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Abstract

The behavior of certain entropy or energy functionals of solutions of partial
differential equations is widely regarded as an intrinsic property of the under-
lying equations. To this end it is of great importance to find numerical schemes
that offer the same entropic structures as their continuous counterpart. Due
to the often nonlinear nature of both the entropies and the partial differen-
tial equations, it is a highly nontrivial task to “translate” these properties and
methods to a discrete level. In this thesis we present some examples of such
translations where we are able to develop tools on a discrete level that allow
us to achieve similar results as are known on the continuous level. The first
main result are the discrete Beckner inequalities together with a discrete non-
linear integration-by-parts formula that allow us to mimic the entropy decay
of the porous-medium equation for a finite volume scheme for a wide set of
parameters. Regarding the time (semi)discretization, we prove conditions on
the abstract Cauchy operator under which solutions to the associated Cauchy
problem feature the same entropic behavior for Runge-Kutta schemes in time
as in the continuous case. This very general approach can be used on various
problems, for example the porous-medium equation, a linear diffusion system
and the Derrida-Lebowitz-Speer-Spohn equation. Finally, by making use of
a carefully constructed discrete scheme and the already mentioned discrete
nonlinear integration-by-parts formula, we give a discrete analogon to the con-
tinuous Bakry-emery approach for the porous-medium equation.
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Kurzfassung

Das Verhalten von bestimmten Entropie- beziehungsweise Energiefunktionalen
von partiellen Differntialgleichungen wird üblicherweise als eine intrinsische
Eigenschaft der zugrundeliegenden Gleichung angesehen. Aus diesem Grund
ist es von großem Interesse, numerische Verfahren zu entwickeln, die die selben
Entropiestrukturen aufweisen wie ihre kontinuierlichen Pendants. Aufgrund
der zumeist nichtlinearen Natur sowohl der Entropien als auch der partiellen
Differentialgleichungen, ist es eine nichttriviale Aufgabe, diese Eigenschaften
auf ein diskretes Level zu “übersetzen”. In dieser Arbeit präsenteren wir
einige Beispiele von derartigen Übersetzungen, im Rahmen derer wir diskrete
Werkzeuge entwickeln können, die es uns erlauben, die aus dem kontiuier-
lichen bekannten Resultate nachzuahmen. Das erste Hauptresultat sind dabei
diskrete Beckner Ungleichungen, die es uns zusammen mit einer nichtlinearen
partiellen Integrationsformel ermöglichen, die Entropiestruktur der porösen-
Medien-Gleichung für einen großen Parameterbereich zu erhalten. Bezüglich
der Zeit(semi)diskretisierung zeigen wir Bedingungen des abstraken Cauchyop-
erators, unter denen die Lösungen des zugehörigen Cauchy-Problems das selbe
Entropieverhalten aufweisen wie die Runge-Kutta Semidiskretisierung. Dieser
sehr allgemeine Zugang kann auf verschiedene Probleme angewandt werden,
zum Beispiel die poröse-Medien-Gleichung, ein lineares Diffusionssystem und
die Derrida-Lebowitz-Speer-Spohn-Gleichung. Das letzte präsentierte Resul-
tat zeigt unter Ausnützung eines sorgfältig konstruierten numerischen Schemas
und der schon erwähnten diskreten nichtlinearen partiellen Integrationsformel
ein diskretes Analogon zu dem aus dem kontinuierlichen bekannten Bakry-
Emery-Zugang für die poröse-Medien-Gleichung.
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Chapter 0

Overview and structure of the
thesis

This doctoral thesis contributes to the broad topic of entropy-preserving nu-
merical analysis and mainly discusses the results published in [27] (C. Chainais-
Hillairet, A. Jüngel, S. Schuchnigg), [64] (A. Jüngel, S. Schuchnigg) and [66]
(A. Jüngel, S. Schuchnigg). In addition some additional remarks and graphs
are given to further illustrate the topic at hand.
In particular this thesis is concerned with the entropy-preserving nature of
discretizations of nonlinear partial differential evolution equations. We mainly
consider entropy functionals of the following form

Eα[u] =
1

α + 1

(∫
Ω

uα+1dx−
(∫

Ω

udx
)α+1

)
,

Fα[u] =
1

2

∫
Ω

|∇uα/2|2dx, α > 0.

(which are referred to as entropies of zeroth and first order throughout this
thesis) as well as their discrete counterparts. A recurrent toy and test equation
is the nonlinear diffusion (porous-medium) equation

ut = ∆(uβ) in Ω, t > 0, u(·, 0) = u0 in Ω,

which is studied in various different cases both analytically and numerically. In
the presented numerical experiments we use the Barenblatt solution as inital
datum, since it allows us to compare our numerical schemes to the explicitly
given solution of the continuous equation.

The thesis is structured into three main parts, which are shortly outlined be-
low, a detailed introduction into each of the chapters as well as a discussion of
state of the art research is given at the beginning of each chapter.

1



In the first chapter, we show the time decay of the discrete entropies for fully
discrete finite-volume approximations of porous-medium and fast-diffusion equa-
tions with Neumann or periodic boundary conditions. Here, the algebraic or
exponential decay rates are computed explicitly. In particular, the numerical
scheme dissipates all zeroth-order entropies which are also dissipated by the
continuous equation. The proofs presented are based on continuous and dis-
crete generalized Beckner inequalities. Furthermore, the exponential decay of
some first-order entropies is proven in the continuous and discrete case using
systematic integration by parts. Numerical experiments in one and two space
dimensions illustrate the theoretical results of this chapter and indicate that
some restrictions on the parameters seem to be only technical.

In the second chapter, results with a focus on time discretization are presented.
The very general approach for nonlinear diffusion equations of parabolic type
leads to conditions under which the schemes dissipate the discrete entropy
locally. The dissipation property is a consequence of the concavity of the dif-
ference of the entropies at two consecutive time steps. The concavity property
is shown to be related to the Bakry-Emery approach and the geodesic convex-
ity of the entropy. The abstract conditions are verified for quasilinear parabolic
equations (including the porous-medium equation), a linear diffusion system,
and the fourth-order quantum diffusion equation. Numerical experiments for
various Runge-Kutta finite-difference discretizations of the one-dimensional
porous-medium equation show that the entropy-dissipation property is in fact
global.

Finally, in the third chapter, the exponential decay of the relative entropy as-
sociated with a fully discrete porous-medium equation in one space dimension
is shown by means of a discrete Bakry-Emery approach. The first ingredient
of the proof is an abstract discrete Bakry-Emery method, which states condi-
tions on a sequence under which the exponential decay of the discrete entropy
follows. The second ingredient is a new nonlinear summation-by-parts formula
which is inspired by systematic integration by parts developed by Matthes and
Jüngel. Numerical simulations illustrate the exponential decay of the entropy
for various time and space step sizes.

Appendix A contains the crucial nonlinear integration-by-parts formula needed
in the first and third chapter and Appendix B features auxiliary inequalities
needed throughout the thesis.
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Chapter 1

Entropy preservation of the finite
volume discretization of the
porous-medium equation

1.1 Introduction

This chapter is concerned with the time decay of fully discrete finite-volume
solutions to the nonlinear diffusion equation

ut = ∆(uβ) in Ω, t > 0, u(·, 0) = u0 in Ω, (1.1)

and with the relation to discrete generalized Beckner inequalities. Here, β > 0

and Ω ⊂ Rd (d ≥ 1) is a bounded domain. When β > 1, (1.1) is called the
porous-medium equation, describing the flow of an isentropic gas through a
porous medium [86]. Equation (1.1) with β < 1 is referred to as the fast-
diffusion equation, which appears, for instance, in plasma physics with β = 1

2

[10] or in semiconductor theory with 0 < β < 1 [67]. We impose homogeneous
Neumann boundary conditions

∇(uβ) · ν = 0 on ∂Ω, t > 0, (1.2)

where ν denotes the unit normal exterior vector to ∂Ω, or multiperiodic bound-
ary conditions (i.e. Ω equals the torus Td). Let us denote by m the Lebesgue
measure in Rd or Rd−1; we assume for simplicity that m(Ω) = 1.
For existence and uniqueness results for the porous-medium equation in the
whole space or under suitable boundary conditions, we refer to the monograph
by Vázquez [86]. There are much less results for fast-diffusion equations (see
[85]), and usually they hold for the whole-space problem. In particular, we
are not aware of an existence result for fast-diffusion equations in bounded
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domains with homogeneous Neumann boundary conditions, but such a result
can be easily established since there is a maximum principle.1

There exist also many results on the time decay of the continuous porous-
medium or fast-diffusion equation, with optimal decay rates or in strong norms.
For instance, by using invariance principles, the sharp decay rate t−1/(β−1) in
the L∞ norm was shown in [1]. Spectral methods applied to (1.1) with con-
finement were used in [33] for β ∈ ((d − 2)/d, 1) and in [80] for β > 1. It
seems to be difficult to “translate” these techniques to the discrete case. Sharp
time-decay results in L∞ for the solutions to the porous-medium equation with
homogeneous Neumann boundary conditions were shown in [15, 51, 52], based
on regular Sobolev inequalities. The connection between logarithmic Sobolev
inequalities and ultracontractivity-like bounds was investigated in [15], also
proving short- and long-time asymptotics. These results agree the results of
the presented work in the continuous setting (in fact, the results of [15, 51, 52]
are more general) but not in the discrete case. Optimal convergence rates to
Barenblatt self-similar profiles for the fast-diffusion equation were derived in
[14], employing entropy methods and Hardy-Poincaré inequalities. However,
in this contributions it is unclear to what extent the mentioned techniques can
be translated to the discrete case, partially because certain Sobolev inequali-
ties (like Gagliardo-Nirenberg inequalities) seem not to be available. We refer
to [11] for special discrete Gagliardo-Nirenberg inequalities.
In the literature, there exist many numerical schemes for nonlinear diffusion
equations related to (1.1). Numerical techniques include (mixed) finite-element
methods [3, 37, 78], finite-volume approximations [44, 77, 12], high-order re-
laxation ENO-WENO schemes [26], or particle methods [72]. In these ref-
erences, stability and numerical convergence properties are proven. Another
recent contribution [47] tackles the problem from the viewpoint of the dis-
cretization of the steady equation. Also the preservation of the structure of
diffusion equations is a very important property of a numerical scheme. For
instance, ideas employed for hyperbolic conservation laws were extended to
degenerate diffusion equations, like the porous-medium equation, which may
behave like hyperbolic equations in the regions of degeneracy [76]. Positivity-
preserving schemes for nonlinear fourth-order equations were thoroughly inves-
tigated in the context of lubrication-type equations [7, 88] and quantum dif-
fusion equations [60]. Entropy-consistent finite-volume finite-element schemes
for the fourth-order thin-film equation were suggested by Grün and Rumpf
[54]. For quantum diffusion models, an entropy-dissipative relaxation-type

1First, take strictly positive initial data u0. By the maximum principle, any solution to
the fast-diffusion equation is strictly positive. Thus, the equation is no longer singular, and
the existence of weak solutions follows by a standard procedure. For nonnegative functions
u0, we take u0 + ε for ε > 0 as initial data, apply the first step, and pass to the limit ε→ 0.
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finite-difference discretization was investigated by Carrillo et al. [23]. Further-
more, entropy-dissipative schemes for electro-reaction-diffusion systems were
derived by Glitzky and Gärtner [48].
We aim to provide some results on the time decay of discrete solutions to
(1.1)-(1.2) and to give estimates on the decay rates. To this end, we adapt
the proofs for the continuous case to the discrete situation. The scheme under
investigation is a backward Euler scheme in time and a finite-volume scheme
in space, defined in (1.7). Only those proofs are chosen which can be directly
translated in a finite-volume context.
Our main objective is to prove that the finite volume scheme for (1.1)-(1.2)
dissipates the discrete versions of the functionals

Eα[u] =
1

α + 1

(∫
Ω

uα+1dx−
(∫

Ω

udx
)α+1

)
, (1.3)

Fα[u] =
1

2

∫
Ω

|∇uα/2|2dx, α > 0. (1.4)

In fact, we prove (algebraic or exponential) convergence rates at which the
discrete functionals converge to zero as t → ∞. We call Eα a zeroth-order
entropy and Fα a first-order entropy. The functional F1 is known as the Fisher
information, used in mathematical statistics and information theory [38]. Our
analysis of the decay rates of the entropies will be guided by the entropy-
dissipation method. An essential ingredient of this technique is a functional
inequality relating the entropy to the entropy dissipation [4, 22]. For the dif-
fusion equation (1.1), this relation is realized by the Beckner inequality [8].
The entropy-dissipation method was applied to (1.1) in the whole space to
prove the decay of the solutions to the asymptotic self-similar profile in, e.g.,
[24, 32]. The convergence towards the constant steady state on the one-
dimensional torus was proven in [20]. However, we are not aware of general
entropy decay estimates for solutions to (1.1)-(1.2) to the constant steady
state, even in the continuous case. The reason might be that generalizations
to the Beckner inequality, which is needed to relate the entropy dissipation
to the entropy, have not been introduced before. To this end, we propose
new Beckner-type inequalities which fill this gap. Moreover, our proof can be
translated to the discrete case. These results are presented in Section 1.3.

The proof of discrete time decay for solutions to the finite-volume approxi-
mation of (1.1) is inspired by entropy decay estimates in the continuous case,
which we review first. Differentiating Eα[u(t)] with respect to time and em-
ploying a Beckner inequality, we show for β > 1 that

dEα
dt

[u(t)] ≤ CEα[u(t)](α+β)/(α+1), t > 0,
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where C > 0 depends on α, β, and CB(p, q). By a nonlinear Gronwall inequal-
ity, this implies the algebraic decay of u(t) to equilibrium in the entropy sense;
see Theorem 9. If the solution is positive and 0 < α ≤ 1, the above inequality
becomes

dEα
dt

[u(t)] ≤ C(u0)Eα[u(t)], t > 0,

which results in an exponential decay rate; see Theorem 10. We obtain similar
results for a discrete version of Eα in Theorems 11 (algebraic decay) and 12
(exponential decay).
The first-order entropies Fα[u(t)] decay exponentially (for positive solutions)
for all (α, β) lying in the strip −2 ≤ α − 2β ≤ 1 (one-dimensional case) or
in the region Md, which is illustrated in Figure 1.1 below (multi-dimensional
case); see Theorems 13 and 14. The proof is based on systematic integration
by parts [58]. In order to avoid boundary integrals arising from the iterated
integrations by parts, these results are valid only if Ω = Td. It is very difficult
to translate the iterated integrations by parts to iterated summations by parts
since there is no discrete nonlinear chain rule. For the zeroth-order entropies,
this is done by exploiting the convexity of the mapping x 7→ xα+1. For the
first-order entropies, we employ the concavity of the discrete version of dFα/dt
with respect to the time approximation parameter. We prove in Theorem 16
that for 1 ≤ α ≤ 2 and −2 < α − 2β < 1, the discrete first-order entropy is
monotone (multi-dimensional case) and decays exponentially (one-dimensional
case).
Throughout this chapter, we assume that the solutions to (1.1) are smooth
and positive, such that we can perform all the computations and integrations
by parts. In particular, we avoid any technicalities due to the degeneracy
(β > 1) or singularity (β < 1) in (1.1). Most of our results presented in this
chapter can be easily generalized to nonnegative weak solutions by using a
suitable approximation scheme, but details are omitted here for the sake of
readability. In addition, for reasons of simplicity, we restrict ourselves to a
uniform time step size, although a generalisation of the nonlinear Gronwall’s
lemma (Corollary 41 in the Appendix B) for variable stepsizes (similar to [40])
seems feasible.
We stress the fact that we do not develop an efficient implementation and we do
not perform a convergence analysis, since the scheme is rather standard. Our
aim is of more theoretical interest. In fact, our results on the discrete decay
rates contribute to the aim of developing and analyzing structure-preserving
numerical schemes and this is the main originality of the work presented in
this chapter.
This chapter is organized as follows. Section 1.2 is devoted to the finite-volume
setting: We introduce the numerical scheme under investigation and define
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discrete norms and discrete entropies. Then we prove some novel generalized
Beckner inequalities in Section 1.3, at the continuous and discrete level. The
algebraic/exponential decay of Eα[u] is studied in Section 1.4. We first prove
the results at the continuous level and then deduce similar results for the
numerical scheme. Section 1.5 is devoted to the study of the exponential decay
of the first-order entropies Fα[u]. In Section 1.6, we illustrate the theoretical
results by numerical experiments in one and two space dimensions. They
indicate that some of the restrictions on the parameters (α, β) seem to be only
technical.

1.2 The finite-volume setting

1.2.1 Notations and finite-volume scheme

Let Ω be an open bounded polyhedral subset of Rd (d ≥ 2) with Lipschitz
boundary and m(Ω) = 1. An admissible mesh of Ω is given by a family T of
control volumes (open and convex polyhedral subsets of Ω with positive mea-
sure); a family E of relatively open parts of hyperplanes in Rd which represent
the faces of the control volumes; and a family of points (xK)K∈T which satisfy
Definition 9.1 in [42]. This definition implies that the straight line between
two neighboring centers of cells (xK , xL) is orthogonal to the edge σ = K|L
between the two control volume K and L. For instance, triangular meshes in
R2 satisfy the admissibility condition if all angles of the triangles are smaller
than π/2 [42, Examples 9.1]. Voronoi meshes in Rd are also admissible meshes
[42, Examples 9.2].
We distinguish the interior faces σ ∈ Eint and the boundary faces σ ∈ Eext.
Then the union Eint ∪ Eext equals the set of all faces E . For a control volume
K ∈ T , we denote by EK the set of its faces, by Eint,K the set of its interior
faces, and by Eext,K the set of edges of K included in ∂Ω.
Let d be the distance in Rd. We assume that the family of meshes satisfies the
following regularity requirement: There exists ξ > 0 such that for all K ∈ T
and all σ ∈ Eint,K with σ = K|L, it holds

d(xK , σ) ≥ ξd(xK , xL). (1.5)

This hypothesis is needed to apply a discrete Poincaré inequality; see Lemma
2. Introducing for σ ∈ E the notation

dσ =

{
d(xK , xL) if σ ∈ Eint, σ = K|L,
d(xK , σ) if σ ∈ Eext,K ,

7



we define the transmissibility coefficient

τσ =
m(σ)

dσ
, σ ∈ E .

The size of the mesh is denoted by4x = maxK∈T diam(K). Let T > 0 be some
final time and MT the number of time steps. Then the time step size and the
time points are given by, respectively, 4t = T/MT , tk = k4t for 0 ≤ k ≤MT .
We denote by D an admissible space-time discretization of ΩT = Ω × (0, T )

composed of an admissible mesh T of Ω and the values 4t and MT .
We are now in the position to define the finite-volume scheme of (1.1)-(1.2) on
D. The initial datum is approximated by its L2 projection on control volumes:

u0 =
∑
K∈T

u0
K1K , where u0

K =
1

m(K)

∫
K

u0(x)dx, (1.6)

and 1K is the characteristic function on K. Then it holds
∑

K∈T m(K)u0
K =∫

Ω
u0dx.

The numerical scheme reads as follows:

m(K)
uk+1
K − ukK
4t +

∑
σ∈Eint,
σ=K|L

τσ
(
(uk+1

K )β − (uk+1
L )β

)
= 0, (1.7)

for all K ∈ T and k = 0, . . . ,MT − 1. This scheme is based on a fully implicit
Euler discretization in time and a finite-volume approach for the volume vari-
able. The Neumann boundary conditions (1.2) are taken into account as the
sum in (1.7) applies only on the interior edges. The implicit scheme allows us
to establish discrete entropy-dissipation estimates which would not be possible
with an explicit scheme.
In the following proposition, we summarize the classical results of existence,
uniqueness and stability of the solution to the finite-volume scheme (1.6)-(1.7).

Proposition 1. Let u0 ∈ L∞(Ω), m ≥ 0, M ≥ 0 such that m ≤ u0 ≤ M in
Ω. Let T be an admissible mesh of Ω. Then the scheme (1.6)-(1.7) admits a
unique solution (ukK)K∈T , 0≤k≤MT

satisfying

m ≤ ukK ≤M, for all K ∈ T , 0 ≤ k ≤MT ,∑
K∈T

m(K)ukK = ‖u0‖L1(Ω), for all 0 ≤ k ≤MT .

We refer, for instance, to [42] and [43] for the proof of this proposition.
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1.2.2 Discrete entropies

A finite-volume scheme provides an approximate solution which is constant on
each cell of the mesh and on each time interval. Let X(T ) be the linear space
of functions Ω→ R which are constant on each cell K ∈ T :

X(T ) =

{
u =

∑
K∈T

uK1K

}
.

The set X(T ) is included in Lp(Ω) for 1 ≤ p ≤ ∞ and

‖u‖Lp(Ω) =

(∫
Ω

|u|pdx
)1/p

=

(∑
K∈T

m(K)|uK |p
)1/p

∀u ∈ X(T ),
∀1 ≤ p < +∞.

Clearly, the set X(T ) is not included in W 1,p(Ω). However, for 1 ≤ p <

+∞, we can define a discrete W 1,p seminorm and a discrete W 1,p norm by,
respectively,

|u|1,p,T =

( ∑
σ∈Eint,
σ=K|L

m(σ)

dp−1
σ

|uK − uL|p
)1/p

∀u ∈ X(T ),

‖u‖1,p,T = ‖u‖Lp(Ω) + |u|1,p,T ∀u ∈ X(T ).

The zeroth-order entropies defined by (1.3) can be rewritten for u ∈ X(T ) as

Eα[u] =
1

α + 1

∑
K∈T

m(K)uα+1
K −

(∑
K∈T

m(K)uK

)α+1
 . (1.8)

Finally, we define the discrete first-order entropies, corresponding to (1.4), by

F d
α [u] =

1

2
|uα/2|21,2,T . (1.9)

1.3 Generalized Beckner inequalities

The decay properties of the zeroth-order entropies rely on generalized Beckner
inequalities which follow from the Poincaré-Wirtinger inequality. This section
is devoted to the proof of these Beckner inequalities in the functional space
H1(Ω) and of their discrete counterpart in the functional space X(T ).

9



1.3.1 Poincaré-Wirtinger inequalities

We assume that Ω ⊂ Rd (d ≥ 1) is a bounded domain such that the Poincaré-
Wirtinger inequality

‖f − f̄‖L2(Ω) ≤ CP‖∇f‖L2(Ω) (1.10)

holds for all f ∈ H1(Ω), where f̄ = m(Ω)−1
∫

Ω
fdx and CP > 0 only depends

on d and Ω. This is the case if, for instance, Ω has the cone property [70,
Theorem 8.11] or if ∂Ω is locally Lipschitz continuous [87, Theorem 1.3.4]. We
recall that m(Ω) = 1 in the following of this chapter (to shorten the proof).
The discrete counterpart of (1.10) is stated in the following Lemma (see for
instance [11, Theorem 5]):

Lemma 2 (Discrete Poincaré-Wirtinger inequality). Let Ω ⊂ Rd be an open
bounded polyhedral set and let T be an admissible mesh satisfying the regularity
constraint (1.5). Then there exists a constant Cp > 0, only depending on d

and Ω, such that for all f ∈ X(T ),

‖f − f̄‖L2(Ω) ≤
Cp
ξ1/2
|f |1,2,T , (1.11)

where f̄ =
∫

Ω
fdx (recall that m(Ω) = 1) and ξ is defined in (1.5).

We now present a new inequality which can be regarded as a generalized
Poincaré inequality.

Lemma 3 (Generalized Poincaré-Wirtinger inequality). Let 0 < q ≤ 2 and
f ∈ H1(Ω). Then

‖f‖qL2(Ω) ≤ Cq
P‖∇f‖qL2(Ω) + ‖f‖qLq(Ω) (1.12)

holds, where CP > 0 is the constant of the Poincaré-Wirtinger inequality
(1.10).

Proof. Let first 1 ≤ q ≤ 2. The Poincaré-Wirtinger inequality (1.10) rewrites
as

‖f‖2
L2(Ω) − ‖f‖2

L1(Ω) = ‖f − f̄‖2
L2(Ω) ≤ C2

P‖∇f‖2
L2(Ω) (1.13)

and together with the Hölder inequality leads to

‖f‖2
L2(Ω) ≤ C2

P‖∇f‖2
L2(Ω) + ‖f‖2

Lq(Ω). (1.14)

Here we use the assumption m(Ω) = 1. Since q/2 ≤ 1, it follows that

‖f‖qL2(Ω) ≤
(
C2
P‖∇f‖2

L2(Ω) + ‖f‖2
Lq(Ω)

)q/2 ≤ Cq
P‖∇f‖qL2(Ω) + ‖f‖qLq(Ω),
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which equals (1.12).
Next, let 0 < q < 1. We claim that

aq/2 − aq−1b1−q/2 ≤ (a− b)q/2 for all a ≥ b > 0. (1.15)

Indeed, setting c = b/a, this inequality is equivalent to

1− c1−q/2 ≤ (1− c)q/2 for all 0 < c ≤ 1.

The function g(c) = 1−c1−q/2−(1−c)q/2 for c ∈ [0, 1] satisfies g(0) = g(1) = 0

and g′′(c) = (q/2)(1 − q/2)(c−1−q/2 + (1 − c)q/2−2) ≥ 0 for c ∈ (0, 1), which
implies that g(c) ≤ 0, proving (1.15). Applying (1.15) to a = ‖f‖2

L2(Ω) and
b = ‖f‖2

L1(Ω) and using (1.13), we find that

‖f‖qL2(Ω) − ‖f‖
2(q−1)

L2(Ω) ‖f‖
2−q
L1(Ω) ≤

(
‖f‖2

L2(Ω) − ‖f‖2
L1(Ω)

)q/2 ≤ Cq
P‖∇f‖qL2(Ω).

