’s packages build on the concepts encapsulated in a base layer package, so do
even higher-layer packages build on the concepts present in lower layers (cf. figure 3.7). The
purpose of these layers (indeed, of the weather conceptual model as a whole) is to provide a
common vocabulary and taxonomy for logical and physical representation of the weather data
model. FAA’s NextGen Network Enabled Weather (NNEW) program constructed a first weather
ontology to enhance semantic interoperability of WXXM users and to enable the reuse of domain
knowledge (cf. figure 3.7). NNEW uses WordNet, a large domain-independent lexical database,
as base layer. Also, the suggested upper merged ontology4 is used here as it contains a WordNet
mapping. The base ontology covers general high-level concepts, but not necessarily domain-
specific. The mid ontology contains domain-specific concepts, which are not necessarily tied
to aviation weather. Therefore the Jet Propulsion Laboratory’s (JPL) Semantic Web for Earth
and Environmental Technology5 (SWEET) version 2.3 is used. Domain-specific concepts are
captured at a lower level of. Different weather phenomena and their quantitative measurements
are represented in climate and forecast meta-data of network Common Data Form (netCDF)6.
Even though all ontologies store the same fundamental ideas, the terminology and definitions

4http://www.ontologyportal.org/, accessed: 2016-10-10
5http://sweet.jpl.nasa.gov/, accessed: 2016-10-10
6http://www.opengeospatial.org/standards/netcdf, accessed: 2016-10-10

64

are slightly different. During this work a mapping transformation algorithm was implemented
(cf. section 4.4), which can create alignments that connect single concepts in one ontology to
multiple concepts in another. A search for all the data pertaining to WindSpeed would then
return, not only its related data from Weather, but also the data categorized under Wind and
Speed in Meteorological Phenomena (cf. figure 3.8).

3.5 Conclusion

This chapter gave necessary insight about the special requirements for a safety critical environ-
ment. More precisely it highlighted the great benefit of reusing components in the Air Traffic
Management domain, in which products have a very long life cycle. Standardized information
management ontologies, data, and service models based on EA and SOA principles, require joint
forces between ANSPs and the industry. This chapter presented an extended conceptual archi-
tecture of the European SWIM infrastructure in order to meet the challenges of future aviation.
Design and technologies of a system wide information management based on SOA principles
were shown. The approach presented a technical infrastructure with interoperable communica-
tion, security, and governance components. The focus of this chapter is mainly technical, but the
implementation of such a system will be deployed either as new application (or extension) of cer-
tain service providers or in case of existing legacy services as a SOA enabler. The possible fields
of use are beyond the ATM SWIM scenario. Such software components may be the information
exchange enabler in a number of other domain areas such as public safety, public transport, and
other security systems. In a modern environment, software development profits from the reuse
of code which improves in the best case the economic benefit. To achieve those benefits, specific
information models for different ATM domains have been developed and the development will
make further progress in the future. To accomplish this goal it requires more than simple UML-
descriptions. Semantic logic is necessary to design and develop a component-based architecture.
Such a venture has far reaching effects on systems, elements, procedures and regulations, but
is required to achieve the benefits of an OBSD, to conquer the dream of generating directly out
of a data model useable lines of code. The next steps in terms of global standardization are to
bring the AIRM to ICAO level, which will ensure the the long-term future. More details about
the domain knowledge is presented in the next chapter.

65

CHAPTER 4
Ontology-Based Software Development

“Any sufficiently advanced technology is indistinguishable from magic.”
[Clarke, 1973]

Today semantic technologies are widely used in web application development. The main benefit
of using ontologies is to combine knowledge from different domains and assume new facts based
on them. The lightweight and flexible handling of ontologies allows to make extension simple,
which supports the reuse of existing and upcoming implementations. Nevertheless, through er-
roneous ontology design and an inaccurate semantic methodology, the benefits can turn into
the opposite. One way to alleviate those issues is to have a quality assurance process in place
during the whole life-cycle. This chapter describes the methodology, semantic concept, and
techniques of the Ontology-Based Software Development (OBSD). The first section outlines the
OBSD methodology including the project and technological approach. In the following sections
the life-cycle and process of OBSD is presented. Moreover, the usage of OBSD semantic tech-
niques in a software development project are covered. In the section, ontology management, the
usage of ontologies for data representation is motivated and the set of ontologies used in OBSD
are described. Finally the semantic interface, a way of accessing the semantic description stored
in the OBSD ontologies, is introduced. The ontology mediation process derives a logical so-
lution design from the prior selected semantic sub-description of the software components and
domain knowledge in combination with the requirement patterns among the stakeholders.

4.1 Introduction

Today the industry and the ANSPs operate in a non trivial domain which requires stable, but
dynamic methods for communication and information exchange that can be easily adapted to
potentially new business processes. Traditionally most organizations have developed software
products consisting of numerous components. Such product developments cannot always sup-
port increasing demands for more flexibility and in particular, more interoperability. Over the

67

last years, several approaches were adopted to solve this architectural problem (i.e., enterprise
application integration as a concept and the SOA [Zdun et al., 2007]). These approaches provide
mechanisms for a flexible development of various business applications in one domain, but none
of them was proven entirely satisfactory. The demand for an improved solution in the ATM do-
main generates the need for the development of an OBSD based concept. OBSD has to enable
the sharing of information in a highly distributed environment, taking demanding requirements
regarding performance, scalability, maintainability, safety and security into account. According
to [Lung et al., 2007]:

“Software reuse and/or software components will not solve all problems we en-
counter in software engineering, but they will contribute to an important step to-
wards more flexible software systems that are constantly evolving and adapting”.

Moreover, in a multi-user environment, OBSD allows decoupling of technical solutions and
generic services for information sharing from business-driven user-specific applications. Each
developer can then use these basic OBSD capabilities to make the best possible use of available
information for their own development. OBSD aims to serve as software reuse knowledge base
within the Air Traffic Management domain. This domain is characterized by very demanding
safety and security requirements as well as the need for high availability, leading to conser-
vative structures at present (cf. chapter 3). Data are exchanged among many stakeholders like
ANSPs, airports, airlines, military users, general aviation, air traffic flow management instances,
providers of meteorological, aeronautical or flight data, and many others. In the past, their ac-
tions and decisions were more or less decoupled from each other. However, the expected growth
of air traffic in the next decades forces all ATM actors towards co-operative handling of virtually
shared information during the entire life-cycle of a flight. The concepts of SWIM are seen as
key enablers for sustained growth of air traffic management domain. These high-level concepts
imply that an appropriate underlying technical solution for such co-operative handling of infor-
mation is in place and that operational interoperability was established between the involved
actors. In other words, for the high-level concepts to work, low-level mechanisms for informa-
tion sharing have to be established and the corresponding operational procedures and practices
agreed on and installed at all actors’ premises.

Currently, only relatively conservative software component reuse capabilities and mecha-
nisms can be found in some domains that cannot be really seen as a mean for software component
reuse. The approach investigated aims to provide a scientifically robust and practicable method
for establishing software component reuse among various applications and products based on
standardized services and data models over a heterogeneous infrastructure using the aviation do-
main as an example. This includes the development of a concise semantic description to capture
existing and reusable components in terms of data requirements and functional range as well as
constraints of the payload, including algorithms to deduce the reusability from the semantics.
This defines an automated way to acquire the canonical data exchange model as well as the re-
sulting data flows and interface functions and description of the solution architecture with all
functional components. The key motivation for OBSD is to elaborate fitting components based
on existing SOA patterns to address the following issues [Zdun et al., 2007]:

68

• Automatically discover necessary information during design phase.

• Reduction of design effort for integration processes, data and service models.

• Methodology to precisely describe reusable software components.

• Manage sources of wrong, incomplete and outdated information.

• Allow multiple data sources for the same data.

• Reuse of reliable software components in various products and projects.

4.2 Ontology-Based Software Development Methodology

The static growth of data, which is processed within a control room, led to the development of
overlapping software components for different domains. It is often the case that the descriptive
name is different, but the functionality of such components is quite the same. The motivation of
OBSD is to show that the improvement of an ontology-based framework can be approved as a
real business-case. Therefore, it is necessary to find the best fitting domains. AIM services in
the domain of weather data, geographic information, briefing, tracking and tracing are among
them. These are all together software products which share similar requirements but cover dif-
ferent sub-domains. Nevertheless, such components are often developed twice for each domain
for example the GIS component for visual representation or data mapper. The use of ontolo-
gies provides high flexibility for the future integration of new legacy applications, systems and
services. Unified and open standards can raise the reuse of components for different applica-
tions in different domains. Ontologies, semantic annotation of content, and semantic search are
technologies addressing the problems outlined above. They open up new ways to benefit from
already developed systems. To prove the Ontology-Based Software Development methodology,
the ATM domain was chosen as a first testbed. Today, industry and ANSPs operate in a non-
trivial environment requiring stable and standardized but also versatile means for information
exchange that can be easily adapted to changing business needs. Semantic techniques are an
adequate means of bridging the knowledge gap (e.g. different names for the same entities) be-
tween organizations and improving information sharing and business processes (cf. chapter 2).
Through the mapping the semantic description with the help of model rules and operational re-
quirements, an easy identification of reusable parts between different development team within
large companies is applied.

A significant point for the whole project is that it follows the idea of open standards. OBSD
mainly relies on open source solutions. The OSBD is supported by different state-of-the-art
ontology languages as well as relevant semantic environments for ontology development. In
chapter 2 necessary tools and languages like RDF, RDF(S), OWL, OWL 2 and SPARQL, a stan-
dardized RDF query language were identified. As different ontology languages have different
facilities, it was necessary to evaluate them. The knowledge in OBSD is captured with OWL,
due to the fact that it has the most complete set of language features to express different con-
cepts and relationships that occur within an ontology. Of similar importance is the right choice
of frameworks and tools (cf. subsection 2.4.2). An ontology is a information model derived
from the semantic description and represents a certain domain. Domain ontologies are used to

69

represent the information objects and their specific properties in that domain and the relations
between them. Information in the semantic web model is stored in form of triples (instead of
conventional key-value pairs) with a Subject as resource to be described, a Predicate as property
of the resource, and an Object with a property value of the resource. This information is used to
build vocabularies that describe a domain and the relationship between those resources. Based
on the relationships, implicit hidden information is derived and inconsistencies are identified.
The information stored in ontologies is accessed through the semantic interface (cf. subsec-
tion 4.5.3). The use of ontologies for modeling data instead of traditional data modeling using
UML/XML (e.g. entity relationship diagrams) is the key factor for future reusability. Since
ontologies are per definition never complete, future concepts or adaptations can be integrated
without the need to change the whole model. This provides high flexibility for the future inte-
gration of new applications, products and services. Within OBSD, the following ontologies are
used:

• Domain Information Ontology: Defines the elements that represent a specific domain
used within the OBSD by adding individuals (instances) for the software components
described in a software component ontology. This ontology also defines the concepts and
therefore the taxonomy for the domain-specific knowledge. The main knowledge for this
ontology is extracted from existing information models which were used as baseline for
the initial semantic load.

• Software Component Ontology: Contains the basic concepts for a OBSD-based scenario
(e.g. the integration of different legacy applications in the ATM domain), the reusability
specification. This includes concepts for modeling the software components of various
applications and products which shall be reused. A perfect generic example for a possible
software component, which is recyclable, is a data mapper/validator for a specific infor-
mation model translating from one version of the model to another one (e.g. AIXM 4.5 to
AIXM 5.1).

For this thesis an initial version of a state-of-the-art information management was provided.
In addition a highly reliable data improving software component reuse with heterogeneous data
and service sources was implemented (cf. table 4.1). The generic OBSD domain information
layer captures the information management of a domain itself, such as AIXM, WXXM, FIXM,
or information reference models like AIRM or ISRM (cf. section 3.4). Below this layer the

Rules and Policies

Software Components

Domain Information

S
e
m

a
n

ti
c

D
e
s
c
ri

p
ti

o
n

Table 4.1: The semantic description layers.

70

software component layer defines the software elements and components, that shall be reused
in various applications and products within a company or organization. The bottom layer is
the rules and requirements layer that customizes the mapped semantic description of OBSD to
the environment for a specific customer or product via rules built from the requirements. Those
three layers build the so called semantic description of OBSD. This approach provides a common
foundation for integration projects where only domain specific functions or customer require-
ments have to be adapted while other basic components can be reused. All three layers exist in
versions that evolve concurrently over time. Thus, for this thesis an initial implementation of
the generic OBSD layers and the case study in the ATM domain was performed. In addition to
the improvement of intra-organizational integration, OBSD enables inter-domain development
as well.

4.2.1 Project Approach

The implementation of OBSD requires significant research in several fields of semantics and
software architecture. Therefore, the project was broken down into the following tasks:

1. Elaboration of the requirements for the generic software components to accommodate the
needs of an initial case study performed with the OBSD methodology.

2. Diverse discussions between experts from different domains to extract the semantic de-
scription of highly complex relationships and their definitions between existing informa-
tion models.

3. Development of the semantics, usage and extension of existing domain ontologies.

a) Use of the already established SWIM data models and FAA ontologies as an initial
baseline for the OBSD ontologies. Integration of properties between OBSD external
data format (UML/XML) and OBSD internal data format (OWL/XML) including
the specification of OBSD data sources and targets.

b) Specification of OBSD attributes for software reuse determination in a given time
frame and for OBSD operations.

c) Mapping the reusable software model with the domain information software model.

4. Elaboration of the semantic mediation process for transforming the semantic models into
a list of reusable components ready to use. Provide rules and queries gained from opera-
tional requirements to build a solution model with the reusable components to use.

5. Establish filters and query algorithms for determining the semantic rules in the pool.

6. Implementation of a Quality Assurance (QA) concept (software component monitoring
and empirical evaluation) for assessing the core qualities of a OBSD solution during
design-time.

7. Development of real products using the OBSD methodology to proof the concept. This
shall be a case study for the current version of the OBSD methodology to show the benefits
and also issues that may have emerged by software component reuse.

71

8. Scientific evaluation of OBSD in comparison with the former software development pro-
cess through the Extreme Programming Evaluation Framework [Layman et al., 2004b]
(cf. subsection 1.5.2 and chapter 5).

4.2.2 Technological Approach

Table 4.2 shows the structure of the technical layers of OBSD, divided into the domain infor-
mation, software components, the operational needs, and technical infrastructure which lead to
a so called semantic description. This structure allows modeling each layer of OBSD (in gray)
separately to enhance the flexibility of the solution. OBSD provides the mechanisms and meth-
ods for creating the necessary semantic description, coordination and matching the knowledge
bases. In operational environments, existing technical infrastructure, transport layers, and soft-
ware standards are given. The abstraction of the information management from the physical
transport allows OBSD to operate within a highly heterogeneous technical infrastructure and is
based on the software component selection only.

Software Components

Reusable Software Elements,

Components

Operational Requirements

ANSPs, Industry, Rules

Domain Information

Data Models, Services Models,

Information Requirements

Technical Infrastructure

Transport, Messaging

Semantic Description

Information / Component

Ontology, Rules, and Policies

O
B

S
D

Table 4.2: OBSD technical layers.

OBSD distinguishes between two major phases in the life-cycle of a solution: design-time
and run-time. First a set of two models is implemented, one for the components that can be
reused and another one capturing the semantic information which uses the data models AIXM,
WXXM, FIXM, and information reference models, like AIRM and ISRM, as baseline. During
the design phase the solution model (the logical model of the OBSD based calculation, con-
taining all attributes and software component information available for reuse) is deduced from
the semantic description of the system. This flexible process allows quickly changes and easy

72

development of extensions. It contains a list of possible reusable software components, which
code artifacts can be accessed via the repository of available software components after selection
through the semantic mediation process. The generated solution model is then mapped to used
technical infrastructure. Thus, the OBSD solution model covers mainly standard components
(i.e. an data mapper, validator, etc.), which provide optimal reuse capabilities during run-time
(e.g. less integration effort, etc.). An OBSD solution normally is operated without any outages.
Therefore changes and extensions to the solution are introduced into the solution model via
changing the semantic description leading to a system redesign. The resulting changed solution
model can be used by the run-time part without any interruptions.

OBSD uses different components to implement the goals described above. These layers
reflect the usual approach of an integration project by first describing requirements, then devel-
oping a solution model that meets the demands, and finally rolling out the reusable components.
The solution model provides the selected software components for reuse indirectly within an
IDE plug-in to improve the usability for software developers. Figure 4.1 gives an overview of
the main OBSD components and shows the split between design-time and run-time. During the
design phase a solution model is developed based on the semantic description without interfer-
ing with the operational development system. This allows changes or updates to the models that
lead to the semantic description without interfering with the operational development system.
Software requirements for the new development are captured as rules and then performed by
the semantic mediation task to create the solution model. After deployment the solution model
is executed within the operational development framework during run-time. This architectural
design simplifies version tracking and plays well with agile software development methods.

Semantic

Description

 Domain

Information
Model

Solution

Model

Development System

Quality Assurance

 Knowledge Mediation Deployment

Design-Time Run-Time

Simulation

Monitoring

Component Repository
Software

Components
Model

Requirements
Rules & Policies

Figure 4.1: Overview of the Ontology-Based Software Development methodology.

73

4.2.3 Life-Cycle

As shown in figure 4.1 the OBSD life-cycle consists of three main tasks, collecting the knowl-
edge, the model mediation process and the deployment phase. The semantic description cap-
tures all the knowledge. The solution model is generated during the design-time by queering the
knowledge of the needed ontology models through the semantic mediation in an iterative way.
The solution model acquires rules and special configuration setup to meet the requirement that
are given for a software component to be selected as reusable. Below the three phases are split
up in various sub-processes:

• The semantic description represents the knowledge unifying the domain information and
reusable software components which is the core of OBSD. Various experts collect existing
knowledge or import already existing models to the core. In the process of building a
coherent semantic description the following tasks have to be achieved:

– Ontology Modeling

– Ontology Verification

– Ontology Reasoning

– Ontology Optimization

• The model mediation process generates a solution model, which contains a complete set
of reusable software components ready to use by the developer. To calculate the solution
model the customer requirements are used to select the right components. In an iterative
process a solution model is created by the following steps:

– Customer Requirement Specification

– Definition of Requirements Queries and Restriction Rules

– Solution Model Calculation

– Solution Model Optimization

• The deployment phase of the solution model production can be separated into two tasks.
The deployment itself and the QA task. Simulation is needed to evaluate a solution model
before deploying it to the development environment and improve it over time. The deploy-
ment process is monitored to provide iterative feedback to the knowledge and mediation
process:

– Deployment Simulation

– Deployment Monitoring

– Solution Model Deployment

– Semantic Description/Solution Model Optimization

74

The life-cycle can be split up into design-time and the run-time processes which are de-
scribed below. The modeling and mediation part at design-time is performed in multiple itera-
tions to identify issues and problems before rolling out the solution model to the development
system. These steps may be executed several times before it is ready to use to evolve the quality
of the models. Since the design-time is completely independent of the run-time, when a ver-
sion of solution model is established, there are no constrains that interfere between design-time
and run-time processes. During design-time the models are implemented, compatibility tests,
reasoning and refinement of the ontologies are executed. Domain and component experts pro-
vide expertise to support these sub-processes. Versioning is handled to maintain the models and
improve the quality of them. Semantic sub-descriptions are then transformed into the solution
model. Requirement rules and queries are used to calculate the solution model.

During design-time the mapping process identifies reusable components, while at run-time
the solution model can be accessed for deployment. QA is also part of the design-time processes
including monitoring and evaluation of the models. The OBSD life-cycle ends with the run-
time process by deploying the reusable software components from a solution model. An XML
Schema defines the selected reusable artifacts which can than be handled by the IDE plug-in
to access the code from the repository. For QA the behavior of the developers is monitored to
feedback improvements back to the semantic description to improve the creation of a solution
model. All reusable software components are then available via the component repository. Fig-
ure 4.2 shows the OBSD life-cycle in more detail and describes the necessary steps to create a
set of reusable software components in form of the solution model which than can be accessed
by the development system. The processes of the semantic description, the semantic mediation,
the solution model and the QA aspects for all these phases are described on the next pages.

Solution Model

Development

Integration

Semantic Mediation

Semantic Description

Software

Components
Model

Domain

Information
Model

Deployment
Specification

Mediation
Configuration

OBSD

Modeler

Weather
Ontology

NOTAM
Ontology

Aeronautical
Ontology

METAR
Ontology

AIXM Mapper
Ontology

IWXXM Mapper
Ontology

AMIS
Ontology

DBriefing
Ontology

Restriction
Rules

Model
Matching

Component

Expert

Domain

Expert

D
es

ig
n

-T
im

e

R
u

n
-T

im
e

OBSD

Architect

Quality

Assurance

Quality

Assurance

Simulation Monitoring
Component

Repository

Quality

Assurance

1

2

4

3

Customer
Policies

Figure 4.2: Ontology-Based Software Development life-cycle.

75

4.2.3.1 Capturing the Knowledge

The OBSD life-cycle begins with capturing the knowledge into a set of ontologies split-up into
the domain information model and the software components model by OBSD modelers. The
domain information model is described in detail in subsection 4.4.1 and inherits all semantic
descriptions of a specific domain to discover redundancies of definitions. It is a known issue
that in multiple operational scenarios the same information is shared. But because of the spe-
cific context, the definition name is different or they share the same name but the definitions are
divergent. The domain information model also captures domain related messages, e.g. weather
messages like the Meteorological Terminal Air Report (METAR), Terminal Aerodrome Forecast
(TAF), Significant Meteorological Information (SIGMET) or aeronautical messages like a NO-
tice To AirMen (NOTAM) (cf. figure 4.2). The software components model on the other hand
describes all artifacts that are planned to be reusable. It should be noted that the decision which
artifacts are carpentered in the model can be influenced either from technical or from political
perspective (cf. section 4.4.2). The variation of selected components to be reused be as diverged
as possible but it should kept in mind that the more complex the selected software artifacts, the
more complicated the calculations of the solution model. Examples for such artifacts described
are exchange model mapper or services which can be encapsulated as a single component. With
a semantic editor the ontology models are validated and invalid statements are updated. The
quality of the models is checked by a specified QA gate which takes place before the hand-over
to the semantic mediation process. These two models contain several ontologies which form
the semantic description. A selected semantic sub-description may than be transformed, with
the help of the requirement rules, into a solution model which can be deployed. Determined by
the requirement rules and other configuration settings the ontologies are matched to create the
solution model.

4.2.3.2 Information Mediation

The information mediation process receives the domain ontologies from the domain informa-
tion model due to the requirement queries and match them with the ontologies from the software
component model together with the provided rules. The main goal of the semantic mediation
task is to find reusable software artifacts from the software component model on the basis of
provided semantic mediation configuration implemented by the OBSD architect (e.g. restriction
rules, customer policies, deployment specification, and model matching). Additional tasks are
focusing on fulfilling all software components demands and requirement attributes to offer the
developers the best suitable and effortless integration of those artifacts into their development
system (IDE). Through the versioning concept, components can be reused without any influence
on the further software development of the components themselves. The goal is to optimize the
reuse of software components according to company criteria, and reduce integration and imple-
mentation cost at the same time. The outcome of the semantic mediation process is the solution
model which declares the artifacts that are reusable within a new project. With the implemented
feedback loop, which is part of the QA concept of OBSD, the result is optimized iteratively.

76

As already mentioned, the information mediation process generates a OBSD solution model
in form of an XML file that specifies the reusable artifacts from the component model. An
XML schema is provided to define the XML structure, which can than be used to access the
right components from the repository. The calculated XML can be used to load the identified
reusable components and initialize the roll-out process for the IDEs. The QA process tests the
OBSD solution model if the links to the reusable components repository and the description of
the technical and logical functionality are correctly described. The correct integration of logical
and technical dependencies is a very important task to assure a certain amount of quality. A
repository with all common reusable software components that can be reuse shall be provided
and is not further investigated in the course of this thesis, nevertheless it was used for the case
study to gain information about the advantages and disadvantages of the OBSD. The advantages
of a clear split between design-time and run-time environment are trivial changes of specific set-
tings, different parameters and faster evaluation than within a coupled architecture. The OBSD
monitoring process provides a way to evaluate the solution model (testing coherency and com-
pleteness) before it is rolled-out to the development system. Software architects shall check if
the queried items exist and are correctly linked to the real software artifacts. Any issue is an-
alyzed and wrong behavior is fed back to the OBSD configuration, whereas oversimplification
should be avoided. An in-depth analysis brings redundancies and critical elements within the
solution model to the surface (e.g. wrong domain overlaps, false descriptions, wrong system
behavior, etc). The feedback loop can also go directly to the OBSD modeler to improve the
semantic description.

4.2.3.3 Deployment Phase

The solution model roll-out is deploying the OBSD solution model to all developers. If a de-
veloper uses a special kind of IDE which is not supported by the OBSD solution model roll-out
service (publication/subscription), it can be imported in a manual way. As part of the case study
Eclipse and Visual Studio were used and linked to the reusable components repository. For se-
lecting the queried components, the roll-out service publishes necessary information to select
the correct components from the repository available in the corresponding IDE. A new solution
model is exchanged automatically after major changes in the semantic model description (e.g.
component changes, new components are added, etc). OBSD handles multiple versions of a
solution model concurrently based on the deployment progress of a new version. It is important
to take dependencies into account if different versions of a solution model exist, so that at least
one instance covers the requirements (if possible). By comparing various versions, diversities
can be identified and lead to a required update of the components (e.g. different exchange model
support, etc). To handle those requirements a repository allows tracing back deployments and
provides the configuration settings to switch back to a previous working configuration in case a
rollback from a solution model becomes necessary.

To optimize or solve a problem with a created OBSD solution model the semantic descrip-
tion can be simplified by limiting the domain or software component models used. As a result
only working semantic sub-description can be composed into a bigger description. This was
very important especially for the early development and testing phase of OBSD. The solution
model is the outcome of the semantic mediation process and can be used in a first step within the

77

simulation process to imitate a real world software development environment to proof function-
ality of the IDE plug-in that is used to access the reusable component repository or to improve
the semantic quality that is provided by the OBSD. Simulation offers the possibility to check
the solution model upfront the deployment integration. A regular test regarding coherency and
completeness of the knowledge is done with real data from the repository. Another simulation is
to analyze false OBSD behavior by using reduced sub-description selections to narrow down the
error. The important advantage of this specific strategy is the opportunity to easily adjust minor
configuration settings when the selected input knowledge is smaller. And of course it is a much
fast way to process the semantic mediation and speeds up the evaluation process of the whole
OBSD life-cycle. Meticulous reasoning helps to find bottlenecks and other practicalities within
the the whole process.

