
TempMunger

Ein Visual Analytics Ansatz zur Transformation

Zeitorientierter Daten

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Information & Knowledge Management

eingereicht von

Robert Thurnher, Bakk.

Matrikelnummer 0004297

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Univ.Prof. Dr. Silvia Miksch

Mitwirkung: Dr. Theresia Gschwandtner

Wien, 13. April 2017

Robert Thurnher Silvia Miksch

Technische Universität Wien

A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

TempMunger

A Visual Analytics Approach Supporting

Transformations of Time-Oriented Data

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Information & Knowledge Management

by

Robert Thurnher, Bakk.

Registration Number 0004297

to the Faculty of Informatics

at the TU Wien

Advisor: Univ.Prof. Dr. Silvia Miksch

Assistance: Dr. Theresia Gschwandtner

Vienna, 13th April, 2017

Robert Thurnher Silvia Miksch

Technische Universität Wien

A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Erklärung zur Verfassung der
Arbeit

Robert Thurnher, Bakk.

Neubaugasse 64-66, A-1070 Wien; robert[at]thurnher.email

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 13. April 2017

Robert Thurnher

v

mailto:robert@thurnher.email

Acknowledgements

Dedicated to my father1, my mother, and my wife.
This wouldn’t have been possible if it weren’t for you.
May it also motivate my sister pursuing her dreams.
♥

I’d like to thank Theresia Gschwandtner for her supervision, understanding, and patience.

Further thanks go out to my brother and Michael Jakl for their support and inspiration.

Generally, I’m grateful to everyone who has test-driven the prototype, proofread drafts,
and/or provided feedback – particularly, my sister-in-law and CVAST research staff.

Thank you!

1RIP.

vii

Kurzfassung

Data-Wrangling ist im Allgemeinen die mühevolle Aufbereitung von Daten um diese für
nachfolgende Analysen nutzbar zu machen. Normalerweise bedeutet das handgefertigte
Skripte anzuwenden, was einen gewissen Grad an technischer Expertise verlangt. Um
derartiges Aufbereiten von Daten auch für User, die eher einer “Casual”-Kategorie
zuordenbar sind, zugänglich zu machen haben wir zur Erleichterung damit verbundener
Aufgaben, im Kontext dieser Arbeit einen Visual-Analytics-Prototypen erstellt.

Unser Ansatz ist ein interdisziplinärer, der zeitgemäße Konzepte und Ideen aus diver-
sen Gebieten kombiniert: Mensch-Computer-Interaktion und Usability-Engineering mit
Information-Retrieval, Data-Mining, Machine-Learning sowie Informationsvisualisierung.

In diesem Zusammenhang konzentrieren wir uns speziell auf oftmals nötige Transformati-
onsschritte von zeitorientierten Daten. Diese Art von Daten weist einzigartige Charak-
teristika auf, die bei verschiedenen Lösungsansätzen gesondert berücksichtigt werden
müssen. Basierend auf den Ergebnissen einer Analyse des State-of-the-Art in diesem
Bereich, haben wir offene Fragestellungen sowie einige Anforderungen für einen solchen
Prototypen abgeleitet und folglich einen Software-Prototyp namens TempMunger in
einer agilen Art und Weise iterativ sowohl designt als auch entwickelt. Der Prozess sowie
dazugehörige Artefakte werden umfassend dokumentiert und dargestellt.

Unser Prototyp ist eine web-basierte Anwendung, die für den Gebrauch mittels Desktop-
Browser zugeschnitten ist. Genauer gesagt, bietet sie interaktive Dashboard-Visualisierung-
en für möglichst intuitive sowie explorative Transformationsoperationen zeitorientierter
Daten. Eine qualitative Evaluierung des Prototypen zeigte, dass diese Funktionalität
als nützlich empfunden wird. Außerdem ergaben sich verschiedene Ideen für künftige,
weiterführende Arbeiten.

Abschließend kann man sagen, dass Data-Wrangling ein spannendes Forschungsgebiet
bleibt, in dem es noch viel zu entdecken gilt.

ix

Abstract

Data wrangling generally denotes the cumbersome task of making data useful for analysis.
Usually, this means applying hand-crafted scripts, requiring at least a certain degree
of technical expertise. In order to make suchlike data preparation accessible for rather
casual users as well, we have built a visual analytics prototype in the context of this
thesis, easing related tasks.

Our approach is an interdisciplinary one, combining contemporary concepts and ideas from
various fields: human-computer interaction and usability engineering with information
retrieval, data mining, machine learning, plus information visualization.

In particular we focus on supporting transformations of time-oriented data since this kind
of data exhibits unique characteristics which demand for special consideration. After
analyzing related state of the art we identified open issues and derived requirements for
such a system. We followed an iterative design process to develop a software prototype
called TempMunger , in an agile manner. The process as well as corresponding artifacts
are documented and presented in this thesis.

Our prototype is a web-based application, tailored for desktop browser usage. More
concretely, it offers interactive dashboard visualizations for preferably intuitive and
exploratory transformation operations of time-oriented data. A qualitative evaluation of
the prototype demonstrates its usefulness and reveals opportunities for future work.

Concluding it is safe to say that data wrangling continues to be an exciting field of
research where much is yet to be discovered.

xi

Contents

Kurzfassung ix

Abstract xi

Contents xiii

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Statement . 2
1.3 Aim of the Work . 2
1.4 Methodological Approach . 3
1.5 Structure of the Work . 4

2 State of the Art 7
2.1 Literature Study . 7
2.2 Analysis . 8
2.3 Comparison and Summary . 16

3 Design and Implementation 23
3.1 Requirements Analysis . 23
3.2 Design of UI and Interactions . 31
3.3 Iterative Prototyping . 39
3.4 TempMunger . 39
3.5 Qualitative Evaluation . 53

4 Critical Reflection 61
4.1 Comparison with Related Work . 61
4.2 Discussion of Open Issues . 62
4.3 Requirements Fulfillment . 62
4.4 Answering the Research Questions . 63

5 Summary and Future Work 65

A Software Design and Architecture 67

xiii

B Information Retrieval Background 79

C Supported Date/Time Formats 81

List of Figures 83

List of Tables 85

List of Algorithms 87

Index 89

Glossary 91

Acronyms 93

Bibliography 95

CHAPTER 1
Introduction

1.1 Motivation

Applied work within data science, and more specifically Visual Analytics (VA), “the
science of analytical reasoning facilitated by interactive visual interfaces” [TC05] (p. 4),
can be seen to roughly consist of three main basic building blocks [Mik10]:

1. Data wrangling a.k.a. munging

2. Statistics & Machine Learning (ML)

3. Visualization & analysis itself

While the second and last mentioned fields are constantly evolving related tools and
techniques, the first one is comparatively still lacking in terms of high-level support. This
is when it comes down to actually wrangle usually messy real-world data into a format
prepping it useful for analysis.

To this day, it mostly means fiddling around with the data manually, applying hand-
crafted transformation scripts. This is a tedious task and discourages analyzing data
altogether, especially if the ones intending to work with the data are technically unversed
(for instance, journalists or business analysts).

However, combining contemporary knowledge and technology from the domains of
Human-Computer Interaction (HCI) [Coo04] & User Experience (UX) [Nor02] as well
as Information Retrieval (IR) [MRS08], data mining / ML [WFH16], and Information
Visualization (InfoVis) [Tuf01] [CMS99], could yield substantial improvements here.

Namely, making data wrangling accessible to a wider audience, mainly by providing
interactive analytical visualizations allowing for easy data transformations and giving
immediate visual feedback.

1

1. Introduction

In this thesis we are investigating the field of data wrangling, plus, designing, and
prototypically implementing a VA approach to support the tasks involved. That is,
iteratively creating a software prototype which enables users to wrangle data suitable for
analysis in an intuitive, interactive, and visual way.

VA and InfoVis enable uncovering the non-obvious by using interactive visualizations.
Consequently, this approach is especially useful when applied to complex tasks where
clear overview and structuring is necessary in order to achieve effective results efficiently.
That is also why employing related techniques can generally be expected to be more
successful for the outlined use case than fully automated ones. Hence, an ideal solution
would probably be a blend of automated suggestions, augmenting an interactive interface
driven by visualizations.

Additionally, the to-be-developed prototype shall, in particular, make it convenient to
work on time-oriented datasets. Time itself and time-oriented data, specifically, possess
distinct characteristics (for instance, regarding scale, scope, structure, viewpoint, and
granularity) that make it worthwhile to dedicatedly treat it as a separate data type,
as suggested by Aigner et al. [AMST11]. This is why time-oriented data demands for
special data wrangling solutions which have not been adequately tackled yet.

1.2 Problem Statement

The main research question in the context of this work is:

How can we support data wrangling with VA techniques?

More particular, we are to tackle the following subquestions:

• Which data transformations are best supported by analytical methods and for which
transformations is visual support beneficial?

• How do concrete data wrangling workflow processes look like and how can these
processes be supported by VA methods?

• What data wrangling tasks need to be tackled in particular when dealing with
time-oriented data and how can we support them with VA methods?

The emphasis of this thesis is put on evaluating the feasibility of corresponding concepts
via iterative design, implementation, and evaluation of a software prototype.

1.3 Aim of the Work

Results to be achieved are:

• Design and implementation of a research prototype

2

1.4. Methodological Approach

• Evaluation of the prototype to answer research questions

• Detailed documentation of these

At the end of the project, it should be known whether developing such a prototype
supporting these tasks is feasible and if so, how in detail. As mentioned above, the
approach shall combine concepts from HCI & UX with ones from IR, ML, and VA. Special
focus will be laid on crafting the User Interface (UI) and an underlying analytical
inference engine, interactively providing the user with respective data quality and
potential issue suggestions visually. Furthermore, direct manipulation of data should
be easy. Plus, transformations shall, generally, be easily applicable to batches of data
by making use of bulk operations, while again being visual-interactively supported. A
central challenge is making this all work in the context of time-oriented data.

Answers to the stated research questions are intended to be given by designing, imple-
menting, and evaluating a research prototype which provides VA techniques to improve
and support data wrangling tasks.

1.4 Methodological Approach

In order to answer our research questions we follow the nested model by Munzner [Mun09].
In particular we include the following steps:

1. State of the art review: giving an overview of the topic, spanning from scientific
foundation to various approaches, and serving as first input to our approach.

2. Requirements analysis: determining which features to implement, directed to
answering why, what, and how.

3. Design of interactive visualizations: subsequent iterative design process, mak-
ing use of state-of-the-art tools.

4. Iterative prototypical implementation: following an agile approach until sat-
isfying results are achieved.

5. Qualitative evaluation of results: for validating fulfillment of goals and, conse-
quently, leading to answering our research questions.

In the context of this work, we also consider the data–users–tasks triangle for VA. This
triangle can be seen in Figure 1.1 and is introduced in [MA14]. It is particularly useful
for initial requirements analysis of a visualization project. Consequently, we apply it as a
starting point. Its basic notion is to think of a product for VA within the three dimensions
of data, users, and tasks separately, first, and then in interplay. The latter, thus, defines
effectiveness, expressiveness, and appropriateness of the to-be-chosen interactive VA
methods, as visualized in the diagram.

3

1. Introduction

Figure 1.1: The data–users–tasks triangle as presented in [MA14].

All steps are accurately documented, emphasizing findings of the evaluation and lessons
learned. The thesis covers all aspects and results of the design, development, and
evaluation of the prototype, from mockups and architectural diagrams to test results.

1.5 Structure of the Work

The thesis is structured as follows:

1. An introduction to the topic and thesis itself: this presents the motivation,
problem statement, and methodological approach.

2. A state of the art review: this is laying out the scientific foundation regarding
our topic and showing various approaches. The latter are, thus, analyzed and
compared. It is closed by a crossover to the requirements analysis for our approach,
fueled with preceding input.

3. A design and implementation chapter: this is describing, explaining, and
documenting all connected steps thoroughly. The design section consists of creating
personas, wireframing with mockups, and consequently deriving our requirements.
The implementation section walks through the developed prototype, looking at it
from varied angles, and presents its qualitative evaluation.

4

1.5. Structure of the Work

4. A concluding section with critical reflection of the achieved work: this includes
comparing with related work, discussing open issues, and answering our research
questions. It is also concerning the requirements we have previously derived.

5. Finally, closing the thesis with a summary and future work section: this is just
briefly summing up our work and offering an outlook.

6. At the end, there is an appendix: this contains a detailed presentation of the
software design and architecture of our prototype as well as scientific background,
plus further implementation details.

5

CHAPTER 2
State of the Art

The report or review contained in this chapter focuses on summarizing and comparing
approaches, techniques, and related work within the field which can generally be subsumed
by the term “data wrangling” with an emphasis on visual-interactive support. This
is a relatively young field of interdisciplinary Research and Development (R&D). It is
basically about the process of making any data useful for analysis. This reviewing report
is mainly geared towards offering an overview of the topic in order to comprehensively
show differences of existing approaches as well as commonalities shared between them.
Furthermore, special attention is paid to setting it all into the historic evolutionary
context of the field. In the end, we can see that there is still some need for exploration
and improvements here, particularly regarding visual-interactive components and the
support for time-oriented data.

This chapter gives a brief overview of related work, i.e., its scientific underpinnings,
followed by a walkthrough of different concrete approaches, techniques, and related tools.

2.1 Literature Study

Generally, [KPHH11] was used as a point of origin to find other relevant references. Then,
going through the list of references of these papers, relevance was determined via personal
evaluation. Plus, we scanned the reference lists of thus relevant papers.

Moreover, we searched the archives of topic-related journals (i.e., Information Visualiza-
tion Journal and ACM Journal of Data and Information Quality) as well as scientific,
electronic databases (ACM Digital Library, IEEE Xplore, and also Google Scholar) and
proceedings of relevant conferences (International Conference on Information Visualiza-
tion, IEEE Conference on Visual Analytics, ACM SIGCHI Conference on Human Factors
in Computing Systems, etc.).

7

2. State of the Art

Our search terms included “data wrangling”, “data cleansing”, and variations of these
phrases. Mendeley1 was used as a tool to conveniently keep track of references and
organize our bibliography.

We want to span a comprehensive overview of different approaches to the topic, focusing
on the evolution over time here.

