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Abstract

This work deals with the self-commissioning of toothed linear belt drives. The self-
commissioning includes the mathematical modelling of the system, the identification
of the model parameters and the automatic controller design based on the paramet-
ric model. The presented algorithms utilize only little a priori knowledge of the sys-
tem. The necessary information can be found in the data sheets of the used hard-
ware. A feedback and feedforward controller are provided as result of the proposed
algorithms. The algorithms allow for a direct implementation in the motor-controller
software due to the time-discrete implementation. If the desired application needs further
tuning of the control loop, this can be done by suitably adapting the design parame-
ters of the proposed algorithms. All the algorithms are tested on an experimental setup.

The mathematical model utilizes the mechanical structure of toothed linear belt drives
and is furthermore reduced to a two-mass-spring-damper model including nonlinear
friction. The cascaded controller consists of an inner velocity controller and a superimposed
position controller. The inner control loop is parametrized as proportional-integral-velocity-
controller and the outer control loop as proportional-position-controller. Moreover, an
appropriate feedforward controller is designed based on the identified mathematical model.
The identification process and the controller design are automatized, that is, no further
interaction of the user is required during the commissioning of the system.

II



Kurzzusammenfassung

Diese Arbeit beschäftigt sich mit der Selbstinbetriebnahme von Linearachsen mit Zahn-
riemenantrieb für Positionieraufgaben. Dabei wird die mathematische Modellierung des
Systems, die Identifikation der Modellparameter und die darauf aufbauende automatisierte
Reglerauslegung behandelt. Die vorgestellten Algorithmen verwenden dabei geringes a prio-
ri Wissen über das System. Die notwendigen Daten können den Datenblättern der verwen-
deten Hardware entnommen werden. Der präsentierte Algorithmus liefert als Ergebnis die
fertig parametrierte Reglerkaskade mit Vorsteuerung und kann durch die zeitdiskrete Imple-
mentierung direkt in die Motorcontroller-Software integriert werden. Falls gewünscht, kann
der Endanwender das Systemverhalten anhand von wenigen Tuning-Parametern weiter an-
passen. Die vorgestellten Algorithmen werden anhand eines Testaufbaus getestet und verifi-
ziert.

Das mathematische Modell wird basierend auf dem mechanischen Aufbau hergeleitet
und auf ein Zwei-Massen-Modell mit nichtlinearer Reibung reduziert. Die Reglerkaskade
besteht aus einem inneren Geschwindigkeitsregelkreis und einem äußeren Regelkreis,
der die Position des Systems regelt. Für den inneren Regelkreis wird ein Proportional-
Integral Geschwindigkeitsregler eingesetzt, während für den überlagerten Positionsregler
ein Proportionalregler zur Anwendung kommt. Außerdem wird anhand der identifizierten
Modellparameter eine geeignete Vorsteuerung abgeleitet. Die Systemidentifikation und
der Reglerentwurf sind dabei soweit automatisiert, dass keine weitere Interaktion des
Endanwenders für die Inbetriebnahme notwendig ist.
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1 Introduction

Modern production lines in industry make use of conveyor belts and industrial robots
to increase productivity and competitiveness. Belt driven linear drives can be used as
conveyor belts, propulsion chains for overhead cranes or even to build up a pick and place
robot in delta design. Belt driven linear drives are constructed for high dynamic usage with
low to medium masses. They utilize diverter pulleys to convert the rotatory movement of
a motor into a linear movement of a cart mounted at the connecting belt. In contrast
to spindle axis, belt driven linear axes can achieve higher velocities and accelerations
of about one order of magnitude. Moreover, they are easier to build, which results in
significant lower costs compared to spindle drives. The usage of belts introduces additional
resonances in the lower frequency range, which need to be taken into account during the
whole hardware design process and especially in the controller design. Another costly
detail is the position measurement of the driven cart. While a rotary incremental encoder
is mostly available at the motor side for controlling the motor torque, velocity and position,
an incremental encoder at the moving cart is often not desirable. This is because of the
necessary wiring, the additional hardware needed, and the constraints on the hardware
design of the moving cart and the connected components due to the required space for
the sensor and the adjacent encoder stripe.

The fundamental problem of controlling a propulsion chain is quite common in modern
automation tasks. For example, an industry robot consists of up to seven serial position
systems, each consisting of nearly the same system structure as the presented linear
belt driven servo system. Nearly all motor driven positioning systems show a distinct
resonance-antiresonance behavior due to the mechanical construction. Thus, the presented
problem can be generalized above the scope of this diploma thesis, that is the application
in belt driven servo systems.
This diploma thesis deals with self-commissioning of belt driven linear drives. The

main goal is to support the technician with a toolbox for commissioning of the hardware
while the actual controller characteristics can be easily adjusted to the needs of the target
application. That is, a faster controller for high speed pick and place applications with
softer constraints on the absolute position accuracy or a more robust, but slower controller
setting for increased robustness against parameter variations like the moving mass. The
technician therefore does not need in-depth knowledge of control and identification theory
because commissioning is automatically performed by the presented algorithms, thus,
simplifying the controller tuning of linear belt driven servo systems. Moreover, the model-
based approach allows to gather diagnostic information about the system state. As to
mention, allowing for failure prediction.
The subsequent section explains the test hardware and setup used for all experiments

and for the verification of the presented algorithms and strategies. The second section
of this chapter gives a short literature survey of the state of the art in auto-tuning

1
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Θr

l1(ξ)

lξ

ξ

l3 = 79 cm

l2(ξ)

mc

motor Θm
Θr

cart
linear bearing with toothed belt

Figure 1.1: Picture of the test rig for all practical experiments presented in this diploma
thesis.

and self-commissioning techniques on belt driven servo systems with emphasis on the
differences compared to this work. In the last section of this chapter, the structure of this
thesis is explained.

1.1 Test rig
A picture of the test setup for all experiments and measurements in this diploma thesis
is shown in Figure 1.1. The motor (see parameters listed in Table A.1 in Appendix A)
with mass moment of inertia Θm is relatively stiff coupled with the linear bearing (see
parameters listed in Table A.2 in Appendix A) via an axial coupling set (see parameters
listed in Table A.3 in Appendix A). The linear axis consists of a driving pulley at the
motor side and a driven pulley at the opposite site of the axis, both with mass moment of
inertia Θr. The distance between the centers of the pulleys is given by the constant length
l3. Both pulleys are connected via a flexible toothed belt. Its ends are mounted at the
moving cart, which can change its position ξ linearly along the linear bearing. Depending
on the actual position of the moving cart the distance l1(ξ), which is the distance between
the center of the driving pulley and the left side of the cart, the distance l2(ξ), which
denotes the distance from the right mounting point of the belt at the cart to the center of
the driven pulley, changes. In the initial position of the cart ξ = 0, the distance between
the center of the driving pulley and the center of the moving cart encounters its minimum
value lξ. In order to simulate different masses mc mounted at the moving cart, additional
weights in form of iron blocks can be mounted on the cart, each with a mass of about
1.3 kg. The motor is used in closed-loop current controlled mode.
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1.2 Literature survey
Regarding the system identification process, Schütte [1] presents a framework for identifying
belt driven servo mechanisms with test signals in a closed-loop approach. In contrast to
[1], Henke [2] presents a pure model-based approach. He builds up a database of models
for the motor and the mechanical subsystems from which the user can choose the used
components. The models are manually tuned to fit the real hardware. Hence, the user
selects the mathematical model by choosing the used components. Thus, only components
that are listed in the database can be used and wearing or aging of the components
is not modeled. Jokinen [3] and Jokinen et al. [4] present a model of a belt driven
servo mechanism quite similar to the one used in this work. However, they identify the
model by using the values of belt pretension provided by the manufacturer. This is often
too inaccurate because of manufacturing tolerances and imperfections. In [5], Selezneva
builds up the mathematical model using only the dataset given by the manufacturer and
identifies the friction parameters using torque steps with different amplitude and alters the
model parameters accordingly to fit the actual hardware. This leads, however, to a rather
imprecise of the system dynamics due to tolerances in the data sheets or manufacturing
imperfections. In addition, aging is not regarded within this approach. In [6], a comparison
of an open-loop and a direct and indirect closed-loop system identification is provided. It
is concluded that each of the approaches can be used to identify the system parameters. In
[7], Nevaranta and in [8], Saarakkala utilize an online estimation approach for identifying
the parameters of a linear model.
Regarding the control design strategy, Saarakkala [8] shows in his comparison of the

works from Jokinen et al. [4], Saarakkala et al. [6, 9–13], and Harnefors et al. [14] that
a controller cascade in the form of a proportional-integral (PI)-velocity-controller and
a proportional (P)-position-controller provides sufficient control performance compared
to more sophisticated nonlinear control strategies. Moreover, Schütte presented in [1]
a state-space-based PI-velocity-controller with additional disturbance feedforward and
a superimposed P-position-controller. This controller shows only satisfactory control
performance and little robustness with respect to parameter variations. Additionally, an
internal model control (IMC) approach and a P-PI-controller with state variable filter and
torque backlash feedforward is presented. However, the IMC shows insufficient robustness
to parameter variations, whereas the P-PI-controller cascade delivered the best control
performance regarding the position accuracy and robustness. A Notch filter is utilized
to dampen the mechanical resonance frequency in the P-PI-controller approach, which
is used in a similar form in this work. In [2] a combined time- and frequency-domain
quality criterion is stated and utilized to design a PI-velocity-controller and a P-position-
controller. Furthermore, in [7] a linear quadratic controller is compared to a sliding mode
control (SMC) and an online adaptive control algorithm. The work [7] concludes that
the sliding mode controller is not preferable for mechanical systems due to the infinite
controller bandwidth that is necessary and the hard switching behavior. The linear
quadratic controller needs the partially not observable state variables and an appropriate
weighting of the feedback matrices that often require further manual tuning. The adaptive
controller, as proposed in [7], needs a robust and stable online identification algorithm,
which can be used to adapt the controller parameters. However, the online identification
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approach is limited by the amount and degree of the nonlinear friction, which limits the
generality of the approach. Therefore, in [7], also a proportional-integral-differential (PID)-
structure is used for control. In [3], Jokinen also uses a PID-controller, which, however, is
based on the quantitative feedback theory.

1.3 Structure of this thesis
In Chapter 2, the mathematical model of a belt driven servo mechanism is derived starting
with a three-mass-spring-damper model. It is simplified to a parametric two-mass-spring-
damper model. In Chapter 3, this simplified model is identified by an open- and closed-loop
empirical frequency response analysis. The frequency responses are then used to identify
the characteristic parameters of the two-mass-spring-damper-model. The closing section
of this chapter deals with the identification of the dominant nonlinearity of the system, the
Coulomb friction. In Chapter 4, the parametric model is then used to design a cascaded
feedback control structure to control the velocity and the position. The end section
of this chapter deals with the design of a feedforward controller. Chapter 5 presents
the measurement results based on the controller design of Chapter 4 and outlines the
differences, advantages and disadvantages of the examined control strategies. Chapter 6
deals with some details on the implementation, as to mention, the integrator anti-windup,
the generation of the velocity signals from the incremental encoder position signals and
the generation of time-optimal position trajectories meeting constraints on the velocity,
acceleration and jerk. The closing chapter, Chapter 7, gives a summary of the presented
control and identification techniques and provides suggestions for improvements, which
need further research and investigation beyond the scope of this diploma thesis.



2 Mathematical modeling of linear toothed
belt drives

In this chapter, a mathematical model for linear toothed belt drives is derived. In a
first step, the model is presented as a concentrated three-mass-spring-damper model.
It is then further simplified to obtain a reduced two-mass-spring-damper model. The
latter is furthermore linearized in order to obtain a linear model. This model forms
the basis for the subsequent parameter identification presented in Chapter 3 and the
controller design presented in Chapter 4. The frequency response behavior of the linear
two-mass-spring-damper model and the implications of the applied simplifications are
shown in more detail. Although this diploma thesis deals with the controller design based
on the linearized model of the plant, this chapter also elaborates the main causes for the
nonlinear behavior.

2.1 Linear toothed belt drive
Figure 2.1 depicts a schematic of a linear toothed belt driven servo mechanism.

r

ϕg, τg

ϕm, τm

motor
Θm

gearbox
Θg, ig

toothed beltdriving pulley
Θr

driven pulley
Θr

mc
f

ϕ1, τ1 ϕ2, τ2

l3

ξ

l1(ξ) l2(ξ)

Figure 2.1: Schematic of a belt driven servo mechanism.

A linear toothed belt driven servo mechanism [15, 96ff] typically consists of a driving
motor, e. g., a permanent-magnet synchronous motor (PSM) with mass moment of inertia
Θm, motor angle ϕm and motor torque τm, which actuates a flexible timing-belt via a
driving pulley with mass moment of inertia Θr, driving pulley angle ϕ1, pulley torque τ1
and effective radius r. An optional gearbox with mass moment of inertia Θg, gear angle

5
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ϕg and gear torque τg realizes a gear reduction. The transmission ratio is given by

ig = ωm
ωg

, (2.1)

where

ωm = ϕ̇m = dϕm
dt (2.2a)

and

ωg = ϕ̇g = dϕg
dt (2.2b)

are the total time-derivatives of ϕm and ϕg, respectively, see [16] and [17]. The toothed
belt connects the pulley at the driving side with the pulley at the end side. The distance
between the pulleys and, hence, the length of the belt drive is given by l3. The angle
and the torque of the end side pulley are denoted by ϕ2 and τ2, respectively. Nearly all
industrially used toothed belt drives utilize the same pulley for the driving side and the
end side. Because of this, the end side pulley is assumed to have a mass moment of inertia
Θr. A cart with mass mc is mounted on the toothed belt and the cart position is denoted
by ξ. An external force f is assumed to act on the cart.

2.1.1 Model assumptions
The schematics of a belt driven servo system depicted in Figure 2.1 allows to make a
few assumptions, which simplify the mathematical modeling and enables a schematic
representation of the system as a three-mass-spring-damper system. The following
assumptions are made, see also [4, 5, 17, 18] and [19, 190ff]:

• The gearbox is assumed to be lossless and shows no backlash.

• The coupling between motor and gearbox is sufficiently stiff.

• The coupling between gearbox and driving pulley is supposed to be stiff.

• The toothed belt is assumed to be massless and the flexibility can be modeled by
concentrated spring and damper elements, cf. Figure 2.3.