4.2.3.4 Quality Assurance

Software development for safety-critical environments requires high standards for quality mea-
surement, Quality of Service (QoS), and auditing. Several Quality Assurance (QA) related steps
are necessary within the OBSD life-cycle to guarantee this (cf. figure 4.2):

• QA 1: The semantic description has to pass semantic validation tests before being handed
over to the semantic mediation process. This includes formal consistency and validation
checks of the models. In case of an inconsistency error, messages are created which
than shall be edited by the model owners in an semi-automatic way to update the models
accordingly.

• QA 2: Another QA check is performed after the semantic mediation process has calcu-
lated a solution model. The generated model has to pass again some validation tests (e.g.
if there is one valid component matching with the requirements at all, otherwise minimize
the requirements to detect at least some overlapping parts). Issues or problems are re-
ported back and used to improve the configuration of the semantic mediation process led
by the OBSD architect.

• QA 3: During the simulation process the compiled solution model and its selected set
of reusable components from the component repository can be tested in a test developer
environment before the actual roll-out where the actual software developer get there hands
on the results of the OBSD system. Performance values are monitored which may lead to
changes of the configuration of the semantic mediation model or to improvements of the
semantic description to minimize the gap between the knowledge description and the real
development process.

• QA 4: The values measured by the simulation and monitoring process are categorized
by the QA process and forwarded either to improve the quality of the solution model, the
mediation process or the semantic description.

78

4.3 Ontology-Based Software Development Processes

The OBSD processes can be divided into three main ones, the production of the semantic de-
scription, the identification of reusable components using the mediation process, and the creation
of the solution model. This section discloses those processes including a definition of the re-
quired experts involved. Each process step originating the semantic description and the solution
model is explained in detail from a process-oriented view. In the first subsection the semantic
description origination process is characterized. The second subsection provides insight on the
solution model origination process identifying possible software components during the seman-
tic mediation. The pre-conditions to initialize the OBSD processes are an accessible repository
with the reusable software component, an semantic interface defined to access the knowledge in
the semantic description, and experts available to perform the manual parts. Finally responsibil-
ities and roles are outlined in detail.

4.3.1 Semantic Description Origination

Figure 4.3 gives an overview of the semantic description process. The sub-processes involved,
the knowledge that is built, and the experts involved are described below in detail:

1. First step is to construct the domain information model, consisting of various ontolo-
gies from ATM sub-domains. This task is accomplished by modeler experts in a joint
undertaking with domain experts to capture the knowledge. Together they build a board
of experts and are the owner of this process. They discuss which information should be
added, updated or deleted from the model. But not everything is built from scratch, a lot
of existing ontologies were taken on board or exchange models were converted into an
ontology with minor changes (cf. subsection 4.4.1).

2. A group of software architects together with a model expert built the semantic concepts
behind the software component model. Together they build a board of experts and are
the owner of this process. They discuss which information should be added, updated or
deleted from the model. All relevant software artifacts that are planed for reuse have
to be modeled. This includes the provided and/or consumed message type, the send-
ing/receiving frequency, and the type of the service (e.g., request/reply), etc. For more
details see subsection 4.4.2 which defines what is meant be the term “component” and
which substructures were captured.

3. The operational requirements are captured as additional ontologies to the existing mod-
els. Subject-matter experts own this task, which is iterative for each model of the semantic
description.

4. In an iterative way, while modeling the semantic description, the ontologies are checked
regarding their completeness based on configuration criteria (e.g. to remove conflicting or
redundant information) to support the reasoning processes. Additionally ontology consis-
tency checks are executed to ensure a certain amount of quality in the description of the
semantic knowledge (cf. subsection 4.4.5). Last step of the quality assurance process

79

is to perform the repository synchronization check. For each software component in the
model there should be at least one code artifact in the reusable software repository. This is
an automatic sub-process to prove the reciprocal existent of the semantic description and
its linked, real software equivalent.

4.3.2 Semantic Mediation

1. Global model restriction rules have to be defined in order to apply certain dependencies
and restrictions for the specific model (e.g. a specific exchange model format which is only
valid in certain components). The group of domain and component experts are responsible
for those rules.

2. The customer policies in form of queries have to be defined to cover the specific poli-
cies and needs of the customer. The policies specify the phrased attributes and customer
requirements in order to select the right choice of reusable software components.

3. For each OBSD project a semantic sub-description is produced. Such a subset of the
semantic description is an alignment of the needed ontologies extracted from the domain
information model and the software component description taken from the corresponding
model (cf. subsection 4.5.1). In combination with the related rules, requirements and poli-
cies another round of consistency checks are performed on the semantic sub-description.

4. A further step is the alignment and mapping of the program artifact concepts described in
the software components model with the reciprocal domain information ontologies. On-
tology mapping can be a very tricky and fussy especially in the initial phases of OBSD,
as a result the domain and software experts support this task (cf. section 4.5). The last
step of this process is the filtering of redundancies or collaboration errors. In addition,
available global rules and policies are applied.

5. The last step is to perform the quality assurance process by a group of experts to review
the ontologies. Hereby the definitions and matches are checked if they are semantically
valid. Especially the mapping between the domain information model and the software
component model is in the focus of this quality check (cf. subsection 4.2.3.4). Last but
not least the consistency of the ontologies is proven again after the mapping process.

4.3.3 Solution Model Deployment

1. The solution model deployment process begins with the solution model origination,
which defines a set software components that shall be reused with the started project, se-
lected through the processes executed before. The identification process of these reusable
components fetches all possible matched regarding the requirements, rules, and policies
(cf. subsection 4.2.3.3.

2. Simulation is performed in order to improve the solution model deployment. The process
is running in a virtual machine and is a 1:1 copy of real world IDE setup and can be run
to improve, test and upgrade the current solution.

80

3. The solution model provides an XML document specifying possible reusable components.
This list of software components is loaded into the IDE through an plug-in install.

4. For every component concept, the particular reusable software component code seg-
ments are imported for further processing from the repository that is available within the
IDE. Therefore every possible component selected is checked if it exists in the repository.

5. The developers can now select those elements, preview them and then select which one
of them they want to use within the new project. In addition the developer can submit
bug-fixes, improvements and extension to the specific component. New versions are sub-
mitted to the reusable software component repository and after a successful review OBSD
processes can start from the beginning to capture the new available knowledge.

6. As part of the feedback loop often reusable software components were requested but don’t
exist are noted for further investigation and can be used in a process out of the OBSD life-
cycle.

 Quality Assurance Expert

 Software & Domain Experts

Architect &
Administrator

Architect, Developer

 Quality Assurance Expert

 Quality Assurance Expert

 Software & Domain Experts

Reusable Component Board

Domain Information Board

Software Information Model

Domain Information Model

Define Global Restriction Rules

Semantic description of domain

concepts e.g. Aerodrome, Notice to

Airmen, Briefing, etc.

Define Operational Requirements

Define Customer Policies & Rules Perform Ontology Mapping

Perform Quality Assurance

Semantic Sub-description

Quality Assurance Process

Solution Model Origination

Reusable Component Selection

Feedback

Class description of components

and services e.g. Aerodrome Map,

Digital Briefing, AIXM Mapper, etc.

Clarify the set of scope for rules

and policies.

Quality Assurance checks knowledge
completeness and consistency and the

links to the repository.

Figure 4.3: Overview about the whole OBSD processes.

81

4.3.4 Roles and Responsibilities

During the OBSD life-cycle many roles with various responsibilities are required by the different
processes mentioned in the sections above.

The Data Modeler is responsible for the organization of the knowledge models. He manages
the right modularization of the ontologies, the versioning, refinement, and the consistency of the
models described in section 4.4. The data modeler supports the work of the domain information
expert and the software component expert and is member of the domain information board.

Each domain concept has its lead expert that works together with the data modeler. The
Domain Information Expert is the primary source of knowledge for the specific domain, man-
ages the domain ontologies, and integrates the operational requirements and concepts into the
domain information model (cf. subsection 4.4.1). On request he can coordinate the software
component expert in regards of the semantic description and possible selected sub-description.
Board approved changes have to be assessed and conducted by the domain information expert.
He is also member of the domain information board.

The Software Component Expert has the responsibility for the software component model.
He is the key source about functionality, architecture, and use of a components selected by
the board to be reusable. The expert delivers information about the technical interface of a
component and the data exchanged. Information about quality of service, quality and security
test, and a basic understanding of the operational use-cases are necessary. He is member of the
reusable components board.

The Quality Assurance Expert is accountable for quality measurement, Quality of Service
(QoS), and auditing (cf. subsection 4.2.3.4). He is the supervisor of all OBSD processes de-
scribed in section 4.3, the documentation and he checks the completeness and persistence of the
semantic description. As member of all boards he ensures that all processes, simulations, and
monitoring are performed correctly.

The OBSD Architect contributes knowledge about semantics and ontology management in
general. As such he is responsible for the maintenance and evolution of the core architecture of
the OBSD-based methodology (life-cycle and processes).

The Administrator has knowledge about information exchanged, the operational use-cases,
and the OBSD architecture to supervise the whole OBSD life-cycle. He steers all the mentioned
experts from above, is in a close cooperation with the architect, and is member of all boards.

The Domain Information Board consists of a group of experts i.e. data modeler, domain
information expert, QA expert, and administrator. The board is the owner of the domain in-
formation model and responsible for the domain concepts that are captured. Changes, updates,
deletions, etc. have to be approved by the board and redirected to the appropriate expert to deal
with it.

The Reusable Components Board is the owner of the reusable components model and
decides which components are taken on-board of the reusable repository and will be modeled
as an ontology, and which are not. As mentioned before not only technical but also political
interests can be the foundation of such a decision. Members of the board are software component
experts, data modeler, senior lead architects (non OBSD role), QA expert, and the administrator.

82

4.4 Ontology Management

This section outlines the key principles used to design the OBSD ontologies. The modular design
is based on the concept of Thomas Gruber following the minimal ontological commitment to
support the knowledge base in an adequate way [Gruber, 1995]. The ontology profiles define
just as many statements as really needed to enable the instantiation and specialization of the
ontology itself. As most of the Semantic Web languages discussed in subsection 2.4.1 OWL
offers a native way to extend the vocabulary to reach the goal of minimal commitment. This
possibility was used within OBSD to change OWL properties and those link properties with
specific formal axioms. The minimal ontological commitment approach also allows the reuse
of the ontologies themselves between different domains. The semantic description is part of the
logical layout of OBSD and contains all available information about the software components
captured in the software component model and the behavior of the domain described in the
domain information model. Ontology-based technologies are used for acquiring and storing
the semantic description. The reasons for using ontologies are to make OBSD information
machine process-able and to provide a knowledge resource that maps this specific information
from different sources. Chosen tools and standards are described in chapter 2 and support the
collection and processing of the required information. In order to meet the challenges of OBSD
Protégé was selected as main ontology tool. As mentioned earlier within this thesis the chosen
ontology environments were extended or tailored (e.g. Protégé with OWL, SWRL and SQWRL
support) to meet the requirements of OBSD. Existing extension mechanisms (e.g. the SWRL
Built-in Bridge) are sometimes insufficient for the needs of this thesis. In such a case, for the
OBSD methodology, ontologies and rule language were extended or adopted.

One of the challenges in today’s integration projects is to extract the required information
from the available documentation to create a ontology model that can serve as baseline for sub-
sequent implementation. In this context the following requirements emerge:

• Completeness and consistency: Creating a semantic model for an integration project
is a complex and error-prone process. Logical additional deducible facts from already
available information need to be derived from OBSD automatically to avoid duplication
of work. This includes the UML/XML import of existing and already standardized data
models like AIXM, WXXM, FIXM, and information or service models like AIRM and
ISRM (cf. [Reiss et al., 2006], [Jie-ning et al., 2009], or [Keller, 2016]).

• Maintainability: The format needs to be adapted to changing requirements during life-
cycle of an integration solution. If new components are developed or information elements
are added or updated, OBSD must support adapting the elements, new features, etc. into
the semantic models. Versioning of the gained semantic knowledge is an essential feature
of OBSD.

• Machine readability: Once the semantic description is available, the mapped elements
appear in a format that can be processed by algorithms to create a solution model. Further
the context of the ontology model must allow the algorithm to produce human readable
warnings or error messages.

83

Another important part is that the OBSD semantic interface that interacts with the semantic
description and allows accessing and manipulating the information stored there. The semantic
mediation process retrieves data from the semantic description by using this API when gener-
ating the solution model. Algorithms are used to build and validate the semantic description.
The solution model contains all available software components in a repository ready to use for
the development system (cf. section 4.1). It is generated during design-time by processing the
information of the semantic description through the semantic mediation in an iterative process.
The complete solution model can be checked against an existing solution in a simulation en-
vironment. A test bed built up by information gained from the domain information model and
from monitoring data of the component model. The roll-out of the solution model for software
developers requires a set of algorithms/rules and will than be loaded plugged into an IDE ready-
to-use in a development project. A representation of an ontology model that satisfies these three
requirements is the so-called semantic description as mentioned before. Ontologies represent
information in a semantic description with the following data:

• Concepts: To collect and process data, predefined structures must be established to store
the relevant information. First, concepts are defined as basic entities of the system. Ex-
amples for OBSD concepts are data structures, or software components including classes
and their payload and attributes.

• Hierarchy of concepts: Concepts are arranged in a hierarchy. Examples for a hierarchy
are consumer- and provider-services that share properties of the superior concept service
(e.g. ISRM service catalogue and its sub-subsidiary services, object-oriented software
design, or the information hierarchies used in the AIRM).

• Relation of concepts: Relations between single concepts are called properties. An exam-
ple of a relation is a specific service with data model elements. Relations can be expressed
between concepts or individuals (instances).

• Hierarchy of relations: Like concepts, relations can be arranged in hierarchies inheriting
properties from superior relations. The concept of hierarchies is essential for OBSD as it
allows to identify reusable components and for each part its sub-components.

• Instances: Instances are the actual representatives of concepts. The above entities (con-
cepts, hierarchy of concepts, relations and hierarchy of relations) form a structure (or
vocabulary) that is filled with the names and types existent in the system. Orders, product
descriptions or status information are examples for the reusable component concept.

• Relation of instances: Instances of a specific concept are interconnected by property
instances. However, it is not necessary that predicates always link instances of concepts,
i.e. the object of the S-P-O triple can also be an enumeration of property values, a string
or an integer.

Protégé is the ontological editor selected for this thesis (cf. 2.4.2.1) as it offers back-ends
for UML classes and their relations using the standard UML and XMI format that is compliant
with the Protégé Meta-Object Facility (MOF) meta-model. Since it does not load the model with

84

extensions like a UML profile, Protégé is not importing map class relations like associations. Its
nontrivial architecture allows easy-to-use extensibility of third-party components. Some of these
provide interfaces to other ontology-based tools as mentioned in subsection 2.4.2, 2.4.3, and
2.4.4. Many of those support various ontology languages like RDFS, OWL, DAML+OIL, OIL
or XML. Protégé is based on the MOF meta-model, which is expansible and offers the ability to
implement own extensions and meta-modeling concepts by adding knowledge primitives.

The right modularization of an ontology is a very important point. An ontology does not con-
tain necessarily all information but can be split up into multiple ontologies (which is the case for
OBSD) referencing and inheriting properties from other ontologies to capture all the important
knowledge. Therefore, the information to describe a OBSD project is divided into the domain
information layer, the software components layer, and the operational requirements layer as de-
picted in table 4.1. The domain information layer consists of different ontology models. Richard
Keller, chief scientist for Information Management Technologies within the Intelligent Systems
Division at NASA presented a good overview about resent use cases for ontologies relevant to
aviation information management and summarized state-of-the-art semantic prototypes [Keller,
2016]. The AIRM (cf. subsection 3.4.1) was used as baseline for building those ontologies. The
software components related information is also split up in a hierarchy of ontologies clustered
by components, services, objects and the transported payload (which is than the major link to
merge them with the domain related information. Operational and business requirements map
the proprietary information, which is defined by a set of rules to the standardized information
in order to ensure interoperability between reusable components. Compiling the requirement
rules on the merged ontologies from the domain information model with the ontologies from
the software component model creates the solution model which is a list of reusable compo-
nents. Building the semantic description for a specific scenario, a subset of needed ontologies
is chosen. Instead of conventional key-value pairs, information in ontologies is stored in triples
and follows the RDF/OWL standard, which specifies an XML serialization form to provide
machine-readable information. To build up the complete information about an OBSD system
based on ontology schemata, the semantic editor Protégé is used to assist the data input process.
In the course of data input, a user gets feedback about the completeness and consistency of the
data. The problem of inconsistency can arise in situations where two ontology schemata define
the same information. The semantic editor provides mechanisms to identify those conflicting
statements. The OWL format allows visualization using a graph for maintenance [Lanzenberger
et al., 2009b].

In addition, modularization enables maintenance of the ontologies at an acceptable level.
Other performance issues can rise during the modeling, query, reasoning, and visualization pro-
cess. This already was addressed in chapter 2 as current reasoners are handling small ontologies
quite well but almost collapse on large scale ontologies. To keep up the performance, ontologies
shall be small and modular by building such slighter subsets. Querying just on a small number
of ontology subsets boost up the calculation time. Modularity is also a mechanism to enable
reusability and compact subsets increase the chance of reuse. OBSD is described by a set of
ontologies filled with information from the software component model and domain information
model. To describe various aspects of an integration environment (i.e. different scenarios) there
exist multiple versions of ontologies (ontology schemata) at each OBSD layer. All these on-

85

tologies together are forming the so-called semantic description. Dependent on the goal for an
integration scenario (e.g. remodeling of OBSD during maintenance, or additional components
added), the ontologies are chosen from there. By the semantic editor, the subset of ontologies
is validated and missing or incomplete statements are edited. Having the ontology schemata
available, the documentation is generated considering the expectations of all stakeholders. The
information stored in ontology models is described in detail in the following subsections.

4.4.1 Domain Information Model

The domain information model of the OBSD methodology is based on the data and information
models outlined in section 3.4. The model includes the main knowledge of a specific domain
exchanged between different SWIM stakeholders. It represents a collaborative view on the ex-
changed data. To capture the logic in a precise way it is necessary to come up with a hierarchical
structure having multiple domain ontologies which are all part of the domain information model.
In addition, the domain ontologies are the place to model standardized, domain specific, infor-
mation. All information of a particular domain required in a OBSD-based scenario is described
as part of one or more domain ontologies. This includes, among others, the different concepts
of the domain and their intra-domain relationships, the description of standards of the domain
as well as the definition of the relevant data types and services. This is achieved by adding indi-
viduals of domain concepts that are referenced by a defined component. The domain concepts
may or may not be arranged in a hierarchical way, like the concept flight related weather data
may define a number of sub concepts like aircraft relevant meteorological data. In addition, the
domain may specify a predefined set of data elements. This domain specific knowledge is used
to identify semantic redundant information provided or consumed by any software component.
The identification of possible reusable software components is made possible by extracting the
semantic overlapping and identical knowledge of the OBSD ontologies in combination with the
rules created from the requirement specification. As a result it is possible to detect semantic
redundant information even if identifiers, format, or structure are different. This generic con-
cept allows the reuse of components in a domain independent way. The area specific knowledge
described in the domain ontology simplifies the identification of reusable parts by semantically
connecting the domain with the software components information query them based on the re-
quirements.

The essential part of the information domain model is coming from the AIRM, especially
the knowledge of existing standardized information exchange models [Burgstaller et al., 2015].
The three main data models where also the first OBSD ontologies model, beginning with the
weather, aeronautical, and flight related information. The domain information models tried to
cover spatial representation, aviation equipment, flight and airport constrains, airspace infras-
tructure, ATM meteorology, flight and navigation relevant information. The OBSD sub-domains
are defined by adding individuals to the concepts of the respective ontology, describing the par-
ticular data elements used. It is important to note that the borders between different domain
ontologies are not set in stone, moreover they are based on the scenario and the selected informa-
tion elements (e.g. some parts of the flight ontology can be transferred to the weather ontology
and back forth). This allows an evolution of concepts as the number of reusable ontologies will
grow and extensions and updates will change the domain ontology. A group of domain experts

86

is responsible for QA and advancement of the domain model and its ontologies, and the group
is responsible for this evolution process, too. It is very important to establish such a domain
information board to undermine proliferation (cf. subsection 4.3.4). This can easily lead to huge
waste of effort building and modeling ontologies of various existing standards, some might are
overlapping, which then end in an overwhelming diversity that can not be handled at all. The
ATM related case study is a grateful scenario as the safety critical environment is first of all not
evolving very quickly and secondly has already a standardized data models in a structured way
which allows a smooth transition of the knowledge into ontologies.

Figure 4.4: AIRM information model example transformed into an OWL ontology.

As initial load parts of the AIRM information model and the AIRM consolidated logical data
model was loaded into the OBSD domain information model. The meteorological related part
was used for the weather ontology which is based on WXXM/IWXXM parts of the AIRM (cf.
subsection 3.4.5). Another one is capturing aeronautical information based on AIXM related
parts of the AIRM (cf. subsection 3.4.4). Flight related information was captured mainly on the
information elements described in the AIRM which is based on FIXM. For future work it is also
planned to have an ontology dealing with environmental information. The AIRM information
model currently is entity based. The reason is that the UML notation of the information model is
best suited to provide the semantic underpinning of technical data structures. However, the op-
erational discourse proceeds in plain language sentences. Consequently, the information model
should be able to provide a bridge between natural operational language and the information and
service modeling domain. This allows modelers to extract full statements from the operational
discourse and cast them into a UML format (cf. figure 4.4). Reversing this process, subsets of the
AIRM information model are extracted into RDF/OWL triples (cf. subsection 2.4.1.3). These

87

are used for the validation of the model by operational experts in a first step. In a further step this
extraction is automated by a script. It is then used to map it against the component ontology (cf.
section 4.2 and subsection 4.4.1). The restriction to a subset of OWL implies also that the AIRM
does not attempt to be a full ontology model itself. Rather it provides a repository of standard-
ized resources to be used in domain specific ATM ontology models derived from the AIRM (cf.
subsection 3.4.4 and 3.4.5). The AIRM information model remains to be a formally consistent
UML model and so fully usable in the technical domain. The proposed NATO extensions to the
NOV-7 information model could be accommodated within NAF boundaries. Modeling rules for
the use of OWL stereotypes and the AIRM name-space are defined (i.e. definition of the AIRM
URI as AIRM unique name). In addition rules and practices are defined for resolving the URIs
of the OWL elements to resources.

4.4.1.1 Classes, Properties and Specialization

Any information model class may be stereotyped as an rdfsClass or owlClass. If an
information model class is stereotyped as a rdfsClass its definition is available in the “notes”
property, and the following RDF triple (i.e. statement in the operational language) is valid:

airm:imClass.name rdfs:isDefinedBy airm:imClass.Note

Information model class attributes may not be stereotyped as an rdfProperty. Infor-
mation model class roles may be stereotyped as an rdfProperty or owlProperty. In
this case both entities connected by the associations shall be stereotyped as rdfsClass or
owlClass and the name of the property shall be an active verb. If relatesTo is a role of
class imClass1 in imClass2, the following RDF triple (statement) is valid:

airm:imClass1 airm:relatesTo airm:imClass2

Modelling OWL/RDF stereotypes allows distinguishing “nouns” and “verbs” in UML class
diagrams in a well-defined formalism. It thus combines the advantages of the existing solu-
tions discussed above simple solution approaches with the use of an established standard. If two
classes stereotyped as rdfsClass are related by a UML::Generalization, this general-
ization is implicitly typed as rfdsSubClassOf. To illustrate this claim the rules stated above
are applied to figure 4.4, representing the statements presented in table 4.3.

4.4.2 Software Components Model

Per definition an OBSD software component wraps a group of functions or data elements to
implement a particular functionality. It is structured in a modular way and usually packaged
to be easily integrated. A component per definition can be a software package, a service or a
trivial software module [Caldiera and Basili, 1991]. Since a service can be made up of a number
of components it is a special form also captured in the software components model. Generic
components can be reused almost without effort, specific ones most of the time only suit to
particular systems. The communication between such software components is enabled through
interfaces allowing the encapsulated modules to interact 3.3. According to [Sametinger, 1997],

88

“Components are artifacts that we clearly identify in our software systems. They
have an interface, encapsulate internal details and are documented separately”.

The software components model describes all available software services, components, and
data elements of existing applications and products that shall be reused. Software components
cannot be defined on the basis of a particular programming language or technology [Szyper-
ski, 2002]. It is important in which manner the component will be used. Also essential is the
context and the composition without any adaptions [Hamlet, 2010]. The software components
model describes how components interact, how they can be composed, and which payload will
be exchanged. Similar to the domain information model a group of experts are formed to a
governance board (e.g. senior and lead software architects). The board has to provide the infor-
mation needed for the description of the software components and act as a change control board
with the power to vote about updating, adding or deleting components within the model. The
experts are the primary source of information about functionality, architecture, and use of the
applications. They are also able to provide information about the technical interface of the ap-
plication. If software components are added or changed, through the semantic mediation a new
solution model can be deployed. The change control board has the significant but nontrivial task
to decided which software components shall be reused. This is sometimes, from a management
perspective, a high level decision which is influenced by political and company-wide strategies
and not only based on technology and standards. Following elements have to be provided by the
software components model:

• Services: Each related component is associated to one or more services. A service can be
seen as OBSD component when it is encapsulated enough to allow a reuse.

• Software Components: Each component within one or more designated domain areas
needs to be specified. This does not necessarily mean that each class within the component
is reused, but for reasoning a reusable component, the semantic mediation requires to have
knowledge of the complete product/application portfolio.

• Payload: The physical content provided via a service and process by a software compo-
nent including their attributes. Often described within a standardized data model.

Table 4.3: RDF/OWL statements of an imported AIRM class .