(1.16)
In order to get rid of the L1 norm, we employ the interpolation inequality

‖f‖L1(Ω) =

∫
Ω

|f |θ|f |1−θdx ≤ ‖f‖θLq(Ω)‖f‖1−θ
L2(Ω), (1.17)

where θ = q/(2 − q) < 1. Since (2 − q)θ = q and (2 − q)(1 − θ) = 2(1 − q),
(1.16) becomes

‖f‖qL2(Ω) − ‖f‖
q
Lq(Ω) ≤ Cq

P‖∇f‖qL2(Ω),

which is the desired inequality.

Starting from the discrete Poincaré-Wirtinger inequality (1.11) instead of (1.10),
we obtain the discrete analogon of (1.13):

‖f‖2
L2(Ω) − ‖f‖2

L1(Ω) = ‖f − f̄‖2
L2(Ω) ≤ C2

pξ
−1|f |21,2,T for all f ∈ X(T ).

Then, following the lines of the proof of Lemma 3, we obtain the discrete
counterpart of the generalized Poincaré-Wirtinger inequality (1.12)

: ‖f‖qL2(Ω) ≤ Cq
pξ
−q/2|f |q1,2,T + ‖f‖qLq(Ω) for all f ∈ X(T ), (1.18)

under the hypotheses of Lemma 2.

1.3.2 First generalization of the Beckner inequality

For the proof of the algebraic decay of the zeroth-order entropies, we need the
following variant of the Beckner inequality.
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Lemma 4 (Generalized Beckner inequality I). Let d ≥ 1 and either 0 < q < 2,
pq ≥ 1 or q = 2, 1

2
− 1

d
≤ p ≤ 1 (0 < p ≤ 1 if d ≤ 2), and let f ∈ H1(Ω). Then

the generalized Beckner inequality∫
Ω

|f |qdx−
(∫

Ω

|f |1/pdx
)pq
≤ CB(p, q)‖∇f‖qL2(Ω) (1.19)

holds, where

CB(p, q) =
2(pq − 1)Cq

P

2− q if q < 2, CB(p, 2) = C2
P if q = 2,

and CP > 0 is the constant of the Poincaré-Wirtinger inequality (1.10).

Remark 5. The case q = 2 corresponds to the usual Beckner inequality [8]∫
Ω

|f |2dx−
(∫

Ω

|f |2/rdx
)r
≤ CB(p, 2)‖∇f‖2

L2(Ω),

where 1 ≤ r = 2p ≤ 2. It is shown in [36] that the constant CB(p, 2) can
be related to the lowest positive eigenvalue of a Schrödinger operator if Ω

is convex. On the one-dimensional torus, the generalized Beckner inequality
(1.19) for p > 0 and 0 < q < 2 has been derived in [20]. In the multi-
dimensional situation, the special case p = 2/q was proven in [35]. In this
work, it was also shown that (1.19) with q > 2 and p = 2/q cannot hold true
unless the Lebesgue measure dx is replaced by the Dirac measure. In the limit
pq → 1, (1.19) leads to a generalized logarithmic Sobolev inequality (see (1.21)
below). If q = 2 in this limit, the usual logarithmic Sobolev inequality [53] is
obtained.

Proof of Lemma 4. Let first q = 2. Then the Beckner inequality is a conse-
quence of the Poincaré-Wirtinger inequality (1.10) and the Jensen inequality:

C2
P‖∇f‖2

L2(Ω) ≥ ‖f−f̄‖2
L2(Ω) = ‖f‖2

L2(Ω)−‖f‖2
L1(Ω) ≥

∫
Ω

f 2dx−
(∫

Ω

|f |2/rdx
)r

,

where 1− 2
d
≤ r ≤ 2 (0 < r ≤ 2 if d ≤ 2). The lower bound for r ensures that

the embeddingH1(Ω) ↪→ L2/r(Ω) is continuous. The choice p = r/2 ∈ [1
2
− 1

d
, 1]

yields the formulation (1.19).
Next, let 0 < q < 2. The first part of the proof is inspired by the proof of
Proposition 2.2 in [35]. Taking the logarithm of the interpolation inequality

‖f‖Lr(Ω) ≤ ‖f‖θ(r)Lq(Ω)‖f‖
1−θ(r)
L2(Ω) ,

where q ≤ r ≤ 2 and θ(r) = q(2− r)/(r(2− q)), gives

F (r) :=
1

r
log

∫
Ω

|f |rdx− θ(r)

q
log

∫
Ω

|f |qdx− 1− θ(r)
2

log

∫
Ω

|f |2dx ≤ 0.

12



The function F : [q, 2]→ R is nonpositive, differentiable and F (q) = 0. There-
fore, F ′(q) ≤ 0, which equals

− 1

q2
log

∫
Ω

|f |qdx+
1

q

(∫
Ω

|f |qdx
)−1 ∫

Ω

|f |q log |f |dx

+ θ′(q)

(
1

2
log

∫
Ω

|f |2dx− 1

q
log

∫
Ω

|f |qdx
)
≤ 0.

We multiply this inequality by q2
∫

Ω
|f |qdx to obtain∫

Ω

|f |q log
|f |q
‖f‖qLq(Ω)

dx ≤ 2

2− q‖f‖
q
Lq(Ω) log

‖f‖qL2(Ω)

‖f‖qLq(Ω)

. (1.20)

Then, we employ Lemma 3 and the inequality log(x+1) ≤ x for x ≥ 0 to infer
that

‖f‖qLq(Ω) log
‖f‖qL2(Ω)

‖f‖qLq(Ω)

≤ ‖f‖qLq(Ω) log

(
Cq
P‖∇f‖qL2(Ω)

‖f‖qLq(Ω)

+ 1

)
≤ Cq

P‖∇f‖qL2(Ω).

Combining this inequality and (1.20), we conclude the generalized logarithmic
Sobolev inequality∫

Ω

|f |q log
|f |q
‖f‖qLq(Ω)

dx ≤ 2Cq
P

2− q‖∇f‖
q
L2(Ω). (1.21)

The generalized Beckner inequality (1.19) is derived by slightly extending the
proof of [68, Corollary 1]. Let

G(r) = r log

∫
Ω

|f |q/rdx, r ≥ 1.

The function G is twice differentiable with

G′(r) =

(∫
Ω

|f |q/rdx
)−1(∫

Ω

|f |q/rdx log

∫
Ω

|f |q/rdx− q

r

∫
Ω

|f |q/r log |f |dx
)
,

G′′(r) =
q2

r3

(∫
Ω

|f |q/rdx
)−2

×
(∫

Ω

|f |q/rdx
∫

Ω

|f |q/r(log |f |)2dx−
(∫

Ω

|f |q/r log |f |dx
)2
)
.

The Cauchy-Schwarz inequality shows that G′′(r) ≥ 0, i.e., G is convex. Con-
sequently, r 7→ eG(r) is also convex and r 7→ H(r) = −(eG(r) − eG(1))/(r− 1) is
nonincreasing on (1,∞), which implies that

H(r) ≤ lim
t→1

H(t) = −eG(1)G′(1) =

∫
Ω

|f |q log
|f |q
‖f‖qLq(Ω)

dx.
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This inequality is equivalent to

1

r − 1

(∫
Ω

|f |qdx−
(∫

Ω

|f |q/rdx
)r)

≤
∫

Ω

|f |q log
|f |q
‖f‖qLq(Ω)

dx. (1.22)

Combining this inequality and the generalized logarithmic Sobolev inequality
(1.21), it follows that∫

Ω

|f |qdx−
(∫

Ω

|f |q/rdx
)r
≤ 2(r − 1)Cq

P

2− q ‖∇f‖qL2(Ω)

for all 0 < q < 2 and r ≥ 1. Setting p := r/q, this proves (1.19) for all
pq = r ≥ 1.

Lemma 6 (Discrete generalized Beckner inequality I). Let 0 < q < 2, pq > 1

or q = 2 and 0 < p ≤ 1, and f ∈ X(T ). Then∫
Ω

|f |qdx−
(∫

Ω

|f |1/pdx
)pq
≤ Cb(p, q)|f |q1,2,T

holds, where

Cb(p, q) =
2(pq − 1)Cq

p

(2− q)ξq/2 if q < 2, Cb(p, 2) =
C2
p

ξ
if q = 2.

Cp is the constant in the discrete Poincaré-Wirtinger inequality, and ξ is de-
fined in (1.5).

Proof. The proof follows the lines of the proof of Lemma 4, noting that in the
discrete (finite-dimensional) setting, we do no longer need the lower bound on
p. Indeed, if q = 2, the conclusion results from the discrete Poincaré-Wirtinger
inequality (1.11) and the Jensen inequality. If q < 2, we first remark that (1.20)
and (1.22) still holds for f ∈ X(T ), leading to∫

Ω

|f |qdx−
(∫

Ω

|f |1/pdx
)pq
≤ (pq − 1)

∫
Ω

|f |q log
|f |q
‖f‖qLq(Ω)

dx

≤ 2(pq − 1)

2− q ‖f‖qLq(Ω) log
‖f‖qL2(Ω)

‖f‖qLq(Ω)

. (1.23)

Then, inserting the discrete Poincaré-Wirtinger inequality (1.18) instead of
(1.12) into (1.23) to replace ‖f‖L2(Ω) and using log(x + 1) ≤ x for x ≥ 0, the
lemma follows.
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1.3.3 Second generalization of the Beckner inequality

For the proof of exponential decay rates, we need the following variant of the
Beckner inequality.

Lemma 7 (Generalized Beckner inequality II). Let 0 < q < 2, pq ≥ 1 and
f ∈ H1(Ω). Then

‖f‖2−q
Lq(Ω)

(∫
Ω

|f |qdx−
(∫

Ω

|f |1/pdx
)pq)

≤ C ′B(p, q)‖∇f‖2
L2(Ω), (1.24)

where

C ′B(p, q) =


q(pq − 1)C2

P

2− q if 1 ≤ q < 2,

(pq − 1)C2
P if 0 < q < 1.

Proof. By (1.20), it holds that for all 0 < q < 2,∫
Ω

|f |q log
|f |q
‖f‖qLq(Ω)

dx ≤ q

2− q‖f‖
q
Lq(Ω) log

‖f‖2
L2(Ω)

‖f‖2
Lq(Ω)

.

Then, for q > 1, the Poincaré-Wirtinger inequality in the version (1.14) and
the inequality log(x+ 1) ≤ x for x ≥ 0 yield

‖f‖qLq(Ω) log
‖f‖2

L2(Ω)

‖f‖2
Lq(Ω)

≤ ‖f‖qLq(Ω) log

(
C2
P

‖∇f‖2
L2(Ω)

‖f‖2
Lq(Ω)

+ 1

)
≤ C2

P‖f‖q−2
Lq(Ω)‖∇f‖2

L2(Ω). (1.25)

Taking into account (1.22), the conclusion follows for q > 1. Let 0 < q ≤ 1.
Suppose that the following inequality holds:

‖f‖2
Lq(Ω) +

2− q
q

C2
P‖∇f‖2

L2(Ω) − ‖f‖2
L2(Ω) ≥ 0. (1.26)

This implies that, by (1.22) and for r = pq,∫
Ω

|f |qdx−
(∫

Ω

|f |q/rdx
)r
≤ (pq − 1)q

2− q ‖f‖qLq(Ω) log
‖f‖2

L2(Ω)

‖f‖2
Lq(Ω)

≤ (pq − 1)q

2− q ‖f‖qLq(Ω) log

(
(2− q)C2

P

q

‖∇f‖2
L2(Ω)

‖f‖2
Lq(Ω)

+ 1

)
≤ (pq − 1)C2

P‖∇f‖2
L2(Ω)‖f‖q−2

Lq(Ω),

which shows the desired Beckner inequality.
It remains to prove (1.26). For this, we employ the Poincaré-Wirtinger in-
equality (1.13)

C2
P‖∇f‖2

L2(Ω) ≥ ‖f‖2
L2(Ω) − ‖f‖2

L1(Ω)
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and the interpolation inequality (1.17) in the form

‖f‖2
Lq(Ω) ≥ ‖f‖2/θ

L1(Ω)‖f‖
2(θ−1)/θ

L2(Ω) , θ =
q

2− q ≤ 1,

to obtain

‖f‖2
Lq(Ω) +

2− q
q

C2
P‖∇f‖2

L2(Ω) − ‖f‖2
L2(Ω)

≥ ‖f‖2/θ

L1(Ω)‖f‖
2(θ−1)/θ

L2(Ω) +

(
2− q
q
− 1

)
‖f‖2

L2(Ω) −
2− q
q
‖f‖2

L1(Ω).

We interpret the right-hand side as a function G of ‖f‖2
L1(Ω). Then, setting

A = ‖f‖2
L2(Ω),

G(y) = y1/θA1−1/θ +
2(1− q)

q
A− 2− q

q
y,

G′(y) =
1

θ
y1/θ−1A1−1/θ − 2− q

q
,

G′′(y) =
1

θ

(
1

θ
− 1

)
y1/θ−2A1−1/θ ≥ 0,

Therefore, G is a convex function which satisfies G(A) = 0 and G′(A) =

0. This implies that G is a nonnegative function on R+ and in particular,
G(‖f‖2

L1(Ω)) ≥ 0. This proves (1.26), completing the proof.

The adaptation of the proof of Lemma 7 is straightforward, using the dis-
crete Poincaré-Wirtinger inequality (1.11) instead of (1.10). This yields the
following result.

Lemma 8 (Discrete generalized Beckner inequality II). Let 0 < q < 2, pq ≥ 1,
and f ∈ X(T ). Then

‖f‖2−q
Lq(Ω)

(∫
Ω

|f |qdx−
(∫

Ω

|f |1/pdx
)pq)

≤ C ′b(p, q)|f |21,2,T

holds, where

C ′b(p, q) =


q(pq − 1)C2

p

(2− q)ξ if 1 ≤ q < 2,

(pq − 1)C2
p

ξ
if 0 < q < 1,

Cp is the constant in the discrete Poincaré-Wirtinger inequality, and ξ is de-
fined in (1.5).
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1.4 Zeroth-order entropies: from the continuous
to the discrete level

In this section, we prove the algebraic or exponential decay of the zeroth-order
entropies. We first study the continuous case and then show how to extend
the obtained result to the numerical scheme.

1.4.1 The continuous case

Let u be a smooth solution to (1.1)-(1.2) and let u0 ∈ L∞(Ω), infΩ u0 ≥ 0 in
Ω. By the maximum principle, 0 ≤ infΩ u0 ≤ u(t) ≤ supΩ u0 in Ω for t ≥ 0.
First, we prove algebraic decay rates for Eα[u], defined in (1.3).

Theorem 9 (Polynomial decay for Eα). Let α > 0 and β > 1. Let u be a
smooth solution to (1.1)-(1.2) and u0 ∈ L∞(Ω) with infΩ u0 ≥ 0. Then

Eα[u(t)] ≤ 1

(C1t+ C2)(α+1)/(β−1)
, t ≥ 0,

where

C1 =
4αβ(β − 1)

(α + 1)(α + β)2

(
α + 1

CB(p, q)

)(α+β)/(α+1)

, C2 = Eα[u0]−(β−1)/(α+1),

and CB(p, q) > 0 is the constant in the Beckner inequality for p = (α + β)/2

and q = 2(α + 1)/(α + β).

Proof. We apply Lemma 4 with p = (α+ β)/2 and q = 2(α+ 1)/(α+ β). The
assumptions on α and β guarantee that 0 < q < 2 and pq > 1. Then, with
f = u(α+β)/2,

Eα[u] =
1

α + 1

(∫
Ω

uα+1dx−
(∫

Ω

udx

)α+1
)

≤ CB(p, q)

α + 1

(∫
Ω

|∇u(α+β)/2|2dx
)(α+1)/(α+β)

.

Now, computing the derivative,

dEα
dt

= −
∫

Ω

∇uα · ∇uβdx = − 4αβ

(α + β)2

∫
Ω

|∇u(α+β)/2|2dx (1.27)

≤ − 4αβ

(α + β)2

(
α + 1

CB(p, q)

)(α+β)/(α+1)

Eα[u](α+β)/(α+1). (1.28)

An integration of this inequality gives the assertion.
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Next, we show exponential decay rates.

Theorem 10 (Exponential decay for Eα). Let u be a smooth solution to
(1.1)-(1.2), 0 < α ≤ 1, β > 0, u0 ∈ L∞(Ω) with infΩ u0 ≥ 0. Then

Eα[u(t)] ≤ Eα[u0]e−Λt, t ≥ 0.

The constant Λ is given by

Λ =
4αβ

CB(1
2
(α + 1), 2)(α + 1)

inf
Ω

(
uβ−1

0

)
≥ 0,

for β > 0 and

Λ =
4αβ(α + 1)

C ′B(p, q)(α + β)2
‖u0‖β−1

L1(Ω),

for β > 1. Here, CB(1
2
(α+1), 2) and C ′B(p, q) are the constants in the Beckner

inequalities (1.19) and (1.24), respectively, with p = (α+ β)/2 and q = 2(α+

1)/(α + β).

Proof. Let β > 0. We compute

dEα
dt

= − 4αβ

(α + 1)2

∫
Ω

uβ−1|∇u(α+1)/2|2dx

≤ − 4αβ

(α + 1)2
inf
Ω

(uβ−1
0 )

∫
Ω

|∇u(α+1)/2|2dx. (1.29)

By means of the Beckner inequality (1.19) with p = (α + 1)/2, q = 2, and
f = u(α+1)/2, we find that

dEα
dt
≤ − 4αβ

CB(p, 2)(α + 1)
inf
Ω

(uβ−1
0 )Eα, (1.30)

and Gronwall’s lemma proves the claim. The restriction p ≤ 1 in Lemma
4 is equivalent to α ≤ 1. Next, let β > 1. By means of Lemma 7, with
p = (α + β)/2, q = 2(α + 1)/(α + β), and f = u(α+β)/2, it follows that

‖u‖β−1
Lα+1(Ω)

(∫
Ω

uα+1dx−
(∫

Ω

udx

)α+1
)
≤ C ′B(p, q)

∫
Ω

|∇u(α+β)/2|2dx.

Hence, we can estimate

dEα
dt

= − 4αβ

(α + β)2

∫
Ω

|∇u(α+β)/2|2dx ≤ −4αβ(α + 1)

(α + β)2

‖u‖β−1
Lα+1(Ω)

C ′B(p, q)
Eα[u]

≤ −4αβ(α + 1)

(α + β)2

‖u0‖β−1
L1(Ω)

C ′B(p, q)
Eα[u],

and Gronwall’s lemma gives the conclusion. Note that in the last step of the
inequality we used ‖u‖Lα+1(Ω) ≥ ‖u‖L1(Ω) = ‖u0‖L1(Ω).
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1.4.2 The discrete case

We prove a result which is the discrete analogon of Theorem 9. The finite-
volume scheme (1.7) permits to define uniquely a piecewise constant solution
at each time step: uk =

∑
K∈T u

k
K1K . Then the discrete entropies at each time

step Eα[uk] are defined in (1.8).

Theorem 11 (Polynomial decay). Let α > 0 and β > 1. Let (ukK)K∈T ,k≥0 be
the solution to the finite-volume scheme (1.7) with infK∈T u

0
K ≥ 0. Then

Eα[uk] ≤ 1

(c1tk + c2)(α+1)/(β−1)
, k ≥ 0,

where

c1 =
β − 1

α + β

(
(α + 1)(α + β)

4αβ

(
Cb(p, q)

α + 1

)(α+β)/(α+1)

+4tEα[u0](α+1)/(β−1)

)−1

,

c2 = Eα[u0]−(β−1)/(α+1),

and the constant Cb(p, q) for p = (α+β)/2 and q = 2(α+1)/(α+β) is defined
in Lemma 6.

Proof. In order to prove 9, we translate the proof of Theorem 9 to the discrete
case. To this end, we use the elementary inequality yα+1−xα+1 ≤ (α+1)yα(y−
x), which follows from the convexity of the mapping x 7→ xα+1. Using the
scheme (1.7), we obtain

Eα[uk+1]− Eα[uk] =
1

α + 1

∑
K∈T

m(K)
(
(uk+1

K )α+1 − (ukK)α+1
)

≤
∑
K∈T

m(K)(uk+1
K )α(uk+1

K − ukK)

≤ −4t
∑
K∈T

∑
σ∈Eint,
σ=K|L

τσ(uk+1
K )α

(
(uk+1

K )β − (uk+1
L )β

)
.

Rearranging the sum leads to the discrete counterpart of (1.28):

Eα[uk+1]− Eα[uk] ≤ −4t
∑
σ∈Eint,
σ=K|L

τσ
(
(uk+1

K )α − (uk+1
L )α

)(
(uk+1

K )β − (uk+1
L )β

)
.

(1.31)
Then, employing the inequality in Lemma 42 (see Appendix B), we deduce the
discrete version of (1.28):
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Eα[uk+1]− Eα[uk] ≤ − 4αβ4t
(α + β)2

∑
σ∈Eint,
σ=K|L

τσ
(
(uk+1

K )(α+β)/2 − (uk+1
L )(α+β)/2

)2

≤ − 4αβ4t
(α + β)2

|(uk+1)(α+β)/2|21,2,T .

Applying the discrete Beckner inequality given in Lemma 6 with p = (α+β)/2,
q = 2(α+1)/(α+β), and f = (uk+1)(α+β)/2, we obtain the discrete counterpart
of (1.28):

Eα[uk+1]− Eα[uk] ≤ − 4αβ4t
(α + β)2

(
α + 1

Cb(p, q)

)(α+β)/(α+1)

Eα[uk+1](α+β)/(α+1).

The discrete nonlinear Gronwall lemma (see Corollary 41 in Appendix B) with

τ =
4αβ4t

(α + β)2

(
α + 1

Cb(p, q)

)(α+β)/(α+1)

, γ =
α + β

α + 1
> 1,

implies that

Eα[uk] ≤ 1

(Eα[u0]1−γ + c1tk)1/(γ−1)
, k ≥ 0,

where c1 = (γ − 1)/(1 + γτEα[u0]γ−1). Finally, computing c1 shows the result.

The discrete analogon to Theorem 10 reads as follows.

Theorem 12 (Exponential decay for Eα). Let (ukK)K∈T ,k≥0 be a solution to
the finite-volume scheme (1.7) and let 0 < α ≤ 1, β > 0, infK∈T u

0
K ≥ 0. Then

Eα[uk] ≤ Eα[u0]e−λt
k

, k ≥ 0.

The constant λ is given by

λ =
4αβ

Cb(
1
2
(α + 1), 2)(α + 1)

inf
K∈T

(
(u0

K)β−1
)
≥ 0,

for β > 0, and

λ =
4αβ(α + 1)

C ′b(p, q)(α + β)2
‖u0‖β−1

L1(Ω)

for β > 1. Here C ′b(p, q) > 0 is the constant from Lemma 8 with p = (α+β)/2

and q = 2(α + 1)/(α + β).
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Proof. Let α ≤ 1 and β > 0. As in the proof of Theorem 11, we find that (see
(1.31))

Eα[uk+1]− Eα[uk] ≤ −4t
∑
σ∈Eint,
σ=K|L

τσ
(
(uk+1

K )α − (uk+1
L )α

)(
(uk+1

K )β − (uk+1
L )β

)
.

Employing Corollary 43 (see Appendix B), we obtain

Eα[uk+1]− Eα[uk] ≤ − 4αβ4t
(α + 1)2

∑
σ∈Eint,
σ=K|L

τσ min
{

(uk+1
K )β−1, (uk+1

L )β−1
}

×
(
(uk+1

K )(α+1)/2 − (uk+1
L )(α+1)/2

)2

≤ − 4αβ4t
(α + 1)2

inf
K∈T

(uk+1
K )β−1|(uk+1)(α+1)/2|21,2,T ,

which is the discrete counterpart of (1.29). Then, applying the discrete Beckner
inequality given in Lemma 6 with p = (α + 1)/2, q = 2, and f = u(α+1)/2, we
obtain the analogon of (1.30):

Eα[uk+1]− Eα[uk] ≤ − 4αβ4t
Cb(

1
2
(α + 1), 2)(α + 1)

inf
K∈T

(u0
K)β−1Eα[uk+1],

and the Gronwall lemma shows the claim.
Next, let β > 1. As in the proof of Theorem 11, we find that

Eα[uk+1]− Eα[uk] ≤ − 4αβ4t
(α + β)2

|(uk+1)(α+1)/2|21,2,T .

We apply Lemma 8 with p = (α+β)/2, q = 2(α+1)/(α+β), and f = u(α+β)/2

to obtain

Eα[uk+1]− Eα[uk] ≤ −4αβ(α + 1)4t
(α + β)2

‖uk+1‖β−1
Lα+1(Ω)

C ′b(p, q)
Eα[uk+1]

≤ −4αβ(α + 1)4t
(α + β)2

‖u0‖β−1
L1(Ω)

C ′b(p, q)
Eα[uk+1].

Then Gronwall’s lemma finishes the proof.
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1.5 First-order entropies: from the continuous
to the discrete level

In this section, we consider the diffusion equation (1.1) on the torus Ω = Td

and we first prove the exponential decay of the first-order entropies.
In the discrete setting, we consider the diffusion equation (1.1) on the half
open unit cube [0, 1)d ⊂ Rd with multiperiodic boundary conditions (this is
topologically equivalent to the torus Td). By identifying “opposite” faces on
∂Ω, we can construct a family of control volumes and a family of edges in such
a way that every face is an interior face. Then cells with such identified faces
are neighboring cells. The numerical scheme we consider is similar to (1.7).

1.5.1 The continuous case

The exponential decay for the first-order entropies (1.4) is given, for the one-
dimensional case, in the following theorem.

Theorem 13 (Exponential decay of Fα in one space dimension). Let u be a
smooth solution to (1.1) on the one-dimensional torus Ω = T. Let u0 ∈ L∞(Ω)

with infΩ u0 ≥ 0 and let α, β > 0 satisfy −2 ≤ α− 2β < 1. Then

Fα[u(t)] ≤ Fα[u0]e−Λt, 0 ≤ t ≤ T,

where

Λ =
2β

C2
P

inf
Ω

(uα+β−γ−1
0 ) inf

Ω
(uγ−α0 ) ≥ 0, γ =

2

3
(α + β − 1),

where CP > 0 is the Poincaré constant in (1.10).