• The dynamics of the current-controlled motor is negligible, compared to the me-
chanical dynamics.

The assumptions on the rigid couplings are justified by the relatively small and, hence,
dominant stiffness of the belt in comparison to the stiffness of the metal shaft connections,
see parameters listed in Table A.2 and in Table A.3 in the Appendix A.

The mechanical resonance frequency of the toothed belt drive is typically in the range
of 100Hz, see [16, 20, 21], which is significantly lower than the dynamics of the current-
controlled electrical drive. Although not modeled, these dynamics will be identified as
dead time element in Chapter 3. The motor is hence described by its motor constant km
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in N m/A. This proportional factor gives the relationship between the motor current im
and its associated torque

τm = kmim (2.3)

by neglecting its dynamics.

2.1.2 Drive train
The drive train depicted in Figure 2.2 consists of a motor which generates a torque τm. It
is driving a gearbox with the driving pulley connected rigidly to the output side.

Θm, km

ϕm

τm,
τmR

ig
Θg + Θr

ϕg

τg

ϕ1

τ1

Figure 2.2: Schematics of the drive train.

The assumption of a lossless gear box implies

τmωm = τgωg , (2.4)

which leads together with (2.1) to the torque transmission

τg = igτm (2.5)

of the gearbox. The rigid coupling between the motor and gear box states

ϕg = ϕm
ig

, (2.6)

and, additionally, the assumed rigid coupling between gearbox and the driving pulley is
expressed by

ϕ1 = ϕg . (2.7)

The balance of angular momentum at the motor side results in(
Θm + Θr + Θg

i2g

)
︸ ︷︷ ︸

Θe

ϕ̈m = τm + τmR + τ1
ig
, (2.8)

with regard of the previously made assumptions, especially (2.5) and (2.7). Here, τmR
denotes the sum of all friction forces in the motor, gearbox and driving pulley.
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d1

c1(ξ)

mc

f

d2

c2(ξ)
d3

c3

ξ

mc
ϕ1, igτm,
igτmR

ϕ2, τ2

i2gΘe Θr

Figure 2.3: Schematic equivalent three-mass-spring-damper system of the belt driven
system.

2.1.3 Three-mass-spring-damper model
Applying the previously stated assumptions on the subsystem consisting of the linear
bearing and the toothed belt, depicted in Figure 2.1, a three-mass-spring-damper model
can be deduced, see [3, 16]. The schematic of this model is depicted in Figure 2.3. The
segments of the belt between the driving and the driven pulley, as well as the ones between
the pulleys and the cart are represented by spring and damper elements with parameters
d1, d2, d3, c1(ξ), c2(ξ) and c3. It is worth mentioning that the spring stiffnesses c1(ξ) and
c2(ξ) depend on the cart position ξ as the length of the according belt segments, that is
l1(ξ) and l2(ξ), vary with the position of the cart, see Figure 2.1.

The stiffness parameters can be approximately estimated by Hooke’s Law [22, p. 13ff]
with the relative change in length

ε0 = dl
l0

= f0
EA

(2.9)

using the modulus of elasticity E, the cross section area A as well as the initial length l0
and the absolute change in length dl induced by an initial force f0 of the belt. The stiffness
c0 of a segment of the belt with initial length l0 stressed with a force f0 is therefore given
by

c0 = EA

l0
= f0
l0ε0

, (2.10)

if its relative change in length is denoted by ε0. Figure 2.4 illustrates the position-
dependency of the spring elements due to the change of the initial length of the belt
segments with length l1(ξ) and l2(ξ). Here, c denotes the replacement stiffness for the
two-mass-spring-damper model introduced in Section 2.1.4.
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Figure 2.4: Comparison of the position-dependent stiffnesses of the two- and three-mass-
spring-damper model.

Moreover, the balance of angular momentum at the driving pulley side reads as

i2gΘeω̇1 =ig (τm + τmR)− rc1(ξ) (rϕ1 − ξ)− rd1
(
rω1 − ξ̇

)
− r2c3(ϕ1 − ϕ2)− r2d3(ω1 − ω2)

(2.11)

and at the end side pulley

Θrϕ̈2 = τ2 − rc2(ξ) (rϕ2 − ξ)− rd2
(
rϕ̇2 − ξ̇

)
− r2c3 (ϕ2 − ϕ1)− r2d3 (ω2 − ω1) , (2.12)

where r is the effective radius of the pulleys and

ω1 = ϕ̇1 = ϕ̇g = ωg (2.13a)

as well as

ω2 = ϕ̇2 (2.13b)

denote the angular velocities of the driving and driven pulley. The balance of linear
momentum applied to the moving cart results in

mcξ̈ = f + c1(ξ) (rϕ1 − ξ) + d1
(
rω1 − ξ̇

)
+ c2(ξ) (rϕ2 − ξ) + d2

(
rϕ̇2 − ξ̇

)
. (2.14)

Under the assumption of rigid couplings between the motor, the gearbox and the driving
pulley, see (2.6) and (2.7), (2.11) can be equivalently expressed using the motor angle ϕm
instead of the driving pulley angle ϕ1, thus, leading to

Θeϕ̈m =τm + τmR − itc1(ξ) (itϕm − ξ)− itd1
(
itϕ̇m − ξ̇

)
− i2t c3 (ϕm − igϕ2)− i2td3 (ϕ̇m − igϕ̇2) .

(2.15)

Here, the transmission coefficient

it = r

ig
(2.16)
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of the driving pulley and the gearbox was introduced. A comparison of (2.8) and (2.15)
shows that the driving pulley torque τ1, which connects the drive train and the toothed
belt linear bearing, can be expressed as

τ1 = −rc1(ξ) (itϕm − ξ)− rd1
(
itωm − ξ̇

)
− ritc3 (ϕm − igϕ2)− ritd3 (ωm − igω2) .

(2.17)

The system dynamics regarding the states ξ, ϕm, ϕ2 and their corresponding time
derivatives ξ̇, ωm, ω2 is hence described by the three second-order ordinary differential
equations (2.12), (2.14) and (2.15). Introducing the state vector

xT
3m =

[
ϕm ωm ϕ2 ω2 ξ ξ̇

]
(2.18)

and input

u = τm (2.19)

allows to state the three-mass-spring-damper model in the form

ẋ3m = f3m (x3m, u)

=



ωm
1

Θe

(
τm + τmR + τ1

ig

)
ω2

1
Θr

(
τ2 − rc2 (rϕ2 − ξ)− rd2

(
rϕ̇2 − ξ̇

)
− r2c3

(
ϕ2 − ϕm

ig

)
− r2d3

(
ϕ̇2 − ϕ̇m

ig

))
ξ̇

1
mc

(
f + c1 (itϕm − ξ) + d1

(
itϕ̇m − ξ̇

)
+ c2 (rϕ2 − ξ) + d2

(
rϕ̇2 − ξ̇

))


.

(2.20)

These equations contain the nonlinear friction torques τmR and τ2. The motor friction is
modeled by

τmR = −dmωm − τcsign(ωm) , (2.21)

where dm is the viscous damping coefficient and τc denotes the Coulomb friction coefficient,
see [23]. The end pulley friction τ2 is modeled in a similar fashion. Moreover, a tilt of the
belt drive relative to the gravitational field is considered. Depending on the orientation of
the servo system relative to earth’s gravitational force field, see Figure 2.5, the gravity
component is given by

fg = −mcg sin (α) , (2.22)

where the angle α denotes the tilt of the axis relative to the horizontal reference mounting
orientation and g is the gravitational acceleration. The cart friction force fR is modeled
by

fR = −dcξ̇ − fcsign(ξ̇) , (2.23)



2 Mathematical modeling 2.1 Linear toothed belt drive 11
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ϕ1, τ1

α

g

Figure 2.5: Orientation α of the linear axis relative to earth’s gravitational field.

with the viscous damping coefficient dc and the Coulomb friction coefficient fc of the cart.
Hence, the force f in (2.20) is given by

f = fR + fg . (2.24)

The nonlinear system of differential equations (2.20) is hard to identify due to the large
number of parameters, including position-dependent stiffnesses and time-varying friction.
Moreover, the position of the cart ξ and driven pulley angle ϕ2 are not measurable in
practice, as sensors at the moving cart are not desired due to difficult wiring and additional
costs. Moreover, sensors for the driven pulley do not provide additional information unless
the cart position is externally fixed. Hence, further simplificatios are necessary, which will
result in a two-mass-spring-damper system presented in the following.

2.1.4 Two-mass-spring-damper model
Assuming that the inertia of the end side pulley Θr is small in comparison to the motor
inertia Θm and the moving mass mc, the influence of its dynamics (2.12) on the system
behavior can be neglected. A two-mass-spring-damper model, schematically depicted in
Figure 2.6, can be inferred. The balance of momentum gives rise to

Θeω̇m = τm + τmR − itc (itϕm − ξ)− itd
(
itωm − ξ̇

)
(2.25a)

and

mcξ̈ = f + c (itϕm − ξ) + d
(
itωm − ξ̇

)
. (2.25b)

The springs with stiffness coefficient c2 and c3, depicted in Figure 2.3, operate in series
to each other and parallel to the spring with stiffness coefficient c1. Hence, approximately,
the replacement stiffness coefficient is given by

c(ξ) = c1(ξ) + c2(ξ)c3
c2(ξ) + c3

. (2.26)
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Figure 2.6: Simplified two-mass-spring-damper system of the belt driven servo mechanism.

The position-dependency of this replacement spring is depicted in Figure 2.4. It is obvious
that the spring with stiffness c1 dominates the resulting stiffness c.

Analogously, the damper with coefficient d replaces d2 in series with d3 and both parallel
to d1, so that

d = d1 + d2d3
d2 + d3

(2.27)

holds. Again, the introduction of the state vector

xT =
[
ϕm ωm ξ ξ̇

]
(2.28)

and the input

u = τm (2.29)

with the mathematical model (2.25a) and (2.25b) yields

ẋ = f (x, u) =


ωm

1
Θe

(
τm + τmR − itc (itϕm − ξ)− itd(itϕ̇m − ξ̇)

)
ξ̇

1
mc

(
f + c (itϕm − ξ) + d(itϕ̇m − ξ̇)

)
 . (2.30)

In order to preserve the benefits of a linear model, the position dependency of the stiffness
c = c(ξ) is dropped and replaced by the worst case stiffness when the cart is closest to the
end side pulley. This is only an approximation as shown by the measurement results in
Figure 2.9 for three different positions.

In addition, only viscous friction, i. e.,

τmR = −dmωm (2.31)

and

fR = −dcξ̇ (2.32)
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is considered and the tilt angle is neglected, i. e., α = 0, which allows to state the linear
two-mass-spring-damper model in the form

ẋ = Ax + bu , (2.33)

with

A =


0 1 0 0
− i2t c

Θe
− i2td+dm

Θe
itc
Θe

itd
Θe

0 0 0 1
itc
mc

itd
mc

− c
mc

−d+dc
mc

 (2.34)

and

bT =
[
0 1

Θe
0 0

]
. (2.35)

Furthermore, we define the output

y = ϕm = cTx (2.36)

with

cT =
[
1 0 0 0

]
. (2.37)

The respective transfer function from the motor torque τm = u to the motor angle ϕm = y
is given by

G′τm,ϕm(s) = ϕ̂m
τ̂m

= ŷ

û

= cT (sE−A)−1 b

= b′2s
2 + b′1s+ b′0

a′4s4 + a′3s3 + a′2s2 + a′1s
(2.38a)

with coefficients

b′0 = c , (2.38b)
b′1 = d+ dc , (2.38c)
b′2 = mc , (2.38d)
a′1 = i2t c(dc + dm) , (2.38e)
a′2 = c(Θe + i2tmc) + i2t (ddm + ddc + dmdc) , (2.38f)
a′3 = i2tmc(d+ dm) + Θe(d+ dc) , (2.38g)
a′4 = mcΘe . (2.38h)

Here, s denotes the Laplace variable and the notation (̂·) is introduced for the Laplace
transformed signals. Due to the high friction of the moving cart and the motor, cf.
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Section 3.6, the damping parameter d of the toothed belt is rather small. Therefore, this
parameter is neglected in the following. Accordingly, the transfer function (2.38) becomes

G̃τm,ϕm(s) = ϕ̂m
τ̂m

= b̃2s2 + b̃1s+ b̃0
ã4s4 + ã3s3 + ã2s2 + ã1s

(2.39a)

with

b̃0 = c , (2.39b)
b̃1 = dc , (2.39c)
b̃2 = mc , (2.39d)
ã1 = i2t c(dc + dm) , (2.39e)
ã2 = c(Θe + i2tmc) + i2tdmdc , (2.39f)
ã3 = i2tmcdm + Θedc , (2.39g)
ã4 = mcΘe . (2.39h)

It is worth noting that for frequencies below the resonance frequency, the transfer function

Glf
τm,ϕm(s) = 1

c

mcs2 + dcs+ c

s2 (Θe + i2tmc
)

+ si2t (dm + dc)
(2.40)

gives a sufficiently good approximation as shown in the bode diagram depicted in Figure 2.7.
For frequencies around the resonance frequency and upwards, the transfer function

Ghf
τm,ϕm(s) = mc

s2mcΘe + s
(
i2tmcdm + Θedc

)
+ c

(
Θe + i2tmc

) (2.41)

approximates the behavior of the system, cf. Figure 2.7. As a consequence of this, an
approximation of the transfer function (2.39) is given by

Gτm,ϕm(s) = Glf
τm,ϕm(s)Ghf

τm,ϕm(s) cΘe + i2tmc
mc︸ ︷︷ ︸
χ

= 1
s2(Θe + i2tmc) + si2t (dm + dc)︸ ︷︷ ︸

rigid part

mcs2 + dcs+ c

Θemc
Θe+i2tmc

s2 + i2tmcdm+Θedc
Θe+i2tmc

s+ c︸ ︷︷ ︸
flexible part

= b̃2s2 + b̃1s+ b̃0
ã4s4 + (ã3 + ã3,e)s3 + (ã2 + ã2,e)s2 + ã1s

≈ G̃τm,ϕm(s) .

(2.42)

The error caused by this approximation is given by the additive factors

ã2,e = i2t (dm + dc)
Θe + i2tmc

(i2tmcdm + Θedc) (2.43a)
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Simulation parameter set SA in Appendix A.

and

ã3,e = i2t (dm + dc)
Θemc

Θe + i2tmc
(2.43b)

in the denominator. The factor χ compensates for lim
s→∞G

lf
τmϕm as well as for lim

s→0
Ghf
τmϕm .