Basics of the field are laid out in [DJ03], mainly relating to Extract, Transform, Load
(ETL) processes as classically known from data warehousing. General theoretical
foundation of transforming large amounts of data interactively can be found in [DJMS02]
and more recently [Hel08]. While the former can be seen as a valuable general resource on
the topic with focus on Relational Database Management System (RDBMS), the latter
is especially interesting as a contemporary specimen spanning a rather wide range of
scientific ground. In particular, [Hel08] explains the statistics theory backing things like
outlier detection and puts it into applied context, e.g., via showing corresponding SQL
queries implementing this. In the end, there is a section focusing on actual interface design
principles regarding the topic of exploratory quantitative data cleaning. To complete the
selection here, basic algorithmic theory of interactive schema mapping and its application
is covered, e.g., by [CKP08]. The matter is relevant in this regard as it is concerned with
interactively (and usually visually) transforming data (schemas in this case) as well.

More recently, another interesting field of research commonly referred to as “Learning
by Example” or more concretely “Programming by Example (PBE)” has emerged.
Traditionally, there has been the approach of “Learning/Programming by Demonstration
(L/PBD)” which requires users to specify start, end, as well as intermediate states of
the respective task at hand to be automated. See [Gul10] for an overview survey of the
foundations of this research area, more generally called “program synthesis”. Based on
the work of [Gul11], Microsoft Excel 2013 is incorporating such concepts (i.e., particularly
applied PBE) into commercial software for end-users. That is, users can show the
application which parts of the data they are interested in by simply marking or highlighting
examples and an underlying engine infers corresponding wrangling transformations from
that – without requiring demonstration of any intermediary steps.

2.2 Analysis

This section presents more concrete approaches and examples, historically aligned, followed
by a comparison and outlook for our prototype.

2.2.1 Potter’s Wheel: A Pioneer

A system pioneering this area is called Potter’s Wheel, [RH01]. It offers a spreadsheet-
like Graphical User Interface (GUI) for interactively specifying and executing data
transformations (see Figure 2.1 for a screenshot, as presented in the paper).

1www.mendeley.com

8

https://www.mendeley.com/

2.2. Analysis

This can be done either via L/PBD (i.e., the user “shows” what he wants to achieve
and the system tries to infer actions from this) or somewhat direct manipulation via
corresponding menus. Yet, among other things, it does not support “fill” transform
operations (that is, automatically filling certain fields with certain data, batch-wise).
Plus, naturally, its usability is not up to modern standards.

On the pro arguments side: important step into the direction of visual-interactively
supporting users in data wrangling tasks.

On the con arguments side: as stated above, raw (also due to its pioneering status)
implementation with room for improvements and there is no real charting support.

Figure 2.1: Showing Potter’s Wheel spreadsheet-like GUI approach. Transform operations
are accessible via menu bar [RH01].

2.2.2 PADS: A Domain-Specific Language Approach

The system of [FG05] approaches the topic of transforming large amounts of semi-
structured data via a descriptive Domain-Specific Language (DSL). Consequently,
it is lacking a visual-interactive component altogether and taken into consideration here
for the sake of completeness and demonstrating a different solution view. Users describe
the data that is to be transformed in the DSL. Then the PADS compiler allows for
generating (C-based) parser libraries and built-upon tools for further processing of such
data. The project was conducted at AT&T and focuses on specific data transformation
requirements of the company at that time. Target output data formats are in particular
XML and ones for loading the data into RDBMSes (i.e., SQL). Mainly supported in-
put formats are of ASCII (log files), binary (legacy networking protocols), and Cobol kind.

Here is some exemplary web server access logs input data as shown in the paper:

207.136.97.49 - - [15/Oct/1997:18:46:51 -0700] "GET /tk/p.txt HTTP/1.0" 200 30

tj62.aol.com - - [16/Oct/1997:14:32:22 -0700] "POST /scpt/dd@grp.org/confirm HTTP/1.0" 200 941

9

2. State of the Art

A pro argument for this approach is that the DSL is relatively concise and easily graspable
due to its declarative nature. Furthermore, it frees its users from manually writing parsers
and constructive tools as these are generated from the DSL definitions of a concrete
data format to work with. Finally, the quality and range of tools can be improved and
extended in a convenient way being quite independent from the generated parsers.

If we wanted to find a con argument here it could be that while being useful and a
general step forward at the time of development, we believe that there are probably better
ways to support certain kinds of end-users in these tasks, namely of the visual-interactive
kind which we want to evaluate with this thesis after all.

2.2.3 Microsoft BizTalk Schema Mapper Research

In the approach of [RCC05], Microsoft’s BizTalk schema mapper application is attempted
to be improved. Main use case being visual and interactive support of mapping two
differing XML schemas. Moreover, the schemas are of considerable big size (i.e., thousands
of elements in each schema) to be not processable in a usable way within the traditional
UI. That is, too many connections between the schemas are shown in a too complex way
to be useful. To improve the UI some InfoVis techniques are applied (Figure 2.2 presents
a screenshot showing this).

As described by the authors, these techniques are:

• Highlight propagation:
(de-)emphasizing areas of interest within the mapping UI

• Auto-scrolling:
automatically scrolling to selected items (comparable to IDEs) etc.

• Coalescing trees:
somewhat relating to highlight propagation hiding irrelevant nodes

• Multi-select:
reasonable support for multi-selection of nodes concerted with general visualization

• Incremental search: live search results updating the UI while typing

• Bendable links: enabling the user to see connections when actually overlayed

• Focus on linked elements: improved default behavior of up/down keys usage

The results are evaluated via a user study and have proven to be useful which can be
seen as a pro argument here as well.

There is little to mention on the con side regarding the approach of [RCC05] as it overall
demonstrates an advancement in the area of interactive schema mapping.

10

2.2. Analysis

Figure 2.2: BizTalk research GUI demonstrating some applied InfoVis techniques. On
each vertical side of the visible pane, elements of a respective schema are represented by
a tree-like structure. Mappings between them are visualized as arcs. Center nodes are
used for displaying more complex (m:n-like) mappings [RCC05].

2.2.4 Clio: From Research Prototype to Industrial Tool

In [HHH+05] the authors outline the evolution of an IBM research prototype to an
industrial-strength tool. Clio is an application for descriptive specification of schema
mappings. It is mainly targeted towards XML and relational schemas (see Figure 2.3).
So, in this respect it is quite similar both by field and application to the aforementioned
Microsoft “BizTalk” schema mapper product, adding RDBMS/SQL mapping to the
mix. Mappings are represented by an abstract query graph allowing for translation of
data transformations into specific query languages. This is what makes it interesting
and distinguishing, again, when compared with Microsoft’s BizTalk schema mapping
application.

Finally, the paper focuses on revisiting the architecture and algorithms behind the
software and then explains issues and solutions on the way to applying industrial usage.
Consequently, it is a useful real-world example of transferring science in practice.

2.2.5 Potluck: A Semantic Web Approach

The research prototype in [DFH07] focuses on making heterogeneous semantic web data
accessible to casual users. It provides a web interface for visual and interactive wrangling
of data mainly relating to Resource Description Framework (RDF). An interesting feature
is allowing users to tag and visualize data with physical locations via a map view (see
Figure 2.4). What is also interesting in this approach is its demonstration of increased
interest respectively shift towards web technologies at that time. Furthermore, it delivers
some kind of preview how far web-based approaches would go in this area. Plus, it
illustrates the general trend in the direction of casual end-user applications (enabling
non-expert users to operate actually complex tasks).

11

2. State of the Art

Figure 2.3: Clio GUI, also showing similarities with the MS BizTalk one. Consequentially,
again, data schemas (this time from relational DBs, though) on the left and right-hand
sides with mappings as arrowed lines [HHH+05].

2.2.6 R&D Veterans: DataWrangler & OpenRefine

The two systems that can be the seen to have set the benchmark in this space are:

1. DataWrangler (Stanford Visualization Group research project2) [KPHH11]

2. OpenRefine (open-sourced3 product4 f.k.a. Google Refine and Freebase Gridworks)

DataWrangler

DataWrangler, cf. Kandel et al. in [KPHH11], is a web-browser-based application oriented
towards a visually interactive approach (see Figure 2.5). It contains an inference engine
suggesting transforms, plus, data cleaning sessions can be exported and reused as scripts.
The creators of the project meanwhile moved on to make a commercial product out of it,
called Trifacta Wrangler5.

2vis.stanford.edu/wrangler/
3github.com/OpenRefine/OpenRefine
4openrefine.org
5www.trifacta.com/products/wrangler/

12

http://vis.stanford.edu/wrangler/
https://github.com/OpenRefine/OpenRefine
http://openrefine.org/
https://www.trifacta.com/products/wrangler/

2.2. Analysis

Figure 2.4: Potluck map view which can be seen as a back then innovative visualization
in the field. Data is displayed geospatially [DFH07].

One thing which is less supported by Wrangler is full-control direct manipulation of data.
That is, it is more geared towards L/PBD than to deliberately changing the content of
single values via direct input.

In addition to that, the UI is limited which can also be ascribed to the web-based nature
of the tool. Things like not truly responsively, and richly interactive UX, especially when
the amounts of data that are to be wrangled grow.

DataWrangler was evaluated via a user study and has shown to improve productivity of
data wrangling tasks considerably.

Biggest pro arguments of the approach:

• Interactively inferred suggested transforms

• Rich collection of transforms to be applied

• Shows the potential of pursuing the visual-interactive path

Main con argument is performance-wise constrained usefulness of the tool and its
generally improvable UX. Also, no real charting support available, yet.

13

2. State of the Art

Figure 2.5: DataWrangler UI as a state of the art shaping, innovative approach. Data
transform history and related suggestions are located on the left, tabular interaction
pane on the right [KPHH11].

OpenRefine

OpenRefine is a browser-based application as well (but running locally on the user’s
machine, also due to data protection respectively privacy reasons). It allows for direct
manipulation of data (see Figure 2.6), yet, it supports less interaction-driven transform
operations than DataWrangler (which infers appropriate transformation suggestions from
solely pointing the cursor to data in a certain way).

A nice feature is its visual statistical analytics of data distribution via histograms etc.
(→ pro argument). But, on the con side, it generally lacks some data transforma-
tion operations which are supported by DataWrangler (particularly reshaping-related,
like un/folding – extracting/merging specific parts of data within a column into/from
additional ones).

2.2.7 Temporal Research: On Time Series Data

The research prototype in [BRG+12] focuses specifically on time-series-based data. It is
tailored for joint usage of a domain and a data mining expert. Technically, a preprocessing
pipeline is visual-interactively created and incrementally adjusted via the tool (see
Figure 2.9).

What is interesting here is the application of the domain on time series data. Moreover, its
pipeline-oriented workflow UI, offering various statistical visualizations, is a well-designed
asset. Finally, the approach is evaluated by applying it to a case study delivering results
proving it useful in its context.

14

2.2. Analysis

Figure 2.6: Google/OpenRefine UI in action, also offering direct manipulation of data.
Again, as in DataWrangler, tabular respectively spreadsheet-like interface.

2.2.8 The Industry: Talend Open Studio

Within the industry a well-known collection of enterprise tools is Talend Open Studio6.
This is an open source software suite with commercial support offerings. Architecturally,
it is based on Eclipse Rich Client Platform (RCP). The product which can be used
for data wrangling is Talend Data Quality7 (see Figure 2.10 for its GUI). It allows for
interactive specification and execution of data transformations with visual charting aid.
I.e., data at hand is visualized via meaningful charts while interactively manipulating it.

2.2.9 An Innovative Approach: Kibana Timelion

Kibana is a product by the company Elastic which is mainly geared towards visualizing
data of their other product Elasticsearch in an interactive fashion with charts. As sort
of a research project Timelion was born (see [Ras15] and Figure 2.7). It allows for
interactive exploration and transformation of time series data with a programmatic,
mathematical DSL via a Command Line Interface (CLI). Commands trigger chart
visualizations accordingly. The way these interaction methods are combined is rather
unseen before.

6www.talendforge.org
7www.talend.com/products/data-quality/

15

https://www.talendforge.org/
https://www.talend.com/products/data-quality/

2. State of the Art

Another Elastic product worth mentioning in our context is called Logstash8. This is
basically a universal data processing engine with transformation capabilities, historically
focused on log event data, mainly driven by filter expressions written in Ruby-like syntax.

Figure 2.7: Kibana Timelion as an innovative approach to visual-interactively exploring
and transforming time series data [Ras15].

2.2.10 Modern Data Science: Jupyter Notebooks

Data science nowadays is commonly pursued with Jupyter Notebooks9.

These interactive notebooks are powered by a web-based application, often running
locally and connecting to remote data sources. The technology originally emerged from
IPython, an interactive CLI in Read–Eval–Print Loop (REPL) style. It since has moved
to the web and supports other popular data science languages, like R, as well. So one
can make use of statistical computations in a scripting manner, interactively creating
according chart visualizations, potentially embedded in more standard textual sections.

2.3 Comparison and Summary

As shown by the presentation of related work, a diverse selection of approaches and tools
can be found in this field. Yet, there are also quite some shared aspects to be recognized.
For example, basic GUIs for visual-interactive schema mapping turned out to develop

8www.elastic.co/products/logstash
9jupyter.org

16

https://www.elastic.co/products/logstash
https://jupyter.org/

2.3. Comparison and Summary

Figure 2.8: Data science with Jupyter Notebooks as advertised on their website.

into pretty similar directions (compare, e.g., the mapping views of BizTalk and Clio
projects as presented in Figure 2.2 and 2.3).

Furthermore, the general UI for displaying datasets in this area is spreadsheet-like
(see Potter’s Wheel, DataWrangler, OpenRefine, and Talend). In addition to that,
visual charting aids have started to be incorporated (particularly demonstrated by
the more recent time series data related prototype and commercial tools by Talend).
Moreover, modern and innovative approaches are combining classic CLI with scripting,
and interactive charting in novel ways (see Kibana Timelion and Jupyter Notebooks).

Table 2.1 provides a comparison outline of these projects as well as a preliminary
requirements list for our approach. It should be noted that “visual interactivity” is
somewhat hard to measure therein, as some approaches lead into quite special directions.

According to these findings there seems to be a need for further research in visual-
interactive aid, for example, via meaningful charts. Gaps to be filled here are connected
to applying interactive InfoVis techniques in order to further improve support of data
wrangling tasks. There are approaches already moving into this direction, yet, in particular
interactive charting assistance has the potential to substantially facilitate wrangling tasks
while still needing further research. As it turns out, visual-interactively supporting data
wrangling tasks is currently still in its infancy. While the general topic of data wrangling
is not new and quite some research and practice has been done in this field, combining it

17

2. State of the Art

with GUIs offering decent UX is relatively young. Especially, incorporating visualization
of the to-be-transformed data and corresponding data transform operations themselves
via meaningful charts is something where further R&D is required.

