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Abstract

While there are many well-established techniques to analyze and visualize static social networks,
visual analysis of dynamic (i.e., time-oriented) network data emerged in recent years as a rel-
evant research topic, facing several open problems. The dynamic nature of this kind of data,
indeed, poses the challenge of understanding both its relational aspect (the structure of social
interactions) and its temporal aspect (how they change over time).

In this doctoral work, we investigate how a visual analytics approach, integrating automatic
analysis, visualization, and user interaction techniques, can support the examination of such dy-
namic networks. In particular, by focusing on this research problem, we present the following
contributions: 1. we propose a set of novel metrics (change centrality metrics) to specifically
analyse how the network structure changes over time; 2. we combine different visual encodings
for the time-oriented aspect of network data, enabling smooth transformations between differ-
ent views; 3. we introduce novel techniques for user interaction, such as interactive control of
dynamic layout stability and the vertigo zoom, allowing seamless transitions between relational
and temporal perspectives on dynamic network data.

We illustrate our approach by describing a prototypical implementation and demonstrate
its utility by introducing a real-world usage scenario. Furthermore, we provide a validation
of our approach by reporting findings from expert reviews (involving experts from both the
visualization community and the problem domain) as well as from two task-based user-studies,
namely a qualitative evaluation and a quantitative controlled experiment.

These findings afford an indication of the overall validity of our approach and allow us to
discuss how particular techniques and their combinations can support specific analytical tasks
on dynamic network data.
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Kurzfassung

In der jüngeren Vergangenheit hat sich die visuelle Analyse dynamischer Netzwerkdaten zu ei-
nem relevanten Forschungsgebiet entwickelt. Im Gegensatz zu statischen sozialen Netzwerken,
die bereits viele etablierte Methoden zur Analyse und Visualisierung aufweisen, beinhaltet die-
ses Gebiet noch verschiedenste Herausforderungen und offene Fragestellungen.

Die inhärente Dynamik dieser Daten erfordert den Umgang mit relationalen (die Struktur
sozialer Interaktionen) und temporalen Aspekten (wie verändern sie sich über die Zeit). In die-
ser Dissertation zeigen wir einen Visual Analytics Ansatz, der automatische Analysemethoden,
Visualisierungen und BenutzerInnen-Interaktionen kombiniert, der die Betrachtung solcher dy-
namischer Netzwerke unterstützt. Konkret haben wir durch den Fokus auf diese Problemstel-
lung folgende wissenschaftliche Beiträge geleistet: 1. Wir empfehlen eine Reihe von neuartigen
Metriken (Change Centrality Metriken) um detailliert analysieren zu können wie sich die Netz-
werkstruktur über die Zeit verändert; 2. Wir erzeugen unterschiedliche visuelle Darstellungen
zu zeitorientierten Aspekten von Netzwerkdaten und stellen flüssige Übergänge zwischen die-
sen her; 3. Wir stellen neue BenutzerInnen-Interaktionen vor um reibungslose Übergänge zwi-
schen relationalen und temporalen Perspektiven der dynamischen Netzwerkdaten zu erlauben,
wie eine interaktive Steuerung der dynamischen Layoutstabilität und der Vertigo Zoom.

Wir illustrieren unsere Konzepte anhand einer prototypischen Implementierung und de-
monstrieren die Funktionsweisen und ihren Mehrwert/Nutzen in einem praktischen Anwen-
dungsfall. Darüber hinaus wurde unser Ansatz in ExpertInnenbefragungen (mit ExpertInnen aus
der Visualisierungsforschungsgemeinschaft sowie aus der Problemdomäne selbst) validiert und
zwei aufgaben-basierte BenutzerInnenstudien durchgeführt, eine qualitative Evaluierung und ein
quantiativ kontrolliertes Experiment.

Die Resultate dieser Experimente und Bewertungen geben einen Einblick in die umfassende
Validität unseres Ansatzes und erlauben eine Reflexion der präsentierten Techniken und deren
Zusammenspiel bestimmte analytische Aufgaben im Bereich der dynamischen Netzwerkdaten
zu unterstützen (oder gar erst zu ermöglichen).
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The problem
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CHAPTER 1
Introduction

1.1 Motivation

Networks are exploited to model diverse phenomena in various domains: social interactions
between human beings (sociology), as well as digital connections between electronic devices
(communications), relationships between proteins (biology), and interdependencies of industrial
sectors or regional markets (economics). Dynamic networks take into account changes over
time: they not only model relations between different entities, but also consider the evolution of
these relations, i.e. the way and the extent by which they change over time.

Dynamic social networks, in particular, can be useful to model and analyze human rela-
tionships in several potential scenarios: the informal social relationships of individuals within
a family or a group of friends; the widespread connections through social networking services;
the covert activities of small, interconnected terrorist cells; or the structured collaboration of
employees within an enterprise.

Visual analysis of dynamic social networks is a topic that has been drawing increasing atten-
tion in recent years, not only from different research communities (not limited to social science
researchers) but also from the general public. One reason for this interest is the availability of
data: nowadays electronic devices often mediate interpersonal interactions or, because of their
presence in our every day lives, are in any case able to capture and store social network data.
Another reason is the possibility to gain objective insights about social relationships, in order to
monitor and understand them, as well as take action to improve or better exploit them.

Whatever application domain we consider, a good visualization of dynamic networks has
to support the analysis of the relational aspect (what is the structure of the network) as well as
the temporal aspect (how the network evolves over time), and should also enable a seamless
switching between the two perspectives.

In this work, we specifically consider the organizational network (i.e. a network consisting of
the employees of an organization) of a knowledge intensive enterprise and focused on different
kinds of relations, such as communication, collaboration, technical and practical advice, and
spreading of new ideas. We aim to support users analyzing the evolution of these relations
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as well as some performance indicators, by also considering how they relate to organizational
changes: turnover, team restructuring, and other management actions.

Analysis of social, i.e., interpersonal, networks is obviously a sub-field of sociology; it uti-
lizes concepts from graph theory, combined with data models and computational algorithms, to
perform automated data analysis. Graph drawing and information visualization provide algo-
rithms and techniques for static and interactive visualization of network data.

In this work, we tackle the problem from a multidisciplinary perspective, abstracting dy-
namic network data from the specific problem domain (i.e., social networks), and investigating a
visual analytics approach, as a combination of automated analysis and interactive visualization.

1.2 Research questions

In particular, our research aims at investigating the following research question:

• How can a visual analytics approach support the examination of dynamic networks ac-
cording to specific user tasks?

This main research question can be further detailed by three interconnected sub questions:

– How can temporal aspects of network data and dynamic underlying phenomena be
best visualized?

– How can we integrate analytical methods and visualization techniques to address
the complexity of dynamic networks?

– Is it possible to combine analytical methods and interaction techniques to enhance
the perception of network dynamics?

1.3 The visual analytics approach

Visual analytics is defined as “the science of analytical reasoning facilitated by interactive visual
interfaces” [367, p.4]; visual analytics tools and techniques are aimed at helping users (i) syn-
thesize and derive insight from complex and dynamic data; (ii) detect the expected and discover
the unexpected; (iii) provide timely, motivated, and understandable assessments; and (iv) sup-
port decision-making [367]. Visual analytics goes beyond information visualization, defined as
“the use of computer-supported, interactive, visual representations of abstract data to amplify
cognition” [86, p.7].

Visual analytics has also been defined as a combination of “automated analysis techniques
with interactive visualisations for an effective understanding, reasoning and decision making” [227,
p.7]. Visual analytics can be described by the interplay of three main components [229]: data
analysis, visualization, and interaction (see Figure 1.1). As such, visual analytics combines the
strengths of humans and computers, in particular the enormous computational power of ma-
chines to manage and process data with the cognitive and perceptual capabilities of humans to
direct the analysis and make sense of the data based on priori domain knowledge.
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Figure 1.1: Visual analytics is based on the interplay of diverse methods and techniques for data
analysis, visualization, and interaction [229]

From an epistemological perspective, visual analytics is an highly interdisciplinary research
field, which combines diverse other fields [228] (Figure 1.2). As for data analysis, it integrates
methodologies from data management and knowledge management, statistical analysis, knowl-
edge discovery and data mining; as for visualization, it profits from techniques developed in the
field of information visualization, scientific visualization, and geospatial visualization; more-
over, visual analytics builds upon methods from cognitive and perceptual space and human-
machine interaction; it also integrates methodologies for production, presentation, and dissemi-
nation of analysis results and insights.

Figure 1.2: Scope of visual analytics [228]
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1.4 Research methodology

The methodological foundation of this work is Munzner’s nested model for design and validation
of visualization [280]. In her work, Munzer identifies four levels for design and validation of
visualization (Figure 1.3): (i) domain problem characterization; (ii) data/operation abstraction
design; (iii) encoding/interaction techniques design; and (iv) algorithm design.

Figure 1.3: The nested model for design and validation of visualization [280]

The first, outermost level is the characterization of problems and data of a particular appli-
cation domain (i.e., in our case, social network analysis). The second level is the abstraction of
domain-specific data and problems into domain-independent data models and tasks. The third
level is the design of visual encodings and interaction techniques. The fourth, innermost level, is
the design and implementation of algorithms. Since these levels are nested (i.e. the output from
an upstream level above is input to the downstream level below, see arrows in Figure 1.3), wrong
design decisions cascade from outer levels into inner ones; furthermore, errors at an inner level
can affect the validation of outer levels (e.g., the final evaluation of a system might cast doubts
that a certain visual encoding does not work properly, but the reason might be a poor algorithmic
implementation). Munzer, therefore, suggests two validate each level twice, by an immediate
(e.g., upstream) validation as well as by a downstream validation. Level-specific threats and
their validation strategies are shown in Figure 1.4.

Figure 1.4: Threats and validation in the nested model [280]
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Meyer et al. [273] extend the nested model by the introduction of the nested blocks and
guideline model (Figure 1.5): blocks are the outcome of the analysis and design process at
each level, and guidelines are statements that relate blocks to each other. Guidelines can be
either between levels or within levels: the former indicate different possible choices to address
situations identified in the outer level, while the latter indicate rankings between those differ-
ent alternatives. Meyer et al. [273] explain it with an example about network visualization:
a between-level guideline states that a node-link diagram is a good visual encoding of small
graphs, while a within-level guideline states that one specific force-directed layout algorithm is
faster than another.

Figure 1.5: The nested blocks and guidelines model (adapted from [273])

The nested workflow model (Figure 1.6) is a further extension of the nested guideline model,
aimed at providing designers with an expressive tool for characterizing the problem domain and
understanding users’ practices and processes [140]. This model enables the description of visual
analytics processes at different design levels, in terms of tasks, data, and users, by taking into
consideration complex workflow patterns, data and knowledge flows, and user collaboration.

Figure 1.6: The nested workflow model [140]
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The main components of the nested workflow model, namely data, tasks, and users, corre-
spond to the vertices of the design triangle for visual analytics of time-oriented data by Miksch
and Aigner [274] (Figure 1.7). The triangle provides designers with an orientation in the man-
ifold space of visual analytics solutions by posing three questions: 1. Who are the users of the
VA solution(s)? 2. What are the (general) tasks of the users? 3. What kinds of data are the
users working with? While its vertices correspond to these questions, the design triangle also
provides quality criteria the visual analytics solution should fulfil, namely expressiveness, effec-
tiveness, and appropriateness. A visual analytics solution is expressive if it visualizes exactly the
information contained in the data, for nothing more and nothing less must be visualized [265].
It is effective if it properly addresses the perceptual and cognitive capabilities of its user, but
also the task at hand, the application background, and other domain- and context-related infor-
mation [265]. It is appropriate if it is beneficial in terms of cost-value ratio, as defined by van
Wijk [387].

Figure 1.7: Design triangle [274]

Van Wijk [387], indeed, in order to investigate the value of visualization describes the con-
text in which the visualization operates by introducing an operational model (Figure 1.8). The
model encompasses three spaces: the data space, the visualization space, and the user space.
Within and across these spaces, processes operate: visualization, perception/cognition, and ex-
ploration. The visualization if appropriate if it enables the increase of knowledge at a convenient
cost, in terms of initial development, user sessions, and cognitive effort.

Figure 1.8: The operational model of visualization by van Wijk [387]

8



Conversely from van Wijk’ model, the sense-making loop by Pirolli and Card [303] is more
a conceptual model than an operational model, it does not distinguishes between human and
computer and rather describes the reasoning process in terms of knowledge artifacts having an
increasing structure and requiring increasing user effort (Figure 1.9).

Figure 1.9: The sensemaking loop by Pirolli and Card [303]

Sacha et al. [335] introduce a knowledge generation model for visual analytics. Their
model consists of computer and human parts and describes their intertwined collaboration (Fig-
ure 1.10). On the human side, the reasoning process is described in terms of three loops: the
exploration loop, the verification loop, and the knowledge generation loop. The computer side
encompasses two pipelines: the information visualization pipeline [86] and the knowledge-
discovery pipeline [134].

Figure 1.10: The knowledge generation model for visual analytics [335]
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However, considering the different models, while the sensemaking loop [303] and the knowl-
edge generation model [335] provide a broad theoretical framework for the comprehension of
the visual analytics process, the design triangle [274], the nested model [279], and its deriva-
tives [140,273] provide a methodological framework for conducting and validating our research.
Sedlmair et al. [345] extend this framework by complementing the core validation with a precon-
dition validation and a outward facing validation. The core validation consists of four stages (dis-
cover, design, implement, deploy) corresponding to the four levels of the nested model. The pre-
condition validation comprehends three stages (learn, winnow, cast). The learn stage requires to
explore the visualization literature (including visual encoding and interaction techniques, design
guidelines, and evaluation methods) and the knowledge acquired and systematized during this
phase will inform all the other stages. The winnow and cast stages are to select collaborators
and assign roles in order to avoid practical pitfalls that might affect the research (e.g., no real
data available, insufficient time available from potential collaborators, wrong domain problem).
In the last stages (reflect and write), the researcher should confirm, refine, reject, or propose
guidelines, contributing to extend the knowledge about the topic under investigation.

Figure 1.11: The nine-stage design study methodology [345]

The core stages, i.e. the four levels of the nested model, can be validated by a wealth of
available evaluation techniques and methods. Most of them (except for the inmost level, which
deals with algorithms, their correctness, performance, and computational complexity) adopt a
focus-on-user approach as prescribed by the human-centered design concept [247]. According to
Stone et al. [363, p.628], human-centered design can be defined as “an approach to user interface
design and development that views the knowledge about intended users of a system as a central
concern, including, for example, knowledge about user’s abilities and needs, their task(s), and
the environment(s) within which they work. These users would also be actively involved in the
design process.”

Ellis and Dix [120] distinguish two facets of validation: reasoned justification versus evalu-
ation. Reasoned justification includes existing published results, own empirical data from prior
studies, expert opinion and common sense, and arguments based on all the above. Evaluation in-
clude empirical evaluation (e.g., user studies), peer reviews, comparison with previous work. As
for empirical evaluation, they distinguish between formative evaluation and summative evalua-
tion. The purpose of summative evaluation is to validate a design, while the purpose of formative
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evaluation is to improve a design; it is worht noting that, in the context of iterative development
processes, the summative evaluation at the end of one iteration is a formative evaluation for
the next one. Ellis and Dix also propose the notion of explorative evaluation, aimed at gaining
findings, understang, and knowledge.

Lam et al. [251] elicit seven scenarios for evaluating visualization: Evaluating Environments
and Work Practices (EWP), Evaluating Visual Data Analysis and Reasoning (VDAR), Evaluat-
ing User Performance (UP), Evaluating User Experience (UE), Automated Evaluation of Visu-
alizations (AEV), Evaluating Communication through Visualization (CTV), Evaluating Collab-
orative Data Analysis (CDA). Each scenario has its own goals, outputs, and methods. Isenberg
et al. [214] extend these scenarios by adding one more scenario, namely Qualitative Result
Inspection (QRI), and renaming Automated Evaluation of Visualizations (AEV) as Algorithm
Performance (AP). The AP scenario corresponds to the validation of the innermost nested level,
involving automated (benchmark) measurements of quality and performance. As for commu-
nication (CTV) and collaboration (CDA) scenarios, Isenberg et al. [214] found few to no cases
in visualization literature. EWP and VDAR are similar, since they both aim at understanding
domain experts’ analysis processes and practices; UWP scenarios focus more on understanding
the current practices (and therefore is corresponds to the problem domain characterization) while
VDAR scenarios involve the assessment of newly introduced tools by a group of domain experts
(and therefore can be considered as the downstream validation of the data/operation abstraction
as well as the domain characterization level. UP and UE, according to Isenberg et al. [214], are
the most common form of evaluation, and correspond to the downstream validation of visual
encodings and interaction techniques (when they involve general users / data / tasks) as well
as data/domain operations (when they involve domain-specific situations). Qualitative Result
Inspection (QRI) is not a form of evaluation in a classical sense, but rather a way to validate
a proposed solution, technique or system, by a qualitative discussion of system behavior and
interaction concepts or by letting the reader assess visual encodings and image quality.

User studies for characterizing the problem domain are usually based on qualitative methods,
such as semi-structured interviews for user-centered design [416], both in-field and in-lab obser-
vational studies, as well as contextual inquiries [203] which combine observation and interviews;
other methods for pre-design empiricism include [72]: immersive observation by impersonation,
screen recording and artifact analysis, and wizard-of-Oz studies.

Expert reviews are also a suitable form of evaluation, and they result useful to assess inter-
face usability as well as to generate valuable feedback on visualization tools; generally, heuris-
tics should guide the process but not dominate it, leaving enough freedom to experts to provide
qualitative feedback and discuss their opinions in detail [369]. Expert reviews can provide quick
feedback on early implementations, while informal usability studies involving generic users can
complement the findings in later development stages.

Quantitative user studies, with either generic or domain-specific users, tasks, and data, are a
common evaluation for validating the abstraction as well as the visual encoding and interaction
level, respectively. They are usually performed as task-based controlled experiments, i.e., partic-
ipants are asked to solve given tasks under controlled conditions. Observed variables are usually
task completion time and correctness rate. Rigorous statistical methods are utilized to verify if
there is a significant effect of the factors upon the observed variables, in other words if different
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conditions (e.g, two different visual analytics techniques) affect user performances [326].
Forsell and Cooper [150] provide guidance about how to report salient necessary informa-

tion from different kinds of evaluation for visualization techniques.

1.5 Structure of this document

In this Chapter 1 we have motivated the problem, formulated our research questions, and pre-
sented our research methodology. In Chapter 2 we complement the problem description by
introducing concepts and definitions and surveying the state of the art in visual analytics of
dynamic networks.

Then we illustrate our proposed solution. In particular, in Chapter 3 we describe our in-
tegration of techniques for automated analysis, comprehending network mining and analysis
techniques and a novel graph-theoretic measure for dynamic networks; in Chapter 4 we describe
our visualization techniques, with a focus on visual encodings for time and time-oriented net-
work data; in Chapter 5) we describe our interaction techniques, including smooth animated
transitions between different visual encodings, an interactive control of graph layout stability as
well as a novel interaction named vertigo zoom. In Chapter 6 we provide some details on the
prototypical implementation of our approach.

Afterwards, we present the validation of our approach. In Chapter 7 we introduce a usage
scenario and illustrate how our approach can help us gaining insights about a real-world dataset.
In Chapter 8 we present the findings of expert reviews, involving both visulization experts and
domain experts. In Chapter 9) we describe a task-based qualitative evaluation, conducted with
target users, and discuss usability and utility of our approach. In Chapter 10) we report a com-
parative evaluation of selected interaction techniques by a controlled task-based quantitative user
study. We drive conclusions in Chapter 11, by discussing answers to our research questions as
well as future research directions.
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CHAPTER 2
Foundations and state of the art

In this chapter we introduce concepts and formal definitions for time-oriented networks and
discuss state-of-the-art for modelling, analysing, and visualising this kind of data.

2.1 Concepts and definitions

A graph G := (V,E) consists of a finite non-empty set V of elements named vertices (or
nodes) together with a prescribed set E ⊆ N ×N of unordered pairs of elements of V , named
edges (or links) [185].

Each edge ei,j is associated with two vertices i and j by a relation of incidence. The edge
ei,j is said to be incident into the vertices i and j; the vertices i and j are said to be the ends of
the edge ei,j . Moreover, the vertices i and j of the edge ei,j are said to be adjacent. The set E
of edges induces a relation of adjacency on the set V of vertices. An edge ei,i, which has the
same vertex i as ends, is named a loop (Figure 2.3a).

If only one edge is allowed for each pair of vertices and there are no loops, then the graph is a
simple graph; otherwise, the graph is named a multigraph, or a pseudograph (see Figure 2.1).

A directed graph, or digraph, is a graph whose edges are directed (i.e., the edges are
ordered pairs of vertices). Directed edges are also named arcs. For each arc, we distinguish a
source (or origin, or tail) vertex, and a destination (or head) vertex. The arc is said to emanate

(a) Simple graph (b) Multigraph

Figure 2.1: Different graphs according to edge multiplicity
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or originate from its source, and to terminate into its destination. The arcs emanating from a
vertex are referred to as its outgoing arcs; the arcs terminating into a vertex are referred to as its
incoming arcs.

Conversely, a graph properly said (i.e., the edges are unordered pairs of vertices), is also
called undirected. A graph whose edges can be both directed and undirected is referred to as
mixed (see Figure 2.2).

(a) Undirected (b) Directed (c) Mixed

Figure 2.2: Different graphs according to edge direction

A walk of length k is an alternating sequence of vertices and edges v0, e0, v1, e1, ..., vk−1, ek−1, vk
(Figure 2.3b). If the graph is undirected, then the endpoints of ei are vi and vi+1. If the graph
is directed, then ei is an arc from vi to vi+1. A trail is a walk in which all edges are distinct
(i.e., a walk without edge repetitions, Figure 2.3c). A path is a trail in which all vertices, except
possibly the first and the last, are distinct (Figure 2.3d).

A cycle is a path in which the first and the last vertex are not distinct (Figure 2.3e). An
acyclic graph is a graph without cycles.

(a) A loop (b) A walk (c) A trail

(d) A path (e) A cycle

Figure 2.3: Graph elements and patterns

Two vertices are said to be connected if there exist at least one path between them. Two
vertices are said to be connected in k steps if there is a path of length k between them and any
other path connecting them has length l > k.

A graph is connected if there is a path between every pair of vertices; otherwise, the graph
is disconnected. A connected component (or simply component) is a maximal connected
subgraph of a graph (Figure 2.4).
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(a) A connected graph (b) A disconnected graph with two con-
nected components

Figure 2.4: Graph connectivity

A tree is an acyclic connected graph. A rooted tree is a tree in which a given vertex is
designated as the root. In a rooted tree, edges can be assigned a natural orientation, either
towards or away from the root. Rooted trees are a very common class of graphs, which is well
suited to model hierarchical data.

Figure 2.5: A rooted tree

A network is defined as a graph or directed graph together with a function which assigns
a positive real number (often named weight) to each edge, representing one amongst capacity,
cost, latency, or other properties, depending on the application [185]. One positive real number
may not be enough for representing complex real-world data and, therefore, a network can be
generalised by associating several attributes (i.e. key-value pairs) of any type (e.g., sign, integer,
floating, string, see Figure 2.6) to vertices and edges; such a network is commonly referred to as
a multivariate network [309, 404].

The attributes, which are associated to vertices and edges in a multivariate network, can be
used to define partitions on them; therefore, we can define multi-modal networks (i.e., with
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(a) Signed (b) Weighted (c) Labelled

Figure 2.6: Graphs with different edge attributes

several types of vertices, Figure 2.7a) as well as multi-relational networks (i.e., with several
types of vertices, Figure 2.7b).

In particular, a bipartite graph is a graph in which the set of vertices is divided in two
partitions and each edge has one end belonging in either partition (Figure 2.7c). A compound
graph can be seen as a graph in which the set of edges is divided in two partitions, one of which
induces a tree structure onto the vertices; in other words, a compound graph is a graph with a
hierarchical partition of its vertices.

(a) Multimodal (b) Multirelational (c) Bipartite

Figure 2.7: Networks with partitions of vertices or edges

2.1.1 Time and time-oriented networks

Real-world phenomena are dynamic, since they evolve over time, and a (static) multivariate
network does not capture their dynamics; thus, several concepts of dynamic (or temporal, or
time-oriented) networks have been introduced. Harary [186] defines five types of dynamic
(univariate) networks: in a node-dynamic network the set of vertices varies over time, in an
edge-dynamic network the set of edges varies over time, in a vertex-weighted dynamic network
also the weights of vertices vary over time, in an in edge-weighted dynamic network also the
weights of edges vary over time, in a full dynamic graph the sets of vertices and edges and their
weights vary over time.

Carley [87] defines a dynamic network as an overtime sequence of static networks. In both
the event-based [31] and the streaming paradigm [427], a dynamic network is seen as a sequence
of edges over time.

Casteigts et al. [88] survey different types of temporal networks in several application do-
mains, and formalise different perspectives: the vertex-centred perspective (sequence of vertex
properties), the edge-centred perspective (sequence of edges) and the graph-centred perspective
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(sequence of networks). Moreover, they propose the time-varying graph (TVG) as a unified
representation based on two timing functions: the presence function, which indicates whether a
given edge is available at a given time, and the latency function, which indicates the time it takes
to cross a given edge if starting at a given time.

Holme et al. [198] draw on the presence function, and distinguish two classes of temporal
networks, the contact-sequence class and the interval-graph class, depending on whether the
values of the presence function are time instants or time intervals. In both cases, a static network
can be obtained as an aggregation over time. Instants and intervals as time primitives will be
addressed in the following section.

Archambault et al. [20] define a temporal multivariate network as a multivariate network
whose attributes change over time. They identify three temporal aspects: structure (the topol-
ogy of the underlying network at a given time), behaviour (attribute changes), and evolution
(structure changes). Moreover, their model includes a notion of influence, namely a functional
relation between network elements and attributes, e.g., an attribute represents a graph-theory
property derived from the network structure.

As observed also by Archambault et al. [20], temporal networks can be understood as a
particular class of time-oriented data; as such, their analysis and visualization design has to
consider the characteristics of time and time-oriented data.

Aigner et al. [14] identify a number of orthogonal design aspects and abstractions for mod-
elling time-oriented data. Design aspects comprehend scale, scope, arrangement, and viewpoint.