The transfer function (2.42) allows to separate the system into a rigid and a flexible part,
see also [3].

2.2 System analysis and characteristics
The separation does not significantly influence the location of the resonance and antireso-
nance frequency. In the undamped case, dc = dm = 0, the resonance frequency ωr is in
accordance with the flexible part of (2.42) given in the form

ωr =
√
c
Θe + i2tmc

Θemc
(2.44)

and the antiresonance frequency by

ωz =
√

c

mc
. (2.45)
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If the inertia rate

κ = i2tmc
Θe

(2.46)

is introduced, the resonance ratio reads as

R = ωr
ωz

=
√

1 + κ . (2.47)

Note that increasing the mass mc of the cart shifts the antiresonance frequency towards
lower frequencies and increases the resonance ratio R and, hence, the frequency distance
between the resonance and antiresonance frequency. Figure 2.8 depicts the transfer
function Gτm,ϕm(s) for different cart masses mc and stiffness coefficients c of the belt. An
increased belt stiffness coefficient c increases the resonance and antiresonance frequency
by the same factor. Clearly, the resonance ratio R remains constant for constant masses,
cf. (2.47). However, the belt stiffness actually depends on the position, which is why
both resonances are shifted with a changing position, cf. (2.44) and (2.45). This position-
dependency is depicted in Figure 2.9 for three different cart positions. In the following, the
position-dependency is neglected, however, in the controller design, presented in Chapter 4,
a model with the lowest resonance and antiresonance frequency is considered. This worst
case approximation occurs when the cart mass mc is highest and the stiffness c is lowest,
which corresponds to the cart position ξ farthest away from the driven end.

By looking at the Bode diagram depicted in Figure 2.7, it is noticeable that for low
frequencies up to the antiresonance frequency ωz, the system behaves like a rigid coupled
servo system. Above this characteristic frequency, the subsystem of the moving cart
decouples from the driving subsystem including the motor and an optional gearbox which
leads to the characteristic resonance-antiresonance-behavior. This decoupling property
depends mostly on the moving mass mc and the stiffness coefficient c of the belt. Moreover,
the antiresonance marks an upper bound on the closed-loop control bandwidth with regard
to a limited maximum torque due to motor size and belt force restrictions. As the stiffness
tends to get lower for longer linear axis, see (2.10), the expected system performance will
decrease with both, length of the axis and moving mass.

For positioning purposes, however, the transfer function Gτm,ξ(s) from the motor torque
τm to the cart position ξ is of particular interest. In the assumed linear case, the transfer
function reads as

Gτm,ξ(s) =G′τm,ϕm(s)Gϕm,ξ(s)

=it
ds+ c

ã4s4 + ã3s3 + ã2s2 + ã1s
, (2.48)

where the first part G′τm,ϕm(s) denotes the transfer function (2.38a) from the motor torque
τm to the motor angle ϕm and

Gϕm,ξ(s) = ξ̂

ϕ̂m
= it

ds+ c

mcs2 + s (d+ dc) + c
(2.49)

is the transfer function from the motor angle ϕm to the cart position ξ. In contrast to the
transfer function G′τm,ϕm , Gτm,ξ lacks the antiresonance, as depicted in Figure 2.10.



2 Mathematical modeling 2.2 System analysis and characteristics 17

20
0

−20
−40
−60
−80A

m
pl

itu
de

in
dB

100 101 102 103 104
−180

−135

−90

−45

0

f in Hz

Ph
as

e
in

°

SA : Gτm,ϕm SB: Gτm,ϕm SC : Gτm,ϕm

Figure 2.8: Bode diagram of the plant model Gτm,ϕm(s) for the parameter sets SA , SB

and SC given in Table A.11, Table A.12 and Table A.13 in Appendix A. The
moving mass and belt stiffness are changed by one order of magnitude.

In order to conclude the chapter on the mathematical modeling of the toothed belt driven
servo mechanism, the simplified and linearized model with the transfer function Gτm,ϕm

from the motor torque τm to the motor angle ϕm presented in (2.42) builds the starting
point for the parameter identification in Chapter 3 and the controller design in Chapter 4.
Although the position-dependency is neglected and the belt damping is assumed to be of
minor influence on the response behavior, this model can be used to estimate the system
parameters that are needed for the feedforward and the feedback control design. Moreover,
if the positioning mechanism is tilted by an angle α relative to the horizontal alignment,
the presented model can remain unchanged for system identification purposes. The only
difference is that an offset in the motor momentum given by (2.22) has to be applied in
order to compensate the nonlinearity due to the gravitation.
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3 System identification and verification
This chapter covers mainly the offline parameter identification of the linear transfer function
(2.42). The first section deals with the different excitation signals, their parameters and
influence on the identification process. In the subsequent section, the offline identification
method utilizing the frequency response function (FRF), which is implemented on the
target system, is described in more detail. In a first step, the FRF is determined and the
parametrized model from Chapter 2, in particular (2.42), is then fitted to this function.
The closing section of this chapter presents a method for identification of the nonlinear
friction parameters which can be used to design an appropriate feedforward compensation.

3.1 Excitation signals
In order to identify a dynamic system, the excitation signals must be chosen in such a
way that the system is sufficiently excited in the interesting frequency regions, see [24].
For a belt driven servo system, these frequencies start in the range of one and go up
to a few hundred Hertz depending on the length of the axis, belt pretension and the
moving mass mc. The excitation signal should not move the cart in an undefined way with
long strokes when operated in open loop because the system behavior, and consequently
the parameters to be identified change with the position ξ of the cart. Therefore, the
excitation signal should lead to a minimal deviation of the position from its initial value
during the identification process. In practice, two different excitation signals are often used
in system identification, namely a chirp signal and a pseudorandom binary signal (PRBS),
see [25, p. 418ff] and [25, p. 423].
A chirp signal consists of a sine wave with continuously changing frequency ω1,chirp ≤

ω ≤ ω2,chirp over time. An additional windowing function, typically of trapezoidal form,
can be applied in a multiplicative way to fade-in and fade-out the chirp signal. However,
the chirp signal has two main disadvantages. First and foremost, it leads to larger position
changes of the target system compared to white noise, especially in the lower frequency
region, when used for open-loop identification. Moreover, if the system exhibits large
friction, the cart may get stuck for small cart velocities, at least for low frequencies. In
order to overcome friction and not violating the position boundaries, it is difficult to find
an appropriate setting for the amplitude of the signal. Because of these reasons, a PRBS
is preferred for the system identification.

Ideally, a band limited white noise (BWN) signal excites a system with equal spectral
power density up to its cutoff frequency. Above this frequency, the dynamics of the system
are not excited, at least in the ideal case. However, it is hard to generate a white noise
signal and even harder to limit its spectral distribution by an ideal low-pass filter and,
therefore, a digital approximation is often used [26, p. 161ff]. A PRBS qualifies as an
appropriate excitation signal, see also [7, 27, 28]. Besides its amplitude, a PRBS has two

20
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parameters which allow the frequency spectrum to be stretched and shifted, namely its
order nPRBS and the so-called clock period PPRBS [25, p. 422]. The order nPRBS defines
the maximum amount of different signal points

M = 2nPRBS − 1 (3.1)

generated in one period of the signal, whereas the clock period PPRBS allows to shift the
spectrum towards lower frequencies by using each signal value sPRBS(k) PPRBS-times. We
introduce the short notation PRBSnPRBS

PPRBS
, which denotes a PRBS with order nPRBS and

clock period PPRBS. The values of the PRBS are then characterized by

sPRBS(k) = mod (a1,PRBSs(k − 1) + . . .+ anPRBS,PRBSs(k − nPRBS), 2) , (3.2)

for

k = 0, . . . , 2nPRBS − 2, (3.3)

where the mod(·, ·) operation denotes the remainder of the first argument divided by the
second one. The coefficients ai,PRBS ∈ {0, 1}, i = 1, . . . , nPRBS can be chosen in such a
way that the maximum amount of different signal points M is generated, see [25, p. 420].
The initial values s(j), j = −1,−2, . . . ,−nPRBS can be chosen arbitrarily but not all equal
to zero. With respect to the clock period PPRBS, the time domain signal is given by

uPRBS((PPRBSk + i)Ts) = APRBS

(
sPRBS(k)− 1

2

)
, i = 0, . . . , PPRBS − 1,

k = 0, . . . , 2nPRBS − 2, (3.4)

where APRBS is the amplitude of the signal and Ts denotes the sampling time. Calculated
over one period, this signal does not have a mean value of exactly zero, however, with
rising length M , it converges towards zero. This has to be kept in mind as it will lead to
a position drift when the signal is applied to the system in an open-loop identification.
The influence of the parameters nPRBS and PPRBS on the time domain can be seen in
Figure 3.1 and their corresponding continuous frequency spectra are depicted in Figure 3.2.
According to (3.3) and (3.4), the reciprocal value of the shortest time between two value
changes gives the first zero of the spectrum at

fPRBS,max = 1
PPRBSTs

(3.5)

and the reciprocal value of the whole sequence time gives the lowest frequency of the
spectrum

fPRBS,min = 1
(2nPRBS − 1)PPRBSTs

, (3.6)

see [29, p. 230ff]. Between these frequencies, the system is excited properly for system
identification. However, the upper bound in the frequency range only marks the first zero in
the frequency spectrum of the PRBS. Therefore, this bound is only a soft one, whereas the
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lower bound is a hard restriction due to the length of the time window tPRBS,max = 1
fPRBS,min

for the Fast Fourier transformation (FFT). When using a generalized pseudorandom
binary signal (GPRBS), as presented in [26, p. 172ff], the zero in the frequency spectrum
can be avoided at the cost of a smaller spectral power density in the frequency range
below. Because the GPRBS uses a random sequence that changes depending on the seed
of the random generator, the PRBS is preferred for maintaining repeatable results, see
Section 3.4.

3.2 Empirical transfer function estimate
It can be shown that an estimate for the transfer function Gu,y(z) is given by the ratio of
the spectra of the input signal uk and the output signal yk of a system, see [25] and [24].
Here, z = eIωTs denotes the time-discrete Laplace variable, I is the complex number, Ts is
the sampling time and ω represents the frequency. This estimate

Ĝu,y(eIωTs) = F{yk}F{uk}
(3.7)

is called empirical transfer function estimate (ETFE) because linearity is preassumed.
Here, F{·} denotes the FFT of the argument. From (2.39) it is known that the system
exhibits an integrating behavior. Using Clary’s method II, see [30], this a priori knowledge
can be utilized so that only the unknown remaining transfer function has to be estimated.
A block diagram explaining Clary’s method II is given in Figure 3.3. Within Clary’s
method II, the system with transfer function Gu,y(z) is split up into a known part zb(z)

nb(z)
and an unknown part Gi(z), i. e.,

Gu,y(z) = zb(z)
nb(z)Gi(z) . (3.8)

In the problem at hand we can measure the input torque

uk = τi,k (3.9)

and the output motor angle

yk = ϕm,k . (3.10)

Moreover, the integrating behavior is known, i. e.,

zb(z)
nb(z) = z

z − 1 , (3.11)

and unknown is the transfer function

Gi(z) = Gτi,ωm(z) . (3.12)

It is easy to show that prefilters in the form

V1(z) = 1 (3.13)
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Figure 3.3: Clary’s method II using a priori knowledge of the system.

and

V2(z) = z − 1
z

(3.14)

allow a proper estimate of the transfer function Gτi,ϕm(z) because

Ĝτi,ϕm(z) = V2(z)
V1(z)

ŷ(z)
û(z) = z − 1

z
Ĝτi,ωm(z) . (3.15)

3.3 Identification strategies
Within the offline identification approach using Clary’s method II, the plant can be
excited in an open- or closed-loop setup, see [6]. In the closed-loop case, a further
distinction is made between a direct and an indirect approach. The block diagrams of the
individual identification strategies are depicted in Figure 3.4. The input signal used for
the identification process is denoted by û and the output signal by ŷ. In order to keep
the presentation short, the dependency of the transfer functions on the Laplace variable
is omitted in the following. The calculation of the motor angular velocity ωm from the
motor angle ϕm is assumed to be performed by a known filter with transfer function GR,
see Section 6.1.
All approaches use an inner current controlled loop consisting of a current controller

with transfer function Cτ and the electrical subsystem with transfer function Gim,τm from
the motor current im to the motor torque τm. The respective open-loop transfer function
is given by

Lτ = CτGim,τm . (3.16)

The closed-loop transfer function of this control loop reads as

Gcc,cl = Lτ
1 + Lτ

≈ 1 . (3.17)
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(a) Schematic diagram: Open-loop identification.
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(b) Schematic diagram: Direct closed-loop identification.
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(c) Schematic diagram: Indirect closed-loop identification.

Figure 3.4: Open-loop, direct closed-loop and indirect closed-loop identification exemplified
as schematic control circuits. The identification process uses û as an input
and ŷ as an output of the system.
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The approximation made is valid if the current controlled loop has a high bandwidth
compared to the mechanical frequencies of the plant with transfer function Gτm,ϕm .

In the open-loop identification approach, neither the velocity nor the position of the cart
is controlled, cf. Figure 3.4(a). This results in a direct applicability of Clary’s method II, as
presented in Section 3.2. In the direct and indirect closed-loop approach, the identification
uses signals obtained from a closed-loop experiment. The direct closed-loop approach uses
the plant input u = τe + τcω as an input for identification. This includes the control input
τcω of the outer control loops and the excitation signal τe, see Figure 3.4(b). Here and in
the following, the outer control loop refers to a velocity controller with transfer function
Cω and an optional position controller with transfer function Cϕ. The indirect closed-loop
identification uses the excitation signal u = τe as an input for the identification process
without the control part of the outer control loops, cf. Figure 3.4(c). This results in an
estimation of the sensitivity function of the closed control loop. However, the influence of
the outer control loops can be eliminated mathematically because the transfer function of
the used controllers are known.
In contrast to the open-loop approach, the closed-loop approaches need to take into

account the active outer control loops, because the excitation signal acts via the input
disturbance transfer function on the measured output, thus reducing the signal to noise
ratio (SNR) of the output signal and, hence, affecting the identification results. However,
the closed-loop identification scenarios provide the advantage of identifying the system
at operating points where ξ̇ 6= 0, hence, minimizing the nonlinear friction effects on the
estimation results. The downside of these approaches is that a controller for the unknown
system has to be available.