To this end, we are developing a research prototype, called TempMunger, facilitating
a visual presentation of the data that enables a better and faster understanding of the
data structure and where there is a need for transformation as well as interactive charts
for data manipulation and for giving immediate visual feedback of the transformation.

2.3.1 Our Approach: TempMunger

Where we are intending to excel with TempMunger here is by bringing concepts from
both DataWrangler and OpenRefine together with enhanced visual charting aid as well as
our derived requirements (see Section 3.1.2) and improved UX. The main kind of data to
be wrangled in particular will be time-oriented. So, focus will be laid on visual-interactive
support of wrangling time-oriented data.

More concrete, possible areas of improvement include:

• Introduction of modern interaction patterns, like drag & drop column merging

• Visualizing data structures via meaningful charts, presenting transform suggestions

• Directly manipulative interaction with these charts to transform underlying data

• Special focus on supporting time-oriented data with meaningful charts and interac-
tive transformations

Further requirements are derived in Section 3.1.2 and we expect that more reasonable func-
tionality, features, and constraints will emerge from the iterative design – implementation
– evaluation process of the thesis project.

In addition, we are going to tackle the following data wrangling challenges as identified
by [KHP+11]:

1. Diagnosing data problems visually

2. Visualizing “raw” data

3. Visual assessment and specification of automated methods

4. Living with dirty data (visually; i.e., how to display erroneous data best)

While these InfoVis topics are merely directed towards data profiling, we extend upon
this by applying it to transformations connected to data wrangling.

To sum it up with our main research question, stated once again:

How can we support data wrangling with VA techniques?

18

2.3. Comparison and Summary

F
ig

u
re

2.
9:

T
im

e
se

ri
es

re
se

ar
ch

U
I

w
it

h
in

te
re

st
in

g
p
ip

el
in

e-
b
as

ed
ap

p
ro

ac
h

(t
op

p
an

e)
.

V
ar

io
u
s

ch
ar

ts
(m

ai
n

p
an

e)
v
is

u
al

iz
e

th
e

d
at

a
at

h
an

d
(r

ig
h
t

p
a
n
e)

[B
R

G
+

12
].

19

2. State of the Art

P
ro

je
c
t

P
la

tfo
rm

D
o

m
a
in

G
U

I
R

ich
n

e
ss

V
isu

a
l

In
te

ra
c
tiv

ity
C

h
a
rts

T
im

e
-O

rie
n

te
d

D
a
sh

b
o

a
rd

P
o
tter’s

W
h
eel

C
+

+
,

S
w

in
g

G
en

eric
M

ed
iu

m
M

ed
iu

m
N

o
N

o
N

o

P
A

D
S

D
S
L

C
o
d
e,

C
S
p

ecifi
c

N
/A

N
/A

N
o

N
o

N
o

B
izT

a
lk

W
in

d
ow

s
.N

E
T

S
ch

em
a

M
ap

p
in

g
M

ed
iu

m
M

ed
iu

m
N

o
N

o
N

o

C
lio

J
ava

D
esk

top
S
ch

em
a

M
ap

p
in

g
M

ed
iu

m
M

ed
iu

m
N

o
N

o
N

o

P
o
tlu

ck
W

eb
S
em

an
tic

W
eb

L
ow

M
ed

iu
m

N
o

N
o

N
o

D
a
ta

W
ra

n
gler

W
eb

G
en

eric
M

ed
iu

m
S
p

ecial
N

o
N

o
N

o

O
pen

R
efi

n
e

W
eb

G
en

eric
M

ed
iu

m
H

igh
Y

es
Y

es
N

o

T
im

e
S

eries
U

n
k
n
ow

n
S
p

ecifi
c

H
igh

H
igh

Y
es

Y
es

P
artia

lly

T
a
len

d
E

clip
se

R
C

P
G

en
eric

H
igh

H
igh

Y
es

U
n
k
n
ow

n
P

artia
lly

K
iba

n
a

T
im

elio
n

W
eb

S
p

ecifi
c

H
igh

S
p

ecial
Y

es
Y

es
N

o

J
u
p
yter

N
o
teboo

ks
W

eb
G

en
eric

H
igh

S
p

ecial
Y

es
Y

es
N

o

T
e
m

p
M

u
n

g
e
r

D
e
sk

to
p

(W
eb

)
G

e
n

e
ric

H
ig

h
H

ig
h

F
o

c
u

s
H

ig
h

ly
F

o
c
u

s

T
ab

le
2.1:

P
ro

jects
com

p
arison

serv
in

g
as

a
startin

g
p

oin
t

to
d
eriv

e
b
asic

req
u
irem

en
ts.

20

2.3. Comparison and Summary

F
ig

u
re

2
.1

0
:

T
a
le

n
d

O
p

en
S
tu

d
io

D
a
ta

Q
u
a
li
ty

G
U

I
a
s

a
n

in
d
u
st

ry
-s

ta
n
d
a
rd

so
lu

ti
o
n

b
a
se

d
o
n

E
cl

ip
se

R
C

P
.

In
te

ra
ct

iv
el

y
m

a
n
ip

u
la

te
d

d
a
ta

(o
n

th
e

le
ft

)
b
y

tr
a
n
sf

o
rm

a
ti

o
n
s

(c
en

te
r)

is
v
is

u
a
li
ze

d
v
ia

ch
a
rt

in
g

su
p
p

o
rt

(r
ig

h
t)

.
S
cr

ee
n
sh

o
t

o
ri

g
in

a
ll
y

ta
k
en

fr
om

p
ro

d
u
ct

w
eb

si
te

.

21

CHAPTER 3
Design and Implementation

3.1 Requirements Analysis

This is a vital part and first step of our methodology leading to a proposed solution.

3.1.1 UX Personas

In order to derive a meaningful list of design requirements we make use of an instrument
from designing products called UX personas.

It has been pioneered for usage with software development by Cooper [Coo04]. The
basic idea is to come up with some stereotypical “personalities” described by certain
characteristics which represent our target user groups. An important aspect is the
potential creation of empathy with our future users.

Each of these personas is, typically, illustrated with a profile picture and at least a
firstname. The notion is to create some degree of familiarity and identifiability for the
UX designer and other parties involved in the design process. Furthermore, usually, a
persona is equipped with some demographical coordinates, some sort of tagline which
serves as an executive summary, enhanced with background info, and motivations. All
of this information is normally pointed and rather skimped. It should support in easily
creating a vivid idea and image of the different users of the product in design.

Finally, scenarios or user stories briefly describe ways in which these particular user types
would use the imaginary product. In the end, it is important the resulting personas
can also be physically tangible – for instance, printed out on cards and pinned onto a
whiteboard. Personas are a valuable tool for subsequent design of UI and interactions.

Table 3.1 provides a high-level overview of the personas we came up with for our
prototypical software, focusing on skill set distribution. As one can see, persona skills
range from overall highly to overall lowly skilled as well as individuals with focus on

23

3. Design and Implementation

Skills Hugo Alice Bob John Jane Walter

Technical low high low low high low
Scientific medium high low medium high high

Data-Related medium high medium medium high medium
Temporal Interest medium high low high high high

Table 3.1: UX personas skill summary and comparison. Edge entries in bold.

certain different skills. This makes for an interesting foundation as, all in all, quite a
disperse set of potential users has to be catered for. The following pages contain our
personas themselves. The profile pictures were created with an online avatar tool1.

3.1.2 Requirements List

Through the creation of our personas we were able to properly visualize and dissect
corresponding requirements for our prototype. Consequently, we have derived these:

• R1: The prototype must be capable of loading and working with diverse datasets

• R2: Moreover, it must be intuitive for casual users (i.e., less technically expertized)

• R3: Yet, some shortcuts for rather power users should be supported as well

• R4: Focus of our approach has to be on visual-interactive charting aid

• R5: These charts must be centered on applying time-oriented data transformations

• R6: Plus, they should provide extraordinary visual overview of the dataset at hand

• R7: Thus, focus has to be put on choosing most effective and efficient visualizations

• R8: Furthermore, interactively exploring data must be conveniently possible

• R9: A more traditional tabular editor should be available with direct manipulation

• R10: Editing time-oriented data should be supported by specific UI controls

• R11: Data quality issues need to be easily identifiable and effectually addressable

• R12: Conveniently spotting data anomalies respectively outliers should be possible

• R13: Concrete time-oriented data transformation operations to be supported:

– Data cleaning regarding missing and erroneous values

– Normalization concerning points in time and intervals

– Merging columns in an intuitive visual-interactive way

– Formatting cleanup, e.g., inconsistencies or conversion
1avachara.com/avatar/

24

http://avachara.com/avatar/

3.1. Requirements Analysis

3.1.3 Hugo

Demographics

• Age: 35

• Location: Vienna, Austria

• Job: Business Analyst

• Expertise: Marketing & Statistics

Tagline

“I need to quickly filter out erroneous data from market survey results.”

Background

• Studied business administration focusing on marketing and specializing in statistics

• Some years of working experience in the industry

• Responsible for pointing out business opportunities through analyses

Motivations

• Wants to see the “big picture”

• Doesn’t want to “lose” any time

Scenarios (User Stories)

• Got huge amounts of messy real-world data from various market surveys

• Wants to “scan” this data quickly for using it in market/business analyses

• Often data is time-oriented, as it denotes market-related developments over time

25

3. Design and Implementation

3.1.4 Alice

Demographics

• Age: 31

• Location: Vienna, Austria

• Job: Academic Researcher

• Expertise: Mathematics & Statistics

Tagline

“I’m interested in spending less time wrangling datasets suitable for analysis.”

Background

• Studied mathematics with a focus on statistics resulting in a research position in
the field (post-doctoral)

• Special focus of the research group is time-oriented data, being involved in various
international projects

Motivations

• Wants to analyze huge datasets, often containing flawed data

• She would rather spend time on analysis than preparation

Scenarios (User Stories)

• Got various sample time-oriented datasets and wants to analyze the data

• Furthermore, wrangling should take less effort to apply Occam’s razor

26

3.1. Requirements Analysis

3.1.5 Bob

Demographics

• Age: 34

• Location: Graz, Austria

• Job: Journalist

• Expertise: Journalism & Politics

Tagline

“I would like to be able to handle messy data for analysis to be used in my articles.”

Background

• Graduate of communication studies with a specialization in politics

• Worked for several online news agencies

Motivations

• Is held back from doing real “data journalism” due to lack of technical skills

• Would get into this kind of journalism if tools were better suited to his needs

Scenarios (User Stories)

• Got an idea for a current news story based on some quite untidy political/economic
data which is often of time-oriented nature

• Is able to conveniently verify justification of story based on respective analysis of
wrangled data

27

3. Design and Implementation

3.1.6 John

Demographics

• Age: 40

• Location: Salzburg, Austria

• Job: Political Analyst

• Expertise: Politics & Statistics

Tagline

“I want to conveniently and visually prepare vast amounts of public poll data for analysis.”

Background

• Studied political sciences with a focus on statistics (Ph.D.)

• Works for news agencies, especially analyzing electoral situations

Motivations

• Strong need to be able to get lots of data from various polls into unified schema
with as little hassle as possible

• Is not particularly technically skilled or interested, just wants to get the data to be
able analyzing it

Scenarios (User Stories)

• Electoral poll data, consequently, mainly temporal natured, from various sources
needs to get prepared respectively unified for analyzing

• Uses the visual-interactive tool being able to get the job done in a convenient way

28

3.1. Requirements Analysis

3.1.7 Jane

Demographics

• Age: 37

• Location: Munich, Germany

• Job: Industrial Researcher

• Expertise: Biology & Statistics

Tagline

“I need a quick(er) and more reliable way to experiment with biological test data.”

Background

• Graduated in bio engineering

• Works at a pharmaceutical company testing new ways of synthesizing cosmetics

Motivations

• Currently, the whole roundtrip of setting up test labs and analyzing results is
cumbersome and takes much time

• Wants to be able to iterate in a quicker mode of operation by improving on wrangling
test data applicable for actual analysis

Scenarios (User Stories)

• Is able to reduce testing roundtrips by using the visual-interactive tool for making
time series test data useful for analysis

• Based on experience and results from previous iterations she is able to decrease
overall throughput time even more

29

3. Design and Implementation

3.1.8 Walter

Demographics

• Age: 46

• Location: Vienna, Austria

• Job: Medical Doctor

• Expertise: Diabetes

Tagline

“I want to be able to conveniently visualize temporal therapy data provided by patients.”

Background

• Studied medicine, graduating cum laude

• Works at special center focusing on diabetics treatment

Motivations

• Often, therapy data provided by patients is rather messy, that is, concerning missing
respectively erroneous values, formatting, ...

• Wants to be able to visualize data to get to see the “real” picture

Scenarios (User Stories)

• Using the tool he is able to reduce time spent on getting time-series-based therapy
data provided by his patients ready for analysis and can focus on actually analyzing

• Might even encourage (at least some of) his patients to use the tool themselves to
further reduce overhead

30

3.2. Design of UI and Interactions

3.2 Design of UI and Interactions

For designing the UI and interactions we have created mockups a.k.a. wireframes [Gar11].

3.2.1 UI Mockups

The design of our prototype should meet our list of requirements. To this end, we created
a number of mockups to be able to easily refine our designs.

We have created our UI mockups using Balsamiq2 as productive tool. An important
aspect of wireframing is that it should be convenient creating the mockups. One needs to
be able to quickly iterate on ideas and throw away things which did not lead into the right
direction. Often, simply pencil and paper are being used which is already a good way to
get to some first scribbles. A quite common mistake is to skip proper wireframing and
jump to design screens immediately. Most of the power within the creative design process
and flow is lost this way as design screens take considerably more effort in producing
them. Consequently, iterating on these is usually more sluggish and throwing results
away rather avoided.

The following pages contain our resulting wireframed mockups including some descriptions
and further explanations regarding their functionality and respective underlying reasoning.
Mockups were created iteratively and evaluated in qualitative feedback loops until
satisfying results have been achieved, that went into prototypical implementation.