The scale can be ordinal, discrete, and continuous, depending on whether time values are
mapped to elements of a (partially) ordered set, to integers, or to real numbers. The scope
refers to basic elements of the time structure, namely points and intervals; the former have no
length, while the latter have a temporal duration. The arrangement can be either linear (time
continuously flowing from before to after) or cyclic (recurring time values, such as alternating
days and nights or consecutive seasons). Viewpoint can be ordered, branching, or with multiple
perspectives: in an ordered time domain, any time value is put before or after another, or even-
tually in concurrence for partially ordered domains; branching time models admit simultaneous
timelines, understood as possible alternatives deriving from decision points or branching events;
multiple perspectives arise when data can be mapped to multiple time values representing dif-
ferent viewpoints of the same phenomenon.

Additionally, several abstractions can be used for representing and reasoning about time,
namely granularities, calendars, time primitives, and indeterminacy.

Granularities are human abstractions (e.g., hours, days, weeks, months) useful to handle the
complexity of time and refer to it in a simpler way. Granularities can by grouped in several ways
(e.g., hours are grouped into days, days are grouped into weeks and months), according to a
given calendar.

Time primitives are the basic elements to relate data to time, such as instants, intervals, and
spans. They are analogous but not to be confused with points and intervals of the time scope:
primitives can be understood as an intermediate layer for mapping data to either a point-based or
interval-based time domain. Instants and intervals are anchored primitives referring to the time
domain, while spans represent unanchored durations.

A time-oriented dataset can have either an internal time or an external time. A time series,
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for example, is a dataset that describes the history of a certain phenomenon with respect to an
inherent time; conversely, streaming data are changing over time depending on external data.

2.2 Data models

The performances of any algorithm for accessing, analysing, and visualising graph data, as well
as any kind of date, can be largely increased when the data are represented with an appropriate
data model and managed with efficient data structures. Data structures specifically designed for
graph data include incidence matrices, adjacency matrices, adjacency lists, and stars [11, 353].

Let us introduce a graph example (Figure 2.8) in order to illustrate how it can be represented
by using different data structures.

1 

2 

3 

4 

5 

13 

7 

12 

5 

20 

1 

9 6 

Figure 2.8: A graph example

2.2.1 Incidence matrix

The vertex-edge incidence matrix representation, or simply the incidence representation, stores
a graph with n vertices and m edges in a m × n matrix, in which each row represents a vertex
and each column represents an edge.

Each column has only two non-null values, corresponding to the end vertices. Therefore, the
incidence matrix is not a space-efficient representation and is hard to manipulate. Moreover, it
cannot store edge attributes.

2.2.2 Adjacency matrix

The vertex-vertex adjacency matrix representation, or simply the adjacency matrix representa-
tion, stores a graph with n vertices in a n×nmatrixA = {ai,j}. Each element ai,j of the matrix
represents the edge (i, j). Each attribute of the edge can be stored in an additional n×n matrix.
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(1,2)	 (1,3)	 (2,3)	 (2,4)	 (3,4)	 (3,5)	 (4,5)	 (5,4)	

1	 1	 1	 0	 0	 0	 0	 0	 0	

2	 -1	 0	 1	 1	 0	 0	 0	 0	

3	 0	 -1	 -1	 0	 1	 1	 0	 0	

4	 0	 0	 0	 -1	 -1	 0	 1	 -1	

5	 0	 0	 0	 0	 0	 -1	 -1	 1	

Figure 2.9: The incidence matrix for our example graph

The density D(G) of a graph G is defined as the ratio between the number of edges and the
maximal number of edges:

D(G) =
2|E|

|V |(|V | − 1)

According to the density, we can distinguish dense graphs (i.e., graphs with many edges) and
sparse graphs (i.e., graphs with few edges). The adjacency matrix representation is well-suited
for dense graphs but is not space-efficient for sparse graphs. Moreover, it cannot represent
multigraphs. Figure 2.10 shows the adjacency matrix representation for the graph we introduced
at the beginning of this section.

1	 2	 3	 4	 5	

1	 0	 1	 1	 0	 0	

2	 0	 0	 1	 1	 0	

3	 0	 0	 0	 1	 1	

4	 0	 0	 0	 0	 1	

5	 0	 0	 0	 1	 0	
(a)

1	 2	 3	 4	 5	

1	 0	 12	 13	 0	 0	

2	 0	 0	 7	 1	 0	

3	 0	 0	 0	 20	 5	

4	 0	 0	 0	 0	 9	

5	 0	 0	 0	 6	 0	
(b)

Figure 2.10: The adjacency matrix (a) and the attribute matrix (b) for our example graph

2.2.3 Adjacency lists

There are two types of adjacency list representations: edge adjacency lists and vertex adjacency
lists. The edge adjacency listAe(i) of a given vertex i is a list of all edges that have i has an end.

Ae(i) = {(i, j)} | j ∈ V, (i, j) ∈ E
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The vertex adjacency list Av(i) of a given vertex i is the set of vertices adjacent to i,

Av(i) = {j} | j ∈ V, (i, j) ∈ E

At level of data structure, both the edge adjacency list and the vertex adjacency list repre-
sentations can be implemented as linked lists (Figure 2.11), providing an efficient and dynamic
resource allocation [284]. These representations, therefore, are efficient for both space occupa-
tion and data management, and are well suited for different kinds of graphs.

1	

2	

3	

4	

5	

2	 12	 3	 13	

3	 7	

4	 20	

4	 6	

5	 9	

4	 1	

5	 5	

Figure 2.11: The edge adjacency list for our example graph, implemented as a linked-list

2.2.4 Edge list

Adjacency matrices and lists are used as both in-memory data representation and storage format;
however, edge lists are representations used by common file formats for sharing graph data (such
as GraphML, GML, GraphSON, OGML) [329, 330]. An edge list representation is actually a
two-dimensional array in which each row represent an edge, and two columns represent the edge
ends; additional columns can store edge attributes (Figure 2.12d). Edge lists are an intuitive and
space efficient representation of graph data, but they are not efficient to manipulate and do not
support efficient computation algorithms.

2.2.5 Forward star, reverse star, and compact star

Star representations are based on edge lists, complemented by index arrays to improve manip-
ulation efficiency. They are designed for directed graphs; however, undirected graphs can be
represented as directed graphs through arbitrary assignment of directions to every edge [119].

In particular, a forward star representation (Figure 2.12a) consists of a two-dimension array
(i.e., the edge list) and a one-dimension array F = {fi} with an element for each vertex. The
element fi is defined as the row index (in the edge array) of the first arc that emanates from a
vertex greater than i− 1.

Analogously, the reverse star representation (Figure 2.12b) consists of the two-dimension
array and a one-dimension indexing array R = {ri}. In this case, each element ri is defined as
the row index of the first arc that terminates in a vertex greater than i− 1.
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i	 j	 aij	

1	 1	 2	 12	

2	 1	 3	 13	

3	 2	 4	 1	

4	 2	 3	 7	

5	 3	 5	 5	

6	 3	 4	 20	

7	 4	 5	 9	

8	 5	 4	 6	

fi	

1	 1	

2	 3	

3	 5	

4	 7	

5	 8	

(a) Forward star

i	 j	 aij	

1	 1	 2	 12	

2	 1	 3	 13	

3	 2	 3	 7	

4	 2	 4	 1	

5	 3	 4	 20	

6	 5	 4	 6	

7	 4	 5	 9	

8	 3	 5	 5	

ri	

1	 1	

2	 1	

3	 2	

4	 4	

5	 7	

(b) Reverse star

(c) Compact star

i	 j	 aij	

1	 1	 2	 12	

2	 1	 3	 13	

3	 2	 4	 1	

4	 2	 3	 7	

5	 3	 5	 5	

6	 3	 4	 20	

7	 4	 5	 9	

8	 5	 4	 6	
(d) Edge list

Figure 2.12: Edge list and star representations for our example graph

Forward stars and reverse stars are alternatively used by different algorithms. Algorithms
needing the indexing of both incoming and outgoing arcs can use a compact star representation,
which is a combination of the previous two (Figure 2.12c). The data array is complemented with
two index arrays, i.e. the forward array and the reverse array; moreover, the edge-list array has
one more column representing the index of the reverse array.
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2.3 Automated analysis

Graph theory [185] and network science [39, 285] provide a large number of measures for au-
tomated analysis of network data. These measures constitute the mathematical foundations for
different specific properties which can be applied in specific domains, spanning from natural
sciences to engineering, from life sciences to social sciences.

Network measures can be divided into two main categories, namely local measures and
global measures. Global measures are designed to provide an overall characterization of a net-
work, whereas local measures are used to analyse single network elements such as edges and
vertices.

2.3.1 Degree centrality

The degree centrality is a common local measures for vertices.
Given a graph G = (V,E), the degree (or valency) of a vertex v ∈ V is the number of

edges incident to the vertex, with loops counted twice. The degree of v is denoted deg(v) or
degv. The degree centrality of a vertex v is defined as

CD(v) = deg(v)

Given a digraph G = (V,A), the indegree of a vertex v ∈ V is the number of adjacent heads
ends, while the outdegree of v is the number of adjacent tail ends. The indegree of v is denoted
deg−(v) and its outdegree is denoted deg+(v). The indegree centrality of v is defined as

C−D(v) = deg−(v)

The outdegree centrality of v is defined as

C+
D(v) = deg+(v)

2.3.2 Degree distribution

The degree distribution P (k) of a network is the fraction of nodes in the network with degree
k. If in a network there are n nodes and nk of them have degree k, the degree distribution is
defined as

P (k) =
nk
n

It has been observed that the degree distribution of many real-world networks follows a power
law distribution [95]

P (k) ∼ k−γ

where γ is a real number with usually 2 < γ < 3. Such networks are referred to as scale-free
networks [40]. Their behaviour has been modelled in terms of preferential attachment, or
cumulative advantage [310]: during the network evolution, the vertices with a higher degree
attract more edges and, therefore, their degree is increased faster.
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2.3.3 Geodesic distance and characteristic path length

Given a graph G = (V,E) and two vertices u ∈ V and v ∈ V , the geodesic distance, or simply
the distance, d(u, v) is the length of any shortest path between them. It is worth noting that in a
digraph G = (V,A), the geodesic distance is not a metric (since symmetry and non-negativity
conditions are not satisfied).
The characteristic path length l(G) is the average distance between all pairs of vertices:

l(G) =
1

n(n− 1)

∑
u6=v

d(u, v)

2.3.4 Eccentricity

The eccentricity ε(v) of a vertex v is the greatest geodesic distance between v and any other
vertex:

ε(v) = max
u∈V

d(u, v)

The radius r(G) of a graph G is the minimum eccentricity of any vertex:

r(G) = min
v∈V

ε(v)

The diameter d(G) of a graph G is the maximum eccentricity of any vertex:

d(G) = max
v∈V

ε(v)

A central vertex is a vertex with eccentricity equal to the radius:

∀v | ε(v) = r

A peripheral vertex is a vertex with eccentricity equal to the diameter:

∀v | ε(v) = d

2.3.5 Betweenness centrality

Given a graph G(V,E) and three vertices u, v, w ∈ V , let nu,w be the number of shortest paths
between u and w and nvu,w the number of shortest paths between u and w passing through v.
The betweenness centrality CB(v) of the vertex v is defined as [152]:

CB(v) =
∑

u6=v 6=w

nvu,w
nu,w
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2.3.6 Closeness centrality

Given a graph G(V,E) and a vertex v ∈ V , let l(v) be the average distance of v, defined as:

l(v) =
1

n

∑
u∈V

d(u, v)

where n is the number of vertices in the graph. The closeness centrality CC(v) of the vertex v
is defined as the inverse of its average distance [43]:

CC(v) =
1

l(v)
=

n∑
u∈V

d(u, v)

2.3.7 Eigenvector centrality

Let A = {aij} be the adjacency matrix of a given graph (see Section 2.2). The eigenvector
centrality CC(v) of a vertex v is the element xv of the left-hand eigenvector x associated with
the eigenvalue λ [255, 346]:

CE(v) = xv | λx = xA

2.3.8 Clustering coefficient

The clustering coefficient is both a local and a global measure for graphs [405]. Let the neigh-
bourhood Nv for a vertex v be defined as the set of vertices connected to v in one step:

Nv = {u ∈ V : (u, v) ∈ E}

Let kv be the number of neighbours of v:

kv = |Nv|

Then, there are at most kv(kv − 1)/2 edges between them (the maximal occurs when all neigh-
bours of v are connected to each other in one step). The clustering coefficient CC(v) of the
vertex v is defined as the fraction of these allowable edges that actually exist:

CC(v) =
2|{(u,w) ∈ E : u,w ∈ Nv}|

kv(kv − 1)

The clustering coefficient CC(G) of the graph G is the average clustering coefficient over all
vertices:

CC(G) =
1

n

∑
v∈V

CC(v)

Many real-world networks have a small characteristic path length and a high clustering co-
efficient [405]; in other words they exhibit a so-called small-world effect [371].
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2.3.9 Automated analysis of time-oriented graphs

While several other metrics have been defined and are widely used for automated analysis of
static networks [5, 402], dynamic metrics are a relatively new research field. In recent years
several extension of existing static metrics to the dynamic case have been proposed, as well as a
few inherently dynamic ones.

The time-scale degree centrality has been defined as an extension of the static degree cen-
trality that takes into account both the presence and duration of links [375]. Lerman et al. [256]
introduce an attenuation factor to the link duration, and on this basis define a centrality metric
for dynamic networks. By modelling social interactions as temporal events and taking into ac-
count when they occur, Berger-Wolf and Saia [53] introduce a framework consisting in several
metrics for the analysis of dynamic social networks. Other approaches consider the time series
of static centrality metrics, measured over subsequent time windows (e.g. daily or monthly), and
compute basic statistics [63] [306].

In general, new metrics have been proposed for multidimensional (i.e., multivariate) net-
works, where the attributes of nodes and links chosen as dimensions are not necessarily refer-
ring to the time, but for example to the type of relation in multi-relational networks. Berligerio
et al. [54] extend the degree centrality from the monodimensional to the multidimensional case
and introduce new metrics, namely the dimension relevance, the dimension connectivity and the
dimension correlation. Brodka et al. [73] define a cross-layer degree, that is an aggregated node
centrality measure across the relations of a multi-relational network.

(a) The map sketched by Euler in 1736 to illustrate the
seven bridges of Königsberg problem [130]

(b) Euler’s problem as abstracted and
graphically represented by Ball in
1884 [38]

Figure 2.13: Two drawings of one of the most famous graphs

2.4 Historical graph visualization

The earliest publication on graph theory is Euler’s 1736 paper on the problem of the seven
bridges of Königsberg [130]; since then, a trail which visits every edge exactly once is known as
an Eulerian trail. Euler’s work is generally recognized [409] the foundational work establishing
graph theory as a new discipline (now considered a branch of combinatorics). Nevertheless,
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it did not establish graph drawing or graph visualization as well, since Euler only sketched a
map of Königsberg (Figure 2.13a) but did not draw any graph representaion of the problem,
which was treated in pure mathematical (i.e., non-graphical) terms. It was only in 1884 that
Ball [38] published a graphical representation of Euler’s problem (Figure 2.13b) in a book about
recreational mathematics.

Game and puzzle boards however are probably the earliest examples of graph drawings
appeared in human history. In merels boards (i.e., graphs on carved or painted boards to play
Morris or Mills games, dating back to the Roman empire, see Figure 2.14), vertices and edges
represent allowed positions and moves, respectively [52].

Figure 2.14: Graphs drawings on merels boards dating to Roman empire [52]

Graphs have been used since the Middle Ages to show relationships between logical propo-
sitions, philosophical principles, or concepts. Figure 2.15a shows two diagrams drawn by the
Catalan philosopher and writer Ramon Lull: the left-hand graph represents sixteen divine at-
tributes, the right-hand graph represents the seven virtues intertwined with the seven vices [408].

In modern times, graphs have been used to play games and puzzles like the aforementioned
Eulerian trail problem, or the analogous problem of finding a Hamiltonian path (i.e., a path
that traverses each vertex in a graph exactly once). A similar puzzle, which can be played on
a chess board, is the so-called knight’s tour, consisting in finding a legal sequence of knight’s
moves that passes on each square exactly once. This knight’s tour problem was first formulated
in mathematical terms by Euler in 1756, and then visually represented by a graph drawing by
Vandermonde in 1771 (see Figure 2.15b).

Besides recreational mathematics, graph diagrams have been extensively used in natural sci-
ence and engineering [245], for example to represent electric circuits (Figure 2.16a) and chemi-
cal structures (Figure 2.16b).

In 1934, the Austrian-American sociologist Jacob L. Moreno introduced graph drawings
to visualize social network. His so-called sociograms (Figure 2.17) are multi-modal, multi-
relational, mixed graph, where nodes represent persons (differentiated by gender), and edge
represent social relations, both directed (e.g., attraction, repulsion) and undirected (mutual at-
traction). Since then, graph drawings have been commonly used to analyze and visualize social
networks [50, 151, 402].
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(a) (b)

Figure 2.15: (a) Two graph drawings by Ramon Llull (1280) showing relationships between
concepts (from [408]) (b) The graph drawn in 1771 by Vandermonde [388] representing the
knight’s tour

(a) (b)

Figure 2.16: Graphs are used in natural sciences and engineering: (a) an electric circuit sketched
in 1845 by Kirchhoff [236]; (b) a molecule drawn in 1865 by Brown [75].
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Figure 2.17: Moreno’s sociogram [276], the first graph drawing representing a social network
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2.5 Graph visualization: surveys, taxonomies, design spaces

After the early approaches that have been developed to address specific problems in diverse
application domains, graph visualization has become a relevant research topic that has been sys-
tematically explored by specific disciplines, such as graph drawing and information visualiza-
tion. Di Battista et al. surveyed a large number of algorithms for graph drawing, i.e. “the visual
representation of graphs in the plane”, where “the vertices are represented by symbols such as
circles or boxes, and each edge is represented by a simple open curve between the symbols
associated with the vertices” [105]. Their annotated bibliography encompasses algorithms for
specific graph classes (e.g., free and rooted trees, planar graphs, directed acyclic graphs), as well
as specific graph standards such as polyline, straight-line, orthogonal or visibility representa-
tions. In a polyline, straight-line, or orthogonal drawing, each edge is represented by a polygonal
chain, a straight-line, or a chain of horizontal and vertical segments, respectively; in a visibility
representation, vertices are represented by horizontal segments and edges by vertical segments,
so that each edge-segment intersects exactly the vertex-segments associated with its end vertices,
and no other vertex-segment. Figure 2.18 shows an overview of algorithms for graph drawing.
Other surveys of graphs drawing algorithms appeeared more recently [107, 170, 237].

Figure 2.18: Algorithms for graph drawing (in [195], adapted from [281])
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Figure 2.19: Visual encodings for graphs according to Bertin [55]
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However, node-link diagrams (e.g., graph drawings where vertices are represented by sym-
bols and edges by a simple open curve between the symbols) are only one of many possible
visual encodings for graph data. Bertin [55] lists twenty-two visual encodings, which he divides
in network and diagrams. What Bertin calls networks are visual representation in which each
vertex and each edge is represented only once (e.g., node-link diagrams). Conversely, Bertin
defines a diagram as a visual representation in which each vertex is represented twice, as the two
ends of an edge; for example, matrices and parallel alignments (also known as bipartite layouts,
to not be confused with bipartite graphs). Bertin categorizes networks in terms of his semiology
of graphics (Figure 2.19), by distinguishing between planar variables (namely, implantation and
imposition) and retinal variables. Implantations are classes of geometrical primitives: points,
lines, and areas. Impositions are arrangements of these geometrical primitives in the space, i.e.,
types of layout. Retinal variables are six additional features of implantations, such as size, hue,
saturation, shape, orientation, and texture. According to implantations, Bertin distinguishes four
types of graphics for graphs: points represent vertices and lines represent edges, point repre-
sent edges and lines represent vertices, lines represent edges (and vertices are not visualized
explicitly), areas represent both edges and vertices. As for impositions, Bertin distinguishes:
rectilinear, circular, irregular, regular, and perspective drawings. It is also worth noting that not
implantations are well suited for all graphs, and some are specifically designed for graph sun-
classes; area inclusions (also known as containment, or space-filling techniques), for example,
are commonly used for visualizing hierarchies and other tree structures.

Herman et al. [195] survey graph visualization and navigation in information visualization.
Beside encompassing a larger spectrum of visual encodings than node-link diagrams only, their
survey emphasizes interaction as a core component of information visualization, comprehending
techniques such as zoom and pan, focus+context, incremental exploration, and clustering.

Treevis.net [342] focuses on information visualization techniques tailored for trees and char-
acterizes them along three axis: the layout dimensionality (2D, 3D, and hybrid), the node align-
ment (free, radial, axis-parallel), and the edge encoding. The latter can be explicit (i.e., each
edge is represented by an open curve) or implicit. Schulz et al. [343] explore in detail the design
space of implicit tree visualization and identify three types of representation, namely implicit
layout by inclusion, implicit layout by adjacency, and implicit layout by overlap.

The survey by von Landesberger et al. [397] lists techniques for visual analysis of large
graphs and describes how they address scalability; they report not only about visual graph rep-
resentation and user interaction, but also about automated graph analysis and the seamless inte-
gration of these three different components according to the visual analytics paradigm.

Kerracher et al. [231] map the design space of temporal graph visualization along two axes:
structural encoding and temporal encoding. Beck et al. [46] utilize the same dimensions (re-
named as time and paradigm, respectively) to survey techniques for visualizing dynamic net-
works and categorize them into a hierarchical taxonomy. Zaidi et al. [425] provide a short
overview about analysis and visualization of dynamic networks. Hadlak et al. [184] survey tech-
niques for multi-faceted visualization, i.e., techniques that are capable of visualizing at once
different facets of graph-structured data, such as structure, partitions, attributes, temporal con-
text, and spatial context. Vehlow et al. [390] report on the state of the art of visualizing group
structures in graphs. Visualization of multivariate networks is discussed in [233].
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2.6 Visual encodings for graphs

In Section 2.5 we have briefly mentioned the wealth of different options for visual encodings
of graphs, as explored by Bertin [55]. Nevertheless, if we focus on approaches that are suitable
for general graphs (i.e., excluding specific approaches for trees and other graph subclasses), we
can distinguish four main categories: node-link diagrams, matrix-based representations, hybrid
representations, and other encodings (Figure 2.20).

(a) Node-link (b) Matrix-based (c) Hybrid (d) Other

Figure 2.20: Visual encodings for static (non-temporal) general graphs

2.6.1 Node-link diagrams

A node-link diagram is a visual encoding of a graph where vertices are represented by nodes
(i.e., points or, better, finite-dimension symbols) and edges are represented by lines (Figure 2.20a).
As we have discussed in the previous sections, node-link diagrams are likely the oldest and most
common visual encoding for graphs; a node-link diagram is often referred to just as a graph
drawing, or even simply a graph. However, in the rest of this work, we will keep to use the word
graph to refer to the data structure, and the word node-link diagram to refer to this specific type
of visual encoding. All figures in Section 2.1, as well as Figures 2.13b, 2.14, 2.15a, 2.15b, 2.16a,
2.16b, and 2.17 feature different variations of a node-link diagram. As mentioned in Section 2.5,
nodes can be rendered with different retinal proporties, to represent vertex attributes, as well as
vertex-centric measures (Figure 2.21).

Figure 2.21: A node-link diagram colored according to vertex betweenness centrality [297]
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Figure 2.22: Different types of encodings for directed edges in node-link diagrams [200]

(a) Line charts [61]

(b) Bar charts [100]

(c) Polar area charts [271]

Figure 2.23: Multivariate vertex attributes encoded into node-sized diagrams
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Furthermore, multivariate data attributes can be visually represented by glyphs or small di-
agrams, such as line charts (Figure 2.23a), bar charts (Figure 2.23b), or polar area charts (Fig-
ure 2.23c). As well as for vertices, there are different possibility for the visual encoding of
edges, according to different standards (see also Section 2.5). In graphs with directed edges,
in particular, the direction of edges can be represented in several ways. While an arrow shape
(featuring an arrow head, an arrow tail, or both) can be considered as the classic representation
of a directed edge, alternatives include hue, brightness, curvature, taper, animation, glyphs, as
well as several combinations thereof (Figure 2.22).

Besides the choice of the more appropriate visual representation of edges and vertices, two
main problems to be addressed in designing node-link diagrams are layout and scalability.

Figure 2.24: Ranking of visual variables according to perceptual accuracy [265]

2.6.1.1 Layout

Given a graph, the layout problem consists in assigning positions to its vertices in order to
obtain a node-link representation that fulfils specific criteria. This problem is very relevant be-
cause position is the visual variable that is perceived with the greatest accuracy. Bertin [55]
theorized that position is better suited than his other visual (retinal) variables for encoding all
data types (i.e., quantitative, ordinal, and nominal). Cleveland and McGill [96], on the basis
of their experimentation with various graph forms, existing psychophysical results, and the the-
ory of psychophysics, hypothesized that position is perceived with more accuracy than length,
direction, angle, area, volume, curvature, shading, and color. In particular, by two empirical
they provided empirical evidence that human subjects perceive position more accurately than
length and angle. Mackinlay [265], building upon existing psychophysical results and analysis
of perceptual tasks, extended the rankings by including additional perceptual tasks (e.g., tex-
ture), and observed that position is still the most accurate (see Figure 2.24). Therefore, we can
certainly state that position of nodes in a node-link diagram is a key factor and affects the overall
visualization quality.
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The majority of layouts assign position on a plane, e.g. a two-dimensional space. Nev-
erthless, the simplest layout is the rectilinear layout, and it is a one-dimensional layout, where
nodes are positioned along a line. Node-link diagrams with a rectilinear layout and curved links
(arcs) are known as arc diagrams [403] (Figure 2.25c). An arc diagram is well suited for both
directed and undirected graphs. For directed graphs, top and bottom arcs can represent the di-
rection (e.g., top arcs represent forward arcs); for undirected graphs, upward concave arcs and
downward concave arcs can represent two types of undirected edges. The nodes can be sorted
along the line according to a their sequence order (e.g., characters in a string, or notes in a music
passage), or any other ordinal attribute.

In a radial layout, nodes are positioned along a circle, and links are drawn inside the
disc [422]. The position of nodes along the circle can be determined randomly, or according
to an additional vertex attribute; in Figure 2.25a, for example, the nodes are grouped along cir-
cular arcs according to a hierarchy. A particular radial layout can be used for layered graphs,
i.e. graphs where the set of node is divided in ordered partitions. The node are positioned along
concentric circles, according to their layer number (Figure 2.25b).