The following sections deal with the open- and closed-loop, non-parametric identification
of the FRF of the toothed linear belt drive.

3.3.1 Open-loop identification
The system is excited with a motor torque τi ≈ τm and responses with a motor angle ϕm.
Applying Clary’s method II results in

Ĝτm,ϕm = V2
V1

ϕ̂m
τ̂m
≈ z − 1

z
Gτm,ωm . (3.18)

Problematic in the open-loop approach is the fact that the system is uncontrolled. If the
situation of installation is vertical for instance, i. e., α = π

2 , the cart may hit the limit
stops when the system is excited by a PRBS. In order to identify the system in such a
case, either a closed-loop approach with active velocity controller and an optional position
controller is needed, or the gravitational force fg needs to be compensated by an offset in
the motor torque.

3.3.2 Closed-loop identification
Identification in a closed-loop manner allows to compensate the influence of the gravitation
and allows to impress a desired velocity of the cart in order to minimize the nonlinear
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friction effects on the identification results. In fact, a high performance controller is
counterproductive because the excitation signal acts like an input disturbance, hence, via
the sensitivity transfer function

S = Gτm,ϕmGcc,cl
1 +Gτm,ϕmGcc,clCω(GR + Cϕ) , (3.19)

cf. Figure 3.4(b) and Figure 3.4(c). For the closed-loop approach, the velocity signal ωm
needs to be calculated from the incremental encoder position signal ϕm, which is denoted
by the transfer function GR. The realization of this filter is discussed in Section 6.1.
With the controller transfer functions in the denominator of the sensitivity transfer

function S, the gain of the controller directly influences the measurable output according to
the excitation signal τe. Hence, a high gain controller reduces the SNR of the measurement
signals used by the identification. However, if it is assumed that the controller already
exists, it is possible to identify the system at operating points where ωm 6= 0 and ξ̇ 6= 0.
In this case, the influence of the nonlinear Coulomb friction on the identification process
does not play a role if the velocities of the cart and the motor do not cross zero during the
identification procedure. As a consequence of this restriction, the desired velocity must be
high enough to fulfill this condition. Contrary to this, the velocity should be as small as
possible in order to keep the influence of the position on the identification results small.

Direct closed-loop identification

The direct closed-loop identification approach uses the input signal u = τi and the output
signal y = ϕm of the plant to estimate the FRF. As depicted in Figure 3.4(b), the system
is operated in closed loop and the excitation signal τe acts as disturbance on the input of
the current control loop. The influence of the superimposed control loops is eliminated by
using the actual values of the system input τi instead of the excitation signal τe. Contrary
to this, the indirect closed-loop identification uses only the excitation signal u = τe without
the control part.

Indirect closed-loop identification

Additionally to the direct closed-loop approach, it is possible to estimate the closed-loop
sensitivity transfer function

S = Gτm,ϕm

1 +Gτm,ϕmC
(3.20)

from the input u = τe to the output y = ϕm with a known controller transfer function
C, cf. Figure 3.4(c). Depending on the active superimposed control loops, the controller
influence C is given by

C =
{
GRCω with velocity controller,
(GR + Cϕ)Cω with position and velocity controller,

(3.21)
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where Cϕ denotes the transfer function of the position controller and Cω the transfer
function of the velocity controller. In the single input single output (SISO) case, this
equation can be solved explicitly for the unknown transfer function

Gτm,ϕm = S

1− SC . (3.22)

Alternatively, the excitation signal can be applied at the output of the position controller,
i. e., at the input ωd, cf. Figure 3.4(c). This introduces an additional filtering of the
excitation signal by the velocity controller. In this case, the excitation can be too small in
the interesting frequency range leading to a low SNR. Moreover, in this case, the transfer
function

Sωd = Gτm,ϕmCω
1 +Gτm,ϕmC

(3.23)

gives the input-output relation and (3.22) needs to be replaced by

Gτm,ϕm = Sωd

Cω − SωdC
. (3.24)

with the relationship for C from (3.21). Note that (3.20) and (3.23) differ in the multiplica-
tive transfer function Cω. Because of the mentioned additional filtering of the excitation
signal by the velocity controller, the approach without additional filtering of the excitation
signal is preferred in this diploma thesis.

3.4 Identification results
For the open-loop ETFE, a PRBS7

128 and for the closed-loop ETFE a PRBS7
64 is used as

excitation signal. Moreover, all closed-loop identification results presented here utilize
a closed velocity control loop with desired velocity itωd = ξ̇d = 100 mm/s. Note that in
the closed-loop identification, the excitation signal clock period PPRBS is chosen smaller
than in the open-loop case. That is, the clock period PPRBS of the excitation signal is
reduced to half of its value in comparison to the one used in the open-loop approach.
The reduction of the signal clock period is performed in order to minimize the influence
of the position-dependency of the parameters on the identification results. Because the
closed-loop identification is performed with ξ̇ 6= 0 m/s, the position-dependent parameters
get averaged over the position range covered during the identification procedure.

The amplitude of the excitation signal needs to fulfill two conditions. The amplitude of
the excitation signal must be chosen large enough to overcome the static friction. However,
if chosen too large, the position-dependency of the parameters affects the identification
results and in the worst case, the cart may hit the axis limits. In order to yield an
appropriate value for the amplitude of the excitation signal, the amplitude is increased
successively, starting from zero. This allows to select the amplitude of the excitation
signal regardless of the additional mass mc mounted on the cart, while maintaining a
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Figure 3.5: Influence of the current control loop on the direct ETFE utilizing Clary’s
Method II when using the actual torque τm as input of the identification
process leading to Ĝτm,ϕm or using the desired torque τi resulting in Ĝτi,ϕm .
Measurements were taken at position ξ = 500 mm and an additionally mounted
mass of mc = 11.2 kg on the cart. The system parameters GA are listed in
Table A.4 in Appendix A.

sufficient SNR for the identification procedure. Hence, the amplitude of the excitation
signal for the experiments is chosen as APRBS = 0.3 N m.
If, in the open-loop identification approach, instead of û = τ̂m, the input û = τ̂i is

selected, the influence of the closed current control loop can be evaluated. Figure 3.5
shows the corresponding estimated transfer functions Ĝτm,ϕm and Ĝτi,ϕm . Obviously, in
the considered frequency range the current control loop behaves like a dead time element.
In Chapter 4, an appropriate velocity controller is designed, which aims for a closed-loop
bandwidth smaller than the antiresonance of the mechanical system, hence, justifying
the negligible phase shift, at least for large masses. However, the influence of the current
control loop is taken into account by adding a serial dead time element with transfer
function

Gdt = z−nT . (3.25)

This approximates the response behavior of the closed current control loop with transfer
function Ĝcc,cl, that is

Ĝcc,cl ≈ Gdt . (3.26)
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The dead time tT = nTTs includes the sum of all relevant delays in the closed current
control loop, like signal delays due to the time-discrete working principle of the sensors
and the current controller, as well as the non-ideality of the current controller itself. The
dead time can be estimated by solving the minimization problem of the form

J∗dt = Jdt(n∗T) = min
nT

(
arg(Ĝτi,ϕm(eIωTs))− arg(Ĝτm,ϕm(eIωTs))− arg(Gdt(eIωTs ;nT))

)2

(3.27)

in the interesting frequency range, that is in general 0 ≤ ω ≤ ωr. Here, Gτm,ϕm denotes the
transfer function from the actual motor torque τm, respectively, its corresponding current
value im multiplied by the motor constant km to the actual motor angle ϕm. Moreover,
Gτi,ϕm denotes the transfer function from the input of the current control loop, which
equals the excitation torque τi, to the actual motor angle ϕm, that is to say

Gτi,ϕm = Gcc,clGτm,ϕm . (3.28)

Together with the phase of the dead time element

arg(Gdt(eIωTs)) = −ωnTTs , (3.29)

this problem can be solved using standard optimization algorithms. The solution of the
minimization problem is given by

t∗T = n∗TTs ≈ 1 ms . (3.30)

Further details on solving the minimization problem are given in Section 3.5, where a
similar minimization problem is stated for finding the plant parameters. If the dead time is
known a priori, it can also be integrated into Clary’s method II by adapting the prefilters
accordingly. Figure 3.6 indicates that the velocity controller Cω has a gain crossover
frequency below 1 Hz. According to (3.20), this results in little influence of the controller
on the identified transfer function above this frequency. This is because

Gτm,ϕmCω � 1 (3.31)

is valid in the respective frequency range. Also in Figure 3.6, the FRF of the direct and
indirect closed-loop identification as well as the open-loop identification are depicted. It
can be noted that all three approaches provide nearly similar results. Especially the
open-loop and direct closed-loop approach show no significant difference. However, the
indirect closed-loop approach shows a bias in the gain for the lower frequency range,
compared to the other methods. This results in an error when estimating the moving
mass mc and the damping parameters dm and dc. Using the closed-loop identification
approaches, the remaining question is how to design the controller Cω in advance. That
is, the controller must not achieve high performance demands, as this reduces the SNR of
the measurement signals, while a too weak controller results in a high control error and,
thus, in an actual velocity that is significantly different from the desired velocity. If the
control error is too large, the condition of no zero crossings in the velocity during the
identification can not be guaranteed. Therefore, the open-loop identification method is
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Figure 3.6: Comparison of the FRF acquired by the open-loop approach as well as the
direct and indirect method of the closed-loop approach. Additionally, the
transfer function of the velocity controller Cω used within the closed-loop
methods is depicted.

preferred for the self-commissioning of the linear toothed belt drive. Nonetheless, this is
only possible if the installation angle α ≈ 0 is assumed. If this condition does not hold,
the gravity force fg needs to be compensated by an additional motor torque τm = itfg, as
suggested in Chapter 7.
Figure 3.7 depicts the FRF in the frequency range above 500 Hz. Obviously, the SNR

becomes worse with rising frequency. Assuming the disturbance can be characterized
as additive white Gaussian noise (AWGN), the influence of the noise can be reduced by
using the central limit theorem [31, p. 94ff]. The measurements can be repeated nm-times
and calculating the mean values in the frequency domain leads to an increased SNR by a
factor √nm. Especially the phase response for frequencies above the resonance frequency
ωr benefits from this increase in SNR, which allows for better identification results of the
dead time tT.

3.5 Parameter fitting
The transfer function (2.42) shows six independent parameters, namely the mass moment
of inertia Θe, the cart mass mc, the belt stiffness c, the transmission ratio it and the
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nm = 10: Ĝcc,clĜτm,ϕm
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damping coefficients dm and dc. The feedback and feedforward controller, which will
be designed in Chapter 4, rely on the continuous-time representation of the transfer
function (2.42). Hence, the parameters of (2.42) have to be identified. In the following,
it is assumed that the mass moment of inertia Θe of the motor, the gear box and the
coupling in between as well as the transmission ratio it are known from the data sheets
with sufficient accuracy. This is why only the parameters collected in the parameter vector

pT =
[
mc c dm dc

]
(3.32)

are identified in the following. For this reason, a least squares problem is defined and
solved, which utilizes the magnitude of the estimated FRF. This can be interpreted,
according to [25, p. 230], as a maximum likelihood estimation under assumption of a fixed
noise model. The phase information of the FRF remains disregarded in the optimization
problem, as the system with transfer function Gτm,ϕm is supposed to be of minimum
phase. Hence, the phase provides no additional information. Given no distinct frequencies
fi ∈ Fo of the measured FRF and the corresponding magnitude values |Ĝτm,ϕm(I2πfi)|,
the parameters p of the mathematical model Gτm,ϕm(I2πfi; p) from equation (2.42) are
determined by minimizing the cost function

J(p) =
no∑
i=1

(
20 log |Ĝτm,ϕm(I2πfi)| − 20 log |Gτm,ϕm(I2πfi; p)|

)2
(3.33)
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Figure 3.8: Comparison of the ETFE raw data Ĝcc,clĜτm,ϕm of an open-loop identification
experiment using an additional mass of mc = 11.2 kg and the fitted parametric
model GdtGτm,ϕm according to the minimization problem (3.34) including the
dead time element Gdt for the closed current control loop Gcc,cl at the cart
position ξ = 500 mm.

with respect to the parameters p. The best set of parameters p∗ regarding this cost
function is then given by the solution of the minimization problem

J∗ = J(p∗) = min
p

(J) , (3.34)

which can be solved with static optimization algorithms such as the Levenberg-Marquard
algorithm [32–34], trust region reflective [35, 36], or derivative-free algorithms, i. e., the
Nelder-Mead algorithm [37]. The resulting parameters p∗ of the model given by (2.42)
can then be used to plot the frequency response of the parametrized model. Figure 3.8
compares the FRF of the fitted model GdtGτm,ϕm to the FRF of Ĝcc,clĜτm,ϕm acquired by
the ETFE.

The estimated FRF is based on a data sequence in the time domain consisting of nt data
points sampled with a sampling time of Ts. The FRF itself consists of nf = |F | = bnt

2 c1
evenly distributed data points in the frequency domain starting from fmin = 1

ntTs
up to

fmax = 2
Ts
. In order to reduce the computational effort to solve the static optimization

problem (3.33) and to compensate for the logarithmic frequency scaling of the FRF, the
1|·| denotes the cardinality of a set and b·c denotes the integer floor operation.
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Figure 3.9: Illustration of the data reduction from linear frequency spacings in the set
F to nearly logarithmically spacings in the subset Fo. Parameters: no = 30,
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data points in the frequency domain are reduced to no = |Fo| < nf nearly logarithmically
spaced data points. The no reduced data points are included in the set of linearly spaced
frequencies, e. g., Fo ⊂ F . This relationship is illustrated in Figure 3.9. Note that
the logarithmic spacing acts like a weighting function which puts more weight on lower
frequencies and less weight on higher ones.

