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Abstract

In this work, an optical system based on a digital micromirror device (DMD) is designed
and built in order to realize arbitrary static and dynamic optical dipole potentials for one-
dimensional (1d) quasi-condensates of 87Rb created on an atom chip. The hybrid trapping
configuration realized by the superposition of this optical potential with the magnetic con-
finement of the atom chip combines the high flexibility of optical dipole traps with the
advantages of magnetic trapping, such as effective evaporative cooling and the application of
radio frequency dressed state potentials. To achieve maximal flexibility, automated pattern
optimization procedures and selective Fourier space filtering for high grayscaling resolution
are developed. This setup will enable the investigation of many different model systems
addressing questions from quantum many-body physics to quantum thermodynamics.





Zussamenfassung

Im Rahmen dieser Arbeit wurde ein optischer Aufbau basierend auf einem Digital Micromir-
ror Device (DMD) entwickelt und charakterisiert, um statische und dynamische optische
Dipol-Potenziale für eindimensionale (1d) Quasi-Kondensate auf einem Atomchip zu real-
isieren. Die Kombination optischer Dipol-Potenziale mit magnetischen Potenzialen verbindet
die höhe Flexibilität von optischen Fallen mit den Vorteilen von Magnetfallen wie z.B. ef-
fektives evaporatives Kühlen und die Anwendbarkeit von "radio frequency dressed state"
Potenzialen. Um die maximale Flexibilität der Potenziale zu erreichen, wurde eine au-
tomatisierte Muster-Optimierung für den DMD entwickelt und hohe Graustufen-Auflösung
durch Anwendung eines Fourier-Raum-Filters erreicht. Das aufgebaute System ermöglicht
das Erforschen neuer Aspekte der Dynamik von 1d Quantensystemen in Bereichen der
Quantenvielteilchenphysik bis hin zu Quantenthermodynamik.
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Chapter 1

Introduction

In 1925, Albert Einstein published the second part of a paper, in which he developed a
quantum theory for monatomic ideal gases [1, 2]. His theory was based on a derivation
of Planck’s radiation formula, suggested by Satyendra Nath Bose earlier in 1924 [3]. The
famous concept of Bose-Einstein statistics for non-interacting indistinguishable particles
originates from the work of the two gentlemen. Further discussing this theory, Einstein
showed that for a given temperature, a quantum ideal gas can be compressed only up to a
certain density. He claimed that further compressing will cause a part of the gas to condensate
and to populate the ground state of the system. This was the first theoretical consideration of
a phenomenon which is called Bose-Einstein condensation today. Meanwhile many tools
and techniques developed in the field of atomic physics, with the invention of the laser being
the most prominent one [4]. Laser cooling techniques, including the Doppler cooling [5] and
the Zeeman slower [6], evaporative cooling [7] and magnetic trapping [8, 9] are a few other
crucial experimental tools developed to make the creation of a BEC possible [10, 11]. Since
1995, the BEC has become a powerful platform, enabling physicist to explore many aspects
of physics, from investigating textbook Hamiltonians in condensed matter physics [12] to
simulating analogue gravity models [13].

One of the powerful tools to realize and control BECs are atom chips [14]. An atom chip
is an integrated micro fabricated device, which provides a compact and robust platform to
cool down, trap and manipulate both bosonic and fermionic species. However the trapping
techniques on an atom chip are limited by the magnetic field configurations which can be
produced by the miniaturized wires on its surface. Exploiting the interaction between light
and matter is a way to overcome this obstacle [15].

In this work, an optical system is designed to realize arbitrary optical dipole potentials
for a one-dimensional (1d) quasi-condensates, produced on an atom chip. In this setup, a
digital micromirror device (DMD) [16] is used to perform 1d beam shaping, allowing for
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an arbitrary control of the light intensity pattern at the position of the atoms. The dipole
potential created in this process is superposed with the magnetic confinement of the atom
chip trap all in all realizing a more versatile trapping geometry.

In this manuscript, chapter 2 introduces the basic concepts behind the trapping of neu-
tral atoms in magnetic and optical potentials. In this context, two well-known magnetic
configurations, namely quadrupole and Ioffe-Pritchard configurations are discussed in more
detail. Chapter 3 gives an overview of the experimental setup in which the arbitrary dipole
trap will be employed with a focus on the trapping techniques used in the experiment. A
typical experimental cycle is discussed at the end of this chapter. Chapter 4 is dedicated
to explain how the image of a two-dimensional binary DMD pattern can be exploited to
realize a one-dimensional optical dipole trap. The optical setup which is designed and built
to image the DMD pattern is described in chapter 5. In chapter 6, a probabilistic method
is introduced with which arbitrary 1d potentials can be designed and optimized. The final
chapter summarizes the important points of the thesis and gives an outlook at the possible
future applications of the setup.



Chapter 2

Trapping Neutral Atoms

Investigating the interesting physics related to ultra-cold quantum gases requires the atoms to
be thermally disconnected from its "hot" environment, hence for all these types of experi-
ments, ultra high vacuum is required. To reach the quantum regime, the atoms have to be
cooled down with different techniques, a few of which were mentioned in chapter 1. During
this cooling process, the gas needs to be confined in space, namely a trap so that further
cooling and manipulation be possible.

Today, a variety of trapping techniques can be used, depending on the experimental
requirements. Magnetic potentials [9], electrostatic potentials [17], radio frequency (rf)
dressed state potentials [18] as well as optical dipole potentials [15] are among the trapping
potentials which have been demonstrated experimentally so far.

In this chapter, magnetic traps and optical dipole traps are introduced and discussed in
more detail as they are the building blocks of the experiment presented in this manuscript.

2.1 Magnetic Potentials for Neutral Atoms

The force acting on a particle with a magnetic dipole moment µµµ in a magnetic field BBB is
given by ∇∇∇(−µµµ ·BBB). The magnetic dipole moment for a particle with angular momentum
FFF , is µµµ =−gFµBFFF with gF being the Landé g-factor corresponding to FFF and µB the Bohr
magneton. For a weak magnetic field, the Zeeman energy levels are given by

Umag(rrr) =−µµµ ·BBB(rrr) = mFgFµBB(rrr) , (2.1)

in which mF is the quantum number of the z-component of FFF and B(rrr) = |BBB(rrr)|, the magni-
tude of the field. Note that to evaluate the dot product in equation 2.1, it is assumed that the
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quantization axis of the atom (z-axis in this case) coincides with the direction of the magnetic
field.

If an atom is in a state for which mFgF > 0, the atom moves toward the spatial regions
with lower magnetic field, in order to minimize its energy. These states are called low-field
seeking states. Otherwise, if mFgF < 0, the atom is drawn to regions with stronger magnetic
fields. These states are called high-field seeking states. High-field seeking states can not be
confined in a specific region of the free space, because according to the Maxwell’s equations,
it is forbidden to have a magnetic field maximum in free space.

Consider a frame of reference which is fixed to an atom in a low-field seeking state that
is moving in a trap with a minimum in magnetic field. In this frame of reference, the position
of the atom is fixed and the magnetic field acting on the atom is a time varying field BBB(t). As
long as the quantization axis of the atom can adiabatically follow the changes of the direction
of the magnetic field, the atom will be trapped and equation 2.1 will hold. Otherwise a spin
flip can occur which leaves the atom in an untrapped state. Therefore, the trap is stable if
the direction of the magnetic field θ(t) as seen by atom, changes slower than the Larmor
frequency ωL(t) = mFgFµBB(t)/h̄,

dθ(t)
dt

< ωL(t) . (2.2)

This condition can easily be violated in regions near the minima where the magnetic field
is very small causing spin flips due to the so called Majorana transitions. This will be the
case for traps where the magnetic field has a zero crossing or traps which have a very small
finite minima.

In the following some basic but important trapping configurations are introduced.

2.1.1 Quadrupole Traps

Quadrupole traps are configurations in which the minimum of the magnetic trap is a zero
crossing of the magnetic field. The simplest quadrupole field configuration can be written as
BBB(rrr) = B′x x x̂xx +B′y y ŷyy +B′z z ẑzz , in which B′x, B′y and B′z are constants for which equation holds
B′x +B′y +B′z = 0, according to Maxwell’s equations. The magnitude of the field B(rrr) =√
(B′x x)2 +(B′y y)2 +(B′z z)2 is linear in each spatial dimension and has a zero minimum in

the center of the trap. For the central region of such traps, Majorana losses are unavoidable.
However this effect is suppressed if the atoms are hot enough [19]. This is why these traps are
widely used in initial cooling and trapping stages. The simplest way to realize a quadrupole
trap is to use two coils in anti-Helmholtz configuration [9]. A U-shaped wire trap [20]
discussed in section 2.1.3 can also used to form a quadrupole trap .
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2.1.2 Ioffe-Pritchard Traps

Designing desired field configurations is not as trivial as one might think, because it is highly
constrained by Maxwell equations. The following field configuration, which leads to a
harmonic trap with a non-zero minimum, is known as Ioffe-Pritchard configuration [8, 21].

BBB(rrr) = Bbias x̂xx+
B′′

2
(
x2− 1

2
(y2 + z2)

)
x̂xx

+(−B′ y− B′′

2
xy) ŷyy

+(B′ z− B′′

2
xz) ẑzz .