89

The software components model is designed in a domain independent way, supporting a
usage across various domains. This persuasive mechanism provides an agile way for the reuse
of code domain independent. The reusable software ontologies are merged together with the
OBSD methodology into the so called semantic description (cf. section 4.5). The elements in
the software components model are described in an conceptual way to enable the probability of
the use of the reusable software ontologies of the model in different domains (e.g., an instance
of a IWXXM/WXXM data mapper component can either be used in a weather related or an
aeronautical project). Since the software components model contains a considerable number of
concepts, it is useful to group these concepts into functional elements. The following subsections
describe the functional segments for reusable component concepts, general service and data
concepts, software classes, and data elements in a generic way. The partition of the software
components model allows better visualization of the components. Each concept in the reusable
software ontology is defined using a URI. This URI is used for accessing, querying or filtering
a specific component by a rule-set. To improve human legibility of the ontology, the URIs
semantically identify the components they are part of, using a human-readable notation. The
concepts of this segment of the software components model describe the individual reusable
components of the OBSD-based approach.

4.4.2.1 Software Component Ontologies

A software component denotes a software package, a module, or complex service which in
itself can have multiple components that encapsulates a set of related data elements or functions
cf. [Hamza, 2009] and [AL-Badareen et al., 2011]. For example a service to convert or map data
elements, a GIS module, or an aerodrome map package consist of objects which are an instance
of a class. Each service has one or more components (e.g. AMDB, DigitalBriefing), but at least
one single component is part of the service, even the service itself is one. The ontology-based
description of the case study follows the SOA and SWIM principals, whereby a service can
be a specific component and subsequently acquire additional characteristics beyond that of a
common component.

The advantage of reusable software components is, that they can be replaced as long as the
requirements are fulfilled. Another component may use other algorithms/functions or add addi-
tional features but as long as the payload exchanged via the interfaces is the same as of the initial
component it can be replaced. This allows updating components to support newer standards or
using alternative versions if the successor component does not fulfill the needs. This is sup-
ported as different ontology versions are possible, find a detailed description in subsection 4.4.3.
Software components also refer to one or more specific domain concepts. A domain concept is
a semantic representation of the knowledge of a certain domain described in the domain infor-
mation model. Each software component has to be mapped to one or more appropriate domain
concept, in order to allow automatic identification of possible reuse and further use in an IDE.
It captures if any legacy applications are required by a specific software component. A legacy
application is an isolated application or system that has to be integrated to run the software com-
ponent. These applications may already communicate in various aspects with other entities out
of the scope of the OBSD components, but are identified to provide the full potential of inte-
gration. By using OBSD as integration platform, the full potential of the software components

90

can be unleashed. Every component has a unique name and can provide a service. A logical
domain contains a number of components. This domain is used for modeling common physical
or logical relations of components. Every logical domain has a unique name and contains at
least one component. For more details on the mediation process see section 4.2.3.2.

As described in subsection 3.4.5 IWXXM/WXXM as part of the AIRM was used as base-
line for the meteorological ontology of the domain information model. On the counterpart the
software components model contains a weather message mapper between different versions of
IWXXM/WXXM. This is one of the cases were a software component has a fixed constraint to
a domain. Figure 4.5 shows an example of the weather message mapper component which leads
to a more complex ontology schema describing a short and long format of weather data. While
the short format only contains the weather data as text summary (Payload_1 includes the class
Segment_Summary), the long format additionally contains a satellite picture (Payload_2
includes the classes Segment_Summary and Segment_Photo). This particular weather in-
formation element is a good example how easy overlapping parts can be mixed up. Through an
upgrade of the related weather exchange model version the container-file was changed but not
the structure of the information itself. The only difference was to store the same information in a
XML-file that is standardized. With the OBSD methodology this element can still be identified
as reusable with some integration effort needed, in this particular case to convert the message
into a XML-file.

Figure 4.5: Weather data description using ontologies.

91

4.4.2.2 Services Ontology

The ontology concepts of services described in the software components model inherit the tax-
onomy of services in a service-oriented architecture manner. The concepts describe the services
and also their relations to other ontologies of the software components model. For the case
study the description follows the rules that are used to model the ISRM (cf. chapter 3). The
concepts for classes and payload are described in the next section. A service is most of the
time the communication part and consists of software components, either providing or consum-
ing information elements. Each service is connected to one or many components in the OBSD
ontology, and a number of different services may be connected to the same software compo-
nents. A service provides or consumes a specific type of a message. Additional requirements
for the collaboration with a certain service can be defined using a service contract consisting of
obligatory attributes, for example the secure transportation of a message type. Furthermore, the
type of a service is modeled. In the OBSD ontology four basic types of services are modeled
(this can be extended at any time). It is either a provider or a consumer service. The basic
types can be modeled as synchronous services (e.g. a service for publication, or a service for
subscription). The service description contains a clear and comprehensive definition including a
technology agnostic model derived form the ISRM. The ISRM contains a set of SWIM enabled
services developed during SESAR which fit perfectly into the service ontology of the software
components model. The service definition represents the semantic description which assists the
progress of service mediation and consistency checking of an enterprise architecture. In addition
the service description covers non-functional requirements like accessibility, availability, com-
pliance, performance, duration, etc. The service specification further consists of a link to the
different domain information models to identify what payload the service processes and which
information it references that is owned by other services. This information is necessary to select
the right reusable components by querying with the specific requirement rules.

4.4.2.3 Payload Ontology

Reusable software components encapsulate data elements and algorithms processing these ele-
ments. As objects are created as an instance of the class by the constructor, classes and there in-
stances including the specific object variables and implementations of behavior (attributes, mem-
ber functions, methods) are modeled. As the idea of reusable components build up on the idea
of SOA and related software design patterns, it claims that software components can ultimately
be made interchangeable and reliable. The physical payload is important to be described to ei-
ther link the payload elements to a specific exchange standard (e.g. FIXM, IWXXM/WXXM,
AIXM, etc.) when modeled or to state the related domain. The AIXM standard UML meta-
model was loaded into Protégé including the model description as UML XMI to support various
aeronautical services. For example, service messages are indicated through their operation pa-
rameters and the ontologies capture their structure and actual information content. Specifically
the defined data type in the various ATM exchange models is a projection of an AIRM class to
the single attribute designator. The related AIRM entity is an added part of the domain informa-
tion model to allow back-tracing. The merge of software components and domain information
concepts is one of the most important features that the OBSD methodology offers.

92

4.4.3 Ontology Versioning

This subsection describes the versioning and refinement of the OBSD ontology models. Since
information models and software components evolve over time it is improvement to support
the life-cycle of a software product but also various versions of standardized exchange models.
Therefore OBSD allows to adapt and refine the modeled ontologies. They are versioned and al-
low backward compatibility with older versions of OBSD ontologies. This makes maintenance
and refinement possible without touching previous models. There are nice side effects, like the
possibility for the developers to query for backward compatibility software components which
is a not foreseen feature of OBSD (e.g. mapper or parser after a data model update). The ex-
ample in subsection 4.4.2.1 shows the need of multiple ontology versions for one component.
But also other domain information or software components ontologies should exist to support
the different needs of customer requirements. Therefore different versions of the knowledge
described should be captured by the semantic models. In order to support backward compati-
bility, the old version of the domain ontology has to be stored. Multiple versions of either the
software components model or the domain information model can be consolidated and some
may not be compatible with others. A new version may capture statements which are in conflict
with old ones. To check the interoperability of the new version all subsets of a single ontology
have to be processed manually, which is a time consuming task. It can happen that two versions
of an ontology evolve in contrary directions and therefore cannot be consolidated. For the pro-
duction of the solution model the semantic sub-description is used by the semantic mediation,
whereas the versioning effects the OBSD during design-time only (cf. figure 4.1). Inside an
owl:Ontology element the owl:versionInfo tag defines the version of a specific ontol-
ogy. It is possible to keep different versions for classes, properties, and even for individuals.
The tags owl:incompatibleWith and owl:backwardCompatibleWith show if an
ontology is backward compatible or incompatible with another ontology version. It can also be
referenced to a prior version through the owl:priorVersion tag. For more details have a
look into the OWL guide by [Smith et al., 2004]. See an example for OWL versioning below:

<owl:Ontology rdf:about="">
<owl:versionInfo>3.0</owl:versionInfo>
<rdfs:comment>Weather Domain Ontology</rdfs:comment>
<owl:priorVersion rdf:resource=”OBSD/DomainModel/Weather_2.3”/>
<owl:backwardCompatibleWith rdf:resource=”OBSD/DomainModel/Weather_2.0”/>
<owl:incompatibleWith rdf:resource=”OBSD/DomainModel/Weather_1.9”/>

</owl:Ontology>

Algorithm 4.1: Example for OWL versioning.

One important feature of versioning is to deprecate a class, a property, or a concept by
using the affiliated tags owl:DeprecatedClass, owl:DeprecatedProperty, or the
owl:DeprecatedConcept tag. This is needed when new or updated elements are modeled
and the related or old ones have to exist further to allow backward compatibility. A domain
expert or software architect can then identify the need of mapping individuals of the existing
concepts to the new ones for upcoming release.

With Protégé or any other semantic editors the compatibility of various versions can be

93

<owl:Ontology rdf:about="">
<owl:versionInfo>1.3</owl:versionInfo>
<rdfs:comment>Airport Ontology</rdfs:comment>
<owl:backwardCompatibleWith rdf:resource="OBSD/DomainModel/airport_1.2"/>
<owl:priorVersion rdf:resource="OBSD/DomainModel/airport_1.2"/>

</owl:Ontology>

<owl:DeprecatedClass rdf:ID="Airport">
<rdfs:comment>Changed to Aerodrome consisting an Airport & Heliport</rdfs:comment>
<owl:equivalentClass rdf:resource="#Aerodrome"/>

</owl:DeprecatedClass>

<owl:Class rdf:ID="Aerodrome"/>

<owl:DeprecatedProperty rdf:ID="Runways">
<rdfs:comment>inverse property hasRunway is now preferred</rdfs:comment>
<owl:inverseOf rdf:resource="#hasRunway"/>

</owl:DeprecatedProperty>

<owl:ObjectProperty rdf:ID="hasRunways"/>

Algorithm 4.2: Example for deprecation in OWL.

checked during design-time. The sub-description with the current ontology version is loaded
and replaced with the new version in the editor. Protégé shows any issues or problems which
may occur in case of nonexistent concepts, mismatched individuals, or other incompatibilities. If
this is the case the responsible expert shall update the model accordingly to assure compatibility,
either between the old and the new version in case the old one is used to trace the backward
compatibility, or to release a new major version.

4.4.4 Ontology Refinement

The deletion of redundancies or other anomalies is the main goal of ontology refinement. The
aim is to reduce deficiencies without changing the semantics, which means that the captured
knowledge shall be the same but the design should be better. This task takes place at OBSD
design-time and is performed if a new version of an ontology is introduced. Improvements and
better design can be discovered with semi-automatic processes executed in the semantic editor,
in review sessions of the expert board, or during reviews of the ontologies by the corresponding
expert. A refined ontology gets versioned even though it is just a change of the syntax. Unused
classes are the best example of elements that are adjusted during the ontology refinement. Such
classes occur after merging ontologies that may capture unused elements cf. [Baumeister and
Seipel, 2010]. If no rule, policy, etc. uses this class and it has no inheritances, it may is unused.
This can also happen when either a more specific definition or, on the other hand a more generic
concepts, is merged. To identify if the specific class is the leaf in the hierarchy, Protégé is
used. If the class has no individuals, it can be deleted as such within the semantic editor. Since
unused classes come to light after a merge of ontologies, the refinement task takes place after
the semantic sub-description. The elimination of such classes should be proceeded with proper
responsibility of the other ontologies, which are aligned with the ontology to be refined.

As outcome of the ontology integration task, isolated and disarranged classes and other

94

anomalies can appear cf. [Baumeister and Seipel, 2010]. Such classes also appear after manual
adjustment of ontologies (i.e. displacing the class into another stream without the consecutive
rework of the disjoint relations), especially if the class itself is not disjoint with any of its siblings,
but has disarranged relations to a set of classes that are common relatives in another trees of the
semantic description. Like unused classes, isolated and disarranged classes can be discovered
with Protégé in a manual way. To resolve the problem, the disarranged property shall be removed
from the isolated class.

Overdefined properties are another issue that occurs during the ontology refinement task.
The data modeler or corresponding expert may define a weather related value in the property of a
class too specific (i.e. WindSpeed = {0,1,2,3,4,5,6,7,8,9,10,11,12} according
to the Beaufort scale). While creating the semantic description it turns out that it is not practi-
cable and a more flexible way would be WindSpeed = {speed, speedVariesFrom,
speedVariesTo} as specified by WXXM. Global rules can be defined to identify properties
containing such design values and highlight them. Generic value groups which define value
ranges, can be designed to be reused in other concepts. Another way to prevent such misdesigns
is to use the common value classes defined in the AIRM which already delivers well structured
generic values, which then can be reused.

Repetitious or unnecessary relations arise when overlapping parts are integrated which have
redundant information. If a segregation is only possible by the definition name itself, a class
or rule is identical. These issues are either human made or be part of a merging process of
ontologies. The refinement task has specific rules implemented to highlight them for manual
inspection. Anomalous inheritances may nest in a series of degenerated concepts which are just
referencing themselves but are not used elsewhereC1 is−a C2 is−a ... is−a Cn cf. [Baumeister
and Seipel, 2010]. If this is the case, those hierarchical series most of the time can be deleted by
decrease the intermediate concepts, which are not needed.

4.4.5 Ontology Consistency

During the ontology modeling phase several checks regarding completeness and consistency are
performed. Most of the classification and consistency tests are accomplished with the Protégé
plug-in Hermit (cf. subsection 2.4.3.4). As shown in section 4.3 the consistency is tested after a
specific ontology is built and after the calculation of the semantic sub-description. The feedback
of the checks performed is either message that everything is okay, or an error message about
minor problems in form of a warning or a problem state if serious failures occurred (i.e. redun-
dant definitions of software components, missing labels, etc.). Those have to be fixed otherwise
the ontology mediation process and selection of possible reusable software components will not
work. The ontology consistency task shall be performed after creation of the domain informa-
tion model and the software components model by the corresponding owners, before and after
the refinement task, and after the semantic sub-description is generated. Structural errors like,
invalid cardinalities, invalid references, erratum and validation of the ontology are performed by
the semantic editor automatically. There are also logical checks in place to analyze if all soft-
ware component instances are mapped to a domain concept and all data elements are described.
Those checks are performed by the various experts manually in the semantic editor. The logi-
cal checks are also applied during the initialization phase of the semantic interface (cf. 4.5.3).

95

This ensures a logical persistent of the semantic sub-description and allows accessing it via the
semantic interface. After the refinement task, the captured meaning is checked before the old
and new ontology are tested. Both ontologies are considered as equal in meaning if the accessed
information via the semantic interface is the same. Moreover the consistency tests integrated in
the semantic interface can be extended at any time if needed.

4.5 Ontology Mediation

Reasoning, semantic mapping and semantic description transformation are the main parts of
the ontology mediation process. Since the domain information model is based on the AIRM
and the payload described in the software component model is primarily based on standardized
ATM exchange models, the mediation process between those two knowledge basements is a
reachable task. UML class models, in the AIRM or one of the ATM exchange models, follow
the closed world assumption which inherits that all statements have not mentioned explicitly are
false. Ontologies follow the opposite way of the open world assumption where these statements
are undecidable cf. [Baclawski et al., 2002]. These different semantic strategies bring up the
need to add multiple restrictions to the semantic description during the mediation process to
keep the authentic semantics of the respective model. A often claimed issue with RDF/OWL is
that both are not able to express the described data mediation rules cf. [Kai and Steele, 2009]
and [Bleiholder and Naumann, 2008]. For example there is an issue when two divergent feature
type properties are matched to another target feature type property. During the semantic match
the original properties might need special mediation rules to convert them correctly into the new
property.

Source Property 1 -> Target Property 3
(Pressure in Pascal) (Conversion Factor A) (Pressure in Bar)
Source Property 2 -> Target Property 4
(Pressure in Torr) (Conversion Factor B) (Pressure in Bar)

Non trivial mappings are conditional if-then-else statements. The important question
is how much such be automatically transformed by the semantic mediator and how much should
be developed as a rule to define an appropriate transformation. There are several rule languages
available, some of them described in subsection 2.4.1 like SWRL or SQWRL. Semantic media-
tion can be achieved by multiple ways. Within this thesis ontology mapping and transformation
rules were considered. Ontology mapping is a semantic information process were the knowledge
base is used to map the ontology models in the domain information model to another ontology
model in the software components model. The ontology mediation task transforms the infor-
mation encapsulated in the knowledge base cf. [Bruijn et al., 2006] and [Ehrig, 2010] to create
a selected semantic sub-description. If there is a semantic match between classes the ontol-
ogy mediation task assigns an opportune transformation based on the semantics and the onto-
logical definition (cf. OWLs owl:equivalentClass, owl:equivalentProperty or
owl:sameAs). Since mapping languages insufficiently express all imaginable transformations
a lot of manual work needs to be done to cover everything needed cf. [Ehrig, 2010].

96

In the mediation task the OBSD models are merged into the semantic description by reasoner
tools. A serious problem with ontologies is to develop different types, which in the end cannot be
merged because of semantic and structural incompatibility. A workaround is to insert links be-
tween the types as an indicator of incompatibility. To avoid this possible risk, existing semantic
methodologies in the OBSD environment were further evolved. OBSD is structured in different
phases to implement the goals described above (cf. subsection 4.2.3). These areas reflect the
usual approach of an integration project by first describing requirements, afterward developing
a solution model that meets the demands. Figure 4.1 gives an overview of the main components
of OBSD and shows the split into three different steps. The relationships between the seman-
tic models are merged together in the design phase [Bleiholder and Naumann, 2008], [Kai and
Steele, 2009]. Based on the match of different ontologies, a semantic description is developed.
In Step 2 tools for the production of the semantic description are used, such as reasoners, align-
ment tools or visual representations. The fact that relationships in OWL are formally defined,
offers the possibility to use a reasoner. One main service that such a reasoning system can pro-
vide is to test whether or not one class is a subclass of another class such as shown in figure
3.6. :AeronauticalInformationEvent has the subclass :Notam. This relationship is
called a necessary implication. So we can conclude that because :RunwayClosure is some
sort of :Notam, and all types of :Notam are :AeronauticalInformationEvent, then a :Runway-
Closure is also a type of :AeronauticalInformationEvent. A reasoner can show that
the class of NOTAM is a valid subclass of aeronautical information events, and that it contains at
least one member. Such a test allows a reasoner to compute the ontology’s inferred class hierar-
chy and could discover if a given class has any instances. Without any instance you can properly
conclude that a class is inconsistent. Protégé enables to take advantage of different OWL reason-
ers as a plug-in. This all sounds great in theory, but often semantic reasoners are incomplete in
order to reach the required scalability, which means that they could not guarantee to provide only
valid output. Within the OBSD project the capabilities of some state-of-the-art reasoners, which
support OWL were also evaluated in chapter 2. In addition, FACT++ and Pellet are selected
for reasoning. The decision was based on the fact that both are compatible with OWL and are
well supported. For the developer it is also necessary to select visualization tools, which support
OWL. Visualization often deals with abstract data and offers a bundle of techniques to represent
hierarchical or semi-structured data. There are several studies where different ontology visual-
ization tools are compared [Catenazzi et al., 2009], [Lanzenberger et al., 2009b]. Considering
the variety of methods and approaches to visualize ontologies, such tools can be separated into
two big groups. One category uses variations of simple lists, the other uses simple types of visu-
alizations like two-dimensional trees, node-links or even offers 3D information. As Protégé was
picked as the semantic editor, the visualization tools OWLViz in combination with OWLdiff,
Matrix and Cloud View complete the list of tools, which are used within the OBSD.

4.5.1 Semantic Sub-Description

Software products built with the OBSD methodology typically use a number of data elements
conducted from different domains offered by a composition of several organizations. As de-
scribed in section 3.3, System Wide Information Management (SWIM) enabled software prod-
ucts are mostly non trivial integration projects. First of all, the data provided from different

97

domains need to have a fundamental baseline where overlapping parts are matched and ele-
ments are linked to each other. OBSD therefore uses the SESAR AIRM (cf. subsection 3.4.1) as
baseline of harmonized data elements covering various domains like weather, aeronautical, flight
or environmental related data. In addition, OBSD needs another semantic base for common soft-
ware components that are identified to be reusable. To prepare the now available knowledge, a
set of rules have to be identified, which can than be used by the semantic mediation to produce
a so called semantic description. After processing a consolidated list of information exchange
requirements coming from the operational and business context, those rules can be modeled.
The created joint knowledge base is called semantic sub-description, as it represents a part of
the overall semantic description defined by the participating software components, data domains
and the operational requirements. The semantic sub-description contains all ontology concepts
from the reusable software model, domain model, queried by the operational requirement rules,
which are needed to specify the OBSD-based semantic solution. For the creation of a semantic
sub-description the needed processes and methods are filtering by the requirements. Figure 4.6
presents a simplified example of the OBSD semantic sub-description.

Aeronautical

Information

Flight

Information

Environment

Information

Domain Information Model Software Component Model

GIS

Component

Airport

Mapping

Database

Weather

Information

SWIM

Access

Point

S
e
m

a
n
ti
c
 S

u
b

-d
e
s
c
ri
p
ti
o
n

AerodromeMap
Rules

Requirements

Runway Management
Policies

RemoteTower
Rules

Digital Briefing
Rules

AIXM Mapper
Policies

AIXM

Mapper

Figure 4.6: Definition of a semantic sub-description in OBSD.

For the creation of the semantic sub-description of an aerodrome map product, the particular
ontologies, a set of the reusable software ontology and at least one domain ontology are chosen
and aligned in order to form the semantic sub-description. A number of operational and business
rules is then querying to filter the right components for software reuse. If more than one domain
ontology is needed, all included domain ontologies need to be aligned a priori. As a first step, the
domain and the reusable software model are aligned, forming a knowledge base for the OBSD-
based development for a specific product. Aligning ontologies is defined as the integration of
the contained concepts and individuals. It is a trivial case if there is no concept or individual
contained in more than one ontology, Than it is just a simple extension of all concepts and
individuals. A nontrivial case for example, is the circumstance if there exist either semantically
or textually identical concepts or individuals in the ontologies to be aligned. This needs human
intervention for successfully solving this specific alignment problem. In this case a domain

98

expert and a software architect, responsible for the specific components, need either to specify
the semantic context of a concept or individual (e.g., in one ontology a concept “plane” exists, in
another ontology the same concept is named “aircraft”) or to rename the concept or individual
to be added. Using the AIRM as a baseline for the domain ontologies minimizes the effort at
least for the intra-alignment of the domain models. Within SESAR a lot of effort was spent
to harmonize the domain models and form the ATM Information Reference Model. Then, the
operational rules query the concepts and individuals to successively build the semantic sub-
description, resulting in the OBSD semantic sub-description for an AMDB application. Since
the necessary adaptation of an ontology for an AMDB semantic sub-description may have an
impact on semantic sub-descriptions of other selections, a new version of the adapted ontology
is created. The OBSD expert is responsible for the specific components, and the domain expert,
owner of the domain ontology, need to perform additional consistency checks after the alignment
of every single ontology. In case of inconsistent or incompatible concepts in any ontology, the
particular ontologies need to be adapted to achieve a consistent semantic sub-description for the
consortium.

4.5.2 Rules and Policies

The ontology mediation uses the instructions defined in rules and policies to form the solution
model. A policy formulates restrictions for the semantic description or sub-description, in order
to find the best results. Global policies contain specific property value settings (e.g. components
which are just using open source libraries, maximum transformation time of a mapper, etc.)
whereas optimization policies apply when multiple components are found during the ontology
mediation task to provide the software developer a ranking of the components (e.g. sorted by
integration time, requirements that are covered by the component, etc.). Global policies are
implemented by the domain expert and are part of the domain information model. During the
matching process those global policies are taken into account. More specific policies can focus
just on a semantic sub-description or just specific components and are defined by the software
component expert (e.g. aeronautical service which support AIXM 5.1). Since all the software ca-
pabilities shall be modeled in the software component model, the customers have to define their
policies as a set of requirements for future products. After the matching process, the reusable
components are selected based on the set of customer policies. For each component, the seman-
tic interface proves consistency of the customer policies during the ontology matching. For the
matching process, specific methods are implemented by the semantic interface (cf. subsection
4.5.3). New methods can be implemented at any time in order to support the matching pro-
cess. New policies are easy to add since OBSD defines policies only as textual data in form
of name/value pairs and the fulfilling condition. As a result it is possible to break down more
complex requirements into a set of textual name/value pairs and the condition the value has to
satisfy. They also have to follow the structure of the software components model (cf. subsection
4.4.2). The domain expert together with the software expert select the semantic sub-description
of which the solution model is calculated by the ontology mediation process. During the gener-
ation of the list of reusable software components, it is controlled if the component capabilities
and the component elements meet the requirements of the customer.

99

Rules specify logical dependencies for reasoning in the captured knowledge of the semantic
models. Within this thesis, besides the ontologies defined in the models and the policies de-
scribed above, a set of rules are used in the transformation process to form the solution model.
A rule is defined by a header and a body. Following the first order logic, an atom is an atomic
statement in form of a triple. By mapping those atoms “new” knowledge can be gained. If the
entity Runway is part of an entity Aerodrome and has a service called RunwayManagement
it can be assumed that Aerodrome also has a service RunwayManagement:

(Runway isPartOf Aerodrome
Runway hasService RunwayManagement)
(Aerodrome hasService RunwayManagement)

Since the OBSD ontologies are written in OWL and store the knowledge as triples, rule
languages are used to add value to the captured semantics to infer new explicit facts. Upfront
the rules need to be defined for the domain information model and the software components
model to derive new fact statements. The OBSD semantic interface supports SWRL as rule
language and allows to define SQWRL queries (cf. subsection 2.4.1.5 and 2.4.1.6). At a later
stage SPARQL 1.1 was added, which offers direct OWL support while using SPARQL queries
(cf. subsection 2.4.1.7). Both rule languages share the basic split between body and header but
are different when it comes to the expressiveness and structure of their syntax. Within Protégé
SWRL is handled with the SWRLTab and SQWRL queries can be defined, edited and executed
in the SQWRLQueryTab. With Snap-SPARQL there is also a plug-in available for Protégé to
process SPARQL. HermiT was used to apply the rules. For more details about different reasoners
have a look at subsection 2.4.3. The reasoning process can cover the following functionalities,
some of them are implemented by the semantic interface, but could be covered by reasoning
techniques as well (cf. subsection 4.5.3):

• Analyze ontologies regarding structural errors.