3.6 Friction identification
This section is devoted to friction estimation and analysis. In order to reduce the effect
of the nonlinear friction on the positioning control performance, a feedforward controller
will be designed in Section 4.4. This controller is based on the friction models (2.21)
and (2.23), hence, this friction model must be parametrized. In typical applications, the
cart position cannot be measured. Due to this, we will assume in the following that the
coupling between the motor and cart is rigid, i. e., c = 0 and d = 0. Consequently, the
equations (2.25) reduce to

(Θe +mci
2
t )ω̇m = τm + τmR + itfg + itfR . (3.35)
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If we assume a constant velocity, i. e., ω̇m = 0, and a horizontal situation of installation,
fg = 0, (3.35) allows to measure the friction torque, because

τm = τR(ωm) = −τmR − itfR = (dm + i2tdc)︸ ︷︷ ︸
d̃v

ωm + (τc + itfc)︸ ︷︷ ︸
τ̃c

sign(ωm) (3.36)

holds true. Using a position controller and a periodic triangular-shaped reference position
allows to force a constant velocity over a period. Different velocities are set for different
periods of time with a certain running-in-time to assure a constant velocity. With the
measured torque, the parameters d̃v and τ̃c are obtained by solving a least squares problem.

The measured torque τm and the mathematical model τR(ωm) with fitted parameters are
depicted in Figure 3.10. The picture shows six sets of measurement data which differ in the
acquisition order of their corresponding data. The data set τ Im represents a measurement
starting from lowest velocities ωm ≈ 0 and increasing the velocity steadily, whereas τ IIm
reverses this sequence. Moreover, τ IIIm utilizes an arbitrarily chosen sequence of velocities
sξ̇ given by (A.1) in Appendix A and τ IVm represents the average of ten consecutive
measurements like the data set τ Im. That is, one data point is measured ten times before
continuing with the next higher velocity. Dataset τVm is a long term friction measurement
after approximately nine month of usage, acquired in the same way as τ Im. The last
measurement data τVIm equals τVm with an additional mass of mc = 11.2 kg mounted
on the cart. Clearly, the real friction contains dependencies, e. g., on the temperature,
the humidity, etc., which are not modeled by (3.36). This explains the variance of the
measured friction curves. Besides the Coulomb friction, a small Stribeck effect can be
observed around zero velocity.
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4 Control strategies

The previous chapter shows the identification and validation of the mathematical model
derived in Chapter 2. This parametrized model will be used in this chapter to design
an appropriate control loop. The current controlled plant, given by the result of the
identification process from Chapter 3, acts as target plant for which the control loop has
to be designed. In [3], [5] and [11] it was shown that linear belt driven servo mechanisms
can be controlled by linear control loops and can achieve sufficient performance. These
control strategies utilize typically a PID control structure or a cascaded P-PI control
structure with an inner velocity control loop and a superimposed position control loop.
This concept is successfully used in industry for many years. The first section of this
chapter deals with an overview of the used control strategy, whereas the following section
focuses on the design of the inner PI-velocity control loop. Based on the closed velocity
control loop, the position control loop is designed in the next section. The last section
deals with the feedforward controller design.

4.1 Control structure
The proposed control strategy is depicted in Figure 4.1. The control design is based on the
parametric model of the plant given by the transfer function Gτm,ϕm and the closed current
control loop, described by the transfer function Gdt. The velocity feedback controller

KPPI
PP Gpre

KPPI
v

KPPI
a

KPPI
I
s

KPPI
P

GdtGτm,ϕm− −

GR

ϕ̂d ϕ̂m

τ̂FF

ω̂FF

ω̂d

ω̂d, sω̂d

ω̂m

Figure 4.1: Block diagram of the control strategy.
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consists of a prefilter with transfer function Gpre to dampen the mechanical resonance of
the plant and a PI-velocity-controller Cω with respective tuning parameters KPPI

P and
KPPI

I . The outer P-position control loop, with the respective tuning parameter KPPI
PP , is

superimposed to the closed velocity control loop. The feedforward controller KPPI
a and

KPPI
v compensates for the friction and the moving mass, see Section 4.4.

4.2 Velocity controller design
The parametric model Gτm,ϕm from (2.42) servers as a basis for the velocity controller
design.This model was parametrized in Chapter 3 by solving the minimization problem
(3.34). The plant for the controller design consists of a serial connection of the identified
electromechanical system Gτm,ϕm , given by (2.42), and a dead time element Gdt given
by (3.25). The velocity signal is calculated from the position signal via the transfer
function GR, see Section 6.1. The input limits are not explicitly regarded in the controller

Cω

Gpre

KPPI
I
s

KPPI
P

GdtGτm,ϕm−

GR

ω̂d ϕ̂m

ω̂m

Figure 4.2: Block diagram of the velocity control loop.

design. However, they can be systematically taken into account by the trajectory generator
presented in Section 6.3. First, in Section 4.2.1 a prefilter is designed to dampen the
mechanical resonance of the plant. Hereby, two different filters are discussed in detail.
The next section, Section 4.2.2, deals with the PI-velocity-controller design.

4.2.1 Prefilter design
The mechanical resonance of the plant is suppressed by adding an additional filter Gpre
in the velocity control loop. Without this prefilter, the mechanical resonance limits the
controller performance, see Section 5.1, or even worse, causes instability. This can either
be done by a low-pass filter of appropriate cutoff frequency or by filtering the resonance
frequency with a Notch filter.

Notch filter design

If perfect model knowledge is assumed, the Notch filter can compensate for the mechanical
resonance in the transfer function (2.42). However, the plant parameters will change with
time by wearing and aging, as well as with the position ξ, cf. Figure 2.4. Henceforth,
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the Notch filter is designed to suppress the worst case mechanical resonance with limited
influence on the plant below the antiresonance frequency ωz. This worst case scenario
occurs if the mass mc is largest and the belt stiffness coefficient c is smallest, meaning
that the cart is in the position farthest away from the driven end of the linear axis. The
transfer function of the Notch filter, see [38], is given by

GNotch =
s2 + 2 1

dn
ωr,Ns+ ω2

r,N
s2 + 2dnωr,Ns+ ω2

r,N
, (4.1)

where dn is the design parameter for the frequency range over which the Notch is active
and ωr,N denotes the center frequency of the stopband. Because the worst case mechanical
resonance of the plant is identified to occur at frequency ωr, the center frequency of
the Notch filter is fixed at ωr,N = ωr. Supposing the antiresonance frequency ωz of the
plant marks a lower bound on the desired influence of the Notch or a possible low-pass
filter, the filter influence should not undergo frequencies below ωz in a significant manner.
Otherwise, the achievable bandwidth of the closed velocity control loop will suffer. As
shown in Figure 2.8, the stopband of the Notch has to be adapted to the resonance ratio
κ, that is, for small resonance ratios the stopband has to be narrower than for high values
of κ. Regarding this condition, the amplitude attenuation of the Notch at frequency ωz is
required to fulfill the condition

|GNotch(Iωz)| = ANotch , (4.2)

with the design parameter ANotch < 1. This relation maintains the connection between
the stopband width of the Notch filter and the resonance ratio κ of the plant. Moreover,
it can be used to determine the design parameter by explicitly solving (4.2) for dn. For
shorter linear axis this is sufficient, as the drift of the resonance frequency ωr is limited,
cf. Figure 2.9, and the achievable bandwidth does not suffer significantly by choosing the
worst case scenario as design reference.

Butterworth filter design

Another approach of filtering the mechanical resonance frequency of the plant is a second
order Butterworth filter, see [39], given by the transfer function

Gbw = 1
s2

ω2
bw

+
√

2 s
ωbw

s+ 1
, (4.3)

with cutoff frequency ωbw. Analogously to (4.2), the influence of the filter on frequencies
below ωz has to be limited, which is achieved by the condition

|Gbw(Iωz)| = Abw , (4.4)

with the design parameter Abw < 1. The cutoff frequency ωbw in (4.3) is determined by
(4.4) and the design parameter Abw.

In Figure 4.3, the frequency response of the Notch filter (4.2) with ωr,N = ωr and
ANotch = −6 dB and the second-order low-pass (4.3) with Abw = −3 dB are depicted in
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Figure 4.3: Transfer function of a Notch filter, a second-order Butterworth filter and the
nominal plant transfer function.

comparison with the identified transfer function GdtGτm,ϕm of the plant. The Butterworth
filter shows a better roll-off at the cost of a larger phase shift around its cutoff frequency
ωbw. This is especially of interest for stability reasons, as the open-loop gain crossover
frequency of the velocity control loop lies in the range of ωbw, see Section 4.2.2. One
advantage of the low-pass filter over the Notch filter is that it is very robust against lower
masses and/or stiffer connections, which both result in mechanical resonance frequencies
of the plant shifted to higher values, see (2.44).
The approach of filtering the mechanical resonance can also be applied to a system

with more than one resonance frequencies by filtering the one with the lowest frequency.
Resonances above the filtered one are then damped by the sufficient roll-off of the
Butterworth filter. In the case of the Notch filter, an additional low-pass filter can be
used to add this necessary roll-off for higher frequencies.

4.2.2 PI-controller design
The filter Gpre in the form of a Notch filter GNotch or a Butterworth filter Gbw, designed
in Section 4.2.1, is now added in series to the transfer function of the plant, leading to
the velocity control loop depicted in Figure 4.2. For the already determined part of the



4 Control strategies 4.2 Velocity controller design 41

open-loop transfer function, the abbreviation

Gω = GpreGdtGτm,ϕmGR︸ ︷︷ ︸
≈Gτm,ωm

(4.5)

is introduced and used to design the PI-controller with the transfer function

GPI = KPPI
I
s

+KPPI
P . (4.6)

Although the filterGpre suppresses the mechanical resonance, it has to be further considered
in the controller design. While the controller design parameters KPPI

I and KPPI
P can be

chosen arbitrarily, the prefilter itself does not guarantee stability of the closed-loop system.
That is why a resonance suppression factor Asup is introduced. It guarantees that at the
resonance frequency ωr of the plant the gain of the open-loop transfer function of the
velocity control loop is smaller than this factor, hence, preventing instability caused by
the mechanical resonance. Therefore, the open-loop transfer function has to fulfill the
condition

|GPI(Iωr)Gω(Iωr)| != Asup , (4.7)

with Asup < 1 denoting the resonance suppression factor. For practical implementation,
the resonance suppression factor is chosen to be Asup = −10 dB. Additionally to the
resonance suppression factor Asup, the phase margin ϕωr at the cutoff frequency ωc of the
control loop serves as stability measure. The bandwidth of the control loop, or equivalently,
the cutoff frequency is defined by

|GPI(Iωc)Gω(Iωc)| = 1 , (4.8)

where the open-loop gain passes from magnification to attenuation. In order to guarantee
stability, the phase margin has to be chosen sufficiently large, see [40]. The phase margin
condition

arg (GPI(Iωc)Gω(Iωc))
!= −π + ϕωr (4.9)

defines the second restriction to the PI controller, hence, both design parameters, KPPI
I

andKPPI
P , are determined. As mentioned in [41, p. 105], an appropriate value for the phase

margin is 30° ≤ ϕωr ≤ 60°. Depending on the real operating conditions and requirements,
its actual value remains as design parameter. This allows for an easy detuning or tightening
of the control loop. For test purposes, the phase margin is chosen to be 60°, which puts
emphasis on the stability of the closed-loop system.

With (4.7), the parameter KPPI
I , and with (4.9), the parameter KPPI

P of the PI-velocity-
controller are fixed. The PI-controller is thus formally completely defined and the position
controller can be tuned as the superimposed control loop. However, the conditions (4.7)
and (4.9) cannot be solved explicitly for the design parameters KPPI

P and KPPI
I of the

controller. This is because the crossover frequency, given by (4.8), needs to be calculated
as a function of the controller design parameters, which, however, is a nonlinear function
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Figure 4.4: Comparison of the velocity control loops based on the Notch filter and the
Butterworth filter in the frequency domain. The design parameters of the
controllers are given by the parameter sets CA and CB in Table A.6 and
Table A.7 in Appendix A.

and cannot be solved analytically. In order to calculate the parameters KPPI
P , KPPI

I
and ωc, the equations (4.7), (4.8) and (4.9) can be solved numerically, e. g., using the
Newton-Raphson method, see [42]. The Bode diagram of the velocity controller GpreGPI
for both, filtering the mechanical resonance with Gpre = GNotch and Gpre = Gbw, are
depicted in Figure 4.4, where the design parameters ϕωr = 60°, Asup = −10 dB as well
as ANotch = −6 dB and Abw = −3 dB were chosen. The respective open-loop transfer
functions of the velocity controlled loop are depicted in Figure 4.5. The desired values
of the phase margin are maintained within the solution of the nonlinear equations (4.7),
(4.8) and (4.9), however, in case of a Notch prefilter, due to numeric errors, the achieved
resonance suppression factor is insignificantly lower than the desired value. Moreover, the
crossover frequency is slightly lower than with the Butterworth prefilter. It can be noted
that the open-loop transfer functions, when using a Notch or a Butterworth prefilter in
the controller design, are comparable to each other, if the same design parameters Asup
and ϕωr are chosen.

4.3 Position controller design
Based on the designed prefilter in Section 4.2.1 and the velocity controller in Section 4.2.2,
a P-position-controller is designed. The schematic diagram of the position control loop is
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Figure 4.5: Open-loop transfer function of the velocity controlled plant, with plant and
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Appendix A.

depicted in Figure 4.6. Although the control structure is cascaded, the velocity control

Gω,cl

KPPI
PP Gpre

KPPI
I
s

KPPI
P

GdtGτm,ϕm− −

GR

ϕ̂d ϕ̂m

ω̂m

Figure 4.6: Block diagram of the position control loop.

loop has to be regarded in the design process, as its bandwidth is not large enough,
compared to the position controller. Therefore, the closed-loop transfer function of the
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velocity controlled loop, in the following denoted by

Gω,cl = GPIGτm,ϕmGdt
1 +GPIGτm,ϕmGdtGR

, (4.10)

is used as starting point for the position controller design. The proposed proportional
controller exhibits one degree of freedom, namely KPPI

PP , and is given by the transfer
function

Cϕ = KPPI
PP . (4.11)

Therefore, only one design parameter of the open-loop transfer function can be chosen
independently. Here, this parameter is the phase margin ϕϕr of the open-loop transfer
function. The phase margin is defined at the gain crossover frequency ωc,ϕ, which is given
by

|Gω,cl(Iωc,ϕ)Cϕ| = 1 . (4.12)

Because the proportional controller can not change the phase of the open-loop transfer
function, the frequency location of the gain crossover frequency has to be changed by the
controller parameter KPPI

PP . Therefore, in order to meet a desired phase margin ϕϕr , the
relation

arg (Gω,cl(ωc,ϕ)) = −π + ϕϕr (4.13)

fixes the gain crossover frequency ωc,ϕ. Analogously to (4.9), this equation cannot be
solved for ωc,ϕ analytically, thus, a numerical solution approach is used to obtain the
solution ω∗c,ϕ. Therefore, the controller gain is determined by

KPPI
P = 1∣∣∣Gω,cl(ω∗c,ϕ)

∣∣∣ . (4.14)

In Figure 4.7, the open-loop transfer function of the position controlled plant for the
different prefilter approaches of the previous section are depicted.