(a) A layered radial layout [422] (b) A hierarchical radial layout [200]

(c) A rectilinear layout (arc dia-
gram) [403]

Figure 2.25: Different layouts for node-link diagrams
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(a) Geographic map [74]

(b) Scatter plot [298] (c) Semantic substrates [352]

Figure 2.26: Layouts exploiting inherent spatial information (a), or direct spatial encoding of
quantitative values and vertex-centric network measures (b,c)

Figure 2.27: In GraphDice, multiple graph measures and attributes are shown by node-link
diagrams arranged in a scatter plot layout [58]
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Figure 2.28: In HivePlos, vertex measures and attributes are used to arrange nodes in a parallel
coordinates plot with polar coordinates [246]

Special cases of layout occur when vertices have an inherent spatial information that can be
used to determine node positions. In a geographic layout, nodes are displaced on a map accord-
ing to their geographic location [74] (Figure 2.26a). Quantitative variables associated to vertices,
as well as vertex-centric network measures, can be also used to compute specific layouts, such
as scatter plots [298] (Figure 2.26b) or semantic substrates [352] (Figure 2.26c). Bezerianos
et al. [58] even state that node-link diagrams can be seen as extensions of scatter plots where
data points are connected with links; their GraphDice visualization (Figure 2.27) shows several
link-extended scatter plots, each encoding two different network measures. HivePlot [246] uti-
lizes vertex attributes to position the nodes in a parallel coordinates plot with polar coordinates
(Figure 2.28).

However, the most interesting layout problem applies to graphs whose vertices do not have
any inherent spatial information; therefore, there is the need to find a convenient spatialization
of the graph, i.e. assigning spatial positions to its vertices. In such cases, the layout can be
computed in order to convey information about the relational structure of abstract data. For
example, many layouts arrange into the same spatial region those nodes which are connected
to each other. This kind of layout exploit the law of prägnanz, which is the fundamental law
of gestalt perception [361]. In particular, it exploits the principle of grouping by proximity, by
which objects which stand near to each other are visually perceived as being connected or form-
ing a group [294]. However, common graph layouts also exploit other grouping principles [239],
such as similarity (objects of similar shape or color), continuation (objects forming a continuous
pattern), and symmetry (objects forming symmetric patterns).

On a more general level, several criteria have been formulated for drawing better graphs
and/or computing better layouts. They are referred to as layout or graph drawing aesthetics.
Di Battista et al. [105] state that the fundamental and classical aesthetic is the minimization of
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crossings between edges, while the display of symmetries is desirable; however, they note that
other criteria depend not only on the graph class of interest and the adopted drawing standard,
but also on personal preferences, traditions, and cultures.

Purchase et al. [315] mention symmetry, edge-rossing minimization, and edge bending min-
imization, while Ware et al. [401] list as factors path continuity, number of crossings, average
crossing angles, total geometric line length; however, both Puchase et al. [315] and Ware et
al. [401] have disputed these criteria, and have conducted experiments to empirically validate
their importance and evaluate their cognitive cost (see Section 2.10).

Coleman and Parker [97] distinguish between syntactic aesthetics and semantic aesthetics;
the former involve basic visual principles and the structure of the graph, the latter involve the
meaning (i.e., additional attributes) of graph elements. They elicit a long list of rules: “nodes
should not be too close together; nodes should not be too far apart; edge lengths should be short;
edge lengths should not be too short; edge lengths should be uniform; edge crossings should be
avoided; the angle between incident edges should not be too small; nodes should not be too close
to edges; nodes should be within a bounding box; nodes should be near the center of a bounding
box; nodes should be distributed evenly within a bounding box; the width of the layout should
be minimized; inherent symmetry should be reflected by a layout.” [97, p.1418]

Bennet et al. [51] survey graph visualization heuristics and distinguish three classes: node
placement heuristics, edge placement heuristic, and overall layout heuristics. They list, as node
placement heuristics: distributing nodes evenly, minimizing node overlaps, clustering related
nodes, keeping nodes from coming too close to edges, and maximizing node orthogonality; as
edge placement heuristics: minimizing edge crossings, minimizing edge bends, keeping edge
bends uniform, minimizing edge length, keeping edge length uniform, maximizing minimum
edge angle, and maximizing edge orthogonality; as overall layout heuristics: maximizing global
symmetry, maximizing local symmetry of sub-graphs, minimizing total graph area, maximizing
convex faces.

The problem of finding a graph spatialization which fulfils aesthetics criteria can be ad-
dressed by energy-based approaches. An energy-based approach basically models a graph as a
physical system: vertices are modelled as particles and edges as physical interactions between
particles. An energy function is then associated to the system, trying to capture some of the aes-
thetics criteria. Therefore, the problem of finding the best layout is translated into the problem
of finding the configuration of the system which minimizes the energy function. An energy-
based approach, therefore, consists of two components: of an energy model representing the
system, and an optimization algorithm aiming at finding the desired system configuration. The
algorithms are usually iterative, i.e. they find the energy minimum by generating a sequence of
improving approximations (Figure 2.29).

The first energy-based approach can be considered the barycentric layout proposed by
Tutte [374] for 3-connected planar graph; it was not described as energy-based by the author,
but it is commonly understood as such [105]. The barycentric approach places each node in the
center of mass (weighted centroid) of its adjacent nodes, and fulfils the most relevant aesthetics
criterion for planar graphs by guaranteeing no edge crossings.

Energy-based approaches can be also referred to as force-directed: the physical system is
described in terms of forces between particles, and the optimization algorithm aims at finding the
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Figure 2.29: A graph drawing through a number of iterations of a force-directed algorithm [317]

Figure 2.30: The spring embedder is a force-directed approach by which vertices are modeled
as particles and edges as springs: the layout algorithms aim at the equilibrium of forces [238]

condition where all forces are balanced. In other words, the layout problem is translated into a
so-called n-body simulation. Force models are just alternative representation of energy models,
since force can be understood as the negative gradient of energy and, therefore, an equilibrium
of forces is a local minimum of energy. [287]

The classical force-directed layout is the one proposed by Eades [116]: vertices are mod-
elled as physical particles having an electric charge (then repelling each other), and edges are
modelled as elastic springs (Figure 2.30). The optimal layout is obtained at the equilibrium of
electric and elastic forces.

Differently from the barycentric layout, which has been proven to guarantee no edge cross-
ings, force-directed layouts are considered well-suited to address the aesthetics criteria, but a
formal prove of these fulfilments has been provided in limited cases. Noack [288], for exam-
ple, observes that layouts with optimal energy are a relaxation of the concept of clustering with
optimal modularity; therefore, they can be understood as placing connected nodes close to each
other, according to the proximity principle.
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Since their introduction, force-directed layouts have been improved in order to tackle the
scalability issue, by pursuing three directions [42]: multiscaling, faster approximations, and
better energy models.

Multiscaling methods (also knows as multilevel methods) aim at computing the layout of
large graphs by subsequent levels of detail [187, 398]. At first, the graph is coarsened by col-
lapsing a set of vertices from one level into one representative vertices in the next level; then, the
layouts of all levels are computed, from the coarser levels to the finer ones. In other words, mul-
tiscaling approaches compute first an approximate layout of the entire graph which preserves
the global structure, and then perform local detailed improvements. These approaches some-
times are also referred to as graph coarsening, even though coarsening is only the first phase of
multiscaling.

Another approach to speed up the computation of a layout for large graphs consists in stop-
ping an iterative force-directed algorithm when it has not yet reached the optimum, but is suf-
ficiently close. Fruchterman and Reingold extended the analogy with physical systems by in-
troducing the notion of layout temperature: when the system is hot, the particles move faster,
when the system is cold, the particles move slower or stop. In the Fruchterman-Reingold layout,
therefore, the approximation is controlled by this temperature heuristic [160].

A problem of energy-based algorithms is that the optimization can converge in a local mini-
mum of the energy function (corresponding to an unstable equilibrium of forces). In interactive
environments, this unintended deadlock can be solved by the user, who can directly manipu-
late the layout, for example by dragging a node to untangle it. However, several algorithms
try to escape the local minimum by utilizing temperature-related paradigms, such as simulated
annealing [104] or adaptive cooling [204].

Another class of layout algorithms aim at faster approximation by hierarchical space de-
composition. In the Barnes-Hut algorithm [41], the three-dimensional space of the n-body
simulation is hierarchically partitioned into cubes (managed by octree data structures); given a
particle, forces exerted by particles in nearby cubes are computed individually, while particles
in distant cubes are approximated by their centers of mass. Another hierarchical space decom-
position method exploits a similar principle and utilizes quadtrees [317].

Spectral drawing denotes a class of layout algorithms which use the eigenvalues and the
eigenvectors of the adjacency matrix, or derived matrices (e.g., the Laplacian matrix, which can
be understood as the adjacency matrix with the addition of node degrees into the main diagonal).
Therefore, such methods they are also known as eigen-projection methods. Different choices of
matrices and eigenvectors lead to optimizations according to different aesthetic criteria. In the
approach by Koren [243], for example, the energy function corresponds to the barycentric layout,
but the algorithm can directly compute the global minimum.

Besides optimization algorithms, different energy models have been also explored to obtain
better layouts. Noack [288] observes that many force-directed approaches have attraction and
repulsion forces, and these forces are often proportional to a certain power of the distance.
Therefore, all attraction-repulsion models can be described by an (a, r) notation, where a and
r are the exponents of the distance. Several combinations are possible, given the condition
a > r to avoid an indefinite growth of the layout area. For example, since the spring force is
proportional to the distance and the electric force is proportional to the square of the distance,
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Figure 2.31: A generalized force-directed method for non-Euclidean geometries [238]

Figure 2.32: A three-dimensional hyperbolic layout [279]

the afoementioned spring-electric model can be described as (1, 2). Fruchterman and Reingold
use an energy model than can be descibed as (2,−1), Davidson and Harel as (1,−3), the linlog
layout [287] as (0,−1).

Kamada and Kawai [223] introduce a force-directed model featuring only springs: each pair
of vertices is modelled as a spring, whose rest length is proportional to the length of the shortest
path between the two vertices. In this way, at the minimum-energy the euclidean distances be-
tween nodes in the layout space are an approximation of the geodesic distances between vertices.
A similar paradigm is adopted by stress minimization approaches, where the energy function is
a stress function, defined as the sum of the squared differences between the euclidean distance
and a weighted measure between pair of vertices. The optimization algorithm, therefore, aims at
minimizing the stress. This problem can be understood as an application to graph layout of the
more general problem of metric multidimensional scaling (MDS). Multidimensional scaling
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is a technique used to project points of a n-dimensional space onto a k-dimensional space (with
k << n, usually k = 2, i.e. a two-dimensional computer screen), aiming at preseving clusters.
A graph with n nodes admits a n-dimensional representation, where each vertex is represented
by a vector with n elements (e.g., a row of the adjacency matrix, or the vector of geodesic dis-
tances from all other vertices). Therefore, a stress-minimization layout can be computed by a
metric MDS algorithm such as, for example, the stress majorization algorithm [166].

With a further advancement, one can think of approximating the geodesic distance not by
euclidean distances, but rather by non-euclidean distances, thus projecting the graph into an
hyperbolic space or into a elliptic (e.g., spherical) space. Kobourov and Wampler [240] describe
a generalized force-directed method for graph layout in Riemannian geometries (Figure 2.31.
The H3 system [279] features a three-dimensional hyperbolic layout (Figure 2.32).

Other techniques for multidimensional scaling make use of artificial neural network and
produce a spatialization of data known as Kohonen map, or self-organinzing map [241].

2.6.1.2 Visual scalability

All the aforementioned approaches, and their combinations (e.g., multiscaling and spatial ap-
proximation [181]), enable efficient computation of layout for large graphs. Nevertheless, an-
other problem to be addressed is the visual scalability, in order to avoid the so-called hair-
balls, i.e. graph drawings where visual clutter hinders conveying of information and gaining
of insights. A cheap solution might be the deletion of all nodes or, alternatively, of all links.
Hurst [212] proposes a visualization of the so-called blogosphere (a graph whose vertices are
weblogs, and edges are weblinks between them); he states that by showing only the links (Fig-
ure 2.33a, we can get a far better look at the structure than if we include all the nodes. On the
contrary, the internet map project [126] exploits links to compute a force-directed layout, but
then shows nodes only (Figure 2.33b).

(a) The blogosphere map, an example of a
graph diagram with links only [212]

(b) The Internet map, an example of a graph
diagram with nodes only [126]

Figure 2.33: Link-only / node-only diagrams
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While the choice of showing nodes only, or edges only, might be arbitrary, and its results
arguable, there are more sophisticated methods, with clear rationales, for reducing the visual
complexity. They have been classified [344] according to the reduction mechanism (e.g., aggre-
gation, pruning), the network elements they reduce (node/vertices or edge/links), or the part of
the visualization pipeline they operate onto (data, geometry, or image).

Hierarchical clustering is a reduction technique commonly used to reduce vertices/nodes
by aggregation, at both the data level and the geometry level. At the data level it identifies
sets of vertices (by similarity, or by topological proximity) and collapses them into aggregate
representatives in a pre-processing step (Figure 2.35). At the data level, the identification and
collapsing of clusters can be computed in parallel with the layout algorithm, and can also be
interactively controlled by the user (Figure 2.34).

Figure 2.34: Multiple graph hierarchies superimposed on the same graph. [21]

Figure 2.35: An illustration of the concept of hierarchical clustering [117] (in [173])
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Several approaches addressing edge scalability rely on pruning at the data level: they aim at
deleting edges while preserving the overall structure of the graph. A classical example is edge
simplification based on the minimum spanning tree. Given a graph G, a spanning tree S can
be understood as a tree which is a subgraph of G (i.e., all edges of S are edges of G) and that
spans the entire graph (i.e., all vertices of G are vertices of S). A minimum spanning tree is the
spanning tree with the minimum length. However, the minimum spanning tree can lead to an
excessive lost of information, since a graph withN vertices, having a maximum ofN × (N −1)
edges, has a minimum spanning tree with only N − 1 edges.

Figure 2.36: Three node-link diagrams of the same graph with different link-reduction ap-
proaches: nodes only (left), minimum spanning tree (middle), pathfinder network (right) [93]

Figure 2.37: Link reduction of four graphs by minimim spanning trees and betweeneess [385]
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The pathfinder network is a generalization of the minimum spanning tree, where the ex-
tent of reduction can be reduced by two parameters r and q. The r parameter is the order of
the Minkowski distance, a generalization of the Euclidean distance; the q parameter can be un-
derstood as the number of steps which are considered in generating the network. The minimal
pathfinder network has r = −1 and q = N − 1, and contains the edges of all spanning trees.
Figure 2.36 shows three visualizations of a network with 367 vertices and 61,175 edges [93]; on
the left-hand side, a node-only diagram with a multidimensional scaling layout; in the middle, a
minimum spanning tree showing 366 links with a force-directed layout; on the right-hand side,
a pathfinder network showing 398 links with a force-directed layout, with cycles highlighted by
red circles. Other approaches use different graph-theoretic measures for identifying links that
can be deleted while preserving the structure, for example edge betweenness [385] (Figure 2.37).

Edge bundling algorithms [430] reduce edges at the geometry level by aggregation. Some
bundling approaches are based on the minimization of a cost function: the ink-minimization al-
gorithm [165] aims at optimizing area utilization by minimizing total edge length (Figure 2.38a),
while the energy-minimization approach [201] is similar to a force-directed layout algorithm, but
forces are also applied to links (Figure 2.38c). Other approaches exploit additional information:
hierarchical bundling [199] exploits a hierarchical partition of vertices (Figure 2.38b), while
divided bundling [347] identifies different routes depending on edge direction (Figure 2.38d).

The visual scalability can be also addressed at the image level, by optimizing the rendering
algorithms to enhance graph readability. Splatting techniques (Figure 2.39) render graphs as
vector fields and can be applied to either vertices [386] or edges [76, 83].

(a) Ink minimization [165] (b) Hierarchical [199]

(c) Energy minimization [201] (d) Divided [347]

Figure 2.38: Different approaches to edge bundling
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(a) Graph splatting [386] (b) Edge splatting,
bipatite layout [83]

(c) Edge splatting, radial layout [76]

Figure 2.39: Different approaches to splatting

2.6.2 Matrix-based

As an alternative to node-link diagrams, graphs can also be visualized by matrix-based tech-
niques. These approaches build upon adjacency matrix representation (Figure 2.10), and usually
visualize the presence of an edge, or its weight, by the cell color (Figure 2.20b). Since vertices
are implicitly encoded in row and columns headers, but are not directly visualized, sometimes
matrix-based techniques are also referred to as link-oriented approaches. Figure 2.42 shows a
weighted digraph with 50 nodes as a matrix. Analogously to node-link diagrams, matrices can
be reordered to show clusters and other possible features (Figure 2.41). Moreover, they can be
aggregated at different levels of detail to ensure scalability (Figures 2.40 and 2.43).

Figure 2.40: A matrix-based visualization at two levels of aggregation [121]
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Figure 2.41: An adjacecy matrix and its visualization with different reorderings [49]

Figure 2.42: A matrix-based visualization [3] Figure 2.43: A clustered matrix [383]

2.6.3 Hybrid visualizations

Hybrid approaches try to combine benefits of node-link diagrams and matrix-based visualiza-
tions while avoiding shortcomings (for a discussion of these benefits and shortcomings, see
Section 2.10).

MatrixExplorer uses both paradigms, by putting a node-link and a matrix side by side as
coordinated views [192]. A tighter level of integration results in two other techniques: Matlink
[193] is a matrix-based visualization complementd by two arc diagams (Figure 2.44b), while
Nodetrix [194] is a visualization where intra-cluster relations are shown as matrices and inter-
cluster relations as links (Figure 2.44c). TreeMatrix [333] combines adjacency matrices, node-
link diagrams, and arc diagrams to visualize compound graphs.
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(a) MatrixExplorer [192]

(b) MatLink [192] (c) Nodetrix [192]

Figure 2.44: Hybrid visualizations

2.6.4 Other visualization

Other visualization techniques for graphs include measure-based visualization and space-filling
(or area) visual representation.

2.6.4.1 Measure-based visualization

We have already discussed how graph-theoretic measured can be used to enhance graph visual-
ization; in particular, we have seen how vertex-centric measures can be used to compute layouts
of node-link diagrams, e.g., by arranging nodes in a scatter plot (Figure 2.26b). However, vertex-
centric measures and their distribution can be used to get alternative visual encodings, besides
node-link diagrams and adjacency matrices. Bagrow et al. [36], for example, introduce the B
matrix, whose element B(l, k) is defined as the number of nodes from which exactly k nodes
are reachable in l steps. Since B(1, k) corresponds to the degree distribution, rows of the B-
matrix can be understood as generalizations of the degree distribution. Therefore, the B-matrix
can capture graph properties beyond degree distribution, such as small-world characteristics of
real networks (Figure 2.45). GraphPrism [222] utilizes further generalizations of a B-matrix,
comprehending l-distributions of other vertex-centric measures besides degree (Figure 2.46).
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Figure 2.45: Four networks visualized by B-matrix [36]

Figure 2.46: GraphPrism is a generalization of a B-matrix [222]

2.6.4.2 Space-filling

Space-filling visual encodings are those encodings which use area as the main geometric primi-
tive, instead of points and lines. They are commonly used to visualize tree and hierarchies (e.g.,
tree maps [221], see also [342]), and in this case are especially referred to as containment map:
child elements are represented by areas contained inside the parent area. However, space-filling
encoding, also referred to as maps, can be also used to visualize graphs: in this case, adjacent
areas represent adjacent nodes or adjacent clusters [205] (Figure 2.47).

Figure 2.47: GMap is a space-filling encoding to visualize a graph as a map [205]
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2.7 Visual encodings for temporal graphs

The problem of visual representation of temporal graphs can be seen as a particular case of the
problem of visual representation of time-oriented data, i.e., the choice of a proper encoding of
the temporal dimension. There are two main options for mapping time [14]: mapping time
to time, and mapping time to space. The former means that the temporal aspect of data is
mapped to physical time, thus obtaining a visual representation that changes over time to reflect
changes in the data; in other words, mapping time to time leads to dynamic representations,
such as animations or slide shows (Figure 2.48a). Conversely, mapping time to space leads to
static representations (Figure 2.48b), where both temporal and non-temporal data aspects are
mapped to visual variables, both geometrical (i.e., lines, points, areas, and their positions) and
retinal (e.g., color). It is worth noting that in this context the distinction between static and
dynamic representations is not related to interaction: both static and dynamic representations
support interactive, user-controlled visualization.

(a) Dynamic representation: Mapping time to time (b) Static representation:
Mapping time to space

Figure 2.48: Visual representation of temporal graphs

An important design aspect for visualization of temporal graphs is the scope of the time
domain, which can be point-based or temporal-based (see Section 2.1.1). Point-based time do-
mains can be seen in analogy to geometric points in space, i.e., having an extent equal to zero.
Conversely, interval-based time domains relate to subsections of time having a temporal extent
greater than zero. In a temporal graph, vertices and edges can be represented as events in a cer-
tain time-domain, either point-based or interval-based. However, a temporal graph is generally
acquired from a set of events by a process called time slicing [50]. Depending on whether the
duration of the time slices is finite or null, we distinguish interval slicing from instant slicing,
respectively. The sliding process is also necessary to describe a network at any specific point
in time: in an instant-based domain, for example, slicing by intervals is necessary to build a
non-null network (Figure 2.49b). Moreover, time slicing can be seen as way to transform one
time scope into the other, by aggregation (slicing time points by intervals, Figure 2.49d) or by
sampling (slicing time intervals by instants, with so-called snapshots as outcome, Figure 2.49c).
Additional aggregation over time can be performed to abstract the temporal information up to
the intended level of detail, or time granularity. The aggregation can be also performed upon
the graph structure, for example by simply collapsing compound graphs, or by clustering and
coarsening general graphs; this operation is also referred to as graph granulation [360]. Time
granulation or graph granulation enable a lossy reduction of one type of information, endowing
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a better visual encoding of the other one.

(a) Interval-based domain, no slicing (b) Point-based domain, slicing by instant

(c) Interval-based domain, slicing by instants (d) Point-based domain, slicing by interval

Figure 2.49: Time scope and time slicing (adapted from [50])

2.7.1 Dynamic representations: Mapping time to time

In dynamic representations, since temporal aspects of data are directly mapped to physical time,
to a certain extent there is no need to design specific visual encodings: encodings used for static
graphs are animated or shown in sequence, in a flip book or slide show fashion. The parameters
of the mapping between the domain time in the data and the users’ physical time (e.g., animation
speed, animation starting and stopping) can be controlled by users by the appropriate interaction
techniques (see also Section 2.8).

Traditionally, graph drawing algorithms are categorized as online, or offline, if the dataset
bears a dependency from internal time, or external time, respectively (see Section 2.1.1). How-
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ever, besides an increased algorithmic difficulty of the online case (since the entire sequence in
not known in advance, and the layout has to react to new data in real-time [159, 189, 207]), this
distinction does not affect the visual encoding.

In general, in a flip-book or slide-show animation, data is visualized in sequence: when new
data is shown, old data disappears. However, especially in the case of node-link diagrams, many
approaches recur to morphing: intermediate interpolations are computed to generate smooth
animated transitions.

Figure 2.50: A staged animation of a matrix-based dynamic representation [334]

Figure 2.51: Staged transitions with differential highliting [34]

Figure 2.52: Ageing of graph elements [174]

Most of dynamic representations, since the classical examples by Eades [118] and Friederich [154–
156], are based on node-link diagrams (Figures 2.51 and 2.52), but some approaches also use ad-
jacency lists [84,85], area-based encodings [124,148,163,164,206,258,267], and matrix-based
encodings [84, 85, 132, 263, 316, 334] (Figure 2.50).

In some cases, the graph structure is fixed and the animation shows only changes of the
attributes by changing retinal properties of the visualization [392]. In other cases, the vertices
are stable, and edges appear or disappear during the animation [338]. In the more general case,
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the entire graph structure changes over time, and changes are reflected by a rearrangement of
the layout, which can be radial [291, 292], orthogonal [172], energy-based [108, 109, 248, 254,
289, 305, 395], hyperbolical [89], or spectral [65]. Nesbitt et al. [282] propose an optimization
of the dynamic layout problem by Gestalt principles. Frishman & Tal propose a dynamic layout
for clustered graphs [157, 158]. Other approaches address the scale and reduce the graph by
aggregation (dynamic edge bundling [213]) or filtering [176].

Some authors threat the problem of the visualization stability, or the preservation of the
user’s mental map, in the context of dynamic representations. However, since the mental map
problem affects both static and dynamic representations, we will discuss it in Section 2.10).
Indeed, there are other strategies to deal with temporal aspects in both static and dynamic repre-
sentations; a retinal variable, for example, can be used to emphasize those graph elements there
are added or removed (difference highlighting [6, 19, 34, 70, 71, 263, 332], see Figure 2.51) or,
alternatively, to deemphasize the ones remaining stable (ageing [98,174,327], see Figure 2.52).

However, further optimization techniques have been proposed to improve the perception of
dynamic representation, such as staged animations. In a staged animation, changes are divided
into steps by type and these steps are reproduced in a given order (e.g., deletions first, then layout
rearranging, lastly additions). They have been applied to node-link diagrams [34, 320, 331, 332]
as well as matrix-based visualization [334] (Figure 2.50).

2.7.2 Static representations: Mapping time to space

In static representations, temporal aspects of data as well non-temporal ones are mapped to
visual variables, both planar (e.g., geometrical primitives and their position) and retinal (e.g.,
color, texture). However, the essential nature of a visual mapping is mainly determined by the
choice of planar variables (see also Section 2.6.1.1). Therefore, we can categorize static rep-
resentations of temporal graphs according to the data aspect (either temporal or non-temporal)
which is mapped to planar variables and determines the main visualization geometry, while the
other one is mapped to a secondary geometry or to retinal variables (e.g., color). In particular
(Figure 2.53), we distinguish amongst: time within structure, structure within time, and merged
representations.

2.7.2.1 Time within structure

In this type of visualization, the relational information (the graph structure) is mapped to the
main geometry, and then time is visually encoded, either by a secondary geometry, or by retinal
variables.

Secondary geometry. When time is mapped to the secondary geometry, it is usually visualized
as a timeline, arranged along one of the chartesian axes. The secondary visualization can be
made smaller and nested within elements of the main geometry. Sparklines [373] are a common
choice, both in the line chart and in the bar chart version, but other glyphs are also used, for
example Gestaltlines [69].
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(a) Time within structure (b) Structure within time

(c) Merged

Figure 2.53: Different types of static representations

When temporal information is associated with edges and the main geometry is an adjacency
matrix, we can have visualizations featuring timelines nested inside matrix cells [69, 82, 424]
(Figure 2.54a).