• Detect redundant information.

• Check logical and functional integrity by processing the customer policies.

• Clarify data integrity, same message types processed within a component as specified by
a customer (linked by the domain information model).

• Prove if components are not used by any service.

• Identify possible software components for reuse. This process can lead to non trivial and
complex rules and is therefore part of the semantic interface implementation (i.e. the
reusability check often needs various objectives for the valid identification).

• Search for errors in the solution model. This process is covered during the initialize phase
of the semantic interface by the consistency constraints whereas checks are defined as
XML files.

100

• Discover missing information in the semantic description through individual consistency
checks and appropriate rules (e.g. missing services/components/elements/definitions, etc).

As described in subsection 4.3.4, the domain information expert implements the semantic
concepts during design-time of the respective domain as ontology of the domain information
model. Possible reusable components are described in the software components model as on-
tologies. At the same time customer requirements are captured as policies and rules to identify
the recyclable artifacts. Each element of every component is mapped to an ontology of the do-
main information model. The whole process is supervised by the domain information expert
to reveal inconsistencies. The mapping between the domain knowledge and the implemented
standards formalized by international information exchange models allow the selection of se-
mantically indistinguishable information. Former issues like different naming conventions or
structural differences of the elements are cleared up, if they match together to the domain in-
formation model. This functionality allows the mapping of product requirements from other
domains which use the same data (which may have different definition names). Most notably,
this feature supports the domain independent identification of recyclable components, as the
same aeronautical, meteorological, and flight information is used in different domains in various
ways.

4.5.3 Semantic Interface

The semantic interface grants access to the semantic description where the mapped information
is stored to ensure that the solution model is decoupled from the low level semantic syntax. It
parses the semantic concepts of the ontology and provides the queried information as objects
to the solution model. The semantic interface is used by the semantic mediation process for
querying information about the reusable components to calculate the solution model for a certain
OBSD project. In addition the semantic interface supports this process with information about
the components, elements, policies, and global rules. The selected semantic sub-description can
than be transformed by the mediation process to form the solution model. The semantic interface
connects the knowledge contained in the semantic sub-description and the solution model which
can be used within the development process to reuse the selected components. As input for the
semantic interface a set of configurations, defining the ontologies of the domain information
model and the software components model including the rules of the selected semantic sub-
description, is needed for a certain OBSD-based development project. The interface than maps
the selected ontologies to form the semantic sub-description. The consistency checks already
mentioned are performed during the initialization process of the semantic interface.

4.5.3.1 Semantic Interface Architecture

The OBSD semantic interface architecture is split into two phases. During the initial phase, the
semantic sub-description is generated and structured. In the second phase the solution model can
be used to retrieve the stored knowledge to support the run-time deployment phase as foreseen by
the OBSD methodology. Therefore the semantic interface architecture provides methods, which
can be utilized to obtain the semantic information, later on transformed into the solution model.

101

First of all the semantic sub-description is defined with a set of configurations. The configuration
of the semantic sub-description is done via a simple XML-file. Each of the selected ontologies
are matched together into the semantic sub-description. After all ontologies are loaded without
any errors the semantic sub-description represents the selection which can now be queried. The
rules and policies are specified as a set of SPARQL rules (cf. subsection 2.4.1.7).

<?xml version="1.1"?>
<configuration>
<domainInformationModel>
<domainOntology>aeronautics.owl</domainOntology>
<domainOntology>meteorology.owl</domainOntology>
<domainOntology>flight.owl</domainOntology>

</domainInformationModel>
<softwareComponentsModel>
<softwareOntology>digitalBriefing.owl</softwareOntology>
<softwareOntology>runwayManagement.owl</softwareOntology>
<softwareOntology>aerodromeMap.owl</softwareOntology>
<softwareOntology>aeronauticalServices.owl</softwareOntology>

</softwareComponentsModel>
<rules>
<rule>globalRules.txt</rule>
<rule>aeronauticalRules.txt</rule>

</rules>
<policies>
<policy>globalPolicies.txt</rule>
<policy>aerodromeMap_ACG.txt</rule>

</policies>
<consistencyChecks>
<consistencyCheck>commonChecks.xml</consistencyChecks>

<consistencyCheck>aeronauticalChecks.xml</consistencyChecks>
</consistencyChecks>

</configuration>

Algorithm 4.3: Configuration of the semantic sub-description

The next step during the initialization phase is to perform consistency checks which are de-
fined in the configuration file. Supplementary consistency checks can be added and defined as
external XML files if needed to be executed while initiating the semantic interface (cf. subsec-
tion 4.5.2). Separate sets of mandatory consistency checks can be defined in different configu-
ration files. In case a consistency check fails either a warning or error message is displayed and
logged. The semantic sub-description is still available via the semantic interface if a failed con-
sistency check runs into a warning, just an appropriate message is thrown. For safety reasons, if
an error exception is shown, the specified semantic sub-description cannot be constructed using
the semantic interface. This safety procedure prevents the calculation of an incomplete or in-
valid solution model. The information captured in the semantic sub-description concepts is than
loaded into the objects which are used by the semantic interface. Since the relationship between
the concepts is non trivial, the order of loading the sequence is important to reduce inessential
information.

Finally the calculation process of possible software components that could be reused is

102

started. The semantic interface is ready to use, after the entire knowledge from the semantic sub-
description has been loaded. During run-time, the semantic interface offers read-only methods
for accessing the solution model. The dynamic calculated information, like reusable software
components or services, is too case specific to be saved for further instances of the semantic
interface. Other things like domain or sub-domain groupings are stored beyond the lifetime of
an individual case and do not need to be calculated for every semantic interface instance. The
developed methods of the semantic interface are separated in ones related to the software com-
ponents (incl. services and component elements) and ones dealing with the domain information,
standards, and operational concepts. The methods are used to retrieve information about the
sub-description knowledge, the most important ones are listed below:

• List<Component> getAllComponents() returns all existing components. An
equivalent method exists for services List<Service> getAllServices(), to re-
trieve the components of one List<Component> getServiceComponents() can
be used or list the attributes of them with List<Attribute> getAttributes().

• List<Interface> getServiceInterfaces(Service) to call for a service
interfaces. Specific methods like List<Service> getAllConsumerServices()
or List<Service> getAllProviderServices() provide lists of all services
that require input (consumer services) or produce information (provider services) or both.

• The method List<Component> getResuableComponents(Components) and
List<Service> getResuableServices(Service) return all possible compo-
nents that match the needs of the given requirements, fulfill the policies and rules applied,
and are part of the semantic sub-description.

• List<Domain> getAllDomains() returns a list of all domains used by a compo-
nent or service. The same method, List<Sub-Domain> getSubDomains(), exists
to extract the used sub-domains.

• getAllComponents4Domain(Domain) to receive all components which belong to
a specific domain this method can be called.

• The method List<Concept> getOperationalConcepts() lists all used oper-
ational concepts, whereas List<Standards> getStandards() shows the list of
standards used.

Object descriptions are filled with the information coming from the semantic sub-description
to form the solution model. They are grouped in the same way as the semantic interface methods.
For example the component object is defined by the following methods:

• String getID(): provides the ID of the component.

• String getName(): returns the name of the component.

• Product getProduct(): returns the application/product the component is part of.

103

• Map<String,Object> getAttributes(): returns a map of the attributes of the
component. An attribute is defined as a non-Boolean characteristic of a component (e.g.
the delay of the component). These attributes are used during matching for the identifica-
tion of possible reusability.

• List<Standard> getStandards(): returns a list of the standards the component
supports.

• List<Domain> getDomains(): returns a list of all domains of the component.

• List<SubDomain> getSubDomains(Domain): returns the actual sub-domain
of the component for a particular domain the component is part of.

A service object is defined through the following methods:

• String getID(): provides the ID of the service.

• String getName(): returns the name of the service.

• String getType(): returns the type of the service. A service can either be a provider
service, a consumer service, or both.

• Product getProduct(): returns the application/product the service is part of.

• Map<String,Object> getAttributes(): returns a map of the attributes the
service has. An attribute is defined as a non-Boolean characteristic of a service (e.g. the
delay of the service). These attributes are used during the matching for the identification
of possible reusability.

• Message getMessage(): returns the message either provided or consumed by the
service.

• Boolean isRequestOnDemand(): returns true, if the service uses request/reply
style communication. Otherwise, it returns false.

• Boolean isPubSub(): returns true, if the service uses the publish-subscribe pattern.
Otherwise, it returns false.

• List<Component> getAllComponents(): returns a list of all components that
initialize this service.

104

The following list describes the methods defined for a message object:

• String getID(): returns the ID of the message.

• String getName(): returns the name of the message.

• List<Element> getElements(): returns a list of all element of the message.

The bullet-points listed below describe the methods defined for a payload object:

• String getID(): returns the ID of the payload.

• String getName(): returns the name of the payload.

The domain and subdomain object is defined by the following methods:

• String getID(): returns the ID of the (sub)domain.

• List<Component> getComponents(): returns a list of all components that are
part of the (sub)domain.

• List<Service> getServices(): returns a list of all services that are part of the
(sub)domain.

Below the methods are listed, which define the operational concept object:

• String getID(): returns the ID of the concept.

• String getName(): returns the name of the concept.

• List<Component> getComponents(): returns a list of all components that are
part of the concept.

• List<Service> getServices(): returns a list of all services that are part of the
concept.

4.5.3.2 Semantic Interface Querying

In this subsection the identification of reusable components using the semantic interface is de-
scribed. For every requested operational scenario, a set of possible components and services
providing the requirements is queried. The list, selected from the software component model,
contains all the artifacts that are calculated to be recyclable within a (new) software project.
Within the OBSD life-cycle the QA process allows the OBSD modeler and architect to review
the calculations for improvement. In a stable setup the developer can use the solution model to
choose from the reusable component repository, which is plugged in into the IDE. The whole
querying process is implemented as a heuristic algorithm to improve the quality of the results.
To minor the selection of the sub-description the identification process needs to narrow down
the list of possible reusable candidates. This can be applied by the following rules:

• Find all components that match all requirements, with the component attributes consistent
with the applied rules and policies.

105

• If a component is mapped to the same domain and fits the requirements except the output
format, check whether there is a data mapper available.

• If the component differs regarding the domain concept of the requirements, check if there
exists a component mapped to the same domain concept as requested and suggest a data
mediator to be reused if possible.

• Check if there are existing components within a service that are mandatory.

• Check if there are existing services which could be used instead of multiple components
to meet the requirements.

• If all the rules mentioned above are successfully applied to a set of one or more services
and components, the particular set is suggested as recyclable candidates.

• Define the elements and attributes of each selected component. For each component ID of
every component of every single service, the mapped domain concept and properties are
queried using the semantic interface.

• The same is done for each service selected as reusable.

• The selected mapper and mediator components have special dependencies with other com-
ponents (i.e. some of them won’t work without them).

During the initialization phase of the semantic interface, the relationship between all com-
ponents in the model and the ones in the repository, which are the actual code artifacts, are
checked. The calculated and selected components needs to be accessible via the repository to
allow working with them at run-time. To ensure this the links between the software components
model and the reusable software component repository are checked upfront. The chosen code
artifacts are then provided via the IDE plug-in.

4.5.3.3 Monitoring

The monitoring process captures how the results of the solution model are actually used for both
the simulation and the real software development integration. It measures which components
are used and how much effort was needed for the integration. The collected feedback from the
OBSD monitoring process is precious for the OBSD modeler and architect to improving the
quality of the entire OBSD life-cycle (e.g the component documentation, bugs, technical per-
formance, etc.). During run-time the software development system is monitored and the experts
in charge take into account this feedback to implement enhancements and adjustments into the
semantic description. The assumptions made in the semantic description are compared with the
recordings of the monitoring process to change, based on those findings, the configuration of
the mediation process. In addition an improved solution model can be deployed for the next
iteration of simulation and deployment to the real environment. The processing of those results
through the experts are not only input for the semantic description but evolve and improve the
whole OBSD life-cycle.

106

4.6 Conclusion

In the traditional development process, software developers have just a partial overview of the
entire system and may optimize their applications locally (e.g. recycling of components is re-
stricted to a department, etc.). This can lead to redundant implementations, higher integration
efforts and separated developments which in the end cannot talk to each other even they use
the same standards. This chapter introduced the OBSD design-time approach, which offers the
possibility to get a complete overview of all software components available and improves the
collaboration between the different development teams. This includes optimizations of the en-
tire development life-cycle of a company. The OBSD life-cycle is designed in a way that allows
the installation of several QA checkpoints, the usage of monitoring components and making
improvements in the model descriptions by using quality feedback methods offered by OBSD.
Therefore OBSD allows concentrating on the technical benefits with a few experts only to keep
the whole integration effort as low as possible (sometimes political issues will play a role as
well). This becomes a particular advantage with an increasing number of components captured
by the OBSD methodology. Quality and effort improvements that result from multiple usage
affect not just the quality of OBSD system itself, but also improve OBSD based products and
applications. In addition the methodology can also be used during new offers to estimate the
development effort of integration projects.

Through appropriate verification checks, the issues and errors captured in the semantic mod-
els can be kept to a minimum. The role-oriented abstraction is an advantage that OBSD models
support and allows domain and software experts to understand the models more easily. This also
leads to simplified error correction. At present, the semantic mediation can handle semantic poli-
cies and rules that are currently known. A solution option for implementing policies will grant
the input of policies directly from the IDE plug-in. In future implementations of the OBSD cycle
it is foreseen that these policies can be implemented via a specific interface and would therefore
allow an easier integration into the QA steps. Another benefit is the quality improvement of
the components themselves. With the option to keep component versions and the OBSD goal
to reuse components as much as possible, code quality improves. To better understand possible
trade-offs, evaluations comparing the classic development processes and the OBSD methodol-
ogy are analyzed in the case study. In addition it is planned that the IDE integration through the
semantic interface will be further developed to provide more features and make it even easier to
use for software developers. For the case study, presented in the next chapter, it was important
to have a monitoring task in place to capture feedback and draw assumptions about the effects
of the OBSD methodology.

107

CHAPTER 5
Case Study Evaluation and Analysis

“Semiotics is in principle the discipline studying everything which can be used in order to lie. If
something cannot be used to tell a lie, conversely it cannot be used to tell the truth: it cannot in
fact be used ‘to tell’ at all.”

[Eco, 1957]

The main goal of the semantic web was and still is to handle huge amounts of information
and to create a web of data. The popularity brought up new techniques how to handle knowledge
and information more efficiently in the World Wide Web. The processing of information through
ontologies was adopted from the semantic web to many other domains including the software
development domain. This led to the idea of Ontology-Based Software Development. As stated
in the prologue, the motivation of this thesis is to show the benefits an ontology-based life-cycle
can offer in a real business context. The crucial factor for such a methodology in order to be used
successfully is, how much effort in terms of integration and development is saved. This chapter
presents the evaluation and analysis of the case study results of two industrial software develop-
ment projects using OBSD. In the introduction the related work is explained. In the following
section the case study is explained in detail. The study is conducted within the agile devel-
opment of two products while underlying standards and data exchange models have changed.
The Extreme Programming Evaluation Framework (XP-EF) was used for comparing software
development processes. For this purpose the old and the new release, using OBSD, were eval-
uated. Careful and meticulous planning of the case study is essential to gain scientific relevant
and meaningful data. Therefore the context factors and qualitative and quantitative adherence
metrics information was captured twice. The outcome metrics gave a detailed comparison about
positive and negative effects between the old process and the OBSD concept.

109

5.1 Introduction

Of utmost importance for the higher management is the question about the benefits of the OBSD
concept. The analysis of the case study shall provide output measurements of the OBSD life-
cycle to evaluate the effects. This chapter focuses on the results of two projects evaluated with
the Extreme Programming Evaluation Framework (XP-EF), which was introduced in subsection
1.5.2. The XP-EF allows analyzing any agile software development process. A comprehensive
evaluation was accomplished within the case study. The provided benchmark metrics of the
framework are split into the context factors, the adherence metrics, and the outcome metrics
cf. [Layman et al., 2004b]. The development projects chosen are both new implementations
of existing legacy products and tailored to the needs and the environment of the customer (cf.
section 3.3). The first project selected, is the Aerodrome Map Information Service (AMIS)
dealing with aeronautical data in the AIXM 5.1 format and the prior version 4.5. The existing
legacy product is just able to process AIXM 4.5 which was used as reference baseline for the
evaluation. The new implemented AMIS is a SWIM service and is as such more than predestined
for the purpose of reuse. It houses components such as the Airport Mapping DataBase (AMDB),
a GIS database or the AIXM exchange model mediator, an AIXM 5.1 to AIXM 4.5 mapper. It
has to be noted that this project was pilot project using the OBSD methodology for the first time.
For this reason, problems have occurred which were avoided during the follow-up projects.
The AMIS project was developed in an agile way and has proven to be very suitable for the
evaluation.

The second evaluation was done in the context of an integrated briefing system. More pre-
cisely, the prior briefing product used non SWIM compliant data models for weather, aeronau-
tical and flight information. The new generation of this product follows the SOA principles of
SWIM and is called Integrated Digital Briefing Service (IDBS). This application enables users
to access aggregated data in form of an integrated briefing which is calculated from multiple
sources. This non trivial circumstance offers the possibility to reuse different components to
please the requirements. The agile software development process of IDBS was evaluated ac-
cording to the metrics contained in the XP-EF. This project was chosen to be part of the case
study in a later stage and as a result the OBSD processes were already more rehearsed than
within the first evaluation.

Both projects followed the SWIM concept defined in section 3.3 and are SWIM service im-
plementations within the European Air Traffic Management Enterprise Architecture (EAEA).
This is essential to understand the needs and requirements for components that are possible can-
didates for recycle. The Information Service Reference Model (ISRM) is substantial as input
requirement for the deployment of the services (cf. subsection 3.4.2). The model captures the
logical shared information via an ATM service and can be used as instruction guide during the
implementation of a SWIM related service. The following subsections explain the related work.

110

5.2 Aerodrome Map Evaluation

In the Air Traffic Management domain, surface routing in the context of aerodrome mapping
is a challenging and difficult task. Although the scientific community as well as the industry
recognizes the usage of common data models and approaches to be of utmost importance in
terms of interoperability. The effort needed in automated data processing, at the time being no
global unified approach exists when it comes to aerodrome mapping. In particular, the United
States of America and Europe have different approaches. For this reason, an important step
towards improved interoperability between air navigation service providers, airspace users, and
airports would be the global alignment with respect to surface routing. Under the umbrella
of European’s SESAR and American’s NextGen initiative, there is an attempt in harmonizing
the various concepts used. Taking advantage of the service-oriented architecture infrastructure
developed in both initiatives over the past few years, the intention is to consolidate and align
this topic by means of using common data models as well as standards-based interfaces and
technology and create a global service-based implementation of an AMIS. This section describes
the developed AMIS, underlying exchange models, identified operations of the service and the
verification and validation process. The developed approach clearly proved the harmonization
of existing concepts and ensures interoperability resulting in reduced development effort.

Operations at large aerodromes have become a complex combination of many activities be-
ing performed by many individuals such as pilots, air traffic controllers, apron controllers, sur-
face vehicle operators, construction and maintenance, emergency and security, commercial and
cargo airline, and general and business aviation operations personnel. All of these individuals
must work collaboratively to ensure safe and efficient flight operations at the aerodrome. Fur-
thermore, many of these actors require some shared knowledge and awareness of the aerodrome
layout. This can be provided through standardized digital aerodrome mapping. More and more
aircraft are equipped with on-board systems using airport mapping information in order to dis-
play static airport maps in the cockpit or to present airport maps layered with aircraft position
information. Plans are now emerging to develop advanced avionics able to support more critical
operations related to surface movement such as traffic display, runway alerts and runway incur-
sion prevention, taxi routing and taxi guidance. The use of accurate aerodrome mapping data
implies an interchange between data providers and users based on common agreed information
standards and services. However, the definitions of aerodrome map services are not part of cur-
rent industry standards. The standardization of these services is the main goal in order to achieve
a common level of service provision and standardization in alignment with the service-oriented
approach of NextGen [Luckenbaugh et al., 2007], [FAA, 2010], and SESAR [Gringinger et al.,
2011]. It will fulfill the requirements and intended functions related to the collaborative use
of aerodrome map data. Consequently, aircraft manufacturers are engaging development and
industrialization of systems using aerodrome map databases (e.g.: providing an aircraft’s po-
sition overlaid on the airport map helps to ease taxi operations for an aircraft). Starting from
2006, the on-board airport navigation system was fully integrated in the cockpit of the new Air-
bus A380 using aerodrome databases according the Aeronautical Radio, Incorporated (ARINC)
816 [Pschierer and Schiefele, 2007] airborne airport database format derived from EUROCAE
ED-119B [EUROCAE, 2011a]. This airborne standard defines a single open encoding format

111

for airport databases to be loaded into airborne systems.
The next subsection describes the new product, its relation to operational focus areas and

the service implementation process. Furthermore, the evaluation results of the AMIS project are
presented. The feedback from the evaluation helped to identify issues and they were fixed within
the OBSD development process and the underlying OBSD rules were adopted. In order to prove
the validity and benefits of the OBSD life-cycle, a second OBSD development is presented that
was conducted subsequently.

5.2.1 Related Work

The implemented Aerodrome Map Information Service (AMIS), supports pilots, air traffic con-
trollers, airport personnel, as well as pre-flight planning personnel. AMIS has four sub services:

• AccessFullAMDB Service based on Information Exchange Requirements (IER) of ac-
cessing a complete AMDB for a certain airport. This is described as a package of a
complete AMDB including all available FeatureTypes (layers). The data payload per Fea-
tureType is XML-encoded accompanied with the meta-data, whilst the package itself is in
compressed format (e.g. zip).

• AccessAMDBFeatures Service based on IER of accessing specific features of an AMDB
based on multiple filtering capabilities. The service model defined here should enable
technical implementation in accordance with OGC standard WFS version 1.1 [OGC,
2002a] and 2.0 [OGC, 2010].

• AccessAMDBGraphics Service based on IER of accessing pre-styled geo-referenced AMDB
graphics (bitmap images). The service model defined here should enable technical im-
plementation in accordance with OGC standard Web Map Service (WMS) version 1.1.1
[OGC, 2002b] and 1.3.0 [OGC, 2006].

• Publish/Subscribe Service based on a generic SESAR service, in support of the other three
main services.

The product aims to supply aerodrome map information as described by EUROCAE indus-
try standard ED-99C [EUROCAE, 2011b] and ED-119B [EUROCAE, 2011a] to consumers as
shown in figure 5.1. The content consists of 40 FeatureTypes covering geospatial information
of an airport layout. AMDB data is primarily intended to be used as map layers within various
applications. Only the AccessAMDBFeatures service was implemented in the first release
delivered in March 2014, whilst the AccessFullAMDB and AccessAMDBGraphics were
developed within release version 1.1 in mid 2014.

112

Figure 5.1: AMIS displaying AMDB data over Stockholm Arlanda airport.

For example the AccessAMDBFeatures is a service that exposes the individual features
within a specific AMDB FeatureType. Multiple filter arguments could be used such as aero-
drome identifier (ICAO-code), FeatureTypeName, identifier, and temporality. The single
capability aims to hold the three main types of services.

5.2.1.1 Service Interface Specifications

The AMIS service interface is defined as two interfaces, one of them is exposed as a public
interface called AccessAMDBFeatures and shown in figure 5.2. The lower interface in the
diagram holds the underlying logic for the interface not necessarily of the consumers benefit or
interest. This service design aims to simplify the interface for the consumer.

5.2.1.2 Service Dynamic Behavior

The service behavior in this first iteration of the product is basically based upon a request/reply
process (cf. figure 5.2). It is foreseen in the diagram below that related replies are transmitted
by the service interface. The behavior of the service evolved in a more complex process when
additional service interfaces were developed for the service (AccessFullAMDB, AccessAMDB-
Graphics).

5.2.1.3 Message Types and Payload

The message types provide requirements for the definition of services as defined in ISRM and
EUROCAE ED-99C [EUROCAE, 2011b], additionally a message type is a representation of
one or more communications exchanged between originator and addressee [Pola and Solberg,
2013], where the payload is the body of a message that holds the content. As mentioned previ-
ously in this section, the mechanism by which a service communicates is through the system’s
interfaces (Figure 5.2), it means that an interface is a contract between providers and consumers

113

 soaml NSOV-2 AccessAMDBFeatures

(from ServiceContracts)

«serv iceContract»

Access AMDB Features

Consumer

(from ServiceContracts)

«serviceInterface»

Access AMDB Features

(from ServiceContracts)

«serviceInterface»

Serv iceInterfaces::Access AMDB Features

«serviceInterface»

Serv iceInterfaces::Access AMDB

«serviceChannel»

«Type»

«use»

+ getAerodromeMapInformation(AMDBQuery) : AMDBFeatureTypesDataSet

+ AccessAMDBByFeatureTypes(ICAOCode, FeatureTypeList) : AMDBFeatureTypesDataSet

+ DescribeAMDBFeatureTypes() : ValueCollection

+ getCapabilities() : FilterCapabilities

+ getFeaturesByICAOCode(ICAOCode) : AMDBFeatureTypesDataSet

+ getFeaturesBySpatial(SpatialFilter) : AMDBFeatureTypesDataSet

+ getFeaturesByTemporal(TemporalFilter) : AMDBFeatureTypesDataSet

Figure 5.2: Aerodrome map information service public interface.

of services by exchanging information through the message type. The data payload which speci-
fies the access and consolidates the exchange requirements in the AccessAMDBFeature Service
is detailed and explicitly defined by EUROCACE ED-119B [EUROCAE, 2011a]. Besides, data
payload for functional requirements was identified and consolidated by the SESAR project deal-
ing with aeronautical information ATM services. Those are listed as IER, and some of them are
mentioned below:

• Requests in Airport Map with graphical NOTAM.

• Common Aerodrome Map Data which it will be able to have access to consistent Aero-
drome Map Information thus enabling situational awareness.

• Display the current status of aerodrome (e.g. a runway closure).

• Access to temporality information for Aerodrome map data (e.g. time filtering variables).