Design Process

While iteratively designing with the help of mockups we constantly refined our ideas,
adapting our approach, and trashing things that did not work out as expected.
Some material thereby discovered and/or changed:

• Foremost, pie charts are, mostly, not useful in our context of transforming time-
oriented data

• On the other hand, bar charts are well suited to communicate quantities (e.g., of
different table entries)

• Line charts, as commonly used for time series data, are not being emphasized on
in our approach, mainly since we have found calendar heatmap visualizations to
be superior for our use case, as our approach is generally not constrained to time
series data but should be suitable for any time-oriented data

• Normalization functionality consciously left rather vague, to be fleshed out when
actually developing the prototype

• Modal dialogs containing interactive charts make sense for certain actions

2balsamiq.com

31

https://balsamiq.com/

3. Design and Implementation

• Visualizing the context of two different columns next to each other for exploratory
comparison is beneficial

• A browser-based application is sufficient and a dedicated desktop one not needed
in this case

Upload Dialog

Figure 3.1: UI mockup of the upload dialog.

Naturally, the first UI component we have designed is the one which feeds the application
with data to operate on: the upload dialog (see Figure 3.1).

• Description

– The main goal here was simplicity

– Consequently, truly simple dialog

– An area for dropping off file

• Reasoning

– As it is central to the application, uploading has to be really simple

– Thus, with as little effort as possible

– That is, affordance has to be intuitive

The idea regarding interaction is that as soon as a file is selected, the upload commences
automatically, giving visual feedback of its progress to the user via according animation
effects, disappearing as soon as it is finished.

32

3.2. Design of UI and Interactions

Table Editor

Figure 3.2: UI mockup of the table editor.

The table editor page (see Figure 3.2) has been designed to be one of the two main pages
of the application, the charts page being the second one, intuitively accessible via tabbed
navigation in the upper right of the screen.

• Description

– Enables direct manipulation editing of data

– Supports multi-row actions via check box selection

– Various search, sorting, and filtering options are available

– Provides menu access to further and more specialized dialogs

• Reasoning

– The table editor is a well-known UI metaphor for this use case

– Many users are familiar with editing tabular data from MS Excel & co.

– It supplies the user with a straightforward and efficient mode of interaction

33

3. Design and Implementation

Missing Values Dialog

Figure 3.3: UI mockup of the missing values dialog.

The missing values dialog (see Figure 3.3) has been designed to be opened from the table
editor page via according menu access.

• Description

– Concrete shape of chart not 100% clear at this point

– Most probably, bar chart – possibly, a horizontal one

– User is able to fill missing value entries or delete them

– Options provided are filling them with estimates or defaults

• Reasoning

– Bar charts are capable of communicating distributions well

– Another possibility would be pie charts, but they are proven to be misleading

– To quote Tufte [Tuf01], p. 178: “Given their low density and failure to order
numbers along a visual dimension, pie charts should never be used.”3

3Cf. www.edwardtufte.com/bboard/q-and-a-fetch-msg?msg_id=00018S

34

https://www.edwardtufte.com/bboard/q-and-a-fetch-msg?msg_id=00018S

3.2. Design of UI and Interactions

Normalization Dialog

Figure 3.4: UI mockup of the normalization dialog.

The interval-focused normalization dialog (see Figure 3.4) is meant to be accessible via
menu from the table editor page, too.

• Description

– Its purpose is supposed to be enabling a user to normalize temporal intervals

– For batch-wise transforming values of entries within a certain timespan

– Chart visualization is rather unclear at this stage

– Probably, bar chart as well – but rather vertical one

– Interaction via point and click, including with chart

• Reasoning

– The use case being worth covering became evident while gathering requirements

– Consequently, we will experiment with supporting it via meaningful interactive
chart visualization

– Concrete characteristics will be shaped while iterative development itself

– Most probably, our color scheme of the chart visualization will be within
neutral, plain gray to black range

– Since explicit coloring should only be used when it can communicate and,
hence, convey meaning to the user, being intention-revealing, that is

– So, in the case of Figure 3.3 it may make sense to use a noticeable color

35

3. Design and Implementation

Outlier Detection Alerting

Figure 3.5: UI mockup of the outlier detection info alert.

When outliers are detected we need to show that to the user (see Figure 3.5). As we
intend to apply machine learning for this purpose, we need some way to do so without
sacrificing good UX.

• Description

– Therefore, a simple modal dialog overlay is chosen

– It offers the user to display detected potential outliers

– When the user accepts, views are filtered accordingly

• Reasoning

– Corresponding ML processing has to happen in the background

– This is due to its potentially longer lasting computation time

– Consequently, informing the user about results has to be as unobtrusive as
possible without interruption

– So, it should definitely not interfere with the current workflow, goals, and
tasks of the user

– Thus, we intend to make use of an overlay which does not block the UI and
stays around for later use, more like an interactive notification-style message

36

3.2. Design of UI and Interactions

Table Column Merging

Figure 3.6: UI mockup of merging table columns via drag & drop.

An interesting idea is to enable merging time-oriented data columns via drag & drop
interaction metaphor (see Figure 3.6).

• Description

– So when dragging a temporal column unto another, a related merging operation
should be initiated

– The initial idea is to offer optional choice regarding the merge via a menu then

– Options like what to do with missing values and how to merge values in general

– Another idea is enabling column extraction via drag & drop as well, still
somewhat vague, though

• Reasoning

– Many users are familiar with the basic kind of this interaction from spreadsheet
applications like Excel

– Consequently, when indicating via according cursor on hover it is likely users
will give it a spin

– Corresponding coloring of drop targets while dragging would be helpful to
support the user with the interaction

37

3. Design and Implementation

Charts Page

Figure 3.7: UI mockup of the charts page including calendar heatmap visualization.

The charts page is the second of the two main pages of the application, next to the initial
table editor one.

• Description

– It is headed by an interactive calendar heatmap visualization

– Below, two distribution bar charts are next to each other

– Controls allow interacting with the charts, plus their items should be interactive

– Table editor filtering is intended to be interconnected with charts page views

• Reasoning

– Calendar heatmap visualizations are particularly useful for displaying time-
oriented data distributions

– Densities of data therein are usually visualized via appropriate color scheming,
popularly ranging in the green spectrum

– Histogram-like bar charts are useful for viewing data distributions in general

– Having two of the latter next to each other is great for comparisons, interactive
exploration, and discovery

38

3.3. Iterative Prototyping

3.3 Iterative Prototyping

Following the creation of our UI mockups and agreeing that a satisfiable state had been
reached, we started with implementing the corresponding prototypical software.

So, we developed in an agile manner, meaning close contact and collaboration with the
“client”, in this case the assisting thesis advisor. Plus, developing respective parts of the
application iteratively, chunk by chunk, preferably with short iteration cycles. While
developing new features there were also regular short phases in between, where focus was
laid on bug fixing, cleanup, and polishing of existing things.

Therefore, we have set up a live testing environment, easily accessible for the client,
regularly shipping changes, and gathering feedback to be incorporated as promptly as
possible. Technical details regarding the setup are described in Appendix A.

As workflows in this project were particularly lean and lightweight, no special issue
management software was used. It generally sufficed to make use of simple tools like
Wunderlist4, Simplenote5, and email communication for tracking, planning as well as
discussing todos, tasks, and issues. Additionally, from time to time when felt necessary
and considered potentially fruitful, personal meetings were held. Mainly for hands-on
demoing and reviewing purposes, plus, talking about direction-giving decisions.

This process was followed until the prototype eventually reached feature-completeness.

3.4 TempMunger

This section goes into some details regarding the implemented prototype itself. Extensive
documentation of related software design and architecture can be found in Appendix A.

3.4.1 Implementation Details

As Integrated Development Environment (IDE), IntelliJ IDEA6 was used.
For conveniently reloading compiled code on the backend without requiring server restarts,
JRebel7 was employed. On the frontend, a technique called Hot Module Replacement
(HMR) is fulfilling similar tasks. Redux DevTools8 is a useful Google Chrome browser
extension when developing Redux/React apps, and PageSpeed9 for adhering to website
performance best practices. Cross-browser development as well as responsiveness for
mobile devices were not part of the thesis prototype. Though, at least basic support may
be present due to libraries used. So the application is primarily optimized and tested to
run in a Google Chrome desktop browser.

4www.wunderlist.com
5simplenote.com
6www.jetbrains.com/idea/
7zeroturnaround.com/software/jrebel/
8extension.remotedev.io
9developers.google.com/speed/pagespeed/

39

https://www.wunderlist.com/
https://simplenote.com/
https://www.jetbrains.com/idea/
https://zeroturnaround.com/software/jrebel/
http://extension.remotedev.io/
https://developers.google.com/speed/pagespeed/

3. Design and Implementation

The source code might be made public as open source software at some point in time,
most likely on GitHub.

Elasticsearch Aggregations

Foundational background regarding IR and the search engine technology used for our
prototype can be found in Appendix B. Its software architecture is covered in Appendix A.
Aggregations are a powerful way in which Elasticsearch supports real-time analytics.
They are used extensively throughout our application. The general idea is to aggregate
occurrences of certain values in buckets with corresponding counts. Most of the charts
implemented in our solution rely heavily on these. Moreover, Elasticsearch aggregations
can be nested which renders lots of analytical variety possible. Thus, we are storing field
values non-analyzed for aggregation as well as analyzed for full-text search purposes.

Our Data Model/Storage

The basic data model is a rather schema-less one. So, Elasticsearch is enabled to figure out
data types automatically on first indexing of respective data when uploading a dataset to
the application. Uploading data issues wiping the index before storing it. Generally, there
are two data types made available to our solution, either text or temporal. For recognizing
temporal data, various related formats are specified for parsing attempts. Our data
model is also quite lenient when it comes to values which fail parsing, simply ignoring the
failure and storing the value at hand anyway. This way missing or erroneous values can
be treated separately. See Appendix C for a list of supported formats. Temporal values
are uniformly stored in our Elasticsearch index in Coordinated Universal Time (UTC)
timezone respectively Greenwich Mean Time (GMT). When load as local date/time
values on the frontend these are converted making use of timezone offset calculations.

On Spark RDDs

As explained in Appendix A, Apache Spark is operating on Resilient Distributed Dataset
(RDD)s. In our prototype, these are being filled with data by querying Elasticsearch.
Extensive caching and pre-loading of data is applied to boost performance. More
concretely, for instance, the use case can be to transform all dataset entries within a
certain timespan for a specific temporal field to a specified other temporal value.

Via Elasticsearch Bridge

This is being accomplished via an Elasticsearch/Spark bridge, as described in Section A.0.2.
Thus, a Spark context can be configured to connect to an Elasticsearch cluster. In the end,
one can transparently operate on RDDs with Spark’s functional programming model10.

10spark.apache.org/docs/latest/programming-guide.html#transformations

40

https://spark.apache.org/docs/latest/programming-guide.html#transformations

3.4. TempMunger

With Seamless Interop

The interop is, all in all, quite seamless. Especially also concerning Kotlin code calling the
ES-Hadoop connector Java API as well as Spark’s underlying Scala one when necessary.
Loading data from and writing it back to Elasticsearch is mostly transparent.

Figure 3.8: Sequence diagram showing the general data transformation flow.

3.4.2 Features of TempMunger

Our prototype possesses the following main, high-level features regarding time-oriented
data, primarily focusing on visual-interactive, and particularly charting support:

• Transformations

– Direct manipulation via UI controls

– Cleaning of missing and erroneous values

– Normalization concerning:

∗ Points in time

∗ Intervals

– Deletion of rows

– Merging of columns

– Formatting cleanup

• Outlier detection

• Visual overview

Furthermore, a more traditional tabular editor is available as known from spreadsheet
applications like, most prominently, Microsoft Excel. Users are used to the underlying
interaction metaphor and, consequently, it makes sense as a foundation to build upon.

41

3. Design and Implementation

3.4.3 Transformations

A central part of the approach is transformation of time-oriented data. Generally, this
is being achieved by making use of Apache Spark processing of Elasticsearch data. As
mentioned above, transformation operations include cleaning, normalization, and
merging. Figure 3.8 is presenting the general underlying flow via a sequence diagram.

3.4.4 Outlier Detection

Our prototype applies some ML techniques for its temporal outlier detection component.

K-Means Clustering

This is a popular algorithm of unsupervised learning, i.e., ML which does not rely on
manual classification input, but rather classifies recognized patterns autonomously.

Formula 3.1 represents its core principle, partitioning real vectorized observations x into k

class cluster sets S by calculating mean distances to respective centers (µ being the mean
of points in Si), generally computationally applying statistics to pattern recognition:

arg min
S

k
∑

i=1

∑

x∈Si

‖x − µi‖
2 (3.1)

The following explains how this can be used for anomaly respectively outlier detection.

Outlier Detection Usage

The algorithm applied for our outlier detection component, basically, works as depicted
in Algorithm 3.1.

A peculiar detail of our approach is that there is no dedicated test set of “new” data.
This is due to the fact there is only one dataset available at a time with no additional
data coming in to extend it. Thus, after training on a randomly split set, the whole
dataset is used as test set, in the end, leading to overall satisfactory results. Moreover,
we are limiting the number of classes to be clustered to two. Hence, our simple heuristic
for determining an outlier class is to take the one of the two with fewer members. When
there is only one class, it is assumed no outliers could be detected.

The Temporal Dimension

Our use case revolves around finding outliers in time-oriented data. Figure 3.9 shows the
basic, related flow with a sequence diagram. In principle, we are using all time-oriented
data values available in the dataset at hand for vectorizing the observations to be input
to clustering. Therefore, the corresponding epoch millisecond values are used and if a
certain value cannot be parsed it is substituted with a max. large number. Consequently,
missing and erroneous values are likely to be subsequently tagged as outliers as well.

42

3.4. TempMunger

Algorithm 3.1: Temporal Outlier Detection

Input: A set of temporal field names ϕ and a corresponding RDD (dataset) δ

Output: An RDD π consisting of pairs of document ID to cluster class value
1 Vectorize dataset δ using field values via ϕ, see conditional (ll. 2-6);
2 if a field value can be parsed as temporal then
3 Use its epoch milli value;
4 else
5 Use max. large number;
6 end
7 Get training set τ from dataset δ via random split of 0.9 : 0.1;
8 Create predictive model µ from vectors ~x of training set τ ;
9 → k-means clustering yielding 2 classes in 20 iterations and 3 parallel runs;

10 Predict points of dataset δ via model µ, resulting in RDD π, see loop (ll. 11-14);
11 for each point ∈ dataset δ do
12 Predict cluster class via model µ;
13 Add result to RDD π via map op;

14 end
15 return RDD π;

To further describe key points of the algorithm:
First, the dataset at hand is vectorized in order to enable applying it for clustering. Then,
a training set is generated from it via random split. After that, a predictive model is
created from the training set. Afterwards, the dataset at hand is predictively clustered
via model. Finally, potential outliers are determined via aforementioned, simple heuristic.