Alternatively, if the temporal information is associated with vertices and the main geometry
is a node-link diagram, a timeline-based visualization can be visualized inside each node, for
example a line chart [61, 183, 339, 357, 376] (Figure 2.23a), an area chart [362] (Figure 2.54b)),
or a bar chart [262, 406]. Liu et al. [259] propose a space-filling visualization, where the graph
structure is visualized by adjacent regions in a self-organizing map and the temporal information
by concentric containments within each region.

If the temporal information is associated with edges, it can be visualized along each link;
Schmauder et al. [340], for example, diveide each link into line segments and only show those
segments which correspond to time slices when the edge was present. If temporal information
is associated with all graph elements, then timelines can be visualized both around nodes and
along edges [242] (Figure 2.55).

It is worth noticing that, even if a Cartesian coordinate is a common choice for visualizing
a timeline, there are also node-link diagrams with circular glyphs, where time is mapped to the
angular coordinate [242] or the radial coordinate [125, 295].

The levels of geometric mapping can be more than two, like for example in Tarameshloo et
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(a) (b)

Figure 2.54: (a) A Gestaltmatrix of temporal asymmetric relations: each cell contains line seg-
ments arranged along a vertical timeline; segment slopes represent relative weights of reciprocal
edges [69] (b) a node-link diagram with nested line charts: temporal information associated to
each node is visualized along a horizontal timeline inside the node [362]

Figure 2.55: Glidgets are interative glyphs showing temporal information (presence) around
each node and along each link in a node-link diagram [242]

al. [364] (Figure 2.56): the main geometry is an arc diagram; then, a timeline is associated as a
secondary geometry to each node in the arc diagram; finally, at the third level, small node-link
diagrams arranged along the timelines represent ego networks of a given node at a given time.
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Figure 2.56: A visualization with three levels of geometry, altrnating between structural and
temporal information: node-link diagrams, timelines, and arc diagrams [364]

Figure 2.57: Temporal information (specifally, age) associated to vertices and edges is visualized
by two retinal variables (hue and brightness) [10]

Retinal variables. When the graph structure is first mapped into geometrical variables, tempo-
ral information can be mapped to retinal variables, along a timeline or as an average aggregate.

In node-link diagrams, lifeline-likes visualizations (where temporal information is visually
encoded as color along a timeline [304]) can be nested within nodes [339,407] and/or links [319].
In Citespace II [91] each node is divided into rings: the color of each rings represents a time slice,
the size of the ring represents the vertex-centric measures computed in that time slice.

If the analysis tasks involve calendars or varying time granularities, then more complex
timeline arrangements might be needed, like in pixel-based visualizations, leading to a time
matrix nested within each node of a node-link diagram [357], or within each cell of an adjacency
matrix [290, 358].
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Elements of a node-link diagram can be also colored according to the metaphor of age-
ing, which we already discussed with regard to animation (Section 2.7.1), but is also applied
to static visualization: usually older vertices are shown with lesser emphasis (for example, less
saturation, or a fainter color [128]). Multi-hue sequential color scales are also used to visual-
ize the ageing of edges [235], vertices [15, 257], or both [10] (Figure 2.57). Besides ageing,
retinal variables can be used to visualize summaries of other temporal attributes, such as time
averages [376, 407], differences [249], or temporal patterns of centrality measures [410].

2.7.2.2 Merged

We define merged visualization a visualization where one planar variable is used for temporal
information and another one is used for structural information in a balanced fashion, i.e. without
any visual prevalence of the one on the other. We distinguish two cases: time is mapped to
geometry either by imposition (e.g., a time axis) or implantation (i.e., time as a graph element).

Time as a spatial coordinate (Time imposition) If temporal information is associated with
vertices only, a common approach consists in a node-link diagram with a constrained layout:
one spatial coordinate is assigned to nodes according to a time axis, the other one is computed
by the layout algorithm. Common examples of this timeline-constrained layouts are so-called
historiographs [167] and similar techniques to visualize citation networks [268, 382] (see also
Figures 2.26c and 2.27). Dörk et al. [110] illustrate the utilization of only one spatial coordi-
nate, by proposing a rectilinear layout (an arc diagram) where nodes are displaced according to
timestamps. In EgoNetCloud [260], not single nodes, but rather graph components are arranged
in a timeline-constrained layout, complemented with area charts.

When the temporal information is associated to edges, then the structural information can
be visualized as an edge list, which is aligned along a Cartesian coordinate, while the other
Cartesian coordinate is used as time axis [324]. Van den Elzen et al. [380] propose an efficient
reordering of the edge list to optimize the visualization of massive edge sequences. Abello et
al. [1] propose an alternative dynamic ranking of edges to encode additional temporal attributes
such as recency, persistence, and rate (Figure 2.58a)). Given that the one Cartesian axis is
used for the timeline, the other one can accommodate a bipartite layout (or, by using Bertin’s
words, a diagram with parallel alignment). The visual scalability of the bipartite layout can
be increased by image-level edge aggregation (edge splatting [83]), or by data-level temporal
aggregation [47]. Gilbert et al. [171] compute dynamic clusters and similarity metrics between
clusters at different times, and visualize them in a bipartite layout.

Merged visualization does not necessarily have to exploit two orthogonal axes for encod-
ing temporal and relational information; in other words, the visualization must not necessarily
include a timeline. Many approaches, indeed, utilize polar coordinates: Chro-ring [431], for
example, uses a node-link diagram with a radial layout, where time is mapped to the angular co-
ordinate. In other approches, time is mapped to the radial coordinate, while the graph structure
can be visualized by a space-filling diagram [77,79,124], a node-link diagram [78], a node-only
diagram [66], a bipartite diagram [76], or an adjacency matrix [391], all with a circular layout.

In many merged visualizations, the graph structure is reduced to vertex-centric measures,
which are computed over time and visualized along a time axis, by mapping to a retinal variable
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(e.g., lifelines [80], heat maps [175]), or to a geometric primitive (e.g., bar charts [224], stacked
area charts [102,296,377], line charts [234,306,307,417]. When the geometric primitive which
encodes a vertex is a line (a polygonal chain, as well as an open curve), it is also referred to as
a storyline. Cui et al. [101] propose an approach to improve the rendering algorithm of such
line charts, in order to increase readability at large scales. Dang et al. [103] complement the
area chart with additional arc diagrams representing the relational information. The SVEN sys-
tem [30] computes node rankings over time and visualizes them as slope graphs [372], also com-
plemented with arc diagrams (Figure 2.58b). Zhao et al. [428] utilize a “subway map” metaphor
to visualize storylines, while relationships are shown by adjacency matrices (Figure 2.58c).

A large graph can be granulated to display the evolution of graph clusters over time: a com-
mon visualization for dynamic graph clusters is the alluvial diagram [318, 328, 365], in which
the splitting and merging of clusters resemble confluence and bifurcation of rivers. Muelder
et al. [278] use a similar visualization, but encode clusters only by proximity, without merging
vertexes into streams. An alluvial diagram can be also complemented with arc diagrams to show
relationships between evolving clusters [389]. Beck et al. [47] aggregate the dynamic network
temporally, in order to present a series of the most significant bipartite layouts along the time
axis.

Time as a graph element (Time implantation) A special class of merged visualization is
constructed by considering temporal elements (the references that map graph elements to the
time domain by temporal primitives) as if they were graph elements. For example, Thiel et
al. [366] display years as vertices into the graph, and utilize a node-link diagram with a force-
directed layout to group together all nodes referring to the same year. Analogously, Shi et
al. [348, 349] introduce year nodes in a one-and-a-half-dimension layout to visualize dynamic
egocentric networks (Figure 2.59a). Hoek et al. [197] utilize arcs connecting data elements
(vertices) and temporal elements (Figure 2.59b). Verspoor et al. [393] align temporal elements
along axes of a hive plot.

Other cases of visualization, in which time (in particular, ordinal time) is mapped to graph
elements, are those visualization techniques featuring vertex trajectories: directed edges connect
different instances of the same vertex over time. Oliveira and Gama [293] map two vertex
measures to the axes of a scatter plot and then connect vertices over time, thus obtaining a
connected scatter plot [188]. Comet plots apply the same mechanism to node-link diagrams
with energy-based layout [354].

Van den Elzen et al. [381] propose an approach based on discretization, vectorization and
normalization, and dimensionality reduction to reduce a network snapshot into a single point in
the space of network spaces; the evolution of the network can then be visualized as a trajectory
in this network space.

2.7.2.3 Structure within time

In this type of visualization, the temporal information is mapped to the main geometry, and then
the network structure is mapped to a secondary geometry. In the most common case, the main
geometry is based on some sort of timeline; then several two-dimension diagrams, representing
the graph structure at different time slices, are variously arranged along the timeline. Usual
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(a)

(b)

(c)

Figure 2.58: In these merged visualizations, the graph structure is mapped to the vertical coordi-
nate, while the timeline is arranged along the horizontal axis: (a) an edge list reordered over time
according to dynamic network rankings [1]; (b) a temporal network visualized by a combination
of vertex trajectories along a time axis and arc diagrams [30]; (c) combines adjacency matrices
with a “subway lines” metaphor [428]

arrangements comprehend juxtaposition (the two-dimension diagrams are displaces along a
parallel timeline) or stacking (the two-dimension diagrams are stacked along an orthogonal
timeline, which then constitutes an additional spatial dimension within a prospective view). It is
worth noting that an additional dimension is only present when the stacked diagrams are kept
spatially distinct; if the diagrams are flattened (e.g., the layers are superimposed and merged),
then the additional-dimension timeline disappears, and the main geometry does not encode the
temporal information any more, but rather the graph structure (as discussed in Section 2.7.2.1),
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(a) [349] (b) [197]

Figure 2.59: In these merged visualizations, temporal elements are visualized as graph elements:
(a) 1.5-dimension egocentric network; (b) parallel arc diagrams

while the temporal information is mapped to retinal variables.

Juxtaposition The juxtaposition paradigm is well suited for time-oriented graphs originally
consisting in sequences of graphs, or obtained by time slicing; in this case, each time slice
can be visualized separately, and the sequence can be aligned along the time line. The juxta-
postion of small multiples has been realized by using different visual endings for graphs. Ma-
trixflow [299], for example, aligns several matrix-based representations. Tilematrix [261] also
exploits adjacency matrices but, since adjacency matrices of undirected graphs are diagonal, it
utilizes a so-called complementary juxtaposition in order to host multivariate data in a compact
arrangement (Figure 2.60a). Other approaches are based on juxtaposition along a time line of
visual adjacency lists [196] (Figure 2.60b), also referred to as edge-stacks [81]. The latter tech-
nique exploits also color to better distinguish directed edges of different time slices. The most
common visual encodings for juxtaposition seems to be the node-link diagram, with an energy-
based [370] as well as a radial layout [102, 131]. However, since the juxtaposition paradigm
usually dedicates one Cartesian coordinate to the time line, a rectilinear (i.e., one-dimensional)
layout the the usual choice; many approaches, therefore, exploit arc diagrams [80, 178]. John et
al. [220] propose a juxtaposition of bipartite layouts complemented with arc diagrams; their sys-
tems displays only two juxtaposed time slices, selected by the user, while a line chart provides
on overview of the entire temporal sequence (Figure 2.60c).

Burch et al. [84,85] propose a juxtaposition with alternative visual encodings, including ad-
jacency matrices, bipartite layouts, and node-link diagrams; they also integrate an interaction
technique by which the user can scroll through time-slices with a flip-book animation. In order
to deal with the scale on the temporal dimension, Yang et al. [421] propose an algorithm to detect
relevant events (i.e., splitting and merging of clusters) and visualize only significant time slices
by juxtaposed node-link diagrams. Manynets [153], conversely, aggregate data from the struc-
tural perspective, and visualizes them by juxtaposing several bar charts representing averages
and distributions of vertex-centric graph-theoretic measures.
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(a) TileMatrix [261] (b) Adjacency lists [196]

(c) Bipartite layouts complemented with arc diagrams [220]

Figure 2.60: Static visualization by juxtaposition
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The structure-within-time visualization with a juxtaposition arrangement must not be con-
fused with the merged visualization discussed in Section 2.7.2.2. In the case of streaming edge
lists [1,324,380], indeed, at a given point it is not possible to define a network, but only an event
or a a set of events; therefore, we cannot talk of juxtaposed time slices. Analogously, in the case
of diagrams as defined by Bertin (in which the graph elements are duplicated, such as bipartite
layouts [47, 83]), even if the data are sliced, strictly speaking there is no slice juxtaposition,
because graph structure is only defined along the axis of replication (coinciding with the time
axis), and cannot be defined at a single time point. Conversely, one arc diagram visualizes a full
graph structure along a rectilinear layout and, therefore, several arc diagrams aligned along a
time axis can be considered a juxtaposition.

Branching time A particular case of juxtaposition occurs when the arrangement of the
time domain is not linear and, instead, it contains branches. In this case, the small multiples
representing the different time slices are not juxtaposed along a time line, but rather arranged a
branching structure. The VANLO system [71], for example, applies this approach to the biology
domain, inorder to visualize the evolutive differentiation of protein networks. Another general
application is the visualization of graph rewriting [302, 378].

Additional dimension Time-oriented graphs can be visualized in a three-dimensional visu-
alization, where two spatial dimensions are dedicated to the relational information, and a time
line is allocated along the third one. In most cases, when the dynamic graph data is partitioned
in time slices, each time slice is visualized in a two-dimensional layer, and layers are stacked
along the third axes: since data items do not occupy the entire volume, but lay on separate
planes, these visualization is generally referred to as a two-and-a-half-dimensional (2.5D) view.
Nevertheless, in the more general case, a dynamic graph consisting in a continuous sequence of
vertex and edges (without time slicing) leads to full three-dimensional (3D) visualization, like
for example in [177]. Moreover, also a time-sliced graph can be visualized in a 3D fashion, for
example when data between time slices is interpolated (e.g., [179]).

Most visualization featuring an additional dimension are based on node-link diagrams, but
there is also an example of adjacency matrix by Bach et al. [35].

As for node-link diagrams, there are different variants: 2.5D juxtaposition of node-link dia-
grams with a radial layout [8], an aggregated energy-based layout [311], or a dynamic energy-
based layout [149,161]. In some cases, also node trajectories can be shown, i.e. lines connecting
node istances between time slices [127, 128, 162]. When the layout is fixed, node trajectories
can be visualized as straight lines or tubes, intersecting the time-slicing planes orthogonally [64].
When the layout is dynamic, and trajectories are also interpolated between time slices, then they
look like 3D worms [7, 112, 113]; in some cases, edges are not shown, and the evolution of the
network structure is represented by these worms moving closer or away from each other [179].
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(a) [64]

(b) Dyson [179] (c) Cubix [35]

Figure 2.61: Static visualization with an additional dimension

2.7.2.4 Combination

Different approaches can be combined in order to exploit the benefits of each of them. In Cu-
bix [35], for example, the user can choose among different arrangements (superimposition, jux-
taposition, additional dimension) of matrix-based representations. The Small Multipiles [33]
approach combines juxtaposition and a special kind of superimposition, namely piling: each
matrix in a pile is reduced into a vector, except for one, which becomes the front cover of the
pile. Juxtaposition and two-and-a-half-dimensional view have been combined also in systems
based on node-link diagrams [129, 215–217].

Growing polygons [124] are an interesting case, since they combine dynamic and static
visualization: the growing polygon is built during the animation by an accumulation metaphor
(similar to the sedimentation metaphor [211]), providing details about the current state but also
an overview of the past history. A combination of small multiples and flib-book animation is
proposed also by Burch et al. [84, 85].

2.7.3 Summary

Figure 2.62 provides an overview on visual encodings for time-oriented graphs, according to the
categories introduced and discussed in this section.
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Figure 2.62: A summary of surveyed visual encodings
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2.8 Interaction

User interaction is, by definition, a crucial aspect of Information Visualization, defined as “the
use of computer-supported, interactive, visual representations of abstract data to amplify cogni-
tion.” [86, page 6] and as well as Visual Analyicts, defined as “the science of analytical reason-
ing facilitated by interactive visual interfaces” [367, page 4]. In particular, Thomas and Cook
recommend to “develop a new science of interactions that supports the analytical reasoning
process” [367, page 9]. Pike et al. have further elaborated on the challenge of establishing a
“Science of Interaction” [301]. Nevertheless, the importance of user interaction is generally un-
derestimated visualization of dynamic graphs, as noted by Beck et al. [45]; static visualization
is generally considered as a sequence of not-interactive graph drawings, while the most com-
mon interaction technique for animation approaches only deals with animation control (e.g.,
play/pause, or time seeker).

However, user interaction has been investigated in the visualization literature in general. Yi
et al. [423] propose a taxonomy of interaction in Information Visualization based on the no-
tion of user intent. Lam [250] introduces a theoretical framework to understand and possibly
reduce the costs of interaction. Wybrow et al. [418] review interaction techniques for multi-
variate graphs and propose a classification based on the Information Visualization Reference
Model [86], distinguishing among view level, visual-representation level, and data level. Anal-
ogously, von Landesberger et al. [397] categorize interaction techniques for visual analysis of
large graphs according to stages in the Information Visualization Reference Model and user
actions, following the idea of Elmqvist and Fekete [123] and Bertini and Lalanne [56].

We will discuss interaction techniques for graphs and dynamic graphs according to user
intents [423]: 1. Select: mark something as interesting 2. Explore: show me something else
3. Reconfigure: show me a different arrangement 4. Encode: show me a different representation
5. Abstract/Elaborate: show me more or less detail 6. Filter: show me something conditionally
7. Connect: show me related items

Yi et al. [423] observe that some other interaction techniques address several user intents and,
therefore, it is possible to classify them into multiple categories. In particular, when considering
graph data, we notice that the Connect user intent is obviously predominant, since it addresses
the relational nature of such data and, therefore, several interaction techniques fulfil this intent,
either alone or in combination with other intents.

2.8.1 Select

Highlighting, in the stricter sense, is a brushing interaction technique, originally developed for
scatter plots [48], and then extended and applied to other visualization techniques. Brushing is a
“change in the encoding of one or more items essentially immediately following, and in response
to, an interaction with another item” [355, p. 235]. In particular, in the case of highlighting, the
change may affect hue, brightness, or color. Brushing operates within a view or across multiple
views; in the latter case, the interaction technique is better known as linking and brushing [226].
Highlighting makes some information stand out from other information; it effectively exploits
pre-attentive processing [399], which is the human capability to process visual information prior
to, or in the early stage of, focusing conscious attention. Linking and brushing techniques sup-
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port two user’s intents: Select and Connect. In the context of graph visualization, highlighting of
adjacent nodes upon selection of a certain node (for example, by mouse hovering) is a common
interaction technique, also known as connectivity highlighting [190]. In the case of static visual-
ization of dynamic graphs, the highlighting technique can be extended in order to fulfil the need
of visually linking and synchronizing multiple instances of the same graph entities in different
time slices [45], by considering adjacency not only across the graph structure, but also along
the time dimension. The connectivity highlighting can be extended further in order to support
three user intents: Select, Connect, and Encode. The interaction technique proposed by McGuf-
fin et al. [272], for example, allows the user to select a node in a node-link diagram, define a
neighbourhood-radius k in order to extend the selection to the sub-graph of nodes connected in
k steps, and then choose a different visual encoding for the selected sub-graph.

2.8.2 Explore

The Explore intent corresponds to the will to get additional information. The excentric labeling
technique [57] provides additional information about a region of the node-link diagram by show-
ing labels around it, in order to avoid overlapping. Similarly, the in-situ exploration technique
by Hadlak et al. [182] shows additional additional data, or additional facets of the same data
and fulfils also the Encode intent, since the additional information can be shown with a different
visual encoding. Pan & zoom is one of the easiest and most common interaction techniques in
visualization, and it fulfils the Explore user intent. In visualization of graphs, it is combined with
the Connect intent in order to provide network-aware exploration or, in other words, navigation.
The signpost technique [269] utilizes labelled arrows to indicate the direction of the shortest
path connecting the visible nodes to off-screen regions of a node-link diagram. The link-sliding
technique [277] consists in a guided panning from a selected node to an adjacent one along a
visible link. Explore, Connect and Reconfigure are addressed jointly by the Bring & Go tech-
nique [277], which after selection of a node brings adjacent nodes closer. The edge lense by
Tominsky et al. [368] integrates also a Filter intent: besides bringing adjacent vertices closer, it
also emphasizes adjacent edges by hiding non-adjacent ones.

2.8.3 Reconfigure

The Reconfigure intent is fulfilled by computing a different spatial arrangement of displayed
data. It is applied to both matrix-based visualization, by interactive matrix reordering tech-
niques [49, 192] as well as node-link diagrams, by letting users to interactively change or tune
the layout algorithm. Dwyer et al. [115], for example, propose means by which users can specify
the parameter of constrained layouts. More in general, many graph drawing algorithms allow
users to drag-and-drop nodes, and the layout rearranges accordingly, in conformance with the
principle of direct manipulation [350]. Besides nodes, also links can be directly manipulated by
users; Riche et al. [323] describe the design space of link curvature, identifying four interaction
techniques: bundling, fanning, magnets, and legends. GraphDice [58] includes an interaction
technique which fulfils both the Reconfigure and the Explore intent: it allows the user to select a
new graph-theoretic index in order to rearrange the scatter plot from one projection to another.
In the context of dynamic graphs, Loubier et al. [262] introduce an interactive transition from
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the layout of the aggregated graph to the layout of a single time slice; Feng et al. [147] propose
a technique to adapt the layout of a dynamic graph in order to increase the stability of nodes of
interest, which have been selected by the user.

2.8.4 Encode

The Encode intent is addressed by interaction techniques which enable the choice of alterna-
tive visual encodings. In NodeTrix [194], for example, the user can trigger animated transitions
between a matrix-based visualization and a node-link diagram. Analogously, Zhao et et. [429]
provide six animated transitions between a node-link diagram and a space-filling visualization.
The color lense [122] is an interaction technique that enables a local adaptation of the color en-
coding, and has been applied to different visualization techniques including node-link diagrams.

2.8.5 Abstract/Elaborate

The Abstract/Elaborate intent corresponds to decreasing or increasing the level of visualized
details; in the context of graph visualization, it relates to the control of graph coarsening. This
form of semantic zooming has been applied to matrix-based visualization [4, 121, 192] as well
as node-link diagrams [21, 22, 106, 415]. Those interaction techniques, which enable users to
select different graph-theoretic measures to be visualized as a summary of the network struc-
ture [58, 94, 190, 297, 298, 394, 432], can be understood as fulfilling both the Explore and the
Abstract/Elaborate user intents. The same holds for on-demand motif analysis [264, 396], as
well as graph-theoretic measures computed over time [106,306,307]. These interactions usually
operate at the data level but, analogously to the non-interactive case (see Section 2.6.1.2), the
abstraction can also operate at the image-rendering level [433].

2.8.6 Filter

In graph visualization, the Filter intent is often combined with the Connect intent, since filtering
criteria are usually based on adjacency and geodesic distance [190], or other degree-of-interest
functions based on graph-theoretic metrics for static [384] or dynamic graphs [2].

2.8.7 Connect

Besides all above mentioned interactions, where the Connect intent deals with the relational na-
ture of graph data and is fulfilled in combination with other intents, the Connect intent is also
addressed in the context of coordinated multiple views. In this case, the visualization allows
the user to interactively show connections between data items in different views. For example,
in NetLens, the user can highlight connection between bar charts for each partition of a bipar-
tite graph [224]; in Detagler [321], highlighting shows connections across two different visual
encodings of multiplex networks (named substrate view and catalyst view). In the case of time-
oriented graphs, brushing and linking usually operates between a temporal view and a relational
view [10, 106]. In VisLink [99], the Connect intent is fulfilled not by brushing & linking (i.e.,
exploiting retinal characteristics to show connected items), but rather by drawing explicit links
between connected items.
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2.9 Task taxonomies

A profound understanding of analytical tasks is a necessary prerequisite to design novel visual-
ization techniques as well as evaluate existing ones.

In the visualization literature, there is not even a consensus about the terminology, and re-
searchers use several terms with overlapping or conflicting meanings: task, question, problem,
objective, activity, action, operation. Rind et al. [32] try to untangle the confusion in terminol-
ogy, by introducing a conceptual space of tasks along three dimensions: abstraction (domain
specific/domain independent), composition (low level/high level), and perspective (how/why).

Shneiderman [351], in his task by data type taxonomy of information visualization, elicits
seven types of actions: overview, zoom, filter, details-on-demand, relate, history, extract.

Bertin [55] characterizes analytical question along two dimensions: the question type (which
unknown information has to be found) and the reading level (elementary, intermediate, or global,
depending on whether the questions involves single elements, group of elements, or the entire
dataset, respectively).

The task taxonomy by Andrienko & Andrienko [18] distinguishes two types of tasks: ele-
mentary tasks (lookup, comparison) and synoptic (pattern identification and comparison); more-
over, they characterize tasks according to involved referrers (space, time, population) and several
attribute or pattern types.

Lee et al. [253] introduce a specific task taxonomy for graph visualization. They structure
it along three axes: the type of graph entities involved (nodes, links, paths, graphs, connected
components, clusters, and groups), the perspective (topology-based, attribute-based, browsing,
and overview), and the level of composition (low, medium, and high).

Ahn et al. [9] propose a task taxonomy for dynamic graphs along three different axes: graph
entities (node/link, group, or network); temporal features (individual events, shape of changes,
or rate of changes); and properties (structural or domain-specific).

Kerracher et al. [232] extend and instantiate the task framework by Andrienko & Andrienko,
and define a task taxonomy and task design space for visualisation of time-oriented graphs.

Conversely, Bach et al. [34] build upon the task taxonomy for temporal data in geographic
information system by Peuquet [300]; they describe each task can be understood as a question
containing references to two dimensions and requiring an answer in the third one. In this way,
they distinguish between topological tasks (find a graph structure where a given event is present
at a given time), temporal tasks (find the time when a given entity is present at a given location)
and behavioural tasks (find what type of event happens at a given time to a given graph structure).

Archambault and Purchase [25] structure their taxonomy for time-oriented graphs along two
dimension, mostly aiming at assessing the importance of the mental map. They distinguish
between local and global tasks (depending on whether the focus is on single nodes and links,
or on the entire graph), and between distinguishable and undistinguishable tasks (depending on
whether graph entities need to be distinguished from each other, or can be aggregated).