(2.3)

The magnitude of this field around the origin, where x≪
√

Bbias/B′′ and y,z≪ Bbias/B′, is
approximately given by

B(rrr) = Bbias +
B′′

2
x2 +

1
2
( B′2

Bbias
− B′′

2
)
(y2 + z2) . (2.4)

Calculating the magnetic potential using equation 2.1 and bringing it to the familiar form of
harmonic trap Umag(rrr) = Mω2

∥ x2/2+Mω2
⊥ (y

2 + z2)/2, with M being the mass of an atom,
yields the following equations for the longitudinal and transversal trap frequencies,

ω∥ =

√
mFgFµB

M
B′′ ω⊥ =

√
mFgFµB

M

( B′2

Bbias
− B′′

2
)
. (2.5)

The aspect ratio AR = ω∥/ω⊥ shows how isotropic the trap is. Equation 2.5 suggest that for
an ideal Ioffe-Pritchard configuration, the AR can be tuned by adjusting the parameters B′′

and B′2/Bbias. Using this feature a wide range of magnetic traps are realised, from prolate
(cigar shaped) traps (AR≪ 1), to isotropic (AR≈ 1) and on to oblate (pancake shaped) traps
(AR≫ 1) [22].

Adjustability and having a non-zero trap minimum, makes the Ioffe-Pritchard config-
uration a widely used configuration for trapping ultra-cold atoms. A Z-shaped wire trap
introduced in next section can be used to realize a Ioffe-Pritchard field configuration.
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2.1.3 Wire Traps

The magnetic field created by an infinitely thin and infinitely long wire, carrying the current
I in the −y-direction, shown in figure 2.1 is given by

BBB(rrr) =
µ0I
2π

(
− z

x2 + z2 x̂xx +
x

x2 + z2 ẑzz
)
, (2.6)

in which µ0 is the magnetic permeability of free space. The magnitude of this field, plotted
in red in figure 2.1, is inversely proportional to the distance from the wire,

√
x2 + z2.

Adding a constant bias field BBBbias(rrr) = (µ0I/2πd) ẑzz realizes a two-dimensional (2d)
quadrupole trap in the xz-plane with a zero field minimum at x = −d as demonstrated in
figure 2.1.

Developing this idea, a variety of wire configurations can be designed to realize 3d
quadrupole or Ioffe-Pritchard traps. Two fundamental examples are U-shaped and Z-shaped
wire traps, described in figure 2.2. U-shaped wire configurations are used to realize a 3d
quadrupole trap, while Z-shaped wire configurations produce Ioffe-Pritchard traps. Both
U-shaped and Z-shaped wire configurations are in principle an approximation to a more
general configuration, namely H-shaped configuration [19]. It is important to note that the
approximation of infinitely thin and long wire is not valid if the distance of atoms from the
wire is comparable to the width of the wire. The magnetic field configuration of real wires
can be calculated numerically using the Biot-Savart law.

2.2 Optical Dipole Potentials for Neutral Atoms

The interaction between neutral atoms and light fields, laser light for example, can be
exploited trapping. In the following, a simple model [15] is used to describe this interaction
and to obtain the trapping potential Udip(r).

Oscillator Model of Optical Dipole Potentials

An oscillating electric field with frequency ω , EEE(rrr, t) = ẼEE(rrr)e−iωt + c.c., polarizes neutral
atoms and induces a dipole moment ppp(rrr, t) = p̃pp(rrr)e−iωt + c.c.. The amplitude p̃pp of this
dipole moment is related to the field amplitude by the complex polarisability α in a simple
way: p̃pp = αẼEE. The polarisability can be calculated considering the atom in the Lorentz’s
model of a classical oscillator

α =
e2

me

1
ω2

0 −ω2− iωΓω

(2.7)
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yx

z
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|BBB|

I

d

BBBbias

Fig. 2.1 Realization of a 2d quadrupole trap using an infinitely thin and long wire and an
external bias field. The circles show the field lines of an infinitely thin and long wire carrying
the current I in −y-direction. The red curve shows the magnitude of the field as a function
of the distance from the wire. On the xy-plane this field has only a non-zero z-component.
Applying an external bias field in +z-direction with the magnitude Bbias = µ0I/2πd will
cancel the magnetic field of the wire at a distance d from the wire (dashed line), and produces
a 2d quadrupole trap in any xz-plane. The resulting magnetic field, has the magnitude plotted
in blue as a function of x on the xz-plane.

in which

Γω =
e2ω2

6πε0mec3 (2.8)

is the damping rate. Note that ω0 is the oscillator eigenfrequency corresponding to the optical
transition frequency, c is the speed of light in vacuum, ε0 is the permittivity of free space,
me and −e are the mass and the electric charge of the electron respectively. Defining the
on-resonance damping rate Γ≡ Γω0 = (ω0/ω)2Γω , α can be written as

α = 6πε0c3 Γ/ω2
0

ω2
0 −ω2− i(ω3/ω2

0 )Γ
. (2.9)

The interaction potential of the induced dipole moment with the electric field is given by

Udip =−
1
2
⟨pppEEE⟩=− 1

2ε0c
ℜ(α)I(rrr), (2.10)
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Fig. 2.2 Scheme of a U-shaped (a) and a Z-shaped (b) wire trap. In (a) the red plane is a xz-
plane, placed in the middle of the wire and the green plane is a yz-plane containing the point
P. At this point, the magnetic field vectors are shown for each wire segment. The two green
vectors are fields created by the two side wires and the blue one is the sum of those which
is merely pointing in −z-direction. The red vector, is the magnetic field produced by the
wire segment in the middle. This red vector which lies on the red plane, can be decomposed
into the two orange colored vectors. The point P is chosen such that the z-component of
the red vector is equal to the blue one. This means that the total field at the point P is the
orange vector pointing in the −x-direction. Applying a constant bias field with the same
magnitude but in the opposite direction leads to a vanishing magnetic field at P and a 3d
quadrupole field configuration around it. In (b) the red plane is the same as in (a) but the
green plane is a centrally located yz-plane containing the middle wire segment. At the point
Q, the magnetic field from the middle segment is indicated by the red vector pointing in
−x-direction. The two green vectors show the fields created by the two side wires and the
blue one is the sum of the two which is pointing only in the −y-direction. A bias field can be
applied in +x-direction to cancel the red vector. This leads to a trap minimum with a finite
field. It is important to note that in this scheme, all wires are considered as infinitely thin
and long wires. Both wire configurations are contained in an H-shaped configuration, with
parallel (b) or anti-parallel (a) currents in side wires.
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in which I(rrr) is the field intensity and ℜ(α) the real part of the complex number α . The
power absorbed by the oscillator from the driving field is given by

Pabs = ⟨ṗppEEE⟩= 2ωℑ(p̃Ẽ∗) =
ω

ε0c
ℑ(α)I(rrr) , (2.11)

where ℑ(α) is the imaginary part of the α . From this absorbed power, a scattering rate can
be calculated, in terms of the number of photons absorbed per unit of time,

Γsc =
Pabs

h̄ω
=

1
h̄ε0c

ℑ(α)I(rrr) . (2.12)

It is important to note that the equation 2.9 is only valid in the regime of low saturation.
Inserting the expression 2.9 for α into equation 2.12 and 2.10 gives

Udip(rrr) =−
3πc2

2ω3
0

(
Γ

ω0−ω
+

Γ

ω0 +ω

)
I(rrr) (2.13)

Γsc(rrr) =
3πc2

2h̄ω3
0

(
ω

ω0

)3(
Γ

ω0−ω
+

Γ

ω0 +ω

)2

I(rrr) . (2.14)

Now it is worth to take a look at the special case in which the detuning ∆ = ω−ω0 is so
small that one can set ω/ω0 ≈ 1. Using this so called rotating wave approximation equations
2.13 and 2.14 can be written in the following form:

Udip(rrr) =
3πc2

2ω3
0

Γ

∆
I(rrr) (2.15)

Γsc(rrr) =
3πc2

2h̄ω3
0

(
Γ

∆

)2

I(rrr) . (2.16)

It is important to note that the interaction potential Udip scales with I(rrr)/∆ while the
scattering rate scales with I(rrr)/∆2 , which means, going to large detunings the scattering rate
falls off faster than the potential. This allows for the realization of optical trapping potentials
with negligible scattering effects.

Another interesting point understood from equation 2.15 is that for the red-detuned laser
light (∆ < 0) the interaction potential will be negative which means the dipole force attracts
the atoms into the regions of higher laser intensity. If the laser light is blue-detuned (∆ > 0)
the dipole force will be repulsive and the atoms will be repelled from regions of higher
intensity.





Chapter 3

Experimental Setup

In recent decades, different experimental platforms have been developed which enable
physicist to study various systems of ultra-cold atoms. One of the famous and well-established
platforms is the atom chip [14]. Modern technology in lithography and nano fabrication [23]
is used to make miniaturised complex micro structures on a surface. These current carrying
micro wires are then utilized to produce different magnetic field configurations in order
to trap, cool and manipulate cold matter. Atom chip setups are compact setups in which
various trapping techniques are implementable, including electrostatic potentials [17] and
radio frequency (rf) dressed state potentials [18] making them highly controllable. A wide
range of neutral particles can be trapped using atom chips including bosonic and fermionic
nutral atoms [24], Rydberg atoms [25] and molecules [26]. Moreover, charged particles such
as ions [27] and electrons [28] can also be trapped and manipulated in the chip experiments.

This chapter is dedicated to describe the setup of a chip experiment, capable of manipu-
lating Bose-Fermi mixtures. First, an overview of the setup and its features is given. Then,
the trapping techniques are discussed and finally, a typical experimental cycle is summarised.