4.4 Feedforward controller design
Based on the identified model of Chapter 3, the model parameters can be used to design
a feedforward control of the desired velocities and accelerations, as depicted in Figure 4.1.
Because the cart position cannot be measured, we will assume a rigid coupling between
the cart and the driving pulley, i. e., c = 0 and d = 0, see also Section 3.6. This yields,
according to (2.25) for fg = 0

τm =
(
i2tmc + Θe

)
︸ ︷︷ ︸

m̃e

ω̇m + (dm + i2tdc︸ ︷︷ ︸
d̃v

)ωm + (τc + itfc)︸ ︷︷ ︸
τ̃c

sign(ωm) . (4.15)

The parameters d̃v for the viscous friction and τ̃c for the Coulomb friction of the total
mechanical system are used, as identified in Section 3.6. The sum of the motor mass
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Figure 4.7: Open-loop transfer function of the position controlled plant, with plant and
controller parameters according to Table A.4, Table A.6 and Table A.7 in
Appendix A.

moment of inertia and the equivalent mass moment of inertia of the moving mass mc is
denoted by m̃e. By replacing ωm with the desired value ωd, the feedforward torque

τFF = m̃eω̇d + d̃vωd + τ̃csign (ωd) (4.16)

and, hence, by a little abuse of the notation, the feedforward acceleration controller KPPI
a

shown in Figure 4.1 is determined. The velocity feedforward parameter KPPI
v is simply

given by

KPPI
v = 1 (4.17)

because ω̂FF = ω̂d will impose the desired velocity ωd. Obviously, the feedforward ac-
celeration controller also accounts for the Coulomb friction. If the nonlinear friction
identification shown in Section 3.6 is not desirable, the parameter τ̃c can be set to zero.

To summarize this chapter on the automatic controller design process, the user has to
choose the design parameters Asup, ϕωr and ϕϕr , as well as the filter parameters dn or ωbw,
according to the application needs. This guarantees that the user has as much freedom as
possible in adapting the controller, while the design process itself is automated and does
not need any further intervention by the user. This allows to build up a graphical user
interface with one or more sliders for the tuning parameters, which can then be used to
manually tune the controllers for the application needs without any deeper knowledge in
control theory.



5 Closed-loop measurement results

This chapter deals with measurement results in the closed-loop system. The controller is
designed in Chapter 4. The first section shows measurements which put emphasis on the
influence of the prefilter on the control results. The second section deals with different
feedforward control strategies, namely the linear and nonlinear one, compared to an
experiment without feedforward control. These results are presented with a small moving
mass and a large moving mass. The last section of this chapter shows the influence of the
moving mass on the measurement results. All measurements utilize a desired position
change from ξd = 0 m to ξd = 0.5 m, while the desired trajectory is generated by the
trajectory generator presented in Section 6.3 with the parameters listed in Table A.8 in
Appendix A.

5.1 Influence of the prefilter
Figure 5.1 depicts the desired and actual cart position ξd and ξ, and, additionally, the
control error for a position change of the cart with moving mass mc = 11.2 kg. Moreover,
the desired and the actual cart velocity, ξ̇d and ξ̇, are shown. As the controller utilizes
the motor side measurements of the cart position and velocity, that is ϕm and ωm, also
the control errors of this signals with respect to ξd and ξ̇d are depicted. The last diagram
of the figure shows the actual value of the motor torque τm. It has to be noted that in the
case of no prefilter, the control design procedure of Chapter 4 is applied with Gpre = 1.
If the controller parameters of the controller design with prefilter are used and only
Gpre = 1 is set for the implementation, the control loop is unstable due to the mechanical
resonance of the plant. As mentioned in Section 4.2.1, both filter approaches show nearly
the same response behavior. This is because the cascaded controllers were designed to
fulfill the same conditions on the phase margins (ϕωr , ϕϕr ) and resonance suppression factor
(Asup). However, the Butterworth filter approach is more robust to parameter variations
compared to the Notch filter approach. This is because of the roll-off of the low-pass filter
for higher frequencies. By comparing the control loops with prefilter and without prefilter,
a significantly larger error in the position as well as in the velocity can be observed, thus,
justifying the application of the prefilter in the controller design.

5.2 Influence of the feedforward control
The previous section outlined the influence of the prefilter on the control performance
and the advantage of using a Butterworth prefilter. Because of this, in this section only
the Butterworth prefilter is used in the controller design.
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Figure 5.1: Position change from ξ = 0 mm to ξ = 500 mm using a Notch filter, a Butter-
worth filter and no prefilter and nonlinear feedforward control.
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Analogously to Figure 5.1, Figure 5.2 and Figure 5.3 depict the response behavior
of the closed-loop system. For the results depicted in Figure 5.2, a moving mass of
mc = 11.2 kg is used and for the experiment depicted in Figure 5.3, a moving mass of
mc = 0 kg is used. As expected, the controller without feedforward control shows the worst
control performance. Including feedforward control is significantly more accurate, while
the nonlinear feedforward controller shows the smallest positioning error with less than
1 mm, cf. Figure 5.4. Depending on the desired accuracy and implementation effort, the
nonlinear feedforward control is preferable at the costs of the explicit friction identification,
as outlined in Section 3.6. If the implementation effort should be as low as possible,
the linear feedforward control is preferable. When comparing the measurement results
of Figure 5.2 and Figure 5.3, it is obvious that for small moving masses the advantage
of the feedforward control decreases. Moreover, it is worth mentioning that the linear
feedforward control shows a sign reversal in the tracking error ξd − ξ and the velocity
error ξ̇d − itωm, which can be explained by overcompensating the real friction for medium
to high velocities, as the Coulomb friction is approximated by a viscous one.

5.3 Influence of the moving mass
In the measurement results depicted in Figure 5.4, a Butterworth prefilter is used for two
different moving masses, i. e. mc = 11.2 kg and mc = 0 kg, and nonlinear feedforward con-
trol. The dynamic error in both cases in the position is smaller than 1 mm, while the static
positioning error is smaller than 100 µm. The static positioning error can be explained by
the friction in the system. Especially for a small moving mass, the friction is the dominant
effect, which explains the positioning error between t = 1.3 s and t = 1.8 s. In the case of
the small moving mass, the trajectory generator parameters can be further tuned as the
motor torque limit τm,max allows for a faster position change. However, in order to compare
the results for both moving masses in this experiment, the trajectory generator parameters
remain unchanged. In case of the larger moving mass, a larger positioning error ξd − ξ
compared to ξd − itϕm can be observed. This is due to the flexibility of the toothed belt.

To conclude, the measurement results in this chapter show that the usage of (nonlinear)
feedforward control improves the overall control performance.
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Figure 5.2: Position change from ξ = 0 mm to ξ = 500 mm using a Butterworth filter
for filtering the mechanical resonance with linear, nonlinear and without
feedforward control and moving mass mc = 11.2 kg.
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for filtering the mechanical resonance and nonlinear feedforward control with
different moving masses.



6 Implementation

This chapter deals with some important notes regarding the implementation of the
control strategies from the previous chapter on a real-time hardware (RTH) including the
field programmable gate array (FPGA) assisted estimation of a velocity signal from the
incremental encoder signals. Additionally, the considered integral controller includes a
specific anti-windup procedure, which is discussed in the second section. The last section
of this chapter presents a time-optimal trajectory generator for setpoint changes in the
position.

6.1 Velocity signal calculation
In order to implement the cascaded velocity controller of Section 4.2, the velocity signal
ωm has to be estimated from the measured position signal ϕm.
Four approaches are outlined in the following:

(i.) The first approach makes use of a classical first-order high-pass filter in the form

GR = s

sTR + 1 , (6.1)

with time constant TR > 0.

(ii.) The second approach, namely the event counter approach, counts the number of
incremental encoder edges in one sampling period Ts and measures the time between
the first and the last increment. This approach aims for a higher resolution of
the velocity signal at high velocities. Details on this approach are presented in
Section 6.1.1.

(iii.) The third approach, in the following named gate measurement approach, measures
the time between two consecutive incremental encoder edges and calculates the
velocity based on that time. This method aims for a higher resolution of the velocity
signal at low velocities. It is discussed in detail in Section 6.1.2.

(iv.) The last approach combines the gate measurement approach and the event counter
approach in order to take advantage of the benefits from both approaches. It is
discussed in Section 6.1.3.

In Chapter 4, we introduced the transfer function

GR = ω̂m
ϕ̂m

, (6.2)
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Figure 6.1: Velocity signal calculated by a first-order high-pass filter with desired velocity
itϕm = 0.1 m/s. Note the different heights of the spikes due to different
encoder resolutions of the motor and cart incremental encoder.

cf. Figure 3.4(b) and Figure 3.4(c). The first approach, cf. (6.1), is simple to implement.
Problematic, however, within this approach are the generated spikes as a consequence of
the time-discrete implementation of (6.1), cf. Figure 6.1 and Figure 6.8. Especially for
low velocities this can lead to a switching behavior between the minimal resolution and
zero. This case is depicted in Figure 6.2, where the absolute value of the actual velocity
drops below the minimal resolution ξ̇min, which is given by the relation of the encoder
resolution ∆ξmin and the sampling time Ts, i. e., by

ξ̇min = ∆ξmin
Ts

. (6.3)

Of course, by increasing the time constant TR, this switching can be reduced at the costs of
an additional phase lag in the closed-loop system. In order to reduce this necessary phase
lag, that is to obtain a higher cutoff frequency of the filter, the gate measurement approach
and the event counter approach are presented, both with different characteristics. The
basic principles and characteristics are presented in [43] and [44]. These approaches will
be combined in Section 6.1.3 to obtain a velocity signal with higher resolution, especially
near the lower resolution bound of the high-pass filter approach.

The gate measurement and event counter approach as well as the combination of both
are based on the incremental encoder signal channels A and B. Assuming a constant
velocity, the encoder signals A and B are two differential rectangular signals, which are
90° out of phase to each other. For further explanation, the edges of the encoder signals
need to be detected and are referred to as increments, see Figure 6.3. When transforming
the encoder signals into the corresponding increments, the direction information of the
quadrature signals A and B gets lost. However, it can be derived from the phase shift of
the two signals to each other. If channel A leads in comparison to channel B, the velocity
is positive and vice versa. Depending on this phase shift the increments count as positive
for positive velocities and negative for negative velocities. Especially for low velocities it
can occur that one of both channels jumps between high and low, whereas the other one
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Figure 6.2: Showcase of the problem occuring when using a time-discrete high-pass filter
to estimate the velocity from the incremental encoder position signals at the
lower resolution bound ξ̇min. Instantaneous change in the actual velocity is
assumed for explaining reasons.

remains constant. Manufacturing imperfections or vibrations can lead to such a behavior.
This is related to mechanical contact bouncing [45] and is here referred to as increment
bouncing. To get rid of this behavior a state machine is used, which prevents repeated
switching between two adjacent states.
A state Si is referred to as a combination of the levels of both encoder channels, cf.

Figure 6.3. Therefore, eight states exist, those are S1-S4 for positive velocities and S5-S8
for negative velocities. These states are transited cyclically when moving with constant
velocity. The state sequence is only disturbed by the bouncing phenomena or when a
sign reversal of the velocity occurs. The increment debouncing now prevents a switching
from, for example, S3 to S7, if the previous state has been S2. However, the previous
state is then set to be S7 and if the next state is S8, a sign reversal of the velocity occured.
On the other hand, if the next state is S3, the previous state is again set to be S2. An
increment is then only generated, if a proper state transition occured, that is, for positive
velocities Si → Smod(i+1,4) with i ∈ {1, 2, 3, 4}. The downside of this increment debouncing
approach is that a sign reversal in the velocity is delayed by one increment, or equivalently
by one state transition. In the following, the increment signal is used to calculate an
estimate for the actual velocity.

Independent of a rotary or translational encoder the following schemes can be applied
to both. Henceforth, the distinction between ω and ξ̇ is dropped in this section.
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Figure 6.3: Showcase of the state machine and of the calculation of the increment signal
from the quadrature incremental encoder signals for constant negative and
positive velocities ξ̇− and ξ̇+, where |ξ̇−| = |ξ̇+|.

6.1.1 Event counter approach
Within the event counter approach, the time between the first increment in the fundamental
sampling period Ts and the last increment is measured, and additionally, the numbers
of increments ninc is counted. Figure 6.4 illustrates the principle of this approach. The
velocity estimation is then given by

ξ̇h = (ninc − 1)∆ξmin
Tn,inc

, (6.4)

where Tn,inc ≤ Ts denotes the measurement time, as depicted in Figure 6.4, and ninc ≥ 2.
Because of the condition ninc ≥ 2, the minimal measurable velocity is given by

ξ̇h,min = ∆ξmin
Ts

, (6.5)

which occurs if ninc = 2, that is, exactly two increments are detected in the sampling
period Ts. On the other hand, the maximal velocity ξ̇h,max is theoretically only limited by
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the processing speed of the used hardware. That is, if more than one increment is received
from the incremental encoders during the timespan ∆tmin, the maximum velocity reads as

ξ̇h,max = ∆ξmin
∆tmin

. (6.6)

The relationship between the actual velocity ξ̇, the measurement time Tn,inc, as well as
the measured position difference ∆ξ are given by

Tn,inc = ∆ξ
ξ̇

(6.7)

with

∆ξ = (ninc − 1)∆ξmin . (6.8)

The difference of the event counter approach compared to the time-discrete differentiator
with velocity estimation

ξ̇R = ∆ξ
Ts

(6.9)

and constant sampling time Ts goes to zero for higher velocities, as

Tn,inc → Ts if ξ̇ →∞ . (6.10)

In this case, the event counter approach is equivalent to the time-discrete high-pass filter,
except for the additional filtering with the time constant TR.
Under the assumption that Tn,inc can be measured with an accuracy of ±∆tmin and

the position measurement of ∆ξmin is error free, cf. [43], the relative velocity error can be
expressed as

∆ξ̇h,err(ξ̇) = 100 ξ̇h − ξ̇
ξ̇
≈ ∓100 ξ̇⌊

ξ̇Ts
∆ξmin

⌋
ξ̇h,max

(6.11)
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Figure 6.5: Comparison of the relative velocity errors of the gate measurement approach
error ∆ξ̇l,err and the event counter approach ∆ξ̇h,err. Here, env(·) denotes the
envelope function of the argument. The minimal time resolution is supposed
to be ∆tmin = 10 ns and the incremental encoder resolution is given by
∆ξmin = 2.5 µm.

in percent, see Section C.1 in Appendix C. The visualization of the error in Figure 6.5
shows the envelope of the relative error

env
(
∆ξ̇h,err(ξ̇)

)
= 100 ξ̇(

ξ̇Ts
∆ξmin

− 1
)
ξ̇h,max

(6.12)

decreasing with increasing velocity, whereas the real error switches between its minimal
value and the envelope function depending on the number of increments ninc that fit into
one sampling period Ts. Obviously, the error shows a reversed dependency on the actual
velocity in comparison to the gate measurement approach, cf. Figure 6.5, hence, providing
the justification for the usage in the higher velocity range, that is ξ̇ > ξ̇h,min. However,
this approach has its limitation as the relative velocity error ∆ξ̇h,err tends towards

argmin
ξ̇

(
∆ξ̇h,err(ξ̇)

)
= 100∆tmin

Ts
(6.13)

for ξ̇ → ξ̇h,max.