A general task taxonomy for multivariate networks can be found in [308].
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2.10 Evaluation of graph visualization

Most of the techniques for visual analysis of graphs and time-oriented graphs, which we sur-
veyed in previous sections, were validated in some way: graph drawing techniques are usually
validated with respect to their computational complexity and performance; many visualization
systems are validated by case studies or, more precisely, by usage scenarios, which are per-
formed by the developers themselves and, therefore, are a weaker form of validation [345];
fewer techniques were also validated by user studies involving real users and domain experts. In
this section, we focus on works which are mainly focused on evaluation, or whose findings can
be generalized and utilized as design guidelines.

As for visual encodings, Ghoniem et al. [169] perform a comparative evaluation between
matrix-based representations and node-link diagrams: they found that matrix-based visualization
scales better with size and density, but node-link diagrams perform better for path-finding tasks.
Keller et al. [230] run a similar user study which confirmed these findings.

With respect to node-link diagrams, Purchase and Ware and colleagues [314, 315, 315, 401]
investigate the perception of graph drawings to provide empirical groundings to aesthetics crite-
ria (see Section 2.6.1.1). Besides existing criteria, such as readability and memorability, Nguyen
et al. [286] propose faithfulness as a novel criterion for validating node-link diagrams, while
Huang et al. [208] focus on cognitive load. Moreover, Huang and colleagues proposed an qual-
ity metric combining several aesthtics criteria for both static [209] and dynamic graphs [210].
Other researchers evaluated, by user studies, specific aspects of node-link diagrams, such as
directed edges [79, 200, 202, 283], multivariate edges [341], curved edges [419, 420], and node
groups [219, 337]. As for matrix-based visulization, the Magnostics framework [49] provides a
set of image-based descriptors which can be utilized to evaluate matrix reordering algorithms in
terms of resulting visual patterns .

The Mental Map Many existing algorithms for drawing dynamic graphs ensure the layout
stability in order to preserve the user’s mental map of the graph [275]. This stability can be seen
as an additional aesthetic criterion for dynamic graphs [44], prescribing that the placement of
nodes should change as little as possible [97].

The mental map has been originally introduced to ensure layout stability in situations in
which the user can interactively edit the graph by adding or deleting edges and vertices [275].
Afterwards, the concept has been applied to dynamic graph drawing, in both online and offline
cases, and in particular to dynamic visualization (i.e., animation, see Section 2.7.1). However,
the problem of the layout stability holds as well for static visualization, for example small mul-
tiples [23, 24, 28].

The utility of this dynamic aesthetics has been highly disputed in literature and several eval-
uations have been conducted, from both the algorithmic and the perceptual perspective. As for
the algorithmic evaluation, Brandes & Mader [68] compare three approaches (Figure 2.63): ag-
gregation (fixed nodes positions are obtained from the layout of an aggregate of all graphs in
the sequence, achieving maximum stability), anchoring (nodes are attracted by reference posi-
tions), and linking (nodes are attracted by instances of themselves in adjacent time slices of the
sequence). Their results suggest that the generally preferable approach is linking, that is also
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the most computationally demanding; a faster alternative is anchoring to an aggregate layout
initialized with the previous one in the sequence. Many user studies have been performed to
empirically assess the importance of mental map preservation for readability, memorability, or
interpretability of dynamic graphs. Archambault & Purchase [25, 27] review many of them. In
an early study about readability of direct acyclic graphs (DAGs), Purchase et al. [312] found that
the layout stability is beneficial for several tasks. Conversely, a similar study about readability
of DAGs by Zaman et al. [426] found no significant effect of the layout stability. Purchase &
Samra [313] tested several interpretation tasks for directed graphs and found that extremes (no
stability or maximum stability) are better than a medium stability. Conversely, Saffrey & Pur-
chase [336], by investigating readability and interpretability of directed graphs, found that the
layout stability does not provide any advantage and can be even harmful for certain tasks. While
all the evaluations mentioned so far were conducted on static visualization, Ghani et al. [168]
studied the effects of layout stability in readability of animated node-link diagrams, finding that
a fixed layout (maximum stability) outperforms a force-directed layout with no stability. Archm-
bault & Purchase [26] found that a stable layout helps users with orienting themselves in a dy-
namically evolving graph, while there is no significant difference between small multiples and
animation. By studying the memorability of small-multiples node-link diagrams, Archambault
& Purchase [24] also found that maximum layout stability is the best condition.

Evaluating other aspects of dynamic graphs Besides the importance of preserving the men-
tal map in node-link diagrams (Section 2.10), another issue which attracts the interest of re-
searchers is the comparison between dynamic visulization and static visualization for dynamic
graphs, the latter being usually based on small multiples in a juxtaposition arrangement. The
controlled experiment by Farrugia and Quigley [133] demonstrates that static drawings outper-
form animation in terms of task completion time. Archambault et al. [23], in an analogous user
study, observe that small multiples are generally faster, but more error-prone for certain tasks;
moreover, mental map preservation has little influence on both response time and error rate. In
a more recent study, Archambault and Purchase [28] find that, if the dynamic graph drawings
are not stable and highlighting cannot be used, animation can provide benefits over small mul-
tiples. Boyandin et al. [62] also conduct a comparative evaluation of animation versus small
multiples in the context of flow maps. They observe that, with animation, users could identify
more changes in adjacent time slices, while small multiples are better suited for analyzing long
time periods. Moreover, they suggest that switching from one view to the other might lead to
an increase in the numbers of findings.Archambault et al. [29] evaluate also the readability of
difference maps for dynamic graphs, while Chen & Morris [92] compare approaches relying on
minimum spanning trees and pathfinder networks.

Evaluating interaction A few user studies focus also on interaction. An experiment by
Ware & Bobrow shows that interactive highlighting can efficiently support visual queries on
graphs [400], while Rey & Diehl [322] investigate the effects of two interaction techniques for
animated visualization: interactive control of the animation speed and a tooltip showing details
on demand. They found that the speed control does not provide a significant benefit, and the
tooltip is outperformed by a visualization having labels always visible.
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Figure 2.63: A time-oriented graph, and three approaches for mental map preservation: aggre-
gation, anchoring, and linkin [68] (image adapted from [25])

2.11 Limitations of existing approaches and open challanges

In the previous sections, we discussed many existing approaches for visual analysis of time-
oriented networks. Most of them have clear benefits and contributed the advancement of this
research area. The main limitations of many existing approaches is the lack of a seamless in-
tegration of visualization, automated analysis, and user interaction components, which is at the
core of the visual analytics paradigm. This lack of integration is probably due to the development
of specific techniques, without an unifying multidisciplinary approach, and is reflected by the
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literature surveys produced within the single research communities, as well as by the wording
adopted therein. In the graph drawing community [105] research has mainly dealt with algo-
rithms for computing static (i.e., non-interactive, lacking a focus on user interaction) drawings;
conversely, dynamic graphs have been mainly addressed by dynamic visualization (i.e., anima-
tion), without exploring alternative ways of visually encoding time and time-oriented informa-
tion. Network analysis has developed measures and methods for automated analysis of graph
data, but with a minor resort to visual means, limited to standard charts and diagrams. Moreover,
most of the automatic analysis attempts to combine relational and temporal aspects exhibit the
same shortcoming: these two aspects are considered sequentially during the computation, and
not simultaneously. Either a relational feature (e.g., degree) is computed for each time point,
and then analysed over time (summed, averaged, compared), or a temporal feature is considered
(duration, attenuation), and then used to compute a structural metric. Information visualization
has put a stronger emphasis on visual encoding and user interaction [195]. However, especially
when it comes to dynamic graphs, there has only been a partial integration of automated analysis
methods or specific interaction techniques. The survey on visualization of dynamic graphs by
Beck et al. [45], as well as the design space by Kerracher et al. [231] make at most a passing
reference to interaction and automated analysis. The survey by von Landesberger et al. [397],
which is informed by the the visual analytics paradigm (see Figure 2.64), out of more than hun-
dred surveyd papers, reports only three papers which belong into the intersection of the three
areas and apply a fully integrated approach to dynamic networks; two of them [306, 307] utilize
line charts to show the evolution of graph measures over time, the third one [396] exploits dif-
ference highlighting based on graph motifs. In more recent years, a few other papers have been
published tackling visual analysis of dynamic graphs from a multidisciplinary approach, and the
research communities have come closer and have mutually benefited from each other, but the
challenge of designing, developing, and validating fully integrated visual analytics solutions for
time-oriented data is still open.

Figure 2.64: Visual graph analysis as a combination of visual graph representation, user interac-
tion, and graph algorithmic analysis [397]
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Part II

The proposed solution
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CHAPTER 3
Analysis1

In this chapter, we introduce techniques for automated analysis of network data, which together
with visualization and interaction techniques constitute our integrate visual analytics approach.
At first, we describe analytical measures for static networks, derived from graph theory and
applied to social network analysis and mining. Secondly, we introduce a novel measure for
dynamic networks.

3.1 Automated analysis of static networks

According to a well-established theory of social network analysis [402], the centrality of a person
is a measure of that person’s prominence, i.e. involvement: prominent persons are persons who
are considerably involved in relationships with other persons and, therefore, are more visible to
others. Centrality can be considered an estimator of social prestige.

In Section 2.3 we have introduced different definitions of centrality from graph theory. We
implemented them all in the automated analysis component of our prototype, since each of them
has a slightly different semantics and is commonly used in social network analysis [402].

Degree centrality is the simplest centrality measure; according to its definition, the most
central person in a social network is the person with the most ties to other persons [152]. Degree
centrality only focuses on direct (i.e., adjacent) relations and, therefore, can be considered a
local centrality measure.

Conversely, betweenness centrality is a global centrality measure, based on shortest paths
between all actors. The most central person is the middle person, standing between other persons
and, therefore, capable of controlling interactions between non-adjacent persons [152].

Closeness centrality is also a global centrality measure, based on shortest paths between all
nodes. In this case, the most central person is the one who can quickly interact to all others, by
being the closest to them [43, 252].

1The main contents of this chapter have been presented at the IEEE/ACM International Conference on Advances
in Social Network Analysis and Mining [144]
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(a) Degree centrality (b) Betweenness centrality

(c) Closeness centrality (d) Eigenvector centrality

Figure 3.1: In this example network, node 15 has the highest degree centrality, node 12 has
the highest betweenness centrality, node 24 has the highest closeness centrality as well as the
highest eigenvector centrality

Eigenvector centrality is based on the idea that the most prominent person is the one with
the most connections to other prominent persons. It can be understood as an indicator of how
quickly a person can interact with others as well as how much power a person has over other’s
interactions [60]. In Figure 3.1, we show an real-world organizational network as a node-link
diagram and highlight in red the most prominent person according to the different notions of
centrality.
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3.2 Automates analysis of dynamic networks

The analysis of dynamic social networks is an emerging research topic. While several methods,
both computational and visual, have been proposed for, and applied to, static networks, there is
still the lack of a well-established set of methods supporting the analysis of the evolution of a
network.

In particular, we might ask ourselves which type of measures are better suited for dynamic
networks, and which level of detail/abstraction they shoud have. One possibility is to compute
and highlight all single changes of nodes and links between two subsequent time steps; another
one is to compare structural metrics and visualize their trend over time. The former option points
out each and every single change, with the disadvantage that, for large and dense networks, they
might be too many, and hard to be understood from a global perspective; the latter only provides
aggregated structural metrics, which lack local details and might hide certain changes. For
example, if we only look at the variation of the degree centrality of a certain node, we might
not see any change of its relationships if the number of added links is equal to the number of
deleted ones; similarly, if we look at the variation of the betweenness centrality or the closeness
centrality we might not see anything if changes are symmetric. Conversely, the highlighting of
an appearing or disappearing link between two nodes might not help the analyst to understand
the impact this change has on the connectivity of the overall structure.

To address the afore-mentioned limitations of existing approaches, we define a novel metric
for dynamic networks, discuss its properties and meaning, and provide the algorithm for its
computation. We introduce also a set of derived metrics, and show their application to a small
exemplary case.

3.2.1 Change centrality

Given a discrete-time dynamic network G = G(V,E, T ), a node i ∈ V and two time points t1
and t2, we define the 1-step change ratio:

rt1,t2(i) =
|Nt1(i)∆Nt2(i)|
|Nt1(i) ∪Nt2(i)|

where Nt(i) = {∀j ∈ V : dt(i, j) = 1} is the set of nodes connected to node i in 1 step at
time t, where dt(i, j) is the geodesic distance between node i and node j at time t. Thus, the
1-step change ratio of node i at time t1, t2 is defined as the ratio between the cardinality of the
symmetric difference of the sets of 1-step neighbours of node i at t1 and t2 and their union. It
can also be seen as the ratio between the number of links added and removed and the number of
links added, removed, and remained:

rt1,t2(i) =
added+ removed

added+ removed+ remained

Considering the example network of Figure 3.2, node B keeps its links to A and C, but looses its
link with D; it looses one of its three connections, then its 1-step change ratio is 1

3 . Node D and
E loose all their connections, then their values of 1-step change ratio are both 1. Nodes A and C
do not encounter any change, then their values are both zero (see also Table 3.1).
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It is worth observing that the 1-step change ratio is the complement to one of the Jaccard
similarity index [218], defined as the ratio between the intersection and the union:

rt1,t2(i) = 1− J = 1− |Nt1(i) ∩Nt2(i)|
|Nt1(i) ∪Nt2(i)|

We name it change ratio since its value is minimum and equal to zero when there is no change
in the 1-step neighbours of the node i from t1 to t2, and it is maximum and equal to 1 when all
the neighbours change. It is also worth noting that it is symmetric:

rt1,t2(i) = rt2,t1(i)

Now, let us generalize it considering the neighbours reachable in n steps. Given a node
i ∈ V and two time points t1 and t2, we define the n-step change ratio of i between t1 and t2:

rnt1,t2 =

∣∣Nn
t1(i)∆Nn

t2(i)
∣∣∣∣Nn

t1
(i) ∪Nn

t2
(i)
∣∣

where Nn
t (i) = {∀j ∈ V : dt(i, j) = n} is the set of nodes connected to node i in n steps at

time t. In particular, for n = 0, by noting that dt(i, i) = 0, we obtain r0t = i.
Finally, we define the change centrality of node i between time points t1 and t2 as a linear

combination of all the n-step change ratios:

Ct1,t2(i) =

ei∑
n=0

anRt1,tn2 (i)

where ei = maxt∈{t1,t2} e(i) is the maximum eccentricity of node i and an are linear coeffi-
cients.

The change centrality of a node is a measure of the change of its connections over time,
taking into account its adjacent nodes, the adjacent nodes of the latter and so on. The weight of
changes of near and far neighbours depends on the coefficients of the linear combination. By
choosing coefficients that decrease with n, the changes of farer neighbours will have smaller
weight on the total measure. In particular, if we put an =

(
1
2

)n+1, because of the convergence
of the sum of the geometric series we will obtain a rational-valued, non-negative, normalized
metric:

Ct1,t2(i) =

ei∑
n=0

1

2n+1
rnt1,t2(i) =

1

2

ei∑
n=0

1

2n
rnt1,t2(i) ≤ 1

Thus, the change centrality of a given node will be equal to zero if no changes have occurred in
the connected component that node belongs to. It will have a value greater or equal to 0.5 if that
node is present in only one of the two time steps considered. It will get closer to 1 if the latter is
true and the network diameter gets larger.

Considering the network of Figure 3.2 and the corresponding values of the change centrality
(Table 3.1), we observe that the nodes with larger values of change centrality are D (which is
present in only one of the two time steps) and E (which looses all of its connections). B has an
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Figure 3.2: A dynamic network at two subsequent time steps.

intermediate value, since it looses one out of its three 1-step neighbours. A and C are the nodes
with the lowest change centrality, because they have changes only in their farther neighbours.

The change centrality is a centrality metric in the sense that it measures how central is a node
with respect to the network change, taking into account whether the node itself has changed
(appeared/disappeared), whether its neighbours have changed, and which is the ratio between
stable and changing neighbours. Moreover, it reflects increasing and decreasing connections,
but also zero-balance replacements, that might have tiny importance for the overall network
structure, but are important when analysing ego networks. Furthermore, it gives a measure of
how local changes affect farther and farther nodes. For this aspects, the change centrality is a
node-level metric that combines local and global features, from a relational perspective as well
as from a dynamic perspective.

3.2.2 Change eccentricity, radius, diameter

Considering the definitions of the previous section, we derive additional measures of change at
both the node and the network level. Given a node i ∈ V and two time points t1 and t2 we define
the change eccentricity of i between t1 and t2:

Et1,t2(i) = min
{
∀n : rnt1,t2(i) 6= 0

}
that can be seen as the geodesic distance between node i and the nearest occurring change. Its
value is equal to zero if the node itself has changed (appeared/disappeared), and increases as
i gets farer from changes. We put it equal to −1 (to represent infinite distance) if no change
has occurred in the set of nodes reachable from i. Analogously to the classic node eccentricity,
on the basis of the change eccentricity we define two integer-valued network-level metrics, the
change radius and the change diameter:

Rt1,t2 = min
i
Et1,t2(i)

Dt1,t2 = max
i
Et1,t2(i)

The change radius is equal to zero if at least one node has appeared or disappeared, it is equal
to 1 if only links have changed. The change diameter is a measure of the localization of change
within the network: the more concentrate is change, the larger is the change diameter. Both
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Table 3.1: The values of change centrality, change eccentricity, change diameter, change radius,
and stable center for the simple dynamic network of Figure 3.2

1-step change ratio
rt1,t2(A) 0

(
= |∅|
|B|

)
rt1,t2(B) 0.3̄

(
= |D|
|A+C+D|

)
rt1,t2(C) 0

(
= |∅|
|B|

)
rt1,t2(D) 1

(
= |B+E|
|B+E|

)
rt1,t2(E) 1

(
= |D|
|D|

)
Change centrality

Ct1,t2(A) 0.125
(

= 1
2
|∅|
|A| + 1

4
|∅|
|B| + 1

8
|D|
|C+D| + 1

16
|E|
|E|

)
Ct1,t2(B) 0.2083̄

(
= 1

2
|∅|
|B| + 1

4
|D|

|A+C+D| + 1
8
|E|
|E|

)
Ct1,t2(C) 0.125 (like A)

Ct1,t2(D) 0.875
(

= 1
2
|D|
|D| + 1

4
|B+E|
|B+E| + 1

8
|A+C|
|A+C|

)
Ct1,t2(E) 0.4375

(
= 1

2
|∅|
|E| + 1

4
|D|
|D| + 1

8
|B|
|B| + 1

16
|A+C|
|A+C|

)
Change eccentricity

Et1,t2(A) 2

Et1,t2(B) 1

Et1,t2(C) 2

Et1,t2(D) 0

Et1,t2(E) 1

Change radius
rt1,t2 0

Change diameter
Dt1,t2 2

Stable center
St1,t2 {A,C}

the change radius and the change diameter are set to −1 if no change has occurred within a
connected network.

We can also define a stable center for each time step, as the set of all the nodes that have a
change eccentricity equal to the change diameter:

St1,t2 = {∀i ∈ V : Et1,t2(i) = Dt1,t2}

In Table 3.1 we show the values of change eccentricity, change diameter, change radius,
and stable center for the simple dynamic network of Figure 3.2. Node D is the node where the
change is localized: its change eccentricity, i.e. its distance from the change, is zero, that is also
the change radius of the network. Nodes B and E are close to the disappearing node, so their
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change eccentricity is equal to 1. Nodes A and C are 2 steps far from the change, so the value
for both is equal to 2; it is the maximum value, then it is also the change diameter, and identifies
these nodes as the stable center of the network.

3.2.3 Algorithms

The change centrality and the change eccentricity can be computed using the following algo-
rithms:

ChangeCentrality(G1,G2)
for i ∈ V (G2) do

if i ∈ V (G1) then
CCi = 0

else
CCi = 1

end if
for all k ∈ [1..diameter] do⋃

ik = V (G1) ∪ V (G2) ∀v ∈ V : d(i, v) = k⋂
ik = V (G1) ∩ V (G2) ∀v ∈ V : d(i, v) = k

if
⋃
ik 6= ∅ then

CCi+ = (|
⋃
ik| − |

⋂
ik|) / |

⋃
ik|

end if
end for

end for
return [CC]

ChangeEccentricity(G1,G2)
for i ∈ V (G2) do
CEi = −1
if i /∈ V (G1) then
CEi = 0

else
for k ∈ [1..diameter] do⋃

ik = V (G1) ∪ V (G2) ∀v ∈ V : d(i, v) = k⋂
ik = V (G1) ∩ V (G2) ∀v ∈ V : d(i, v) = k

if
⋃
ik−

⋃
ik 6= 0 then

CEi = k
k = diameter + 1 {break}

end if
end for

end if
end for
return [CE]
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CHAPTER 4
Visualization1

In this chapter we present the visualization components of our visual analytics approach. In
particular, we describe the visual encodings for both relational and temporal aspects of dynamic
network data. Furthermore, we discuss how the results of automated analytical methods can be
utilized to enrich the visualization.

4.1 Visual encoding

The first design decision to be taken when dealing with the visualization of networks concerns
the visual encodings of entities and relationships, i.e. their mapping to planar primitives. In our
case we chose a node-link diagram because they are the most popular kind of visualization for
dynamic networks and consequently they require a shorter learning period to be effectively used
than other forms of representation. We also considered matrix-based visualizations, which are
popular in different contexts and might also be easy to understand, and scale better with large
and dense networks; nevertheless, we excluded them since they are not efficient for visualizing
paths and we do not focus on very large networks.

4.2 Dynamic layout

Once we have chosen a specific implantation (a node-link diagram), the next step is the choice of
the imposition, i.e. the graph layout. The layout is a very important aspect for designing network
visualizations, since position is one of the most prominent visual variables. We aimed for a
layout that enhances the perception of both, the relational aspects (the network structure) and
the temporal aspects (the network evolution). Here we find the well-know conundrum already
introduced in Section 2.10: stability versus consistency. An additional requirement was the high

1Some contents of this chapter have been presented at the IEEE/ACM International Conference on Advances in
Social Network Analysis and Mining [137] as well as at the International Conference on Knowledge Management
and Knowledge Technologies, Special Track on Theory and Applications of Visual Analytics [138]
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interactivity of the visualization, like for example the direct manipulation of the networks, which
involves the possibility for the user to drag-and-drop single nodes while the layout automatically
reacts to these changes and adjusts accordingly. Moreover, we assume that a simple physical
metaphor would further enhance the comprehension for non-expert users while algorithms based
on more formal mathematical concepts would require longer learning periods. According to this
last consideration we adopted a force-directed algorithm using the spring-embedder metaphor:
nodes are modelled as repulsing particles while edges are modelled as elastic springs. This
physical model roughly ensures that nodes with more connections tend to occupy a more central
position, while nodes with fewer connections are pushed towards the periphery; moreover, it
clusters connected nodes.Then, we adopted an incremental and continuously running algorithm
for the layout that allows the users to directly manipulate the diagram and also enables more
sophisticated interaction techniques (see Section 5.3).

In order to ensure stability, we adopted a linking approach. We discarded the use of pre-
determined positions (they would not allow for free direct manipulation), then we discarded
anchors consisting of the positions of nodes in the aggregated graph (which ensure stability but
not consistency) and also discarded anchors consisting of the positions of nodes in the previous
time slice (because our layout must be computed all at once in order to enable full interactivity).
Finally, we adopted a linking mechanism by introducing new edges that link different instances
of the same node in different time slices in a chain fashion.

As for computational complexity, the additional inter-time edges do not overly affect the
occupation of memory and the speed of computation; in a network with n nodes, there are n
inter-time edges for each time slice at maximum, while normal edges can be up to n2 for each
time slice.

4.3 Views

In this section we discuss how adequate visualization techniques for dynamic networks can sup-
port their exploration and in particular how time-oriented information can be visually encoded.
Focusing on changes over time, we explored three different views, namely, a juxtaposition view,
a superimposition view, and a two-and-a-half-dimension view (Figure 4.1). The integration of
these three views into a consistent visual environment and interactive transitions between them
are discussed in Section 5.2.

Figure 4.1: The three views
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4.3.1 Juxtaposition view

By placing node-link diagrams of different time slices side by side, we obtain a juxtaposition
view (Figure 4.2) that we may understand as a mapping of time to space (the horizontal axis, in
our case). This view applies the principle of small multiples and allows the reader to compare
the time slices and find commonalities and differences. Visual analysis is further facilitated by
linking the different frames by interaction features like coordinated zooming & panning and
coordinated highlighting, which make exploration and comparison easier. The drawback of
juxtaposition is that it takes up more display space: the more time slices we want to visualize,
the more display space is needed.

Figure 4.2: The juxtaposition view

4.3.2 Superimposition view

With respect to screen occupancy, we can attain a better performance by superimposing the
diagrams (Figure 4.3). In this case, a visual variable must be employed to differentiate between
time slices (hence we can refer to superimposition as a mapping of time to visual variable). We
used transparency, so that more recent elements are more opaque. Besides the fact that less
screen space is used, this has the advantage of reducing the eye movement from one slice to the
other compared to juxtaposition and preserves the context. The main disadvantage of this view
is the concentration of all edges and nodes within the same diagram with a large number of edge
crossings and occlusions that impair readability. In order to reduce visual clutter, we allow users
to interactively select the elements (trajectories, nodes or edges) to be shown persistently or by
hovering.
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Figure 4.3: The superimposition view

4.3.3 Two-and-a-half-dimensional view

Mapping time to an additional spatial dimension results in a two-and-a-half-dimensional view
(Figure 4.4). In such a view, we draw diagrams for each time slice on separate transparent
planes, stacked along the horizontal time axis. It combines some of the advantages of the two
aforementioned views. Moreover, the added spatial dimension offers us the opportunity to in-
clude additional information within this view.

Figure 4.4: The two-and-a-half-dimension view
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4.4 Enriching visualization with analysis results

According to our visual analytics approach, the integration of analytical methods with visualiza-
tion and interaction techniques aims at supporting and enhancing the comprehension of network
data. As a first step towards the combination of visual and analytical methods, we considered
classic SNA metrics for static (i.e., non-temporal), single-relational networks and integrated
their computation into our prototype. In this way, a user can interactively select a certain SNA
metric to be computed for a certain type of relation s/he is interested in. The entire temporal
multi-relational network is partitioned into as many static single-relational networks as there
are time slices and the requested metric is computed for each of them. Then, the resulting val-
ues are mapped into retinal variables of the visualization (color, size, etc.) for each time slice.
In Figure 4.5, for example, both node sizes and node colors represent clustering coefficients. In
general, this integration supports the analysis by enriching the node-link diagram with the values
of global and local topological properties.

Figure 4.5: In this diagram, both node sizes and node colors represent clustering coefficients.