3.1 Overview

The colloquially called KRb experiment [29–31] is designed to cool, trap and manipulate
Bose-Fermi mixtures, however the setup also allows for the study of ultra-cold bosonic
gases. In this manuscript only the later is considered. In the experiment samples of around
ten thousand rubidium atoms (87Rb) below 100nK can be created via laser cooling and
evaporative cooling techniques. The micro-fabricated gold wire chip is designed to make
elongated harmonic traps with very small aspect ratios (see 2.1.2 ) on the order of AR ≈
10−3. The atomic cloud in such traps can be described as a one dimensional (1d) quasi-
condensate [32]. The setup consists of two vacuum chambers connected via a differential
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pumping stage. First, the atoms are continuously dispensed into the so called source chamber
where they are gathered in a three-beam retro-reflected magneto optical trap (MOT). At the
same time, a near-resonant push beam aimed through the differential pumping stage shoots
the atoms to the science chamber, where they are loaded to a mirror-MOT near the chip
surface. The magnetic configurations used in each MOT will be discussed in the next section
(3.2.1). In the science chamber, an intermediate trapping stage loads the atoms from the
mirror-MOT to the chip trap. This stage is necessary due to the small trapping volume of the
chip trap in comparison to the mirror-MOT. In the chip trap, the atoms are further cooled
and can be manipulated e.g. via rf-dressed state potentials or optical dipole traps. The main
measured physical quantity in the experiment is the atomic density. It is determined using
time of flight (TOF) measurements, in which after turning off the traps, the cloud falls away
from the chip under gravity and expands. Absorption imaging is used to determine the atomic
density by recording the shadow of the expanded cloud.

3.2 Trapping Techniques

In the experiment, static magnetic traps and rf-dressed state potentials are used to cool down
and manipulate the atoms. In the following, the trapping methods used in different parts of
the experimental cycle are introduced.

3.2.1 Magnetic Traps

Different structures are used in the experiment to realize quadrupole and Ioffe-Pritchard trap
configurations discussed in section 2.1.

• Source chamber MOT: Around the source chamber, three pairs of coils in anti-
Helmholtz configuration are used to make a 3d quadrupole trap. As already mentioned
in section 2.1.1, because of the high temperatures in this stage, Majorana losses are
negligible.

• Science chamber MOT: The macroscopic U-structure shown in figure 3.1 along with
a pair of coils in Helmholtz configuration is used to realize a quadrupole trap near the
chip.

• Chip loading traps: A macroscopic Z-wire and h-wire (used as a smaller Z-wire)
along with an external bias field are used to make an intermediate trap to load the
atoms in the chip trap and also to perform a pre-cooling process.
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Fig. 3.1 In (a) the macroscopic copper wire structures are visible. The atom chip is mounted
above these wires (b) and placed in the science chamber as shown in (c). Atoms are optically
transported from the source chamber to the science chamber via a push beam. In the science
chamber they are trapped in a quadrupole trap formed by the macroscopic U-wire and bias
coils. The Z-wire and the h-wire are then used to load the atoms in the chip trap, which is
formed by chip wires and has a much smaller volume compared to the MOT trap.

• Atom chip trap: Micro fabricated wires on the chip surface along with an external
bias field can realize Ioffe-Pritchard traps with different aspect ratios (figure 3.2). The
typical trapping frequencies for the elongated harmonic trap are ω∥ = 2π ·10Hz and
ω⊥ = 2π ·2kHz.

3.2.2 Radio Frequency (RF) Traps

Applying near-field rf-fields, a wide range of trapping potentials can be realized on an atom
chip. The interaction between the atoms and the rf-field, leads to new dressed eigenstates
which are superposition of the original Zeeman levels. If the rf-fields are turned on adia-
batically, the atoms follow the new eigenstates. Because the level structure of the atoms is
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Fig. 3.2 The wires forming the chip trap and the cigar-shaped atomic cloud (not to scale) are
shown above. Two pairs of U-shaped wires along with a guide wire and an external bias field
produced by a Helmholtz coil realize a Ioffe-Pritchard trap. D = 1900µm, L = 1400µm and
d = 250µm, hence the wires are effectively forming an H-shaped trap, highlighted in red in
this figure. The wire segments highlighted with blue are far away from the center of the trap,
thus their contribution is negligible. Two U-shaped wires in each pair carry the same current.
The current of the guide wire, I0 and each U-pair, I1 and I2 can be tuned independently. The
ratio I2/I1 determines the position of the trap along the x-direction. The vertical distance
of the cloud to the chip can be adjusted by the external bias field and the current passing
through the guide wire, I0.

now tunable by rf-radiation, new trapping potentials such as a double well potential can be
realized.

The two rf-wires are oriented parallel to the guide wire and placed between the guide and
the U-wires (not shown in figure 3.2).

3.3 Experimental Cycle

Repeatability and robustness are essential features of chip experiments. For many measure-
ments, large statistics are key, so a short cycle time is desirable. Here, a typical experimental
cycle is listed:

1 Collection (10s) The vapour generated by a rubidium dispenser is gathered, cooled
down, and transported to the science chamber by the double MOT system shown in
figure 3.1.
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2 Molasses (7ms) For a short time, the magnetic fields are turned off and the atoms are
cooled down to 50µK via sub-Doppler cooling.

3 Optical pumping (0.5ms) An optical pumping pulse is applied to prepare the atoms
in the maximally stretched |F = 2, mF = 2⟩ state, which is a low-field seeking state.

4 Intermediate trapping stage (6s) The macroscopic Z- and h-wire produce a Ioffe-
Pritchard trap to load the chip. Evaporative cooling starts at this stage, which can cool
the atoms down to 3µK.

5 Loading the chip trap (0.5s) In this stage the macroscopic trap is slowly turned off
and the chip trap is ramped up. During the loading, the evaporative cooling is paused.
At the end of this stage, the magnetic trap is merely created by the chip wires along
with the external bias coils, discussed in figure 3.2.

6 Further evaporative cooling in the chip trap (1.4 − 1.9s) Evaporative cooling is
continued in the chip trap. In the end, a 1d quasi-condensate is obtained with up to ten
thousand atoms at 15 −150nK.

7 Manipulation (0− 500ms) Depending on the experimental requirements, further
manipulation can be performed, for example by applying rf-fields.

8 Detection The trap is switched off and the cloud falls under gravity. The atomic
density is measured using absorption imaging which cause the atoms to be scattered
away. With this, an experimental cycle is completed.

The process is organized and controlled via a real-time control system using AdWIN and
MATLAB [33, 34].





Chapter 4

One-Dimensional Beam Shaping

Beam shaping, i.e. producing arbitrary intensity profiles, is necessary in order to realize
arbitrary optical dipole potentials as discussed in 2.2. In our particular case beam shaping
along a single spatial dimension is needed. To realize this, the intensity (or the phase) of the
light field has to be modified using a spatial light modulator (SLM). There are different kinds
of SLMs to choose from. Our choice fell on the Digital Micromirror Device (DMD) which is
a reflective SLM.

This chapter starts with a brief motivation, why 1d beam shaping is important in our
experiment. Afterwards, an introduction to DMDs is given, the tool with which 1d beam
shaping can be performed. In this part, the specifications of the DMD used in our setup are
presented in detail. The chapter continues with clarifying, how a 1d arbitrary potential can be
obtained by imaging a 2d binary pattern. In this regard, the connection between the formation
of an optical dipole potential and the properties of a 1d quasi-condensate is discussed. Then,
the means by which grayscales can be obtained is introduced. Finally, the theoretical basis
for spatial filtering with a so called 4-f imaging system is provided.

4.1 Motivation

The dynamics of a 1d quasi-condensate depends on the 1d trapping potential. In atom chip
experiments, Maxwell’s equations and the wire geometry are a strong constrains which make
the realization of arbitrarily adjustable magnetic potentials very difficult. Moreover, the
imperfection of micro wires on the chip which is due to the limitations of nano fabrication
technology causes potential roughnesses [35]. In figure 4.1 the 1d density profile of a thermal
cloud trapped in a potential made by imperfect wires is shown. In this measurement, the
U-shaped micro wires on the chip (see figure 3.2) are turned off, so without any imperfection
in micro wires the potential and therefore the 1d density profile would be flat. These
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Fig. 4.1 Trapping a thermal cloud in the magnetic potential created by wires with imperfec-
tions. The linear atomic density along the longitudinal axis is plotted for a thermal cloud
2ms after expansion. In this measurement the U-shaped wires on the chip, providing the
longitudinal confinement, are turned off so that the trapping potential along x-axis is purely
created by the wire imperfections

inhomogeneities in the atomic density can mask interesting physics which can be investigated
having a homogeneous density distribution [36]. In principle, realizing optical dipole
potentials can overcome both these limitations. With arbitrary 1d optical dipole potentials, in
addition to magnetic confinement, many interesting trapping potentials can be realized, by
above all a flat box-shaped potential which allows for a homogeneous atomic density in the
trap.

4.2 Digital Micromirror Device (DMD)

Invented by solid state physicist and Texas Instruments1 (TI) Fellow Emeritus Dr. Larry
Hornbeck in 1987 [16], a DMD is an array of hundred thousands of individually addressable
micromirrors (pixels). Each of these mirrors can be tilted along a fixed axis and stay in one
of two mechanical stable states denoted as ON or OFF. DMDs are widely used in projectors,
television devices and optical metrology. High speed, stability and high controllability, make
a DMD an ideal candidate to be used as a SLM to produce arbitrary optical dipole potentials.