• Indicate Alert information providing information about all runways, description of air-
port’s runway and taxiways, etc.

114

5.2.1.4 Quality of Service

To be able to implement the product in accordance with the operational requirements it is of ma-
jor importance that the non-functional requirements are well understood and defined. This is a
work and process that needs to be undertaken in collaboration between the software developers,
system developers and operational concept developers. Within the common QoS areas defined
by confidentiality, integrity, availability, non-repudiation, and accountability the overall security
of the service and its payload needs to be treated with special focus. The level of impacts if fail-
ure occurs are analyzed in categories of personnel, capacity, performance, economic, branding,
regulatory and environment.

5.2.1.5 Verification and Validation

Verification and validation of an ISRM service like AMIS is based on rules provided by the
ISRM foundation rulebook [Pola and Solberg, 2013]. It provides rules and information service
modeling standards to be applied, in order to facilitate the development and maintenance of the
service. The use and conformance to the standards ensures a consistent and high qualitative of
the service and supports effective consolidation, validation and verification, conformance, and
quality check processes.

5.2.1.6 Aerodrome Mapping Database

One of the largest components reused is the AMDB, a GIS database describing the spatial lay-
out of an airport including the geometry of features (e.g.: runways, taxiways, buildings) such
as points, lines, polygons, and further information characterizing the features and their func-
tions which are stored as attributes (e.g.: surface type, name/object identifier, runway slope).
The developed AMIS can access and filter the data provided by such a component. Fast in-
formation distribution and retrieval are key elements according to EA and SOA principles. In
addition to the NextGen and SESAR related requirements, industry standardization activities
within the EUROCAE and RTCA throughout over the past 10 years have defined user require-
ments as well as exchange standards for aeronautical information data, namely the EUROCAE
ED-99C [EUROCAE, 2011b] and RTCA DO-272C [RTCA, 2011a] documents which mention
user requirements for aerodrome mapping information and the EUROCAE ED-119B [EURO-
CAE, 2011a] and RTCA DO-291B [RTCA, 2011b] documents which describe the interchange
standards for terrain, obstacle, and aerodrome mapping data. In contrast to current approaches,
SESARs AIRM approach covers this by extending AIXM 5.1 [Eurocontrol, 2010] to cover the
ED-99C and ED-119B standards. Identified operations of the service aim to fulfill IERs by
accessing a complete AMDB over a certain airport, specific features of an AMDB, based on
multiple filtering capabilities, pre-styled geo-referenced AMDB graphics (bitmap images) and a
generic publish/subscribe service.

115

5.2.2 Context Factors

During the evaluation phase the XP-EF metrics collected data for comparing the old legacy sys-
tem with the new AMIS product. In the following subsection the term “old product” always
refers to the existing product and “new product” stands for the latest release of the completely
new developed AMIS using the OBSD life-cycle. For both of them, detailed information about
the context factors, the adherence metrics, and the outcome metrics were collected. The context
factors are split up into six different categories, software classification, sociological, geograph-
ical, project-specific, technological, ergonomic, and developmental factors cf. [Layman et al.,
2004a].

Software Classification XP-EF distinguishes between six different types of software projects:

1. Information systems dealing with business information,

2. Technical systems used to control physical devices,

3. End user projects developing applications for personal and private use only,

4. Commercial projects leased or marketed to external clients,

5. Outsourced projects which are developed under contract, and

6. Military projects located in the defense domain.

The AMIS product is a classic commercial project, developed for a launching customer,
an ANSP. A former scientific research project funded by the European Union and Eurocontrol
was used as baseline. The service is provided by an AMDB data provider, in this special case an
AIS provider. It is foreseen that this product will be marketed for other ANSPs, commercial data
house providers, and others. The consumer of the service can be an airport system, displaying the
information for air-side ground controllers, vehicle display, aircraft taxiing operations, and ATC
controllers. It may also be consumed by other airport management systems, airline operations
centers, pilot briefing, and other airport stakeholders consuming airport layout maps. It can also
be used for commercial data integrators or data houses as input to refine proprietary formats
such as ARINC 816 [Pschierer and Schiefele, 2007].

Sociological Factors One of the most critical factors in software development is the staff it-
self [McLeod and MacDonell, 2011]. Therefore the analysis of the team composition is es-
sential. The XP-EF sociological factors capture the team constitution for the old and the new
product. They sum up the development experience of the team members as well as their domain
knowledge of the target area. The factors of both products are compared against each other. As
shown in table 5.1, sociological factor include team size, level of education and experience, do-
main and technical expertise, experience of the project manager and involved specialists, change
of personnel, and morale factors. The team size consists of the sum of the members of the de-
velopment team (e.g. developer, architects, tester, etc.) which are full-time or at least half-time
engaged (count as 0.5). Both teams were rather small development teams who have worked

116

Sociological Factor Old Product New Product
Development Team Size 7 5
Level of Education BSc: 5

MSc: 1
PhD: 1

BSc: 3
MSc: 1
PhD: 1

Level of Experience < 5 years: 3
< 10 years: 3

< 5 years: 2
< 10 years: 2

Domain Expertise Medium Medium
Technical Expertise High High
Experience of Project Manager High Medium
Assigned Specialists Senior Architect Senior Lead Architect
Change of Personnel 15.4 % 10 %
Morale Factors Director replaced First SWIM Service

Table 5.1: AMIS sociological factors.

quickly and efficiently. The level of education is self explaining, whereas the mix of seniors
and juniors was balanced. The first beta test was accomplished when AMIS was sill part of
a scientific research project. This allowed the whole team to play with different technologies
and investigate possible reusable components upfront. Due to the circumstance that the initial
project was a research project acquiescing, additional planning and implementation time com-
pared to a regular development project was available. Furthermore the team was thus already
well established. At the beginning of the latest release most members of the development team
were already familiar with OBSD and some of them gained domain experience from the former
scientific research project. The domain knowledge was gained from the old legacy system. The
change of personnel indicated in table 5.1 shows a significant rate of 15,4% during the devel-
opment of the old product against 10% during the new one. Even though the 10% include no
changes of the development team, as this number also includes roles like product manager, sales
people, etc. The change of personnel is calculated by the sum of people who left or joined,
divided by the team size at the end of the release. The morale factors categorize irregular fac-
tors, changes like the replacement of the director of the department during the development of
the old product, which was accompanied by a great uncertainty. On the other hand during the
development of AMIS, the team members were motivated to bring the research prototype to the
level of a real product. In the addition the developer team was inspired to be implementing one
of the first SWIM services.

Project-Specific Factors Project scope, duration, and size are extremely influential factors
that can determine the success and failure of a project. Project-specific factors record this im-
portant context information about a project (cf. table 5.2). Since most software development
projects follow some kind of release cycle, the project-specific factors concentrate on the entire
development phase from start to delivery to the customer. Additional releases were rolled out
later but not captured for the evaluation. Even though the development team was not that small
the person months spent were lower than expected because for both, the new and the old product,

117

some of the team members were just engaged half-time. Table 5.2 also reveals the numbers of
reused components and the total sum of them. The factors were collected for classes and meth-
ods, whereas the Kilo Lines of Executable Code (KLOEC) are split up between components and
lines for the whole product. More than 12.2 % of the overall KLOEC within the new product
were filled by reused components.

Project-specific Factor Old Product New Product
Nature of Project New Release New Development
Domain Aeronautical Information Management
Person Months 36 40.5
Duration in Months 6 9
Relative Feature Complexity Medium Medium
Product Age 4 years 11 Months
Number of Use Cases 12 25
Constraints Safety, Scope and Resource Constrained
Reused Components
Total Components

N/A
7

28
37

Reused Classes
Total Classes

N/A
671

411
3015

Reused Methods
Total Methods

N/A
6891

3071
10342

Component KLOEC Approx. N/A 21.4
Product KLOEC 132.5 175.4

Table 5.2: AMIS project-specific factors.

Ergonomic Factors The local environment can influence the work-flow and work-culture.
Analyzing those ergonomic factors and collecting feedback is important for the evaluation and
for further improvements [Layman et al., 2004b]. XP-EF compares the old and new product
physical working space as summarized in table 5.3. During the development of the old product,
the whole team was physically located in one open office, within one department. While during
the implementation of the new product, the team was split up between separate offices between
two different departments, since one part of the time was working on the research project before.
As in-between talks no longer could take place, more regular meetings had to be agreed on (e.g.
conversation on the corridor, etc.). The fact that the offices have a lot of glass elements, similar
to an open space office, simplifies the communication (e.g. it is possible to recognize if some-
one is available or not). The work environment offered enough individual desks and company
organization tools were available in both cases.

118

Ergonomic Factor Old Product New Product
Physical Layout One Open Office

Semi-private
Separate Offices
Semi-private

Distraction Level of Office Space Low Medium
Customer Communication On-site, Telephone Conference

Table 5.3: AMIS ergonomic factors.

Technological Factors The technological factors, such as software development methodology,
tools and processes, have a dramatic impact on the whole project and therefore are evaluated
by the XP-EF framework. Defect prevention and removal practices are established to reduce
costs and enhance the code quality cf. [Layman et al., 2004a]. These technological influences of
AMIS are represented in table 5.4. The old product followed the waterfall software development
methodology and used Microsoft’s Project for planning purposes. The new implementation
used a mix of agile and plan-driven software development methodology supported by the OBSD
processes. Both projects worked with use-cases to estimate tasks and forecast release points and
iterations. A look at the used software languages gives insight about the aged software baseline
the old product was built on. Within the years more and more features were added on top of it.
Small parts were developed in C, whereas the main product was implemented using C++. The
new development of AMIS was built from scratch in Java with the help of the gained knowledge
from the prior research project. Defect prevention and removal practices differ between the
two products due to the different software development methodologies. For both products, the
teams had software testers. Instead of code reviews, pair programming was performed during
the implementation of the new product. In addition ad hoc customer tests were used for the first
time.

Technological Factor Old Product New Product
Software Development Methodology Waterfall Mix of Agile and

Plan-Driven OBSD
Project Management Microsoft Project Internal PM-Tool
Language C, C++ Java
Reusable Materials Existing Product

3rd Party Libraries
Research Prototypes
OBSD Components
3rd Party Libraries
Unit Test Suites

Defect Prevention
and Removal Practices

Code Review
QA
Ad Hoc Testing

Pair Programming
Unit Tests & QA
Continuous Integration
Collective Code Ownership
Customer Tests

Table 5.4: AMIS technological factors.

119

Geographic Factors In a world where development teams are split all over the place while
working together, geographic factors are important for this evaluation. Remote locations and
different time-zones influence the software development life-cycle cf. [Layman et al., 2004b].
Table 5.5 summarizes the geographical factors. Both teams were working in the same time-zone.
The development of the new product was split up between two departments. Most of the time
both teams worked remotely. There were some on-site tests performed and installations led by
the respective project manager. Both products had one launching customer, whereas the number
of customers reflects the growth of the market.

Geographic Factor Old Product New Product
Team Location One Location Two Departments

One Time-Zone
Number of Customers Approx. 15 Approx. 40
Customer Location Remote and On-Site

Multi-National
Various Time-Zones

Supplier Location None

Table 5.5: AMIS geographic factors.

Developmental Factors [Layman et al., 2004b] used the developmental factors to identify if
a project is more in the range of the agile or plan-driven development methodology. This factor
was adopted for this thesis to identify if a project should use OBSD or not. In other words the
meaningfulness of the use of component reuse in a specific project. [Happel and Seedorf, 2006]
acknowledge ontology-based methodologies in the context of software engineering and intro-
duced classification scheme (cf. figure 1.2). OBSD is combining two of them to form the new
invented methodology (cf. chapter 4). The four existing developmental factors team size, crit-
icality, dynamism, and culture were extended with the fifth factor component reuse to identify
OBSD should be used for a software project or not. Figure 5.3 shows old and new developmental
factors plotted on a polar chart with five axes. The points that are closer to the periphery suggest
that the project perfectly fits into the concept of reusing existing components. The more to the
center they come, the less useful is it to recycle components. More varied shapes indicate an
OBSD usage to a moderate extent. Since most of the ATM related projects and products have a
very high criticality, the aerodrome map is placed on a rather low security level risking essential
funds but not human lives. The personnel factor ranks the technical skills from level 1B, imple-
ment procedural methods, to level 2 and 3, the ability to revise a method in an unprecedented
situation cf. [Layman et al., 2004b]. The factor time size, indicates the number of personnel.
Dynamism measures the percentage of changed requirements per month, whereas component
reuse captures the amount of recycled artifacts. Opposed to the old one, the new product fits
more to the OBSD method (cf. figure 5.3).

120

Figure 5.3: AMIS developmental factors.

5.2.3 Adherence Metrics

The adherence metrics examine three different aspects: planning, coding, and testing. XP-
EF uses a slick designed survey to gather subjective information from the development team
members cf. [Layman et al., 2004a]. Each category captures objective factors and subjective
factors and compares the old against the new ones. The main goal of the survey is to measure
quantifiable adherence of software development processes and practices by calculating the mean
of the respondents. The higher the percentage number is the more often it was used. Especially
the adherence metrics coding and testing provide essential information on the effectiveness of
OBSD. The survey took place in a lessons learned workshop with members of both development
teams.

Planning Adherence Metrics Table 5.6 shows the planning adherence metrics differences be-
tween the old development cycle and the new one. The shorter release length of the new AMIS
implementation was adjusted to fit the agile development needs. The major difference was the
automated build mechanism, which allowed to run small iteration cycles. The reuse of compo-
nents was facilitated by stand up meetings held every second day. The stand up meetings were
essential for the integration of the OBSD life-cycle since feedback from the team was collected
and used to improve the OBSD processes constantly. Due to the different time-zones the cus-
tomer testing turned out to be more difficult than imagined. Since the software development
methodology was a different one, most of the factors are not available for the old implementa-
tion.

121

Planning Metric Old Product New Product
Objective Metrics
Release Length 6 Months 3 Months
Iteration Length None 2 Weeks
Requirements Dynamism 50 % 45 %
Subjective Metrics (Survey) Mean
Stand Up Meetings N/A 56 %
Short Releases N/A 74 %
Customer Access / On-Site Customer N/A 15 %

Table 5.6: AMIS planning adherence metrics.

Coding Adherence Metrics The coding adherence metrics of the old and new product are
illustrated in table 5.7. The factor component reuse depicts how many of the queried components
of OBSD were selected and integrated in the development of AMIS. As a result the feedback
for the OBSD team was to work on sharpening the group of selected components, to improve
this factor. Most of the time OBSD is used during the beginning of a development cycle, the
improvements are visible in subsequent OBSD projects (cf. section 5.3). But also during the old
development cycle, code was recycled but no numbers were available. The pairing frequency,
another objective adherence measurement, was never used for the old product, but 25% of the
time for the new AMIS. The integration of components was accomplished most of the time
in pairs to get the developer quickly familiar with the components. Pair programming was
highly discussed and also reflects the outcome of the survey, whereas the team member slightly
overrated the objective metrics according to the survey (55 % versus 45%). Classical code
inspection was performed during the old release. This was not the case during the new one.

Coding Metric Old Product New Product
Objective Metrics
Component Reuse N/A 25 %
Pairing Frequency 0 % 45 %
Inspection Frequency 60 % 0 %
Subjective Metrics (Survey) Mean
Component Integration N/A 55 %
Refactoring N/A 60 %
Pair Programming N/A 55 %
Simple Design N/A 74 %
Collective Ownership N/A 86 %
Coding Standards N/A 76 %
Sustainable Pace N/A 70 %
Metaphor N/A 68 %

Table 5.7: AMIS coding adherence metrics.

122

The subjective metrics reflect the outcome of the survey. The integration of components was
higher than expected and during the interviews some developers stated that OBSD motivated
them to refactor or even extend existing components in the OBSD repository. Refactoring of
code was high in general. The baseline prototype used for AMIS was developed within a re-
search project which also delivered components for OBSD. The concept of simple design was
rated high too by the respondents. This may have been due to the use of the OBSD methodol-
ogy. Collective ownership was definitely strengthened, 86 % was the mean of all interviewed
personnel. It seems the OBSD methodology breaks up with the old thinking of code as their
own property. Company coding standards were applied to an extent of 76 %. The sustainable
pace suffered from the unusual overload at the beginning, as AMIS was the first project using
OBSD. Therefore the development had to deal with issues and a lot of internal feedback. But in
the end it didn’t have as much impact as feared. The metaphor was relatively good since most
of the requirements were already discovered during the research project, but of course some of
them changed during the actual AMIS implementation.

Testing Adherence Metrics Table 5.8 presents the testing adherence metrics. The test cover-
age is averaged over the whole product and nearly touched 90%. One of the reasons were the
automated test that were available for the OBSD components but also new classes were covered
nearly by 45%. Unfortunately for the old implementation only inadequate data was available.
The coverage of test classes of the reused classes was higher due to the fact that existing test
classes were reused. The test run frequency value within AMIS was 2.0, which indicates that
each team member started the automatic tests twice per day. It is conspicuous that the ratio
between test Lines Of Code (LOC) and source LOC are significant higher for the new product.
Test code was used more often (either created or reused) which was also effected through the
high test coverage of the recycled parts.

Testing Metric Old Product New Product
Objective Metrics
Test Coverage N/A 87.3 %
Test Run Frequency None 2.0
New Classes with Test Class 4 % 45 %
Reused Classes with Test Class N/A 80 %
Test LOC / Source LOC 0.061 0.152
Subjective Metrics (Survey) Mean
Test First Design N/A 48 %
Automated Unit Tests N/A 61 %
Customer Acceptance Test N/A 63 %

Table 5.8: AMIS testing adherence metrics.

The customer acceptance test metric was not as good as expected (63 %), due to some late
changes of the customer requirements and the lacking of a high quality acceptance tests. The
circumstance that the technology stack used was new for the customer and the fact that there

123

were some problems with the automated unit tests of AMIS led to this rather of low result. Both
other tests also left room for improvements but this had less to do with OBSD as stated by the
interviewed personnel.

5.2.4 Outcome Metrics

Figure 5.9 illustrates the outcome metrics which comprised measurements regarding productiv-
ity and code quality, as well as values about customer satisfaction and morale captured by the
survey. Since the company had their own QA metrics in place, both developments software
defects for both were tracked. For easier comparison and to protect proprietary information a
relative scale with the old product at 1.0 is used in the figure. The interviews examined the
extent to which OBSD proved useful. Through the survey one can conclude that a benefit was
the exchange of knowledge between different departments. For example the fact, that specific
components already existed in the company, fulfilling the requirements needed. This led to a
lot of discussion with developers outside of the team and helped to solve problems before they
even occur. Also technical knowledge and experience was exchanged. It was stated that more
components should be included into the OBSD repository. Furthermore the functionality of the
interface should be extended to offer more features. Over time, more and more recyclable arti-
facts will be collected and made accessible through the OBSD methodology. In the mean time
this was confirmed by the second case study, more artifacts were available and the quality of
them improved (cf. subsection 5.3.3). According to the feedback from some of the team mem-
bers, in the beginning, the query results of OBSD provided inaccurate results. This feedback has
helped to improve and narrow down the search results. For some components the documentation
was poor and the lack of support of the originator of the components was mentioned. This led
to the circumstance that for every component a leader was chosen to cover perceived inconsis-
tencies. It also seemed that the use of OBSD opened the mind of some developers regarding
collective ownership in a positive way.

Outcome Metrics Old Product New Product
Objective Metrics
Internal-Visible Quality
(Test Defects/KLOEC)

1.0 0.65

External-Visible Quality
(Released Defects/KLOEC)

1.0 0.61

Productivity
(KLOEC/Person Month)

1.0 1.11

Subjective Metrics (Survey) Mean
Customer Satisfaction High High
Morale 70 % 71 %

Table 5.9: AMIS outcome metrics.

124

The testing metric, internally-visible quality, showed defect density improvements of 35%
with respect to the prior implementation. This is an answer to one of the sub-questions of the
main research question defined in section 1.5. Improving the quality of the code before the actual
roll-out, is one way to save software development costs through ontology-based technologies.
Of course the direct comparison between the old and the new product was also influenced by
other factors. The quality of the supporting tools within the company increased and all the other
difference listed in the subsection of the context factor had influence as well. Following the feed-
back encountered during the interview, defects in general were lower with reused components,
which underpins the figures of the internally-visible quality.

Externally-visible quality metric shows the defect density after the release was even better.
The number of defects in the rolled-out product has improved by approximately 39%. The reuse
of already tested components brougth an advantage in terms of software quality and stability.
This also correlates with the results of the QA metrics. Some errors and issues happened due to
weak requirements which were not identified upfront. The outcome measure of the old product
should be interpreted with caution, since according to the developer the value could be even
worse. However, the new solution will be sold to much more customers, which multiples the
positive effect of less software defects.

Productivity is a very important outcome metric for decision makers to answer the cost ben-
efit question. Of course productivity can not be equated one to one with less development costs,
but it is a major hint. And there is also the circumstance that more and more standardized models
helped to improve the teams efficiency within this safety critical domain. The survey reinforced
the hypothesis that OBSD practices led to a productivity increase of 11%. Of course also other
factors had an influence on this result, but still this approves the improvements. According to
the developers, the recycling brought a decrease of complexity. On the other hand the integra-
tion effort increased but still not as much to influence the productivity in a bad way. The QA
data regarding the old product did not record much details (e.g. the amount of effort spent on
non-production activities), otherwise a more comprehensive comparison would be possible. An-
other reason for the increase is the fact, that the team members had time to get familiar with the
domain and the requirements were investigated during the previous research project.

The long-standing relationship with the customer led to a high level of satisfaction in both
cases. Most of the problems and issues could be solved directly by the experts, without involving
(higher) management. OBSD was used during offers as unique selling point and as a marketing
tool to make a difference to other competitors. During the lessons learned workshop it was
mentioned by the customer that the usage of OBSD was not noticed, which was interpreted as a
positive feedback on all sides.

During the lessons learned workshop the members of the development team were asked to
estimate the morale of the team over the whole project. In detail they were asked about their
opinion about OBSD and a lot of feedback was received. Of course not only in a positive way,
but the fact that almost all interviewed personnel gave feedback on how to improve and make
better use of the life-cycle was an overwhelming success. The feedback also influenced the
management to implement a bonus system for the developers in case they fix bugs in reused
components and check them in so everybody benefits.

125

5.3 Integrated Digital Briefing Evaluation

The evaluation from textual briefing to digital briefing was an important step within the Aeronau-
tical Information Management domain. This was made possible by the foundation established
through the joint forces of research programs like Eurocontrol’s SESAR and FAA’s NextGen.
This section describes the evaluation of the development of the prior developed briefing prod-
uct and the new briefing application, the Integrated Digital Briefing Service (IDBS). IDBS is
enabled by the availability of digital aeronautical services, meteorological services, and flight
information services to distribute a digitally enhanced briefing. The IDBS allows consumers to
request briefing information based on various filtering criteria as well as to subscribe for being
informed about updates in the briefing information (e.g. in-flight updates). Briefing information
includes meteorological data (e.g., METAR, TAF, SIGMET) as well as aeronautical information
(e.g., DNOTAM). The Evaluation not only analysis the new service development IDBS, which
is also called the “new product”, but also the previous product, which is referred to in the fol-
lowing chapter as the “old product”. While current briefings often require manual steps for the
creation, IDBS is an integrating service, providing added value by combining information that
is already available via other services, such as meteorological services (e.g., METAR, TAF ser-
vices), aeronautical information services (e.g., AeronauticalInformationFeature service), map-
ping services (e.g., AerodromeMapInformation, AeronauticalInformationMap services). The
old product, used for the comparison, didn’t utilize DNOTAMs instead NOTAMs in the previ-
ous format defined by AIXM 4.5 were used for publishing a briefing. Another big difference
is the support of the in-flight briefing use case, while the old product just covers the pre-flight
briefing use-case. IDBS uses existing services to aggregate new information needed for creation
of the briefing shown in figure 5.4. A lot of preliminary work was accomplished in a previ-
ous SESAR research project. For example, customer requirements from various ANSPs were
collected and a briefing prototype was developed which was used as foreground for the new
product.

Aircraft

Briefing
Information

(aggregated data)

Aeronautic
Information
(e.g. DNOTAMs,

static data)

Weather
Information

(e.g. METAR, TAF,

SIGMET)

Additional
Information

(e.g. aircraft type,

flight segments,)

Information
Dispatcher

Specific Aircraft

Flights
Information
(e.g. active flight

schedules)

OnBoard
Briefing

Static
Information
(flightplan, type)

Dynamic
Information

(place, time, height)

Information Dispatcher Briefing Information Database

Figure 5.4: Integrated digital briefing overview.

126

5.3.1 Context Factors

As already stated in subsection 5.2.2 the evaluation framework XP-EF makes use of six separate
context factors. The outcome of the evaluation and the determined information is presented in
this subsection. The work on IDBS started beginning of 2015 and lasted for 12 months for the
first release submitted to the customer. The last release of the old product was finished two years
ago and the evaluation data was collected from the company’s QA team based on the last release.
During the beginning of the new product development a workshop together with the development
team was held to introduce OBSD. The lessons learned from previous projects using OBSD were
presented and everyone had the chance to get familiar with the OBSD feedback loop.

Software Classification XP-EF classifies software projects into six different groups: infor-
mation systems, technical systems, end user products, commercial projects, outsourced projects,
or military projects a more detailed description can be found in subsection 5.2.2. Since both
products were built for a launching customer with follower customers in mind, both projects are
classified as commercial ones.

Sociological Factors Table 5.10 presents the sociological factors. The team sizes were slightly
bigger in comparison with the other case study in section 5.2. The level of experience for both
development teams was high. Four developers of the new product worked for the AMIS project
before. This was a great benefit for the new developed IDBS. Both project managers had a
medium experience level but worked in the domain before. From the beginning the requirements
were stable, through the research work accomplished before. The change of personnel was quite
low with two persons during the development of the old product and one person during the new
one. The moral factor is an important factor to be looked at. The interviewed team members
mentioned routine development, while working on the old product. In contrast to this, according
to survey statements, the new development was under increased time pressure.