6.1.2 Gate measurement approach
Note that the condition ninc ≥ 2 of the event counter approach limits the minimal
measurable velocity. Hence, we introduce a new approach, namely the gate measurement
approach, for ninc ≤ 2. Compared to the event counter approach, the gate measurement
approach does not average the number of increments over one period of the sampling
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time Ts. Rather than that, only the last two increments are utilized, regardless of the
number of increments ninc that are detected in the time span Ts, cf. [44]. That is, this
method only provides the latest available velocity estimation, which is based on the time
difference between the last two increments, see Figure 6.6. Hence, the method provides a
more accurate velocity estimation, that is, an estimate with a smaller phase shift at the
costs of being more prone to noise, manufacturing imperfections, especially regarding the
position resolution ∆ξmin, and other distortions.
The estimated velocity of the gate measurement approach is then given by

ξ̇l = ∆ξmin
Tinc

. (6.14)

Here, Tinc denotes the measured time between the last two increments, see Figure 6.2.
Crucial for achieving a high resolution is an accurate time-measurement of the time Tinc.
This accuracy can only be achieved by an FPGA implementation of the time-measurement.
The test hardware has a time resolution of ∆tmin = 10 ns, with a position resolution of
∆ξmin = 2.5 µm, leading to an approximate maximal measurable velocity of

ξ̇l,max = ∆ξmin
∆tmin

= 250 m/s , (6.15)

where the resolution bound of the time-measurement is reached. For velocities larger than
ξ̇l,max, the time-measurement is not feasible anymore.

The relative velocity error ∆ξ̇l,err of the gate measurement approach in percent is given
by

∆ξ̇l,err(ξ̇) = 100 ξ̇l − ξ̇
ξ̇

= ∓100
(

ξ̇

ξ̇l,max ± ξ̇

)
, (6.16)

see Section C.2 in Appendix C. Note that the relative velocity error ξ̇l,err depends on the
actual velocity ξ̇. The graphical representation of this equation is depicted in Figure 6.5,
where the relative error in the depicted velocity range is nearly linearly decreasing with the
velocity. Obviously, for the intended speed range, i. e., small velocities, this method shows
a sufficiently small error, which is, however, increasing with increasing velocity. If, only a
low time-measurement resolution ∆tmin is available, the advantage of this method over
the event counter approach decreases even faster with increasing velocity ξ̇ and encoder
resolution ∆ξmin, as indicated by (6.16).
The relative velocity error ∆ξ̇l,err does reach zero for zero velocity ξ̇ = 0, however, a

new velocity value is only available when a new increment from the incremental encoder is
detected. The estimated velocity never reaches zero, when the actual velocity is zero, i. e.,
ninc = 0, but freezes at the last velocity estimate. For this reason, a timeout time Tout is
introduced after which the velocity estimate is set to zero, when no further increment is
detected, that is Tinc ≥ Tout > Ts. In order to provide more accurate velocity estimates
cyclic with the controller sampling time Ts, the velocity within the time span Tout is
approximated by

ξ̇l = ∆ξmin
τ

, with Ts < τ < Tout , (6.17)
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Figure 6.6: Schematic picture of the gate measurement approach for velocities above the
intended measurement range.

where τ denotes the time since the last increment was detected, see Figure 6.7. This value
remains as an estimate for the velocity, as long as no further increment is detected within
τ ≤ Tout.
By adapting the gate measurement approach with the timeout time, the lower bound

of the measurable velocity decreases to

ξ̇l,min = ∆ξmin
Tout

. (6.18)

Together with the condition ninc ≤ 2, this defines the resonable velocity range for this
method.
Because of the problems in the higher velocity range, the event counter approach, as

explained in the previous section, is preferred for velocities where ninc > 2.

6.1.3 Combined gate measurement and event counter approach
In Section 6.1.1 and Section 6.1.2 two approaches for estimating the velocity were intro-
duced. The gate measurement approach is more accurate for small velocities, see (6.16),
and the event counter approach is more accurate at high velocities, cf. (6.11). In the worst
case, the relative error functions (6.12) and (6.16) intersect at

ξ̇sw = 2∆ξmin
Ts −∆tmin

. (6.19)

The switching function

δsw(ξ̇l) =


0 if ξ̇l ≤ ξ̇sw

2
1
2

(
1− sin

(
π ξ̇l
ξ̇sw

))
if ξ̇sw

2 < ξ̇l <
3ξ̇sw

2

1 if ξ̇l ≥ 3ξ̇sw
2

(6.20)

is introduced in order to combine the advantages of both approaches. The combined
velocity signal is then expressed as

ξ̇m = (1− δsw) ξ̇l + δswξ̇h ≈ ξ̇ . (6.21)
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Figure 6.7: Schematic picture of the timeout extension of the gate measurement approach.
For the showcase Tout = 5Ts has been chosen, and the actual velocity is
supposed to jump from its initial value ∆ξmin

Ts
to zero at t = 2Ts.

Even though this allows for a better velocity signal compared to the pure differentiator
approach, the signal ξ̇m needs to be filtered by means of a low-pass filter. In order to do
so, the signals ξ̇l and ξ̇h are filtered with the same filter and afterwards they are combined,
as denoted in (6.21). Figure 6.8 depicts the unfiltered signals ξ̇l and ξ̇h, as well as the
velocity ξ̇R calculated using a time-discrete high-pass filter, see (6.2). It can be noted
that for low velocities the gate measurement approach provides a higher accuracy and
for higher velocities the event counter approach is preferable. Moreover, the difference
between a time-discrete differentiator and the event counter approach diminishes for
velocities above approximately ξ̇ = 0.1 m/s. This is in accordance to the explanations in
the previous sections. However, the gate measurement approach shows a high jitter in the
upper velocity range due to the fact that more than two increments are detected within
the time Ts.
To conclude this section, the presented velocity signal estimation approach allows for

a high measurement accuracy, especially for low velocities. Clearly, by means of the
improved velocity measurement it is possible to increase the bandwidth of the velocity
controller. However, different tests have shown that the possible improvement in control
performance when using the more sophisticated combined gate measurement and event
counter approach is limited. Summarizing, the first-order high-pass filter approach is
simple to implement and provides nearly an equivalent control performance.
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the event counter approach ξ̇h for generating the velocity signals based on
the incremental encoder output signals. For comparison reasons, the velocity
signal ξ̇R, generated by a time-discrete high-pass filter, is also shown.

6.2 Integrator anti-windup
In Section 4.2, a controller with integral action for the velocity is presented. In combination
with a limited control action τm,max of the motor, integrator windup can occur, see [46].
Especially in positioning systems this behavior leads to an overshoot in the actual position
compared to the desired one. An anti-windup measure aims at reducing the resulting
overshoot. Different approaches are proposed in literature, see [41, p. 76ff], [46] and [47].
A straightforward approach to prevent integrator windup is presented here.

During normal operating conditions, that is, if the desired torque τd of the velocity
controller fulfills −τm,max ≤ τd ≤ τm,max, the state of the time-continuous integrator of
the velocity controller is given by

xI(t) =
t∫

0

eω(τ)dτ , (6.22)

where xI denotes the integrator state and eω the control error of the velocity control loop,
see Figure 6.9. Using a sampling time Ts, so that t = kTs is valid, the notation

xI[k] = xI(kTs) (6.23)

and

eω[k] = eω(kTs) (6.24)

is introduced. The respective discrete-time integrator is then implemented in the form

xI[k + 1] = xI[k] + Tseω[k] . (6.25)
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Figure 6.9: Block diagram of the velocity control loop with filtered velocity control error
êω.

If the control limits are violated, the conditional integration

xI[k + 1] =


τm,max−KPPI

P eω [k]−τFF[k]
KPPI

I
if (τd[k + 1] ≥ τm,max) ∧ (eω[k] > 0)

−τm,max−KPPI
P eω [k]−τFF[k]
KPPI

I
if (τd[k + 1] ≤ −τm,max) ∧ (eω[k] < 0)

xI[k] + Tseω[k] otherwise

(6.26)

is executed. The integrator state is set to meet the control limits exactly, if they would
be exceeded. This conditional integration is used as anti-windup action and is compared
to an experiment with an integrator according to (6.25). The measurement results are
depicted in Figure 6.10. Even though the output of the controller reaches the actuation
limit only for a short time, the anti-windup action shows a faster return to the actuation
area after leaving the limit τm,max. Consequently, this leads to a smaller error in the
position and velocity as can be seen in the highlighted area.

6.3 Trajectory generator
In trajectory following control, we would like to move from a starting position

ξ(0) = ξstart (6.27)

with initial velocity

ξ̇(0) = ξ̇start (6.28)

and acceleration

ξ̈(0) = ξ̈start (6.29)

at time t = 0 to an end position

ξ(Ttrj) = ξend (6.30)
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Figure 6.10: Influence of the integrator anti-windup on the control results for a position
change of 500 mm. Controller parameters are given by CB, plant parameters
by GA and trajectory generator parameters by TA and TB, see Table A.4,
Table A.7, Table A.8 and Table A.9 in Appendix A.
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with end velocity

ξ̇(Ttrj) = ξ̇end (6.31)

and acceleration

ξ̈(Ttrj) = ξ̈end (6.32)

within a transition time Ttrj. In Chapter 5, especially in Section 5.2, the benefit of
feedforward control is shown. In order to utilize this benefit, a trajectory generator has to
provide a twice-continuously differentiable trajectory ξd(t). The target of the presented
trajectory generator is now to provide a time-optimal trajectory ξd(t) and to meet the
constraints in the velocity ξ̇min ≤ ξ̇d ≤ ξ̇max, the acceleration ξ̈min ≤ ξ̈d ≤ ξ̈max and the
jerk jmin ≤ jd ≤ jmax. Hereby, the jerk j is defined as

j :=
...
ξ . (6.33)

The 7-step trajectory generator introduced in [48] allows to handle these constraints. The
basic idea is to utilize the bang-bang behavior in the jerk j as a result of a time-optimal
optimization problem subject to input and output constraints, see [49]. The so generated
jerk signal is then integrated and used to obtain the desired trajectory ξd(t). There are
three main phases, an acceleration phase P1−P3, a phase with maximum velocity P4 and
a deceleration phase P5− P7 as shown in Figure 6.11. The acceleration and deceleration
phase are subdivided into phases with maximum jerk jmax, P1 and P7, phases with
maximum acceleration ξ̈max, P2 and P6 as well as phases with minimum jerk jmin, P3
and P5. In [48], the underlying optimization problems are formulated and solved. The
reader is kindly referred to [48] for more details on the 7-step trajectory generator.
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Figure 6.11: Trajectory ξd(t) of the 7-step trajectory generator for ξ̈(0) = 0 m/s2, ξ̇(0) =
0 m/s, ξ(0) = ξstart and ξ(Ttrj) = ξend and the constraints jmin ≤ jd ≤ jmax,
ξ̈min ≤ ξ̈d ≤ ξ̈max and ξ̇min ≤ ξ̇d ≤ ξ̇max.



7 Conclusions and outlook

This chapter gives an overview and conclusions of the previous chapters and puts emphasis
on the results and gained knowledge throughout this work. Additionally to this, an outlook
is given on further research opportunities and possible improvements to the approaches
presented in this work.
In Chapter 2, a mathematical model based on the mechanical structure of the linear

belt driven servo mechanism was presented. This model was reduced to a two-mass-spring-
damper system with nonlinear Coulomb friction acting on the motor.

The system parameters were estimated in a two step approach. At first, the frequency
response function is estimated using a pseudo random binary excitation. An open-loop and
two closed-loop approaches were examined and the resulting frequency response functions
compared to each other. The results obtained are comparable to each other, however,
the indirect closed-loop approach shows a bias in the lower frequency range. Hence, the
open-loop approach is preferred because no controller has to be designed in advance.
Furthermore, this work assumes a horizontal situation of installation of the linear

bearing. However, using the open-loop identification strategy, another problem arises if
the toothed belt drive is mounted in a non-horizontal orientation. In this case, a pure
integrator controller for the motor position can be used to determine the necessary torque
for the compensation of the gravity forces. This approach was only tested in simulation
and needs further investigation.

Based on the frequency response function resulting from the open-loop experiment, the
linear system parameters were estimated by solving an appropriate static optimization
problem. The resulting system parameters are then utilized to design a linear controller.
The control strategy consists of a proportional-integral velocity controller and a superim-
posed proportional position controller. Additionally, a feedforward controller is designed.
To achieve a higher controller bandwidth, the mechanical resonance is filtered by a prefilter.
Two different prefilters were examined, namely a Notch filter and a Butterworth filter.
Both show comparable performance in suppressing the mechanical resonance, however, the
Butterworth filter is the more robust and, hence, the preferred prefilter, cf., Section 4.2.1
and Chapter 5. The general controller concept is designed to allow the user to adjust the
positioning dynamics by only three parameters, i. e., the phase margin of the velocity and
position control loop and the resonance suppression factor. Depending on the requirements
of the closed-loop system, these tuning parameters can be easily changed without in-depth
knowledge on control theory.