DMDs differ in resolution, pixel size, maximum pattern refresh rate and the illumination
wavelength range. In this work a DLP9500 DMD from TI (shown in figure 4.2) is used,
which has 1920×1080 (FullHD) micromirrors, each being a 10.8×10.8µm square. For this

1http://www.ti.com/

http://www.ti.com/
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(a) (b)

Fig. 4.2 Pictures of our DMD. (a) The DMD is connected to an aluminum plate. This plate
fits into the black ionized mount shown in picture. In our setup, the DMD is mounted upright.
(b) The logo of the Atominstitut of the Vienna University of Technology is projected by
DMD.

device, the maximum pattern refresh rate in FullHD is about 18kHz. However, it can also
be used in an area of interest (AOI) mode, in which the maximum pattern rate increases
dramatically. For example, the maximum pattern rate goes up to 47.6kHz for an AOI of
1920×200 pixels. This is particularly interesting for 1d beam shaping, where only a narrow
region on the DMD chip is illuminated. In the DLP9500 DMD, mirrors are tilted about the
diagonal and the two stable states are defined to be at±12◦. It is common to mount the DMD
at a 45◦ angle to keep all optical axis in one plane parallel to the optical table. However, in
our case, this makes it impossible to take advantage of the AOI mode. In our setup, the DMD
is mounted upright, as shown in figure 4.2. Our DLP9500 DMD extension board is part of
the V-9501 module from ViALUX2. This module also contains a V4395 main board and
its powerful controller suit, APL-4.3. ViALUX provides a user-friendly API (application
programming interface) with a variety of examples to start with. The DMD can also be

2ViALUX is an authorised value-added reseller and Design House partner for the Texas Instruments’
DLP®Discovery™ line of micro mirror arrays.
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Fig. 4.3 Scheme of the dipole light incidence on the atom chip. The black dot, represents
a 1d quasi-condensate formed below the atom chip (yellow). The x-axis runs along the
cloud and is pointing out of the plane of paper. Because the entrance window to the vacuum
chamber is tilted, the light is propagating in the z-direction at an angle to the chip surface
and is reflected from it. The 2d image of the DMD, I(x,y), is formed in the xy-plane at the
position of the atoms (z = 0). Because the width of the cloud along y is smaller then the
resolution of the optical system, only the central slice of the image is seen by the atomic
cloud, namely I(x,0) ≡ I(x). As the light reflects from the chip, there is always a region
where the incident beam and the reflected beam are interfering. To avoid this interference at
the position of the cloud, the size of the beam in y-direction has to be small enough.

externally triggered in order to synchronize the optical dipole trapping process with other
parts of an experimental cycle.

Due to the small size of the mirrors, a DMD acts as a 2d reflective grating which reflects
coherent light in many different diffraction orders [38]. The saw-tooth-like structure arising
from the tilted mirrors can be described as a blazed grating with the blaze angle θB being the
tilt angle of the mirrors. This angle is optimized to separate the light path in the ON and OFF
states of the mirror. The incident angle under which the maximum intensity is diffracted
in a desired angle (i.e. the optical axis of the following imaging system) is defined by the
wavelength of the light, the blaze angle, and the mirror size.

For beam shaping, the DMD can either be imaged directly or in the Fourier plane, the
former being more straightforward and more efficient if phase modulation of the light field is
not necessary. In experiments which are using holography to build dipole traps [39, 40], the
DMD is used in the Fourier plane of the optical system in order to perform phase modulations.
In our experiment however, the exact modulation of the intensity is of primary importance,
so the DMD is imaged directly with an optical system, discussed in chapter 5.
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4.3 One-Dimensional Optical Dipole Potential

Imaging the DMD pattern results in a 2d intensity distribution I(x,y) in the plane of atoms
(see figure 4.3). For a 1d quasi-condensate in a harmonic trap with transversal frequency ω⊥,
the width of the cloud can be estimated by

√
h̄/Mω⊥, which is the width of the Gaussian

ground state wave function of the radial trap [32]. In the experiment, typical values for ω⊥
lie between 1.4 to 2.1kHz which leads to a width smaller than 300nm. This value is smaller
than the resolution of any optical system including the one introduced in chapter 5. This
means that a single spot is larger than the vertical cloud extension so that only a tiny slice
from the image, I(x)≡ I(x,y = 0), is relevant for the optical dipole trapping, assuming that
the cloud is at y = 0.

In the rest of this manuscript, I(x) refers to a 1d intensity profile in the longitudinal
direction.

4.4 Grayscaling

The DMD is a powerful device in terms of controllability and speed of performance, but ulti-
mately, it can only produce binary patterns, which makes arbitrary beam shaping impossible.
A way to get around this restriction is to use time and/or spatial averaging.

Time Averaging

Making use of the concept of time-averaged potentials [41], fast intensity modulations
by the DMD can be exploited to gain grayscales. This modulation has to be so fast that
only an average of it can be seen by atoms. Quantitatively, this means that the frequency of
modulations has to be much higher than the trap frequency of the tight transverse confinement,
ω⊥ ≃ 2π ·2kHz, which defines the shortest dynamical time scale in the experiment. In the
AOI mode of the DMD where less than hundred rows are addressed, the mirror states can be
switched with a frequency of about 50kHz. With such a modulation, at least four steps of
grayscales can be achieved as explained in figure 4.4.

Spatial Averaging

Another method to gain grayscales is to design the optical system in a way that more than
one binary pixel contributes to the intensity of one single spot in the image plane. The easiest
way to do so is to use a demagnifying optical system in which a certain number of DMD
pixels are mapped down to a single spot in the image plane as shown in figure 4.5.
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Fig. 4.4 Obtaining grayscales using the concept of time averaging. Five different time
configurations for a single mirror are shown in each row. The horizontal axis is the time axis
on which three important time scales are defined. T⊥ is the shortest dynamical time scale of
the experiment which is associated with the transversal trap frequency ω⊥ = 2π/T⊥. T0 is
the shortest time interval in which the state of a DMD mirror can be changed between the two
stable states. T is a time scale which is "much" shorter than T⊥, such that only an average of
modulations can be seen by atoms within this time scale. In the top row, the mirror is always
ON, hence the maximum intensity is seen by the atomic cloud. In the last row, the mirror is
always OFF, so the resulting intensity is zero. Without time averaging, only these two binary
cases can be realized. Exploiting the modulations within T , three different grayscales can be
realized between the two limits.

Spatial filtering is another way to spatially average over a number of binary pixels. This
can be performed by means of a 4-f imaging system described in the next section.

4.5 4-f Imaging System

A 4-f imaging system [42] is a two-lens focused imaging system in which the distance
between the two lenses is the sum of their focal lengths, f1 + f2 as shown in figure 4.6. The
magnification of such system is given by m = f2/ f1. The outstanding advantage of this
system is that a mask can be used in the Fourier plane in order to selectively filter out Fourier
components of the object pattern. Considering this system as an isoplanatic two-dimensional
linear system [43, 44], the output (image) function gout(x,y) is given by the convolution of
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PPP

Fig. 4.5 Obtaining grayscales using the concept of spatial averaging. The DMD chip is
shown in the image plane of an optical imaging system. If there were no diffraction, any
pixel could be resolved perfectly in the image plane and if four pixels (shown in different
colors) were switched on, only one of them (the red) pixel would contribute to the intensity
of point P. In the real world however, the image of a pixel is blurred due to the diffraction.
Each pixel is now imaged as a broad spot, whose size depends on the resolution of the optical
system. In this case all pixels within the orange circle contribute to the intensity of point P,
including the blue and the green colored pixels.

the input (object) function gin(x,y) and the point-spread function h(x,y),

gout(x,y) =
∫∫ +∞

−∞

h(x− x′,y− y′)gin(x′,y′)dx′ dy′ , (4.1)

which according to the convolution theorem, can also be written as

Gout(νx,νy) = H(νx,νy)Gin(νx,νy) . (4.2)

Here Gout(νx,νy) and Gin(νx,νy) are the Fourier transforms of gout(x,y) and gin(x,y) respec-
tively and the so called transfer function, H(νx,νy) is the Fourier transform of h(x,y). In
the Fourier plane, the spatial frequencies (νx,νy) are related to the spatial coordinates via
(x = λ f1νx,y = λ f1νy), where λ is the wavelength of the imaging light. For a mask with
transmittance p(x,y) placed in the Fourier plane of a 4-f system, the transfer function has the
convenient form,

H(νx,νy) = p(λ f1νx,λ f1νy) . (4.3)
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Fig. 4.6 Scheme of a demagnifying 4-f imaging system. The z-axis is the optical axis. f1
and f2 are the focal lengths of lens 1 and lens 2 respectively and f1 > f2, hence the system is
demagnifying. In the Fourier plane, a mask with transmittance function p(x,y) can be placed
to manipulate the Fourier components of the object pattern which are obtained via a Fourier
transformation by the first lens. The second lens, performs an inverse Fourier transformation
on the resulting Fourier pattern and builds an inverted image in the image plane.

So for a 4-f imaging system the relation between the output and the input functions is simply
determined by the shape of the mask in the Fourier plane,

Gout(νx,νy) = p(λ f1νx,λ f1νy)Gin(νx,νy) . (4.4)

Given an input function, gin(x,y), and a certain mask with transmittance p(x,y), the intensity
distribution function of the output, I(x,y) = |gout(x,y)|2, can be easily calculated using
equation (4.4). This simplicity is particularly useful when simulating the whole system
numerically. If no mask is present, p(x,y) is set by the size of the smaller lenses.

Choosing different masks one can perform spatial filtering in different ways such as
low-pass, high-pass or horizontal-pass filtering. The later, which leaves Fourier components
in the horizontal direction unchanged so that the resolution along this axis is not altered, is
the most interesting for us as will be described in the next section.