Figure 3.9: Sequence diagram showing the general outlier detection on upload flow.

43

3. Design and Implementation

3.4.5 Workflows and Screens

In this section, workflows plus related screens of the implemented prototype are described
and explained. Moreover, special emphasis is laid upon the reasoning behind the chosen
path of the solution.

Upload and Outlier Detection

Initially, the user will want to upload some dataset to the application. Therefore, a
modal upload dialog is pretty conveniently reachable in the upper right corner of the
screen. This button is also visually especially noticeable via its peculiar coloring. The
upload dialog itself is designed as simple as possible (see Figure 3.10). One can either
simply drag & drop a file to it or select one via File System (FS) dialog. As soon as a
file is selected, the upload begins and is indicating its progress via related animations.
In general, whenever data is being fetched respectively backend requests are issued, a
spinning wheel effect is shown in the upper left corner of the screen. When uploading is
finished the dialog disappears and the user is free to interact with the data.

As presented more from its technical side before, when uploading, an outlier detection
mechanism is triggered. On finished processing, the user is shown an according notification.
This message is sent as desktop browser respectively system notification11 (see Figure 3.11)
as well as within the application itself as some sort of flashing notification from the
bottom of the screen (see Figure 3.20). The former stay around while the latter disappear.

When clicking a notification, an action is triggered filtering all dataset entries down to
the potentially outlying ones. The user may then proceed to act upon accordingly, having
the potential outliers ready in sight and at her/his fingertips. Presence of this filter is
indicated via a chip-like control at the top of the screen (see Figure 3.21). It can be
removed simply by clicking.

Table Editor

A central component of the UI is the table editor view page (see Figure 3.20).

There the user can directly manipulate the data at hand via editing corresponding cells.
Pagination controls at the bottom of the page allow for convenient paging through
the data. Page size can be adjusted as well as a particular page selected via related
dropdowns. Multi-row deletion is supported via selection checkboxes at the left side of
the table. It is possible to select rows one-by-one or (de)select all at once. The connected
deletion button is located at the bottom left of the table.

Date/Time Picker

Date and time picker UI controls are used whenever an editable input field contains
time-oriented data.

11developer.mozilla.org/en-US/docs/Web/API/Notifications_API

44

https://developer.mozilla.org/en-US/docs/Web/API/Notifications_API

3.4. TempMunger

Figure 3.10: Screenshot showing upload with corresponding modal dialog and animated
effects regarding progress indication.

The date picker allows the user to choose a date in an interactive way with the metaphor
of a more traditional calendar (see Figure 3.12). Whereas the time picker uses the
metaphor of an analog clock for choosing a time value (see Figure 3.13).

Both of these controls are commonly used throughout the application and normally in
cooperation. For instance, the table editor employs the controls for editing temporal
column row values.

Search and Filtering

There are various ways in which filtering, slicing, and dicing the dataset is supported:

45

3. Design and Implementation

Figure 3.11: Screenshot showing desktop browser respectively system notification for
interactive suggestive outlier detection indication.

Figure 3.12: Screenshot showing exemplary modal date picker control with its calendar
interaction metaphor.

• First of all, a search box is placed quite prominently at the top of the screen. This
enables the user to filter data down via full-text search.

• Additionally, as mentioned above, multiple rows can be selected. Filter presence is
indicated via aforementioned chip-like control. The filter affects displayed data in
the charts view page as well.

• Rows can be sorted by column values in ascending or descending order. For this a
simple click on the respective column header suffices.

• Furthermore, on the table view page there is a pagination available, see above.

46

3.4. TempMunger

Figure 3.13: Screenshot showing exemplary modal time picker control with its clock
interaction metaphor.

All of these filtering options are working together correspondingly (see Figure 3.21).

Missing Values Cleanup

It is possible to clean up missing and/or erroneous values via a modal dialog overlay (see
Figure 3.14). Missing respectively erroneous in this context means that the values were
not able to be parsed as temporal. The dialog can be accessed from the table editor view
page at the bottom left via menu. Its menu option is only available when the currently
loaded dataset contains at least one time-oriented data field.

On the modal dialog there is a dropdown to select one of the available temporal fields.
Below it there is a horizontal multi-bar chart consisting of two bars. One of them
represents all rows, and the other, missing values. The former are colored in a neutral
gray, while the latter are colored orange. Consequently, a visual emphasis on the missing
values is established. The bars can be displayed grouped or stacked to get a better feel
of the quantities at hand. Below the chart there is a date and a time picker control for
choosing a target value to fill the missing values with. It is originally set to the average
value of all values of the respective field (excluding missing ones). At the bottom of the
dialog there are action buttons to either apply the fill operation as described or to delete

47

3. Design and Implementation

all rows with missing values.

Figure 3.14: Screenshot showing missing values cleanup modal dialog overlay with charts.

Temporal Normalization

There are, basically, two types of temporal normalization operations supported by the
prototype – this is not representing normalization in the strictest mathematical sense:

1. Transform all values within a certain timespan or at a certain point in time to a
specified date/time

2. Transform all values within a certain interval, effectively “moving” them in time

The former can be accessed either by clicking on a calendar heatmap or a distribution
chart bar item on the charts view page (see Figure 3.15). It is generally showing the
selected timespan or point in time and enabling the user to set a target value via date
and time picker controls for transforming all affected values to. Alternatively, the user
can choose to delete all rows within the temporal selection.

48

3.4. TempMunger

Figure 3.15: Screenshot showing charts page modal dialog on bar or heatmap item click.

The latter is accessible via a dedicated menu item at the bottom of the table editor view
page, next to the one for missing values cleanup (see Figure 3.16). There the user can
select a temporal field and interval, offering year or month. When month is chosen at
max. 10 bars in a chart are displayed each representing a month. When year is chosen
the bars represent years. This is an aggregated view visualizing distribution of values
with respective amounts sorted in descending order. Again, bars are colored in a neutral
gray. When selecting a bar its color changes to black, signalizing the selection. Plus,
temporal input field controls show up. In the case of year interval being selected, there
is a numeric text input for a target year. In the case of month interval selection, there
is additionally a dropdown with the 12 months of a year. In addition to transforming
values accordingly, the user can also choose to delete selected rows instead.

Table Column Merging

It is possible to merge time-oriented data columns via drag & drop of table editor headers
(see Figure 3.17). Only columns containing temporal data are able to be drag & dropped.
Interaction flow, generally, works as follows:

• When starting to drag a header, possible drop targets (i.e., other temporal column
headers) are highlighted in light yellow background color

• When dragging over a possible drop target, the hovered column header is highlighted
in light green to signalize the drop possibility to the user

• When dragging over a non-temporal column header, it is highlighted in light orange
color indicating that it is not a possible drop target

• When the user drops the dragged header on a possible target, a corresponding
modal dialog overlay opens

This dialog asks the user to confirm merging columns as specified or cancel otherwise.
Merging, basically, works in the following way:

49

3. Design and Implementation

Figure 3.16: Screenshot showing interval normalization modal dialog overlay with inter-
active bar charts and controls.

• If both column values contain a temporal one, an average of these is used for the
merged value

• If only one column value contains a temporal one, the missing one is substituted
with the existing

• If both column values contain missing ones, an overall average of all values of the
two columns is used

An alternative implementation could have given the user options to choose in a more
fine-grained way. Yet, we have found that these sensible defaults should make sense in
many cases and the user can still apply further refinements of the column data after
merge, if desired. Naturally, on finished operation, the merge respectively drag source
column is removed.

50

3.4. TempMunger

Figure 3.17: Screenshot showing table column merging via drag & drop interaction.

Charts Page

The central UI component regarding charts is kind of a dashboard page (see Figure 3.22).

When there are time-oriented fields present in the respective dataset, it is headed by
an interactive calendar heatmap visualization. It gives the user the opportunity to
understand the temporal dimension of the data as well as transforming it. Temporal
fields can be selected via dropdown.

In any case and below there are two distribution bar charts next to each other. These
charts enable the user to get a grasp of the present data, plus transforming it, too. Again,
fields can be selected via dropdown.

Calendar Heatmap

The calendar heatmap visualization, generally, allows four temporal scales
(see Figure 3.18):

1. Year

2. Month (default)

3. Week

4. Day

Figure 3.18: Screenshot showing calendar heatmap visualization with interactive controls.

Depending on the chosen scale the calendar view adjusts accordingly. So, for instance, in
the case of month scale, it is showing days of each month as boxes. Furthermore, a color
scale from gray via light to dark green indicates the amount of dataset entries associated

51

3. Design and Implementation

with a certain temporal value represented by such a calendar item box. On click of an
item box, a modal dialog is shown, giving the user transform options.

Distribution Charts

The two distribution bar charts can be seen as some sort of histogram visualizations,
showing top aggregations. They are mainly pointed at enabling the user to understand
general data distribution qualities of the dataset at hand. Plus, making it possible to
easily compare these (see Figure 3.23). Again, clicking a bar opens a modal dialog for
further interactive transformation operations, like deletion or time-oriented normalization.

Export

At the end of the day, the user wants to export the wrangled data. Therefore, a button is
quite prominently placed in the upper right corner of the application. When there is no
time-oriented data included, a button click simply initiates a CSV file export download.
Otherwise, a modal dialog overlay is presented first. This dialog lets the user choose a
format to apply to all time-oriented data of the to be exported dataset (see Figure 3.19).

Figure 3.19: Screenshot showing modal export dialog with temporal format dropdown.

Three options are implemented and, consequently, available:

1. ISO12 date/time (e.g., 2017-12-31T12:00:00)

2. ISO date (e.g., 2017-12-31)

3. Epoch millis (e.g., 1485037113334)

Since all time-oriented data is formatted on export in a unified way as well as uniformly
stored in UTC/GMT timezone on upload, there is no need to support formatting during
previous editing and transformation interactions.

12www.iso.org/iso/iso8601

52

http://www.iso.org/iso/iso8601

3.5. Qualitative Evaluation

3.5 Qualitative Evaluation

Eventually, the results had to be evaluated. For that matter, we have employed two
well-known approaches and tools from the domain of usability engineering. Both of which
are introduced and extensively explained in [Nie93]:

1. Heuristic evaluation

2. User/usability tests

The former basically means that an application and especially its UI is being evaluated
by a group of usability experts, step by step examining the to be evaluated system.
According to Holzinger [Hol05] three to five usability experts are sufficient for this type of
evaluation. Therefore, we have conducted an heuristic evaluation with three experts. Each
of the experts should, further, evaluate independently from the others. The evaluation
is generally based on heuristics related to usability. The classic ones as described by
Nielsen [Nie93] are:

• Visibility of system status

• Match between system and the real world

• User control and freedom

• Consistency and standards

• Error prevention

• Recognition rather than recall

• Flexibility and efficiency of use

• Aesthetic and minimalist design

• Help users recognize, diagnose, and recover from errors

• Help and documentation

Forsell and Johansson [FJ10] identified heuristic sets which are especially useful when
dealing with applications in the realm of InfoVis. Therefore, we are adding the following:

• Information coding

• Spatial organization

• Remove the extraneous

53

3. Design and Implementation

For the evaluation itself each expert is asked to perform a given set of tasks. Before that,
a session going through the application and UI in general is conducted. An observer is
present at the evaluation, who is familiar with the application and can be asked related
questions. The respective evaluator should note all issues. At the end, found results are
gathered and summarized.

These are the tasks we have established for our evaluation:

1. Upload a dataset using a given CSV file

2. Edit time-oriented data via table editor

3. Find potential outliers in the given dataset

4. Identify missing respectively erroneous values

5. Fill these with actual temporal values and/or delete their entries

6. Normalize all entries in a certain month, moving them to another one

7. Move all entries on a specific day to another point in time

8. Delete all entries within a certain timespan or on a certain date

9. Merge time-oriented data columns on the table editor view page

10. Export data as CSV, choosing a format for time-oriented values

User or usability tests, on the other hand, are usually performed in some sort of lab
environment. That is, users are given tasks to execute for reaching certain goals with
the application and are being observed while doing so. Typically, the test participants
should be actually potential users. We have performed such tests with two users, thus, in
addition to the previous heuristic evaluation which we have conducted with three different
usability and visualization experts. The users of the user/usability tests were given the
same tasks to perform as the experts from heuristic evaluation before. Meanwhile testing
and particularly afterwards they were interviewed regarding their experience, impressions,
and opinions. Finally, we have analyzed and abstracted connected findings.

The main questions all such user test participants as well as heuristic evaluation ones
were asked:

1. What is your overall impression?

2. What are the strengths of TempMunger?

3. What are the shortcomings of TempMunger?

4. Do you believe TempMunger can be useful for you?

54

3.5. Qualitative Evaluation

5. If not, what do you think is needed to make it so?

Combined results of the heuristic evaluation and user tests are as follows, listing found
issues and linking them to their respective related, violated heuristics:

1. Insufficient immediate and intuitive visual feedback regarding performed actions,
e.g., on missing values cleanup (→ visibility of system status)

2. Findability of modal dialogs for missing values cleanup and interval-based normal-
ization is suboptimal (→ spatial organization)

3. Separation of the two normalization dialogs as well as connected semantics are not
intuitive and could be refined (→ consistency and standards)

4. Granularity of temporal scale is partially incomplete (→ user control and freedom)

5. Temporal scale coloring in calendar heatmap visualization is sometimes misleading
(→ information coding)

6. No dedicated highlighting of concrete outlier values, for instance, via corresponding
coloring (→ recognition rather than recall)

7. Outlier detection action could be made repeatable via button (→ flexibility and
efficiency of use)

8. Merging operation could be made more useful by offering options and information
regarding algorithm (→ user control and freedom)

9. Distribution charts for exploratory comparison on charts page could be enhanced,
e.g., by adding drilling functionality (→ information coding)

10. In some places labels could be added to make controls and respective intention
clearer (→ remove the extraneous)

11. Missing values cleanup dialog visualization could be refined, for instance, by making
stacked charts view the default (→ information coding)

12. Calendar heatmap visualization could be enabled to make use of drag & drop
interaction (→ flexibility and efficiency of use)

13. Time-oriented data could be displayed localized in controls and related input fields
(→ information coding)

14. Multi-delete action button could be moved to the top of screen or made contextual
(→ user control and freedom)

15. Large number of columns could lead to displaying glitches on the table editor view
(→ spatial organization)

55

3. Design and Implementation

The heuristic category which was noted most often is information coding, followed by user
control and freedom. After that, spatial organization as well as flexibility and efficiency of
use both got an equal amount of mentions. Other categories scored only once each. Hence,
one can deduct a relative order concerning areas for possible improvements accordingly.