4.4.1 Scatter-plot layout

Besides retinal variables such as color, the results of social network analysis algorithms can be
also mapped to geometrical variables, e.g. node positions. As also explained in Section 2.6.1.1,
the layout of a node-link diagram can be computed on the base of node-centric network mea-
sures, resulting in a diagram that is similar to a scatter plot. This type of diagram allows the user
to visually analyse pairs of node metrics and correlation between them. Figure 4.6 shows the
juxtaposed scatter-plots of two subsequent time frames; the betweenness centrality is mapped to
the vertical axis and the eigenvector centrality is mapped to the horizontal axis.
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Figure 4.6

4.5 Exploiting change centrality metrics

In this section we discuss how the change centrality and the other metrics we have introduced in
Section 3.2 can be exploited visually for identifying changes, comparing subsequent time steps,
and detecting temporal trends; in other words, how these metrics can support the visual analysis
of dynamic networks.

We will use a research prototype software, ViENA [139], based on a visual analytics paradigm.
Visual Analytics can be seen as an integrated approach combining visualization, human factors
and data analysis [225]. According to this paradigm, ViENA combines interactive visualizations
with a computational kernel, that provides several static and dynamic SNA metrics as well as the
change measures we introduce in this paper. As for the visualization, we refer to three views,
namely the superimposition, the juxtaposition, and the two-and-a-half-dimensional (2.5D) view,
that are all based on node-link diagrams but handle the temporal dimension in different manners.
In the juxtaposition view (Figures 4.7, 4.8, and 4.10) the node-link diagrams of different time
points are placed side by side, allowing for direct comparison. In the superimposition (Figure
4.11) the diagrams are overlaid using transparency; to avoid clutter, links are shown only on re-
quest, while nodes are always visible as well as their trajectories (i.e. lines showing movements
of nodes over time). In the 2.5D view (Figure 4.9), the diagrams are drawn upon transparent
parallel planes, stacked along the horizontal axis.

The presented change measures can enrich the visualization, supporting the visual reasoning
and analysis. In detail, we show how they can be 1. mapped to node size and colour, to facilitate
the identification of changes and the comparison of network structures over time; 2. used to
interactively filter nodes according to their involvement in changes; 3. taken into account for the
computation of an optimized dynamic layout.
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4.5.1 Nodes size and colour

A typical way to enrich a node-link diagram by using computed node attributes is mapping them
to the sizes and the colours of nodes. Figure 4.7 is a juxtaposition view of node-link diagrams
in which nodes are coloured and sized according to their values of change centrality.

Figure 4.7: Change centrality mapped to node size and colour in a juxtaposition view. Larger
green nodes have encountered more changes in their connections from the previous time step.
Smaller blue nodes are more stable.

Since the change centrality is computed for each pair of subsequent time steps and is sym-
metrical, we chose to map its values in the visual features of the second time step of each pair;
hence, the visual features of nodes for each time step express what has changed with reference
to the previous one, while they are neutral for the first time step of the sequence. In this way
nodes that are present in only one time step of a pair are treated differently: new nodes (present
only in the second time step of a pair) are highlighted, while dead nodes (present only in the first
time step of a pair) are not. For highlighting dead nodes, we can change the perspective and map
analytical values to the visual features of the first time step of each pair. In any case, because of
our choice of the linear coefficients for the calculation of this metrics, the new/dead nodes are
visually prominent. For example Figure 4.7 we easily identify as new the nodes 4 and 28 at t2,
the nodes 25, 27, and 35 at t3, and the nodes 1 and 36 at t4. At the same time, having chosen
a logarithmic scale for the mapping of analytical measures to visual features, it is also possible
to identify smaller differences due to changes in the far neighbours. We can observe that more
nodes join the network at t3 than at other time steps, but at t3 there is also a group of nodes in the
middle-bottom of the diagram that are less affected by change (and appear smaller and blueish).
Conversely, at t4 it seems that all nodes are more affected, in average, by changes.

In Figure 4.8 the same network is visualized with the values of change eccentricity. In this
case, the group of nodes that are more distant from changes at t3 are larger and brighter and,
therefore, easier to identify (nodes 23, 24, 15, and 32).

Besides identifying appearing/disappearing nodes and comparing global changes between
subsequent time steps, we might be interested to track the amount of change a given node en-
counters over time. To solve this task, we can use the 2.5D view and map the change centrality
to both the colour and the thickness of node trajectories. In Figure 4.9, looking at the colour
shading along the trajectory of a selected node, we see how its change centrality varies over
time, being maximum at t3 (green shade).
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Figure 4.8: Change eccentricity mapped to node size and colour in a juxtaposition view. Larger
green nodes are closer to changes, while smaller blue nodes are more distant.

Figure 4.9: Change centrality mapped to thickness and colour of a node trajectory in a two-and-
a-half-dimensional view. The selected node has encountered more changes in its connections at
time t3 (trajectory is more green and thicker) than at other time steps.

4.5.2 Node filtering by change eccentricity

Especially when dealing with large and dense networks across several time steps, the problem
of visual clutter might occur. Also in the case of smaller networks, we might be interested in
focusing only on those parts of the network that undergo major changes, or alternatively minor
changes. To support this tasks, change metrics can be used to filter the nodes and only visualize
those nodes we want to focus on. In Figure 4.10, for example, nodes are filtered according
to change eccentricity, and only the nodes with values equal or greater than 2 are shown. In
particular, if we chose for the change eccentricity a threshold equal to the change diameter, only
those nodes will be visible which belong to the stable center of the network.
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Figure 4.10: A node visibility filter based on change eccentricity: nodes with change eccentricity
E ≤ 1 are filtered out.

4.5.3 Dynamic layout by change centrality

The change centrality metric can be useful to optimize the dynamic layout. As explained in
section 4.2, at first we have adopted a linking approach combined with an interactive technique
to enable the user to continuously control the stability of the layout. This solution, as well as
other methods based on linking and anchoring approaches, has the limitation that the amount of
default allowed displacement is the same for all nodes. Even in the more flexible case of dynamic
force-directed layout algorithms, the lengths and the elastic forces of the auxiliary springs are
the same for all nodes, with the consequence that the amounts of displacement in subsequent
time steps do not reflect directly the amounts of relational changes.

Figure 4.11: Two superimposition views of the same network: a) dynamic layout without change
centrality optimization - the extents of node displacements are all the same; b) dynamic lay-
out with change centrality optimization - the extents of node displacements correspond to the
amounts of change in their connections.

Conversely, we can use chance centrality values to tune the displacement of nodes between

91



time steps in our dynamic layout. Since the change centrality is symmetric, we map its values
to the lengths and (inversely) to the elastic forces of auxiliary springs connecting the two in-
stances of the same node in subsequent time steps. Analogously, we might map it to the allowed
displacement from the initial or the previous position in an anchor-based layout. In both cases,
we obtain an optimized dynamic layout, having a flexible linking or anchoring mechanism that
actually reflects the relational changes.

All visualizations introduced in the figures above are obtained with this optimized dynamic
layout, but its advantages are particularly clear if we consider a superimposition view (Figure
4.11). Looking at the length of the arrows composing node trajectories, we see the displacement
of nodes across subsequent time steps. In the dynamic layout computed without the change
centrality optimization, they all have the same length. In the one computed with the change
centrality optimization, the length are different and reflect the actual relational changes of each
node. In this way the layout provides not only a better overview of the network evolution, but
also specific details of what nodes encountered larger changes and when.
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CHAPTER 5
Interaction1

In this chapter, we present the interaction techniques which complement automated analysis
and visualization technique in our visual analytics approach. At first, we describe basic inter-
actions for network exploration, as well as smooth animated transitions between views. Then
we introduce a novel interaction by which users can control the layout stability. Furthermore,
we describe a dual-mode techniques which complements connectivity and continuity highlight-
ing, as well as an interaction for showing node trajectories on demand. Finally, we introduce
the vertigo zoom, a novel interactions techniques for two-and-a-half-dimension visualization of
dynamic networks.

5.1 Basic interactions

In order to support navigation and exploration of dynamic network, we integrated in our ap-
proach basic interaction techniques, as well as more complex and/or novel ones. Basic inter-
actions include (two-dimensional) panning and zooming in the node-link diagram, with both
force-directed layout and scatter-plot layout, and independently of the view. The force-directed
layout supports also rotation (it would not make sense for the scatter-plot layout) and direct
manipulation (i.e., the user can drag and drop nodes, and the layout rearranges). Other inter-
action techniques are specific to a certain view. In the juxtaposition view only a subset of the
time slices are shown at once and, therefore, the user can explore other time slices by panning
along the sequence. In the superimposition view, node instances are only visible in the most
recent time slice, while in other time slices only node trajectories are visible and edges are not
visible; edges and previous node instances are shown on demand, after mouse-over selection.
In the 2.5D view, user can seek the most convenient viewpoints by three-dimensional panning,
zooming, and rotation. More complex and/or novel interaction techniques are described in the
following sections.

1Some contents of this chapter have been presented at the International Working Conference on Advanced Visual
Interfaces [137] as well as at the International Conference on Knowledge Management and Knowledge Technologies,
Special Track on Theory and Applications of Visual Analytics [138]
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5.2 Smooth animated transitions between views

Each of the three views introduced in Chapter 4 has advantages and disadvantages and might be
efficient for certain data or a particular task. Hence, we exploited them all, and integrated them
into our prototype. Moreover, exploring a complex network, the user might happen to switch
repeatedly between views. Therefore, we wanted to preserve the user’s mental map (in a broader
sense than the one we have introduced in Section 2.10) and provide a common context for the
interactive exploration of the three views. In order to do so, we designed an interaction metaphor
and developed a set of smoothly animated transitions between views (Figure 5.1). According to
this metaphor, the planes onto which the diagrams are drawn are rendered as transparent sheets.
They are stacked upon each other in the superimposition view, then translated alongside the
time axis in juxtaposition view, and finally rotated by 90 degrees around their vertical axes in
the two-and-a-half dimensional view.

Figure 5.1: Transitions between different views: (a) superimposition, (b) juxtaposition, (c) two-
and-a-half-dimensional.

5.3 Interactive control of layout stability

As discussed in Section 2.10, user studies on the problem of mental map preservation have found
a broad variability or results about the optimal amount of stability for a dynamic layout. For this
reason, we have introduced a novel interaction technique allowing the user to interactively con-
trol the layout stability. We exploit the chain of inter-time edges, connecting different instances
of nodes across time slices, according to a linking mechanism (see Section 4.2). The length and
the force constant of the edges, which compose the chain, can be interactively controlled by the
user. The parameters of existing edges that connect different nodes in the same time slices do
not vary. A simple slider in the GUI allows the user to select seamlessly between stability and
consistency. When the user moves the slider towards consistency, the force constant of the chain
decreases and its length increases (Figure 5.2). Hence, the different instances of the same node
become almost independent and their positions are computed according only to other nodes and
edges in the same time slice. Conversely, when s/he moves the slider towards stability, the force
constant of the chain increases and its length decreases. Thus, the different instances of the same
node end up at approximately the same position.

In Figure 5.3 we show an example of a social network over two time slices. When the balance
of the dynamic layout is set to maximum stability, nodes hold approximately their position and
it is easier to locate a certain person and track social relationships over time slices.
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Figure 5.2: Layouts of a network with three time slices: (a, b, c) static layout; (d) dynamic
layout, maximum consistency; (e) dynamic layout, maximum stability.

Setting the balance to maximum consistency enables the perception of an overall insight, for
example the fact that small groups of five to six persons merge into bigger ones. This integration
of graph drawing algorithms with interaction techniques, driven by perceptual principles, aims
at supporting the visual analysis of dynamic networks effectively.

5.4 Dual-mode highlighting

The need to combine the analysis of the trajectory of any given node with the analysis of its ad-
jacent nodes led to the design of an additional interaction technique: a dual-mode highlighting.
This dual-mode highlighting extends the interaction which highlights adjacent nodes in the net-
work structure (an interation known as connectivity highlighting [190]), since it also highlights
different instances of a given node across different time slices (an interaction that we name
continuity highlighting).

The dual mode relates to the way the graph is traversed and adjacent edges and nodes are
highlighted on mouse over (see Figure 5.3). In the first mode adjacent edges are traversed first
when the user hovers over a node and the nodes that are connected to the selected node in the
same time slice are found; then, the trajectories of all these nodes are traversed. Thus, the same
set of nodes is highlighted in each time slice, even if they are not adjacent.

The second mode works the other way round: when the user hovers over a node, the graph
is traversed with a trajectories-first criterion. First trajectories that lead to other instances of that
node in other time slices are found, and then edges. Thus, all node instances that are adjacent to
the correspondent instance of the selected node for each time slice are highlighted. By clicking
on the selected node, the user can switch from one mode to the other according to her/his needs.
The former mode, for example, might be useful to track the temporal evolution of a fixed group
of nodes (the neighbors of the hovered one in the hovered time slice).

In the example network (Figure 5.3.a) we see that all persons that are connected to P.K. (the
red node) in the first time slice, remain ‘near’ to her in the bigger group in the second time
slice. The latter mode might help to follow the evolution of a single node and to explore the
connections it establishes over time. In our example P.K. is directly connected with all of the
four persons in her group in the first time slice. In the second time slice, she is directly connected
with eight persons, but there are some persons in the bigger group to whom she has no relation
(Figure 5.3.b).
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Figure 5.3: Two juxtaposition views of a network, each view showing two time slices. The
balance of the dynamic layout is set to maximum stability in (a), enabling the detailed tracking
of single nodes since they approximately hold their positions, and to maximum consistency in
(b), enabling the perception of an overall insight (small clusters merge into bigger ones). The
node highlighting is performed in edges-first mode in (a) and in trajectories-first mode in (b).
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Figure 5.4: The highlighting interaction in the context of the superimposition view.

5.5 Trajectories on demand

While it is important to analyze and understand the topology of the network, in other words its
relational structure (i.e., its edges), nodes are just as important, representing the actors of all
the social interaction. Therefore, a good visual analytics approach supporting dynamic network
analysis should stress node properties and the changes they undergo over time. In particular,
given the importance we give to the layout and the information it conveys, we should provide
users with a mechanism to track a node over time and to find its position in each time slice in
a more immediate way than by just preserving stability. We accomplished this requirement by
showing the node trajectories with an adequate interaction technique for each view.

In the case of the superimposition view, we get an obvious solution from our dynamic chain
layout: by simply displaying the special edges connecting the instances of a given node in
different time slices, we obtain a polygonal chain that is exactly the trajectory of that node
(Figure 5.4). Unfortunately, the superimposition view is already cluttered with nodes and edges
of all the time slices, and consequently edge crossing. Moreover, many visual variables that
could have been used to differentiate trajectories from nodes are already exploited (color and
bending to distinguish different types of relations, transparency to distinguish recent and old
time slices). Thus, we allow users to alternatively visualize edges and trajectories or to visualize
them only on demand. However, the fact that all nodes lie on the same plane region should
provide some sort of a context that facilitates exploration and comparison even if not all edges
and trajectories are displayed at the same time. The lack of this proximity context, jointly with
the persistence of the crossing of both edges and trajectories, makes it very cumbersome to
exploit the trajectories in the juxtaposition view.
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(a) Trajectory of a single node shown on demand

(b) Trajectories of the selected node and its neighbours

(c) Trajectories of all nodes, with highlighting of the selected node and its neighbours

Figure 5.5: Node trajectories shown on demand in the 2.5D view.
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Conversely, the two-and-a-half-dimensional view is very well suited for the visualization of
trajectories, which link node instances in different time slices along the spatial dimension ded-
icated to time; user can interactively select a node to show its trajectory only (Figure 5.5a), the
trajectories of its neighbours (Figure 5.5b), or trajectories of all nodes (Figure 5.5c). Moreover,
in the third spatial dimension there are visual variables to which we can map additional infor-
mation. For instance, we can shade different colors along the trajectory of a given node to show
how its values for a certain metric vary over time. In this way, the results of analytics methods
are integrated directly into the main visualization of the network, enabling the user to examine
its relational and temporal aspects simultaneously without any additional diagram.

5.6 Switching between relational and temporal perspectives

In order to visualize dynamic networks, we have to choose amongst various visual representa-
tions (e.g., node-link diagrams, or matrix-based diagrams), and also choose a certain rule for
positioning nodes in the space, i.e. a layout, which preserves the user’s mental map across
evolving network states. An adequate visualization of dynamic network should also provide an
effective mapping of the time dimension. In case of discrete-time domain, in particular, we need
an effective criterion by which the diagrams referring to each time point are arranged and shown;
regarding this issue, we can choose amongst various options, like for example: animation, su-
perimposition, juxtaposition, and two-and-a-half-dimensional (2.5D) view (see Chapter 4).

Aside specific advantages and disadvantages, all these views share the aim of supporting the
visual analysis of both the structure and the evolution of the network. During a task-based qual-
itative user-study, we observed that users alternate and also combine different views, aiming to
solve complex synoptic tasks that demand the understanding of both relational and temporal as-
pects (e.g.: when identifying which employee has joined/left the organization in a certain period,
and analysing the organizational consequences). Thus, to better support the visual analysis, the
mental map has to be preserved not only across the subsequent states of the network over time,
but also across the various views exploited by users to solve their tasks, for example by ensuring
smooth animated transitions between views to maintain the exploration context. According to
some of the subjects involved in our study, these transitions not only helped them with preserv-
ing the mental map, but also served as a live explanation of the visualization metaphors, “saving
one from reading many pages of a manual”.
Considering in particular the 2.5D view, it has the clear advantage of explicitly mapping time
to a specific spatial dimension, that might be used to encode also additional information, like
node trajectories visualizing structural changes over time. A node trajectory is visualized as
a line connecting different instances of a given node across different time-slices; its slope can
show movements from the core to the periphery or vice versa. Moreover, the temporal evolution
of selected graph-theoretical measures associated to nodes can be visualized by changing the
color and the thickness of trajectories along the time axis. But, the 2.5D view is affected by
some problems, like distortion and overlapping. The degrees of distortion and overlapping are
correlated to the scene perspective (Figure 5.7), more precisely the camera angle of view or the
field of view (FOV). If the FOV is too narrow (Figure 5.6.a), node trajectories drawn along the
horizontal axis are visible but we get a foreshortened view of the node-link diagrams with a lot
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Figure 5.6: Two-and-a-half-dimensional views of a dynamic network with different values of
the field of view: a) 30 degrees; b) 120 degrees.

of distortion and compression; if the FOV is too broad (Figure 5.6.b), the node-link diagrams
are shown in a better angle but there are more occlusions, more overlapping amongst them, and
the added half dimension is less clearly visible. Optimizing the FOV can mean to minimize
distortion, or minimize overlapping and occlusion. But, going back to the need of combining
temporal and relational perspectives, we also notice that a narrow FOV enables a better analysis
of temporal trends (node-link diagrams are parallel to the line of sight and barely visible, while
trajectories along the time axis are visually prominent); while a broad FOV eases the inspec-
tion of the network topology (diagrams become more orthogonal to the line of sight, and partly
overlap trajectories). Thus, we should also find the value of FOV that optimizes the trade-off
between these contrasting needs.
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Figure 5.7: The geometric relationship amongst field of view (FOV), scene width, and camera-
subject distance.

5.6.1 The Vertigo zoom

Our proposed solution to the above described problems is not based on a method that tries to find
the ’best’ value for the field of view, but rather on an interaction technique that allows users to
interactively change and adapt it to their particular data, tasks, and personal preference. The ver-
tigo zoom is a well-know technique in filmmaking, named after Alfred Hitchcock’s movie Ver-
tigo (1958), also exploited in 3D computer graphics [111]. It is a synchronized combination of
a dolly movement and a zoom.

In filmmaking (as well as computer graphics), what we call ‘zoom’ actually is not performed
by changing the FOV, i.e. the focal length of the (virtual) lens, because this would introduce an
unwanted distortion of the scene; a zoom-in is realized by a dolly movement: the camera gets
closer to the scene, so that the scene is magnified without any perspective distortion. The ver-
tigo zoom, conversely, combines a dolly movement and a change of the focal length to produce
a change of the perspective without any magnification. The movement of the camera and the
change of its FOV have to be synchronized, so that the width of the scene is preserved (Fig-
ure 5.7), according to the equation:

distance =
width

2 tan (12FOV )
(5.1)

While this well-known technique is extensively used in motion pictures as well as in computer
games for creating dramatic effects, we propose its adoption for information visualization, as an
interaction technique supporting smooth transitions between different perspectives. Considering
2.5D visualizations of dynamic networks, a change of the FOV, controlled by the user by a
simple scroll gesture (on either the mouse or the touch-pad), would enable seamless switches
between the relational and the temporal perspectives.

The utility of this interaction technique is not limited to visualizations based on force-
directed node-link diagrams. Scatter plots using centrality measures as variables have been used
to visualize static social and biological networks [114, 244] as well as dynamic networks [293].
We can build a 2.5D visualization by stacking subsequent scatter plots (Figure 5.8a), and then
explore it by using our vertigo zoom interaction. In case of scatter plots the horizontal and
vertical coordinates convey directly the variables they refer to (in the example of Figure 5.8a,
eigenvector centrality and clustering coefficient). This is different from force-directed node-link
diagrams, where only the relative positions of nodes have a meaning, By using the vertigo zoom
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Figure 5.8: a) 2.5D visualization showing scatter plots of network centralities (FOV=60 de-
grees). b) 2D line chart showing the temporal evolution of network centralities (FOV=5 degrees).
The transition between the two views can be controlled interactively by the vertigo zoom.

to decrease the field of view and reach the maximum temporal perspective, the 2.5D visualiza-
tion based on scatter plots is flattened into a line chart, enabling the focused analysis of a single
variable for all nodes (FIgure 5.8b). The other variable can be visualized separately (by rotating
the view of 90 degrees around the horizontal axis), or jointly (by re-increasing the FOV). In other
words, by interactively varying the field of view, the user can focus on a single variable and anal-
yse its temporal evolution without any perspective distortion, or s/he can bear a certain amount
of distortion and inspect the temporal evolution as well as the correlation of two variables, and
s/he can always smoothly pass from the one end to the other.
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A glance at the related work (Chapter 5) shows that although the vertigo zoom appears to
be interesting and promising, it is only one of several techniques aimed to support the visual
analysis of dynamic networks. The switch between the temporal and the relational perspectives
can also be attained by using classical interactions, like zoom, pan, and rotation in 3D space, or
by switching to a different view through a smooth transition. In order to verify the effectiveness
of the vertigo zoom in comparison with the other techniques, we plan to perform a comparative
evaluation by running a set of controlled experiments. Several aspects which might influence
the use and the utility of the vertigo zoom should be considered. A factor to be considered is the
type of diagrams constituting the 2.5D visualization, either node-link diagrams or scatter plots.
Another aspect to take into account is the effect of size and density of the network, as well as
the number of time points. Lastly, the initial field of view could also affect users’ perception.
Steinicke et al. [359] suggest to match the geometric FOV of the visualization with the display
FOV, that is the angle of view at which users looks at their screens, and can be calculated on the
base of the estimation of the average size of the computer screen as well as the average distance
of users’ eyes from the screen (they report an average display FOV between 28 and 60 degrees).
But it is also worth noting that their suggestion refers to realistic rendering of 3D objects and
environments, and its applicability to information visualizations cannot be taken for granted.
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CHAPTER 6
Implementation notes

In order to demonstrate and evaluate our approach, described in previous chapters, we developed
an inspirational research prototype. For our implementation we used the Java 1 programming
language and the prefuse [191], a toolkit for interactive information visualization which realizes
the information visualization pipeline (Figure 6.1).

Figure 6.1: The information visualization pipeline as implemented by prefuse [191].

We managed graph data by a compact star data model (see Section 2.2.5): an edge list
complemented with forward and reverse indexes. We implemented the analytical component in
Java, too. We integrated standard SNA measures by using existing algorithms; we described
algorithmic details of our newly introduced change centrality metrics in Section 3.2.3.

The three-dimensional scene hosting the three views and the transitions between them has
been implemented by using JOGL 2, the Java binding for the OpenGL graphics library. In
particular, in the three-dimensional scene we created an OpenGL polygon for each time slice,
and mapped the prefuse visualization to the polygon two-dimensional texture. Trajectories in
the 2.5D view were realized as 3D cylinders by a JOGL renderer extending the prefuse edge
renderer.

1http://www.java.com, (accessed on 21/04/2017)
2http://jogamp.org/jogl/www/, (accessed on 21/04/2017)
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CHAPTER 7
Usage Scenario1

In this chapter, we demonstrate our approach by discussing a real-world usage scenario: we
focus on the organizational network of a knowledge-intensive enterprise (referred to as KIE in
the following).

The analysed firm focuses on research and public communication in various areas of exper-
tise. We gathered multi-relational network data by surveying the employees 4 times during 14
months. The questions aimed at the analysis of the organizational knowledge communication
network and were asked with reference to the last 3-4 months to cover the whole time period
between subsequent surveys. Due to generally high response rates, relational data of all relevant
and active actors could be collected at each survey. We disregarded probabilistic aspects and
multi-modality, by considering only employees as nodes and disregarding skills, tasks and any
other organizational data. At first the enterprise was structured into three organizational units,
while a restructuring process was altering the initial compartmentalisation at the end of the sur-
veys. The number of the enterprise staff varied between 33 and 34, with a total of 38 persons
considering the turnover. To preserve the privacy of the employer and of the employees, we
rendered both anonymous.

After having defined the context and the features of data, we conducted preliminary inter-
views with users to outline their needs and collect a list of requested features. We chose subjects
to be interviewed from two groups: business users with a managing function (i.e. non-experts
with reference to network analysis), who are our main potential users, and network experts as
reference group. We questioned 11 persons by the means of a semi-structured method; then we
analyzed the resulting audio recordings, each lasting between one and two hours, and processed
them into a list of requirements.

As a result of the user interviews, we elicited a list of tasks, both general (at network level)
and specific (at node level), all focused to dynamic aspects. A general task is to understand
the structure of the entire network and its evolution over time, for example by identifying large

1Main contents of this chapter have been presented at the UK Visual Analytics Consortium International Work-
shop on Visual Analytics [139]
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clusters of employees with tighter relationships and observing how they change over time. Ex-
amples of tasks at the node level are the identification of: any occurrence of hires, leaves and
resignations; increasing or decreasing levels of involvement; and the presence of key players and
their evolution.

7.1 Analysis of network structure

Figure 7.1: Identifying network’s structure and its evolution in a juxtaposition view; nodes are
coloured according to organizational units; selected node are highlighted in red and its connec-
tions in yellow.