4.5.1 Grayscaling using Spatial Filtering

Spatial filtering is one of the means by which spatial averaging of a binary pattern can be
realized. Manipulating the Fourier components of a pattern only in y-direction will change the
properties of the image only in this direction. To build arbitrary 1d potentials a horizontal slit
can be used to block the high frequency components in y-direction and make the contribution
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Fig. 4.7 Realization of spatial averaging using spatial filtering. (a) Scheme of the central
part of the DMD chip. The solid horizontal line is the middle line. The red pixel is ON (i.e.
reflecting light into the imaging optics) and the rest is OFF. The configuration shown in (a) is
used as the binary function for simulating a 4-f system with two different masks in Fourier
plane. (b) The intensity in the center of image, I(0,0), is plotted for different distances d.
The dashed curve is for the case in which the rectangular aperture is totally open in both
directions (lx, ly = 12mm). The solid curve represents the case in which the aperture is totally
open in x-direction but only slightly open in y-direction (lx = 12mm and ly = 3mm). As the
intensity quickly drops to zero in the first case, only two levels of grayscale can be obtained,
namely the maximum intensity and zero. In the second case the intensity gradually decreases,
making grayscaling possible.

range of a pixel in this direction longer. Due to the blocking of Fourier components, there is
a trade off between power loss and the length of the contribution range which will be shown
later in this section (see figure 4.7).

In this following, a series of numerical simulations are presented, to achieve a deeper
understanding of a 4-f system and how it can be used in 1d arbitrary beam shaping. In these
simulations the intensity distribution function of the image I(x,y) is calculated for a given
input function gin(x,y) and a transmittance function p(x,y).

Assuming that the DMD pattern is given by a binary function b(x,y) and that the DMD is
illuminated by a beam which has an intensity distribution function l(x,y), the input function
is given by gin(x,y) = b(x,y)l(x,y).
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If the DMD is illuminated by a Gaussian beam which has its maximum at (xc,yc), l(x,y)
can be written as

l(x,y) = A exp(−2
(x− xc)

2

w2
x
−2

(y− yc)
2

w2
y

) , (4.5)

where A is an arbitrary amplitude and wx and wy are the 1/e2 widths of the beam in vertical
and horizontal direction respectively.

For a rectangular aperture of width lx and height ly which has an offset x0 and y0 with
respect to the x- and y-axis respectively, the transmittance function p(x,y) has the form

p(x,y) =

1 if |x− x0|< lx and |y− y0|< ly

0 otherwise
, (4.6)

or equivalently

p(λ f1νx,λ f1νy) =

1 if |νx− x0/λ f1|< lx/λ f1 and |νy− y0/λ f1|< ly/λ f1

0 otherwise
. (4.7)

In the numerical simulations, a 4-f system with f1 = 300mm and f2 = 100mm is simu-
lated and the wavelength of the light is set to be λ = 660nm. For the rectangular aperture, lx
and ly is set to be between 0 to 12mm, which is given by the real adjustable aperture in the
experimental setup (see 5.2).

To show how horizontal-pass filtering can be exploited to gain grayscales in a 1d profile,
consider the configuration shown in figure 4.7a. Here a pixel which has a distance d to
the center of the DMD is turned on. For this configuration the intensity is calculated with
two different transmittance functions. In the first case the rectangular slit is totally open
(lx, ly = 12mm) and in the other one, the slit is totally open in x-direction and only slightly
open in y-direction (lx = 12mm and ly = 3mm). In figure 4.7 the intensity in the center of
image, I(0,0), is plotted for different distances. The plot shows that for the first case, as
the pixel is shifted up only by one pixel, the intensity in the center of the image drops to
near zero. For larger distances, the pixel does not contribute to the intensity of the center
of the image. For the second case however, the intensity is decreased slowly and it goes to
zero at d = 50 pixels. In this case, more levels of grayscale are available as in the first case,
where only two levels of grayscales is obtainable. Note that because the slit is always totally
open in x-direction, shifting the superpixel horizontally leads to results similar to the dashed
line in figure 4.7 for both cases. This independence makes 1d beam shaping possible and
convenient for such optical systems. The downside of the spatial filtering is also apparent
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Fig. 4.8 Interference effects in spatial filtering. (a) Scheme of the central part of the DMD
chip. The solid horizontal line is the middle line. The two pixels shown in red are ON (i.e.
reflecting light into the imaging optics) and the rest is OFF. (b) The intensity in the center of
the image, I(0,0), is plotted for different distances d. Simulating the configuration in (a),
the red curve is the intensity in the center of the image for different values of d. The blue
curve is obtained by simulating each of the two pixels independently and then adding the
calculated intensities. Both curves are normalized to the maximum value of the red curve.
In the simulations, the rectangular aperture is totally open in x-direction but only slightly
open in y-direction (lx = 12mm and ly = 0.3mm) and is placed symmetric with respect to
the optical axis. (x0,y0 = 0)

in figure 4.7b. As both curves are normalized to the dashed curve, the transmitted intensity
from the partially closed aperture is considerably lower.

Although realizing an arbitrary 1d intensity profile is in principle achievable using spatial
filtering, it is more complicated than figure 4.7 might suggest. The challenge is that the
contribution of two pixels in the intensity can not be easily added due to interference effects.
To understand this, consider another pixel below the center of the DMD which is also located
at a distance d from the center. In figure 4.8, the intensity I(0,0) is plotted as a function of d
for two different cases. In the first case, I(0,0) is calculated for the two pixels independently
and then added together and plotted as the blue curve in figure 4.8. In the second case
both superpixels are imaged simultaneously and the I(0,0) is plotted as the red curve for
different distances. At each distance d, the pattern with two pixels has a different periodicity
in comparison to the pattern with a single pixel. As a consequence, the power distribution of
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Fig. 4.9 Interference effects caused by asymmetric apertures. In each plot, the intensity in the
center of the image, I(0,0), is plotted for different distances d. Simulating the configuration
in 4.8a, the red curve is the intensity in the center of the image for different values of d. The
blue curve is obtained by simulating each of the pixels independently and then adding the
calculated intensities. Both curves are normalized to the maximum value of the red curve. In
the simulations, the rectangular aperture is totally open in x-direction but only slightly open
in y-direction (lx = 12mm and ly = 0.3mm) and is placed asymmetrically with respect to the
optical axis, (a) x0 = 0 and y0 = 0.5mm, (b) x0 = 0 and y0 = 1mm

the Fourier components is different and ultimately, the spatial filtering has different impact
on the resulting image for each pattern.

There is also another degree of complexity regarding horizontal-pass filtering. In all the
simulations so far, the aperture was symmetric with respect to the optical axis, i.e. y0 = 0.
Figure 4.9 shows that effects of interference can even more strongly appear in a system with
an asymmetric aperture. Considering all aspects of spatial filtering, it turns out that it is a
complicated, yet feasible method to gain grayscales. The number of grayscales which can be
realized is proportional to the power loss due to the filter in Fourier plane.



Chapter 5

Optical Setup

The optical setup used to image the pattern on the DMD chip onto the plane of the atoms,
consists of three main parts. In the so called beam preparation part, the polarization and
the shape of the beam are modified, before it illuminates the DMD chip. After reflecting
from the DMD, a 4-f system serves as the first demagnification stage and also as the spatial
filtering of the pattern. In the second demagnification stage, a single plano-concave lens is
coupled to the transverse imaging system (TIS) [31, 45] via a polarizing beam splitter (PBS)
cube. Along with the objective of the TIS, it forms another demagnifying imaging system.
The first two parts, including the DMD, are mounted on a separate breadboard while the third
part is installed on the breadboard of the TIS.

Each of these three main parts are discussed in detail in this chapter.

5.1 Beam Preparation

In this initial stage, shape and polarization of the illumination beam are adjusted so that the
maximum power of the beam can be used in trapping. Wavelength of this light is λ = 660nm.
A schematic of the setup is shown in figure 5.1.

As mentioned before, the optical trap imaging system is coupled to the TIS via a PBS
in the parallel part of the TIS as shown in figure 5.6. In the beam preparation setup, an
initial λ/2 wave plate and a PBS cube are used to obtain a clean linearly polarized beam.
An additional λ/2 wave plate is then used to adjust the polarization of the beam such that it
passes through the coupling PBS with minimal losses.

To monitor the power stability, a small fraction of the light (≈ 1%) is reflected to a
photodiode by a beam sampler. The signals from this photodiode can be used along with an
AOM (acousto-optic modulator) after the laser system to build a feedback loop to smooth out
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Fig. 5.1 Scheme of the beam preparation setup (not to scale). The beam coming out from
the collimator (Schäfter+Kirschhoff 60FC-4-A6.2S-02) is a linearly polarized single mode
Gaussian beam with a 1/e2 diameter of 0.9mm. The wavelength of the trapping light is
λ = 660nm provided by an "opus 660" diode laser from Laser QUANTUM. The first λ/2
wave plate rotates the polarization of the beam such that it passes through the PBS cube
with minimal loss. This will guarantee that the light going through the next λ/2 wave plate
is linearly polarized with a fixed orientation. This second wave plate is used to adjust the
polarization such that the beam can be totally reflected in the PBS coupling the dipole trap
light into the TIS (not shown here). The beam sampler reflects about 1% of the light to a
photodiode to monitor the power stability. Two cylindrical lenses (Thorlabs LK1426L1-B
and LJ1558RM-B) are used as a beam expander which expands the beam in one direction
and let it unchanged in the other.

intensity fluctuations due to the laser system and the polarization drifts in the optical fiber
which are converted to intensity fluctuation by the PBS.

To make an elongated optical trap, it is sufficient to illuminate only a few rows of the
DMD. Illuminating rows which are always off causes unwanted power loss. An elongated
Gaussian beam is formed by a beam expander formed by two cylindrical lenses as shown in
figure 5.1. After the second cylindrical lens, the beam has a 1/e2 thickness of 1.1mm and is
10mm broad.