The designed feedback controller can then be used to identify the viscous and Coulomb
friction parameters in the second identification step. The nonlinear friction parameters
were used to design a feedforward controller. The results in Chapter 4 show that the
high controller performance is mainly based on the model and parameter accuracy of the
feedforward control. Already the linear feedforward controller shows a significantly better
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control performance compared to the results obtained without feedforward control. At
the costs of an additional identification step, the nonlinear feedforward controller further
improves the control performance.
A time-optimal trajectory generator is used to generate the desired position, velocity

and acceleration signals for a set point change, as introduced in Section 6.3. Also the
velocity estimation based on the incremental encoder position signals was investigated
in more detail. It is shown that the velocity resolution, especially in the area of the
lower resolution bound of a conventional time-discrete high-pass filter, can be significantly
increased. Despite this improvements of the measurement quality, the impact of this
additional computational effort on the performance of the closed-loop system is minor
compared to the advantages of the presented feedforward controller.
The algorithms developed in this work for system identification and model-based

controller design are not limited to belt driven servo systems, as every electromechanical
drive chain shows the characteristic frequency response behavior as presented in Chapter 2.



A Parameters

A.1 Data sheet parameters

Table A.1: Data sheet parameters of the toothed belt axis EMMS-AS-70-S-LS-RMB [50]
from Festo used in the test rig.

Parameter Value Unit
Nominal voltage 360.00 V
Nominal current 2.20 A
Max. current 5.00 A
Nominal velocity 5300.00 rev/min
Max. velocity 6300.00 rev/min
Motor constant km 0.65 N m/A
Nominal torque 1.43 N m
Max. torque 3.10 N m
Winding resistance Rm 7.66 Ω
Winding inductance Lm 14.50 mH
Total drive mass moment of inertia Θm 0.45 kg/cm2
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Table A.2: Data sheet parameters of the linear axis EGC-70-600-TB-KF-0H-GK [51] from
Festo used in the test setup.

Parameter Value Unit
Max. feed force 100.00 N
Max. driving torque 1.24 N m
Max. speed 5.00 m/s
Max. acceleration 50.00 m/s2

Stroke length 0.60 m
Moving load 0.37 kg
Feed constant 78.00 mm/rev
Effective radius r 12.42 mm
Pulley mass moment of inertia Θr 23.63 kg/mm2

Belt pitch 3.00 mm
Preloading force f0 105.00 N
Belt stiffness cb 106 250.00 N/m

Table A.3: Data sheet parameters of the connection kit EAMM-A-L38-70A from Festo
used in the test setup.

Parameter Value Unit
Mass moment of inertia Θg 3.20 kg/mm2

Stiffness 168.75 N m/rad
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A.2 Identified parameters
A.2.1 Plant parameters

Table A.4: Plant parameters GA as output of the identification process of Chapter 3 for
additional mass mc = 11.2 kg mounted on the cart.

Parameter Value Unit
Motor replacement mass momentum of inertia Θe 71.73 kg mm2

Moving mass mc 13.44 kg
Stiffness c 203.74 kN/m
Motor viscous damping coefficient dm 33.17 N s/m
Cart viscous damping coefficient dc 226.42 N s/m
Resonance frequency fr 107.11 Hz
Antiresonance frequency fz 19.59 Hz
Time constant for velocity filter TR 2.00 ms

Table A.5: Plant parameters GB as output of the identification process of Chapter 3 for
no additional mass mc = 0 kg mounted on the cart.

Parameter Value Unit
Motor replacement mass momentum of inertia Θe 71.73 kg mm2

Moving mass mc 0.96 kg
Stiffness c 222.39 kN/m
Motor viscous damping coefficient dm 0.01 N s/m
Cart viscous damping coefficient dc 53.70 N s/m
Resonance frequency fr 134.00 Hz
Antiresonance frequency fz 76.51 Hz
Time constant for velocity filter TR 2.00 ms
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A.2.2 Controller parameters

Table A.6: Controller parameters CA for plant GA , using a Notch filter in the controller
design process and a phase margin ϕωr = 60° for the velocity controller and
ϕϕr = 80° for the position controller, as well as a resonance suppression factor
of Asup = −10 dB.

Parameter Value Unit
ϕωr 60.00 °
ϕϕr 80.00 °
Asup −10.00 dB
KPPI

I 1.69 N m/rad
KPPI

P 0.08 N m s/rad
KPPI

PP 10.91 1/s
m̃e 0.02 kg m2

dn 4.60 −

Table A.7: Controller parameters CB for plant GA , using a Butterworth filter in the
controller design process and a phase margin ϕωr = 60° for the velocity controller
and ϕϕr = 80° for the position controller, as well as a resonance suppression
factor of Asup = −10 dB.

Parameter Value Unit
ϕωr 60.00 °
ϕϕr 80.00 °
Asup −10.00 dB
KPPI

I 1.39 N m/rad
KPPI

P 0.12 N m s/rad
KPPI

PP 6.29 1/s
m̃e 0.02 kg m2

ωbw 123.24 rad/s



A Parameters A.2 Identified parameters 72

A.2.3 Trajectory generator parameters

Table A.8: Parameters TA of the 7-step trajectory generator used for all experiments.

Parameter Value Unit
jmax 40.00 m/s3

jmin −40.00 m/s3

ξ̈max 45.00 m/s2

ξ̈min −45.00 m/s2

ξ̇max 5.00 m/s
ξ̇min −5.00 m/s
ξmax 0.57 m
ξmin −0.01 m

Table A.9: Parameters TB of the 7-step trajectory generator.

Parameter Value Unit
jmax 50.00 m/s3

jmin −50.00 m/s3

ξ̈max 50.00 m/s2

ξ̈min −50.00 m/s2

ξ̇max 5.00 m/s
ξ̇min −5.00 m/s
ξmax 0.57 m
ξmin −0.01 m

A.2.4 Friction parameters

sξ̇ = [2, 0.1, 0.01, 0.5, 1.9, 1, 0.001, 0.03, 0.7, 0.002, 0.4, 1.8, 0.02, 0.09, 1.7, 1.1,
0.003, 0.009, 0.8, 1.6, 0.04, 0.004, 0.9, 1.2, 0.005, 1.4, 0.07, 0.6, 0.008, 0.3, (A.1)
1.5, 0.006, 1.3, 0.06, 0.007, 0.2, 0.08, 0.05]m/s
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Table A.10: Friction parameters for the system configurations GA and GB as outcome of
the procedure described in Section 3.6.

Parameter Value for Configuration Unit
GA GB

Viscous friction d̃v 2.530 2.230 mN m s/rad
Coulomb friction τ̃c 0.125 0.115 N m

A.3 Simulation parameters

Table A.11: Plant parameters SA for simulations.

Parameter Value Unit
Motor replacement mass momentum of inertia Θe 44.90 kg mm2

Moving mass mc 10.00 kg
Stiffness c 200.00 kN/m
Motor viscous damping dm 100.00 N s/m
Cart viscous damping dc 100.00 N s/m
Belt damping d 20.00 N s/m
Resonance frequency fr 133.78 Hz
Antiresonance frequency fz 22.50 Hz

Table A.12: Plant parameters SB for simulations.

Parameter Value Unit
Motor replacement mass momentum of inertia Θe 44.90 kg mm2

Moving mass mc 1.00 kg
Stiffness c 200.00 kN/m
Motor viscous damping dm 100.00 N s/m
Cart viscous damping dc 100.00 N s/m
Belt damping d 20.00 N s/m
Resonance frequency fr 149.85 Hz
Antiresonance frequency fz 71.17 Hz



A Parameters A.3 Simulation parameters 74

Table A.13: Plant parameters SC for simulations.

Parameter Value Unit
Motor replacement mass momentum of inertia Θe 44.90 kg mm2

Moving mass mc 10.00 kg
Stiffness c 2000.00 kN/m
Motor viscous damping dm 100.00 N s/m
Cart viscous damping dc 100.00 N s/m
Belt damping d 20.00 N s/m
Resonance frequency fr 423.05 Hz
Antiresonance frequency fz 71.17 Hz



B Comparison of a PID- and a P-PI-control
structure

Figure B.1 shows the block diagram of a PID- and a cascaded P-PI controller with velocity
and acceleration feedforward control. Here,

ωd = sϕd (B.1)

and

ω̇d = sωd (B.2)

are the first- and second-order time-derivatives of the desired motor angle ϕd. For
comparison reasons, the velocity filter with transfer function GR is assumed to be ideal,
that is

GR = s . (B.3)

Under this assumptions, the complementary sensitivity transfer function for the PID-
controller, depicted in Figure B.1(a), is given by

TPID
ϕd,ϕm =

KPID
a s3 +

(
KPID

v +KPID
D

)
s2 +KPID

P s+KPID
I

KPID
D s2 +

(
1
G +KPID

P

)
s+KPID

I
(B.4)

and, for the cascaded P-PI-controller, shown in Figure B.1(b), by

TPPI
ϕd,ϕm =

KPPI
a s3 +KPPI

v KPPI
P s2 +

(
KPPI

v KPPI
I +KPPI

P KPPI
PP

)
s+KPPI

I KPPI
PP

KPPI
P s2 +

(
KPPI

I +KPPI
P KPPI

PP + 1
G

)
s+KPPI

I KPPI
PP

. (B.5)

Obviously, both control structures provide the same complementary sensitivity transfer
functions. Comparing the coefficients of the polynomials in s of numerator and denominator
from (B.4) and (B.5) result in seven equations of the form

KPPI
a = KPID

a , (B.6a)
KPPI

v KPPI
P = KPID

v +KPID
D , (B.6b)

KPPI
v KPPI

I +KPPI
P KPPI

PP = KPID
P , (B.6c)

KPPI
I KPPI

PP = KPID
I , (B.6d)

KPPI
P = KPID

D , (B.6e)
KPPI

I +KPPI
P KPPI

PP = KPID
P (B.6f)
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Figure B.1: Comparison of a PID-controller and a P-PI cascaded controller including
feedforward control.
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and

KPPI
I KPPI

PP = KPID
I . (B.6g)

However, (B.6d) and (B.6g) define the same relationship. Equation (B.6c) and (B.6f) can
only be satisfied in a nontrivial way, if and only if

KPPI
v = 1 . (B.7)

With (B.7), (B.6b) and (B.6e) results in

KPID
v = 0 . (B.8)

The equations (B.6) allow to convert the P-PI-control structure into the PID-control
structure.
If the feedforward part is neglected, that is KPID

a = KPID
v = KPPI

a = KPPI
v = 0, (B.4)

reads as

TPID
ϕd,ϕm = KPID

D s2 +KPID
P s+KPID

I

KPID
D s2 +

(
1
G +KPID

P

)
s+KPID

I
(B.9)

and (B.5) becomes

TPPI
ϕd,ϕm = KPPI

P KPPI
PP s+KPPI

I KPPI
PP

KPPI
P s2 +

(
KPPI

I +KPPI
P KPPI

PP + 1
G

)
s+KPPI

I KPPI
PP

. (B.10)

Thus, the PID-controller without feedforward control provides one additional zero in the
closed-loop transfer function, which, however, cannot be placed independently from its
poles.



C Additional derivations

C.1 Event counter approach
The expression (6.11) is derived in the following. The actual distance covered during the
sampling time is given by

∆ξTs = ξ̇Ts . (C.1)

With (6.7) the real number of increments reads as

ninc − 1 = ∆ξTs

∆ξmin
with ninc ∈ R . (C.2)

Hence, the integer number of detected increments is given by

ninc = 1 +
⌊
ξ̇Ts

∆ξmin

⌋
with ninc ∈ N . (C.3)

Together with (6.8) follows

Tn,incξ̇ = ∆ξ = (ninc − 1)∆ξmin =
⌊
ξ̇Ts

∆ξmin

⌋
︸ ︷︷ ︸
(C.3)

= ninc−1

∆ξmin . (C.4)
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Assuming only an error of ±∆tmin in the time measurement for Tn,inc yields an error in
the velocity signal. With (6.4) it follows that

∆ξ̇h,err = 100 ξ̇h − ξ̇
ξ̇

(6.4)= 100
(ninc−1)∆ξmin
Tn,inc±∆tmin

− ξ̇
ξ̇

= 100


(ninc − 1)∆ξmin

ξ̇︸ ︷︷ ︸
(6.7)
= Tn,inc

1
Tn,inc ±∆tmin

− 1


= ∓100 ∆tmin

Tn,inc ±∆tmin

= ∓100 ∆tminξ̇

Tn,incξ̇ ±∆tminξ̇

(C.4)= ∓100 ∆tminξ̇⌊
ξ̇Ts

∆ξmin

⌋
∆ξmin ±∆tminξ̇

. (C.5)

Under the assumption ∆tmin � Ts and the usage of (6.6) the expression can be further
simplified to

ξ̇h,err = ∓100 ∆tminξ̇⌊
ξ̇Ts

∆ξmin

⌋
∆ξmin ±∆tminξ̇

≈ ∓100 ∆tminξ̇⌊
ξ̇Ts

∆ξmin

⌋
∆ξmin

(6.6)= ∓ ξ̇⌊
ξ̇Ts

∆ξmin

⌋
ξ̇h,max

. (C.6)

C.2 Gate measurement approach
The expression (6.16) is derived in the following. With the actual velocity given by

ξ̇ = ∆ξmin
Tinc

, (C.7)
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it follows that the relative velocity error due to an error in the time measurement Tinc of
±∆tmin, when estimating the velocity according to (6.14), is given by

∆ξ̇l,err = 100 ξ̇l − ξ̇
ξ̇

(6.14)= 100
∆ξmin

Tinc±∆tmin
− ξ̇

ξ̇

= 100
(

∆ξmin

ξ̇(Tinc ±∆tmin)
− 1

)

= 100∆ξmin −

(C.7)
= ∆ξmin︷ ︸︸ ︷
ξ̇(Tinc ±∆tmin)

ξ̇(Tinc ±∆tmin)

= ∓100 ∆tminξ̇

(Tinc ±∆tmin)ξ̇

= ∓100

(6.15)
= 1

ξ̇l,max︷ ︸︸ ︷
∆tmin
∆ξmin

Tinc
∆ξmin︸ ︷︷ ︸
(C.7)

= 1
ξ̇

± ∆tmin
∆ξmin︸ ︷︷ ︸

(6.15)
= 1

ξ̇ l,max

= ∓100
(

ξ̇

ξ̇l,max ± ξ̇

)
. (C.8)
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