The first task consists of identifying the structure of the network and following its evolution.
In more detail, we are interested in finding clusters, putting them in relation with organizational
units, and observing if and how they vary over time. Several features of our prototype can
support this task. The visualization is based on node-link diagrams (which scale properly for
networks in our size range). The identification of clusters is ensured by the dynamic layout al-
gorithm, which also is one of the benefits of the integration between visual and computational
techniques. We adopted a force-directed layout, ensuring stability by a linking mechanism.
The user can interactively control the stability/consistency trade-off: a simple GUI slider allows
her/him to select stability or consistency and to pass from one to the other through stepwise
transitions. Looking at the KIE dataset, we have found that an intermediate value lets the posi-
tions of nodes vary over time according to their connections, while it preserves the positions of
clusters (corresponding to organizational units, which remained unchanged until time point 3,
when they faced major organizational changes). These clusters and their evolution can be seen
in Figure 7.1 and Figure 7.2. The former shows a juxtaposition view, which applies the princi-
ple of small multiples and allows the reader to compare the time-slices and find commonalities
and differences. Coordinated zooming & panning and coordinated highlighting further facilitate
comparison. The latter (Figure 7.2) shows a superimposition view, obtained by superimposing
the node-link diagrams. In this case, a visual variable must be employed to differentiate between
time-slices: we used transparency, so that more recent elements are more opaque. This view has
also the advantage, with reference to juxtaposition, of reducing the eye movement from one
slice to the other during comparison, and preserves the context. In both views we see that the
dark-green cluster at the top (which also faced the major organizational changes) moves away
from other nodes.
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Figure 7.2: Node trajectories in a superimposition view; links (yellow) are only shown for the
selected node (red).

7.2 Hires, leaves, and resignations

Passing from overall tasks at the network level to more specific tasks at the node level, the first
thing we are interested in is identifying any occurrence of hires, leaves, and registrations. The
combination of our dynamic layout algorithm with two interaction techniques supports us with
this task. One interaction is the simple highlighting of adjacent nodes. The other consists of
showing the node trajectory as a polygonal chain, which connects instances of a given node in
subsequent time slices. In the juxtaposition view (Figure 7.1) the node corresponding to Sharon
(Sh) is highlighted in red: we observe a leave at time point 2, and a gradual reintroduction at
3 and 4, when she reestablished most of the relations she had. In the superimposition view
(Figure 7.2), we allow users to alternatively visualize edges and trajectories, or to visualize them
only on demand, to reduce the visual clutter. Trajectories of all nodes are visualized as gray
directed polygonal chains. The mouse-hovered node Jack (Ja) is highlighted in red, while its
neighbors are highlighted in yellow. The most recent instances are opaque, previous ones are
increasingly transparent. Jack has been loosing connections, so he moves from the center to the
periphery. Also Nadine (Na) and Ines (In), in the upper left, move from to center to the periphery
(and in the case of Nadine this corresponds to a resignation). Sharon (Sh), in the bottom, moves
the other way round, since she is coming back to work after a leave.
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7.3 The trend of individual performance

Another node-level task is to monitor the trend of individual performance, in the sense of so-
cial involvement in the communication/collaboration network. To illustrate how our prototype
supports it, we introduce two additional features: a two-and-a-half-dimensional (2.5D) view and
the integration with SNA computational methods. We considered metrics for static (i.e. non-
temporal) and single-relational networks, like for examples node centralities. In this way the user
can interactively select a certain metric to be computed for a certain type of relation; the entire
temporal multi-relational network is partitioned into as many static single-relational networks as
time-slices are and the requested metric is computed for each of them. Then the resulting values
are encoded to visual variables within the visualization (color, size, shape) for each time-slice.
We obtained a 2.5D view (Figure 7.3) by mapping time to an additional spatial dimension. In
such a view, we draw diagrams for each time-slice on separate transparent planes, stacked along
the horizontal time axis. It combines some of the advantages of the two aforementioned views.
3D zooming, rotating and panning controls allow the user to set the best viewpoint. In this view,
trajectories run along the spatial dimension dedicated to time. We shade different colors along
the trajectory of a given node to show how its values for a certain metric vary over time. In this
way, the results of analytics methods are integrated directly into the main visualization of the
network, enabling the user to examine its relational and temporal aspects simultaneously with-
out any additional diagram. In the KIE organizational network, we observe that Paul (Pa) has
constantly middle importance (bluish trajectory) while Jeff (Je), holding a managing function
until the time point 3, had high importance at the beginning but has been loosing it (trajectory
shading from green to azure).

Figure 7.3: Analyzing the trend of individual performances in the two-and-a-half-dimensional
view with trajectories.

7.4 Presence of key players and their evolution

The last task we discuss consists in identifying key players and tracking their evolution. Like
the previous task, this one is supported by the combination of the SNA computation, the two-
and-a-half-dimensional view and the interaction showing trajectories. In Figure 7.4, a zoomed
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and rotated 2.5D view, we observe that the betweenness associated to the top manager Hans de-
creased during the period 1 – 3 (green-azure trajectory), while the betweenness associated to the
administrative assistants Christian (Ch) and Judith (Ju) is the highest at the time point 3 (green
borders). We might correlate this observation with the managing decision to enforce inter-unit
collaboration, taken at time point 1. It gave the expected result, reducing the amount of coordi-
nation efforts required to the top manager, but also resulted in a higher charge of coordination to
be performed by the administrative assistants.

Figure 7.4: The evolution of a key player (red).
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CHAPTER 8
Expert Review

According to our methodology (see Section 1.4, in order to avoid threats to validity of our
approach, we performed expert reviews of design mock-ups and software prototypes at differ-
ent stages along the iterative development, involving in the problem domain (social network
analysis, organizational network analysis, network science) as well as visualization and human-
computer interaction experts.

Domain experts were involved since the early stages of our work, which was performed
in collaboration with a multidisciplinary team in the context of a applied research project. As
briefly mentioned in Chapter 7, we collected requirements by interviewing domain experts. Be-
sides characterizing the domain problems, we also identified indexes from social network analy-
sis which were reported as relevant and useful by interviewed experts (for example, they referred
to the so-called ABCD quartet, i.e., eigenvector, betweenness, closeness, and degree centrality).

We collected additional feedback from domain experts by informal interviews and discus-
sions about mock-ups and early prototypes at specific venues, such as the INSNA Social Net-
work Conference (Sunbelt), the International Conference on Network Science (NetSci), and
the Conference on Applications of Social Network Analysis (ASNA). Informal feedback from
experts in visualization and human-computer interaction was collected during interviews and
discussion sessions at the IEEE Visualization conference (VIS), the EuroGraphics/VGTC Con-
ference on Visualization (EuroVis) as well as during lab visits of international scientists to the
Laura Bassi Center for Visual Analytics Science and Technology (CVAST) at TU Wien.

These informal expert reviews included paper mock-ups, videos, software demonstration or
direct prototypes hands-on (depending on the development stage). We took down notes, recorded
audio and, when feasible, captured screen-casts, for off-line analysis. The outcome of these
activity was a collection of suggestions for improvement, comprehending usability issues as well
as specific analysis and visualization aspects. These suggestions were taken into consideration
for subsequent design and development phases.

For example, as for usability issues, in an early version of the prototype the user was allowed
to freely scroll trough time slices in the juxtaposition view, and seeking a specific time slice could
be difficult; to improve this interaction, we complemented each time slice with a small list of the
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entire sequence, and introduced a click-to-seek control for panning automatically and directly to
the selected time slice.

Another minor usability issue emerged from the two-dimensional rotation of the visualiza-
tion (present in all views). In order to improve the overall perception of the network structure
by the force-directed layout, the rotation is not performed around the center of the visualization
but rather around the center of mass of the node-link diagram, since the position of the centroid
conveys structural information. However, this interaction resulted to be potentially hard to un-
derstand to the user; consequently, we made this mechanism cleared by highlighting the center
of rotation as soon as the user initiates the interaction.

Several experts identified hidden states affecting the interaction modes that were not explic-
itly shown to the user like, for example, the two highlighting modes described in Section 5.4. In
subsequent development stages, we made sure to externalize all hidden machine states by visual
or textual hints, to give the user full control of the interactions.

Minor usability issues emerged about the understandability of text labels on legends, con-
trols, and other elements of the graphical user interface and were easily fixed. Other suggestions
went beyond simple usability issues, and encouraged us to improve visual analytics features or
introduce novel ones. For example, we found that the different visual encodings and the abrupt
switching between views could be confusing; hence, we designed and developed smooth ani-
mated transitions. We also found that static social network metrics, even if easily understood
and highly appreciated by domain experts, were not sufficient to analysis dynamics and, there-
fore, we introduced change centrality metrics.

Finally, we got recomendations to redesign the colors used for our dual-mode highlighting;
this remarks, in combination with the afore-mentioned need to externalise all inner program
states, lead us to the design of a unified, one-mode highlighting interaction (see Chapter 10).
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CHAPTER 9
Qualitative User Study1

The qualitative evaluation was conducted to assess the prototype’s usability as well as the com-
prehensibility of the different visualization and interaction techniques, and to cover users’ ex-
ploration process [356]. The subject pool consisted of nine users who work in the field of social
network research as pre- and post-docs, mainly as computer scientists or as graph theorists plus
another computer scientist from the visual analytics field. None of the participants had prior
knowledge about the prototype. In the first phase of this study, the prototype was presented to
the participants in an interactive session together with an instructor. Participants were encour-
aged to explore the functions of the prototype, ask questions, give feedback about the prototype’s
usability and express their ideas and suggestions for improvement. In the second phase, they had
to solve seven tasks, which were derived from the taxonomy by Ahn et al. [9] and were selected
on the basis of our experiences with previous mock-up studies. These tasks (see Table 9.1) in-
cluded lower-level activities like the identification and comparison of the relations of a single
node at two time points as well as higher-level activities [266] like the description of struc-
tural group changes over time. In the first task participants were allowed to use all prototype
functions and views freely. In all other tasks they were compelled to work with a preselected
initial view. In the third and last phase, participants were asked to summarize their impressions
and give additional feedback. The material consisted of the same real-world dataset described
in the usage scenario (see Chapter 7). The verbal comments and a screen cast were recorded
during all phases, which lasted about 1.5 hours in average. Notes were taken by an observer
during these sessions. These notes were jointly analyzed by a team of three usability experts
who were also part of the testing-team. The notes were segmented in single observations, which
were categorized and counted as presented in the following section. First we want to present an
overview about users’ feedback and observed problems during the introduction phase, later we
will describe our main insights that derived from task analysis.

1Main contents of this chapter have been published as a book chapter [354]
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Table 2 List of tasks for the prototype evaluation. The tasks were named according to the scheme
proposed by Ahn et al. [1]

Task name Task description Predefined settings

T1: Network—Growth Has the total density of the
network increased or decreased
from t1 to t2?

Open

T2: Group—Stability Which groups/clusters do you
detect? How do they change?

JX

T3: Node/Link—Growth Had Leonard (Le) more relations
at t1 or at t2?

JX C SNA

T4: Node/Link—Single
Occurency

Please identify the outdegree of
actor Hans at t3

JX C SNA C tooltip

T5: Node/Link—Growth Please identify the change
(increase/decrease) of Ines’
eigenvector centrality (from
t1 to t4)

2.5D C SNA C single
trajectory

T6: Node/Link—Birth Death Who has joined / who has left the
network (causing relational
consequences)?

2.5D C SNA C all
trajectories

T7: Node/Link—Peak/Valley Are there significant shifts of
single actors from cores to
peripheries or vice versa?

SI

which lasted about 1.5 up to 2 h in total. Notes were taken by an observer during
these sessions. These notes were jointly analyzed by a team of three usability
experts who were also part of the testing-team. The notes were segmented in single
observations, which were categorized and counted as presented in the following
section. First we want to present an overview about users’ feedback and observed
problems during the introduction phase, later we will describe our main insights that
derived from task analysis.

3.1 Evaluation Results

The evaluation results are structured as a matrix, with the main visual, computational
and interactive features of the prototype as rows and columns (see Fig. 5).

The feedback was segmented into 255 distinct observations, which were catego-
rized as problems (118), positive feedback (45) and ideas for improvement (109).
It has to be noted that similar observations were counted multiple times, so that we
could identify 155 unique observations in total.

To give an overview we will focus mainly on areas in which many observations
have been made, leaving bugs and too specific implementation issues aside. In all
views, many participants stated that the transitions are too slow, although the idea to
maintain the mental map by transitions yielded consistently positive feedback. In the

Table 9.1: List of tasks for the prototype evaluation. The tasks were named according to the
taxonomy by Ahn et al. [9]

9.1 Usability findings

The evaluation results are structured as a matrix, with the main visual, computational and in-
teractive features of the prototype as rows and columns (see Figure 9.1). The feedback was
segmented into 255 distinct observations, which were categorized as problems (118), positive
feedback (45) and ideas for improvement (109). It has to be noted that similar observations were
counted multiple times, so that we could identify 155 unique observations in total. To give an
overview we will focus mainly on areas in which many observations have been made, leaving
bugs and too specific implementation issues aside. In all views, many participants stated that
the transitions are too slow, although the idea to maintain the mental map by transitions yielded
consistently positive feedback. In the case of the highlighting feature, participants recommended
additional interactions to make comparisons easier by highlighting more than one node at a time.
SNA measures of nodes like centralities were always double coded by size and by color in the
prototype. Many users expressed the wish to have more freedom in selecting how these mea-
sures are displayed, and they preferred to use their favorite color palette. This applies for the
relations too, where different types of relations should be visualized by different visual features
like color or line style. Concerning the main views, the juxtaposition view was rated as the
most comprehensible by users comments and we detected the least problems in this view. In the
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superimposition view, participants mainly struggled following transitions and dealing with vi-
sual information overload. For the 2.5D view, users reported navigational problems as being too
slow, not responsive enough and they missed an immediate feedback of the prototype when they
zoom, pan or rotate. Most users suffered from perspective distortion when comparing node sizes
and they mentioned legibility issues since the node labels and tool tips were distorted to a high
extent in the two middle layers. Many users also mentioned a visual information overload as
soon as many of the (too boldly styled) trajectories were displayed in 2.5D view. Regarding the
GUI, most users reported serious problems in understanding some of the labels, especially those
of the dynamic views. Seven of eleven users reported (all of them no native English speakers)
comprehension problems for the naming of the views (mainly “Superimposition” and “Juxta-
position”), two proposed to use icons instead of names. Only one person made sense of all the
chosen view names. When dealing with user feedback seriously, this could be also seen as a hint
that the untested transfer of technical terms (here: from the InfoVis community) via a prototype
to an audience without that specific domain knowledge could have a negative impact on usabil-
ity. Aside this summary of problem oriented feedback, all users focused on implementation and
in general, nearly all participants expressed a remarkably positive assessment of the prototype
in their overall summary.

Figure 9.1: Frequency of observations which feature problems (red, left hand side of each col-
umn), positive feedback (green, center of each column) and ideas for improvement (blue, right
hand side of each column), which could be identified for all views, for single views (superimpo-
sition, juxtaposition, and 2.5D view) and for the GUI itself

9.2 Task Completion Analysis

We used two indicators to assess the effectiveness of our prototype’s features in supporting users
to solve assigned tasks: correctness and confidence. The correctness is defined as the conformity
of user’s answer to the answer we obtained by numerical methods and, for certain tasks, also
by our previous knowledge of the real-world network at hand. The confidence differentiates
between affirmative certain answers, and uncertain answers expressed in vague forms (e.g. “I
would say”, “I guess”, “I am not sure”). We disregarded the task completion time, because
we were more interested in the reasoning process, and asked users to think aloud and explain
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how they conceived the answer rather than to give the fastest answer. The overall correctness
of the answers was 89% (see Table ??). Half of the incorrect answers were given to task 1, but
they might be ascribed to the task openness (without any default settings of the view and other
parameters) and to the fact that it was intrinsically hard to solve, demanding the detection of a
very slight variation of the network density. As for the confidence, 82% of the correct answers
overall were also certain answers, with the highest value for task 3 and task 5, and the lowest
also in this case for task 1. As a general conclusion, we observed that most of the users were
able to provide correct, complete and confident answers for task 2 to task 7 (see Table ??),
mostly by using the combination of visual, analytical and interactive options we had set, with
noticeable exceptions and unexpected behavior that we discussed (see section about multiple
problem solving strategies). For some users, their performances on given tasks also affected
their initial preference about a given view, for example some users initially were skeptical about
the 2.5D and the superimposition views, but changed their mind after they realized they had
been able to solve task 6 and task 7 by using them.

9.3 Multiple Problem Solving Strategies

Concerning the collected data of the final prototype tests, we analyzed the thinkaloud audio
recordings and the prototype interaction screencasts, using a categorization scheme during ob-
servation to extract information how their interaction is related to their insights and categoriz-
ing the different solution strategies for every task. This is comparable to the work of Mayr et
al. [270], who used a similar procedure with insights by analyzing open tasks. We found interest-
ing empirical results besides correctness and confidence of users’ answers: we noticed multiple
problem solving strategies spanning both tasks and users, pointing out relevant differences in
either the alternative or the combined use of several prototype features.

The first empirical result refers to the integration of visual and analytical methods and their
balance. When addressing task 1, that was the toughest to accomplish and registered the low-
est correctness, most users looked for or asked for an analytical method directly providing the
numeric answer (that was actually missing, since the given SNA component computes only
node-level measures so far, and does not provide any network-level measure such as density).
Also for task 6, one user said that a binary table would have helped her in tracking nodes’ pres-
ence more than any visualization. Conversely, we noticed an opposite and unexpected behavior
for task 3 and task 4. Task 3 required to compare the degree of a given node over time, and these
values are mapped to the color and size of nodes, by default settings; task 4 required to find the
out-degree of a given node at a given time, and this value pops out as a numerical tooltip on
mouse over, by default settings. By analyzing these tasks, we observed that some users disre-
garded the analytical hints and preferred to find the (out-)degree just by counting the adjacent
nodes, with the help of the highlighting interaction. This observation would lead us to infer that
users prefer to visually solve those tasks they think they can manage, and to have recourse to
analytical methods for harder tasks. It is worth noting that for task 4 users who counted were
as confident as users who looked at the numeric tooltip, but the former were less often cor-
rect than the latter. The analysis of task 5 showed us another interesting user behavior: after
finding the sign of the variation of the eigenvector centrality by looking at the provided visual
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Figure 9.2: Interaction graph for task 1 of the prototype test, by two subjects. While the first
two rows show task duration (gray, row T) and occurred insights (light yellow, row R), rows 3–5
show the usage of the main views (superimposition = blue = row V1, juxtaposition = green =
row V2, 2.5D view = red = row V3), whereas the remaining rows show the usage of different
interaction and exploration techniques

mapping of the analytical value (color and size of the trajectory), some users rotated the 2.5D
view or switched to the juxtaposition view in order to verify whether the network topology was
compliant and confirmed the answer they gave.

Another interesting result, which we found from the analysis of the task completion proce-
dures, concerns the recourse to different views to solve the same task. For task 6, for example,
we provided a predefined setting with the 2.5D view and all trajectories activated. Most users
solved the task looking at the interruptions of trajectories (an interruption on the left side indi-
cates a node who has joined the network, an interruption on the right side indicates a node that
has left the network, and an interruption in the middle of two trajectory segments indicates a
short leave). In answering the second part of the task, about the relational consequences of these
changes, some users switched forth and back to other views, while others kept on using the
predefined view and 3D navigation. For task 7, some users switched from the predefined super-
imposition view to the 2.5D view, where they looked at the slopes of trajectories to investigate
movements of nodes.

In Figure 9.2 we can compare the exploration strategies of two subjects dealing with task 1.
This figure shows a temporal view of the interaction logs (i.e. which views and which interac-
tions were used or performed and when), as wll as task lengths and insight occurrences.
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Figure 9.3: 8 Interaction graph for the tasks 2–7 of the prototype test, by two subjects
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In this context, an insight is meant as a guess, a partial answer (in the sense of knowledge-
building insights [90]), or any additional remark. In particular, the first two rows show the
task duration (gray) and the sequence of insights (light yellow). Then, the following three rows
correspond to the three views: superimposition (blue), juxtaposition (green), and 2.5D (red).
Finally, remaining rows show the sequence of different types of interactions: transition between
views (purple), 2D navigation (light green), 3D navigation (light blue), change of layout stabil-
ity (pink), highlighting nodes and/or their trajectories (light purple), computing an SNA metric
(orange), and showing additional details in the info area or in the tooltip (light orange). Com-
paring the exploration behavior of these two subjects, namely Subject A (top) and Subject B
(bottom), we see that Subject A was faster, used as few interactions as possible and solved the
task straightforwardly. Conversely, Subject B seemed to exploit task 1 to play with the tool,
exploring most of its views and interactions. It is worth noting that both were possible expected
behaviors, given the openness of the first task.

In Figure 9.3 we compare the exploration strategies of the same pair of subjects dealing
with tasks 2-–7. While the correctness of answers is the same (100%) and completion times
are similar, we can identify very different patterns of interaction and few similarities. Overall,
we note that subject A switched views quite often, while Subject B never changed the pre-
defined view that was offered by the experiment setup. Moreover, Subject A never performed
3D panning or rotation, which were used quite often by Subject B; conversely, Subject A made
an intensive use of the tooltip while Subject B used it very seldom. Nevertheless, there is a
similarity in the layout adjustment, which was performed by both users only for task 2 (clusters
and their stability) and task 7 (shifts from core to periphery).

Looking in detail at specific tasks, we also find more differences than similarities. When
dealing with task 2, for example, Subject A started the analysis at a local level with a lot of
2D zooming and panning and then some layout adjustments, while Subject B set the layout
at first and then analyzed the network at a global level, during a long visual reasoning phase
without any interaction, besides some highlighting in the end. For task 4 (node outdegree), both
subjects had the same interaction pattern, but with a difference: Subject A gave an answer only
after reading the SNA value in the tooltip, while Subject B counted highlighted nodes and gave
the correct answer, then used the tooltip to confirm it. Tasks 5 and 6, whose predefined view
was the 2.5D, also showed differences: Subject A explored the view by highlighting nodes and
trajectories, while Subject B navigated it in the 3D space. For task 5, in particular, we can see as
both subjects launched an SNA computation, but Subject A looked at the numeric value in the
tooltip, while Subject B looked at its visual mapping (as explained above).

In general, considering all subjects of our study, we found that the different views comple-
ment each other, and the ‘best’ view does not depend only on the data and task, but also on users,
who might have different strategies even if they belong to a homogeneous group with a common
background. Furthermore, even a single user dealing with a single task, might find beneficial
switching from one view to another to ensure the correctness and/or the completeness of her
insights. Similarly, for many tasks there is no perfect choice between only visualization (node-
link diagrams) and only computation (numbers and tables), but the best choice is to integrate
both of them to support the visual analytics reasoning process. This approach enables the user
to exploit his/her preferred problem solving strategy at best and to gain complex insights from
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a multifaceted methods approach to network analysis. A possible disadvantage is that beginners
might choose a wrong way, and in more complex cases training might be needed to help them
switching to the fastest and most accurate strategy, but in general flexibility and multiple options
seem to be beneficial.
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CHAPTER 10
Quantitative User Study1

We performed a user study to explore interaction in the context of dynamic graphs visualization.
In particular, we considered a timeline visualization with the juxtaposition approach, where
several node-link diagrams are arranged along a horizontal timeline (Figure 10.1). We evaluated
two interaction techniques. The first one is the interactive control of the layout stability, which
is executed by the means of a slider control (thus, for the sake of brevity, we will refer to it as
the Slider). The second interaction is the highlighting of adjacent nodes (briefly, Highlighting).

10.1 Study design

We designed our user study as a quantitative controlled task-based evaluation, with two observed
dependent variables: time and error. We considered two factors, i.e. independent variables: the
presence of the Slider interaction (2 levels: off/on), and the presence of the Highlighting inter-
action (2 levels: off/on). In other words, we considered four different interfaces: no-interaction,
only Slider, only Highlighting, and both interactions. We chose this design in order to compare
the two interaction with each other and with the non-interactive baseline, and also to assess how
the two interactions work together.

We tested 6 task types. The full factorial design led to a total amount of N = Task ×
Slider × Highlighting = 6 × 2 × 2 = 24 conditions. To mitigate the effects of personal
skills and preferences, we chose a within-subject design; each subject tested 24 conditions, by
solving a different task for each of the six task type and for each of the four interfaces. In order
to lower the cognitive effort of switching between different interfaces, we grouped conditions
by interface. To mitigate the effects of learning and fatigue, we used a Latin square arrangement
of the interfaces and we randomized the order of the tasks within each interface. Moreover, we
randomized the initial slider position.

1Main contents of this chapter have been presented at the International Symposium on Graph Drawing and
Network Visualization [143]
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Figure 10.1: The remote evaluation software displays stimuli, provides instructions, and mea-
sures time and error.

node X (mouse hover in timeslice t2)

node connected to node X both in timeslice t2 and in the current timeslice

node connected to node X in timeslice t2, but not in the current timeslice

node connected to node X in the current timeslice, but not in timeslice t2

any other node

t2 t3t1

t3t1 t2

a

b

Figure 10.2: a: a dynamic graph over three time slices; a: the same graph highlighted on a
mouse-over event.
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10.2 Stimuli

We selected as baseline a spring-embedder layout as implemented in the Prefuse visualization
toolkit [191](Figure 10.1). According to the linking approach [67], we added inter-time links
to the graph in order to ensure layout stability. The Slider controls the amount of stability by
interactively changing the relaxed lengths of inter-time springs. In the implementation of the
Highlighting technique used for our experiment, when the user moves the mouse pointer over
a node, a different combination of fill and stroke colors is used to highlight each different type
of “adjacent” graph item, as shown in Figure 10.2. This interaction unifies the dual-mode high-
lighting introduced in Section 5.4 and combines the connectivity highlighting and the continuity
highlighting in a single interaction. For the experiment we used real-world datasets: the dynamic
graphs of social relationship between university freshmen collected by van Duijn, consisting of
38 nodes and 5 time points, and the one collected by van de Bunt, consisting of 49 nodes and
7 time points [379]. Through a threshold mechanism we derived two dynamic unweighted (i.e.,
binary) graphs from the original dynamic weighted graphs. Each task involved only subsets of
3 time slices.

10.3 Tasks

We selected six different types of tasks (Table 10.1). As a criterion for the selection of the
tasks, we considered existing studies on the importance of layout stability and tried to elicit a
set of similar tasks, in order to have comparable results. Furthermore, we considered the task
taxonomy by Ahn et al. [9] in order to have a meaningful and representative set of tasks along
its three axes. As for the graph entities, we included tasks referring to all the levels: the entity
level (nodes, links), the group level (paths, components), and the graph level (the entire graph).