As mentioned in 4.2, the DMD is mounted upright. Since the mirrors are tilted diagonally,
in order to have the reflected beam perpendicular to DMD surface, the incident beam can not
be parallel to the breadboard. Therefore the last two mirrors in the setup, shown in figure 5.1,
are mounted in different heights, to adjust the incident angle.

http://www.sukhamburg.de
http://www.laserquantum.com
http://www.thorlabs.com
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Fig. 5.2 Finding the focus of the first lens in the first demagnification stage. (a) The procedure
is shown schematically (not to scale). The lens is placed at different positions and the width
of the Gaussian beam on the CCD chip is measured. (b) The measured widths are plotted at
different positions.

5.2 First Demagnification Stage

A 4-f system with f1 = 300mm and f2 = 100mm is used as an initial three-fold demagnifi-
cation stage. Horizontal-pass filtering is performed in this system using a rectangular slit,
whose width in the horizontal and vertical direction can be adjusted independently from 0 to
12mm.

5.2.1 Alignment

The DMD mount shown in figure 4.2 is designed in a way that the DMD can be replaced
by a camera such that the CCD chip is at the same position as the DMD chip. To align the
4-f system a collimated Gaussian beam is focused onto the CCD chip via the first lens. In
order to set the focal point of the first lens in the plane of the DMD chip, the 1/e2 width of
the Gaussian beam is measured as a function of distance between the lens and the CCD chip
(see figure 5.2). In this configuration the light takes the revers path through the first lens
compared to the final setup.

For a collimated beam, a 4-f system acts as a beam expander which expands or shrinks
the beam size by a factor m. Having a collimated input beam, the distance between the two
lenses in a beam expander can be aligned by checking the collimation of the output beam. If
the distance between the lenses is f1 + f2, the output beam will be a collimated beam. As the
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Fig. 5.3 Convolution of a box car function with a Gaussian function. The red curve is the
convolution of the box car function shown in green with a normalized Gaussian function
represented by the blue curve. The width of the Gaussian function is w = 0.2 and for the box
car function M = 2, L = 3 and c = 0.

position of the first lens is already fixed, a collimated input beam is used to align the second
lens. This lens is placed such that the output beam be collimated.

5.2.2 Resolution and Demagnification

Assuming a Gaussian point-spread function (psf),

h(x) =
1

w
√

2π
exp

(
− x2

2w2

)
, (5.1)

the resolution of the optical system in each direction can be defined as the 1/e2 width w, of
this function in that direction.

To measure this width, an n×n superpixel on the DMD is imaged. In 1d, this superpixel
can be represented by a box car function

gin(x) =

M if |x− c|< L/2

0 otherwise
, (5.2)

which has the value M between x = c−L/2 and x = c−L/2 and vanishes elsewhere.
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Fig. 5.4 Resolution of the first demagnification stage in x- and y-direction. The width of the
Gaussian point spread function is obtained by fitting the function |gout|2 on the integrated 1d
intensity profiles of images of a 8×8 superpixel in x- and y-direction independently. The
blue and the red curve represent the resolution in x- and y-direction respectively. This figure
shows that the resolution in x-direction is unchanged as the width of the slit

According to equation 4.1, the image function gout is given by

gout(x) = gin(x)∗h(x) (5.3)

=
M
2
[

erf
(x+ c−L/2

w
√

2

)
− erf

(x+ c+L/2
w
√

2

)]
. (5.4)

The resolution in x and y-direction can be obtained by fitting |gout|2 to integrated 1d intensity
profile in each direction with a fixed superpixel size L.

In figure 5.4, the resolution in x- and y-direction is plotted as a function of the slit
width in y-direction. It is clear from the figure that the width of the slit in one direction
has no influence in the resolution in the other direction. This is already discussed as an
advantage for 1d beam shaping in 4.5. The resolution in the x-direction in this measurements
is w = 4.2±1.6µm. The error represented is the fit error which is relatively large due to the
relatively large camera pixel size (3.75µm), that is very close to the resolution of the optical
system.

Demagnification of the system is obtained by comparing the size of a 100×100 superpixel
and its image on the CCD chip and is calculated to be m = 3.01.
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Fig. 5.5 Experimental observation of the interference effects in spatial filtering. In the left
column, the intensity in the center of the image, I(0,0), is plotted for different distances
d (see figures 4.7 & 4.8). The circles represent the measured data and the curves are fits
obtained by numerical simulations. Realizing the configuration in 4.8a (but with a 6× 6
superpixel instead of a single pixel), the red circles are the intensity in the center of the image
for different values of d. The blue circles are obtained by imaging each of the superpixels
independently and then adding the measured intensities. In each plot of the left column,
both blue and red circles are normalized to the value of the red data for d = 0. In all three
measurements the rectangular aperture is totally open in x-direction (lx = 12mm) but only
slightly open in y-direction. For each set of data, the ly and y0 values are extracted from the
fits. The plots on the right column are the ratio of the red circles/curves to blue circles/curves.
In the two upper plots, as the measured intensities go to zero, the error in the ratio increases.
In the last row, an offset of the Gaussian beam caused the peak in the intensity measurements.
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5.2.3 Grayscaling

The results of the simulations discussed in 4.5 can be confirmed experimentally. The
configurations demonstrated in figures 4.7a and 4.8a are realized experimentally with a minor
difference. Instead of a single pixel, a 6×6 superpixel is imaged to suppress the effect of the
camera pixel size.

The results are presented in figure 5.5 which suggests that the pixels which are vertically
far from the center can be used to gain grayscales. The number of obtainable grayscales
depends on the width of the rectangular aperture in the vertical direction (ly). The smaller the
width, the more grayscales can be produced. However this is limited by the power loss due
to the spatial filtering.

The observed behaviour points to the fact that even when ignoring the power issues and
the interferences due to the spatial filtering in vertical direction, the interference effects
between neighbouring pixels in x-direction represents an obstacle to deterministically achieve
arbitrary 1d intensity profiles.

Width and Offset of the Rectangular Aperture

By fitting the numerical simulations to the measured data, important information can be read
out as the width of the rectangular aperture (lx, ly) and its offset from the optical axis (x0, y0)
can be determined. As show in figure 4.9 and 5.5, the offset has a great impact on the form
of interference on the center of the pattern. Since the width of the slit can not be determined
by the mechanics of the rectangular aperture, this measurements can be used to adjust the
width as well as the offset.

5.3 Second Demagnification Stage

The image formed by the first demagnification stage is now the object of the second demag-
nification stage shown in figure 5.6. In this system, a plano-convex lens and the high-NA1

objective of the TIS (NA = 0.27) image the pattern onto the plane of atoms. A PBS cube
is used to couple the dipole trap light into the TIS. The imaging beam (λ = 780nm) is
p-polarized and therefore passes through the PBS, while the dipole trap light is s-polarized
so that the PBS reflects it into the TIS objective. In an experimental cycle, the imaging starts
after all the trapping potentials, including the dipole potential, are turned off.

Although coupling the dipole trap optics to the TIS allows for utilizing a high-NA
objective, the downside is that the wavelength of the trapping light is then limited by the

1Numerical aperture
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coatings of the optical elements in the TIS which does not allow for wavelengths below
650nm.

5.3.1 Alignment

The initial alignment of the second demagnification stage can be done by using the system
in reverse as an absorption imaging system and focusing the picture of the atom cloud on
the CCD replacing the DMD. Because the objective as well as the two lenses in the first
demagnification stage are all fixed, Lens 3 has to be shifted in order to obtain a sharp image
of atoms. The fine adjustment can be performed with the DMD and the TIS by looking at
density patterns written into large clouds by the DMD setup.
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Fig. 5.6 Scheme of the first and the second demagnification stage and the TIS (not to scale).
Each solid frame indicates a separate breadboard. In the first demagnification stage, lens 1
(LA1256-B) along with lens 2 (LA1050-B) forms a 4-f system which is connected to the
second demagnification stage by two mirrors. The first mirror is a backside polished mirror,
behind of which an overview camera can be placed. Lens 3 (LA1727-B, all three lenses from
Thorlabs) with the objective of the TIS forms the second demagnification stage. This lens
can be shifted with a motorized stage to adjust the focus of the whole system in the plane of
atoms. While the p-polarized imaging light, λ = 780nm (shown in pink) passes through the
2-inch PBS cube, the s-polarized optical trap light, λ = 660nm (shown in red) is reflected
into the objective of TIS. Note that the cube is placed in the parallel part of both second
demagnification stage and TIS. The imaging beam is focused on the CCD chip via lens 4 and
lens 5 that form a telephoto group to shrink the size of the optical system.

http://www.thorlabs.com




Chapter 6

Designing and Optimizing
One-Dimensional Potentials

In the two previous chapters, the basic concepts and tools related to 1d beam shaping were
introduced and discussed in detail. The topic of this chapter is, how these tools can be utilized
to realize an arbitrary 1d potential.

According to equation 2.13, the 1d optical dipole potential experienced by the atoms is
proportional to the 1d intensity profile which is formed by the image of the DMD pattern
on the plane of atoms, as explained in 4.3 . Thus, to obtain an arbitrary 1d potential, the 2d
binary pattern of the DMD has to be properly designed.

In this chapter, first, a probabilistic optimization method to design 2d DMD patterns is
introduced. The method is then applied to three different 1d target intensity profiles based
on simulated feed back process. Finally, an optimization process based on experimental
feedback is discussed.