Generally, the approach and prototype was perceived positively and as moving into the
right direction. In its current state it was rather seen as a nice proof of concept. To make
it a real-world applicable tool it would mainly need to be completed regarding coverage
of data types, apart from its focus on time-oriented one now. Additionally, the currently
provided set of transformation operations should be completed. Furthermore, the present
chart visualizations could be refined and including additional ones was encouraged. Most
frequently, possibly dotted, line charts were referred to in the context of time series data
visualization as a potentially useful addition. A central issue to address is scalability of
the visualizations, also in regard to data granularity.

Aspects of our prototype most praised were the general visual design, the good visually
interactive overview offered with charting aid, and smoothness regarding UX. On the
other hand, usability was also one of the most controversially discussed topics as it is
by its nature a highly subjective and opinionated one. Moreover, an area for future
work identified to be desirable would be to provide more transformation suggestions
interactively, in a proactive way. Also, additional focus could be laid on further increasing
interactive data filtering and drilling capabilities. An interesting idea mentioned was that
it could also be useful to some users being able to export visualizations in addition to the
raw CSV data which is currently downloadable. Finally, a feedback given by one of the
test participants, which we especially appreciate, was “it does what it’s supposed to do”.

Regarding our interview questions more concretely and in detail: answers to the first
question connected to overall impression can be summarized as TempMunger being seen
as a nice tool for the use case of working with time-oriented data visual-interactively.
Concerning strengths, most commonly pleasantness of general design, UX, and quality
of present visualizations were mentioned. The interactive calendar heatmap as well as
histogram-like bar chart visualizations were mostly seen as basically fitting for their
purpose of conveniently visualizing data distribution focusing on time-oriented aspects and,
therefore, useful. Weaknesses were mainly identified to be related to lack of completeness
of supported transformation operations and visualizations. Thus, mainly coverage of
varied specificity was found to have to be completed in order to make TempMunger a
really versatile tool, outgrowing being merely a research prototype.

Further discussion of open issues and future work can be found in the conclusion sections
following this one.

56

3.5. Qualitative Evaluation

F
ig

u
re

3
.2

0:
S
cr

ee
n
sh

ot
sh

ow
in

g
ta

b
le

ed
it

or
re

sp
ec

ti
v
el

y
m

ai
n

p
ag

e
in

cl
u
d
in

g
ou

tl
ie

r
d
et

ec
ti

on
in

fo
al

er
t.

57

3. Design and Implementation

F
igu

re
3.21:

S
creen

sh
ot

sh
ow

in
g

variou
s

n
av

igation
al,

search
,

an
d

fi
lterin

g
op

tion
s

w
ith

tab
le

ed
itor

v
iew

.

58

3.5. Qualitative Evaluation

Figure 3.22: Screenshot of charts page with calendar heatmap, offering visual overview.

Figure 3.23: Screenshot showing distribution bar charts with their dropdown controls.

59

CHAPTER 4
Critical Reflection

It is time to reflect on our solution and its results.

4.1 Comparison with Related Work

Therefore, we first conduct a comparison with related work.

Our aim with TempMunger was to extend mainly the approaches from DataWrangler
and OpenRefine, adding our ideas for improved UX and focusing on time-oriented data
support, specifically.

Generally, we believe that we did reach these goals. TempMunger supports wrangling
time-oriented datasets, both with the traditional spreadsheet-like UI as well as special,
visually interactive charting aids. Evaluation has proven the prototypically implemented
approach to be overall useful. Consequently, it can be seen as an advance in the field, at
least to some extent. Table 4.1 offers a reflective comparison overview.

Nevertheless, there are some open issues which are being addressed in the next section.

DataWrangler OpenRefine Timelion Jupyter TempMunger

Time-Oriented No Yes Focus Supported Focus
Charting Little Some Extensive Extensive Focus
Approach Spreadsheet Spreadsheet CLI + DSL CLI + REPL Dashboard

Table 4.1: Reflective comparison of our solution with related work.

61

4. Critical Reflection

4.2 Discussion of Open Issues

So, some issues were found during evaluation which can be subsumed as follows:

• The usage and behavior of the software is not always intuitive

• Immediate visual feedback of system state is partially lacking

• Sometimes possible actions are not completely clear to the user

• Generally, usability can be improved in some parts of the prototype

• Moreover, interactive chart visualizations can be further augmented

• Scalability of visualizations should be addressed more

• The supported transformation operations could be enhanced

• Some aspects are either incomplete or could, at least, be refined

More detailed information concerning evaluation design, process, and tests revealing
these issues can be found in the corresponding Section 3.5.

As mentioned above, evaluation has proven the approach to be overall useful, though.
Furthermore, feedback regarding and inspiration for future work has been given while
conducting qualitative evaluation of the approach and implemented prototype. To sum
it up, it appears our achieved results are, all in all, heading towards the right direction.

4.3 Requirements Fulfillment

With our approach and prototype TempMunger we think to, in general, have fulfilled the
requirements as derived and listed in Section 3.1.2.

That is, it is capable of loading and working with diverse datasets (R1). This is being
achieved via easily uploading arbitrary CSV data files. Moreover, it has proven to
be, generally, intuitive for casual users (R2), while offering some shortcuts for rather
power users (R3). Focus is indeed on visual-interactive charting aid (R4) centering
on applying time-oriented data transformations (R5). There are numerous interactive
chart visualizations provided for this purpose. A visual overview of datasets containing
time-oriented data is offered (R6). For instance, a special, interactive calendar heatmap
visualization is available. We have put emphasis on choosing most effective and efficient
visualizations (R7). Therefore, we have focused on employing different kinds of bar
charts. Interactively exploring datasets is convenientely possible (R8). This is backed by
various navigational, search, and filtering capabilities. A more traditional tabular editor
is supported as well (R9). Editing time-oriented data is enhanced with specific date and
time picker controls (R10). Addressing data quality issues (R11) like cleaning missing

62

4.4. Answering the Research Questions

and erroneous values, normalizing data, and spotting outliers (R12) are all supported via
visual-interactive tools and techniques. All the identified data transformation operations
we have originally defined in our requirements list are supported, including merging table
editor columns via easy drag & drop interaction (R13).

4.4 Answering the Research Questions

Consequently, returning to our initial research questions:

1. Which data transformations are best supported by analytical methods
and for which transformations is visual support beneficial?

We have answered this with our approach supporting data quality cleaning, nor-
malization, and merging operations. That is, we have determined these general
transformations to be best suited while visual support being benefecial. More in-
depth, we are, consequentially, supporting the following transformation operations:

• Cleanup of missing and erroneous values, allowing fill and deletion

• Normalization of values regarding points in time and intervals

• Merging of time-oriented data columns, using average calculations

Generally, data transformations which require some sort of statistical querying
and/or computation are, naturally, best supported by analytical methods. Moreover,
whenever data has to be analyzed and/or manipulated in batches or even considering
a dataset as a whole, visual support is beneficial for granting necessary overview and
insights. The larger and diverse the dataset, the more this comes into effect. Fully
automated techniques, on the contrary, make most sense when the transformations
to apply are rather straightforward. Our research and design process led to these
findings, and our qualitative evaluation confirmed the results.

2. How do concrete data wrangling workflow processes look like and how
can these processes be supported by VA methods?

We have answered this question extensively with the state of the art review and
analysis as well as, particularly, through the design of our approach and prototype.
More concretely, such processes are oftentimes of exploratory nature. Thus, we
are supporting them visual-interactively. Plus, especially repetitive actions, being
applied to batches of data via bulk operations, are ones where support by VA
methods can shine.

This way users working on the data can focus on achieving task goals at hand most
effectively and efficiently, empowered with superior interactive visualization of the
respective dataset. That is, instead of fiddling around with the data manually,
mainly being in the dark and applying hand-crafted scripts, clear and direct views
of the data, plus its possible as well as plausible transformations, are conveniently
presented and at the fingertips of the user.

63

4. Critical Reflection

3. What data wrangling tasks need to be tackled in particular when dealing
with time-oriented data and how can we support them with VA methods?

Again, through the support we have implemented in our prototype for cleaning,
normalization, and merging operations we have answered this. I.e., supporting
direct manipulation via dedicated UI controls as well as offering interactive charts for
the aforementioned operations in a reasonable and intuitive way. The visualizations
which we found to be most suitable are mainly bar charts for displaying distributions,
think histograms, and calendar heatmap inspired ones.

Common transformation operations which need to be addressed for data wrangling
purposes, in general, are: directly editing single values, deleting rows, also in batches,
unifying formats, cleaning up missing and erroneous values, spotting anamolies
respectively outliers for subsequent cleanup via according highlighting mechanisms,
transforming values of certain fields batch-wise, possibly “normalizing” these to
some other specified value, and merging columns according to some algorithm.

Now, as mentioned above, we have addressed each of these with adequate VA
methods, focusing on application to time-oriented data: direct manipulation through
dedicated date and time picker UI controls. Bulk deletion of rows via tabular editor
controls as well as interactive aggregated charts. Unified formatting is guaranteed
via uniform storage and display regarding timezone, plus by export capabilities.
Missing values cleanup is, again, supported by histogram-like distribution bar charts.
Outlier detection suggestions are enabled via interactive filtering notifications.
Batch-wise transformation concerning normalization is backed by interactive bar
charts as well as calendar heatmap based interaction.

Visualizing data distribution via bar charts in a histogram-inspired way and time-
oriented data via calendar heatmaps are especially powerful tools in this context.
The general usefulness of these visualizations was underpinned by our evaluation.

Therefore, we can conclude that, all in all, we have answered our main research question
satisfactorily. The question having been:

How can we support data wrangling with VA techniques?

To sum it all up, we can support data wrangling this way mainly by focusing on tasks
which are, on the one hand, related to batched data transformation operations as well
as of rather complex nature and, on the other hand, thus requiring special attention
and oversight. These are tasks where fully automated approaches fall short, as a human
adequately empowered through VA techniques can, still, perform better. Thus, the sweet
spot is most probably located somewhere in between, augmenting an interactive interface
driven by powerful visualizations with semi-automatic suggestions, reasonably.

64

CHAPTER 5
Summary and Future Work

This thesis explored applying VA to data wrangling, focusing on time-oriented data.

Hence, after deepened study, presentation, and analysis of related state of the art, an
approach has been designed and prototypically implemented. UX personas and UI
mockups were valuable tools for our design process. Iteratively developing the prototype
in an agile manner was worthwhile as well. As evaluation showed, there are still some
issues mainly relating to usability, which can be further improved. Nonetheless, the
approach proved to be overall useful.

Our prototype mainly offers interactive dashboard visualizations as a web-based appli-
cation. Special emphasis was put on crafting the UI as well as applying VA methods
reasonably. Therefore, we have built visual-interactive charts supporting time-oriented
data transformations. To make this all work well, we have also invested considerable
effort in a sound underlying software design and architecture.

Future work should focus on extending the amount of available transformations supported
via such visually interactive charting aids. Specifically, giving the user more fine-grained
control in some of the already present operations, plus adding completely new ones. Also,
additional attention should be paid to addressing scalability issues of the visualizations.
Particularly, in terms of data granularity as well as related coverage. Moreover, enabling
undo of operations, plus repetition of them via some sort of user-controlled history
mechanism and/or storable scripts, somewhat similar to how DataWrangler does it,
would be a reasonable addition.

Also, the inference aspect of the approach, interactively providing transform suggestions,
could be emphasized more and, thus, enhanced. The outlier detection component we have
integrated in our approach was generally well received in evaluation and tests, indicating
this is leading into the right direction. Moreover, as it is currently just a quite basic way
of applying ML techniques to the problem, there is definitely room for more.

65

5. Summary and Future Work

While conducting the qualitative evaluation of our prototype quite some positive state-
ments regarding the overall visual design, smooth UX, and general quality of implemented
interactive visualizations were made. Things like “good overview”, “can be easily done”,
and “it does what it’s supposed to do” come to mind. Consequently, it appears our
approach and prototype was generally perceived as well done and valuable.

In our opinion, wrangling time-oriented data being supported by VA methods is an
interesting field of research where TempMunger just scratched the surface, delivering
some input and, hopefully, inspiration to advance it further.

66

APPENDIX A
Software Design and Architecture

In this appendix, design and architecture of the software prototype is presented. First
of all, a general overview of the system is given. Followed by more in-depth dives into
various parts and components of the solution. Moreover, technical foundations of the
implementation are described and their interplay explained.

A.0.1 System Overview

The prototypically implemented, proposed solution is basically a web application. It
can be run locally as well as deployed to a hosted server environment. This hosting is
possible to be conveniently performed via Docker1 containerization. The system consists
of a web frontend and an API backend. Both of which can be hosted as separate Docker
containers. The application is targeting and, hence, optimized for desktop browser clients.
So, the frontend mainly emits HTML/CSS/JS and communicates with its respective
client via HTTP(S).

The frontend is a Node.js2 application and the backend a Java Virtual Machine (JVM)
one. On the frontend, the UI is (pre-)rendered server-side in addition to client-side. This
technique is called isomorphic or universal rendering. On the backend, data is stored
and queried via Elasticsearch3, a high-performance search and real-time analytics engine
as well as document store, while transformed and analyzed via Apache Spark4.

The latter is an engine for large-scale, near real-time data processing with convenient
access to ML algorithms via its MLlib extension library. Communication between backend

1www.docker.com/what-docker
2nodejs.org/en/about/
3www.elastic.co/products/elasticsearch
4spark.apache.org

67

https://www.docker.com/what-docker
https://nodejs.org/en/about/
https://www.elastic.co/products/elasticsearch
https://spark.apache.org/

A. Software Design and Architecture

and frontend is conducted with Representational State Transfer (ReST), cf. [Fie00], and
WebSockets5. Figure A.1 is presenting this system overview from a bird’s eye view.