Proof. We slightly extend the entropy construction method of [58]. The time
derivative of the entropy reads as

dFα
dt

=
α

2

∫
Ω

(uα/2)x(u
α/2−1ut)xdx = −α

2

∫
Ω

(uα/2)xxu
α/2−1(uβ)xxdx

= −α
2β

4

∫
Ω

uα+β−1
((α

2
− 1
)

(β − 1)ξ4
G +

(α
2

+ β − 2
)
ξ2
GξL + ξ2

L

)
dx,

where we introduced
ξG =

ux
u
, ξL =

uxx
u
.

This integral is compared to∫
Ω

uα+β−γ−1(uγ/2)2
xxdx =

γ2

4

∫
Ω

uα+β−1

((γ
2
− 1
)2

ξ4
G + (γ − 2)ξ2

GξL + ξ2
L

)
dx,
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where, in contrast to the method of [58], γ 6= 0 gives an additional degree of
freedom in the calculations. In the one-dimensional situation, there is only one
relevant integration-by-parts rule:

0 =

∫
Ω

(uα+β−4u3
x)xdx =

∫
Ω

uα+β−1
(
(α + β − 4)ξ4

G + 3ξ2
GξL
)
dx.

We introduce the polynomials

S0(ξ) =
(α

2
− 1
)

(β − 1)ξ4
G +

(α
2

+ β − 2
)
ξ2
GξL + ξ2

L, (1.32)

D0(ξ) =
(γ

2
− 1
)2

ξ4
G + (γ − 2)ξ2

GξL + ξ2
L, (1.33)

T (ξ) = (α + β − 4)ξ4
G + 3ξ2

GξL,

where ξ = (ξG, ξL). We wish to show that there exist numbers c, γ ∈ R (γ 6= 0)
and κ > 0 such that

S(ξ) = S0(ξ) + cT (ξ)− κD0(ξ) ≥ 0 for all ξ ∈ R2.

The polynomial S can be written as S(ξ) = a1ξ
4
G + a2ξ

2
GξL + (1− κ)ξ2

L, where

a1 = −1

4
(γ − 2)2κ+ (α + β − 4)c+

1

2
(α− 2)(β − 1),

a2 = −(γ − 2)κ+ 3c+
1

2
(α + 2β − 4).

Therefore, the maximal value for κ is κ = 1. Let κ = 1. Then we need
to eliminate the mixed term ξ2

GξL. The solution of a2 = 0 is given by c =

−1
6
(α + 2β − 2γ), which leads to

a1 = −1

4

(
γ − 2

3
(α + β − 1)

)2

− 1

18
(α− 2β − 1)(α− 2β + 2).

Choosing γ = 2
3
(α + β − 1) to maximize a1, we find that a1 ≥ 0 and hence

S(ξ) ≥ 0 if and only if −2 ≤ α− 2β ≤ 1.

Using the Poincaré inequality (1.10) and the maximum principle, we obtain

dFα
dt

= −α
2β

4

∫
Ω

uα+β−1S0(ξ)dx = −α
2β

4

∫
Ω

uα+β−1(S0(ξ) + cT (ξ))dx

≤ −α
2β

4

∫
Ω

uα+β−1D0(ξ)dx = −α
2β

γ2

∫
Ω

uα+β−γ−1(uγ/2)2
xxdx

≤ −α
2β

γ2
inf

Ω×(0,∞)
(uα+β−γ−1)

∫
Ω

(uγ/2)2
xxdx

≤ − α2β

γ2C2
P

inf
Ω

(uα+β−γ−1
0 )

∫
Ω

(uγ/2)2
xdx.
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And therefore
dFα
dt
≤ − 2β

C2
P

inf
Ω

(uα+β−γ−1
0 ) inf

Ω
(uγ−α0 )Fα.

For the last inequality, we use the identity (uγ/2)x = γ
α
u(γ−α)/2(uα/2)x, which

cancels out the ratio α2/γ2. An application of Gronwall’s lemma finishes the
proof.

We turn to the multi-dimensional case.

Theorem 14 (Exponential decay of Fα in several space dimensions). Let u
be a smooth solution to (1.1) on the torus Ω = Td. Let u0 ∈ L∞(Ω) with
infΩ u0 > 0 and let

(α, β) ∈Md =
{

(α, β) ∈ R2 : (α− 2β − 1)(α− 2β + 2) < 0 and

(2− 2α + 2β − d+ αd)(4− 4β − 2d+ αd+ 2β + 2βd) > 0
}

(see Figure 1.1). Then there exists Λ > 0, depending on α, β, d, u0, and Ω

such that
Fα[u(t)] ≤ Fα[u0]e−Λt, t ≥ 0.

0 2 4 6 8

0

1

2

3

4

Figure 1.1: Illustration of the set Md, defined in Theorem 14, for d = 9.

Proof. The time derivative of the first-order entropy becomes

dFα
dt

= −α
2

∫
Ω

uα/2−1∆(uα/2)∆(uβ)dx = −α
2β

4

∫
Ω

uα+β−1S0dx, (1.34)

where S0 is defined in (1.32) with the (scalar) variables ξG = |∇u|/u, ξL =

∆u/u. We compare this integral to∫
Ω

uα+β−γ−1(∆(uγ/2))2dx =
γ2

4

∫
Ω

uα+β−1D0dx,
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where D0 is as in (1.33) and γ 6= 0. In contrast to the one-dimensional case,
we employ two integration-by-parts rules:

0 =

∫
Ω

div
(
uα+β−4|∇u|2∇u

)
dx =

∫
Ω

uα+β−1T1dx,

0 =

∫
Ω

div
(
uα+β−3(∇2u−∆I) · ∇u

)
dx =

∫
Ω

uα+β−1T2dx,

where

T1 = (α + β − 4)ξ4
G + 2ξGHG + ξ2

GξL,

T2 = (α + β − 3)ξGHG − (α + β − 3)ξ2
GξL + ξ2

H − ξ2
L,

and ξGHG = u−3∇u>∇2u∇u, ξH = u−1‖∇2u‖. Here, ‖∇2u‖ denotes the
Frobenius norm of the Hessian.
In order to compare ∇2u and ∆u, we employ Lemma 2.1 of [59]:

‖∇2u‖2 ≥ 1

d
(∆u)2 +

d

d− 1

(∇u>∇2u∇u
|∇u|2 − ∆u

d

)2

.

Therefore, there exists ξR ∈ R such that

ξ2
H =

ξ2
L

d
+

d

d− 1

(
ξGHG
ξ2
G

− 1

d
ξL

)2

+ ξ2
R =

ξ2
L

d
+

d

d− 1
ξ2
S + ξ2

R,

where we introduced ξS = ξGHG/ξ
2
G− ξL/d. Rewriting the polynomials T1 and

T2 in terms of ξ = (ξG, ξL, ξS, ξR) ∈ R4 leads to:

T1(ξ) = (α + β − 4)ξ4
G +

2 + d

d
ξ2
GξL + 2ξ2

GξS,

T2(ξ) =
1− d
d

(α + β − 3)ξ2
GξL +

1− d
d

ξ2
L + ξSξ

2
G(α + β − 3) +

d

d− 1
ξ2
S + ξ2

R.

We wish to find c1, c2, γ ∈ R (γ 6= 0) and κ > 0 such that

S(ξ) = S0(ξ) + c1T1(ξ) + c2T2(ξ)− κD0(ξ) ≥ 0 for all ξ ∈ R4.

The polynomial S can be written as

S(ξ) = a1ξ
4
G + a2ξ

2
GξL + a3ξ

2
L + a4ξ

2
GξS + a5ξ

2
S + c2ξ

2
R, where

a1 =
(α

2
− 1
)

(β − 1) + (α + β − 4)c1 −
(γ

2
− 1
)2

κ,

a2 =
α

2
+ β − 2 +

(
2

d
+ 1

)
c1 − (α + β − 3)

d− 1

d
c2 − (γ − 2)κ,

a3 = 1 +
1− d
d

c2 − κ,
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a4 = 2c1 + (α + β − 3)c2,

a5 =
d

d− 1
c2.

We remove the variable ξR by imposing the condition that c2 ≥ 0. The remain-
ing polynomial can be reduced to a quadratic polynomial by setting x = ξL/ξ

2
G

and y = ξS/ξ
2
G:

S(x, y) ≥ a1 + a2x+ a3x
2 + a4y + a5y

2 ≥ 0 for all x, y ∈ R. (1.35)

This quadratic decision problem can be solved by employing the computer
algebra system Mathematica. The result of the command

Resolve[ForAll[{x, y}, Exists[{C1, C2, kappa, gamma},
a1 + a2*x + a3*x^2 + a4*y + a5*y^2 >= 0 && kappa > 0
&& gamma != 0]], Reals]

yields all (α, β) ∈ R2 such that there exist c1, c2, γ ∈ R (γ 6= 0) and κ > 0

such that (1.35) holds. This region equals the setMd, defined in the statement
of this theorem.
Similar to the one-dimensional case, we infer that

dFα
dt
≤ −α

2βκ

4

∫
Ω

uα+β−1D0(ξ)dx = −α
2βκ

γ2

∫
Ω

uα+β−γ−1(∆uγ/2)2dx.

Thus, proceeding as in the proof of Theorem 13 and using the identity∫
Ω

(∆f)2dx =

∫
Ω

‖∇2f‖2dx

for smooth functions f (which can be derived by integrating by parts twice),
we obtain

dFα
dt
≤ −2βκ

C2
P

inf
Ω

(uα+β−γ−1
0 ) inf

Ω
(uγ−α0 )Fα.

Gronwall’s lemma concludes the proof.

Remark 15. Under the additional constraints a2 = a3 = 0, we are able to solve
the decision problem (1.35) without the help of the computer algebra system.
The solution set, however, is slightly smaller than Md, which is obtained from
Mathematica without these constraints. Indeed, we can compute c1 and c2

from the equations a2 = a3 = 0 to give

c1 =
d

d+ 2

(α
2
− 1 + κ(1 + γ − α− β)

)
, c2 =

d(1− κ)

d− 1
.
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The decision problem (1.35) reduces to

a1 + a4y + a5y
2 ≥ 0 for all y ∈ R.

If κ < 1, it holds c2 > 0 and consequently, a5 > 0. Therefore, the above
polynomial is nonnegative for all y ∈ R if it has no real roots, i.e., if

0 ≤ 4a1a5 − a2
4 = q0 + q1γ + q2γ

2

for some γ 6= 0, where (for d > 1)

q2 = − d2κ

(d+ 2)2(d− 1)2

(
3d(d− 4)κ+ (d+ 2)2

)
< 0,

and q0, q1 are polynomials depending on d, α, β, and κ. The above problem
is solvable if and only if there exist real roots, i.e. if

0 ≤ q2
1 − 4q0q2 =

4κ(1− κ)

(d+ 2)2(d− 1)2
(s0 + s1κ+ s2κ

2),

where

s0 = −d(5d− 8) + 6d(d− 1)α + 2d(d+ 2)β + 2(d+ 2)αβ − (2d2 + 1)α2

− (d+ 2)2β2,

s1 = 2d(3d− 4)− 2d(4d− 3)α− 4d(d+ 1)β + 2d(3d− 5)αβ + 2d(d+ 1)α2

− 2d(d− 6)β2,

s2 = −d2(α + β − 1)2.

We set f(κ) = s0 + s1κ+ s2κ
2. We have to find 0 < κ < 1 such that f(κ) ≥ 0.

Since s2 ≤ 0, this is possible if f(κ) possesses two (not necessarily distinct)
real roots κ0 and κ1 and if at least one of those roots is between zero and one.
Since f(1) = −(d − 1)2(α − 2β)2 ≤ 0, there are only two possibilities for κ0

and κ1: either κ0 ≤ 0 ≤ κ1 ≤ 1 or 0 ≤ κ0 ≤ κ1 ≤ 1. The first case holds if
f(0) = s0 ≥ 0, the latter one if

f ′(0) = s1 ≥ 0, f ′(1) = s1 + 2s2 ≤ 0, (1.36)

s2
1 − 4s0s2 = −4d2(α− 2β + 2)(α− 2β − 1)(4− 2d+ dα + 2dβ) (1.37)

× (2− d+ (d− 2)α + 2β) ≥ 0.

The set of all (α, β) ∈ R2 fulfilling these conditions is illustrated in Figure
1.2.
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Figure 1.2: Set of all (α, β) fulfilling s0 ≥ 0, (1.36), and (1.37) for d = 9.

1.5.2 The discrete case

At the discrete level, we establish the decay of the first-order entropies in any
dimension, with an exponential rate in one space dimension. We recall that
the discrete first-order entropies are defined by (1.9).

Theorem 16 (Exponential decay of F d
α). Let (ukK)K∈T , k≥0 be the solution to

the finite-volume scheme (1.7) with Ω = Td and infK∈T u
0
K ≥ 0. Then, for all

1 ≤ α ≤ 2, and α = 2β it follows that

F d
α [uk+1] ≤ F d

α [uk], k ∈ N.

Furthermore for all 1 ≤ α ≤ 2, −2 < α − 2β < 1, if d = 1 and the grid is
uniform with N subintervals, there exists 0 < ε ≤ 1 such that

F d
α [uk] ≤ F d

α [u0]e−λt
k

,

where λ = εα2

β
sin2 π

N
mini=1,...,N

(
(u0

i )
α−β−1

)
≥ 0.

Proof. The difference Gα = F d
α [uk+1]− F d

α [uk] can be written as

Gα =
1

2

∑
σ∈Eint,
σ=K|L

τσ

((
(uk+1

K )α/2 − (uk+1
L )α/2

)2 −
(
(ukK)α/2 − (ukL)α/2

)2
)
.

Introducing aK = (uk+1
K − ukK)/τ , we find that

Gα =
1

2

∑
σ∈Eint,
σ=K|L

τσ

((
(uk+1

K )α/2 − (uk+1
L )α/2

)2

−
(
(uk+1

K − τaK)α/2 − (uk+1
L − τaL)α/2

)2
)
.
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We claim that Gα is concave with respect to τ . Indeed, we compute

∂Gα

∂τ
=
α

2

∑
σ∈Eint,
σ=K|L

τσ
(
(uk+1

K − τaK)α/2 − (uk+1
L − τaL)α/2

)
×
(
(uk+1

K − τaK)α/2−1aK − (uk+1
L − τaL)α/2−1aL

)
,

∂2Gα

∂τ 2
= −α

2

4

∑
σ∈Eint,
σ=K|L

τσ
(
(uk+1

K − τaK)α/2−1aK − (uk+1
L − τaL)α/2−1aL

)2

− α

2

(α
2
− 1
) ∑
σ∈Eint,
σ=K|L

τσ
(
(uk+1

K − τaK)α/2 − (uk+1
L − τaL)α/2

)
×
(
(uk+1

K − τaK)α/2−2a2
K − (uk+1

L − τaL)α/2−2a2
L

)
.

Replacing uk+1
K −τaK , uk+1

L −τaL by ukK , ukL, respectively, the second derivative
becomes

∂2Gα

∂τ 2
= −α

2

4

∑
σ∈Eint,
σ=K|L

τσ
(
(ukK)α/2−1aK − (ukL)α/2−1aL

)2

− α

2

(α
2
− 1
) ∑
σ∈Eint,
σ=K|L

τσ
(
(ukK)α/2 − (ukL)α/2

)(
(ukK)α/2−2a2

K − (ukL)α/2−2a2
L

)
= −α

4

∑
σ∈Eint,
σ=K|L

τσ(c1a
2
K + c2aKaL + c3a

2
L),

where

c1 = (α− 2)
(
(ukK)α/2 − (ukL)α/2

)
(ukK)α/2−2 + α(ukK)α−2,

c2 = −2α(ukK)α/2−1(ukL)α/2−1,

c3 = −(α− 2)
(
(ukK)α/2 − (ukL)α/2

)
(ukL)α/2−2 + α(ukL)α−2.

We show that the quadratic polynomial in the variables aK and aL is nonnega-
tive for all ukK and ukL. This is the case if and only if c1 ≥ 0 and 4c1c3− c2

2 ≥ 0.
The former condition is equivalent to

2(α− 1)(ukK)α−2 ≥ (α− 2)(ukK)α/2−2(ukL)α/2,

which is true for 1 ≤ α ≤ 2. After an elementary computation, the latter
condition becomes

4c1c3 − c2
2 = 8(α− 1)(2− α)(ukK)α/2−2(ukL)α/2−2

(
(ukK)α/2 − (ukL)α/2

)2 ≥ 0
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for 1 ≤ α ≤ 2. This proves the concavity of τ 7→ Gα(τ).
A Taylor expansion and Gα(0) = 0 leads to

Gα(τ) ≤ Gα(0) + τ
∂Gα

∂τ
(0)

=
ατ

2

∑
σ∈Eint,
σ=K|L

τσ
(
(uk+1

K )α/2 − (uk+1
L )α/2

)(
(uk+1

K )α/2−1aK − (uk+1
L )α/2−1aL

)
=
ατ

2

∑
σ∈Eint,
σ=K|L

τσ
(
(uk+1

K )α/2 − (uk+1
L )α/2

)
(uk+1

K )α/2−1aK

+
ατ

2

∑
σ∈Eint,
σ=K|L

τσ
(
(uk+1

L )α/2 − (uk+1
K )α/2

)
(uk+1

L )α/2−1aL.

Replacing aK and aL by scheme (1.7) and rearranging the terms, we infer that

Gα(4t) = − α4t
2m(K)

∑
K∈T

∑
σ∈Eint,
σ=K|L

τσ
∑
σ̃∈Eint,
σ̃′=K|M

τσ̃(uk+1
K )α/2−1

×
(
(uk+1

K )β − (uk+1
M )β

)(
(uk+1

K )α/2 − (uk+1
L )α/2

)
. (1.38)

Note that the expression on the right-hand side is the discrete counterpart of
the integral

−α
2

∫
Ω

uα/2−1(uβ)xx(u
α/2)xxdx,

appearing in (1.34). The condition α = 2β immediately implies the mono-
tonicity of k 7→ F d

α [uk].
For the proof of the second statement, we let d = 1 and decompose the inter-
val Ω in N subintervals K1, . . . , KN of length h > 0. Because of the periodic
boundary conditions, we may set ukN+1 = uk0 and uk−1 = ukN , where uki is the
approximation of the mean value of u(·, tk) on the subinterval Ki, i = 1, . . . , N .
Then, by using the discrete integrations-by-parts formula (Appendix A) with

A =
α

2β

B =
α/2− 1

β

⇒ (2A−B − 1)(A+B − 2) =
(α− 2β + 2)(α− 2β − 1)

2β2

we can estimate (1.38) as:
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Gα(τ) = −ατ
4h

N∑
i=1

(uk+1
i )α/2−1

(
(uk+1

i+1 )β + (uk+1
i−1 )β − 2(uk+1

i )β
)

×
(
(uk+1

i+1 )α/2 + (uk+1
i−1 )α/2 − 2(uk+1

i )α/2
)

≤ −εα
2τ

8hβ
min

i=1,...,N

(
(uk+1

i )α−β−1
) N∑
i=1

(zi − zi−1)2,

for some 0 < ε ≤ 1 and zi = (uk+1
i )β − (uk+1

i+1 )β. The periodic boundary con-
ditions imply that

∑N
i=1 zi = 0. Hence, we can employ the discrete Wirtinger

inequality in [81, Theorem 1] to obtain

Gα(τ) ≤ −εα
2τ

2hβ
sin2 π

N
min

i=1,...,N

(
(uki )

α−β−1
) N∑
i=1

z2
i

= −εα
2τ

hβ
sin2 π

N
min

i=1,...,N

(
(uki )

α−β−1
)
F d
α [uk+1].

From the discrete maximum principle, it follows that

max
i

(uk+1
i )−α+β+1 ≤ max

i
(u0

i )
−α+β+1 ⇔ min

i
(uk+1

i )α−β−1 ≥ min
i

(u0
i )
α−β−1

Therefore,

F d
α [uk+1]− F d

α [uk] = Gα(4t) ≤ −εα
2τ

hβ
sin2 π

N
min

i=1,...,N

(
(u0

i )
α−β−1

)
F d
α [uk+1],

and Gronwall’s lemma finishes the proof.

Remark 17 (Special case α = 2β). In this case, equation (1.38) can immedi-
ately be simplified to

G2β(τ) ≤ −βτ
2h

N∑
i=1

( ∑
j∈{i−1,i+1}

(uk+1
i )β−1

(
(uk+1

i )β − (uj
k+1)β

))2

and we do not need the discrete integration-by-parts formula (Appendix A).
In this case ε = 1 becomes optimal and the constant λ simplifies to λ =

4β sin2(π/N) mini((u
0
i )

2(β−1)).

1.6 Numerical experiments

We illustrate the time decay of the solutions to the discretized porous-medium
(β = 2) and fast-diffusion equation (β = 1/2) in one and two space dimensions.
First, let β = 2. We recall that the Barenblatt profile

uB(x, t) = (t+ t0)−A
(
C − B(β − 1)

2β

|x− x0|2
(t+ t0)2B

)1/(β−1)

+

31



is a special solution to the porous-medium equation in the whole space. (Here,
z+ denotes the positive part of a function z+ := max{0, z}.) The constants
are given by

A =
d

d(β − 1) + 2
, B =

1

d(β − 1) + 2
,

and C is typically determined by the initial datum by setting the total mass∫
Ω
u(x, t)dx =

∫
Ω
u(x, 0)dx. We choose C = B(β − 1)(2β)−1(t1 + t0)−2B|x1 −

x0|2, where t1 > 0 is the smallest time for which u(x1, t1) = 0.
In the one-dimensional situation, we choose Ω = (0, 1) with homogeneous Neu-
mann boundary conditions and a uniform grid (xi, t

j) ∈ [0, 1] × [0, 0.2] with
1 ≤ i ≤ 50 and 0 ≤ j ≤ 1000, i.e., the space grid size is 4x = 0.02 and the
time step size equals 4t = 2 · 10−4. We have chosen a very small time step
size for a smoother graphical representation of the solution, but the implicit
scheme clearly also works for time step sizes of the order of 4x and for smaller
values of4x. The initial datum is given by the Barenblatt profile uB(·, 0) with
x0 = 0.5, x1 = 1 and t0 = 0.01. The constant C is computed by using t1 = 0.1,
which yields C ≈ 0.091. For 0 ≤ t ≤ 0.1, the analytical solution corresponds
to the Barenblatt profile.
The time decay of the zeroth- and first-order entropies are depicted in Figure
1.3 using a semi-logarithmic scale for various values of α. The decay rates are
exponential for sufficiently large times, even for α > 1 (compare to Theorem
12) and for α 6= 2β (see Theorem 16), which indicates that the conditions
imposed in these theorems are technical. For small times, the decay seems to
be faster than the decay in the large-time regime. This fact has been already
observed in [20, Remark 4]. There is a significant change in the decay rate
of the first-order entropies F d

α for times around t1 = 0.1. Indeed, the positive
part of the discrete solution, which approximates the Barenblatt profile uB for
t < t1, reaches the boundary and does not approximate uB anymore. The
change is more apparent for α < 1.
Next, we investigate the two-dimensional situation (still with β = 2). The
domain Ω = (0, 1)2 is divided into 144 quadratic cells each of which consists
of four control volumes (see Figure 1.4). Again, we employ the Barenblatt
profile as the initial datum, choosing t0 = 0.01, t1 = 0.1, and x0 = (0.5, 0.5),
and impose homogeneous boundary conditions. The time step size equals
4t = 8 · 10−4.
In Figure 1.5, the time evolution of the (logarithmic) zeroth- and first-order
entropies are presented. Again, the decay appears to be exponential for large
times, even for values of α not covered by the theoretical results of this chap-
ter. At time t = t1, the profile reaches the boundary of the domain. Since the
radially symmetric profile does not reach the boundary everywhere simultane-
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Figure 1.3: The natural logarithm of the entropies log(Ed
α[u](t)) (left) and

log(F d
α [u](t)) (right) versus time for different values of α (β = 2, d = 1).

Figure 1.4: Four of the 144 cells used for the two-dimensional finite-volume
scheme.

ously, the time decay rate of F d
α does not change as distinctly as in Figure 1.3.