6.1 Designing a 2D Pattern

The ultimate goal of designing the 2d pattern on the DMD is to obtain a 1d intensity profile
I(x), which is as close as possible to the target intensity It(x). Considering an area of interest
(AOI) on the DMD with nx×ny pixels, 2(nx×ny) different patterns (states) can be realized. The
problem is to find the pattern which minimizes the "energy" function E(x) = |I(x)− It(x)|.
Testing all patterns to find the best one in a brute force approach is impossible. Even for
a small AOI with nx = 20 and ny = 10 pixels, the phase space is astronomically large with
2200 ≈ 1060 states. Many algorithms exist to solve minimization problems with large state
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spaces, such as neural networks or genetic algorithms. An easy to implement, yet reliable
method is simulated annealing1 [46].

In the following, first, a brief introduction to simulated annealing and the algorithm
used for pattern optimization is given. Then the results of numerical simulations for three
different target 1d potentials are presented. Finally, the patterns are imaged via the first
demagnification state (see 5.2) onto a CCD chip and the resulting 1d potentials are shown
and discussed.

6.1.1 Simulated Annealing Algorithm

Simulated annealing is an iterative probabilistic searching algorithm, based on the Metropolis
algorithm2 [47], which finds the global optimum of a given energy function E for systems
with large phase space {ψi} approximately. Starting from an initial state, in each step, a
neighbour state is chosen randomly to be compared with the current state of the system.
Based on an acceptance probability P(Ei,Ej,T ), the new state will either be accepted or
discarded. This probability depends on the energy of the current state, Ei = E(ψi), the energy
of the new neighbour state, Ej = E(ψj), and the parameter T which is called "temperature".
This temperature is the parameter regulating the probability of accepting neighbour states
which are energetically unfavorable in comparison to the current state of the system. For
lower temperatures, the acceptance probability for energetically unfavorable states decreases.
The optimization starts at a high temperature to allow the system to go through the different
parts of the phase space without getting stuck in local minima. The temperature is then
decreased gradually, forcing the system to stay in the regions with smaller energies. For
temperatures close to zero, accepting energetically unfavorable states is almost impossible.
In this limit, the energy of the achieved state is approximately the global minimum of the
energy function. A pseudocode of the algorithm is given in algorithm 1.

In a typical simulated annealing optimization problem, first, an initial state, ψi, and an
initial temperature, Ti, have to be defined. This temperature is chosen regarding the energy
scales of the system. If the initial temperature is chosen high enough, the initial state can be
a randomly chosen state of the system. Another important choice is the annealing schedule,
i.e. a plan to decrease the temperature in each step toward the final temperature Tf. The most
straightforward way to perform this, is to divide the current temperature by a constant Λ,
which is close to 1. For each scheduled temperature, the system must have enough time to

1The method is inspired by annealing in matallurgy, a technique involving heating a material above its
recrystallization temperature and scheduled cooling to alter its physical or chemical properties.

2A Monte Carlo sampling algorithm, which yields sequence of random samples from a probability distribu-
tion. It is generally used for sampling from multi-dimensional distributions.
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Initialization
ψ ← ψi
Calculate E = E(ψ)
T ← Ti
while T > Tf do

for j← 1 to M do
Choose a neighbour state ψ ′

Calculate E ′ = E(ψ ′)
Calculate P(E,E ′,T )
Generate a uniformly distributed random number r ∈ [0,1)
if r ≤ P(E,E ′,T ) then

ψ ← ψ ′

E← E ′

else
The current state doesn’t change.

end
end
Decrease T (e.g. T ← T/Λ)

end

Algorithm 1: Simulated annealing

walk through the accessible phase space. To ensure this, the size of the system is usually
a reasonable scale for the number of Monte Carlo (MC) steps, M. Last but not least, an
acceptance probability function has to be defined. A commonly used acceptance probability
is based on the Boltzmann factor,

P(Ei,Ej,T ) = min
{

1, exp
(
−

∆Ej,i

T

)}
, (6.1)

where ∆Ej,i = Ej−Ei. This function guarantees that all transitions with ∆Ej,i < 0 will be
accepted, but not all energetically unfavorable transitions are thrown away. Depending on
temperature, a transition with positive energy difference also has a chance to be accepted.

In the following, simulated annealing is used to design and optimize 2d DMD patterns
which result in desired 1d intensity profiles.

2D Pattern Optimization using Simulated Annealing

For an AOI with nx×ny pixels, the phase space consists of all possible binary patterns which
can be realized by these pixels, {bi(x,y)}. Defining a target function It(x), the energy of a
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Fig. 6.1 Schematic showing the independent effect of pixels with large enough distances
along x-axis. Here, it is shown that the resulting intensities of the two red pixels with distance
D do not overlap. This holds for all pixels in these two columns. In an optimization process,
the regions corresponding to these two columns can be handled independently. In each MC
steps, a random pixel can be chosen in both of these two columns. Flipping the two chosen
pixels, the energy can be calculated for the respective regions of influence and the decision
making process can be independent. In the next MC step, the same process is repeated, but
the random pixels are selected from the neighbouring columns in which the two blue pixels
are shown. By shifting the columns in each step, the corresponding regions of influence are
also shifted. The decision making in this step is based on the energy calculated for the new
regions.

pattern bi(x,y), is given by Ei(x) = |Ii(x)− It(x)|. Here, Ii(x) is the 1d intensity profile in the
image plane for y = 0, produced by the pattern bi(x,y).

The initial temperature has to be set considering the energy scale of the initial state.
The final temperature is a number very close to zero. At the end of an annealing step, the
temperature is divided by Λ which is chosen between 1.01 to 1.1.

In a realistic situation in the experiment, the AOI has to contain up to 40×300 = 12000
pixels 3. For such a large system, flipping only one pixel or even more pixels randomly to
get to a neighbouring state is highly inefficient and requires very long simulation times to
achieve decent results.

3nx = 300 pixels on the DMD chip corresponds to a region of about 130µm along the condensate
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Because a single pixel on the DMD pattern only influences the intensity of a defined
region on the image plane, many pixels can be flipped in one MC step and be independently
accepted or rejected, providing the regions they act on do not overlap. The size of the region
which is affected by a single pixel is defined by the point-spread function (psf) of the imaging
system.

In the first demagnification stage of the optical system (see 5.2), horizontal-pass filtering
results in a wide psf in vertical direction and a short psf in horizontal direction. Based on
the resolution in the horizontal x-direction, a minimum distance D between pixels in this
direction can be defined such that their corresponding spots in the image plane do not overlap
(see figure 6.1). The energy function for flips in pixels further apart than D can therefore be
calculated individually and used for decision making process of the related pixel.

Flipping many pixels simultaneously helps to speed up the optimization process but it does
not mean that different regions can be optimized totally independently. The interferences due
to the diffraction in the border of two regions distorts the optimization in the neighbourhood
of the border.

In practice, in each MC step, a set of columns with distance D are selected. A random
pixel is then chosen in each selected column. After flipping the elected pixels, the energy
function of the new pattern has to be calculated separately for the region of influence of
each column. This can be performed either by numerical simulations of a 4-f system, or via
experimental realization. The acceptance procedure is carried out for each region individually,
based on its energy difference. The accepted pixels stay flipped while the others are flipped
back to their previous state. In the next MC step, the neighbouring column is selected and
the whole process is repeated. Note that in each step not only the columns are shifted, but
also the regions for which the energy is calculated. With this method, nx/D uncorrelated
pixels are flipped in each MC step and all nx columns are scanned several times for M≫ D.

After the optimization, the root mean square (rms) of the relative deviation from the
target intensity,

εrms =

√
1
L

∫ (
I(x)− It(x)

It(x)

)2

dx , (6.2)

is defined as a measure for the quality of the obtained 1d intensity profile in a region of length
L.
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Fig. 6.2 Results of simulated pattern optimization of a box-shaped intensity profile using
simulated annealing algorithm with parameters: Ti = 5 ·10−2, Tf = 3 ·10−4, Λ = 1.05 and
M = 1000. The AOI on the DMD chip has nx = 200 and ny = 150 pixels. (a) The target
intensity (red), initial intensity (green) and the final intensity profile (blue) are plotted for
the region of interest. The rms error of the final profile in the central 360µm region is
εrms = 1.77%. (b) The measured intensity profile after the first demagnification stage and
the same rectangular aperture (ly = 0.4mm, y0 = 0.2mm). (c) & (d) The integrated energy
in each MC step for different temperature stages Tn = Ti/Λn, with n = 0, 20, 40, 60, 80 and
100. The total energy converges as the temperature decreases. For the stage at Tf, the total
energy does not change in 1000 MC steps which indicates that the system is reached a (local)
minimum energy state. However, it can not be confirmed whether or not this state is the
global minimum energy state.
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Fig. 6.3 Results of simulated pattern optimization of a V-shaped intensity profile using
simulated annealing algorithm with parameters: Ti = 5 ·10−2, Tf = 3 ·10−4, Λ = 1.05 and
M = 1000. The AOI on the DMD chip has nx = 200 and ny = 150 pixels. (a) The target
intensity (red), initial intensity (green) and the final intensity profile (blue) are plotted for
the region of interest. The rms error of the final profile in the central 360µm region is
εrms = 1.36%. (b) The measured intensity profile after the first demagnification stage and
the same rectangular aperture (ly = 0.4mm, y0 = 0.2mm). (c) & (d) The integrated energy
in each MC step for different temperature stages Tn = Ti/Λn, with n = 0, 20, 40, 60, 80 and
100. The total energy converges as the temperature decreases. For the stage at Tf, the total
energy does not change in 1000 MC steps which indicates that the system is reached a (local)
minimum energy state. However, it can not be confirmed whether or not this state is the
global minimum energy state.
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Fig. 6.4 Results of simulated pattern optimization of a harmonic intensity profile using
simulated annealing algorithm with parameters: Ti = 5 ·10−2, Tf = 3 ·10−4, Λ = 1.05 and
M = 1000. The AOI on the DMD chip has nx = 200 and ny = 150 pixels. (a) The target
intensity (red), initial intensity (green) and the final intensity profile (blue) are plotted for
the region of interest. The rms error of the final profile in the central 360µm region is
εrms = 1.49%. (b) The measured intensity profile after the first demagnification stage and
the same rectangular aperture (ly = 0.4mm, y0 = 0.2mm). (c) & (d) The integrated energy
in each MC step for different temperature stages Tn = Ti/Λn, with n = 0, 20, 40, 60, 80 and
100. The total energy converges as the temperature decreases. For stage at Tf, the total
energy does not change in 1000 MC steps which indicates that the system is reached a (local)
minimum energy state. However, it can not be confirmed whether or not this state is the
global minimum energy state.