Table 10.1: Task types, examples, and classifications

Task Description by [9] [25] [32]
1.NO Node Occurence Event/Node Local/Distinguishable When

e.g., When is the first appearance of node 27?
2.LO Link Occurence Event/Link Local/Distinguishable When

e.g., When is the last appearance of link 6–9?
3.ND Node Degree Event/Group Local/Indistinguishable When

e.g., When does the smallest degree (number of connections) of node 10 occur?
4.SP Shortest Path Event/Group Local/Distinguishable When

e.g., When does the largest geodesic distance between node 7 and node 9 occur?
5.CC Connected Components Growth/Graph Global/Indistinguishable What

e.g., Is the number of connected components increasing, decreasing, or stable?
6.AL All Links Growth/Graph Global/Indistinguishable What

e.g., Is the total number of edges increasing, decreasing, or stable?
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As for the properties, we disregarded tasks referring to domain properties and only considered
tasks referring to structural properties, which are specific aspects for graphs. As for the temporal
features, we included tasks referring to individual events and contraction & growth, scoping out
more complex tasks, which can be investigated in a follow-up study. In order to better describe
the nature of our tasks and to enable a better interpretation of results, we also categorized our
tasks according to other existing taxonomies [25, 32], as shown in Table 10.1.

10.4 Subjects’ pool and study settings

We conducted the experiment remotely by using the Evalbench toolkit [13] (Figure 10.1). In
order to assess the technical setup, the estimated overall length of the evaluation session, and the
understandability of textual descriptions of our tasks, we performed two pilot tests with direct
observation of subjects, and then we implemented small adjustments before the main remote
study. For the main study we recruited 64 volunteer subjects among undergraduate students at
the fifth semester of a bachelor programme in Visual Computing. All the subjects had normal or
corrected vision. Right after the recruiting, we instructed the subjects with a 15 minute briefing,
describing the visualization and the interactions to be evaluated, and recalling the necessary
concepts from graph theory (e.g., the notion of geodesic distance as shortest path, or the notion of
connected components). The subjects were instructed to be fast and accurate in solving the tasks,
without assigning any priority between speed and accuracy. The evaluation software included a
training session for each of the four interfaces. During the training sessions, the software does
not collect data; it shows the correct answer after completion of each task and allows repetitions
until the subject feels confident of having understood the task types and the interface. The test,
including the training sessions, had an average duration of 20 minutes.

10.5 Hypotheses

We designed our experiment to test three hypotheses: A) the Slider reduces error rates at the cost
of longer completion times, in comparison with the non-interactive interface; B) the Highlighting
reduces error rates at the cost of longer completion times, in comparison with the non-interactive
interface; C) the Highlighting outperforms the Slider.

We hypothesize that each interaction reduces error rates in comparison with the non-interactive
interface, because both interactions comply with the rule of self-evidence and address the adja-
cency task. The rule of self-evidence for multiple views prescribes the use of “perceptual cues
to make relationships among multiple views more apparent to the user” [37]. The Highlight-
ing complies with this rule, by drawing attention to different instances of the same node across
different time slices; the Slideralso complies with this rule, by allowing the user to select the
maximum stability and fix node positions across different time slices. The adjacency task (i.e.,
“Given a node, find its adjacent nodes”) has been identified as the only graph-specific task [253].
The Highlighting obviously addresses this task, as well as the Slider does, by allowing the user
to select the minimum stability and exploit the proximity Gestalt principle [51].

Conversely, we hypothesize that both interactions increase the task completion time in com-
parison with the non-interactive interface. We make this hypothesis in analogy with the existing
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comparative evaluations between animation and (static) timeline views [133] [23], while we
consider interactive timeline views as a middle way. More specifically, in terms of interaction
costs [250], the Highlighting might increase the completion time because of the physical-motion
cost of tracking elements with the mouse, while the Slider might imply view-change costs of
reinterpreting the perception when the layout rearranges. For both techniques, there might be
the decision costs of forming goals, such as deciding whether the available interaction is useful
to solve the given task, and how. Moreover, the simple fact that the GUI provides an interactive
option might lead users to explore its use, in order to form a solving strategy before solving a
task, or to possibly increase the confidence about the solution afterwards.

Furthermore, we hypothesize that the Highlighting will have better performance than the
Slider. We derive this hypothesis from the observation that the Highlighting is a common and
relatively simple interaction, which at least partially exploits pre-attentive processing, while the
Slider is based on a novel and complex concept. In other words, while the Highlighting directly
addresses the issue of connecting entities along two dimensions (time and graph structure), the
Slider implicitly introduces another dimension, since the stability lies in the parameter space of
the layout algorithm.

10.6 Analysis

We preprocessed data collected from 64 subjects in order to assess whether they were eligible
for analysis and we had to discard one subject whose logs were corrupted. The analysis was
then performed on data from 63 subjects, consisting of 3024 samples in total.

We checked the completion times for normality with the Shapiro-Wilk goodness-of-fit test
but the check failed. We then applied a logarithmic transformation to the completion times and
checked again the normality with a positive result. The verification of the Gaussian condition
assured the applicability of parametric tests; we could perform the analysis of variance through
an ANOVA with the subject as a random variable. If the ANOVA found a factor to have a
statistically significant effect, we compared the two levels of that factor with a pairwise post-hoc
Student’s t test; if the ANOVA found the interaction between factors to be statistically significant,
we performed an all-pairs Tukey’s honestly significant difference (HSD) post-hoc test.

The error can be understood as a dichotomous (i.e. binary) variable, since there are only
two possible outcomes for each data sample (correct, not correct). Hence, we analysed the error
by logistic regression as a generalized linear model (GLM) with a binomial distribution and a
logit transformation as the link function, computing likelihood ratio statistics. If a factor was
found to be a significant effect, we analysed the contrast between its levels in terms of pairwise
comparisons between estimated marginal means.

10.7 Results

Figure 10.3 shows time and error by Highlighting and Slider, grouped by Task; time is repre-
sented by box-plots with first, second (median), and third quartile, while error is represented by
bars (mean) and error bars (standard error). Figure 10.4 shows statistically significant differ-
ences.
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Figure 10.3: Time (left-hand side, as box plots) and error (right-hand side, as bars representing
means and error bars representing standard error) by Highlighting and Slider, grouped by Task.
� H0S0 � H0S1 � H1S0 � H1S1

In light of these results, we can verify our hypotheses.
Hypothesis A is partially confirmed. The Slider decreases the error rate for all tasks but the
easiest one (1.NO), and it increases the completion time for tasks 3.ND and 4.SP only.
Hypothesis B is partially confirmed. The Highlighting decreases the error rate for all tasks
but the most difficult one (6.AL); it increases completion times for tasks 4.SP and 5.CC, but it
reduces it for task 2.LO, and does not affect the remaining tasks.
Hypothesis C is partially confirmed. The Highlighting outperforms the Slider for tasks 1.NO,
2.LO, and 3.ND. For task 4.SP, the Highlighting and the Slider score equally: each of them
decreases the error rate (by the same amount) and also increases the completion time if used
alone, but when used together they do not increase the completion time, showing a desirable
effect interaction. For task 5.CC, both factors reduce the error rate, but the Highlighting also
increases the completion time when used alone. For task 6.AL, the only significant effect is that
the Slider reduces the error rate.

Besides the verification of our hypothesis, which are mostly confirmed, our user study pro-
vides interesting insights about the differences between tasks. First of all, we observe that the
differences in error rate and completion time among the tasks are significant, hence we can
confirm that in general our tasks have different levels of difficulty. Secondly, we observe that
the effectiveness of the tested interaction techniques varies with the levels of difficulty of the
tasks. In a very brief but accurate summary we can say that, for easier tasks, the Highlight-
ing decreases error rates and in some cases even decreases completion times; conversely, for
more difficult tasks, it is the Slider that decreases error rates. Moreover, for tasks 3.ND, 4.SP
and 5.CC, one technique increases completion times if used alone, but it does not if used in
combination with the other one. Looking back at the classification of our tasks (Table 10.1),
we can also identify the relevant aspects. We can observe that, for those tasks involving sim-
pler temporal features of distinguishable single entities (1.NO and 2.LO), or indistinguishable
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Figure 10.4: Statistically significant differences for time and error, by Task. An arrow means
that the source is faster or, respectively, more accurate than the destination, with the reported
probability. Lines represent all-pairs comparisons between factor combinations (� H0S0, �
H0S1, �H1S0, and �H1S1), as well as pairwise comparisons by Highlighting (H0–H1, top)
and Slider (S0–S1, left).

groups (3.ND), the Highlighting is more effective. For those tasks that refer to more complex
temporal features at the graph level, even if indistinguishable (5.CC and 6.AL), the Slider is
more effective. Task 4.SP is about the changes of the geodesic distance between two nodes and
requires the distinct identification of several nodes and links along the shortest path. In this case
both techniques are equally accurate; if (and only if) they are used together, they do not even
slow down the analysis. We can conjecture (by also considering our observations during the
pilot experiments) that during the completion of a such complex task, the Slider can be used to
switch back and forth between the minimum stability (to guess geodesic distances and shortest
paths based on Euclidean distances) and the maximum stability (to identify instances of nodes
and links across different time slices), while the Highlighting helps with tracking objects. As
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for task 6.AL, the Slider resulted to be effective; we hypothesize (by also considering our pilot
observations) that subjects simply set the minimum stability and looked at the total graph area
as an estimator of the density. We would have expected the Highlighting to be also effective,
since the analysis of the degree a few central nodes might provide a good estimator of the graph
density, given the power-law distribution of real-world networks. The results show that the test
subjects did not exploit this expert strategy.

10.7.1 Design implications

Both the Slider and the Highlighting are effective interaction techniques for dynamic graph
visualization, and their use generally improves user performances. In those circumstances where
it might be not possible to include them both (for example, if the color channel is employed to
encode attributes of multivariate graphs, or if the GUI is already overloaded with many controls),
our evaluation provides an indication to designers according to the user tasks to be supported.
Our results suggest that the Highlighting is indicated for tasks involving temporal features of
distinguishable single entities or indistinguishable groups, while the Slider is indicated for tasks
involving complex temporal behaviours at the graph level. The joint use of both interactions is
beneficial for the most complex task involving temporal behaviours of connectivity paths.

10.7.2 Limitations

We acknowledge the limitations of our experiment, whose findings might not be directly gener-
alizable to large-scale datasets. The highlighting interaction for dynamic graphs is much more
complex then the standard connectivity highlighting for static graphs, and may require train-
ing to be understood and used effectively. The stability control might have a different effect
when combined with 3D visualization and interaction techniques (e.g., the vertigo zoom, see
section 5.6.1). However, our study provides preliminary clues for visualization designers who
need to choose the most appropriate interaction technique for their users’ tasks.
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Part IV

Conclusion
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CHAPTER 11
Conclusion

In this final chapter we summarize our contributions to the scientific area of visual analytics
and illustrate how they address our initial research questions; furthermore, we report how we
disseminated the outcomes of our work by scientific publications and presentations; finally, we
outline possible follow-ups and future research directions.

11.1 Summary of contributions

We applied a visual analytics approach to the problem of examining dynamic (i.e., time-oriented)
network data, in particular organizational social networks. We developed novel techniques for
automated analysis, visualization, and user interaction, and demonstrated how they can be tightly
combined to support the sense-making process. We summarize our contributions by putting them
in context of concepts and state-of-the-art techniques we discussed in Chapter 2:

Data. We focused on a particular type of time-oriented networks. With respect to character-
istics of time [14], our data are characterized by a discrete scale, an interval-based scope, a
linear arrangement, an ordered viewpoint; the time primitives are instants (obtained by a slicing
transformation), with a single granularity.

Automated analysis. We defined a set of novel metrics for this kind of dynamic networks,
and designed algorithms to compute them. The change centrality metric combines relational
and temporal analysis, from both a local and a global perspective: it highlights when and where
the network changed, and how local changes affect the overall relational structure.

Visualization. As for the relational aspect, we used the same visual encoding (i.e., a node-link
diagram) with two different spatial arrangements: a force-directed layout and a measure-based
(i.e., scatter-plot like) layout. As for the visual encoding of the temporal aspect, we combined
three different views, which are based on a static approach (i.e., mapping time to space) but
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feature diverse encodings. The superimposition view can be understood as a Time in Graph
encoding: the primary geometry is determined by the relational aspect, while the temporal aspect
is mapped to retinal variables (in particular alpha-channel, i.e. transparency). The juxtaposition
and the two-and-a-half-dimension view exploit a Graph in Time visual encoding: the primary
geometry is based on a timeline, and node-link diagrams representing each time slice are placed
side by side or, respectively, stacked, along the timeline. The results of automated analysis
can be mapped to both retinal and planar variables. In the former case, metrics are mapped to
color and size of nodes, or to color and thickness of node trajectories; in the latter case, static
SNA metrics are used to compute the scatter-plot layout, and the change centrality is utilized to
improve the dynamic layout.

Interaction. We summarize the interaction techniques utilized in out approach according to
user intents [423]. We designed smooth animated transitions between views, which fulfil two
needs: explaining how the views are constructed and relate to each other, and preserving the
exploration context when the user switches from a visual encoding of temporal aspects to an-
other; this interaction supports the encode user intent. We introduced a technique for interactive
control of layout stability, by which user can adapt the amount of mental map preservation to
their preference as well as the data and task at hand. This novel interaction fulfils the rearrange
user intent. The novel vertigo zoom interaction supports the encode and the rearrange user in-
tents; it enables a seamless transition between the relational and the temporal perspective in the
context of two-and-a-half-dimensional view on dynamic networks. The combined analysis of
relational and temporal aspects of dynamic networks is also pursued by an interaction technique
that supports select and connect user intents by combining connectivity highlighting and con-
tinuity highlighting. The on-demand computation of network metrics, which are then used to
filter or enrich the visualized data, complements the set of supported user intents with filter and
abstract/elaborate.

Validation. We have utilized various methods to validate all the aforementioned techniques,
and their combination in a consistent and unitary visual analytics approach. The expert reviews
revealed usability issues of design mock-ups and early prototypes, which we resolved in sub-
sequent development iterations. By describing a concrete usage scenario, we illustrate how our
approach can be used to analyze and gain insights from real-world data. The qualitative evalu-
ation shows that the presence of multiple and redundant problem-solving strategies helps users
address different tasks and improve correctness and confidence of answers. The quantitative
evaluation, focused in particular on the highlighting interaction and the layout stability control,
indicates that the former is better suited for tasks involving temporal features of distinguishable
single entities or indistinguishable groups, while the latter for tasks involving complex temporal
behaviours at the graph level; the joint use of both interactions is beneficial for the most complex
task involving temporal behaviours of connectivity paths.
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11.2 Answers to research questions

After summarizing our work, which consisted design and/or combination of novel techniques,
development of a prototypical implementation, and validation by expert reviews and user studies,
we can finally discuss the research questions who drove our research and provide well-grounded
and empirical answers:

• Q: How can a visual analytics approach support the examination of dynamic networks
according to specific user tasks?

• A: Our work has shown that an integrated visual analytics approach can support the exam-
ination of dynamic network by seamlessly intertwining automatic analysis, visualization,
and interaction techniques, which complement and improve each other. While specific
techniques resulted particularly well-suited for given tasks, our qualitative and quantitative
observations indicate that their combination is beneficial to improve speed, correctness,
and confidence of all tasks, and especially the most complex ones.

The answer to the main research question can be further detailed by the answer to the
three interconnected sub questions:

– Q: How can temporal aspects of network data and dynamic underlying phenomena
be best visualized?

– A: We proposed the combination of different visualization techniques, which build
upon different visual encodings of the time-oriented aspects as well as different re-
lational aspects. As for the temporal aspects, we investigated visual encodings that
map them to the primary geometry (i.e., the juxtaposition view and the two-and-a-
half-dimension view, belonging both into the Graph in time category), as well as
visual encodings that map them to retinal variables within a graph-based geometry
(the superimposition view, a Time in graph visual encoding). As for the relational
aspects, we utilized a node-link diagram, alternating an energy-based layout with a
measure-based layout (similar to a scatter plot). The empirical evaluation we per-
formed indicates that this combination of visual encodings is effective, especially if
supported by an adequate interaction technique which animates transitions between
them.

– Q: How can we integrate analytical methods and visualization techniques to address
the complexity of dynamic networks?

– A: We introduced change centrality, a novel metrics for dynamic networks, and a
set of metrics deriving from change centrality. We showed how they can be utilized
to filter the data (emphasizing either changes or stable cores on-demand), or visual-
ized (e.g., mapped to planar variables to improve the dynamic layout, or to retinal
variables to enrich network data and facilitate their interpretation).

– Q: Is it possible to combine analytical methods and interaction techniques to en-
hance the perception of network dynamics?
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– A: We introduced several novel interaction techniques and showed how they can be
combined with results of automated analysis. The interactive control of the layout
complements the change centrality metrics, allowing the user to fine tune the layout
by selecting the preferred amount of stability. The vertigo zoom interaction, enabling
smooth transitions between relational and temporal perspectives, is particularly use-
ful in combination with the scatter-plot layout, which is computed on top of network
metrics. More in general, we observed that the combination of visual interaction and
automated analysis effectively supported users’ multiple problem-solving strategies.

11.3 Future directions

We identified three main directions to extend our research on dynamic networks beyond the
scope of this dissertation: scale, time, and structure.

Scale In this work, we focused on relatively small (up to 50 vertices) and not very dense
(around 500 edges) networks, which is a sufficient scale for our problem domain, i.e. the analysis
of interpersonal relationships in organizational contexts. However, other application domains
present larger scales, and pose the challenge of adapting existing approaches to visual scalability
(reduction by filtering and/or aggregation, see Section 2.6.1.2) for the time-oriented aspects of
dynamic networks.

Time In this work, we considered dynamic networks with particular time-oriented characteris-
tics, namely a discrete time scale, only instants as time primitives, and a single time granularity
(see Section 2.1.1). Interesting research possibilities open up by considering more complex time
characteristics, for example a continuous time scale, both instants and intervals as time primi-
tives, and multiple granularities organized into calendar systems.

Structure The organizational social networks we considered in this work are simple and uni-
variate (see Section 2.1). Other applications domain deal with multi-variate data, which can be
modelled as multi-modal networks (featuring vertices of different types) and/or multi-relational
networks (featuring edges of different types). Furthermore, this networks can be structured as
compound graphs, i.e., their nodes can be grouped in multi-level hierarchies. While this kind
of structure provides an inherent aggregation which helps with the visual scalability in the static
case, in general it poses the challenge of dealing with its dynamic time-oriented aspects.

11.3.1 Follow-up project

The above-mentioned directions led us to the development of a new research project: we are
currently extending and adapting the outcomes of this dissertation to another application do-
main, namely the visual analysis of patents. Patent data, indeed, present more complex temporal
characteristics: a continuous time scale (since they are filed on a daily basis), diverse time prim-
itives (their filing date is represented by an instant, but their validity term is represented by
an interval), diverse granularities (they are filed on a daily basis, but they can be analysed by
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monthly or yearly aggregation). Patent datasets have very large scales (the European Patent
Office dataset contains 90 million patent documents). Patent datasets can be modelled as multi-
modal networks (including diverse entities such as patents, inventors, companies, agents) and
multi-relational networks (for example citations, co-citations, co-authorship), and comprehend
also hierarchies (for example, several patent classification systems). Preliminary results from
this follow-up research are reported in the next section.

11.4 Publications and dissemination

The main scientific outcomes of this work contribute to the field of computer science, in gen-
eral, and visualization, in particular. However, since we conducted our work in the context of
a problem-driven applied research, in collaboration with an interdisciplinary team, it also con-
tributed to the development of the problem domain.

11.4.1 Publications about dynamic networks in computer science

• P. Federico, W. Aigner, S. Miksch, F. Windhager, and L. Zenk. A visual analytics approach
to dynamic social networks. In Proceedings of the 11th International Conference on
Knowledge Management and Knowledge Technologies, i-KNOW 11, pages 47:1–47:8,
New York, NY, USA, 2011. ACM

• P. Federico, J. Pfeffer, W. Aigner, S. Miksch, and L. Zenk. Visual analysis of dynamic net-
works using change centrality. In 2012 IEEE/ACM International Conference on Advances
in Social Networks Analysis and Mining, pages 179–183, Aug 2012

• P. Federico, W. Aigner, S. Miksch, F. Windhager, and M. Smuc. Vertigo zoom: Combining
relational and temporal perspectives on dynamic networks. In Proceedings of the Interna-
tional Working Conference on Advanced Visual Interfaces, AVI ’12, pages 437–440, New
York, NY, USA, 2012. ACM

• P. Federico, W. Aigner, S. Miksch, F. Windhager, and L. Zenk. Visual analytics of dynamic
networks - a case study. In The Third International UKVAC Workshop on Visual Analytics
(VAW), 2011

• M. Smuc, P. Federico, F. Windhager, W. Aigner, L. Zenk, and S. Miksch. How do you
connect moving dots? insights from user studies on dynamic network visualizations. In
W. Huang, editor, Handbook of Human Centric Visualization, pages 623–650. Springer,
2014

• P. Federico and S. Miksch. Evaluation of two interaction techniques for visualization
of dynamic graphs. In Y. Hu and M. Nöllenburg, editors, Graph Drawing and Network
Visualization: 24th International Symposium, GD 2016, Athens, Greece, September 19-21,
2016, Revised Selected Papers, pages 557–571. Springer International Publishing, Cham,
2016
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• P. Federico. Visual analytics of dynamic social networks. In Doctoral Colloquium of the
IEEE Conference on Visualization, 2011

• P. Federico, W. Aigner, S. Miksch, J. Pfeffer, M. Smuc, F. Windhager, and L. Zenk. Viena:
Visual enterprise network analytics. In K. Matkovic and G. Santucci, editors, Poster Pro-
ceedings of the 3rd International Workshop on Visual Analytics (EuroVA), page 12. Euro-
graphics, Eurographics, 2012

Follow-up project We list here preliminary publications in the context of the follow-up project
on visual analytics of patent network dynamics, building upon work presented in this dissertation
but beyond its core scope:

• P. Federico, F. Heimerl, S. Koch, and S. Miksch. A survey on visual approaches for ana-
lyzing scientific literature and patents. IEEE Transactions on Visualization and Computer
Graphics, PP(99):1–1, 2016

• F. Windhager, A. Amor-Amoros, M. Smuc, P. Federico, L. Zenk, and S. Miksch. A con-
cept for the exploratory visualization of patent network dynamics. In Proceedings of
the 6th International Conference on Information Visualization Theory and Applications,
pages 268–273, 2015

• A. Amor-Amorós, P. Federico, and S. Miksch. Timegraph: A data management framework
for visual analytics of large multivariate time-oriented networks. In 2014 IEEE Confer-
ence on Visual Analytics Science and Technology (VAST), pages 217–218, Oct 2014

• A. Amor-Amorós, P. Federico, and S. Miksch. Visually-supported graph traversals for
exploratory analysis. In Poster Proceedings of the IEEE Visualization Conference (VIS),
2016

• P. Federico, A. Amor-Amorós, and S. Miksch. A nested workflow model for visual ana-
lytics design and validation. In Proceedings of the Sixth Workshop on Beyond Time and
Errors on Novel Evaluation Methods for Visualization, BELIV ’16, pages 104–111, New
York, NY, USA, 2016. ACM

11.4.2 Publications about dynamic networks in other domains

• P. Federico, F. Windhager, L. Zenk, and M. Smuc. Visual analytics of dynamic networks.
In XXX INSNA Sunbelt Social Networks Conference. International Network for Social
Network Analysis, 2010

• F. Windhager, L. Zenk, and P. Federico. Visual enterprise network analytics - visualizing
organizational change. Procedia - Social and Behavioral Sciences, 22:59 – 68, 2011

• F. Windhager, M. Smuc, L. Zenk, P. Federico, J. Pfeffer, and W. Aigner. On visualizing
knowledge flows at a university department. Procedia - Social and Behavioral Sciences,
100:127 – 143, 2013
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• F. Windhager, M. Smuc, L. Zenk, P. Federico, J. Pfeffer, W. Aigner, and S. Miksch. Visual
knowledge networks analytics. In J. Liebowitz, editor, Knowledge Management Hand-
book, page 187–206. CRC Press, 2012

11.4.3 Other publications in computer science

The research project who constitutes the core of this dissertation was conducted in parallel with
other research projects in visualization and visual analytics, not directly related to dynamic
networks. For completeness, we report the scientific outcome of these parallel projects:

• W. Aigner, P. Federico, T. Gschwandtner, S. Miksch, and A. Rind. Challenges of time-
oriented data in visual analytics for healthcare. In J. J. Caban and D. Gotz, editors, Pro-
ceedings of the IEEE VisWeek Workshop on Visual Analytics in Healthcare, 2012. Vortrag:
IEEE VisWeek Workshop on Visual Analytics in Healthcare, Seattle; 2012-10-17

• P. Bodesinsky, P. Federico, and S. Miksch. Visual analysis of compliance with clinical
guidelines. In Proceedings of the 13th International Conference on Knowledge Manage-
ment and Knowledge Technologies, i-Know ’13, pages 12:1–12:8, New York, NY, USA,
2013. ACM

• P. Federico, S. Hoffmann, A. Rind, W. Aigner, and S. Miksch. Qualizon graphs: Space-
efficient time-series visualization with qualitative abstractions. In Proceedings of the 2014
International Working Conference on Advanced Visual Interfaces, AVI ’14, pages 273–
280, New York, NY, USA, 2014. ACM

• P. Federico, J. Unger, A. Amor-Amorós, L. Sacchi, D. Klimov, and S. Miksch. Gnaeus:
Utilizing Clinical Guidelines for Knowledge-assisted Visualisation of EHR Cohorts. In
E. Bertini and J. C. Roberts, editors, EuroVis Workshop on Visual Analytics (EuroVA). The
Eurographics Association, 2015

• T. Gschwandtner, M. Bögl, P. Federico, and S. Miksch. Visual encodings of temporal
uncertainty: A comparative user study. IEEE Transactions on Visualization and Computer
Graphics, 22(1):539–548, Jan 2016

• A. Rind, P. Federico, T. Gschwandtner, W. Aigner, J. Doppler, and M. Wagner. Visual
analytics of electronic health records with a focus on time. In G. Rinaldi, editor, New
Perspectives in Medical Records: Meeting the Needs of Patients and Practitioners, pages
65–77. Springer International Publishing, Cham, 2017
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