Sociological Factor Old Product New Product
Development Team Size 10 13
Level of Education BSc: 8

MSc: 1
PhD: 1

BSc: 9
MSc: 3
PhD: 1

Level of Experience > 5 Years: 3
> 10 Years: 3

> 5 Years: 2
> 10 Years: 2

Domain Expertise Moderate
Technical Expertise High
Experience of Project Manager Medium
Assigned Specialists Software Architect
Change of Personnel 20 % 13 %
Morale Factors Routine Development Delivery Pressure

Table 5.10: IDBS sociological factors.

127

Project-Specific Factors Table 5.11 compares the project-specific factors for both products.
Even though the last release of the old product was two years ago, some parts of the product are
much older. The duration of the last release was relatively short with 5 months compared with the
duration of the 12 months of development for the new product. The complexity increased from
medium to high since IDBS now supports more complex use-cases such as in-flight briefing.
The increase of functionality is also reflacted by the total numbers of classes and components.
More than 15% of the overall KLOEC (new product) was produced by reused components.

Project-specific Factors Old Product New Product
Nature of Project New Release New Development
Domain Aeronautical Information Management
Person Months 34 103
Duration in Months 5 12
Relative Feature Complexity Medium High
Product Age 4 Years 3 Months
Number of Use Cases 8 27
Constraints Safety, Scope and Resource Constrained
Reused Components
Total Components

N/A
12

28
45

Reused Classes
Total Classes

N/A
728

812
2812

Reused Methods
Total Methods

N/A
6513

4018
12541

Component KLOEC N/A 30.5
System KLOEC 125.1 205.7

Table 5.11: IDBS project-specific factors.

Ergonomic Factors The ergonomic factors for both products were identical and are described
in table 5.12. It is worth mentioning that the semi-private offices can hold between four or
eight persons and are ideal for agile development even though it is not the classical open space
office environment. Stand-up meetings were easy to schedule during the development of IDBS
since a meeting-point room was near by. The communication with the customer within both
developments was done via e-mail, telephone conferences, and via face-to-face meetings on-
site.

Ergonomic Factor Old Product New Product
Physical Layout Semi-Private
Distraction Level of Office Space Low
Customer Communication On-Site, Telephone Conference, E-Mail

Table 5.12: IDBS ergonomic factors.

128

Technological Factors Technological factors for both the new and the old product, are quite
the same as they were for the AMIS development. During the old product the waterfall was
used as software development methodology, while the new IDBS implementation used a mix of
agile and plan-driven software development methodology supported by OBSD. For the project
management the company own tools were used which were standard at the time. Both projects
worked with use-cases to estimate tasks and forecast release points and iterations. For both
products Java was used as software language for the development. The initial release of the old
product was developed years before the last release, as a result the core of the product underwent
a lot of refactoring over the years. The new development of IDBS was built from scratch in Java
based on the gained knowledge from the previous research project. Because of the different
software development methodologies used, the defect prevention and removal practices differ
between the two products. Software testers were available within both teams. Instead of code
reviews, pair programming was performed during the implementation of the new product. In
addition ad hoc customer tests were used as it was done for AMIS. In addition the feedback loop
was improved allowing the developers to use the OBSD IDE plug-in to directly submit their
feedback.

Technological Factor Old Product New Product
Software Development Methodology Waterfall Mix of Agile and

Plan-Driven OBSD
Project Management Microsoft Project Internal PM-Tool
Language Java
Reusable Materials Existing Product

3rd Party Libraries
Research Prototypes
OBSD Components
3rd Party Libraries
Unit Test Suites

Defect Prevention
and Removal Practices

Code Review
QA
Ad Hoc Testing

Pair Programming
Unit Tests & QA
Continuous Integration
Collective Code Ownership
Customer Tests

Table 5.13: IDBS technological factors.

Geographic Factors The geographical factors shown in table 5.14 cover the team location,
number of customers, and location of the customer. Both product developments took place in
one department within one time-zone. This simplified the communication between the team
members. The location of the customer was in both cases multi-national. Most of the time
telephone conference were used as communication form. During the beginning of the IDBS
development an introduction face-to-face meeting was arranged to get to know all the involved
participants, also on the costumer side. This improved the relation to the customer, as every
individual name now had a corresponding face, which usually facilitates the whole collaboration.

129

Geographic Factor Old Product New Product
Team Location One Location One Department

One Time-Zone
Number of Customers Approx. 15 Approx. 50
Customer Location Remote and On-Site

Multi-National
Various Time-Zones

Supplier Location None

Table 5.14: IDBS geographic factors.

Developmental Factors A detailed explanation about the five developmental factors was given
in subsection 5.2.2. The developmental factors for the old and the new product, collected during
this evaluation, are presented in figure 5.5. Even though most factors are the same, a difference
of the dynamism occurred due to the previous research work accomplished. The launching cus-
tomer defined the requirements quite well and the prototyping upfront improved the quality of
the requirements before the actual development of the new product. The number of reused com-
ponents during development was another big change between the old and the new developmental
factors. A lot of new features were added to IDBS compared to the previous product which led
to this huge difference. In addition it was quite helpful that between this case study and the
first one, a couple of other projects were using OBSD which improved the OBSD life-cycle
significantly. This together led to an improved reuse of components.

Figure 5.5: IDBS developmental factors.

130

5.3.2 Adherence Metrics

The results of the adherence metrics of the new and the old product are presented in this sub-
section. A description of the different metrics used, can be found in subsection 5.2.3. Within a
safety critical environment, special practices and processes were established to master the spe-
cific challenges in context of such a domain. The OBSD software development life-cycle was
built to fit the needs of such a diverse and demanding domain. The main goal of the survey is to
measure quantifiable adherence of software development processes and practices by calculating
the mean of the respondents. The higher the percentage number is, the more often it was used.
Especially the adherence metrics about coding and testing provide essential information on the
effectiveness of OBSD. The survey took place in a lessons learned workshop with members of
the development teams.

Planning Adherence Metrics The planning adherence metrics are condensed in table 5.15.
The new product used a release length of three months with an iteration length of two weeks.
The release length of the old product was the same as the project duration which was five months
for the last release. The objective planning metrics also captured the requirements dynamism
which is an important factor. The amount of changed requirements allows some conclusions.
Due to the outstanding work of the previous research projects the defined requirements were
identified as quite stable only 25% were affected by changes afterward. Around 45% of the
requirements were changed during the development phase of the old product. As highlighted
during the AMIS lessons learned workshop, the assigned component leaders were invited to
standup meetings if issues were raised and feedback was required.

Planning Metric Old Product New Product
Objective Metrics
Release Length 5 Months 3 Months
Iteration Length None 2 Weeks
Requirements Dynamism 45 % 30 %
Subjective Metrics (Survey) Mean
Stand Up Meetings 20 % 56 %
Short Releases N/A 71 %
Customer Access / On-Site Customer 8 % 9 %

Table 5.15: IDSB planning adherence metrics.

Coding Adherence Metrics The coding adherence metrics of the old and new IDBS product
are shown in table 5.16. The factor component reuse depicts how many of the queried compo-
nents of OBSD were selected and integrated in the development of IDBS. The feedback from the
previous case study led to an improvement of the queried components, which allows the conclu-
sion that the OBSD process has improved in terms of preciseness and accuracy. The subjective
metric for integration of components reflects the objective metric and was accomplished most of

131

the time in pairs to get the developer quickly familiar with the components. This was an already
proven concept taken on board from the AMIS case study. Unfortunately for some metrics no
data was available for the old product. The subjective metric for collective ownership for the
new IDBS was even higher compared to the value shown in the coding adherence metrics of
AMIS (cf. section 5.2.3).

Coding Metric Old Product New Product
Objective Metrics
Component Reuse N/A 21.4 %
Pairing Frequency 0 % 25 %
Inspection Frequency 57 % 0 %
Subjective Metrics (Survey) Mean
Component Integration N/A 45 %
Refactoring N/A 58 %
Pair Programming N/A 35 %
Simple Design N/A 65 %
Collective Ownership N/A 82 %
Coding Standards N/A 80 %
Sustainable Pace N/A 72 %
Metaphor N/A 67 %

Table 5.16: IDBS coding adherence metrics.

The subjective metrics reflects the outcome of the survey. Component integration, with a
value of 45%, was a bit lower than compared to evaluation metrics of AMIS. Since the baseline
prototype of IDBS was developed within a research project the refactoring of code was high.
The hypothesis, that the OBSD methodology breaks up with the old thinking of code as own
proprietary, can be again undermined with a metric value over 82%. As shown in the previ-
ous evaluation the developers mentioned that OBSD motivated them to use existing components
from the OBSD repository and improve them. The pairing frequency was lower (25%) than the
45% rate measured during the development of the new AMIS (cf. section 5.2.3). The concept of
simple design was rated almost as high as during the development of AMIS by the respondents.
Company coding standards were applied to an extend of 80 %. The sustainable pace was fine
with a value of 72%. Due to the circumstance that enough foreground was developed during the
research project led to an acceptable metaphor of 67%. The general feedback about OBSD was
good, the IDE integration improved since the first case study and brought a better user accep-
tance. The developers, which already worked with the new methodology during the development
of the AMIS also stated that some of the issues regarding OBSD were solved. Improvements
like, enhanced component description, extensions to the IDE, more reliable components for
reuse, a faster repository, and a direct feedback loop to ameliorate the OBSD knowledge were
implemented.

132

Testing Adherence Metrics Table 5.17 illustrates the testing adherence metrics of the IDBS.
The test coverage was more than 80%. One of the reasons therefore are the automated tests
which were available for the OBSD components. In addition new classes were covered nearly
35% by automated testing. The test run frequency value was lower than the case study brought
to light during the evaluation of the AMIS (1.0 versus 2.0). It is conspicuous that the ratio
between test LOC and source LOC significantly higher for IDBS compared to AMIS (cf. sub-
section 5.2.3). During the interview developers mentioned an improvement of the quality of
the components themselves. According to the numbers of the survey capturing the subjective
metrics, 55% was covered by the test first design due to functional tests. Automated unit tests
and customer acceptance test metrics reached 60% and more. This can be attributed to the clear
requirements coming from the customer and the gained knowledge of the development team
during the research project up front.

Testing Metric Old Product New Product
Objective Metrics
Test Coverage N/A 81.2 %
Test Run Frequency None 1.0
New Classes with Test Class N/A 33 %
Reused Classes with Test Class N/A 85 %
Test LOC / Source LOC N/A 0.211
Subjective Metrics (Survey) Mean
Test First Design N/A 55 %
Automated Unit Tests N/A 59 %
Customer Acceptance Test N/A 65 %

Table 5.17: IDBS testing adherence metrics.

5.3.3 Outcome Metrics

Figure 5.18 depicts the outcome metrics using objective and subjective metrics, like internal
and external visible quality, productivity, customer satisfaction, or morale. The companies QA
principles were used to trace software defects. As done for the outcome metrics of AMIS, the
relative scale was set to 1.0 for the prior product. During the lessons learned workshop the feed-
back was overall positive. The developers worked with OBSD before, mentioned an improved
quality of the components. This was shown mainly by an improved description, stability and
documentation of the code. Due to the customer requirements the component repository was
used to identify which components can be reused or extended. It was even used for offers to
estimated the needed effort. The success of the exchange of knowledge (cf. subsection 5.2.4)
within the own company formed an own group dealing with common components which is also
responsible for the OBSD life-cycle. As discovered during the comparison of AMIS, the number
of available artifacts increased and will rise in the future.

133

Outcome Metrics Old Product New Product
Objective Metrics
Internal-Visible Quality
(Test Defects/KLOEC)

1.0 0.62

External-Visible Quality
(Released Defects/KLOEC)

1.0 0.59

Productivity
(KLOEC/Person Month)

1.0 1.23

Subjective Metrics (Survey) Mean
Customer Satisfaction Medium High
Morale 60 % 68 %

Table 5.18: IDBS outcome metrics.

The internally-visible quality correlates with the defect density. This value improved by
38% compared to the prior implementation. The quality improvement of the components is one
result obtained by OBSD. The more often components are reused the better the stability gets.
Defects in those components are significant lower than in new or even refactored artifacts. This
pattern was also reflected during the survey’s feedback from the developers. The usability of the
IDE plug-in still needs to better support the feedback of identified errors and submission to the
repository. Further improvements are planned to deliver a smoother user experience based on
the received feedback.

Externally-visible quality measures software defects found after the first roll-out to the cus-
tomer. 41% less errors were found in the first released version. Improved software development
processes, a better tool support, and the reuse of field proven software were mentioned by the
developers as major aspects for this improvement. This outcome value is even better than the
one achieved during the AMIS development. The close relation ship with the customer and the
foreground done in the related research project led to stable and high quality requirements.

Productivity is an economic indicator, which is categorized by the management as extremely
important. It also correlates directly with the cost-benefit question. Increased productivity is
usually accompanied by a reduction of development costs. It is measured by the number of
KLOEC per person month. With the reuse of components this value has increased by 23%
compared to the previous product. IT was helpful that most of the developers had worked on the
research project and with OBSD before.

The high customer satisfaction was achieved due to a very close relationship with the cus-
tomer. The great commitment from the customer, from the beginning of the research project
till the end of the development of the product itself, certainly helped. According to the feed-
back of the developers the use of stable components allowed a very early and smooth integration
compared to the integration necessary during the new AMIS development.

The morale metric was slightly higher than during the prior development. It seems that due to
the huge amount of new features the pressure on the team had effects on the morality compared
to relaxed development during the old product. The feedback also suggests that the costs of
integrating components increased and also had a negative impact on the morale, although this

134

improved in contrast to the past development. The use of OBSD should therefore be handled
carefully and always focus on the support of the developer. A potentially too ambitious goal
should be avoided (e.g. to reuse too many components). Otherwise, the OBSD advantages can
quickly turn into disadvantages.

5.4 Conclusion

This chapter presented two projects utilizing the idea of Ontology-Based Software Development
evaluated within this case study. For the purpose of comparing the old development process with
the methodology introduced within this thesis, two new product developments were chosen to be
evaluated and analyzed against the old development using the adopted XP-EF evaluation frame-
work (cf. subsection 1.5.2). Context factors, adherence metrics data, and outcome metrics were
recorded for each of the processes. Quantitative and qualitative measurements were captured
during a lessons learned workshop from the development teams. Those findings have then been
reviewed and analyzed during the OBSD feedback loop to improve the OBSD life-cycle. Within
the context of this chapter, the final results of the investigation and analyses were shown. It can
be concluded that the knowledge about already existing components is better distributed within
the company and that the reusability increased. Reusability, in a security-critical environment,
is worth more, since software is often used over a longer time horizon than in other domains.
Interestingly the survey also covered the fact that OBSD is used for superior offer supply, since
requirements can be used to estimate more accurate. The findings in both case studies support
the hypothesis that OBSD can to some extend close the semantic interoperability gap, which is
one of the main research questions stated in section 1.5.

The new implementations of the AMIS and the IDBS showed that the OBSD life-cycle and
its underling processes are capable of improving the reusability of components. From a pure
financial aspect it is not easy to gain scientific numbers regarding the integration effort of reused
components, which were not refactored or extended. This is also bounded due to the limitations
the case studies and their evaluation and analyzes have. Both outcome metrics showed that the
quality of code improved before the roll-out, which is one way to save software development
costs through ontology-based technologies. The outcome metrics also revealed a significant
positive effect of OBSD on the external-visible quality (cf. subsections 5.2.4 and 5.3.3). An-
other interesting finding of the case studies is the fact that developers mentioned the motivation
to improve existing components from the OBSD repository. The findings suggest that the OBSD
practices can improve the productivity and can lead to the reuse of components, which in the end
improves the product quality. To some extend the main research question and the derived sub-
questions could be answered. The interpretation of all findings should be taken with care since
both products evolved significantly in terms of feature richness between two compared releases
for both evaluations. In addition it should also be mentioned, that these results are based on
case study in one particular domain. The general outcome of the case study is, that under spe-
cific circumstances OBSD solves the reusability challenge to reuse software components across
various domains. Of course more research and improvements will be necessary to enhance the
proposed solution. Future steps include the improvement of the quality of existing components
in the repository and the increase of reusable components which are available.

135

CHAPTER 6
Epilogue

“Now this is not the end. It is not even the beginning of the end. But it is, perhaps, the end of
the beginning.”

[Churchill, 1942]

In this chapter a critical reflection about the achieved results is drawn by answering the de-
sign science research checklist outlined in the prologue 1.5. In addition a general conclusion
summarizes the outcome of the thesis. In the end open problems and interesting topics for future
research are presented.

6.1 Results and Critical Reflection

As described in section 1.5.1 [Hevner et al., 2004] defined seven guidelines to assist researchers
and readers for conducting top quality design science research. Based on those guidelines a more
specific checklist of questions to evaluate a design research project was developed in 2013 [Gre-
gor and Hevner, 2013]. The checklist was used to ensure that this thesis addresses the key
aspects of design science research. The list below accompanies an explanation of how the thesis
answers these questions.

1. What is the research question?

Following the design science research pattern, design requirements define the research
question. The main requirement related to this thesis is to improve software development
in terms of cost-efficiency. The main research question of this thesis was defined in chapter
1, section 1.5:

Is it possible to solve the reusability challenge to reuse software
components across various domains?

137

The main goal of OBSD is to develop an ontology-based solution to this important busi-
ness problem. This main research question is further divided into two sub questions: “Can
software development costs be lowered with the help of ontology-based technologies?”
and “Which strategy closes the semantic interoperability gap?”.

2. What is the artifact? How is the artifact represented?

Design, as defined by [Gregor and Hevner, 2013], must produce a viable artifact in the
form of a construct, a model, a method, or an instantiation. During the work on this thesis
a couple of artifacts were developed. The OBSD methodology presented in section 4.2
outlines a life-cycle of how to use ontologies to support the reuse of software components
for different domains. After establishing the OBSD methodology two industrial case stud-
ies were chosen to answer the research questions described above. The results were then
evaluated against the old process of development with a corresponding evaluation method
(cf. chapter 5).

3. What design processes are used to build the artifact?

A computable model of design processes [Takeda et al., 1990] was used to build the ar-
tifacts described above. It was assumed that the design process changes iteratively and
each state holds the description of the current design, the properties of it, and the actual
knowledge. It is possible to build a computable model by interpreting the cognitive model
in the logical framework discussed by [Takeda et al., 1990].

4. How are the artifact and the design processes grounded by the knowledge base?

The relation between design process and artifacts is quite obvious. The artifacts were
grounded on state-of-the-art technology, deep domain knowledge, scenario-based design
approaches and well settled techniques for an empirical prof of concept. This all was made
possible by bringing very diverse topics like technical, operational or domain know-how
together. The OBSD methodology unites these diverse topics to gain value through the
aggregation of the existing knowledge.

5. What evaluations are performed during the internal design cycles?

The OBSD methodology changed after each iteration of the design cycle as it was not
clear in a first step which ontologies should be built and matched. Following [Gregor and
Hevner, 2013], design science research relies upon the application of rigorous methods in
both the construction and evaluation of the design artifact. A couple of iterations later the
OBSD methodology was evolved enough to be used for a first case study. Evaluation tests
have demonstrated that the artifacts iteratively improved and in the end have significant
advantages in terms of efficiency and effectiveness with respect to existing approaches.
Moreover, as a result of the evaluation comparison preformed on the two case studies the
OBSD methodology was adopted over time.

138

6. How is the artifact introduced into the application environment and how is it field
tested?

The OBSD methodology was tested within two case studies by developing two different
products using this ontology-based technique. Furthermore, additional validation was per-
formed to show the advantage in terms of effectiveness and efficiency of the new artifacts
in respect to the current solutions. Evaluation metrics and surveys provided a lot of useful
feedback to improve the solution sustainable.

7. What new knowledge is added to the knowledge base and in what form?

As design science research must be presented effectively to both technology-oriented and
management-oriented audiences several peer-reviewed papers were submitted in the con-
text of this thesis (cf. section 1.6). The idea of the thesis was honored with the innovation
award1. In addition the idea of the OBSD methodology was presented during conferences
world wide and semantic artifacts were submitted to be included for the upcoming release
of AIRM and ISRM.

8. Has the research question been satisfactorily addressed?

The utility, quality, and efficacy of a design artifact was rigorously demonstrated via well-
executed evaluation methods. Ontology-Based Software Development can have a signif-
icant impact on software development, if it is used for the development of different ap-
plications or products with overlapping payload. OBSD increases productive code usage
and reduces the effort for software development of existing components, if a governance
structure is in place and necessary roles are defined. It focuses on improving efficiency
and gaining effort by code reusability, thus contributing to reduction of deployment costs
of such solutions by improving the quality of the implemented solutions. The performed
evaluation shows the benefits of an ontology-based approach to reuse software compo-
nents.

6.2 General Conclusions

It is most important for higher management whether or not the OBSD life-cycle and its under-
lying processes are capable of solving the reusability challenge to reuse software components
across various domains by saving the software development costs and closing the semantic inter-
operability gap through ontology-based technologies. As stated in the prologue, the motivation
of this thesis is to show the benefits an ontology-based life-cycle can offer in a real business
context. The crucial factor for such methodology in order to be used and successful is how
much effort in terms of integration and development is saved. The thesis addressed significant
problems like loss of knowledge, single point of knowledge, reinvention of the wheel, domain
specific development, and lack of feedback cycles as described in Prologue 1.

1 http://i-cns.org/2010/student-paper-award-winners-announced-for-icns-2010/, accessed: 2016-10-23

139

State-of-the-art information management engineering tools and languages were examined in
chapter 2. In order to address the research question accordingly a set of tools, languages, and
technologies was chosen. It also became clear that a lot of additional work on the tool side will
be necessary to implement the concept of OBSD.

In chapter 3, the operational context in which the case study evaluation took place was de-
scribed. The introduction of the Air Traffic Management domain gave necessary insight about
the special requirements a safety critical environment is accompanied by. It highlighted the great
benefits of reusing components in this domain, in which products have a very long life cycle.

The OBSD methodology, life-cycle, and processes were discussed in chapter 4. The knowl-
edge models which form the semantic description were introduced. The key principles used to
design the OBSD ontologies and ontology mediation techniques were outlined. Semantic de-
scription origination, mediation and solution model deployment were described in detail. OBSD
roles and responsibilities needed during the OBSD life-cycle required by the different processes
were mentioned. In the end of this chapter the semantic interface was discussed, which grants
access to the semantic description to calculate the solution model.

The OBSD patterns were validated and analyzed in an industrial case study and are outlined
in chapter 5. The evaluation was conducted out of two new developed products which were com-
pared with their predecessors with an adopted version of the Extreme Programming Evaluation
Framework. Both outcome metric results showed a significantly positive effect on the quality as-
pects of the code due to the reuse of components. Based on the results of the investigation, it can
be concluded that the knowledge about components is better distributed within the company and
therefore also the reusability increases. In a security-critical environment, this is especially effi-
cient because software is often used over a longer time horizon than in other areas. The findings
also support the hypothesis that OBSD can to some extent close the semantic interoperability
gap. The exchange of knowledge beyond company division boundaries, and the reuse of compo-
nents domain independent improved the quality of the delivered products. OBSD was also used
for offers to estimate the effort needed. The benefit of the exchange of knowledge formed an
own group within the company dealing with common components which is also responsible for
the OBSD life-cycle and the underlying processes. The number of available reusable artifacts
increased and will continue to rise in the future.

6.3 Open Problems and Future Perspectives

One important observation is that although a lot of effort was spent in the information man-
agement engineering domain through the rise of the the Semantic Web, an all-in-one semantic
framework for industrial use is still not available. This has numerous reasons, on the one hand,
all existing languages, tools, and frameworks have their main focus on the semantic web and
due to their inherent complexity are often not adopted for other domains. On the other hand,
industrial software development is still lacking support in the awareness of the importance of
semantic technologies and therefore the need of such techniques is not pushed by the industry.

140

For the purpose of this thesis it was necessary to implement extensions to better integrate the
ontology-based tool chain and future ontology-based tools and frameworks should be studied to
identify potential new solution that increase the productiveness of the OBSD methodology. An
open problem for future research is the improvement of semantic tools in order to simplify the
knowledge processing.

The OBSD life-cycle showed its capabilities during the performed case study but still offers
room for improvement. The list of products (AMIS, IDBS) which used the OBSD method-
ology will be expanded from the Remote Tower product [Eier et al., 2016] to other products
not related to the ATM domain. OBSD influenced also other areas, like the public safety do-
main [Flachberger et al., 2015], [Flachberger and Gringinger, 2016] or led to other usages of
semantic knowledge in projects like the FFG sponsored project SemNOTAM2 or the just re-
cently started BEST3, a Horizon 2020 SESAR Exploratory Research project focusing on new
SWIM data classification methodologies.