6.1 Designing a 2D Pattern 47

−100 −50 0 50 100

−50

0

50
y

(p
ix

el
)

−100 −50 0 50 100

−100 −50 0 50 100

−50

0

50

x (pixel)

y
(p

ix
el

)

−100 −50 0 50 100
x (pixel)

(a) (b)

(c) (d)

Fig. 6.5 2d DMD patterns in the AOI obtained at the end of the simulation process. (a) The
initial pattern with which all the simulations were started. Final patterns for the box-shaped
(b), the V-shaped (c), and the harmonic (d) target intensity profiles are shown as well. It is
hard to read any information about the resulting 1d intensity profile from these patterns.

6.1.2 Examples

Using the method introduced in the previous section, pattern optimization is performed for
an AOI with nx = 200 and ny = 150 for three different 1d target intensity profiles, namely a
box-shaped, a V-shaped and a harmonic intensity profile (see figures 6.2a, 6.3a and 6.4a).

In the numerical simulations, the horizontal-pass filtering is performed by a slit with
lx = 12mm, ly = 0.4mm and y0 = 0.2mm (see figure 5.5). For all three targets, starting
from an initial temperature Ti, the final temperature Tf = 6 ·10−3 ·Ti is achieved by dividing
the temperature by Λ = 1.05 after each annealing step. The number of MC steps for each
temperature is M = 1000.
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Fig. 6.6 Result of pattern optimization with experimental feedback for a top-hat intensity
profile using the simulated annealing algorithm at zero temperature with 100 MC steps. The
AOI on the DMD chip has nx = 100 and ny = 150 pixels. (a) The target intensity (red), initial
intensity (green) and the final intensity profile (blue) are plotted for the region of interest on
the CCD. The rms error of the final profile is εrms = 1.3%. (b) The region in the black frame
is zoomed in. The interval shown in pink color indicates an averaged standard error of the
measurement plotted in reference to the target due to the shot to shot fluctuations.

The initial and final 1d intensity profiles are plotted in figures 6.2a, 6.3a and 6.4a. For all
three cases, εrms is less than 2% for the central region of final 1d intensity profile. The initial
and final DMD patterns are shown in figure 6.5. The stochastic nature of the optimization
process makes it hard to guess the resulting 1d intensity profile from looking at these patterns.

The total energy for six selected temperatures including the initial and final temperature
is plotted in figures 6.2 to 6.4. For all three cases the total energy converged to a finite value
at the final temperature. Although the value is small compared to the initial total energy, this
does not necessarily mean that the final state corresponds to the global energy minimum.

In 6.2b, 6.3b and 6.4b, the final DMD patterns are imaged via the first demagnification
stage of the optical setup with the same rectangular aperture parameters used in simulations.
Because experimental effects such as aberrations, dust particles on the optical elements
and inhomogeneities in the illumination beam are not included in the simulations, using
the obtained patterns does not lead to the desired results in experiment. In order to realize
arbitrary 1d intensity profiles, the optimization has to be performed using experimental
feedback.
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Fig. 6.7 Result of a manual pattern optimization with experimental feedback for the central
region of a top-hat intensity profile after 61 steps. The AOI on the DMD chip has nx = 25
and ny = 36 pixels. The target intensity (red), initial intensity (green) and the final intensity
profile (blue) are plotted for the region of interest on the CCD. The rms error of the initial
and the final profile are εrms = 1.7% and εrms = 0.46% respectively. The interval shown in
pink color indicates an averaged standard error of the measurement plotted in reference to
the target due to the shot to shot fluctuations.

6.2 Pattern Optimization with Experimental Feedback

Simulating the imaging process might be useful to test optimization methods or even prepare
an initial guess for the experiment, but it is incapable of including all details of the imaging
system. So in order to achieve arbitrary 1d intensity profiles, the optimization has to be
performed with feedback from experimental measurements.

Although the optimization method based on simulated annealing seems to be promising
in numerical simulations, it turns out to be inefficient for optimizations with experimental
feedback. In the simulations, the feedback is calculated within a few milliseconds, but in the
experiment, a cycle takes up to 30s (see 3.3), which means performing the same simulated
annealing process presented in previous section would take more than a month time, during
which the experiment will not be stable.

Having a pattern which produces a 1d intensity profile fairly close to the target might
help to speed up the process. With such a pattern for an initial guess, running the simulated
annealing process only at zero temperature (i.e only accepting steps lowering the energy)
might lead to an optimized pattern. This decreases the optimization time dramatically from a
month to a few hours. However, at zero temperature, there will be no means by which the
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system can avoid local minima. This approach is discussed in the following with an example
of pattern optimization with experimental feedback.

Here, the feedback process is performed using the intensity measured by a CCD camera.
The 2d DMD pattern is imaged via the first demagnification stage (see 5.2) which allows
for spatial filtering in x- and y-direction independently. The 1d intensity profile is obtained
by averaging the intensity recorded by a single row of CCD pixels over multiple shots to
suppress the error due to readout noise, photon shot-noise and laser intensity fluctuations.

In the example presented in figure 6.6, pattern optimization is performed for an AOI with
nx = 100 and ny = 150 aiming to achieve a flat 1d top-hat intensity profile (red curve). The
green curve in the figure presents the intensity profile produced by the initial pattern and
the blue curve shows the intensity profile of the optimized pattern after 100 MC steps. In
each step after flipping pixels randomly as explained in figure 6.1, averaging over 20 images
provides the feedback.

In the region specified by the black rectangle, where the initial intensity is close to the
target function, the optimization led to desired result as the error decreased from εrms = 2.4%
to εrms = 1.3%. Even the sharp edge to the right is smoothed out without performing
additional spatial filtering in x-direction . On the other side, in the region marked with
orange, the initial pattern did not produced an intensity close to target. As a consequence, the
intensity did not optimized significantly within this 100 steps.

Although this optimization method is straightforward and feasible within a reasonable
amount of time, it strongly depends on the initial state of the pattern and obtaining 1d intensity
profiles with a desired precision is not guaranteed.

In order to confirm that the optimization process is not fundamentally limited by the
physical properties of the system such as interferences, the central region of a top-hat intensity
profile, similar to the previous example, is optimized manually. In this example, an AOI
with nx = 25 and ny = 36 is optimized to obtain a smooth 1d intensity profile. As in the
previous example, the feedback is provided by averaging over 20 images. In figure 6.7, green
and blue curves represent the initial and the final intensity profiles respectively. The final
intensity profile is clearly smoother than the initial profile as the rms error is decreased from
εrms = 1.7% to εrms = 0.46%. Further optimization was limited by the error produced by
shot to shot fluctuations in the picture. This example shows that a deterministic optimization
mechanism might work more efficiently than probabilistic ones.

An important point neglected in this chapter is the possibility of using the concept of
time-averaging to gain extra levels of grayscales. As discussed in 4.4, based on the high
pattern refresh rate of the DMD, this can allow for at least a factor of four increase in the
number of grayscales in the experiment.
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Finally, it is important to note that, even performing pattern optimization with experimen-
tal feedback provided by a CCD camera does not yield an ultimate 1d intensity profile which
can be used in the experiment without further optimization. One reason is that the effects of
the second demagnification stage can not be included in such optimizations. Another reason
is that for the optimization with camera feedback, the camera itself will have an influence on
the optimization process.





Chapter 7

Conclusion and Outlook

In the work presented in this thesis, an optical setup based on a digital micro mirror device
(DMD) was designed, built and characterized. The system is capable of realizing both static
and dynamic arbitrary 1d optical dipole potentials for neutral 87Rb atoms in an cold atom
experiment. A special focus of the thesis was to employ the concept of spatial filtering in a
4-f optical system to create arbitrary 1d intensity profiles with high grayscaling resolution, by
imaging 2d binary DMD patterns. In the last chapter a probabilistic method was introduced
to automatically design 2d DMD patterns leading to desired 1d intensity profiles.

During this work, all parts needed to install the system in the experimental setup were
designed and built. After installation and alignment, the DMD setup will allow for realization
of a whole zoo of trapping geometries enabling the investigation of a variety of interesting
physics.

For example, flat bottom box-shaped potentials with different sizes can be realized. This
potentials make the realization of homogeneous 1d density profiles possible which can be
used to investigate recurrences in many-body quantum systems [36].

Through longitudinal splitting it will be possible to have more than one 1d systems along
the 1d axis, which is not possible with the current trapping techniques in the experiment.
Thermal machines can be realized through several box-shaped potentials with different
depths, which can be dynamically coupled or decoupled, heated or cooled.

Analogue gravity models are another exciting topic that can be explored with 1d quasi-
condensates. For example, Hawking radiation emitted from a sonic event horizon can
be measured and characterized. Shaping the flow profile of the condensate through the
underlying potential is a crucial ingredient in such experiments [13, 48, 49].

Furthermore, this setup will enable the realization of stable and reproducible random
potentials necessary to study the interesting effects of disorder in cold atomic gases [50–52].
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