Let β = 1/2. The one-dimensional interval Ω = (0, 1) is discretized as be-
fore, using 51 grid points and the time step size is 4t = 2 · 10−4. We
impose homogeneous Neumann boundary conditions. As initial datum, we
choose the following truncated polynomial u0(x) = C((x0 − x)(x − x1))2

+,
where x0 = 0.3, x1 = 0.7, and C = 3000. In the two-dimensional box
Ω = (0, 1)2, we employ the discretization described above and the initial da-
tum u0(x) = C(R2 − |x − x0|2)2

+, where R = 0.2, x0 = (0.5, 0.5) and again
C = 3000.
In the fast-diffusion case β < 1, we do not expect significant changes in the
decay rate since the initial values propagate with infinite speed. This expec-
tation is supported by the numerical results presented in Figures 1.6 and 1.7.
For a large range of values of α, the decay rate is exponential, at least for
large times. Interestingly, the rate seems to approach almost the same value
for α ∈ {0.5, 1, 2} in Figure 1.7.
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Figure 1.5: The natural logarithm of the entropies log(Ed
α[u](t)) (left) and

log(F d
α [u](t)) (right) versus time for different values of α (β = 2, d = 2).
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Figure 1.6: The natural logarithm of the entropies log(Ed
α[u](t)) (left) and

log(F d
α [u](t)) (right) versus time for different values of α (β = 1/2, d = 1).
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Figure 1.7: The natural logarithm of the entropies log(Ed
α[u](t)) (left) and

log(F d
α [u](t)) (right) versus time for different values of α (β = 1/2, d = 2).
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Chapter 2

Runge-Kutta discretizations in
time - A general approach

2.1 Introduction

In this chapter, we are mainly concerned with the entropy-preserving nature
of the time-discretization of nonlinear evolution equations.
Evolution equations often contain some structural information reflecting inher-
ent physical properties such as positivity of solutions, conservation laws, and
entropy dissipation. Numerical schemes should be designed in such a way that
these structural features are preserved on the discrete level in order to obtain
accurate and stable algorithms. In the last decades, concepts of structure-
preserving schemes, geometric integration, and compatible discretization have
been developed [30], but much less is known about the preservation of entropy
dissipation and large-time asymptotics.
Entropy-stable schemes were derived by Tadmor already in the 1980s [83] in
the context of conservation laws, thus without (physical) diffusion. Later,
entropy-dissipative schemes were developed for (finite-volume) discretizations
of diffusion equations [13, 46, 48]. In [18], a finite-volume scheme which pre-
serves the gradient-flow structure and hence the entropy structure is proposed.
All these schemes are based on the implicit Euler method and are of first order
(in time) only. Higher-order schemes which diminish the total variation were
developed for hyperbolic conservation laws, and they are often based on flux
or slope limiters [82]. More general approaches are known under the name
of strong stability preserving schemes ensuring stability in the same norm as
the forward Euler scheme. They are used, for instance, for method-of-lines
approximations of partial differential equations. For Runge-Kutta discretiza-
tions with this property, we refer to [50, 57].
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Further numerical approaches of higher-order entropy-dissipating schemes in-
clude the second-order predictor-corrector approximation of [73] and the higher-
order semi-implicit Runge-Kutta (DIRK) method of [16], together with a spa-
tial fourth-order central finite-difference discretization. In [17, 63], multistep
time approximations were employed, but they can only be of second order at
most and they dissipate only one specific entropy in comparison to all entropy
functionals dissipated by the continuous equation. In this chapter, we remove
these restrictions by investigating time-discrete Runge-Kutta schemes of order
p ≥ 1 for general diffusion equations.
We stress the fact that we are interested in the analysis of entropy-dissipating
schemes by translating properties of the continuous equation to the semi-
discrete level, i.e., we study the stability of the schemes. We do not investigate
convergence, stiffness, or computational issues here (see e.g. [16]).
However, we consider time discretizations of the abstract Cauchy problem

∂tu(t) + A[u(t)] = 0, t > 0, u(0) = u0, (2.1)

where A : D(A) → X ′ is a (differential) operator defined on D(A) ⊂ X and
X is a Banach space with dual X ′. In the work presented in this thesis, we
restrict ourselves to diffusion operators A[u] defined on some Sobolev space
with solutions u : Ω × (0,∞) → Rn, which may be vector-valued. A typical
example is A[u] = div(a(u)∇u) defined on X = L2(Ω) with domain D(A) =

H2(Ω), where a : R→ R is a smooth function (see section 2.3). Equation (2.1)
often possesses a Lyapunov functional H[u] =

∫
Ω
h(u)dx (called entropy in the

following), where h : Rn → R, such that

dH

dt
[u] =

∫
Ω

h′(u)∂tudx = −
∫

Ω

h′(u)A[u]dx ≤ 0,

at least when the entropy production
∫

Ω
h′(u)A[u]dx is nonnegative. Here, h′

is the derivative of h and h′(u)A[u] is interpreted as the inner product of h′(u)

and A[u] in Rn. Furthermore, if h is convex, the convex Sobolev inequality∫
Ω
h′(u)A[u]dx ≥ κH[u] for some κ > 0 may hold [27], which implies that

dH/dt ≤ −κH and hence exponential convergence of H[u] to zero with rate
κ. The aim is to design a higher-order time-discrete scheme which preserves
this entropy-dissipation property.
To this end, we propose the following semi-discrete Runge-Kutta approxima-
tion of (2.1): Given uk−1 ∈ X, define

uk = uk−1 + τ

s∑
i=1

biKi, Ki = −A
[
uk−1 + τ

s∑
j=1

aijKj

]
, i = 1, . . . , s, (2.2)

where tk are the time steps, τ = tk − tk−1 > 0 is the uniform time step size,
uk approximates u(tk), and s ≥ 1 denotes the number of Runge-Kutta stages.
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Since the Cauchy problem is autonomous, the knots c1, . . . , cs are not needed
here. In concrete examples (see below), uk are functions from Ω to Rn. If
aij = 0 for j ≥ i, the Runge-Kutta scheme is explicit, otherwise it is implicit
and a nonlinear system of size s has to be solved to compute Ki. We assume
that scheme (2.2) is solvable for uk : Ω→ Rn.
Given h : Rn → R, we wish to determine conditions under which the functional

H[uk] =

∫
Ω

h(uk(x))dx (2.3)

is dissipated by the numerical scheme (2.2),

H[uk] + τ

∫
Ω

A[uk]h′(uk)dx ≤ H[uk−1], k ∈ N. (2.4)

In many examples (see below),
∫

Ω
A[uk]h′(uk)dx ≥ 0 and thus, the function

k 7→ H[uk] is decreasing. Such a property is the first step in proving the preser-
vation of the large-time asymptotics of the numerical scheme (see Remark 19).
Our main results in this chapter, stated on an informal level, are as follows:

(i) We determine an abstract condition under which the discrete entropy-
dissipation inequality (2.4) holds for sufficiently small τ > 0. This con-
dition is made explicit for special choices of A and h, yielding entropy-
dissipative implicit or explicit Runge-Kutta schemes of any order.

(ii) Numerical experiments for the porous-medium equation indicate that τ
may be chosen independent of the time step k, thus yielding discrete
entropy dissipation for all discrete times.

(iii) We show that for Runge-Kutta schemes of order p ≥ 2, the abstract
condition in (i) is exactly the criterion of Liero and Mielke [71] to conclude
geodesic 0-convexity of the entropy. In particular, it is related to the
Bakry-Emery condition [5].

In the following, the main results of chapter 2 are described in more detail.
We recall that the Runge-Kutta scheme (2.2) is consistent if

∑s
j=1 aij = ci and∑s

i=1 bi = 1. Furthermore, if
∑s

i=1 bici = 1
2
, it is at least of order two [55,

Chap. II]. We introduce the number

CRK = 2
s∑
i=1

bi(1− ci), (2.5)

which takes only three values:

CRK = 0 for the implicit Euler scheme,
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CRK = 1 for any Runge-Kutta scheme of order p ≥ 2,

CRK = 2 for the explicit Euler scheme.

The first main result is an abstract entropy-dissipation property of scheme
(2.2) for entropies of type (2.3).

Theorem 18 (Entropy-dissipation structure I). Let h ∈ C2(Rn), let A :

D(A) → X ′ be Fréchet differentiable with Fréchet derivative DA[u] : X → X ′

at u ∈ D(A), and let (uk) be the Runge-Kutta solution to (2.2). Suppose that

Ik0 :=

∫
Ω

(
CRKh

′(uk)DA[uk](A[uk]) + h′′(uk)(A[uk])2
)
dx > 0. (2.6)

Then there exists τ k > 0 such that for all 0 < τ ≤ τ k,

H[uk] + τ

∫
Ω

A[uk]h′(uk)dx ≤ H[uk−1]. (2.7)

Compared to strong stability preserving Runge-Kutta schemes [57, 50], we
obtain not only a time-discrete dissipation property, but also an estimate for
A[uk]h′(uk), which usually provides gradient bounds. Another difference is
that we study semi-discrete problems, while the references [57, 50] the authors
are concerned with ordinary differential equations derived from method-of-lines
approximations.
We assume that the solutions to (2.2) are sufficiently regular such that the
integral (2.6) can be defined. In the vector-valued case, h′′(uk) is the Hessian
matrix and we interpret h′′(uk)(A[uk])2 as the product A[uk]>h′′(uk)A[uk]. For
Runge-Kutta schemes of order p ≥ 2 (for which CRK = 1), the integral (2.6)
corresponds exactly to the second-order time derivative of H[u(t)] for solutions
u(t) to the continuous equation (2.1). Note that the entropy-dissipation esti-
mate (2.7) is only local, since the time step restriction depends on the time step
k. For implicit Euler schemes (and convex entropies h), it is known that τ k

can be chosen independent of k. For general Runge-Kutta methods, we cannot
prove rigorously that τ k stays bounded from below as k → ∞. However, our
numerical experiments in section 2.7 indicate that inequality (2.7) holds for
sufficiently small τ > 0 uniformly in k.

Remark 19 (Exponential decay of the discrete entropy). If the convex Sobolev
inequality

∫
Ω
A[uk]h′(uk)dx ≥ κH[uk] holds for some constant κ > 0 and if

there exists τ ∗ > 0 such that τ k ≥ τ ∗ > 0 for all k ∈ N, we infer from (2.7)
that for τ := τ ∗,

H[uk] ≤ (1 + κτ)−kH[u0] = exp(−ηκtk)H[u0], where η =
log(1 + κτ)

κτ
< 1,
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which implies exponential decay of the discrete entropy with rate ηκ. This rate
converges to the continuous rate κ as τ → 0 and therefore it is asymptotically
sharp.

Theorem 18 can be generalized to a larger class of entropies, namely to so-
called first-order entropies

F [uk] =

∫
Ω

|∇f(uk)|2dx, (2.8)

where, for simplicity, we consider only the scalar case with f : R → R. An
important example is the Fisher information with f(u) =

√
u.

Theorem 20 (Entropy-dissipating structure II). Let f ∈ C2(R), let A :

D(A) → X ′ be Fréchet differentiable, and let (uk) be the Runge-Kutta solu-
tion to (2.2). Assume that the boundary condition ∇f(uk) · ν = 0 on ∂Ω is
satisfied. Furthermore, suppose that

Ik1 :=

∫
Ω

(
|∇(f ′(uk)A[uk]|2 − CRK∆f(uk)f ′(uk)DA[uk](A[uk])

−∆f(uk)f ′′(uk)(A[uk])2
)
dx > 0.

(2.9)

Then there exists τ k > 0 such that for all 0 < τ ≤ τ k,

F [uk] + τ

∫
Ω

A[uk]f ′(uk)dx ≤ F [uk−1].

The key idea of the proof of Theorem 18 (and similarly for the proof of Theorem
20) is a concavity property of the difference of the entropies at two consecutive
time steps with respect to the time step size τ . To explain this idea, let
u := uk be fixed and introduce v(τ) := uk−1. Clearly, v(0) = u. A formal
Taylor expansion of G(τ) := H[u]−H[v(τ)] yields

H[uk]−H[uk−1] = G(τ) = G(0) + τG′(0) +
τ 2

2
G′′(ξk),

where 0 < ξk < τ . A computation, presented explicit in section 2.2, shows
that G′(0) =

∫
Ω
A[uk]h′(uk)dx and G′′(0) = −Ik0 . Now, if G′′(0) < 0, there

exists τ k > 0 such that G′′(τ) ≤ 0 for τ ∈ [0, τ k] and in particular G′′(ξk) ≤
0. Consequently, G(τ) ≤ τG′(0), which equals (2.4). The definition of v(τ)

assumes implicitly that (2.2) is backward solvable. We prove in Proposition 22
below that this property holds if the operator A is a smooth self-mapping on
X.
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Remark 21 (Discussion of τ k). Since (uk) is expected to converge to the
stationary solution, limk→∞ I

k
0 = 0. Thus, in principle, for larger values of

k, we expect that τ k becomes smaller and smaller, thus restricting the choice
of time step sizes τ . However, practically, the situation more favorable. For
instance, for the implicit Euler scheme, if h is convex, we obtain

H[uk]−H[uk−1] ≤
∫

Ω

h′(uk)(uk − uk−1)dx = −τ
∫

Ω

h′(uk)A[uk]dx

for any value of τ > 0. Moreover, for other (higher-order) Runge-Kutta
schemes, the numerical experiments in section 2.7 indicate that there exists
τ ∗ > 0 such that G′′(τ) ≤ 0 holds for all τ ∈ [0, τ ∗] uniformly in k ∈ N. In
this situation, inequality (2.7) holds for all 0 < τ ≤ τ ∗, and thus our estimate
is global. In fact, numerically, the function G′′ is even nonincreasing in some
interval [0, τ ∗] but we are not able to prove this analytically.

The second main result is the specification of the abstract conditions (2.6)
and (2.9) for a number of examples: a quasilinear diffusion equation, porous-
medium or fast-diffusion equations, a linear diffusion system, and the fourth-
order Derrida-Lebowitz-Speer-Spohn equation (see sections 2.3-2.6 for details).
For instance, for the porous-medium equation

∂tu = ∆(uβ) in Ω, t > 0, ∇uβ · ν = 0 on ∂Ω, u(0) = u0,

we show that the Runge-Kutta scheme satisfies

H[uk]+τβ

∫
Ω

(uk)α+β−2|∇uk|2dx ≤ H[uk−1], where H[u] =
1

α(α + 1)

∫
Ω

uα+1dx,

for 0 < τ ≤ τ k and all (α, β) belonging to some region in [0,∞)2 (see Figure
2.1 below). For α = 0, we write H[u] =

∫
Ω
u(log u − 1)dx. In one space

dimension and for Runge-Kutta schemes of order p ≥ 2, this region becomes
−2 < α − β < 1, which is the same condition as for the continuous equation
(except the boundary values). Furthermore, the first-order entropy (2.8) is
dissipated for Runge-Kutta schemes of order p ≥ 2, in one space dimension,

F [uk] + τCα,β

∫
Ω

(uk)α+β−2(uk)2
xxdx ≤ F [uk−1], where F [u] =

∫
Ω

(uα/2)2
xdx,

for 0 < τ ≤ τ k and all (α, β) belonging to the region shown in Figure 2.2
below, and Cα,β > 0 is some constant. This region is smaller than the region
of admissible values (α, β) for the continuous entropy. The borders of that
region are indicated in the Figure 2.2 by dashed lines.
The proof of the above results, specifically of G′′(0) < 0, is based on systematic
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integration by parts [58]. The idea of the method is to formulate integration
by parts as manipulations with polynomials and to conclude the inequality
G′′(0) < 0 from a polynomial decision problem. This problem can be solved
directly or by using computer algebra software.
Our third main result is the relation to geodesic 0-convexity of the entropy
and the Bakry-Emery approach for the case CRK = 1 (Runge-Kutta scheme
of order p ≥ 2). Liero and Mielke [71] formulate the abstract Cauchy problem
(2.1) as the gradient flow

∂tu = −K[u]DH[u], t > 0, u(0) = u0,

where the Onsager operator K[u] describes the sum of diffusion and reaction
terms. For instance, if A[u] = div(a(u)∇u), we can rewrite the operator
A[u] = div(a(u)h′′(u)−1∇h′(u)) and thus, identifying h′(u) and DH[u], we
have K[u]ξ = div(a(u)h′′(u)−1∇ξ). It is shown in [71] that the entropy H is
geodesic λ-convex if the inequality

M(u, ξ) := 〈ξ,DA[u]K[u]ξ〉 − 1

2
〈ξ,DK[u]A[u]ξ〉 ≥ λ〈ξ,K[u]ξ〉 (2.10)

holds for all suitable u and ξ. We prove in section 2.2 that

G′′(0) = 2M(uk, h′(uk)).

Hence, if G′′(0) ≤ 0 then (2.10) with λ = 0 is satisfied for u = uk and ξ =

h′(uk), yielding geodesic 0-convexity for the semi-discrete entropy. Moreover,
if G′′(0) ≤ −λG′(0) we obtain geodesic λ-convexity. Since G′(0) = −dH[u]/dt

and G′′(0) = −d2H[u]/dt2 in the continuous setting, the inequality G′′(0) ≤
−λG′(0) can be written as

d2H

dt2
[u] ≥ −λdH

dt
[u],

which corresponds to a variant of the Bakry-Emery condition [5], yielding ex-
ponential convergence of H[u] (if τ k ≥ τ ∗ > 0 for all k). Thus, our results
constitute a first step towards a discrete Bakry-Emery approach.
This chapter is organized as follows. The abstract method, i.e. the proof of
backward solvability and of Theorems 18 and 20, is presented in section 2.2.
The method is applied in the subsequent sections to a scalar diffusion equa-
tion (section 2.3), the porous-medium equation (section 2.4), a linear diffu-
sion system (section 2.5), and the fourth-order Derrida-Lebowitz-Speer-Spohn
equation (section 2.6). Finally, section 2.7 is devoted to some numerical ex-
periments showing that G′′ is negative in some interval [0, τ ∗].
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2.2 The abstract method

In this section, we show that the Runge-Kutta scheme is backward solvable if
A is a self-mapping and we prove Theorems 18 and 20.

Proposition 22 (Backward solvability). Let (τ, uk) ∈ [0,∞) × X, where X
is some Banach space, and let A ∈ C2(X,X) be a self-mapping. Then there
exists τ0 > 0, a neighborhood V ⊂ X of uk, and a function v ∈ C2([0, τ0);X)

such that (2.2) holds for uk−1 := v(τ). Moreover,

v(0) = 0, v′(0) = A[u], and v′′(0) = CRKDA[u](A[u]). (2.11)

The self-mapping assumption is strong for differential operators A but it is
natural in the context of Runge-Kutta methods and valid for smooth solutions.

Proof. The idea of the proof is to apply the implicit function theorem in Banach
spaces (see [31, Corollary 15.1]). To this end, we set u := uk and define the
mapping J = (J0, . . . , Js) : R×Xs+1 → Xs+1 by

J0(τ, y) = v − u+ τ
s∑
i=1

biki, where y = (k1, . . . , ks, v),

Ji(τ, y) = ki + A

[
v + τ

s∑
j=1

aijkj

]
, i = 1, . . . , s.

The Fréchet derivative of the mapping J in the direction of (τh, yh), where
yh = (kh1, . . . , khs, vh), reads as

DJ0(τ, y)(τh, yh) = vh + τh

s∑
i=1

biki + τ

s∑
i=1

bikhi,

DJi(τ, y)(τh, yh) = khi +DA

[
v + τ

s∑
j=1

aijkj

](
vh + τh

s∑
j=1

aijkj + τ

s∑
j=1

aijkhj

)
,

where i = 1, . . . , s. Let τ0 = 0 and y0 = (−A[u], . . . ,−A[u], u). Then
J(τ0, y0) = 0 and

DJ0(τ0, y0)(0, yh) = vh, DJi(τ0, y0)(0, yh) = khi +DA[u](vh), i = 1, . . . , s.

The mapping yh 7→ DJ(τ0, y0)(0, yh) is clearly an isomorphism from Xs+1 onto
Xs+1. By the implicit function theorem, there exist an interval U ⊂ [0, τ0), a
neighborhood V ⊂ Xs+1 of y0, and a function (k, v) ∈ C2([0, τ0);V ) such that
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(k, v)(0) = (−A[u], . . . ,−A[u], u) and J(τ, k(τ), v(τ)) = 0 for all τ ∈ [0, τ0).
Implicit differentiation of J(τ, k(τ), v(τ)) = 0 yields

0 = v′(τ) +
s∑
i=1

biki(τ) + τ

s∑
i=1

bik
′
i(τ),

0 = k′i(τ) +DA

[
v + τ

s∑
j=1

aijkj(τ)

](
v′(τ) +

s∑
j=1

aijkj(τ) + τ

s∑
j=1

aijk
′
j(τ)

)
,

where i = 1, . . . , s and τ ∈ [0, τ0). Using
∑s

i=1 bi = 1 and
∑s

j=1 aij = ci, we
infer that

v′(0) = −
s∑
i=1

biki(0) =
s∑
i=1

biA[u] = A[u],

k′i(0) = −DA[u]

(
A[u]−

s∑
j=1

aijA[u]

)
= −(1− ci)DA[u](A[u]). (2.12)

Differentiating J0(τ, k(τ), v(τ)) = 0 twice leads to

0 = v′′(τ) + 2
s∑
i=1

bik
′
i(τ) + τ

s∑
i=1

bik
′′
i (τ).

Because of (2.12), this reads at τ = 0 as

v′′(0) = −2
s∑
i=1

bik
′
i(0) = 2

s∑
i=1

bi(1− ci)DA[u](A[u]) = CRKDA[u](A[u]).

This finishes the proof.

We now prove Theorems 18 and 20.

Proof of Theorem 18. We set u := uk. Following Proposition 22, there exists a
backward solution v ∈ C2([0, τ0)) such that v(0) = u, v′(0) = A[u], and v′′(0) =

CRKDA[u](A[u]). Furthermore, the function G(τ) =
∫

Ω
(h(u) − h(v(τ)))dx

satisfies G(0) = 0,

G′(0) = −
∫

Ω

h′(v(0))v′(0)dx = −
∫

Ω

h′(u)A[u]dx,

G′′(0) = −
∫

Ω

(
h′(v(0))v′′(0) + h′′(v(0))v′(0)2

)
dx

= −
∫

Ω

(
CRKh

′(u)DA[u](A[u]) + h′′(u)(A[u])2
)
dx = −Ik0 < 0,

using the assumption. By continuity, there exists 0 < τ k < τ0 such that
G′′(ξ) ≤ 0 for 0 ≤ ξ ≤ τ k. Then the Taylor expansion G(τ) = G(0) +G′(0)τ +
1
2
G′′(ξ)τ 2 ≤ G′(0)τ concludes the proof.
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Proof of Theorem 20. Following the lines of the previous proof, it is sufficient
to compute G′(0) and G′′(0), where now G(τ) =

∫
Ω

(|∇f(u)|2−|∇f(v(τ))|2)dx.
Using integration by parts and the boundary condition ∇f(v) · ν = 0 on ∂Ω,
we compute

G′(0) = −
∫

Ω

∇f(v(0)) · ∇
(
f ′(v(0))v′(0)

)
dx =

∫
Ω

∆f(u)f ′(v(τ))A[u]dx,

since v(0) = u and v′(0) = A[u]. Furthermore, again integrating by parts,

G′′(τ) = −
∫

Ω

(∣∣∇(f ′(v(τ))v′(τ)
)∣∣2 +∇f(v(τ)) · ∇

(
f ′′(v(τ))(v′(τ))2

)
+∇f(v(τ)) · ∇

(
f ′(v(τ))v′′(τ)

))
dx

= −
∫

Ω

(∣∣∇(f ′(v(τ))v′(τ)
)∣∣2 −∆f(v(τ))f ′′(v(τ))(v′(τ))2

−∆f(v(τ))f ′(v(τ))v′′(τ)
)
dx.

Since v′′(0) = CRKDA[u](A[u]), this reduces at τ = 0 to

G′′(0) = −
∫

Ω

(
|∇(f ′(u)A[u])|2 −∆f(u)f ′′(u)(A[u])2

− CRK∆f(u)f ′(u)DA[u](A[u])
)
dx.

This expression equals −Ik1 , and the result follows.

Finally, we show that G′′(0) for entropies (2.3) is related to the geodesic con-
vexity condition of [71].

Lemma 23. Let A[u] = K(u)DH[u] for some symmetric operatorK : D(A)→
X and Fréchet derivative DH[u], let G be defined as in the proof of Theorem
18 for a solution uk to the Runge-Kutta scheme (2.2) of order p ≥ 2, and let
M(u, ξ) be given by (2.10). Then

G′′(0) = −2M(uk, DH[uk]).

Proof. The proof is just a (formal) calculation. Recall that for Runge-Kutta
schemes of order p ≥ 2, we have CRK = 1. Set u := uk and identify DH[u] with
ξ = h′(u). Inserting the expression DA[u](v) = DK[u](v)h′(u) + K[u]h′′(u)v

into the definition of G′′(0), we find that

−G′′(0) = 〈ξ,DA[u](A[u])〉+ 〈A[u], h′′(u)A[u]〉
=
〈
ξ,DK[u](A[u])ξ +K[u]h′′(u)A[u]

〉
+ 〈A[u], h′′(u)A[u]〉

= 〈ξ,DK[u](K[u]ξ)ξ〉+ 〈ξ,K[u]h′′(u)K[u]ξ〉+ 〈K[u]ξ, h′′(u)K[u]ξ〉
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= 〈ξ,DK[u](K[u]ξ)ξ〉+ 2〈ξ,K[u]h′′(u)K[u]ξ〉,

since K[u] is assumed to be symmetric. Rearranging the terms, we obtain

−G′′(0) = 2〈ξ,DK[u](K[u]ξ)ξ〉+ 2〈ξ,K[u]h′′(u)K[u]ξ〉 − 〈ξ,DK[u](K[u]ξ)〉
= 2〈ξ,DA[u](K[u]ξ)ξ〉 − 〈ξ,DK[u](A[u])〉 = 2M(u, ξ),

which proves the claim.

2.3 Scalar diffusion equation

In this section, we analyze time-discrete Runge-Kutta schemes of the diffusion
equation

∂tu = div(a(u)∇u), t > 0, u(0) = u0, (2.13)

with periodic or homogeneous Neumann boundary conditions. This equation,
also including a drift term, was analyzed in [71] in the context of geodesic
convexity. Our results are similar to those in [71] but we consider the time-
discrete and not the continuous equation and we employ systematic integration
by parts [58].
Setting µ(u) = a(u)/h′′(u), we can write the diffusion equation as a formal
gradient flow:

∂tu = −A[u] := div(µ(u)∇h′(u)), t > 0.

We prove that the Runge-Kutta scheme (2.2) dissipates all convex entropies
subject to some conditions on the functions µ and h.

Theorem 24. Let Ω ⊂ Rd be convex with smooth boundary. Let (uk) be a
sequence of (smooth) solutions to the Runge-Kutta scheme (2.2) of the diffusion
equation (2.13). Let k ∈ N be fixed and let uk not be equal to the constant steady
state of (2.13). We suppose that for all admissible u, it holds that a(u) ≥ 0,
h′′(u) ≥ 0,

b(u) :=
2

3
(CRK + 1)

∫ u

u0

µ(v)µ′(v)h′′(v)dv ≥ 0, (2.14)

d− 1

d
b(u) ≤ (CRK + 1)h′′(u)µ(u)2, (2.15)

(CRK + 2)µ(u)µ′′(u) + (CRK − 1)µ′(u)2 < 0. (2.16)

Then there exists τ k > 0 such that for all 0 < τ < τ k,

H[uk] + τ

∫
Ω

h′′(uk)a(uk)|∇uk|2dx ≤ H[uk−1].
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Conditions (2.14)-(2.15) correspond to (4.12) in [71]. Condition (2.16) is sat-
isfied for concave functions µ, except for the explicit Euler scheme (CRK = 2)
for which we additionally need that 4µµ′′ + (µ′)2 < 0. For the implicit Euler
scheme, we may even allow for nonconcave mobilities µ, e.g. µ(u) = uγ for
1 < γ < 2.