2http://semnotam.frequentis.com, accessed: 2016-12-16
3http://best.futurado.hu, accessed: 2016-12-16

141

APPENDIX A
List of Abbreviations

“學而不思則罔，思而不學則殆。”
[Confucius, 500]

ABox . Assertion Box
AGPL . Affero General Public License
AIAA . American Institute of Aeronautics and Astronautics
AIDX . Aviation Information Data Exchange
AIM . Aeronautical Information Management
AIRM . ATM Information Reference Model
AIS . Aeronautical Information Services
AIS-AIMSG . . Aeronautical Information Services-Aeronautical Information Management Study Group
AIXM . Aeronautical Information Exchange Model
AMDB .Airport Mapping Database
AMIS . Aerodrome Map Information Service
ANSP .Air Navigation Service Provider
API . Application Programming Interface
ARINC . Aeronautical Radio, Incorporated
ASCII . American Standard Code for Information Interchange
ATC . Air Traffic Control
ATM . Air Traffic Management
CANSO . Civil Air Navigation Services Organisation
CARATS . Collaborative Actions for Renovation of Air Traffic Systems
CDM . Collaborative Decision Making
COTS . Commercial-Off-The-Shelf
DAML . DARPA Agent Markup Language
DIG . DL Implementation Group
DL . Description Logic

i

DNOTAM . Digital NOtices To AirMen
EA . Enterprise Architecture
EAD . European AIS Database
EAEA . European Air Traffic Management Enterprise Architecture
EL . Expression Language
ESB . Enterprise Service Bus
EUROCAE . European Organisation for Civil Aviation Equipment
Eurocontrol . European Organisation for the Safety of Air Navigation
FAA . Federal Aviation Administration
FFG . Austrian Research Promotion Agency
FIXM . Flight Information Exchange Model
F-Logic . Frame Logic
GIS . Geographic Information System
GNU .GNU’s Not Unix!
GML . Geography Markup Language
HMI . Human-Machine Interface
HTTP . Hyper Text Transfer Protocol
IATA . International Air Transport Association
ICAO . International Civil Aviation Organization
IDE . Integrated Development Environment
IEEE . Institute of Electrical and Electronics Engineers
IER . Information Exchange Requirements
ISRM . Information Service Reference Model
ISO . International Organization for Standardization
IRI . Internationalized Resource Identifier
IWXXM . ICAO Weather Information Exchange Model
JAR . Java ARchive
JPDO . Joint Planning and Development Office
JPL . Jet Propulsion Laboratory
KIF . Knowledge Interchange Format
KLOEC . Kilo Lines of Executable Code
LGPL . Lesser General Public License
LOC . Lines Of Code
METAR . Meteorological Terminal Air Report
MOF . Meta-Object Facility
N3 . Notation 3
NAF . NATO Architecture Framework
NASA . National Aeronautics and Space Administration
NATO . North Atlantic Treaty Organization
netCDF . network Common Data Form
NextGen . Next Generation Air Transportation System
NNEW . NextGen Network Enabled Weather
NOTAM .NOtices To AirMen

ii

NOV . NATO Operational View
nRQL . Racer Query Language
NSOV . Service-Oriented Views
NSV . NATO System Views
OASIS Organization for the Advancement of Structured Information Standards
OBSD . Ontology-Based Software Development
OFA . Operational Focus Area
OGC . Open Geospatial Consortium
OIL . Ontology Inference Layer
OMG .Object Management Group
OWL . Web Ontology Language
PEP . Policy Enforcement Points
QA .Quality Assurance
QoS . Quality of Service
RDF . Resource Description Framework
RDF(S) . RDF Schema
RIF .Rule Interchange Format
RTCA . Radio Technical Commission for Aeronautics
SE . Software Engineering
SESAR . Single European Sky ATM Research program
SHOE . Simple HTML Ontology Extensions
SIGMET .Significant Meteorological Information
SJU . SESAR Joint Undertaking
SOA . Service Oriented Architecture
SoaML . Service oriented architecture Modeling Language
SOAP . Simple Object Access Protocol
SPARQL . SPARQL Protocol and RDF Query Language
SQWRL . Semantic Query – Enhanced Web Rule Language
SWEET . Semantic Web for Earth and Environmental Technology
SWIM .System Wide Information Management
SWRL . Semantic Web Rule Language
T-Map . Transformation-Map
TAF . Terminal Aerodrome Forecast
TBox . Terminological Box
TCP/IP . Transmission Control Protocol / Internet Protocol
TRACON . Terminal Radar Approach Control
TRREE . Triple Reasoning and Rule Entailment Engines
Turtle . Terse RDF Triple Language
UML . Unified Modeling Language
URI . Uniform Resource Identifiers
UTF . UCS Transformation Format
W3C . World Wide Web Consortium
WMO . World Meteorological Organization

iii

WP . Work Package
WSDL . Web Service Description Language
WSN . Web Services Notification
WXXM . Weather Information Exchange Model
XACML . eXtensible Access Control Markup Language
XHTML .Extensible HyperText Markup Language
XML . Extensible Markup Language
XP-EF . Extreme Programming Evaluation Framework

iv

List of Figures

1.1 How to create quality software. 2
1.2 OBSD in the context of [Happel and Seedorf, 2006]. 5
1.3 Design science research cycles [Hevner and Chatterjee, 2010]. 10
1.4 Design science research structure adopted from [Gregor and Hevner, 2013]. 11
1.5 Adopted design science research methodology process model [Peffers et al., 2006]. 12

2.1 A simple ontology. 23
2.2 Stack of ontology markup languages. 24
2.3 A basic RDF triple as RDF(S) graph. 26
2.4 An example for a mixed usage of RDF and RDF(S). 27
2.5 OWL enriched example. 30
2.6 OWL 2 class hierarchy. 31

3.1 SWIM = The ATM implementation of information management. 51
3.2 High level overview of the SWIM network. 53
3.3 Structure of a SWIM access point. 54
3.4 AIRM semantic and common syntax. 57
3.5 Layers of the Aeronautical Information Exchange Model (AIXM). 62
3.6 Snippet of the aeronautical ontology. 62
3.7 Operational and knowledge domains. 63
3.8 Constructing the weather ontology. 64

4.1 Overview of the Ontology-Based Software Development methodology. 73
4.2 Ontology-Based Software Development life-cycle. 75
4.3 Overview about the whole OBSD processes. 81
4.4 AIRM information model example transformed into an OWL ontology. 87
4.5 Weather data description using ontologies. 91
4.6 Definition of a semantic sub-description in OBSD. 98

5.1 AMIS displaying AMDB data over Stockholm Arlanda airport. 113
5.2 Aerodrome map information service public interface. 114
5.3 AMIS developmental factors. 121
5.4 Integrated digital briefing overview. 126
5.5 IDBS developmental factors. 130

v

List of Tables

2.1 SPARQL - a standardized query language. 36
2.2 Comparison of ontology editors. 37
2.3 A comparison of semantic reasoning systems. 42
2.4 A comparison of visualization tools. 44

4.1 The semantic description layers. 70
4.2 OBSD technical layers. 72
4.3 RDF/OWL statements of an imported AIRM class 89

5.1 AMIS sociological factors. 117
5.2 AMIS project-specific factors. 118
5.3 AMIS ergonomic factors. 119
5.4 AMIS technological factors. 119
5.5 AMIS geographic factors. 120
5.6 AMIS planning adherence metrics. 122
5.7 AMIS coding adherence metrics. 122
5.8 AMIS testing adherence metrics. 123
5.9 AMIS outcome metrics. 124
5.10 IDBS sociological factors. 127
5.11 IDBS project-specific factors. 128
5.12 IDBS ergonomic factors. 128
5.13 IDBS technological factors. 129
5.14 IDBS geographic factors. 130
5.15 IDSB planning adherence metrics. 131
5.16 IDBS coding adherence metrics. 132
5.17 IDBS testing adherence metrics. 133
5.18 IDBS outcome metrics. 134

vii

List of Algorithms

4.1 Example for OWL versioning. 93
4.2 Example for deprecation in OWL. 94
4.3 Configuration of the semantic sub-description 102

ix

Bibliography

[Adida et al., 2008] Adida, B., Birbeck, M., McCarron, S., and Pemberton, S. (2008).
RDFa in XHTML: Syntax and Processing. World Wide Web Consortium (W3C).
http://www.w3.org/TR/rdfa-syntax/, accessed: 2016-11-13.

[AL-Badareen et al., 2011] AL-Badareen, A., Selamat, M., Jabar, M., Din, J., and Turaev, S.
(2011). An evaluation model for software reuse processes. In Zain, J., Wan Mohd, W.,
and El-Qawasmeh, E., editors, Software Engineering and Computer Systems, volume 181
of Communications in Computer and Information Science, pages 586–599. Springer Berlin
Heidelberg.

[Allemang and Hendler, 2008] Allemang, D. and Hendler, J. (2008). Semantic Web for the
Working Ontologist: Effective Modeling in RDFS and OWL. Morgan Kaufmann.

[Angles and Gutierrez, 2008] Angles, R. and Gutierrez, C. (2008). The expressive power of
sparql. In Sheth, A., Staab, S., Dean, M., Paolucci, M., Maynard, D., Finin, T., and
Thirunarayan, K., editors, The Semantic Web - ISWC 2008, volume 5318 of Lecture Notes
in Computer Science, pages 114–129. Springer Berlin Heidelberg.

[Aristotle, 2006] Aristotle (2006). Aristotle: Metaphysics Theta: Translated with an Introduc-
tion and Commentary. Oxford University Press.

[Baader et al., 2003] Baader, F., Calvanese, D., McGuinness, D., Nardi, D., and Patel-
Schneider, P. F. (2003). The description logic handbook: theory, implementation, and ap-
plications. Cambridge University Press.

[Baclawski et al., 2002] Baclawski, K., Kokar, M. K., Kogut, P. A., Hart, L., Smith, J.,
Letkowski, J., and Emery, P. (2002). Extending the unified modeling language for ontol-
ogy development. Software and Systems Modeling, 1(2):142–156.

[Basili, 1992] Basili, V. R. (1992). Software modeling and measurement: the
Goal/Question/Metric paradigm. University of Maryland at College Park.

[Baumeister and Seipel, 2010] Baumeister, J. and Seipel, D. (2010). Anomalies in ontologies
with rules. Journal of Web Semantics, 8(1):55–68.

xi

[Beckett and Berners-Lee, 2008] Beckett, D. and Berners-Lee, T. (2008). Tur-
tle - Terse RDF Triple Language. World Wide Web Consortium (W3C).
http://www.w3.org/TeamSubmission/turtle/, accessed: 2016-11-13.

[Beckett and McBride, 2004] Beckett, D. and McBride, B. (2004). RDF/XML Syntax Specifi-
cation (Revised). World Wide Web Consortium (W3C). http://www.w3.org/TR/rdf-syntax-
grammar/, accessed: 2016-11-13.

[Benjamin et al., 1996] Benjamin, J., Borst, P., Akkermans, H., and Wielinga, B. J. (1996).
Ontology construction for technical domains. In Proceedings of the 9th European Knowledge
Acquisition Workshop on Advances in Knowledge Acquisition. Springer-Verlag.

[Bleiholder and Naumann, 2008] Bleiholder, J. and Naumann, F. (2008). Data fusion. ACM
Computing Surveys (CSUR), 41(1):1–41. 1456651.

[Blomqvist et al., 2012] Blomqvist, P., van der Stricht, S., Helleblad, L., Pola, T., Wilson, S.,
Häggström, N., and Månström, M. (2012). WP8, Internal Workflow including Modeling
Artifacts, Edition 00.00.15. Single European Sky ATM Research (SESAR) Program.

[Bray et al., 2008] Bray, T., Paoli, J., Sperberg-McQueen, C. M., Maler, E., and Yergeau, F.
(2008). Extensible Markup Language (XML) 1.0 (Fifth Edition). World Wide Web Consor-
tium (W3C). http://www.w3.org/TR/2008/REC-xml-20081126/, accessed: 2016-11-13.

[Brickley and Guha, 2004] Brickley, D. and Guha, R. (2004). RDF Vocabulary De-
scription Language 1.0: RDF Schema. World Wide Web Consortium (W3C).
http://www.w3.org/TR/PR-rdf-schema, accessed: 2016-11-27.

[Bruijn et al., 2006] Bruijn, J. d., Ehrig, M., Feier, C., Martíns-Recuerda, F., Scharffe, F., and
Weiten, M. (2006). Ontology Mediation, Merging, and Aligning, pages 95–113. John Wiley
and Sons, Ltd.

[Buhl et al., 2013] Buhl, H. U., Röglinger, M., Moser, F., and Heidemann, J. (2013). Big data.
Wirtschaftsinformatik, 55(2):63–68.

[Burgstaller et al., 2016] Burgstaller, F., Steiner, D., Neumayr, B., Schrefl, M., and Gringinger,
E. (2016). Using a model-driven, knowledge-based approach to cope with complexity in
filtering of notices to airmen. In Proceedings of the Australasian Computer Science Week
Multiconference, ACSW ’16, pages 46:1–46:10, New York, NY, USA. ACM.

[Burgstaller et al., 2015] Burgstaller, F., Steiner, D., Schrefl, M., Gringinger, E., Wilson, S., and
van der Stricht, S. (2015). Airm-based, fine-grained semantic filtering of notices to airmen.
In Integrated Communication, Navigation and Surveillance Conference (ICNS), pages D3–
1–D3–13. Institute of Electrical and Electronics Engineers (IEEE).

[Caldiera and Basili, 1991] Caldiera, G. and Basili, V. R. (1991). Identifying and qualifying
reusable software components. Computer, 24(2):61–70.

xii

[Calero et al., 2006] Calero, C., Ruiz, F., and Piattini, M. (2006). Ontologies for Software En-
gineering and Software Technology. Springer-Verlag.

[CANSO, 2013] CANSO (2013). The Transition from AIS to
AIM. Civil Air Navigation Services Organisation (CANSO).
https://en.wikiquote.org/w/index.php?title=Winston_Churchill&oldid=2196223, accessed:
2016-11-24.

[Catenazzi et al., 2009] Catenazzi, N., Sommaruga, L., and Mazza, R. (2009). User-friendly
ontology editing and visualization tools: The owleasyviz approach. In Information Visuali-
sation, 2009 13th International Conference, pages 283–288.

[Chandrasekaran et al., 1999] Chandrasekaran, B., Josephson, J. R., and Benjamins, V. R.
(1999). What are ontologies, and why do we need them? Intelligent Systems and their
Applications, IEEE, 14(1):20–26.

[Churchill, 1942] Churchill, W. (1942). accessed: 2016-11-27.
https://en.wikiquote.org/w/index.php?title=Winston_Churchill&oldid=2196223.

[Clarke, 1973] Clarke, A. C. (1973). accessed: 2016-11-27.
https://en.wikiquote.org/w/index.php?title=Arthur_C._Clarke&oldid=2192351.

[Confucius, 500] Confucius (BC 500). accessed: 2016-11-27.
https://en.wikiquote.org/w/index.php?title=Confucius&oldid=2180119.

[Cruellas and Roelants, 2013] Cruellas, P. and Roelants, E. (2013). 08.01.01, SWIM Concept of
Operations, Edition 00.03.03. Single European Sky ATM Research (SESAR) Program.

[Di Crescenzo et al., 2010] Di Crescenzo, D., Strano, A., and Trausmuth, G. (2010). System
wide information management: The swim-suit prototype. In Integrated Communications
Navigation and Surveillance Conference (ICNS), 2010, pages C2–1–C2–13.

[Dillon et al., 2008] Dillon, T., Chang, E., and Wongthongtham, P. (2008). Ontology-based
software engineering- software engineering 2.0. In Software Engineering, 2008. ASWEC
2008. 19th Australian Conference on, pages 13–23.

[Eco, 1957] Eco, U. (1957). accessed: 2016-11-27.
https://en.wikiquote.org/w/index.php?title=Umberto_Eco&oldid=2192739.

[Edison, 1903] Edison, T. (1903). accessed: 2016-11-27.
https://en.wikiquote.org/w/index.php?title=Thomas_Edison&oldid=2194506.

[Ehrig, 2010] Ehrig, M. (2010). Ontology Alignment: Bridging the Semantic Gap. Springer
Publishing Company, Incorporated, 1st edition.

[Eier et al., 2016] Eier, D., Gringinger, E., and Klopf, M. (2016). Semantic information man-
agement in a SWIM enabled remote tower environment. In Integrated Communications Navi-
gation and Surveillance (ICNS), pages 1–18. Institute of Electrical and Electronics Engineers
(IEEE).

xiii

[Einstein, 1955] Einstein, A. (1955). accessed: 2016-11-27.
https://en.wikiquote.org/w/index.php?title=Albert_Einstein&oldid=2191410.

[EUROCAE, 2011a] EUROCAE (2011a). ED-119B - Interchange Standards for Terrain, Ob-
stacle, And Aerodrome Mapping Data, Edition final. European Organisation for Civil Avia-
tion Equipment (EUROCAE).

[EUROCAE, 2011b] EUROCAE (2011b). ED-99C - User Requirements for Aerodrome Map-
ping Information, Edition final. European Organisation for Civil Aviation Equipment (EU-
ROCAE).

[Eurocontrol, 2009] Eurocontrol (2009). Strategic Guidance in Support of the
Execution of the European ATM Master Plan, Edition 1. Eurocontrol.
http://www.eurocontrol.int/sites/default/files/publication/files/surveillance-strategic-
guidance-support-of-the-execution-european-atm-master-plan-20090513.pdf, accessed:
2016-11-17.

[Eurocontrol, 2010] Eurocontrol (2010). Aeronautical Information Exchange Model (AIXM),
Version 5.1, Edition final. Eurocontrol.

[FAA, 2010] FAA (2010). Web Service Description Document - Flight Plan Service (FPS),
Revision A. Federal Aviation Administration (FAA).

[Fensel et al., 2001] Fensel, D., van Harmelen, F., Horrocks, I., McGuinness, D. L., and Patel-
Schneider, P. F. (2001). Oil: an ontology infrastructure for the semantic web. Intelligent
Systems, IEEE, 16(2):38–45.

[Flachberger and Gringinger, 2016] Flachberger, C. and Gringinger, E. (2016). Decision sup-
port for networked crisis & disaster management – a comparison with the air traffic manage-
ment domain. In Tapia, A., Antunes, P., Bañuls, V. A., Moore, K., and Porto, J., editors,
ISCRAM 2016 Conference Proceedings – 13th International Conference on Information Sys-
tems for Crisis Response and Management. Federal University of Rio de Janeiro, Federal
University of Rio de Janeiro.

[Flachberger et al., 2015] Flachberger, C., Gringinger, E., and Obritzhauser, T. (2015). Collab-
oration in crisis management – learning from the transportation domain. In 10th Security
Research Conference »Future Security«.

[Gašević et al., 2009] Gašević, D., Kaviani, N., and Milanović, M. (2009). Ontologies and soft-
ware engineering. In Staab, S. and Studer, R., editors, Handbook on Ontologies, International
Handbooks on Information Systems, pages 593–615. Springer Berlin Heidelberg.

[Gartner, 2012] Gartner (2012). The Importance of ’Big Data’: A Definition.
https://www.gartner.com/doc/2057415/importance-big-data-definition, accessed: 2016-11-
17.

xiv

[Genesereth et al., 1992] Genesereth, M., Fikes, R. E., Brachman, R., Gruber, T., Hayes, P.,
Letsinger, R., Lifschitz, V., Macgregor, R., Mccarthy, J., Norvig, P., and Patil, R. (1992).
Knowledge Interchange Format Version 3.0 Reference Manual. Stanford Logic Group.

[Glimm et al., 2013] Glimm, B., Ogbuji, C., Hawke, S., Herman, I., Parsia, B., Polleres, A., and
Seaborne, A. (2013). SPARQL 1.1 Entailment Regimes. World Wide Web Consortium (W3C).
https://www.w3.org/TR/2013/REC-sparql11-entailment-20130321/, accessed: 2016-11-13.

[Gomez-Perez and Corcho, 2002] Gomez-Perez, A. and Corcho, O. (2002). Ontology lan-
guages for the semantic web. Intelligent Systems, IEEE, 17(1):54–60.

[Grau et al., 2008] Grau, B. C., Horrocks, I., Motik, B., Parsia, B., Patel-Schneider, P., and
Sattler, U. (2008). Owl 2: The next step for owl. Web Semantics: Science, Services and
Agents on the World Wide Web, 6(4):309–322.

[Gregor and Hevner, 2013] Gregor, S. and Hevner, A. R. (2013). Positioning and presenting de-
sign science research for maximum impact. Management Information Systems (MIS) Quar-
terly, 37(2):337–356.

[Gringinger, 2014] Gringinger, E. (2014). Ontology-based representation and semantic query-
ing of digital notices to airmen. In Integrated Communications, Navigation and Surveillance
Conference (ICNS) Conference Proceedings, pages 1–23. Institute of Electrical and Electron-
ics Engineers (IEEE).

[Gringinger, 2017] Gringinger, E. (2017). Ontology-based Software Development in the ATM
domain. Single European Sky ATM Research Joint Undertaking (SJU).

[Gringinger et al., 2010a] Gringinger, E., Eier, D., and Merkl, D. (2010a). A concept for
semantic-based information management for control room development. In International
Council of the Aeronautical Sciences (ICAS).

[Gringinger et al., 2010b] Gringinger, E., Eier, D., and Merkl, D. (2010b). Ontology-based cns
software development. In Integrated Communications Navigation and Surveillance Confer-
ence (ICNS), pages C3–1–C3–13. Institute of Electrical and Electronics Engineers (IEEE).

[Gringinger et al., 2011] Gringinger, E., Eier, D., and Merkl, D. (2011). Nextgen and sesar
moving towards ontology-based software development. In Integrated Communications, Nav-
igation and Surveilance Conference (ICNS), pages H3–1–H3–10. Institute of Electrical and
Electronics Engineers (IEEE).

[Gringinger et al., 2012a] Gringinger, E., Merkl, D., and Graf, G. (2012a). How semantic tech-
nologies enrich aeronautical information management for ontology-based software develop-
ment. In International Council of the Aeronautical Sciences (ICAS).

[Gringinger et al., 2013] Gringinger, E., Milchrahm, H., Andersson, M., and Guerrero, E.
(2013). Verification, validation, and demonstration of an aerodrome map information ser-
vice. In Integrated Communications, Navigation and Surveillance Conference (ICNS), pages
1–16. Institute of Electrical and Electronics Engineers (IEEE).

xv

[Gringinger et al., 2012b] Gringinger, E., Trausmuth, G., Balaban, A., Jahn, J., and Milchrahm,
H. (2012b). Experience report on successful demonstration of swim by three industry part-
ners. In Integrated Communications, Navigation and Surveillance Conference, pages G6–1–
G6–8. Institute of Electrical and Electronics Engineers (IEEE).

[Gruber, 1993] Gruber, T. R. (1993). A translation approach to portable ontology specifications.
Knowl. Acquis., 5(2):199–220.

[Gruber, 1995] Gruber, T. R. (1995). Toward principles for the design of ontologies used for
knowledge sharing. International Journal of Human-Computer Studies, 43(5-6):907–928.

[Gruber, 2009] Gruber, T. R. (2009). Ontology (Computer Science) - definition in Encyclopedia
of Database Systems. Encyclopedia of Database System. Springer-Verlag.

[Guohua et al., 2007] Guohua, S., Zhiqiu, H., Xiaodong, Z., Lei, W., and Gaoyou, X. (2007).
Using description logics reasoner for ontology matching. In Intelligent Information Technol-
ogy Application, Workshop on, pages 30–33.

[Haag et al., 1997] Haag, S., Cummings, M., and Dawkins, J. (1997). Management Information
Systems for the Information Age. McGraw-Hill, Inc.

[Haarslev et al., 2004] Haarslev, V., Möller, R., and Wessel, M. (2004). Querying the semantic
web with racer + nrql. In Proceedings of the KI-2004 International Workshop on Applications
of Description Logics (ADL’04).

[Halevy, 2005] Halevy, A. (2005). Why your data won’t mix. Queue, 3(8):50–58.

[Hamlet, 2010] Hamlet, D. (2010). Composing Software Components - A Software-testing Per-
spective. Springer-Verlag New York, Inc., New York, NY, USA.

[Hamza, 2009] Hamza, H. (2009). A framework for identifying reusable software components
using formal concept analysis. In Information Technology: New Generations, 2009. ITNG
’09. Sixth International Conference on, pages 813–818.

[Happel and Seedorf, 2006] Happel, H. J. and Seedorf, H. (2006). Applications of ontologies in
software engineering. In Proc. of the 2nd International Workshop on Semantic Web Enabled
Software Engineering (SWESE 2006).

[Harris et al., 2013] Harris, S., Seaborne, A., and Prud’hommeaux, E. (2013). SPARQL 1.1
Query Language. World Wide Web Consortium (W3C). https://www.w3.org/TR/2013/REC-
sparql11-query-20130321/, accessed: 2016-11-13.

[Hayes, 1990] Hayes, P. J. (1990). The second naive physics manifesto, pages 46–63. Morgan
Kaufmann Publishers Inc.

[Heflin et al., 1999] Heflin, J., Hendler, J., Luke, S., and Qin, Z. (1999). SHOE: A Knowl-
edge Representation Language for Internet Applications. Institute for Advanced Computer
Studies, University of Maryland at College Park.

xvi

[Hendler and McGuinness, 2000] Hendler, J. and McGuinness, D. (2000). The darpa agent
markup language. IEEE Intelligent Systems, 15(6):67–73.

[Hesse, 2008] Hesse, W. (2008). Engineers Discovering the “Real World” — From Model-
Driven to Ontology-Based Software Engineering, pages 136–147. Springer-Verlag.

[Hevner and Chatterjee, 2010] Hevner, A. R. and Chatterjee, S. (2010). Design Science Re-
search in Information Systems, volume 22 of Integrated Series in Information Systems, chap-
ter 2, pages 9–22. Springer US.

[Hevner et al., 2004] Hevner, A. R., March, S. T., Park, J., and Ram, S. (2004). Design science
in information systems research. MIS Q., 28(1):75–105.

[Hitzler et al., 2012] Hitzler, P., Parsia, B., Patel-schneider, P. F., and Rudolph, S. (2012).
OWL2 Web Ontology Language Primer. World Wide Web Consortium (W3C).
http://www.w3.org/2012/pdf/REC-owl2-primer-20121211.pdf, accessed: 2016-08-13.

[Horridge and Musen, 2016] Horridge, M. and Musen, M. (2016). Snap-sparql: A java frame-
work for working with sparql and owl. In Revised Selected Papers of the 12th International
Experiences and Directions Workshop on Ontology Engineering - Volume 9557, pages 154–
165, New York, NY, USA. Springer-Verlag New York, Inc.

[Horrocks et al., 2006] Horrocks, I., Kutz, O., and Sattler, U. (2006). The even more irresistible
sroiq. In Proc. of the 10th Int. Conf. on Principles of Knowledge Representation and Reason-
ing (KR2006), pages 57–67. AAAI Press.

[Horrocks et al., 2003] Horrocks, I., Patel-Schneider, P. F., and van Harmelen, F. (2003). From
shiq and rdf to owl: the making of a web ontology language. Web Semantics: Science,
Services and Agents on the World Wide Web, 1(1):7–26.

[ICAO, 2005] ICAO (2005). Global Air Traffic Management Operational Concept - Doc 9854
AN/458. International Civil Aviation Organization (ICAO).

[ICAO, 2010a] ICAO (2010a). Aeronautical Information Services-Aeronautical
Information Management Study Group (AIS-AIMSG)/3-SN No. 6 - Appendix
A - AIM Definitions. International Civil Aviation Organization (ICAO).
http://www.icao.int/safety/ais-aimsg/AISAIM%20Meeting%20MetaData/AIS-
AIMSG%203/SN%206%20AppA%20rev.doc, accessed: 2016-10-27.

[ICAO, 2010b] ICAO (2010b). Annex 15 - Aeronautical Information Services, Edition 13. In-
ternational Civil Aviation Organization (ICAO).