In a Nutshell

Figure A.1: High-level diagram of our SW architecture.

5tools.ietf.org/html/rfc6455

68

https://tools.ietf.org/html/rfc6455

Going Live with Docker

As mentioned above, the system is basically “dockerized” for container-based hosting. I.e.,
the frontend as well as backend are each equipped with a fitting Dockerfile. Container
images are based on the lightweight Alpine Linux6 distribution which is particularly well
suited for that purpose. In order to support an agile development process, it is easy to
build and deploy the application. More concretely, there is a Makefile set up which allows
for quick deployment of Docker images (incl. building and publishing these via private
Docker repositories) to a virtual host. The author chose in this example DigitalOcean7

as hosting service provider due to the convenient Developer Experience (DX) it offers.

Multiple host nodes as well as multiple instances of either backend or frontend container
were not relevant for the purpose of this prototype. It is generally possible to set this up
and basically supported, though. Moreover, Elasticsearch and Spark are simply being
run in embedded mode within the backend component. Again, it is generally possible to
configure connection to real dedicated clusters of each. Yet, the point of this prototype
was not really geared towards proving “big data” load capabilities.

On the virtual host an Nginx8 web server is configured to proxy the local containerized
application servers to the public Internet. Access to the web application is then restricted
via HTTP basic authentication. HTTPS is enabled through Let’s Encrypt9.
The interested reader may ask the author for a link with credentials.

Project Structure and Setup

In general, the system is comprised of three software projects. One for the backend
application, one for the frontend, and sort of an “umbrella”, the master one. The
latter pulls the former ones in, via Git submodule setup. So, Git is used as Version
Control System (VCS), respectively for Source Code Management (SCM) with private
Github repositories, owned by the developer. FS structure of this master one also loosely
resembles CVAST research group guidelines10. Furthermore, it contains aforementioned
Makefile for convenient builds and deployments. The Continuous Integration (CI) tooling
of choice is CircleCI 11, a Software as a Service (SaaS) provider with a good DX. Build tool
of the backend project is Gradle12. The frontend uses a combination of Yarn13 dependency
management and Gulp14 task scripts. Source code documentation is generated with
Dokka15 for the backend, and ESDoc16 for the frontend.

6www.alpinelinux.org/about/
7www.digitalocean.com
8nginx.org/en/
9letsencrypt.org/about/

10www.cvast.tuwien.ac.at/node/27
11circleci.com
12gradle.org
13yarnpkg.com/en/
14gulpjs.com
15kotlinlang.org/docs/reference/kotlin-doc.html
16esdoc.org

69

https://www.alpinelinux.org/about/
https://www.digitalocean.com/
https://nginx.org/en/
https://letsencrypt.org/about/
http://www.cvast.tuwien.ac.at/node/27
https://circleci.com/
https://gradle.org/
https://yarnpkg.com/en/
http://gulpjs.com/
https://kotlinlang.org/docs/reference/kotlin-doc.html
https://esdoc.org/

A. Software Design and Architecture

A.0.2 Backend

The backend mainly consists of the high-level components as laid out in Figure A.2. It is
basically a Spring17 Boot18 application using Spring MVC for its ReST controller layer.
Spring Messaging is used for transparent WebSocket communication, and Reactor19 Event
Bus for reactive messaging within the outlier detection implementation. The Elasticsearch
data layer is based on Spring Data Elasticsearch20. Connection between Elasticsearch
data storage and Apache Spark processing is done via ES-Hadoop connector libraries21.

Figure A.2: Backend components diagram.

Documentation of the ReST API is generated via Spring REST Docs22. This integrates
nicely into the automated testing infrastructure of the project. Thus, it can be seen as a
superior solution compared to the en-vogue Swagger23 in respect of it is possible to combine
automated documentation generation with manually written one via Asciidoctor24.

17projects.spring.io/spring-framework/
18projects.spring.io/spring-boot/
19projectreactor.io
20projects.spring.io/spring-data-elasticsearch/
21www.elastic.co/guide/en/elasticsearch/hadoop/current/spark.html
22projects.spring.io/spring-restdocs/
23swagger.io
24asciidoctor.org

70

https://projects.spring.io/spring-boot/
https://projectreactor.io/
http://projects.spring.io/spring-data-elasticsearch/
https://www.elastic.co/guide/en/elasticsearch/hadoop/current/spark.html
https://projects.spring.io/spring-restdocs/
http://swagger.io/
http://asciidoctor.org/

The backend project itself prefers structuring its top-level packages semantically. E.g.,
there is a top-level package importexport containing dao (as in Data Access Object)
and service sub-level packages – not the other way round, as it would be more traditional
fashion. Unit and integration tests are present, written with state-of-the-art libraries.

Some deeper dive into the technologies employed for the backend follows.

Kotlin on the JVM

The Kotlin25 programming language, by JetBrains, is used on the backend.

It is a relatively young, statically typed, and concise JVM-based language with seamless
Java interoperability. Mainly, it is adding quite some syntactic sugar, reasonably, as well
as increased type inference support. Plus, it is resolving some of Java’s pain points, such
as reference nullability – a.k.a. the “billion-dollar mistake”26. Generally, it is taking
a pragmatic stance and focuses on industrial software development needs. As opposed
to, e.g., Scala which can be seen as quite similar in various aspects, while being more
computer science and particularly research focused, though.

Figure A.3 shows an exemplary code snippet.

Figure A.3: Kotlin sample demonstrating some of its useful features.

Microservices with Spring Boot

Spring Boot offers a useful approach to developing and running microservices.
It was, originally, heavily inspired by the Dropwizard27 project.

The topic of building microservices itself is covered well in [New15]. The basic idea
here is to develop small, self-contained, and purpose-focused services with corresponding
monitoring, provisioning, and orchestration capabilities. This stands in rather stark
contrast to the more traditional approach of building monolithic applications. So, in
general, Spring Boot provides a lot of features and abstractions with little necessary
configuration out-of-the-box. Furthermore, it integrates well with Kotlin, both sharing a
pragmatic paradigm of software development philosophy.

25kotlinlang.org
26lambda-the-ultimate.org/node/3186
27www.dropwizard.io

71

https://kotlinlang.org/
http://lambda-the-ultimate.org/node/3186
http://www.dropwizard.io/

A. Software Design and Architecture

From Elasticsearch to ES-Hadoop

At the heart of data storage and querying, Elasticsearch is in use.
Spring Data Elasticsearch is providing some convenient abstractions.

As mentioned above, data processing, i.e., transformation operations and outlier detection,
is performed via Apache Spark and its MLlib. Native bridging of these two popular
big data technologies is provided via ES-Hadoop connector libraries. This is, basically,
rooted in the fact that Apache Spark was born within the Apache Hadoop28 ecosystem.
Spark can be run completely independent from Hadoop infrastructure, though. The
connector libraries are officially supported and developed by Elastic29, the company
behind Elasticsearch and related products. In addition to the Scala API, since Spark is
written in Scala, a Java API is available which is used in our project.

Apache Spark & MLlib

As aforementioned, Spark is at the heart of data processing.

Its foundational construct is called RDD. That is, the main concept is to provide a
scalable solution for loading large datasets into memory, utilizing distributed computing.
One then can easily perform transformational operations, like the common functional
map routine, on such an RDD. The underlying complexities are transparently hidden
beneath by the abstraction. This can be seen as fitting nicely into the philosophy of
“simple made easy”, as advocated by Rich Hickey30.

Additionally, extension libraries have been built enhancing processing capabilities. One
of them is MLlib which provides convenient access to ML algorithms. This is used in our
project for its temporal outlier detection implementation.

Reactive Messaging

Reactive programming is rather popular these days.
At its core stands the so-called Reactive Manifesto31.

It is a term for event-based programming. That is, publish/subscribe mechanisms for
message-driven communication. Historically, it is build upon the notions from the classic
Observer pattern enhanced with functional programming techniques. This paradigm
fits especially well with the requirement of asynchronous notifications for the outlier
detection component of our system.
Consequently, it is employed therein.

Concrete library used is Reactor and its implementation of the Event Bus abstraction.
The former is, generally, a modern high-level take on the ReactiveX32 approach.

28hadoop.apache.org
29www.elastic.co
30www.infoq.com/presentations/Simple-Made-Easy
31www.reactivemanifesto.org
32reactivex.io

72

https://hadoop.apache.org/
https://www.elastic.co/
https://www.infoq.com/presentations/Simple-Made-Easy
http://www.reactivemanifesto.org/
http://reactivex.io/

A.0.3 Frontend

The frontend is a modern Node.js application. It is based on Este.js33, a useful assembly
of libraries and best practices for easily bootstrapping a universal Redux/React project.

Its further refined stack for our project, basically, comprises of Isomorphic Fetch34 for
ReST layer communication, STOMP over WebSocket35 with SockJS36 for communicating
with the corresponding Spring Messaging interface on the backend, a Redux37 layer
containing business logic, a React38 UI as well as related URL path routing, plus UI
toolkits including D3.js39 charting or common respectively extensible UI components,
and all running on an Express40 web framework based server (see Figure A.4).

Figure A.4: Frontend components diagram.

Project structure outlines an adapted Este scaffold. Automated testing is based on Jest41.

33github.com/este/este
34github.github.io/fetch/
35jmesnil.net/stomp-websocket/doc/
36sockjs.org
37redux.js.org
38facebook.github.io/react/
39d3js.org
40expressjs.com
41facebook.github.io/jest/

73

https://github.com/este/este
https://github.github.io/fetch/
http://jmesnil.net/stomp-websocket/doc/
http://sockjs.org/
http://redux.js.org/
https://facebook.github.io/react/
https://d3js.org/
http://expressjs.com/
https://facebook.github.io/jest/

A. Software Design and Architecture

Contemporary JavaScript

The frontend application is written in contemporary JS, that is, flow-typed42 ES6+.

Figure A.7 is demonstrating some useful features as well as techniques when used together
with Redux/React. Static type-checking is especially valuable for detecting bugs and
errors early, at compile time. Compilation to common ES5 is performed via Babel43 plus
a Webpack44 toolchain is in place – minifying, optimizing, and bundling web app assets.
In addition, ESLint45 helps keeping the code clean and adhering to good practices.

React with Material Design

As mentioned, the UI is based on React. A technology and library created at Facebook
Engineering. It enables one to build composable UI components in a declarative way,
clearly reasoning about their state via cleanly applied Separation of Concerns (SoC)
pattern. Templating is achieved with so-called JSX46. That is, XML-like syntax embedded
directly in JS code. Moreover, its performance is really good as partial re-rendering of
to-be-updated Document Object Model (DOM) tree nodes is supported transparently.

The React programming model usually takes a bit to get accustomed to, but its benefits
do pay off, especially in the long run. Particularly, clear separation of application state
and DOM is a big leap forward in this space.

General UX of the UI of our application is based on the Material Design47 approach and
specification by Google. As implementing components kit, React Toolbox48 is used. It
provides a quite comprehensive, carefully crafted set of common UI controls and elements.
For CSS needs, transpiled Sass49 is employed, which is pretty popular for this use case.

As mentioned before, the application is rendered client-side, as commonly expected
from a Single Page Application (SPA), yet, initially also server-side. This isomorphic
pre-rendering on the server improves the UX by minimizing potential, irritating “flicker”
effects on initial page load. In particular, when loading a page with an URL which requires
routing. Additionally, it helps with Search Engine Optimization (SEO) if applicable.
Routing is built on client HTML5 History API 50 for clean, universal URL path layout.

From Flux to Redux

The Flux architecture was introduced by Facebook Engineering as an approach to better
structuring SPAs. It is based on the idea of strictly one-way data flow and binding.

42flowtype.org
43babeljs.io
44webpack.js.org
45eslint.org
46facebook.github.io/react/docs/introducing-jsx.html
47material.io
48react-toolbox.com
49sass-lang.com
50diveintohtml5.info/history.html

74

https://flowtype.org/
https://babeljs.io/
https://webpack.js.org/
http://eslint.org/
https://facebook.github.io/react/docs/introducing-jsx.html
https://material.io/
http://react-toolbox.com/
http://sass-lang.com/
http://diveintohtml5.info/history.html

This makes it much simpler to reason about an UI system, and therefore less error-prone.
The basic concepts are shown in Figure A.5 which stems from official documentation
material51. So, generally, actions are triggering system state changes and, consequently,
UI updates in a unidirectional manner. Redux took theses concepts and further simplified
them, iterating upon in its implementation. Solutions for handling asynchronous events,
as they are common in SPAs, include injecting a promise middleware into Redux as well as
extending it with reactive processing via redux-observable52 plus RxJS53. Both approaches
are used in the prototype to varying degrees with an emphasis on the former one, to
get a feel for them. A real product would most probably rather focus on one of them
then. ES6+ async/await is helpful for coding with promises sequentially, saving one from
“callback hell”. Immutable data structures and collections provided by Immutable.js54 are
also commonly used. Plus, Ramda55 fits in well as a functional programming utilities
library. Speaking of utility libraries in our project, ones centered on temporal data
processing are date-fns56 and js-joda57 (a java.time-compliant JS port).

Figure A.5: Simple Flux architecture diagram from Facebook Engineering.

Fetch API & WebSockets

The Fetch API is a modern approach to Ajax communication. That is, asynchronous
client/server communication of a browser application via HTTP. This, traditionally, is
based on usage of the so-called XMLHttpRequest browser JS API. The rather young
Fetch API takes the basic concepts of async browser ReST calls and pours it into a
contemporary form, conveniently usable.

WebSockets allow for bidirectional communication. That is, instead of solely pulling from
a server, a browser client app is also able to get data pushed by the server. It is especially
useful in event-based systems, such as messaging-related ones.

51facebook.github.io/flux/docs/in-depth-overview.html#structure-and-data-flow
52redux-observable.js.org
53reactivex.io/rxjs/
54facebook.github.io/immutable-js/
55ramdajs.com
56www.npmjs.com/package/date-fns
57js-joda.github.io/js-joda/

75

https://facebook.github.io/flux/docs/in-depth-overview.html#structure-and-data-flow
https://redux-observable.js.org/
http://reactivex.io/rxjs/
https://facebook.github.io/immutable-js/
http://ramdajs.com/
https://www.npmjs.com/package/date-fns
https://js-joda.github.io/js-joda/

A. Software Design and Architecture

D3.js Charting

D3.js (as in Data-Driven Documents) is a very popular JS library, primarily used for
interactive charting. Originally, it was developed at Stanford Vis Group (see [BOH11]).
It is based on Scalable Vector Graphics (SVG) and surrounded by an ecosystem of
components as well as extensions.