Proof. According to Theorem 18, we only need to show that Ik0 = −G′′(0) > 0.
To simplify, we set u := uk. First, we observe that the boundary condition
∇u · ν = 0 on Ω implies that 0 = ∂t∇u · ν = ∇∂tu · ν = −∇A[u] · ν on
∂Ω. Using DA[u](A[u]) = div(a′(u)A[u]∇u + a(u)∇A[u]) = ∆(a(u)A[u]), the
abbreviation ξ = h′(u), and integration by parts, we compute

G′′(0) = −
∫

Ω

(
CRKh

′(u)∆(a(u)A[u]) + h′′(u)
(

div(µ(u)∇h′(u))
)2
)
dx

=

∫
Ω

(
CRK∇h′(u) · ∇(a(u)A[u])− h′′(u)

(
µ′(u)∇u · ∇h′(u)

+ µ(u)∆h′(u)
)2
)
dx

= −
∫

Ω

(
CRK∆ξa(u)A[u] + h′′(u)

(
µ′(u)

h′′(u)
|∇ξ|2 + µ(u)∆ξ

)2)
dx.

The boundary integrals vanish since ∇u · ν = ∇A[u] · ν = 0 on ∂Ω. Replacing
A[u] by div(µ(u)∇ξ) = µ(u)∆ξ+ µ′(u)|∇ξ|2/h′′(u) and expanding the square,
we arrive at

G′′(0) = −
∫

Ω

((
CRKa(u)µ(u) + h′′(u)µ(u)2

)
(∆ξ)2

+

(
CRKa(u)

µ′(u)

h′′(u)
+ 2µ(u)µ′(u)

)
∆ξ|∇ξ|2 +

µ′(u)2

h′′(u)
|∇ξ|4

)
dx

(2.17)

= −
∫

Ω

(
(CRK + 1)h′′(u)µ(u)2ξ2

L + (CRK + 2)µ(u)µ′(u)ξLξ
2
G (2.18)

+ µ′(u)2h′′(u)−1ξ4
G

)
dx,

where we have employed the identity a(u) = µ(u)h′′(u) and the abbreviations
ξG = |∇ξ| and ξL = ∆ξ; see Table 2.3 for an overview of the various abbre-
viations. We now apply the method of systematic integration by parts [58].
The idea is to identify useful integration-by-parts formulas and to add them
to G′′(0) without changing the sign of G′′(0). The first formula is given by∫

Ω

div
(
Γ1(u)(∇2ξ −∆ξI) · ∇ξ

)
dx =

∫
∂Ω

Γ1(u)∇ξ>(∇2ξ −∆ξI)νds, (2.19)
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Abbrev. Definition Abbrev. Definition
ξ h′(u)

ξL ∆ξ ξG |∇ξ|
ξH |∇2ξ| ξGHG ∇ξ>∇2ξ∇ξ
ξS (d− 1)−1ξ−2

G (ξGHG − ξLξ2
G/d) ξ2

R ξ2
H − ξ2

L/d− d(d− 1)ξ2
S

Table 2.1: Overview of the abbreviations for the proof of Theorem 24.

where Γ1(u) ≤ 0 is an arbitrary (smooth) scalar function which still needs to
be chosen, and I is the unit matrix in Rd×d. Computing the divergence and
using the property ∇u = ∇ξ/h′′(u), the left-hand side can be expanded as

∫
Ω

(
Γ′1(u)∇u>(∇2ξ −∆ξI)∇ξ + Γ1(u)(∇2ξ −∆ξI) : ∇2ξ

)
dx

=

∫
Ω

(
Γ′1(u)

h′′(u)
∇ξ>∇2ξ∇ξ − Γ′1(u)

h′′(u)
∆ξ|∇ξ|2 + Γ1(u)|∇2ξ|2 − Γ1(u)(∆ξ)2

)
dx

=

∫
Ω

(
Γ1(u)

h′′(u)
ξGHG −

Γ′1(u)

h′′(u)
ξLξ

2
G + Γ1(u)ξ2

H − Γ1(u)ξ2
L

)
dx,

where we have set ξGHG = ∇ξ>∇2ξ∇ξ and ξH = |∇2ξ|. The boundary integral
in (2.19) becomes∫

∂Ω

Γ1(u)

(
1

2
∇(|∇ξ|2)−∆ξ∇ξ

)
· νds =

1

2

∫
∂Ω

Γ1(u)∇(|∇ξ|2) · νds ≥ 0,

since Γ1(u) ≤ 0, ∇ξ · ν = 0 on ∂Ω, and it holds that ∇(|∇ξ|2) · ν ≤ 0 on ∂Ω

for all smooth functions satisfying ∇ξ · ν = 0 on ∂Ω [71, Prop. 4.2]. Here we
need the convexity of Ω. Thus, the first integration-by-parts formula becomes

J1 :=

∫
Ω

(
Γ′1(u)

h′′(u)
ξGHG −

Γ′1(u)

h′′(u)
ξLξ

2
G + Γ1(u)ξ2

H − Γ1(u)ξ2
L

)
dx ≥ 0. (2.20)

The second formula reads

0 =

∫
Ω

div
(
Γ2(u)|∇ξ|2∇ξ)dx (2.21)

=

∫
Ω

(
Γ′2(u)

h′′(u)
ξ4
G + 2Γ2(u)ξGHG + Γ2(u)ξLξ

2
G

)
dx =: J2,

where Γ2 is an arbitrary scalar function. The goal is to find functions Γ1(u) ≤ 0

and Γ2(u) such that G′′(0) ≤ G′′(0) + J1 + J2 < 0.

According to [59], the computations simplify if we introduce the variables ξR
and ξS satisfying

(d− 1)ξ2
GξS = ξGHG −

1

d
ξLξ

2
G, ξ2

H =
1

d
ξ2
L + d(d− 1)ξ2

S + ξ2
R.
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The existence of ξR follows from the inequality

ξ2
H = |∇2ξ|2 ≥ 1

d
(∆ξ)2 +

d

d− 1

(∇ξ>∇2ξ∇ξ
∇ξ2

− ∆ξ

d

)2

=
1

d
ξ2
L + d(d− 1)ξ2

S,

which is proven in [59, Lemma 2.1]. Then

G′′(0) ≤ G′′(0)+J1+J2 = −
∫

Ω

(
a1ξ

2
L+a2ξLξ

2
G+a3ξ

4
G+a4ξSξ

2
G+a5ξ

2
R+a6ξ

2
S

)
dx,

(2.22)
where

a1 = (CRK + 1)h′′(u)µ(u)2 +

(
1− 1

d

)
Γ1(u),

a2 = (CRK + 2)µ(u)µ′(u) +

(
1− 1

d

)
Γ′1(u)

h′′(u)
−
(

2

d
+ 1

)
Γ2(u),

a3 =
µ′(u)2 − Γ′2(u)

h′′(u)
, a4 = −(d− 1)

(
Γ′1(u)

h′′(u)
+ 2Γ2(u)

)
,

a5 = −Γ1(u), a6 = −d(d− 1)Γ1(u).

(2.23)

The aim now is to determine conditions on a1, . . . , a6 such that the polynomial
P (ξ) = a1ξ

2
L + a2ξLξ

2
G + a3ξ

4
G + a4ξSξ

2
G + a5ξ

2
R + a6ξ

2
S is nonnegative, as this

implies that G′′(0) ≤ 0. In the general case, this leads to nonlinear ordinary
differential equations for Γ1 and Γ2 which cannot be easily solved. A possible
approach is to require that the coefficients of the mixed terms vanish, i.e.
a2 = a4 = 0, and that the remaining coefficients are nonnegative. The case
d = 1 being simpler than the general case (since J1 is not necessary), we assume
that d > 1. Then a4 = 0 implies that Γ′1(u)/h′′(u) = −2Γ2(u). Replacing
Γ′1(u)/h′′(u) by −2Γ2(u) in a2 = 0 gives

Γ2(u) =
CRK + 2

3
µ(u)µ′(u).

On the other hand, replacing Γ2(u) by −Γ′1(u)/(2h′′(u)) in a2 = 0, we find that

Γ′1(u) = −2

3
(CRK + 2)µ(u)µ′(u)h′′(u)

or, after integration,

Γ1(u) = −2

3
(CRK + 2)

∫ u

u0

µ(v)µ′(v)h′′(v)dv.

These functions have to satisfy the conditions

a1 ≥ 0 or
d− 1

d
Γ1(u) ≥ −(CRK + 1)h′′(u)µ(u)2,
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a3 ≥ 0 or (CRK + 2)µ(u)µ′′(u) + (CRK − 1)µ′(u)2 ≤ 0,

a5 ≥ 0 or Γ1(u) ≤ 0 for all u,

Note that a1 ≥ 0 and a5 ≥ 0 correspond to (2.15) and (2.14), respectively.
This shows that P (ξ) ≥ 0 for all ξ ∈ R4 and G′′(0) ≤ 0.

If G′′(0) = 0, the nonnegative polynomial P , which depends on x ∈ Ω via
ξ, has to vanish. In particular, a3ξ

4
G = a3|∇u|4 = 0 in Ω. As a3 > 0 by

assumption, u(x) = const. for x ∈ Ω. This contradicts the hypothesis that u
is not a steady state. Consequently, G′′(0) < 0, and we finish the proof by
setting b(u) = −Γ1(u).

2.4 Porous-medium equation

The results of the previous section can be applied in principle to the Runge-
Kutta scheme for the porous-medium or fast-diffusion equation

∂tu = ∆(uβ) in Ω, t > 0, ∇uβ · ν = 0 on ∂Ω, u(0) = u0, (2.24)

where β > 0. It can be seen that conditions (2.14)-(2.16) are not optimal for
particular entropies. This is not surprising since we have neglected the mixed
terms in the polynomial in (2.22) (i.e. a2 = a4 = 0) which is not optimal.
In this section, we apply a different approach by making an ansatz for the
functions Γ1 and Γ2, considering both zeroth-order and first-order entropies.

2.4.1 Zeroth-order entropies

We prove the following result.

Theorem 25. Let Ω ⊂ Rd be convex with smooth boundary. Let (uk) be a
sequence of (smooth) solutions to the Runge-Kutta scheme (2.2) for (2.24).
Let the entropy be given by H[u] = α−1(α + 1)−1

∫
Ω
uα+1dx with α > 0, let

k ∈ N, and let uk not be the constant steady state of (2.24). There exists a
nonempty region R0(d) ⊂ (0,∞)2 and τ k > 0 such that for all (α, β) ∈ R0(d)

and 0 < τ ≤ τ k,

H[uk] + τβ

∫
Ω

(uk)α+β−2|∇uk|2dx ≤ H[uk−1], k ∈ N.

In one space dimension, we have

implicit Euler: R0(1) = (0,∞)2,

Runge-Kutta of order p ≥ 2 : R0(1) =
{

(α, β) ∈ (0,∞)2 : −2 < α− β < 1},
explicit Euler: R0(1) =

{
(α, β) ∈ (0,∞)2 : −1 < α− β < 1}.
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For the implicit Euler scheme, the theorem shows that any positive values
for (α, β) are admissible, which corresponds to the continuous situation. For
the Runge-Kutta case with CRK = 1, our condition is more restrictive. As
expected, the explicit Euler scheme requires the most restrictive condition.
The set R0(d) is illustrated in Figure 2.1 for d = 2 and d = 10.

Proof. Since k ∈ N is fixed, we set u := uk. We choose the functions

Γ1(u) = c1β
2u2β−α−1, Γ2(u) = c2β

2u2β−2α−1.

It holds h′′(u) = uα−1 and µ(u) = βuβ−α. Then the coefficients in (2.23) are
as follows:

a1 = β2
(
(CRK + 1) + (1− 1

d
)c1

)
u2β−α−1,

a2 = β2
(
(CRK + 2)(β − α) + (1− 1

d
)(2β − α− 1)c1 − (2

d
+ 1)c2

)
u2β−2α−1,

a3 = β2
(
(β − α)2 − (2β − 2α− 1)c2

)
u2β−3α−2,

a4 = −β2(d− 1)
(
(2β − α− 1)c1 + 2c2

)
u2β−2α−1,

a5 = −β2c1u
2β−α−1, a6 = −β2d(d− 1)c1u

2β−α−1.

Introducing the variables ηj = ξj/u
α for j ∈ {G,L,R, S}, we can write (2.22)

as

G′′(0) ≤ G′′(0) + J1 + J2 = −β2

∫
Ω

u2β+α−1Q(η)dx,

where Q(η) = b1η
2
L + b2ηLη

2
G + b3η

4
G + b4ηSη

2
G + b5η

2
R + b6η

2
S

with coefficients

b1 = (CRK + 1) + (1− 1
d
)c1,

b2 = (CRK + 2)(β − α) + (1− 1
d
)(2β − α− 1)c1 − (2

d
+ 1)c2,

b3 = (β − α)2 − (2β − 2α− 1)c2,

b4 = −(d− 1)
(
(2β − α− 1)c1 + 2c2

)
,

b5 = −c1, b6 = −d(d− 1)c1.

We need to determine all (α, β) such that there exist c1 ≤ 0, c2 ∈ R such that
Q(η) ≥ 0 for all η = (ηG, ηL, ηR, ηS). Without loss of generality, we exclude
the cases b1 = b2 = 0 and b4 = b6 = 0 since they lead to parameters (α, β)

included in the region calculated below. Thus, let b1 > 0 and b6 > 0. These
inequalities give the bound −(CRK + 1)/(1 − 1/d) < c1 < 0. Thus, we may
introduce the parameter λ ∈ (0, 1) by setting c1 = −λ(CRK + 1)/(1− 1/d).
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Figure 2.1: Set R0(d) of all (α, β) for which the zeroth-order entropy is dissi-
pating. Left column: d = 2, right column: d = 10. Top row: explicit Euler
scheme with CRK = 2, middle row: implicit Euler scheme with CRK = 1,
bottom row: Runge-Kutta scheme of order p ≥ 2 with CRK = 0.
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The polynomial Q(η) can be rewritten as

Q(η) = b1

(
ηL +

b2

2b1

η2
G

)2

+ b6

(
ηS +

b4

2b6

η2
G

)2

+ b5η
2
R + η4

G

(
b3 −

b2
2

4b1

− b2
4

4b6

)
≥ η4

G

(
b3 −

b2
4

4b6

− b2
2

4b1

)
=:

η4
G(CRK + 1)

4b1b6

R(c2;λ, α, β),

where R(c2;λ, α, β) is a quadratic polynomial in c2 with the nonpositive leading
term −d2(4−3λ)+4(2−3λ)d−4. The polynomial R(c2;λ, α, β) is nonnegative
for some c2 if and only if its discriminant 4d2λ(1−λ)S(λ;α, β) is nonnegative.
Here, S(λ;α, β) is a quadratic polynomial in λ. In order to derive the condi-
tions on (α, β) such that S(λ;α, β) ≥ 0 for some λ ∈ (0, 1), we employ the
computer-algebra system Mathematica. The result of the command

Resolve[Exists[LAMBDA, S[LAMBDA] >= 0 && LAMBDA > 0
&& LAMBDA < 1], Reals]

gives all (α, β) ∈ R2 such that there exist c1 ≤ 0, c2 ∈ R such that Q(η) ≥ 0.
The interior of this region equals the set R0(d), defined in the statement of the
theorem. This shows that G′′(0) ≤ 0 for all (α, β) ∈ R0(d).

If G′′(0) = 0, the nonnegative polynomial Q has to vanish. In particular,
b1η

2
L = 0. If ηL = 0 in Ω, the boundary conditions imply that u is constant,

which contradicts our assumption that u is not the steady state. Thus b1 = 0.
Similarly, b2 = b3 = b4 = 0. This gives a system of four inhomogeneous linear
equations for (c1, c2) which is unsolvable. Consequently, G′′(0) < 0.

The set R0(d) is nonempty since, e.g., (1, 1) ∈ R0(d). Indeed, choosing c1 = −1

and c2 = 0, we find that Q(η) = (CRK + 1
d
)η2
L + η2

R + d(d− 1)η2
S ≥ 0.

In one space dimension, the situation simplifies since the Laplacian coin-
cides with the Hessian and thus, the integration-by-parts formula (2.20) is
not needed. Then (see (2.21))

G′′(0) = G′′(0) + J1 = −β2

∫
Ω

u2β+α−1
(
a1ξ

2
L + a2ξLξ

2
G + a3ξ

4
G

)
dx,

where

a1 = CRK +1, a2 = (CRK +2)(β−α)−3c2, a3 = (β−α)2− (2β−2α−1)c2.

The polynomial P (ξ) = ξ4
G(a1y

2 + a2y + a3) with y = ξL/ξ
2
G is nonnegative if

and only if a1 ≥ 0 and 4a1a3 − a2
2 ≥ 0, which is equivalent to

−9c2
2 + 2

(
(CRK − 2)(α− β) + 2(CRK + 1)

)
c2 − C2

RK(α− β)2 ≥ 0. (2.25)
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This inequality has a solution c2 ∈ R if and only if the quadratic polynomial
has real roots, i.e. if its discriminant is nonnegative,

0 ≤
(
(CRK − 2)(α− β) + 2(CRK + 1)

)2 − 9C2
RK(α− β)2

= 4(CRK + 1)
(
−(2CRK − 1)(α− β)2 + (CRK − 2)(α− β) + (CRK + 1)

)
.

The polynomial −(2CRK − 1)z2 + (CRK − 2)z + (CRK + 1) with z = α − β is
always nonnegative if CRK = 0 (implicit Euler). For CRK = 1 and CRK = 2,
this property holds if and only if −(CRK + 1)/(2CRK − 1) ≤ α − β ≤ 1. This
concludes the proof.

2.4.2 First-order entropies

We consider the one-dimensional case and first-order entropies with f(u) =

uα/2, α > 0.

Theorem 26. Let Ω ⊂ R be a bounded interval. Let (uk) be a sequence of
(smooth) solutions to the Runge-Kutta scheme (2.2) of order p ≥ 2 for (2.24)
in one space dimension. Let the entropy be given by F [u] =

∫
Ω

(uα/2)2
xdx with

α > 0, let k ∈ N be fixed, and let uk not be the constant steady state of (2.24).
There exists a nonempty region R1 ∈ [0,∞)2 and τ k > 0 such that for all
(α, β) ∈ R1, there is a constant Cα,β > 0 such that for all 0 < τ ≤ τ k,

F [uk] + τCα,β

∫
Ω

(uk)α+β−3(ukxx)
2dx ≤ F [uk−1], k ∈ N.

Figure 2.2 illustrates the set R1. The set of admissible values (α, β) for the
continuous equation is given by {−2 ≤ α − 2β < 1} (the borders of this set
are depicted in the figure by dashed lines).

Proof. First, we compute G′(0) according to Theorem 20:

G′(0) = −α
∫

Ω

uα/2−1(uα/2)xx(u
β)xxdx.

We show that G′(0) is nonpositive in a certain range of values (α, β). We
formulate G′(0) as

G′(0) = −α
2β

4

∫
Ω

uα+β−1
(
(α− 2)(β − 1)ξ4

1 + (α + 2β − 4)ξ2
1ξ2 + 2ξ2

2

)
dx,

where ξ1 = ux/u, ξ2 = uxx/u. We employ the integration-by-parts formula

0 =

∫
Ω

(uα+β−4u3
x)xdx =

∫
Ω

uα+β−1
(
(α + β − 4)ξ4

1 + 3ξ2
1ξ2

)
dx =: J.
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Figure 2.2: Set of all (α, β) for which the discrete first-order entropy for so-
lutions to the one-dimensional porous-medium equation is dissipating. The
continuous first-order entropy is dissipated for −2 ≤ α− 2β < 1. The borders
of this set are indicated in the figure by dashed lines.

Therefore,

G′(0) = G′(0)− α2β

4
cJ = −α

2β

4

∫
Ω

uα+β−1P (ξ)dx,

where

P (ξ) =
(
(α− 2)(β − 1) + (α + β − 4)c

)
ξ4

1 +
(
α + 2β − 4 + 3c

)
ξ2

1ξ2 + 2ξ2
2 .

This polynomial is nonnegative if and only if

8
(
(α− 2)(β − 1) + (α + β − 4)c

)
− (α + 2β − 4 + 3c)2 ≥ 0,

which is equivalent to

g(c) := −9c2 + 2(α− 2β − 4)c− (α− 2β)2 ≥ 0.

The maximizing value c∗ = (α− 2β − 4)/9, obtained from g′(c) = 0, yields

g(c∗) = −8

9
(α− 2β − 1)(α− 2β + 2) ≥ 0

and consequently G′(0) ≤ 0 if −2 ≤ α − 2β ≤ 1. This condition is the same
as in [27, Theorem 13] for the continuous equation.

56



Next, we turn to the proof of G′′(0) < 0. The proof of Theorem 20 shows that

G′′(0) = −α
2

∫
Ω

(
α

2

(
uα/2−1(uβ)xx

)2

x
−
(
α

2
− 1

)
uα/2−2(uα/2)xx(u

β)2
xx

− βCRKu
α/2−1(uα/2)xx

(
uβ−1(uβ)xx

)
xx

)
dx.

We integrate by parts in the last term and use (βuβ−1(uβ)xx)x = 0 on ∂Ω:

G′′(0) = −1

8
α2β2

∫
Ω

uα+2β−2

×
(
a1ξ

6
1 + a2ξ

4
1ξ2 + a3ξ

3
1ξ3 + a4ξ

2
1ξ

2
2 + a5ξ1ξ2ξ3 + a6ξ

3
2 + a7ξ

2
3

)
dx,

where ξ1 = ux/u, ξ2 = uxx/u, ξ3 = uxxx/u, and

a1 = (β − 1)
(
2CRKα

2β − 3CRKα
2 + 2αβ2 − 2(5CRK + 3)αβ + (15CRK + 4)α

+ 2β3 − 14β2 + 4(3CRK + 7)β − 2(9CRK + 8)
)
,

a2 = (β − 1)
(
4CRKα

2 + (8CRK + 7)αβ − (32CRK + 9)α + 12β2

− 2(8CRK + 25)β + 6(8CRK + 7)
)
,

a3 = CRKα
2 + 2αβ − (5CRK + 2)α + 4(CRK + 1)β2 − 2(5CRK + 8)β

+ 12(CRK + 1),

a4 = 2(β − 1)
(
2(4CRK + 1)α + 9β − (16CRK + 13)

)
,

a5 = 2(2CRK + 1)α + 4(2CRK + 3)β − 16(CRK + 1),

a6 = 2− α, a7 = 2(CRK + 1).

We employ three integration-by-parts formulas:

0 =

∫
Ω

(
uα+2β−5u2

xxux
)
x
dx

=

∫
Ω

uα+2β−2
(
(α + 2β − 5)ξ2

1ξ
2
2 + 2ξ1ξ2ξ3 + ξ3

2

)
dx =: J1,

0 =

∫
Ω

(
uα+2β−6uxxu

3
x

)
x
dx

=

∫
Ω

uα+2β−2
(
(α + 2β − 6)ξ4

1ξ2 + ξ3
1ξ3 + 3ξ2

1ξ
2
2

)
dx =: J2,

0 =

∫
Ω

(
uα+2β−7u5

x

)
x
dx =

∫
Ω

uα+2β−2
(
(α + 2β − 7)ξ6

1 + 5ξ4
1ξ2

)
dx =: J3.

Then

G′′(0) = G′′(0)− 1

8
α2β2(c1J1 + c2J2 + c3J3) = −1

8
α2β2

∫
Ω

uα+2β−2P (ξ)dx,

where P (ξ) = b1ξ
6
1 + b2ξ

4
1ξ2 + b3ξ

3
1ξ3 + b4ξ

2
1ξ

2
2 + b5ξ1ξ2ξ3 + b6ξ

3
2 + b7ξ

2
3 ,
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and the coefficients are given by

b1 = a1 + (α + 2β − 7)c3, b2 = a2 + (α + 2β − 6)c2 + 5c3,

b3 = a3 + c2, b4 = a4 + (α + 2β − 5)c1 + 3c2,

b5 = a5 + 2c1, b6 = a6 + c1,

b7 = a7.

Choosing c1 = −a6, we eliminate the cubic term ξ3
2 . Furthermore, setting,

x = ξ2/ξ
2
1 and y = ξ3/ξ

3
1 , we can write the polynomial P as a quadratic

polynomial in (x, y):

Q(x, y) = ξ6
1P (ξ) = b1 + b2x+ b3y + b4x

2 + b5xy + b7y
2.

The following lemma is a consequence of the proof of Lemma 2.2 in [62].

Lemma 27. The polynomial p(x, y) = A+Bx+Cy+Dx2 +Exy+Fy2 with
F > 0 is nonnegative for all (x, y) ∈ R2 if and only if

(i) 4DF − E2 > 0 and A(4DF − E2)−B2F − C2D +BCE ≥ 0, or

(ii) 4DF − E2 = 0 and 2BF − CE = 0 and 4AF − C2 ≥ 0.

Note that in case 4DF − E2 = 0 and E 6= 0, we may replace 2BF − CE = 0

by the condition 2BEF = CE2 = 4CDF or (since F > 0) BE = 2CD.
The first inequality in case (i),

0 < 4b4b7 − b2
5

= −(CRK + 1)(2CRK + 1)α2 + (2CRK + 2)(4CRK − 3)αβ + (9CRK + 9)α

− 2CRK(4CRK + 3)β2 + (8CRK + 12)β + (3CRK + 3)c2 − (12CRK + 14),

is linear in c2 and provides a lower bound for c2:

c2 >
1

3(CRK + 1)

(
(CRK + 1)(2CRK + 1)α2 − (2CRK + 2)(4CRK − 3)αβ

− (9CRK + 9)α + 2CRK(4CRK + 3)β2 − (8CRK + 12)β + (12CRK + 14)
)

=: c∗2.