[Jie-ning et al., 2009] Jie-ning, W., RongRong, B., Xiaohao, X., and Xinsheng, Y. (2009).
Ontology-based parameterized aerodrome modelling. In Fifth International Conference on
Semantics, Knowledge and Grid, pages 440–441.

[JPDO, 2011] JPDO (2011). Concept of Operations for the Next Generation Air Transportation
System, Version 3.2. Joint Planning and Development Office (JPDO).

xvii

[Kai and Steele, 2009] Kai, Y. and Steele, R. (2009). Ontology mapping based on concept clas-
sification. In Digital Ecosystems and Technologies, 2009. DEST ’09. 3rd IEEE International
Conference on, pages 656–661.

[Keller, 2016] Keller, R. M. (2016). Ontologies for aviation data management. In IEEE/AIAA
35th Digital Avionics Systems Conference (DASC), pages 1–9.

[Kifer and Lausen, 1997] Kifer, M. and Lausen, G. (1997). F-logic: a higher-order language for
reasoning about objects, inheritance, and scheme. In Proceedings of the 1989 ACM SIGMOD
international conference on Management of data. ACM.

[Kifer et al., 1995] Kifer, M., Lausen, G., and Wu, J. (1995). Logical foundations of object-
oriented and frame-based languages. Journal of the ACM, 42(4):741–843.

[Kiryakov et al., 2005] Kiryakov, A., Ognyanov, D., and Manov, D. (2005). Owlim - a prag-
matic semantic repository for owl. In Dean, M., Guo, Y., Jun, W., Kaschek, R., Kr-
ishnaswamy, S., Pan, Z., and Sheng, Q., editors, Web Information Systems Engineering -
WISE 2005 Workshops, volume 3807 of Lecture Notes in Computer Science, pages 182–192.
Springer Berlin Heidelberg.

[Klyne and Carroll, 2004] Klyne, G. and Carroll, J. (2004). Resource Description Frame-
work (RDF): Concepts and Abstract Syntax. World Wide Web Consortium (W3C).
http://www.w3.org/TR/rdf-concepts/, accessed: 2016-11-22.

[Konev et al., 2008] Konev, B., Lutz, C., Walther, D., and Wolter, F. (2008). Logical difference
and module extraction with cex and mex. In Baader, F., Lutz, C., and Motik, B., editors,
Description Logics, volume 353 of CEUR Workshop Proceedings. CEUR-WS.org.

[Lanzenberger et al., 2009a] Lanzenberger, M., Sampson, J., and Rester, M. (2009a). Visualiza-
tion in ontology tools. In Complex, Intelligent and Software Intensive Systems, 2009. CISIS
’09. International Conference on, pages 705–711.

[Lanzenberger et al., 2009b] Lanzenberger, M., Sampson, J., and Rester, M. (2009b). Visu-
alization in ontology tools. In Complex, Intelligent and Software Intensive Systems, 2009.
CISIS ’09. International Conference on, pages 705–711.

[Layman et al., 2004a] Layman, L., Williams, L., and Cunningham, L. (2004a). Exploring ex-
treme programming in context: An industrial case study. In Proceedings of the Agile Devel-
opment Conference, ADC ’04, pages 32–41, Washington, DC, USA. IEEE Computer Society.

[Layman et al., 2004b] Layman, L., Williams, L., and Cunningham, L. (2004b). Motivations
and measurements in an agile case study. In Proceedings of the 2004 Workshop on Quantita-
tive Techniques for Software Agile Process, QUTE-SWAP ’04, pages 14–24, New York, NY,
USA. ACM.

[Lee and Connolly, 2008] Lee, B. and Connolly, D. (2008). Notation 3 (N3) A readable RDF
syntax. World Wide Web Consortium (W3C). http://www.w3.org/TeamSubmission/n3/, ac-
cessed: 2016-11-13.

xviii

[Luckenbaugh et al., 2007] Luckenbaugh, G., Dehn, J., Rudolph, S., and Landriau, S. (2007).
Service oriented architecture for the next generation air transportation system. In Integrated
Communications, Navigation and Surveillance Conference (ICNS), pages 1–9.

[Lung et al., 2007] Lung, C.-H., Urban, J. E., and Mackulak, G. T. (2007). Analogy-based
domain analysis approach to software reuse. Requirements Engineering, 12(1):1–22.

[McCarthy, 1987] McCarthy, J. (1987). Circumscription, a form of non-monotonic reasoning,
pages 145–152. Morgan Kaufmann Publishers Inc.

[McLeod and MacDonell, 2011] McLeod, L. and MacDonell, S. G. (2011). Factors that affect
software systems development project outcomes: A survey of research. ACM Computing
Surveys, 43(4):24:1–24:56.

[Motik et al., 2009a] Motik, B., Cuenca, G. B., Horrocks, I., Wu, Z., Fokoue, A., and Lutz, C.
(2009a). OWL 2 Web Ontology Language Profiles. World Wide Web Consortium (W3C).
http://www.w3.org/TR/2009/REC-owl2-syntax-20091027/, accessed: 2016-11-13.

[Motik et al., 2009b] Motik, B., Patel-Schneider, P. F., and Parsia, B. (2009b). OWL 2 Web On-
tology Language - Structural Specification and Functional-Style Syntax. World Wide Web
Consortium (W3C). http://www.w3.org/TR/2009/REC-owl2-syntax-20091027/, accessed:
2016-10-27.

[Motik et al., 2007] Motik, B., Shearer, R., and Horrocks, I. (2007). Optimized reasoning in de-
scription logics using hypertableaux. In Pfenning, F., editor, Automated Deduction - CADE-
21, volume 4603 of Lecture Notes in Computer Science, pages 67–83. Springer Berlin Hei-
delberg.

[NATO, 2010] NATO (2010). NATO Architecture Framework 3.1. North Atlantic Treaty Orga-
nization (NATO).

[O’Connor and Das, 2011] O’Connor, M. and Das, A. (2011). A Method for Representing and
Querying Temporal Information in OWL, volume 127 of Communications in Computer and
Information Science, chapter 8, pages 97–110. Springer Berlin Heidelberg.

[O’Connor et al., 2005] O’Connor, M., Knublauch, H., Tu, S., Grosof, B., Dean, M., Grosso,
W., and Musen, M. (2005). Supporting rule system interoperability on the semantic web with
swrl. In Gil, Y., Motta, E., Benjamins, V., and Musen, M., editors, The Semantic Web - ISWC
2005, volume 3729 of Lecture Notes in Computer Science, pages 974–986. Springer Berlin
Heidelberg.

[O’Connor and Das, 2008] O’Connor, M. J. and Das, A. K. (2008). Sqwrl: A query language
for owl. In Hoekstra, R. and Patel-Schneider, P. F., editors, OWLED, volume 529 of CEUR
Workshop Proceedings. CEUR-WS.org.

[OGC, 2002a] OGC (2002a). OpenGIS Web Feature Service Imple-
mentation Specification 1.1. Open Geospatial Consortium (OGC).
https://portal.opengeospatial.org/files/?artifact_id=8339, accessed: 2016-11-27.

xix

[OGC, 2002b] OGC (2002b). Web Map Service Implementation Specification 1.1.1. Open
Geospatial Consortium (OGC). https://portal.opengeospatial.org/files/?artifact_id=39967,
accessed: 2016-11-27.

[OGC, 2006] OGC (2006). OpenGIS Web Map Server Implemen-
tation Specification 1.3.0. Open Geospatial Consortium (OGC).
http://portal.opengeospatial.org/files/?artifact_id=14416, accessed: 2016-11-27.

[OGC, 2007] OGC (2007). OpenGIS Geography Markup Language (GML)
Encoding Standard, version 3.2.1. Open Geospatial Consortium (OGC).
http://portal.opengeospatial.org/files/?artifact_id=20509, accessed: 2016-11-27.

[OGC, 2010] OGC (2010). OpenGIS Web Feature Service 2.0 Interface Standard. Open
Geospatial Consortium (OGC). https://portal.opengeospatial.org/files/?artifact_id=39967,
accessed: 2016-11-27.

[OMG, 2012] OMG (2012). Service oriented architecture Modeling Language (SoaML) 1.0.1.
Object Management Group (OMG). www.omg.org/spec/SoaML/1.0.1/, accessed: 2016-11-
27.

[Oppy, 2007] Oppy, G. (2007). Ontological Arguments, pages 145–152. Zalta, E. N.

[Papazoglou and Heuvel, 2007] Papazoglou, M. P. and Heuvel, W.-J. (2007). Service oriented
architectures: Approaches, technologies and research issues. The VLDB Journal, 16(3):389–
415.

[Patel-Schneider et al., 2004] Patel-Schneider, P. F., Hayes, P., and Horrocks, I. (2004). OWL
Web Ontology Language Semantics and Abstract Syntax. World Wide Web Consortium
(W3C). http://www.w3.org/TR/2004/REC-owl-semantics-20040210/, accessed: 2016-12-13.

[Patel-Schneider et al., 2008] Patel-Schneider, P. F., Hayes, P., and Horrocks, I. (2008). OWL
1.1 web ontology language structural specification and functional-style syntax. World Wide
Web Consortium (W3C). http://www.w3.org/TR/2008/WD-owl11-syntax-20080108/ organi-
zation, accessed: 2016-08-13.

[Peffers et al., 2006] Peffers, K., Tuunanen, T., Gengler, C. E., Rossi, M., Hui, W., Virtanen,
V., and Bragge, J. (2006). The Design Science Research Process: A Model for Producing
and Presenting Information Systems Research. In 1st International Conference on Design
Science in Information Systems and Technology (DESRIST), pages 83–106.

[Pola and Solberg, 2013] Pola, T. and Solberg, B. (2013). 08.03.10, ISRM Foundation Rule-
book, Edition 00.02.00. Single European Sky ATM Research (SESAR) Program.

[Pérez et al., 2006] Pérez, J., Arenas, M., and Gutierrez, C. (2006). Semantics and complexity
of sparql. In International Semantic Web Conference (ISWC), page 30–43.

xx

[Prud’hommeaux and Seaborne, 2008] Prud’hommeaux, E. and Seaborne, A. (2008).
SPARQL - Query Language for RDF. World Wide Web Consortium (W3C).
http://www.w3.org/TR/rdf-sparql-query/, accessed: 2016-11-13.

[Pschierer and Schiefele, 2007] Pschierer, C. and Schiefele, J. (2007). Open standards for air-
port databases - arinc 816. In Digital Avionics Systems Conference (DASC) IEEE/AIAA 26th,
pages 2.B.6–1–2.B.6–8.

[Reiss et al., 2006] Reiss, M., Moal, M., Barnard, Y., and Froger, A. (2006). Using ontologies
to conceptualize the aeronautic domain. In International Conference on Human-Computer
Interaction in Aeronautics, pages 55–63. Cépaduès-Editions, Toulouse, France.

[RTCA, 2011a] RTCA (2011a). DO-272C - User Requirements for Aerodrome Mapping Infor-
mation, Edition final. Radio Technical Commission for Aeronautics (RTCA).

[RTCA, 2011b] RTCA (2011b). DO-291B - Minimum Interchange Standards for Terrain, Ob-
stacle and Aerodrome Mapping Data, Edition final. Radio Technical Commission for Aero-
nautics (RTCA).

[Rus and Lindvall, 2002] Rus, I. and Lindvall, M. (2002). Knowledge management in software
engineering. Software, IEEE, 19(3):26–38.

[Sametinger, 1997] Sametinger, J. (1997). Software Engineering with Reusable Components.
Springer-Verlag New York, Inc., New York, NY, USA.

[Seifert et al., 2008] Seifert, C., Kump, B., Kienreich, W., Granitzer, G., and Granitzer, M.
(2008). On the beauty and usability of tag clouds. In Information Visualisation, 2008. IV
’08. 12th International Conference, pages 17–25.

[Seneca, 65] Seneca, L. A. (65). accessed: 2016-11-27.
https://en.wikiquote.org/w/index.php?title=Seneca_the_Younger&oldid=2191743.

[Shannon, 1948] Shannon, C. E. (1948). A mathematical theory of communication. SIGMO-
BILE Mob. Comput. Commun. Rev., 5(1):3–55.

[Siricharoen, 2007] Siricharoen, W. V. (2007). Ontologies and software engineering. In Shi,
Y., Albada, G. D., Dongarra, J., and Sloot, P. M., editors, Computational Science - ICCS
2007, volume 4488 of Lecture Notes in Computer Science, pages 1155–1161. Springer Berlin
Heidelberg.

[Sirin et al., 2007] Sirin, E., Parsia, B., Grau, B. C., Kalyanpur, A., and Katz, Y. (2007). Pellet:
A practical owl-dl reasoner. Web Semantics, 5(2):51–53.

[SJU, 2012] SJU (2012). Program Management Plan, Edition 02.00.00. Single European Sky
ATM Research Joint Undertaking (SJU).

[SJU, 2015] SJU (2015). European Air Traffic Management Master Plan, 2015 Edition. Sin-
gle European Sky ATM Research Joint Undertaking (SJU). https://www.atmmasterplan.eu/,
accessed: 2016-11-17.

xxi

[Smith et al., 2004] Smith, M. K., Welty, C., and McGuinness, D. L. (2004).
OWL Web Ontology Language Guide. World Wide Web Consortium (W3C).
http://www.w3.org/TR/2004/REC-owl-guide-20040210/, accessed: 2016-11-24.

[Spencer and Hill, 1981] Spencer, B. and Hill, T. (1981). accessed: 2016-11-27.
http://www.imdb.com/title/tt0085327/.

[Steiner et al., 2016a] Steiner, D., Burgstaller, F., Gringinger, E., Schrefl, M., and Kovacis, I.
(2016a). In-flight provisioning and distribution of atm information. In International Council
of the Aeronautical Sciences (ICAS).

[Steiner et al., 2016b] Steiner, D., Kovacic, I., Burgstaller, F., Schrefl, M., Friesacher, T., and
Gringinger, E. (2016b). Semantic enrichment of dnotams to reduce information overload in
pilot briefings. In Integrated Communications Navigation and Surveillance (ICNS), pages
6B2–1–6B2–13. Institute of Electrical and Electronics Engineers (IEEE).

[Stoilos et al., 2010] Stoilos, G., Grau, B. C., and Horrocks, I. (2010). How incomplete is
your semantic web reasoner? In Proceedings of the 20th National Conference on Artificial
Intelligence (AAAI 10).

[Szyperski, 2002] Szyperski, C. (2002). Component Software: Beyond Object-Oriented Pro-
gramming. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2nd edition.

[Takeda et al., 1990] Takeda, H., Veerkamp, P., Tomiyama, T., and Yoshikawa, H. (1990). Mod-
eling design processes. AI Magazine, 11(4):37–48.

[Tetlow et al., 2006] Tetlow, P., Pan, J. Z., Oberle, D., Wallace, E., Uschold, M., and
Kendall, E. (2006). Ontology Driven Architectures and Potential Uses of the Seman-
tic Web in Systems and Software Engineering. World Wide Web Consortium (W3C).
http://www.w3.org/2001/sw/BestPractices/SE/ODA/, accessed: 2016-11-17.

[Trausmuth and Klopf, 2010] Trausmuth, G. and Klopf, M. (2010). Evolutionary adaptation of
atm systems for swim. In Integrated Communications, Navigation and Surveilance Confer-
ence (ICNS), 2011, pages E4–1–E4–9.

[Tsarkov and Horrocks, 2006] Tsarkov, D. and Horrocks, I. (2006). Fact++ description logic
reasoner: System description. Lecture Notes in Artificial Intelligence, 4130:292–297.

[Ulfbratt et al., 2008] Ulfbratt, E., Systems, S., McConville, J., and May, C. (2008). Compari-
son of the SESAR and NextGen - Concepts of Operations. NCOIC Aviation IPT.

[Vaishnavi and Kuechler, 2013] Vaishnavi, V. and Kuechler, B. (2013). Design Science Re-
search in Information Systems. http://desrist.org/design-research-in-information-systems/,
accessed: 2013-12-06.

[van Harmelen et al., 2001] van Harmelen, F., Schneider, P., and Horrocks, I.
(2001). Reference description of the DAML+OIL ontology markup language.
http://www.daml.org/2001/03/reference.html, accessed: 2016-12-16.

xxii

[van Meenen et al., 2013] van Meenen, J., Balaban, A., Baz, D. M., Javier, F., and Souami, H.
(2013). 14.01.03, SWIM Architectural Definition for Iteration 2.0, edition 00.01.00. Single
European Sky ATM Research (SESAR) Program.

[Vaudrey, 2013] Vaudrey, T. (2013). WPB04.01, EAEA Guidance Material, Edition 00.00.10.
Single European Sky ATM Research (SESAR) Program.

[von Braun, 1957] von Braun, W. (1957). accessed: 2016-11-27.
https://en.wikiquote.org/w/index.php?title=Wernher_von_Braun&oldid=2085988.

[Wongthongtham et al., 2009] Wongthongtham, P., Chang, E., Dillon, T., and Sommerville, I.
(2009). Development of a software engineering ontology for multisite software development.
Knowledge and Data Engineering, IEEE Transactions on, 21(8):1205–1217.

[Wongthongtham et al., 2008] Wongthongtham, P., Dillon, D., Dillon, T., and Chang, E. (2008).
Use of uml 2.1 to model multi-agent systems based on a goal-driven software engineering on-
tology. In Semantics, Knowledge and Grid, 2008. SKG ’08. Fourth International Conference
on, pages 428–432.

[Zdun et al., 2007] Zdun, U., Hentrich, C., and Dustdar, S. (2007). Modeling process-driven
and service-oriented architectures using patterns and pattern primitives. ACM Transactions
on the Web (TWEB), 1(3).

xxiii

APPENDIX B
Curriculum Vitæ

“Sciant quae optima sunt esse communia.”
[Seneca, 65]

Education *with distinction

since 2009 Ph.D. student in Computer Science
Vienna University of Technology, Austria

2006/07 - 2008/03 Master of Computer Science Management, M.Soc.Ec.Sc.*
Vienna University of Technology, Austria

2006/07 - 2007/10 Master of Computer Science, M.Sc.*
Vienna University of Technology, Austria

2001/10 - 2006/06 Bachelor of Media and Computer Science, B.Sc.*
Vienna University of Technology, Austria

1993/09 - 2001/07 Graduation (Matura)
Sport BRG Wallererstraße, Wels, Austria

xxv

Work Experience

since 2016/02 Member of EUROCAE WG-104 - SWIM Services
The European Organisation for Civil Aviation Equipment

since 2014/05 Expert for European Commission and its Executive Agencies/Bodies
Horizon 2020 - The EU Framework Programme for Research and Innovation

since 2014/02 Member of EUROCAE WG-76 - AIS/MET Datalink Applications
The European Organisation for Civil Aviation Equipment

since 2013/08 Task Team on Aviation XML (AvXML/IWXXM)
World Meteorological Organization

since 2011/01 Senior Expert & Scientist
Corporate Research, Frequentis AG

since 2011/01 Lecturer, Basic Principles of Control Center Solutions
The Vienna University of Technology

2000/01 - 2016/05 IT Consultant, Freelancer
Eduard Gringinger Ges.m.b.H. und Co.KG

2008/03 - 2011/01 Executive Management Assistant to the CEO
Frequentis AG

2005/04 - 2006/06 Software Engineer, Self-Employee
AKH Wien, Medical University of Vienna

2002/03 - 2005/03 Press Guide and Media Activities
Iriepathie, Irievibrations Label

Research Grants

• SESAR 2020 Pj 19 - ATM systems and services (SESAR 2020, 2016-2020)

• BEST - Achieving the BEnefits of SWIM by making smart use of Semantic Technologies
(Horizon 2020, Exploratory Research Call, 2016-2018)

• SemanticNOTAMs - Ontology-based representation and semantic querying of Digital No-
tices to Airmen (FFG, TakeOff-Call, 2013-2017)

• SESAR Project 08.01.03 - ATM Information Reference Model (SESAR 1, 2013-2016)

• SESAR Project 08.03.10 - Information Service Reference Model (SESAR 1, 2013-2016)

• SESAR Project 08.01.04 - Aeronautical Information (SESAR 1, 2010-2013)

• SESAR Project 08.01.06 - Meteorological Information (SESAR 1, 2010-2013)

• SESAR Project 08.01.08 - Environment Information (SESAR 1, 2010-2013)

• SESAR Project 08.01.10 - Airport Information (SESAR 1, 2010-2013)

• SESAR Project 08.03.03 - Aeronautical Information Services (SESAR 1, 2010-2013)

xxvi

Publications *best paper award, **innovative idea award

• Gringinger E, Ontology-based Software Development in the ATM domain. Proceedings
of the 7th SESAR Innovation Days, 2017. Under review.

• Steiner D, Burgstaller F, Gringinger E, Schrefl M, Kovacis I. In-Flight Provisioning and
Distribution of ATM Information. International Council of Aeronautical Sciences (ICAS)
Conference, Daejeon, South Korea, 2016.

• Flachberger C, Gringinger E. Decision Support for Networked Crisis & Disaster Man-
agement – a Comparison with the Air Traffic Management Domain. Intelligent Decision
Support in the Networked Society Proceedings of the ISCRAM 2016 Conference, Rio de
Janeiro, Brazil, 2016.

• Steiner D, Kovacis I, Burgstaller F, Schrefl M, Friesacher T, Gringinger E. Semantic
Enrichment of DNOTAMs to Reduce Information Overload in Pilot Briefings. Inte-
grated Communications Navigation and Surveillance (ICNS) Conference, Washington
D.C, USA, 2016.

• Eier D, Gringinger E, Klopf M. Semantic Information Management in a SWIM enabled
Remote Tower Environment. Integrated Communications Navigation and Surveillance
(ICNS) Conference, Washington D.C, USA, 2016.

• Steiner D, Kovacis I, Burgstaller F, Schrefl M, Friesacher T, Gringinger E. Coping with
Complexity in SemNOTAM - A Model-driven Approach to Knowledge-based Filtering of
Notices to Airmen. Asia-Pacific Conference on Conceptual Modelling (APCCM) Confer-
ence, Canberra, Australia, 2016.

• Flachberger C, Gringinger E, Obritzhauser T. Collaboration in Crisis Management – Learn-
ing from the Transportation Domain. Future Security Conference, Berlin, Germany, 2015.

* Burgstaller F, Steiner D, Gringinger E, Schrefl M, Wilson S, van der Stricht S. AIRM-
based fine-grained semantic filtering of Notices to Airmen. Integrated Communications
Navigation and Surveillance (ICNS) Conference, Washington D.C, USA, 2015.

• Gringinger E. Ontology-based representation and semantic querying of Digital Notices
to Airmen. Integrated Communications Navigation and Surveillance (ICNS) Conference,
Washington D.C, USA, 2014.

• Gringinger E, Anderson M, Guerrero E, Milchrahm H. Verification, Validation and Demon-
stration of an Aerodrome Map Information Service. Integrated Communications Naviga-
tion and Surveillance (ICNS) Conference, Washington D.C, USA, 2013.

• Gringinger E, Merkl D, Graf G. How Semantic Technologies enrich Aeronautical Infor-
mation Management for Ontology Based Software Development. International Council
of the Aeronautical Sciences (ICAS), Brisbane, Australia, 2012.

xxvii

• Gringinger E, Trausmuth G, Balaban A, Jahn J, Milchrahm H. Experience report on suc-
cessful demonstration of SWIM by three industry partners. Integrated Communications
Navigation and Surveillance (ICNS) Conference, Washington D.C, USA, 2012.

• Gringinger E, Eier D, Merkl D. NextGen and SESAR moving towards ontology-based
software development. Integrated Communications Navigation and Surveillance (ICNS)
Conference, Washington D.C, USA, 2011.

• Gringinger E, Merkl D, Eier D. A Concept for Semantic-based Information Manage-
ment for Control Room Development. International Council of the Aeronautical Sciences
(ICAS), Nice, France, 2010.

** Gringinger E, Eier D, Merkl D. Ontology-based CNS Software Development. Integrated
Communications Navigation and Surveillance (ICNS) Conference, Washington D.C, USA,
2010.

• Gringinger E., Trieb N. Clinical Trials Moving Towards Online Solutions. VDM Verlag
Dr. Müller, ISBN 3836480530, 2008.

Patents

• Method for Displaying Relevant Information in an Aircraft. Europe, Patent/Application
Number EP 3118839 A1, 2016.

xxviii

	Prologue
	Motivation
	Definition of Ontology-Based Software Development
	Problem Statement
	Scientific Context
	Research Question and Research Approach
	Information Systems Research
	Evaluation Framework for Case Study

	Structure of this Thesis

	Information Management Engineering
	Introduction
	Definition of Information Management
	Definition of Ontology in Computer Science
	State-of-the-Art of Ontology Engineering
	Ontology Languages
	Ontology Editors
	Semantic Reasoner
	Visualization Tools

	Conclusion

	Operational Context
	Introduction
	Information Services moving towards Information Management
	System Wide Information Management
	Principles
	Concept of Operations
	Technical Architecture
	Access Point

	Standardized Air Traffic Management Data Models
	Air Traffic Management Information Reference Model
	Information Service Reference Model
	European Air Traffic Management Enterprise Architecture
	Aeronautical Information
	Meteorological Information

	Conclusion

	Ontology-Based Software Development
	Introduction
	Ontology-Based Software Development Methodology
	Project Approach
	Technological Approach
	Life-Cycle

	Ontology-Based Software Development Processes
	Semantic Description Origination
	Semantic Mediation
	Solution Model Deployment
	Roles and Responsibilities

	Ontology Management
	Domain Information Model
	Software Components Model
	Ontology Versioning
	Ontology Refinement
	Ontology Consistency

	Ontology Mediation
	Semantic Sub-Description
	Rules and Policies
	Semantic Interface

	Conclusion

	Case Study Evaluation and Analysis
	Introduction
	Aerodrome Map Evaluation
	Related Work
	Context Factors
	Adherence Metrics
	Outcome Metrics

	Integrated Digital Briefing Evaluation
	Context Factors
	Adherence Metrics
	Outcome Metrics

	Conclusion

	Epilogue
	Results and Critical Reflection
	General Conclusions
	Open Problems and Future Perspectives

	List of Abbreviations
	List of Figures
	List of Tables
	List of Algorithms
	Bibliography
	Curriculum Vitæ