The second inequality in case (i) becomes

0 ≤ b1(4b4b7 − b2
5)− b2

2b7 − b2
3b4 + b2b3b5

= −50(CRK + 1)c2
3 + p1(α, β, c2)c3 + p2(α, β, c2),

where p1 and p2 are polynomials in α, β, and c2. This quadratic expression in
c3 is nonnegative if and only if its discriminant is nonnegative,
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0 ≤ −200(CRK + 1)p2(α, β, c2)− p1(α, β, c2)2

= −8
(
4b4b7 − b2

5

)(
25c2

2 + p3(α, β)c2 + p4(α, β)
)
,

where p3(α, β) and p4(α, β) are polynomials in α and β. The factor 4b4b7−b2
5 is

positive, so we have to ensure that Rα,β(c2) = 25c2
2 + p3(α, β)c2 + p4(α, β) ≤ 0

for some c2 > c∗2. Therefore we must ensure that the rightmost root of
Rα,β(c2) is larger or equal than the lower bound for c2, i.e., −p3(α, β) +√
p2

3(α, β)− 100p4(α, β) ≥ 50c∗2. For CRK = 1, the values (α, β) for which
there exists c2 > c∗2 such that Rα,β(c2) ≤ 0 are depicted in Figure 2.2. In case
(ii), we may immediately calculate c2 and c3, but this yields a region which is
already contained in the first one. This shows that G′′(0) ≤ 0.
If G′′(0) = 0, the polynomial Q vanishes. Thus, either ux/u = ξ1 = 0 or
P (ξ) = 0 in Ω. The first case is impossible since u is not constant in Ω. As
b7 = a7 = 2(CRK + 1) > 0, the second case P (ξ) = 0 implies that ξ3 = 0.
Hence, u is a quadratic polynomial. In view of the boundary conditions, u
must be constant, but this contradicts our assumption. Hence, G′′(0) < 0.

2.5 Linear diffusion system

We consider the following linear diffusion system:

∂tu1 − ρ1∆u1 = µ(u2 − u1), ∂tu2 − ρ2∆u2 = µ(u1 − u2), (2.26)

with initial and homogeneous Neumann boundary conditions, ρ1, ρ2, µ > 0,
and the entropy

H[u] =

∫
Ω

h(u)dx =

∫
Ω

2∑
i=1

ui(log ui − 1)dx, (2.27)

where u = (u1, u2). If the initial data is nonnegative, the maximum principle
shows that the solutions to (2.26) are nonnegative too.

Theorem 28. Let (uk) be a sequence of (smooth) nonnegative solutions to the
Runge-Kutta scheme (2.2) for (2.26) with CRK = 1 and ρ := ρ1 = ρ2. Let the
entropy H be given by (2.27). Let k ∈ N be fixed and let uk not be the steady
state of (2.2). Then there exists τ k > 0 such that for all 0 < τ < τ k,

H[uk] + τ

∫
Ω

(
ρ

2∑
i=1

|∇uki |2
uki

+ µ(log uk1 − log uk2)(uk1 − uk2)

)
dx ≤ H[uk−1].
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Note that we need equal diffusivities ρ1 = ρ2 and higher-order schemes (CRK =

1). These conditions are in accordance of [71], where the continuous equation
was studied. In order to highlight the step where these conditions are needed,
the following proof is slightly more general than actually needed.

Proof. We fix k ∈ N and set u := uk. Let A[u] = (A1[u], A2[u]) = (ρ1∆u1 +

µ(u2 − u1), ρ2∆u2 + µ(u1 − u2)). Since A is linear, DA[u](h) = A[h]. Thus,

G′′(0) = −
∫

Ω

(
CRKh

′(u)>A[A[u]] + A[u]>h′′(u)A[u]
)
dx = −G1 −G2.

In the following, we set ∂ih = ∂h/∂ui for i = 1, 2. We integrate by parts twice,
using the boundary conditions ∇ui · ν = 0 and ∇Ai[u] · ν = 0 on ∂Ω, and
rearrange the terms:

G1 = CRK

∫
Ω

(
∂1h(u)

(
ρ1∆A1[u] + µ(A2[u]− A1[u])

)
+ ∂2h(u)

(
ρ2∆A2[u] + µ(A1[u]− A2[u])

))
dx

= CRK

∫
Ω

(
ρ1∆∂1h(u)A1[u] + ρ2∆∂2h(u)A2[u]

+ µ(∂1h(u)− ∂2h(u))(A2[u]− A1[u])
)
dx

= CRK

∫
Ω

(
ρ1

(
∂2

1h(u)∆u1 + ∂3
1h(u)|∇u1|2

)(
ρ1∆u1 + µ(u2 − u1)

)
+ ρ2

(
∂2

2h(u)∆u2 + ∂3
2h(u)|∇u2|2

)(
ρ2∆u2 + µ(u1 − u2)

)
+ µ(∂2h(u)− ∂1h(u))

(
ρ1∆u1 − ρ2∆u2 + 2µ(u2 − u1)

))
dx

= CRK

∫
Ω

(
ρ2

1∂
2
1h(u)(∆u1)2 + ρ2

2∂
2
2h(u)(∆u2)2 + ρ2

1∂
3
1h(u)∆u1|∇u1|2

+ ρ2
2∂

3
2h(u)∆u2|∇u2|2 + ρ1µ

(
∂2

1h(u)(u2−u1) + ∂2h(u)− ∂1h(u)
)
∆u1

+ ρ2µ
(
∂2

2h(u)(u1−u2) + ∂1h(u)− ∂2h(u)
)
∆u2 + ρ1µ∂

3
1h(u)(u2−u1)|∇u1|2

+ ρ2µ∂
3
2h(u)(u1−u2)|∇u2|2 + 2µ2(∂2h(u)− ∂1h(u))(u2−u1)

)
dx.

Furthermore,

G2 =

∫
Ω

(
∂2

1h(u)
(
ρ1∆u1 + µ(u2 − u1)

)2
+ ∂2

2h(u)
(
ρ2∆u2 + µ(u1 − u2)

)2
)
dx

=

∫
Ω

(
ρ2

1∂
2
1h(u)(∆u1)2 + ρ2

2∂
2
2h(u)(∆u2)2 + 2ρ1µ∂

2
1h(u)(u2 − u1)∆u1

+ 2ρ2µ∂
2
2h(u)(u1 − u2)∆u2 + µ2(∂2

1h(u) + ∂2
2h(u))(u1 − u2)2

)
dx.

Adding G1 and G2, we arrive at
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G′′(0)= −
2∑
i=1

∫
Ω

(
ρ2
i (CRK + 1)∂2

i h(u)(∆ui)
2 + ρ2

iCRK∂
3
i h(u)∆ui|∇ui|2

)
dx

−
∫

Ω

(
ρ1µ
(
(CRK + 2)∂2

1h(u)(u2 − u1) + CRK(∂2h(u)− ∂1h(u))
)
∆u1

+ ρ2µ
(
(CRK + 2)∂2

2h(u)(u1 − u2) + CRK(∂1h(u)− ∂2h(u))
)
∆u2

+ ρ1µCRK∂
3
1h(u)(u2 − u1)|∇u1|2 + ρ2µCRK∂

3
2h(u)(u1 − u2)|∇u2|2

)
dx

−
∫

Ω

µ2
(

2(∂1h(u)− ∂2h(u)) + (∂2
1h(u) + ∂2

2h(u))(u1−u2)
)

(u1−u2)dx

= −I2 − I1 − I0.

The idea of [71] is to show that each integral Ii, involving only derivatives of
order i, is nonnegative. In contrast to [71], we employ systematic integration
by parts, which allows for a simpler and more general proof in our case. For
the term I2, we use the following integration-by-parts formula:

0 =

∫
Ω

div
(
u−2
i |∇ui|3

)
dx =

∫
Ω

(
− 2u−3

i |∇ui|4 + 3u−2
i ∆ui|∇ui|2

)
dx =: Ji.

Then, for ε > 0,

I2 − c
2∑
i=1

ρ2
iJi − ε

2∑
i=1

u−3
i |∇ui|4dx =

2∑
i=1

ρ2
i

∫
Ω

(
(CRK + 1)u−1

i (∆ui)
2

−(3c+ CRK)u−2
i ∆ui|∇ui|2 + (2c− ε)u−3

i |∇ui|4
)
dx.

The integrand defines a quadratic polynomial in the variables ∆ui and |∇ui|2
and is nonnegative if its discriminant satisfies 4(2c−ε)(CRK+1)−(3c+CRK)2 ≥
0. It turns out that this inequality holds for CRK ∈ {0, 1} if we choose c = 2/3

and ε > 0 sufficiently small. When CRK = 2, we can only show that I2 ≥ 0

which is not sufficient to prove that G′′(0) < 0 (see below). We conclude that

I2 ≥ ε
2∑
i=1

∫
Ω

u−3
i |∇ui|4dx. (2.28)

Integrating by parts in I1 in order to obtain only first-order derivatives, we
find after some rearrangements that

I1 = µ

∫
Ω

(
a1|∇ log u1|2 + a2∇ log u1 · ∇ log u2 + a3|∇ log u2|2

)
dx, where

a1 = 2ρ1(CRKu1 + u2), a3 = 2ρ2(CRKu2 + u1),

a2 = −(CRK(ρ1 + ρ2) + 2ρ2)u1 − (CRK(ρ1 + ρ2) + 2ρ1)u2.
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The integrand is nonnegative if and only if 4a1a3 − a2
2 ≥ 0 for all (u1, u2). We

compute:

CRK = 0: 4a1a3 − a2
2 = −4(ρ1u2 − ρ2u1)2,

CRK = 1: 4a1a3 − a2
2 = (ρ1−ρ2)

(
ρ1(u2

1 + 6u1u2 + 9u2
2)− ρ2(9u2

1 + 6u1u2 + u2
2)
)
,

CRK = 2: 4a1a3 − a2
2 = −4

(
ρ1(u1 + 2u2)− ρ2(2u1 + u2)

)
.

Thus, 4a1a3 − a2
2 ≥ 0 is possible only if ρ1 = ρ2 and CRK = 1.

Finally, we immediately see that the remaining term

I0 = µ2

∫
Ω

(
2(log u1 − log u2)(u1 − u2) +

(
1

u1

+
1

u2

)
(u1 − u2)2

)
dx

is nonnegative. This shows that G′′(0) ≤ 0. If G′′(0) = 0, we infer from (2.28)
that ui = const., but this contradicts our hypothesis that ui is not a steady
state.

2.6 The Derrida-Lebowitz-Speer-Spohn equation

Consider the one-dimensional fourth-order equation

∂tu = −(u(log u)xx)xx in Ω, t > o, u(0) = u0 (2.29)

with periodic boundary conditions. This equation appears as a scaling limit
of the so-called (time-discrete) Toom model, which describes interface fluctu-
ations in a two-dimensional spin system [34]. The variable u is the limit of a
random variable related to the deviation of the spin interface from a straight
line. The multi-dimensional version of (2.29) models the electron density u

in a quantum semiconductor, the equation is the zero-temperature, zero-field
approximation of the quantum drift-diffusion model [61]. For existence results
for (2.29), we refer to [59] and the references therein.
To simplify our calculations, we analyze only the logarithmic entropy H[u] =∫

Ω
u(log u−1)dx. It is also possible to verify condition (2.6) for entropies of the

form
∫

Ω
uαdx, but it turns out that only sufficiently small α > 0 are admissible

(about 0 < α < 0.15 . . .) and the computations are very tedious. Therefore,
we restrict ourselves to the case α = 0.

Theorem 29. Let (uk) be a sequence of (smooth) solutions to the Runge-
Kutta scheme (2.2) with CRK = 1 for (2.29). Let the entropy be given by
H[u] =

∫
Ω
u(log u − 1)dx, let k ∈ N be fixed, and let uk not be a steady state.

Then there exists τ k > 0 such that for all 0 < τ < τ k,

H[uk] + τq

∫
Ω

u(log u)8
xdx+ τ

∫
Ω

u(log u)2
xxdx ≤ H[uk−1], q ≈ 0.0045.
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Proof. First, we observe that

G′(0) = −
∫

Ω

(u(log u)xx)xx log udx = −
∫

Ω

u(log u)2
xxdx.

With A[u] = (u(log u)xx)xx and DA[u](h) =
(
hxx − 2(log u)xhx + (log u)2

xh
)
xx
,

we can write G′′(0) = −Ik0 according to (2.6) as

G′′(0) = −
∫

Ω

(
log u

(
A[u]xx − 2(log u)xA[u]x + (log u)2

xA[u]
)
xx

+
1

u
A[u]2

)
dx

= −
∫

Ω

(
(log u)xx

(
A[u]xx − 2(log u)xA[u]x + (log u)2

xA[u]
)

+
1

u
A[u]2

)
dx

= −
∫

Ω

((
vxxxx + 2(vxvxx)x + v2

xvxx
)
A[u] +

1

u
A[u]2

)
dx,

where we have integrated by parts several times and have set v = log u. Then
A[u] = u(v2

xvxx + 2vxvxxx + v2
xx + vxxxx) and, with the abbreviations ξ1 =

vx, . . . , ξ4 = vxxxx,

G′′(0) = −
∫

Ω

u
(

2ξ4
1ξ

2
2 + 8ξ3

1ξ2ξ3 + 5ξ2
1ξ

3
2 + 4ξ2

1ξ2ξ4 + 8ξ2
1ξ

2
3 + 10ξ1ξ

2
2ξ3

+ 8ξ1ξ3ξ4 + 3ξ4
2 + 5ξ2

2ξ4 + 2ξ2
4

)
dx.

We employ the following integration-by-parts formulas:

0 =

∫
Ω

(uv7
x)xdx =

∫
Ω

u(ξ8
1 + 7ξ6

1ξ2)dx =: J1,

0 =

∫
Ω

(uvxxv
5
x)xdx =

∫
Ω

u(ξ6
1ξ2 + ξ5

1ξ3 + 5ξ4
1ξ

2
2)dx =: J2,

0 =

∫
Ω

(uvxxxv
4
x)xdx =

∫
Ω

u(ξ5
1ξ3 + ξ4

1ξ4 + 4ξ3
1ξ2ξ3)dx =: J3,

0 =

∫
Ω

(uv2
xxv

3
x)xdx =

∫
Ω

u(ξ4
1ξ

2
2 + 2ξ3

1ξ2ξ3 + 3ξ2
1ξ

3
2)dx =: J4,

0 =

∫
Ω

(uvxxvxxxv
2
x)xdx =

∫
Ω

u(ξ3
1ξ2ξ3 + ξ2

1ξ2ξ4 + ξ2
1ξ

2
3 + 2ξ1ξ

2
2ξ3)dx =: J5,

0 =

∫
Ω

(uv2
xxxvx)xdx =

∫
Ω

u(ξ2
1ξ

2
3 + 2ξ1ξ3ξ4 + ξ2ξ

2
3)dx =: J6,

0 =

∫
Ω

(uv3
xxvx)xdx =

∫
Ω

u(ξ2
1ξ

3
2 + 3ξ1ξ

2
2ξ3 + ξ4

2)dx =: J7,

0 =

∫
Ω

(uvxxxv
2
xx)xdx =

∫
Ω

u(ξ1ξ
2
2ξ3 + 2ξ2ξ

2
3 + ξ2

2ξ4)dx =: J8.
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Then

G′′(0) = G′′(0)− 4
8∑
i=1

ciJi = −
∫

Ω

u
(
a1ξ

8
1 + a2ξ

6
1ξ2 + a3ξ

5
1ξ3 + a4ξ

4
1ξ

2
2 + a5ξ

4
1ξ4

+ a6ξ
3
1ξ2ξ3 + a7ξ

2
1ξ

3
2 + a8ξ

2
1ξ2ξ4 + a9ξ

2
1ξ

2
3 + a10ξ1ξ

2
2ξ3 + a11ξ1ξ3ξ4

+ a12ξ
4
2 + a13ξ

2
2ξ4 + a14ξ2ξ

2
3 + a15ξ

2
4

)
dx,

where

a1 = 4c1, a2 = 28c1 + 4c2, a3 = 4c2 + 4c3,

a4 = 2 + 20c2 + 4c4, a5 = 4c3, a6 = 8 + 16c3 + 8c4 + 4c5,

a7 = 5 + 12c4 + 4c7, a8 = 4 + 4c5, a9 = 8 + 4c5 + 4c6,

a10 = 10 + 8c5 + 12c7 + 4c8, a11 = 8 + 8c6, a12 = 3 + 4c7,

a13 = 5 + 4c8, a14 = 4c6 + 8c8, a15 = 2.

Next, we eliminate all terms involving ξ4 by formulating the following square:

G′′(0) = −
∫

Ω

u

[
a15

(
ξ4 +

a5

2a15

ξ4
1 +

a8

2a15

ξ2
1ξ2 +

a11

2a15

ξ1ξ3 +
a13

2a15

ξ2
2

)2

+

(
a1 −

a2
5

4a15

)
ξ8

1 +

(
a2 −

a5a8

2a15

)
ξ6

1ξ2 +

(
a3 −

a5a11

2a15

)
ξ5

1ξ3

+

(
a4 −

a2
8

4a15

− a5a13

2a15

)
ξ4

1ξ
2
2 +

(
a6 −

a8a11

2a15

)
ξ3

1ξ2ξ3 +

(
a7 −

a8a13

2a15

)
ξ2

1ξ
3
2

+

(
a9 −

a2
11

4a15

)
ξ2

1ξ
2
3 +

(
a10 −

a11a13

2a15

)
ξ1ξ

2
2ξ3 +

(
a12 −

a2
13

4a15

)
ξ4

2 + a14ξ2ξ
2
3

]
dx.

We eliminate all terms involving ξ3 and set the corresponding coefficients to
zero. From a14 = 0 we conclude that c6 = −2c8. Furthermore,

a9 −
a2

11

4a15

= 0 gives c5 = 8c2
8 − 6c8,

a10 −
a11a13

2a15

= 0 gives c7 = −20

3
c2

8 +
8

3
c8,

a6 −
a8a11

2a15

= 0 gives c4 = −2c3 − 16c3
8 + 16c2

8 − 5c8,

a3 −
a5a11

2a15

= 0 gives c2 = c3 − 4c3c8.

Following these choices, we obtain

b12 := a12 −
a2

11

4a15

= −86

3
c2

8 +
17

3
c8 −

1

8
.
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This quadratic polynomial in c8 takes on its maximal value at c∗8 = 17/172

with value b12 = 20/129. The integral can now be written as

G′′(0) ≤ −
∫

Ω

u
(
b1ξ

8
1 + b2ξ

6
1ξ2 + b4ξ

4
1ξ

2
2 + b7ξ

2
1ξ

3
2 + b12ξ

4
2

)
dx,

where

b1 = a1 −
a2

5

4a15

= 4c1 − 2c2
3,

b2 = a2 −
a5a8

2a15

= 28c1 − 32c3c
2
8 + 8c3c8,

b4 = a4 −
a2

8

4a15

− a5a13

2a15

= 7c3 − 84c3c8 − 128c4
8 + 128c3

8 − 40c2
8 + 4c8,

b7 = a7 −
a8a13

2a15

= −24c3 − 244c3
8 +

448

3
c2

8 −
70

3
c8.

If b4 = 2b2b12/b7 + b2
7/(4b12), we can write the integral as the sum of two

squares, noting that b12 is positive,

G′′(0) ≤ −
∫

Ω

u

(
b12

(
ξ2

2 +
b7

2b12

ξ2
1ξ2 +

b2

b7

ξ4
1

)2

+

(
b1 −

b2
2b12

b2
7

)
ξ8

1

)
dx.

The expression b4b7 − 2b2b12 − b3
7/(4b12) = 0 defines a polynomial in (c1, c3)

which is linear in c1. Solving it for c1 gives

c1 =
449307

175
c3

3 +
741681

2150
c2

3 +
35780649411

2393160700
c3 +

34135130165539

163091166664200
.

It remains to show that p(c3) := b1− b2
2b12/b

2
7, which is a polynomial of fourth

order in c3, is positive. Choosing c∗3 = −0.029, we find that p(c∗3) ≈ 0.0045 > 0.
This shows that

G′′(0) ≤ −q(c∗3)

∫
Ω

uξ8
1dx = −q(c∗3)

∫
Ω

u(log u)8
xdx ≤ 0.

Finally, if G′′(0) = 0, we infer that u is constant which is contradicts the
assumption that u is not the steady state. Therefore, G′′(0) < 0, which ends
the proof.

2.7 Numerical examples

The aim of this section is to explore the numerical behavior of the second-order
derivative of the function G(τ), defined in the introduction, for the porous-
medium equation (2.24) in one space dimension. The equation is discretized
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by standard finite differences, and we employ periodic boundary conditions.
The discrete solution uki approximates the solution u(xi, t

k) to (2.24) with
xi = i4x, tk = kτ , where4x, τ are the space and time step sizes, respectively.
As in the previous chapter, we choose the Barenblatt profile which reads in
one space dimension

u0(x) = t
−1/(β+1)
0 max

(
0, C − β − 1

2β(β + 1)

(x− 1/2)2

t
2/(β+1)
0

)1/(β−1)

, 0 ≤ x ≤ 1,

(2.30)
where

t0 = 0.01, C =
β − 1

2β(β + 1)

(xR − 1/2)2

t
2/(β+1)
0

, xR =
1

4
,

as the initial datum. Its support is contained in [1
2
−xR, 1

2
+xR]; see Figure 2.3

(left). We choose the exponent β = 2. The semi-logarithmic plot of the discrete
entropy Hd[u

k] =
∑N

i=0(uki )
α4x with α = 5 versus time is illustrated in Figure

2.3 (right), using the implicit Euler scheme with parameters τ = 10−4 and the
number of grid points N = 1/4x = 64. The decay is exponential for “large”
times. The nonlinear discrete system is solved by Newton’s method with the
tolerance tol = 10−15. We have highlighted four time steps ti at which we
compute the functionG(τ) numerically for the following Runge-Kutta schemes:

explicit Euler scheme: uk − uk−1 = −τA[uk−1],

implicit Euler scheme: uk − uk−1 = −τA[uk],

second-order trapezoidal rule: uk − uk−1 = −τ
2

(A[uk] + A[uk−1]),

third-order Simpson rule: uk − uk−1 = −τ
6

(
A[uk] + 4A[(uk + uk−1)/2]

+ A[uk−1]
)
.

We set as before u := uk, v(τ) := uk−1 and compute G(τ) = Hd[u]−Hd[v(τ)]

and the discrete second-order derivative ∂2G of G (using central differences).
The result is presented in Figure 2.4. As expected, the discrete derivative ∂2G

is negative on a (small) interval for all times ti, i = 1, 2, 3. We observe that
∂2G is even slightly decreasing, but we expect that it becomes positive for
sufficiently large values of τ . Clearly, the values for ∂2G tend to zero as we
approach the steady state (see Remark 21). This experiment indicates that τ k

from Theorem 18 is bounded from below by τ ∗ = 3 · 10−4, for instance.
In order to understand the behavior of G(τ) in a better way, it is convenient
to study the discrete version of the quotient

Q(τ) :=
G′′(τ)

‖uα+2β−2u4
x‖L1

. (2.31)
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Figure 2.3: Left: Evolution of the initial datum (2.30) for β = 2 at various
time steps ti, i = 0, 1, 2, 3. Right: Semi-logarithmic plot of the discrete entropy
Hd[u

k] versus time.

Indeed, the analysis in Section 2.4 gives an estimate of the type G′′(0) ≤
−C

∫
Ω
u2β+α−5u4

xdx for some constant C > 0. Thus, we expect that for suffi-
ciently small τ > 0, Q(τ) is bounded from above by some negative constant.
This expectation is confirmed in Figure 2.5. In the depicted examples, Q(τ)

is a decreasing function of τ , and Q(0) is decreasing with increasing time.
All these results indicate that the threshold parameter τ k in Theorem 18 can
be chosen independently of the time step k.

67



τ ×10
-4

0 1 2 3
-10

2

-10
0

-10
-2

-10
-4

t = t0

t = t1

t = t2

t = t3

τ ×10
-4

0 1 2 3
-10

2

-10
0

-10
-2

-10
-4

t = t0

t = t1

t = t2

t = t3

τ ×10
-4

0 1 2 3
-10

2

-10
0

-10
-2

-10
-4

t = t0

t = t1

t = t2

t = t3

τ ×10
-4

0 1 2 3
-10

2

-10
0

-10
-2

-10
-4

t = t0

t = t1

t = t2

t = t3

Figure 2.4: Numerical evaluation of the discrete version of G′′(τ) for various
Runge-Kutta schemes at the time steps ti: Explicit Euler scheme (top left); Im-
plicit Euler scheme (top right); Implicit trapezoidal rule (bottom left); Simpson
rule (bottom right).
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Figure 2.5: Numerical evaluation of the discrete version of Q(τ), defined in
(2.31), for various Runge-Kutta schemes at the time steps ti: Explicit Euler
scheme (top left); Implicit Euler scheme (top right); Implicit trapezoidal rule
(bottom left); Simpson rule (bottom right).
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Chapter 3

A discrete Bakry-emery approach

3.1 Introduction

The Bakry-Emery method allows one to establish convex Sobolev inequalities
and to compute exponential decay rates towards equilibrium for solutions to
diffusion equations [5, 6]. The key idea of Bakry and Emery is to differen-
tiate a so-called entropy functional twice with respect to time and to relate
the second-order derivative to the entropy production and in this chapter, we
develop a discrete version of this technique.
The study of discrete Bakry-Emery methods and related topics is rather re-
cent. Caputo et al. [19] computed exponential decay rates for time-continuous
Markov processes, using the Bochner-Bakry-Emery method. Given a stochas-
tic process with density u(t) and the entropy functional Hc(u(t)), the main aim
of the Bakry-Emery approach is to find a constant λ > 0 such that the inequal-
ity d2Hc/dt

2 ≥ −λdHc/dt holds for all times. Integrating this inequality, one
may show that dHc/dt ≤ −λHc which implies that Hc(u(t)) ≤ e−λtHc(u(0))

for all t > 0, i.e., the entropy decays exponentially along u(t). The rela-
tion between d2Hc/dt

2 and dHc/dt is achieved in [19] by employing a discrete
Bochner-type identity which replaces the Bochner identity of the continuous
case. The Bochner-Bakry-Emery method was extended by Fathi and Maas in
[45] in the context of Ricci curvature bounds and used by the authors of [65]
to derive discrete Beckner inequalities.
Another approach has been suggested by Mielke [75]. He investigated geodesic
convexity properties of nonlocal transportation distances on probability spaces
such that continuous-time Markov chains can be formulated as gradient flows.
Related results have been obtained independently by Chow et al. [29] and
Maas [74]. The geodesic convexity property implies exponential decay rates
[2]. Mielke showed that the inequality d2Hc/dt

2 ≥ −λdHc/dt is equivalent

71



to the positive semi-definiteness of a certain matrix such that matrix algebra
can be applied. This idea was extended recently to certain nonlinear Fokker-
Planck equations [25].
All these examples involve spatial semi-discretizations of diffusion equations.
Temporal semi-discretizations often employ the implicit Euler scheme since
it gives entropy dissipation, dHc/dt ≤ 0, under rather general conditions;
see, e.g., the implicit Euler finite-volume approximations in [27, 49]. Entropy-
dissipating higher-order semi-discretizations have been analyzed in [39, 63, 64].
However, there seem to be no results for fully discrete schemes using the Bakry-
Emery approach. In this thesis, we make a first step to fill this gap.
In order to understand the mathematical difficulty of fully discrete schemes,
consider the abstract Cauchy problem

∂tu+ A(u) = 0, t > 0, u(0) = u0, (3.1)

where A : D(A)→ X ′ is a (nonlinear) operator defined on its domain D(A) ⊂
X of the Banach space X with dual X ′. If the dual product 〈A(u), H ′c(u)〉 is
nonnegative, where H ′c(u) is the (Fréchet) derivative of the entropy and u(t) a
solution to (3.1), then

dHc

dt
= 〈∂tu,H ′c(u)〉 = −〈A(u), H ′c(u)〉 ≤ 0,

showing entropy dissipation. Next, consider the implicit Euler scheme

τ−1(uk − uk−1) + Ah(u
k) = 0, k ∈ N, τ > 0,

where uk is an approximation of u(kτ) and Ah is an approximation of A still
satisfying 〈Ah(uk), H ′(uk)〉 ≥ 0. Here, H(uk) is the discrete entropy, which is
supposed to be convex. Then entropy dissipation is preserved by the scheme
since

H(uk)−H(uk−1) ≤ 〈uk − uk−1, H ′(uk)〉 = −τ〈Ah(uk), H ′(uk)〉 ≤ 0. (3.2)

The problem is to estimate the discrete analog of d2Hc/dt
2. It turns out that

the inequality in (3.2) is too weak, we need an equation; see Section 3.2.1 for
details. We overcome this difficulty by developing two ideas.
The first idea is to identify the elements which are necessary to build an ab-
stract discrete Bakry-Emery method. Unlike in the continuous case, we distin-
guish between the discrete entropy production P := −τ−1(H(uk) −H(uk−1))

and the Fisher information F := 〈Ah(uk), H ′(uk)〉. We explain this difference
in Section 3.2.
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The Bakry-Emery method relies on an estimate of τ−1(F (uk)−F (uk−1)), which
approximates d2Hc/dt

2. For this estimate, discrete versions of suitable inte-
grations by parts and chain rules are necessary. Our second idea is to translate
a nonlinear integration-by-parts formula to the discrete case, using the sys-
tematic integration-by-parts method of [58]. This leads to a new inequality for
numerical three-point schemes as is explained below.
Again, consider first the continuous case. We show in Lemma 37 that for all
(A,B) ∈ Rc := {(A,B) ∈ R2 : (2A− B − 1)(A + B − 2) < 0} and all smooth
positive functions w,∫

T
wxx(w

A)xxw
Bdx ≥ κc

∫
T
wA+B−1w2

xxdx,

where the constant κc > 0 depends on A and B; see (A.6) below. The proof is
based on systematic integration by parts [58]. The discrete counterpart is the
following inequality: For any 0 < ε ≤ 1, there exists a region R of admissible
values (A,B), containing the line A = 1, such that for all w0, . . . , wN+1 ≥ 0

with wN = w0, wN+1 = w1,

N∑
i=1

(wi+1 − 2wi + wi−1)(wAi+1 − 2wAi + wAi−1)wBi

≥ κ
N∑
i=1

min
j=i,i±1

wA+B−1
j (wi+1 − 2wi + wi−1)2, (3.3)

where κ = εA; see Lemma 38. Interestingly, the inequality does not hold for
each term independently but only for the sum. The admissible set R for (3.3)
is generally smaller than Rc; see Section A. We conjecture that R = Rc for
κ = 0.
Inequality (3.3) is the first nonlinear summation-by-parts formula derived from
a systematic method. We believe that this idea will lead to a whole family of
new finite-difference inequalities useful in numerical analysis.
We apply the abstract discrete Bakry-Emery method in Section 3.3 to an
implicit Euler finite-difference approximation of the porous-medium equation

∂tu = (uβ)xx in T, t > 0, u(0) = u0 ≥ 0,

where β > 1 and T is the one-dimensional torus. We assume, for simplicity,
that meas(T) = 1 and identify T with [0, 1]. The entropy functional is Hc(u) =∫
T(uα − uα)dx/(α − 1), where α > 0 and u =

∫
T u

0dx is the constant steady
state. We show in Proposition 36 that Hc(u(t)) decays exponentially to zero
for all (α, β) ∈ Sc, where

Sc = {(α, β) ∈ R2
+ : α + β > 1, −2 < α− β < 1}, (3.4)
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with a decay rate depending on (α, β) and minT u
β−1.

To overcome the difficulty with the entropy production inequality, we introduce
the new variable v = uα and write the porous-medium equation in the form

∂tv = αuα−1∂tu = αv(α−1)/α(vβ/α)xx. (3.5)

The advantage of this formulation is that the entropy becomes linear in the
variable v. thus avoiding inequality (3.2).
We discretize (3.5) by an implicit Euler finite-difference scheme. Let τ > 0 be
the time step, h > 0 the space step, and let vki = (uki )

α be an approximation
of (h−1

∫ ih
(i−1)h

u(x, kτ)dx)α, i = 1, . . . , N . The iterative scheme reads as

vki − vk−1
i = τh−2α(vki )(α−1)/α

(
(vki+1)β/α − 2(vki )β/α + (vki−1)β/α

)
, (3.6)

where i = 1, . . . , N , k ∈ N, and vkN = vk0 , vkN+1 = vk1 . In Lemma 35 we show
the existence of solutions to (3.6) as well as the preservation of nonnegativity.
However, the total mass h

∑N
i=1 u

k
i = h

∑N
i=1(vki )1/α is not conserved, which is

the price to pay for estimating the entropy production. We discuss this point
in Section 3.4. This chapter’s main result reads as follows.

Theorem 30. Let vk = (vki ) be a nonnegative solution to (3.6) and set uki =

(vki )1/α. Let 0 < ε < 1. Then there exist a region S ⊂ (0,∞)2, containing the
line α − β = 1, and a number U > 0 such that all (α, β) ∈ S with α > 1 and
β ≥ 1. It holds that

H(uk) ≤ H(u0)e−ηλkτ , k ∈ N,

where

H(uk) =
h

α− 1

N∑
i=1

(
(uki )

α − Uα
)
dx

is the discrete (relative) entropy,

η =
log(1 + kτ)

kτ
, λ =

8ε(α− 1)β2

Cp(α + β − 1)2
min

i=1,...,N
uβ−1
i ,

and Cp = h2/(4 sin2(hπ)) ≥ 1/(4π2) the the discrete Poincaré constant. More-
over, the total mass h

∑N
i=1 u

k
i is increasing in k and converges to U as k →∞.

Remark 31 (Exponential versus algebraic decay). The exponential decay rate
depends on the minimum of the solution, which is not surprising. Indeed,
because of the degeneracy, we cannot generally expect exponential decay; an
example is the Barenblatt solution. Algebraic decay rates for implicit Euler
finite-volume schemes have been derived in, e.g., [27]. When the minimum is
positive, the equation is no longer degenerate, and exponential decay follows.
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Remark 32 (Shannon entropy). Unfortunately, the theorem does not apply
to the Shannon entropy h

∑
i ui log ui, corresponding to α → 1, since λ → 0

as α→ 1. The reason is that for α→ 1, the entropy production P cannot be
bounded from above by the Fisher information F and so, Assumption A1 of
our abstract Bakry-Emery method does not hold; see Section 3.2.2.

Remark 33 (Discrete gradient flow). Erbar and Maas [41] showed that the
gradient flow of the Shannon entropy with respect to a nonlocal transportation
measure equals the discrete porous-medium equation in one space dimension.
The porous-medium equation in several space dimensions was solved by Be-
namou et al. [9] by providing a spatial discretization of this equation as a
convex optimization problem. In both references, no decay rates have been
derived.

The set S is illustrated in Figure 3.1 for two different values of ε. Numerical
computations indicate that S approaches the set Sc defined in (3.4) if ε → 0

but for fixed ε > 0, S is strictly contained in Sc.
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Figure 3.1: Admissible region S for ε = 1/4 (left) and ε = 1/100 (right). The
set Sc, defined by −1 < α − β < 2, is shown in light blue for comparison; it
contains the dark blue region S.

This chapter is organized as follows. The abstract Bakry-Emery result is pre-
sented in Section 3.2. Theorem 30 is proven in Section 3.3. Numerical ex-
amples are presented in Section 3.4, and some auxiliary inequalities and the
crucial discrete integration-by-parts estimate can be found in Appendix A and
Appendix B.
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3.2 An abstract Bakry-Emery method

In this section, we present our abstract result. In order to identify the key in-
gredients of the Bakry-Emery method, we recall the basic ideas for continuous
evolution equations.

3.2.1 The continuous Bakry-Emery method

Let us first consider the abstract Cauchy problem

∂tu+ A(u) = 0, t > 0, u(0) = u0. (3.7)

The nonlinear operator A is defined on some domain D(A) of a Banach space
X. We do not specify the properties of A nor its domain since they are not
needed in the following. As mentioned in the introduction, the idea of the
Bakry-Emery method is to differentiate the entropy functional Hc : D(A) →
[0,∞) twice with respect to time along solutions to (3.7). We define the
entropy production Pc(u(t)) := − d

dt
Hc(u(t)). If 〈A(u), H ′c(u)〉 ≥ 0 holds for all

u ∈ D(A) (〈·, ·〉 is the dual product in X) then

Pc(u) = −〈∂tu,H ′c(u)〉 = 〈A(u), H ′c(u)〉 ≥ 0,

i.e., the entropy production is nonnegative and the entropy is nonincreasing
along solutions to (3.7). We call Fc(u) := 〈A(u), H ′c(u)〉 the generalized Fisher
information since if A(u) = −∆u on Td and Hc(u) =

∫
Td u(log u − 1)dx, we

obtain the Fisher information functional Fc(u) = 4
∫
Td |∇

√
u|2dx. Clearly,

Pc(u(t)) = Fc(u(t)) along solutions u(t) to (3.7).
Differentiating Fc gives

dFc
dt

= 〈A′(u)[∂tu], H ′c(u)〉+ 〈A(u), H ′′c (u)∂tu〉
= −〈A′(u)[A(u)], H ′c(u)〉 − 〈A(u), H ′′c (u)A(u)〉,

where A′(u) is the Fréchet derivative of A at u. If the functional inequality

〈A′(u)[A(u)], H ′c(u)〉+ 〈A(u), H ′′c (u)A(u)〉 ≥ λc〈A(u), H ′c(u)〉 (3.8)

holds for some λc > 0 then
dFc
dt
≤ −λc〈A(u), H ′c(u)〉 = −λcFc, (3.9)

and we conclude exponential decay of t 7→ Fc(u(t)) with rate λc > 0. In
particular, limt→∞ Fc(u(t)) = 0. Then, integrating the previous inequality
over (t,∞), it follows that

dHc

dt
(u(t)) = −Fc(u(t)) ≤ −λc

∫ ∞
t

Fc(u(s))ds = λc

∫ ∞
t

dHc

dt
(u(s))ds.
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Assuming that also
lim
t→∞

Hc(u(t)) = 0, (3.10)

we conclude that

dHc

dt
(u(t)) ≤ −λcHc(u(t)), t > 0,

and by Gronwall’s lemma, t 7→ Hc(u(t)) converges exponentially to zero with
rate λc.
We see that two assumptions are essential: the functional inequality (3.8)
and the limit (3.10). On the discrete level, we need to distinguish between
the (discrete) entropy production and the (discrete) Fisher information since
dHc/dt and 〈A(u), H ′c(u)〉 may differ on the discrete level. We assume that
both functionals can be estimated by each other. Instead of the functional
inequality (3.8) we assume a discrete version of inequality (3.9). Finally, a
discrete version of (3.10) is required.

3.2.2 A discrete Bakry-Emery method

We consider two functions H : RN → [0,∞) and F : RN → [0,∞) and define
P (v) := P (v;w) = −τ−1(H(v) − H(w)), where v, w ∈ RN and τ > 0. We
call H an entropy, F the Fisher information, and P the entropy production.
Not that the following result is not only applicable to solutions of discrete
problems, but holds more generally.

Proposition 34. Let (vk) ⊂ RN be any sequence. We assume that

A1 There exist Cm, CM > 0 such that CmF (vk) ≤ P (vk) ≤ CMF (vk) for all
k ∈ N.

A2 There exists κ > 0 such that F (vk)− F (vk−1) ≤ −τκF (vk) for all k ∈ N.

A3 limk→∞H(vk) = 0.

Then
H(vk) ≤ e−ηλkτH(v0), k ∈ N,

where λ = (Cm/CM)κ and η = log(1 + τλ)/(τλ) ∈ (0, 1).

The discrete decay rate λ is generally smaller than the decay rate κ of the
Fisher information, since η < 1 and we may have Cm < CM . If the entropy
production and the Fisher information coincide, i.e. Cm = CM = 1, then λ = κ.
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Proof. From assumption A2, it follows that limk→∞ F (vk) = 0. From assump-
tion A2 again and the second inequality in assumption A1, we obtain

F (vk)− F (vk−1) ≤ −τκF (vk) ≤ −τκC−1
M P (vk) = κC−1

M

(
H(vk)−H(vk−1)

)
.

Taking the sum from k = `+ 1 to k = m > `+ 1, we find that

F (vm)− F (v`) ≤ κC−1
M (H(vm)−H(v`)).

Passing to the limit m → ∞, observing that limm→∞ F (vm) = 0 and, from
assumption A3, limm→∞H(vm) = 0, we deduce that

F (v`) ≥ κC−1
M H(v`),

which holds for all ` ∈ N. We now use the first inequality in assumption A1
to conclude that

H(vk)−H(vk−1) = −τP (vk) ≤ −τCmF (vk) ≤ −τCmκC−1
M H(vk) = −τλH(vk).

We deduce that H(vk) ≤ (1 + λτ)−kH(v0) = exp(−ηλkτ)H(v0), finishing the
proof.

3.3 Discrete porous-medium equation

To apply the abstract Bakry-Emery method to the porous-medium equation,
we need to verify the assumptions of Proposition 34. The key condition is
assumption A2. To verify it, we need to translate an integrations-by-parts rule
to the discrete level, similarly to 1.5.2. Once again we refer to Appendix A.
We apply the abstract Bakry-Emery method to a finite-difference approxima-
tion of the porous-medium equation, i.e., we choose A(u) = −(uβ)xx on T for
suitable functions u. Let τ > 0 be the time step and h > 0 the space step. A
natural scheme would be

uki − uk−1
i = τh−2

(
(uki+1)β − 2(uki )

β + (uki−1)β
)
,

for all i = 1, . . . , N , k ∈ N, and ukN = uk0, ukN+1 = uk1. The corresponding
discrete entropy is H(uk) = h

∑N
i=1((uki )

α − uα)/(α− 1) and u = h
∑N

i=1 u
0
i is

the constant steady state. We choose α > 1 and β > 1.
Unfortunately, the abstract Bakry-Emery method cannot be applied to this
scheme. The problem is the second inequality in assumption A1. Indeed,
using the inequality yα − zα ≥ αzα−1(y − z) for all y, z ≥ 0, which follows
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from the convexity of z 7→ zα for α > 1, inserting the numerical scheme and
then summing by parts, we find that

−τP = H(uk)−H(uk−1) = h

N∑
i=0

(
(uki )

α − (uk−1
i )α

)
≥ αh

N∑
i=1

(uk−1
i )α−1(uki − uk−1

i )

= αh−1τ

N∑
i=1

(uk−1
i )α−1

((
(uki+1)β − (uki )

β
)
−
(
(uki )

β − (uki−1)β
))

= −αh−1

N∑
i=1

(
(uk−1

i+1 )α−1 − (uk−1
i )α−1

)(
(uki+1)β − (uki )

β
)
.

This expression cannot be estimated further; it may even have the wrong sign.
We need a scheme that avoids the use of the inequality yα−zα ≥ αzα−1(y−z).
We stress the fact that this problem does not occur in the semi-discrete scheme

∂tui = h−2
(
(uki+1)β − 2(uki )

β + (uki−1)β
)
,

since then

dH

dt
=

αh

α− 1

N∑
i=0

uα−1
i ∂tui =

α

(α− 1)h

N∑
i=0

uα−1
i

(
(uki+1)β − 2(uki )

β + (uki−1)β
)

= − α

(α− 1)h

N∑
i=0

(
(uki+1)α−1 − (uki )

α−1
)(

(uki+1)β − (uki )
β
)
,

and this expression is nonpositive (since α > 1).
Our idea is to make the entropy production linear in its argument. To this
end, we introduce the new variable vki = (uki )

α. In the (continuous) variable
v = uα, the evolution equation transforms to ∂tv = −v(α−1)/α∆(vβ/α), which
inspires the numerical scheme

vki − vk−1
i = ατh−2(vki )(α−1)/α

(
(vki+1)β/α − 2(vki )β/α + (vki−1)β/α

)
, (3.11)

for all i = 1, . . . , N , k ∈ N, and vkN = vk0 , vkN+1 = vk1 . The discrete entropy and
Fisher information become

H(vk) =
h

α− 1

N∑
i=1

(vki − V ), F (vk) =
1

h

N∑
i=1

(
(vki+1)γ − (vki )γ

)2
,

where V > 0 has to be determined and γ = (α + β − 1)/(2α).
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The entropy production can be estimated, using summation by parts, as

−τP (vk) = H(vk)−H(vk−1) =
h

α− 1

N∑
i=1

(vki − vk−1
i )

=
ατ

(α− 1)h

N∑
i=1

(vki )(α−1)/α
(
(vki+1)β/α − 2(vki )β/α + (vki−1)β/α

)
= − ατ

(α− 1)h

N∑
i=1

(
(vki+1)(α−1)/α − (vki )(α−1)/α

)(
(vki+1)β/α − (vki )β/α

)
≤ 0. (3.12)

According to Lemma 44, the entropy production can be estimated from below
and above in terms of the Fisher information.
After this motivation, we prove the existence of solutions to (3.11).

Lemma 35. For given vk−1
i ≥ 0, i = 1, . . . , N , there exists a solution vki ≥ 0,

i = 1, . . . , N , to (3.11).

Proof. We give only a sketch of the proof since the existence of solutions follows
from a standard fixed-point theorem. We only provide the a priori estimates
needed for this argument. First multiply (3.11) by (vki )− = min{vki , 0} and
sum over i = 1, . . . , N . Since vki (vki )− = (vki )2

−, we obtain

N∑
i=1

(vki )2
− =

N∑
i=1

vk−1
i (vki )−

+ ατh−2

N∑
i=1

(vki )
2−1/α
−

(
(vki+1)β/α − 2(vki )β/α + (vki−1)β/α

)
≤ ατh−2

N∑
i=1

(vki )
2−1/α
−

(
((vki+1)β/α − (vki )β/α)− ((vki )β/α − (vki−1)β/α)

)
.

By summation by parts, this becomes

N∑
i=1

(vki )2
− ≤ −ατh−2

N∑
i=1

(
(vki+1)

2−1/α
− − (vki )

2−1/α
−

)(
(vki+1)β/α − (vki )β/α

)
≤ 0,

since z 7→ z
2−1/α
− is nondecreasing. We infer that (vki )− = 0 and hence vki ≥ 0.

Next, by (3.12),
N∑
i=1

vki ≤
N∑
i=1

vk−1
i ≤

N∑
i=1

v0
i ,

and this is the desired a priori estimate.
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Next, we turn to the proof of our main result.

Proof of Theorem 30. We verify the assumptions of Proposition 34. For this,
we continue our estimates for P . Applying Lemma 44 with a = (α− 1)/α and
b = β/α to (3.12), we obtain the inequalities

P (vk) ≤ α

α− 1
F (vk), F (vk) ≤ αγ2

β
P (vk) =

(α + β − 1)2

4αβ
P (vk).

Thus, assumption A1 is satisfied with Cm = 4αβ/(α + β − 1)2 and CM =

α/(α− 1).
Next, we estimate the difference F (vk)−F (vk−1). To this end, we set vi := vki ,
vi := vk−1

i , ai := (vi − vi)/τ and write

F (v)− F (v) =
1

h

N∑
i=1

(
(vγi+1 − vγi )2 − (vγi+1 − vγi )2

)
=

1

h

N∑
i=1

(
(vγi+1 − vγi )2 −

(
(vi+1 − τai+1)γ − (vi − τai)γ

)2
)

=: G(τ).

The idea of the proof is to expand G(τ) around zero:

F (v)− F (v) = G(0) +G′(0)τ +
1

2
G′′(ξ)τ 2

for some ξ ∈ (0, τ). We show that the right-hand side can be bounded from
above by −τKF (v) for some K > 0, which verifies assumption A2. This
idea has first been employed in [27]. Clearly, we have G(0) = 0. The first
derivatives of G equal

G′(τ) = 2γh−1

N∑
i=1

(
(vi+1 − τai+1)γ − (vi − τai)γ

)
×
(
(vi+1 − τai+1)γ−1ai+1 − (vi − τai)γ−1ai

)
,

G′′(τ) = −2γh−1

N∑
i=1

(
γ
(
(vi+1 − τai+1)γ−1ai+1 − (vi − τai)γ−1ai

)2

+ (γ − 1)
(
(vi+1 − τai+1)γ − (vi − τai)γ

)
×
(
(vi+1 − τai+1)γ−2a2

i+1 − (vi − τai)γ−2a2
i

))
.

First, we claim that G′′(τ) ≤ 0 for any τ > 0. Indeed, we replace vi − τai by
vi and obtain

G′′(τ) = −2γh−1

N∑
i=0

(c1a
2
i+1 + c2ai+1ai + c3a

2
i ), where
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c1 = γv2γ−2
i+1 + (γ − 1)vγ−2

i+1 (vγi+1 − vγi ) = (2γ − 1)v2γ−2
i+1 − (γ − 1)vγ−2

i+1 v
γ
i ,

c2 = −2γvγ−1
i+1 v

γ−1
i ,

c3 = γv2γ−2
i − (γ − 1)vγ−2

i (vγi+1 − vγi ) = (2γ − 1)v2γ−2
i − (γ − 1)vγ−2

i vγi+1.

It holds that c1 ≥ 0, since this inequality is equivalent to (2γ − 1)vγi+1 ≥
(γ − 1)vγi , and this is true for 1/2 ≤ γ ≤ 1 (which is equivalent to β ≥ 1 and
α− β ≥ −1). Moreover, the discriminant 4c1c3 − c2

2 ≥ 0 is equivalent to

4(2γ − 1)(1− γ)(vi+1vi)
γ−2(vγi+1 − vγi )2 ≥ 0,

which also holds true for 1/2 ≤ γ ≤ 1. This shows that G′′(τ) ≤ 0 and
consequently,

F (v)− F (v) = G(τ) = G(0) + τG′(0) +
τ 2

2
G′′(ξ) ≤ τG′(0).

Let us now compute G′(0). Inserting the definition of ai, we find that

G′(0) = 2γh−1

N∑
i=1

(vγi+1 − vγi )(vγ−1
i+1 ai+1 − vγ−1

i ai)

= −2γh−1

N∑
i=1

vγ−1
i ai(v

γ
i+1 − 2vγi + vγi−1)

= −2αγh−3

N∑
i=1

v
(α+β−3)/(2α)
i (v

β/α
i+1 − 2v

β/α
i + v

β/α
i−1 )(vγi+1 − 2vγi + vγi−1),

since vγ−1
i v

(α−1)/α
i = v

(α+β−3)/(2α)
i .

We apply Lemma 38 with wi = vγi , A = 2β/(α + β − 1) and B = (α + β −
3)/(α + β − 1) and infer that

G′(0) ≤ −2αγκh−3

N∑
i=1

min
j=i,i±1

v
(β−1)/α
j (vγi+1 − 2vγi + vγi−1)2.

By the discrete Poincaré-Wirtinger inequality (Lemma 46), applied with zi =

vγi+1 − vγi , it follows that

G′(0) ≤ −2C−1
p αγκh−1 min

i=1,...,N
v

(β−1)/α
i

N∑
i=1

(vγi+1 − vγi )2

= −2C−1
p αγκ min

i=1,...,N
v

(β−1)/α
i F (v),

and hence, with κ0 = 2C−1
p αγκmini=1,...,N v

(β−1)/α
i ,

F (v)− F (v) ≤ −τκ0F (v).
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This shows assumption A2 of Proposition 34 and, in particular, after applying
Gronwall’s lemma, limk→∞ F (vk) = 0.
It remains to prove that assumption A3, i.e. limk→∞H(vk) = 0, holds. We
know that

vki ≤
N∑
j=1

vkj ≤
N∑
j=1

v0
j <∞,

so, for any fixed i = 1, . . . , N , (vki ) is bounded. Therefore, there exists a
sequence kj → ∞ such that vkji → yi for some yi ≥ 0. By the discrete
Poincaré-Wirtinger inequality (Lemma 46), applied to zi = (vki )γ − (V k)γ,
where (V k)γ := h

∑N
i=1(vki )γ, it follows that

N∑
i=1

(
(vki )γ − (V k)γ

)2 ≤ Cph
−2

N∑
i=1

(
(vki+1)γ − (vki )γ

)2
= Cph

−1F (vk).

Since limk→∞ F (vk) = 0, we deduce that (v
kj
i ) and V kj have the same limit,

say y := yi. Set U := y1/α. This defines the entropy

H(uk) =
h

α− 1

N∑
i=1

(
(uki )

α − Uα
)

for uki := (vki )1/α. It holds that H(ukj) → 0 as kj → ∞. But k 7→ H(uk)

is nonincreasing, from which we deduce that H(vk) = H(uk) → 0 for any
sequence k →∞.
According to Proposition 34, the discrete entropy converges exponentially with
decay rate

λ =
Cm
CM

κ0 =
4(α− 1)β

α + β − 1

κ

Cp
min

i=1,...,N
uβ−1
i =

8ε(α− 1)β2

Cp(α + β − 1)2
min

i=1,...,N
uβ−1
i .

Next, we claim that the total mass h
∑N

i=1 u
k
i is nondecreasing in k. Indeed,

by the concavity of z 7→ z1/α (recall that α > 1), we have y1/α − z1/α ≥
(1/α)y(1−α)/α(y − z) for all y, z ≥ 0 and hence,

N∑
i=1

(uki − uk−1
i ) =

N∑
i=1

(
(vki )1/α − (vk−1

i )1/α
)
≥ 1

α

N∑
i=1

(vki )(1−α)/α(vki − vk−1
i ).

Inserting scheme (3.6), we find that
N∑
i=1

(uki − uk−1
i ) ≥ τ

h2

N∑
i=1

(
(vki+1)β/α − 2(vki )β/α + (vki−1)β/α

)
= 0,

since vki satisfies periodic boundary conditions. This shows the claim.
The monotonicity of the total mass and the convergence property h

∑N
i=1 u

kj
i →

y1/α = U as kj → ∞ imply that h
∑N

i=1 u
k
i → U for k → ∞, and the conver-

gence is monotone. This finishes the proof.
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3.4 Numerical examples

We present some numerical results for the porous-medium equation discretized
in the previous section. Similarly to the previous chapters, we choose the
Barenblatt profile as initial datum

u0(x) =
1

t
1/(β+1)
0

(
C − β − 1

2β

|x− x0|2

t
2/(β+1)
0

)1/(β−1)

+

,

where z+ = max{0, z}. We consider two cases. For the slow diffusion case
β = 4, we choose x0 = 0.5, t0 = 10−4, and

C =
β − 1

2β

|x0|2
(tend + t0)2/(β+1)

, tend = 5 · 10−4.

The profile reaches the boundary of Ω = (0, 1) at time tend. For the fast
diffusion case β = 0.5, we take x0 = 0.5, t0 = 10−2, and C = t

(β−1)/(β+1)
0 such

that the maximum of the initial profile equals 1.
Figure 3.2 illustrates the evolution of the total mass for α = 2, β = 0.5 (left)
and α = 3, β = 4 (right). As predicted in Theorem 30, the total mass is indeed
increasing in time. The mass defect scales well with both the time step τ and
the grid size h, where the influence of τ is more prevalent.
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Figure 3.2: Evolution of the total mass for two test scenarios: α = 2, β = 0.5
(left) and α = 3, β = 4 (right).

The time decay of the (relative) entropy H is shown in Figure 3.3 for various
space and time steps. We observe that the decay is indeed exponential. Here,
the steady state u∞ (which is needed to define the relative entropy) is given
by u∞ = h

∑N
i=0 u

kmax
i , where kmax is the final time step. This choice clearly

depends on the scheme since the mass is not conserved. The relative entropy
converges exponentially even when (α, β) is chosen outside of the admissible
region; see Figure 3.4.
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Figure 3.3: Evolution of the relative entropy for two test scenarios in the
admissible region: α = 2, β = 0.5 (left) and α = 3, β = 4 (right).
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Figure 3.4: Evolution of the relative entropies for (α, β) outside of the admis-
sible region.
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Appendix A

A nonlinear discrete
integration-by-parts formula

In this section we develop a nonlinear discrete integration-by-parts formula.
Since it is convenient to investigate the continuous situation first. Hence, we
start by looking at the nonlinear diffusion equation

∂tu = (uβ)xx, t > 0, u(0) = u0 ≥ 0 in T, (A.1)

where β > 0, and introduce the (relative) entropy

Hc(u) =
1

α− 1

∫
T
(uα − uα)dx, α > 0.

Here, u =
∫
T u

0(x)dx is the constant steady state. (Recall that meas(T) = 1.)

Proposition 36. Let β 6= 1, α + β − 1 > 0, and −1 < α − β < 2. Then, for
any positive smooth solution to (A.1),

Hc(u(t)) ≤ Hc(u
0)e−λct, t > 0,

where

λc =
16π2αβκc
α + β − 1

min
T
uβ−1 ≥ 0, κc = − 4β(α− β − 2)

(α + β − 1)(α− β + 1)
> 0.

Proof. Integrating by parts, the time derivatives of Hc(u(t)) become

dHc

dt
=

α

α− 1

∫
T
uα−1(uβ)xxdx = − 4αβ

(α + β − 1)2

∫
T

(
u(α+β−1)/2

)2

x
dx,

d2Hc

dt2
= − 8αβ

(α + β − 1)2

∫
T

(
u(α+β−1)/2

)
x

(
α + β − 1

2
u(α+β−3)/2∂tu

)
x

dx

=
4αβ

α + β − 1

∫
T
u(α+β−3)/2

(
u(α+β−1)/2

)
xx

(uβ)xxdx.
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We wish to estimate the second time derivative. To this end, we set w =

u(α+β−1)/2, A = 2β/(α + β − 1), and B = (α + β − 3)/(α + β − 1). Then the
derivatives can be written as

dHc

dt
= − 4αβ

(α + β − 1)2

∫
T
w2
xdx,

d2Hc

dt2
=

4αβ

α + β − 1

∫
T
(wA)xxwxxw

Bdx.

(A.2)
In Lemma 37 below we show that there exists κc > 0 such that∫

T
(wA)xxwxxw

Bdx ≥ κc

∫
T
wA+B−1w2

xxdx

if the assumption (2A − B − 1)(A + B − 2) < 0 holds. (Note that β 6= 1 is
equivalent to A+B − 2 6= 0.) This condition is actually satisfied since

(2A−B − 1)(A+B − 2) =
2(α− β − 2)(α− β + 1)

(α + β − 1)2
< 0,

and we infer that

d2Hc

dt2
≥ 4αβκc
α + β − 1

∫
T
wA+B−1w2

xxdx =
4αβκc

α + β − 1

∫
T
uβ−1

(
u(α+β−1)/2

)2

xx
dx.

Furthermore, by the Poincaré inequality applied to wx (see Lemma 45),∫
T
uβ−1

(
u(α+β−1)/2

)2

xx
dx ≥ min

T
uβ−1

∫
T

(
u(α+β−1)/2

)2

xx
dx

≥ 4π2 min
T
uβ−1

∫
T

(
u(α+β−1)/2

)2

x
dx = 4π2 min

T
uβ−1

∫
T
w2
xdx,

and it follows that

d2Hc

dt2
≥ 16π2αβκc
α + β − 1

min
T
uβ−1

∫
T
w2
xdx = −λc

dHc

dt
. (A.3)

Denoting by Pc = −dHc/dt the entropy production, this inequality can be
formulated as dPc/dt ≤ −λcPc. Gronwall’s lemma then implies that Pc(u(t)) ≤
Pc(u0)e−λct for t > 0 and in particular limt→∞ Pc(u(t)) = 0.
Integrating (A.3) over (t, s) with t < s and passing to the limit s→∞, we see
that ∫ ∞

0

∫
T
w2
xdx ≤ Hc(u0) <∞.

Thus, there exists a sequence tj →∞ such that ‖wx(tj)‖L2(T) → 0. Following
the arguments of [20, Prop. 1ii],1 it follows that limtj→∞Hc(u(tj)) = 0, and
since t 7→ Hc(u(t)) is nonincreasing, any sequence converges, it follows that
limt→∞Hc(u(t)) = 0.

1Also see the erratum www.asc.tuwien.ac.at/∼juengel/publications/pdf/errata05carri.pdf.

88



Therefore, we proceed by integrating inequality (A.3) over (t,∞) (and using
limt→∞(dHc/dt)(u(t)) = limt→∞Hc(u(t)) = 0 from above):

−dHc

dt
(u(t)) ≥ λcHc(u(t)), t > 0.

Thus, another application of Gronwall’s lemma gives the conclusion.

It remains to prove Lemma 37. Set

Rc = {(A,B) ∈ R2 : A > 0, (2A−B − 1)(A+B − 2) < 0}. (A.4)

Lemma 37. Let (A,B) ∈ Rc. Then for all smooth positive functions w,∫
T
wxx(w

A)xxw
Bdx ≥ κc

∫
T
w2
xxw

A+B−1dx, (A.5)

where

κc =

{
−A(2A−B − 1)/(A+B − 2) > 0 if A+B − 2 6= 0,
A if A+B − 2 = 0.

(A.6)

Proof. The idea of the proof is to employ systematic integration by parts [58].
Since ∫

T
(w3

xw
A+B−2)xdx = 0, (A.7)

we can formulate (A.5) as the following problem: Find c ∈ R and κc > 0 such
that for all smooth positive functions w,∫

T

(
wxx(w

A)xxw
B + c(w3

xw
A+B−3)x − κcw2

xxw
A+B−1

)
dx ≥ 0.

Calculating the derivatives and setting ξ1 = wx/w, ξ2 = wxx/w, this inequality
is equivalent to∫

T
wA+B−1

(
(A− κc)ξ2

2 + (A2 − A+ 3c)ξ2ξ
2
1 + c(A+B − 2)ξ4

1

)
dx ≥ 0.

The idea is to interpret the integrand as a polynomial in the variables ξ1, ξ2

and to solve the following polynomial decision problem: Find c ∈ R and κc > 0

such that for all (ξ1, ξ2) ∈ R2,

(A− κc)ξ2
2 + (A2 − A+ 3c)ξ2ξ

2
1 + c(A+B − 2)ξ4

1 ≥ 0. (A.8)

This problem can be solved explicitly. Clearly, it must hold that A ≥ κc > 0.
We distinguish two cases: κc = A and κc < A.
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First let 0 < κc < A. Then (A.8) is valid if the discriminant is nonpositive,

0 ≥ (A2 − A+ 3c)2 − 4c(A− κc)(A+B − 2)

=

(
3c+ A(A− 1)− 2

3
(A− κc)(A+B − 2)

)2

− 4

9
(A− κc)2(A+B − 2)2 +

4

3
A(A− 1)(A− κc)(A+B − 2).

Choosing the minimizing value

c = −1

3

(
A(A− 1)− 2

3
(A− κc)(A+B − 2)

)
= −A

9
(A− 2B + 1)− 2

9
κc(A+B − 2), (A.9)

the discriminant is nonpositive if and only if

0 ≥ −4

9
(A− κc)2(A+B − 2)2 +

4

3
A(A− 1)(A− κc)(A+B − 2)

=
4

9
(A− κc)(A+B − 2)

(
κc(A+B − 2) + A(2A−B − 1)

)
.

Set κc = εA for 0 < ε < 1. Then the previous inequality is true if and only if

A(A+B − 2)
(
ε(A+B − 2) + 2A−B − 1

)
≤ 0. (A.10)

We infer that if
ε = −2A−B − 1

A+B − 2
> 0

then (A.8) holds. This implies that κc = εA = −A(2A−B−1)/(A+B−2) > 0

and we need to choose A > 0 and (2A−B − 1)(A+B − 2) < 0.
Next, let κc = A. Then the quadratic term in ξ2 in (A.8) vanishes and the
mixed term must vanish too, i.e. c = −A(A − 1)/3. Hence, the coefficient of
the remaining term has to be nonnegative, i.e. −A(A− 1)(A+B − 2) ≥ 0. If
A = 1, inequality (A.5) becomes trivial. The set of all (A,B) such that A > 0

and (A − 1)(A + B − 2) < 0 is contained in the set of all (A,B) satisfying
A > 0 and (2A−B − 1)(A+B − 2) < 0. This finishes the proof.
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We now state a discrete version of inequality (A.5).

Lemma 38. Let w0, . . . , wN+1 ∈ R satisfy wN = w0, wN+1 = w1 and let
0 < ε ≤ 1. There exists a region R ⊂ R2, containing the line A = 1, such that
for all (A,B) ∈ R,

N∑
i=1

(wi+1 − 2wi + wi−1)(wAi+1 − 2wAi + wAi−1)wBi

≥ κ
N∑
i=1

min
j=i,i±1

wA+B−1
j (wi+1 − 2wi + wi−1)2, (A.11)

where κ = εA > 0.

As stated above the lemma is trivial since (A.11) clearly holds for R = {(A,B) :

A = 1} with κ = 1. Figure A.1 illustrates the numerically admissible regions
for (A,B) for two different values of ε. The admissible region R is smaller
than the region Rc for the continuous case but it approaches the latter region
as κ→ 0.
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Figure A.1: The regions of admissible (A,B) such that T (X, Y ) ≥ 0 for all X,
Y ≥ 0 using c as in (A.9) with κc = κ and κ = A/4 (left), κ = A/100 (right).
The set R is depicted in dark blue, Rc ⊃ R in light blue.

The idea of the proof of (A.11) is to add the following discrete version of the
integration-by-parts formula (A.7)

1

ρ3

N∑
i=1

(
M(wi+1, wi)

A+B+1−3ρ(wρi+1−wρi )3−M(wi, wi−1)A+B+1−3ρ(wρi−wρi−1)3
)
.

The sum vanishes because of the periodic boundary conditions. Here ρ > 0 is
a free parameter, and the function M(x, y) is a symmetric mean value, i.e., it
satisfies

M(x, y) = M(y, x), M(λx, λy) = λM(x, y), M(x, x) = x (A.12)

91



for all x, y, λ ≥ 0. For the numerical simulations below, we choose ρ =

(A + B + 1)/3 such that the mean function does not need to be specified.
Then (A.11) holds if we can show the following inequality for all admissible
(A,B) and wi 6= 0:

N∑
i=1

wA+B+1
i

{((
wi+1

wi

)A
+

(
wi−1

wi

)A
− 2

)(
wi+1

wi
+
wi−1

wi
− 2

)
− κ min

j=i,i±1

(
wj
wi

)A+B−1(
wi+1

wi
+
wi−1

wi
− 2

)2

+
c

ρ3

(
M

(
wi+1

wi
, 1

)A+B+1−3ρ((
wi+1

wi

)ρ
− 1

)3

−M
(
wi−1

wi
, 1

)A+B+1−3ρ(
1−

(
wi−1

wi

)ρ)3)}
≥ 0.

We verify this inequality pointwise, i.e. setting X = wi+1/wi and Y = wi−1/wi,
we wish to find c ∈ R, κ > 0 such that for all X, Y > 0,

T (X, Y ) := (XA + Y A − 2)(X + Y − 2)

+
c

ρ3

(
M(X, 1)A+B+1−3ρ(Xρ − 1)3 +M(Y, 1)A+B+1−3ρ(Y ρ − 1)3

)
− κmin{1, XA+B−1, Y A+B−1}(X + Y − 2)2 ≥ 0. (A.13)

The first term (XA +Y A− 2)(X +Y − 2) becomes negative in certain regions;
see Figure A.2. It is compensated by the second term (shift term) on the
right-hand side of (A.13) if we choose the constant c according to (A.9) with
κ = κc as in (A.6).
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Figure A.2: Level sets (XA +Y A−2)(X+Y −2) = 0 and (XA +Y A−2)(X+
Y − 2) = 1 for A = 0.6, B = 4 (left) and A = 1.6, B = 2.5 (right). We have
chosen κ = κ0 = A/200 and c as in (A.9).
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Unfortunately, it is rather difficult to prove (A.13) analytically in full gener-
ality. Note that polynomial quantifier elimination does not apply if A and B
are non-integers, since the function T (X, Y ) generally is not a polynomial. In-
stead, we verify (A.13) analytically for all (A,B) ∈ Rc and all (X, Y ) in some
neighborhood of (1, 1).

Lemma 39. Let T be given by (A.13) and let (A,B) ∈ Rc, where Rc is de-
fined in (A.4). Then there exists a neighborhood W of (1, 1) such that for all
(X, Y ) ∈ W ,

T (X, Y ) ≥ 0

holds for c as in (A.9) and with κc = κ as in (A.6).

If the step size h > 0 is small enough, we expect that the quotients wi+1/wi
are close to one for all i = 0, . . . , N − 1. This means that (X, Y ) lies in a
neighborhood of (1, 1), and the lemma applies.

Proof. We use the local coordinates u = (X+Y −2)/h2 and v = (X−Y )/(2h),
which correspond to (central) second-order and first-order derivatives. Then
X = 1+hv+h2u/2 and Y = 1−hv+h2u/2. We develop T as a function of h at
h = 0. For this, we observe that M(1, 1) = 1 and MX(1, 1) = MY (1, 1) = 1/2.
Indeed, we infer from the properties (A.12) that

MX(1, 1) = lim
ε→0

1

ε

(
M(1 + ε, 1)−M(1, 1)

)
= lim

ε→0

(
1 + ε

ε
M

(
1,

1

1 + ε

)
− 1

ε

)
= lim

ε→0

(
1 + ε

ε
M

(
1, 1− ε

1 + ε

)
− 1 + ε

ε
+ 1

)
= lim

ε→0

(
1 + ε

ε
M

(
1− ε

1 + ε
, 1

)
− 1 + ε

ε
+ 1

)
= lim

δ→0

1

δ

(
M(1− δ, 1)−M(1, 1)

)
+ 1

= −MX(1, 1) + 1,

which implies that MX(1, 1) = 1/2.
Calculating the Taylor series of the terms in T with respect to h at h = 0 leads
to

(XA + Y A − 2)(X + Y − 2) = Au
(
(A− 1)v2 + u

)
h4 +O(h6),

c

ρ3
M(X, 1)A+B+1−3ρ(Xρ−1)3 = cv3h3 +

c

2

(
(A+B − 2)v2 + 3u

)
v2h4 +O(h5),

c

ρ3
M(Y, 1)A+B+1−3ρ(Y ρ−1)3 =−cv3h3 +

c

2

(
(A+B − 2)v2 + 3u

)
v2h4 +O(h5).

In particular, as expected, the explicit choices of both ρ and M(x, y) do not
change the behavior of the shift term locally around the equilibrium wi−1 =
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wi = wi+1 or h = 0. Moreover, min{1, XA+B−1, Y A+B−1} = 1 + O(h) and
(X + Y − 2)2 = u2h4. Combining these expressions gives

T (X, Y ) = h4
(

(A− κ)u2 +
(
A(A− 1) + 3c

)
uv2 + c(A+B − 2)v4

)
+O(h5).

The polynomial

(u, v) 7→ (A− κ)u2 +
(
A(A− 1) + 3c

)
uv2 + c(A+B − 2)v4

is the same as in (A.8). The proof of Lemma 37 shows that it is nonnegative
for all (A,B) ∈ Rc with c as in (A.9) and κc as in (A.6). We deduce that
T (X, Y ) ≥ 0 holds for all (A,B) ∈ Rc if h ∈ R is sufficiently small. This
proves the lemma.
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Appendix B

Auxiliary inequalities

Discrete Gronwall lemmas

First, we prove a rather general discrete nonlinear Gronwall lemma.

Lemma 40 (Discrete nonlinear Gronwall lemma). Let f ∈ C1([0,∞)) be a
positive, nondecreasing, and convex function such that 1/f is locally integrable.
Define

w(x) =

∫ x

1

dz

f(z)
, x ≥ 0.

Let (xn) be a sequence of nonnegative numbers such that xn+1−xn+f(xn+1) ≤ 0

for n ∈ N0. Then

xn ≤ w−1

(
w(x0)− n

1 + f ′(x0)

)
, n ∈ N.

Note that the function w is strictly increasing such that its inverse is well
defined.

Proof. Since f is nondecreasing and (xn) is nonincreasing, we obtain

w(xn+1)− w(xn) =

∫ xn+1

xn

dz

f(z)
≤ xn+1 − xn

f(xn)
.

The sequence (xn) satisfies f(xn+1)/(xn+1 − xn) ≥ −1. Therefore,

w(xn+1)− w(xn) ≤
( f(xn+1)

xn+1 − xn
+
f(xn)− f(xn+1)

xn+1 − xn

)−1

≤
(
− 1− f(xn)− f(xn+1)

xn − xn+1

)−1

.
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From the convexity of f , it follows that f(xn)−f(xn+1) ≤ f ′(xn)(xn−xn+1) ≤
f ′(x0)(xn − xn+1), which implies that

w(xn+1)− w(xn) ≤ (−1− f ′(x0))−1.

Summing this inequality from n = 0 to N − 1, where N ∈ N, yields

w(xN) ≤ w(x0)− N

1 + f ′(x0)
.

Applying the inverse function of w shows the lemma.

The choice f(x) = τKxγ for some γ > 1 in Lemma 40 leads to the following
result.

Corollary 41. Let (xn) be a sequence of nonnegative numbers satisfying

xn+1 − xn + τxγn+1 ≤ 0, n ∈ N,

where K > 0 and γ > 1. Then

xn ≤
1(

x1−γ
0 + cτn

)1/(γ−1)
, n ∈ N,

where c = (γ − 1)/(1 + γτxγ−1
0 ).

Discrete gradient inequalities

We show some inequalities in two variables.

Lemma 42. Let α, β > 0. Then, for all x, y ≥ 0,

(yα − xα)(yβ − xβ) ≥ 4αβ

(α + β)2
(y(α+β)/2 − x(α+β)/2)2. (B.1)

Proof. If y = 0, inequality (B.1) holds. Let y 6= 0 and set z = (x/y)β. Then
the inequality is proven if for all z ≥ 0,

f(z) = (1− zα/β)(1− z)− 4αβ

(α + β)2
(1− z(α+β)/2β)2 ≥ 0.

We differentiate f twice:

f ′(z) = −1− α

β
zα/β−1 +

(α− β)2

β(α + β)
zα/β +

4α

α + β
z(α+β)/2β,
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f ′′(z) =
α(α− β)

β
zα/2β−3/2

(
− 1

β
zα/2β−1/2 +

α− β
β(α + β)

zα/2β+1/2 +
2

α + β

)
.

Then f(1) = 0 and f ′(1) = 0. Thus, if we show that f is convex, the assertion
follows. In order to prove the convexity of f , we define

g(z) = − 1

β
zα/2β−1/2 +

α− β
β(α + β)

zα/2β+1/2 +
2

α + β
.

Then g(1) = 0 and it holds

g′(z) =
α− β
2β2

zα/2β−3/2(−1 + z),

and therefore, g′(1) = 0. Now, if α > β, g(0) = 2/(α + β) > 0, and g is
decreasing in [0, 1] and increasing in [1,∞). Thus, g(z) ≥ 0 for all z ≥ 0. If
α < β then g(0+) = −∞, and g is increasing in [0, 1] and decreasing in [1,∞).
Hence, g(z) ≤ 0 for z ≥ 0. Independent of the sign of α− β, we obtain

f ′′(z) =
α(α− β)

β
zα/2β−3/2g(z) ≥ 0

for all z ≥ 0, which shows the convexity of f .

Corollary 43. Let α, β > 0. Then, for all x, y ≥ 0,

(yβ − xβ)(yα − xα) ≥ 4αβ

(α + 1)2
min{xβ−1, yβ−1}(y(α+1)/2 − x(α+1)/2)2.

Proof. We assume without restriction that y > x. Then we apply Lemma 42
to β = 1:

(yβ − xβ)(yα − xα) =
yβ − xβ
y − x (yα − xα)(y − x)

≥ 4α

(α + 1)2

yβ − xβ
y − x (y(α+1)/2 − x(α+1)/2)2.

Since
yβ − xβ = β

∫ y

x

tβ−1dt ≥ βmin{xβ−1, yβ−1}(y − x),

the conclusion follows.

Corollary 44. Let a, b > 0 and x, y ≥ 0. Then

(xa − ya)(xb − yb) ≤ (x(a+b)/2 − y(a+b)/2)2 ≤ (a+ b)2

4ab
(xa − ya)(xb − yb).

Proof. The second inequality is already proven in 42. For the proof of the
first inequality, we divide it by ya+b and set z = x/y. Then the inequality is
equivalent to

(za − 1)(zb − 1) ≤ (z(a+b)/2 − 1)2,

which after expansion can be equivalently written as (za/2 − zb/2)2 ≥ 0, and
this is true.
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Poincaré-Wirtinger inequalities

Lemma 45 (Poincaré-Wirtinger inequality). Let meas(T) = 1. It holds for
all v ∈ H1(T) satisfying

∫
T udx = 0 that∫

T
u2dx ≤ CP

∫
T
u2
xdx,

and the constant CP = 1/(4π2) is sharp.

Lemma 46 (Discrete Poincaré-Wirtinger inequality). Let N ∈ N, h = 1/N ,
z0, . . . , zN ∈ R satisfying zN = z0 and

∑N
i=0 zi = 0. Then

h

N−1∑
i=0

z2
i ≤ Cph

−1

N−1∑
i=0

(zi+1 − zi)2,

where Cp = h2/(4 sin2(hπ)) ≥ 1/(4π2). This constant is sharp.

These lemmas are stated in [81, Theorem 1]; for proofs see [56, p. 185] (Lemma
45) and [79, Theorem 1] (Lemma 46).
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