For most of the charts in our application, NVD358 is used. It is a useful repository of
various ready-to-use charts, all conveniently customizable. Plus, they are nicely crafted
with appealing default look & feel, supporting decent animations. Figure A.6 shows an
overview gallery from their documenting website. Our calendar heatmap visualization
component is based on cal-heatmap59. It is a widely used implementation with a multitude
of customization and tweaking options. Integration of D3 with React works, all in all,
relatively straightforward. Yet, some resorting to direct DOM manipulation and event
handling is required, unfortunately, due to legacy reasons inflicted by the former.

Figure A.6: A screenshot of an NVD3 charts gallery, as presented on nvd3.org.

58nvd3.org
59cal-heatmap.com/v2/

76

http://nvd3.org/
http://cal-heatmap.com/v2/

Figure A.7: Flow-typed ES6+ Redux/React UI component showing some useful features.

77

APPENDIX B
Information Retrieval

Background

In this appendix some IR background is presented, as core data storage and querying of
our prototype is based on.

TF-IDF & Apache Lucene

The equations B.1 to B.4 lay out some of the most fundamental concepts behind IR.

tf(t, d) = ft,d (B.1)

ft,d =

{

1 if t occurs in d

0 otherwise
(B.2)

idf(t, D) = log
N

|{d ∈ D : t ∈ d}|
(B.3)

tf-idf(t, d, D) = tf(t, d) × idf(t, D) (B.4)

It is Term Frequency – Inverse Document Frequency (TF-IDF)1. Basically, this is an
effective as well as efficient way to score term query search hits based on term occurrences
in a corpus of documents. The illustrated formula set uses a simple boolean frequency.

A popular and high-quality search engine implementation in Java is Apache Lucene2. It
is also the foundation on which Elasticsearch is built upon [GT15].

1en.wikipedia.org/wiki/Tf-idf
2lucene.apache.org

79

https://en.wikipedia.org/wiki/Tf-idf
https://lucene.apache.org/

APPENDIX C
Supported Date/Time Formats

Our data model, generally, supports following date/time formats1 for automatic parsing:

• ISO_ORDINAL_DATE

• BASIC_ISO_DATE

• ISO_DATE

• ISO_DATE_TIME

• ISO_ZONED_DATE_TIME

• yyyy/MM/dd

• yyyy/MM/dd HH:mm[:ss[.SSS]]

• MM/dd/yyyy

• MM/dd/yyyy HH:mm[:ss[.SSS]]

• dd/MM/yyyy

• dd/MM/yyyy HH:mm[:ss[.SSS]]

• dd.MM.yyyy

• dd.MM.yyyy HH:mm[:ss[.SSS]]

• EPOCH_MILLIS

1Cf. docs.oracle.com/javase/8/docs/api/java/time/format/DateTimeFormatter.html

81

https://docs.oracle.com/javase/8/docs/api/java/time/format/DateTimeFormatter.html

List of Figures

1.1 The data–users–tasks triangle as presented in [MA14]. 4

2.1 Showing Potter’s Wheel spreadsheet-like GUI approach. Transform operations
are accessible via menu bar [RH01]. 9

2.2 BizTalk research GUI demonstrating some applied InfoVis techniques. On each
vertical side of the visible pane, elements of a respective schema are represented
by a tree-like structure. Mappings between them are visualized as arcs. Center
nodes are used for displaying more complex (m:n-like) mappings [RCC05]. . 11

2.3 Clio GUI, also showing similarities with the MS BizTalk one. Consequentially,
again, data schemas (this time from relational DBs, though) on the left and
right-hand sides with mappings as arrowed lines [HHH+05]. 12

2.4 Potluck map view which can be seen as a back then innovative visualization
in the field. Data is displayed geospatially [DFH07]. 13

2.5 DataWrangler UI as a state of the art shaping, innovative approach. Data
transform history and related suggestions are located on the left, tabular
interaction pane on the right [KPHH11]. 14

2.6 Google/OpenRefine UI in action, also offering direct manipulation of data.
Again, as in DataWrangler, tabular respectively spreadsheet-like interface. 15

2.7 Kibana Timelion as an innovative approach to visual-interactively exploring
and transforming time series data [Ras15]. 16

2.8 Data science with Jupyter Notebooks as advertised on their website. . . . 17

2.9 Time series research UI with interesting pipeline-based approach (top pane).
Various charts (main pane) visualize the data at hand (right pane) [BRG+12]. 19

2.10 Talend Open Studio Data Quality GUI as an industry-standard solution based
on Eclipse RCP. Interactively manipulated data (on the left) by transforma-
tions (center) is visualized via charting support (right). Screenshot originally
taken from product website. 21

3.1 UI mockup of the upload dialog. 32

3.2 UI mockup of the table editor. 33

3.3 UI mockup of the missing values dialog. 34

3.4 UI mockup of the normalization dialog. 35

3.5 UI mockup of the outlier detection info alert. 36

83

3.6 UI mockup of merging table columns via drag & drop. 37
3.7 UI mockup of the charts page including calendar heatmap visualization. . 38
3.8 Sequence diagram showing the general data transformation flow. 41
3.9 Sequence diagram showing the general outlier detection on upload flow. . 43
3.10 Screenshot showing upload with corresponding modal dialog and animated

effects regarding progress indication. 45
3.11 Screenshot showing desktop browser respectively system notification for inter-

active suggestive outlier detection indication. 46
3.12 Screenshot showing exemplary modal date picker control with its calendar

interaction metaphor. 46
3.13 Screenshot showing exemplary modal time picker control with its clock inter-

action metaphor. 47
3.14 Screenshot showing missing values cleanup modal dialog overlay with charts. 48
3.15 Screenshot showing charts page modal dialog on bar or heatmap item click. 49
3.16 Screenshot showing interval normalization modal dialog overlay with interac-

tive bar charts and controls. 50
3.17 Screenshot showing table column merging via drag & drop interaction. . . . 51
3.18 Screenshot showing calendar heatmap visualization with interactive controls. 51
3.19 Screenshot showing modal export dialog with temporal format dropdown. 52
3.20 Screenshot showing table editor respectively main page including outlier

detection info alert. 57
3.21 Screenshot showing various navigational, search, and filtering options with

table editor view. 58
3.22 Screenshot of charts page with calendar heatmap, offering visual overview. 59
3.23 Screenshot showing distribution bar charts with their dropdown controls. 59

A.1 High-level diagram of our SW architecture. 68
A.2 Backend components diagram. 70
A.3 Kotlin sample demonstrating some of its useful features. 71
A.4 Frontend components diagram. 73
A.5 Simple Flux architecture diagram from Facebook Engineering. 75
A.6 A screenshot of an NVD3 charts gallery, as presented on nvd3.org. 76
A.7 Flow-typed ES6+ Redux/React UI component showing some useful features. 77

84

List of Tables

2.1 Projects comparison serving as a starting point to derive basic requirements. 20

3.1 UX personas skill summary and comparison. Edge entries in bold. 24

4.1 Reflective comparison of our solution with related work. 61

85

List of Algorithms

3.1 Temporal Outlier Detection . 43

87

Index

analysis, 1–4, 7, 25–30, 63, 65
approach, 2–4, 7–18, 24, 31, 42, 53, 56,

61–63, 65, 71, 72, 74, 75
architecture, 4, 5, 11, 15, 39, 67, 68, 74,

75

design, 2–5, 8, 14, 18, 23, 31–34, 39, 44,
53, 62, 63, 65, 67, 74

prototype, 2–5, 8, 11, 14, 17, 18, 23, 24,
31, 39–42, 44, 48, 56, 61–65, 67,
69, 75, 79

statistics, 1, 8, 14, 16, 25, 26, 28, 29, 42

time-oriented, 2, 3, 7, 18, 24–27, 31, 37,
38, 41, 42, 44, 47, 49, 51, 52,
54–56, 61, 62, 64–66

transformation, 1–3, 8, 9, 11–16, 18, 24,
35, 40–42, 48, 49, 51, 52, 56, 62,
63, 65, 67, 72

visual-interactive, 7, 9, 10, 13, 14, 16–18,
24, 28, 29, 41, 56, 62, 63, 65

wrangle, 1, 2, 8, 11, 13, 17, 18, 26, 27, 29,
52, 61, 66

89

Glossary

big data is a buzzword term primarily referring to data exceeding volume and size so that
it cannot be properly handled with more traditional approaches and technologies
anymore. 69, 72

data mining consists of techniques being applied, mainly , for ML. 1, 14

data munging is a synonym for data wrangling. 1

data science concerns itself with gaining insights from data scientifically. 1, 16, 17, 83

data warehousing is a classic approach to analytical reporting based on data marts
mostly periodically fed from multiple sources. 8

data wrangling consists of techniques being applied to transform data. 1–3, 7, 9, 13,
15, 17, 18, 63–65

semantic web is a buzzword term commonly subsuming approaches and technologies
supporting the notion of making the mainly text-based, unstructured data on the
WWW more accessible by enriching it with machine-readable semantics. 11

91

Acronyms

CI Continuous Integration. 69

CLI Command Line Interface. 15–17, 61

CVAST Centre for Visual Analytics Science and Technology. 69

DOM Document Object Model. 74, 76

DSL Domain-Specific Language. 9, 10, 15, 61

DX Developer Experience. 69

ETL Extract, Transform, Load. 8

FS File System. 44, 69

GMT Greenwich Mean Time. 40, 52

GUI Graphical User Interface. 8, 9, 15, 16, 18, 21, 83

HCI Human-Computer Interaction. 1, 3

HMR Hot Module Replacement. 39

IDE Integrated Development Environment. 10, 39

InfoVis Information Visualization. 1, 2, 10, 17, 18, 53

IR Information Retrieval. 1, 3, 40, 79

JVM Java Virtual Machine. 67, 71

L/PBD Learning/Programming by Demonstration. 8, 9, 13

ML Machine Learning. 1, 3, 36, 42, 65, 67, 72

93

PBE Programming by Example. 8

R&D Research and Development. 7, 12, 18

RCP Rich Client Platform. 15, 21, 83

RDBMS Relational Database Management System. 8, 9, 11

RDD Resilient Distributed Dataset. 40, 72

RDF Resource Description Framework. 11

REPL Read–Eval–Print Loop. 16, 61

ReST Representational State Transfer. 68, 70, 73, 75

SaaS Software as a Service. 69

SCM Source Code Management. 69

SEO Search Engine Optimization. 74

SoC Separation of Concerns. 74

SPA Single Page Application. 74, 75

SVG Scalable Vector Graphics. 76

TF-IDF Term Frequency – Inverse Document Frequency. 79

UI User Interface. 3, 10, 13–15, 17, 19, 23, 24, 31–33, 36, 39, 41, 44, 51, 53, 54, 61, 64,
65, 67, 73–75, 77, 83, 84

UTC Coordinated Universal Time. 40, 52

UX User Experience. 1, 3, 13, 18, 23, 36, 56, 61, 65, 66, 74

VA Visual Analytics. 1–3, 18, 63–66

VCS Version Control System. 69

94

Bibliography

[AMST11] Wolfgang Aigner, Silvia Miksch, Heidrun Schumann, and Christian Tominski.
Visualization of Time-Oriented Data. Human-Computer Interaction. Springer,
1st edition, 2011.

[BOH11] Michael Bostock, Vadim Ogievetsky, and Jeffrey Heer. D3: Data-driven
documents. IEEE Transactions on Visualization and Computer Graphics,
17(12):2301–2309, December 2011.

[BRG+12] Jürgen Bernard, Tobias Ruppert, Oliver Goroll, Thorsten May, and Jörn
Kohlhammer. Visual-interactive Preprocessing of Time Series Data. In An-
dreas Kerren and Stefan Seipel, editors, SIGRAD, volume 81 of Linköping
Electronic Conference Proceedings, pages 39–48. Linköping University Elec-
tronic Press, 2012.

[CKP08] Laura Chiticariu, Phokion G Kolaitis, and Lucian Popa. Interactive Genera-
tion of Integrated Schemas. In Jason Tsong-Li Wang, editor, Proceedings of
the 2008 ACM SIGMOD International Conference on Management of Data,
SIGMOD ’08, page 833, Vancouver, BC, Canada, 2008. ACM.

[CMS99] Stuart K Card, Jock D Mackinlay, and Ben Shneiderman. Readings in
Information Visualization: Using Vision to Think. Morgan Kaufmann, San
Francisco, CA, USA, 1999.

[Coo04] Alan Cooper. The Inmates Are Running the Asylum. Sams - Pearson Educa-
tion, 2nd edition, 2004.

[DFH07] David R Karger David F Huynh, Robert C Miller. Potluck: Semi-ontology
Alignment for Casual Users. In Proceedings of the 6th International Semantic
Web Conference and 2nd Asian Semantic Web Conference, ISWC + ASWC
’07, pages 903–910, Busan, Korea, 2007. Springer.

[DJ03] Tamraparni Dasu and Theodore Johnson. Exploratory Data Mining and Data
Cleaning. Wiley Series in Probability and Statistics. Wiley-Interscience, 2003.

[DJMS02] Tamraparni Dasu, Theodore Johnson, S Muthukrishnan, and Vladislav
Shkapenyuk. Mining Database Structure; Or, How to Build a Data Quality

95

Browser. In Proceedings of the 2002 ACM SIGMOD International Conference
on Management of Data, SIGMOD ’02, pages 240–251, Madison, WI, USA,
2002. ACM.

[FG05] Kathleen Fisher and Robert Gruber. PADS: A Domain-specific Language for
Processing Ad Hoc Data. SIGPLAN Notices, 40(6):295–304, June 2005.

[Fie00] Roy T Fielding. Architectural Styles and the Design of Network-based
Software Architectures. Building, 54:162, 2000.

[FJ10] Camilla Forsell and Jimmy Johansson. An Heuristic Set for Evaluation in In-
formation Visualization. AVI ’10 Proceedings of the International Conference
on Advanced Visual Interfaces, 10(3):199–206, 2010.

[Gar11] Jesse James Garrett. The Elements of User Experience: User-Centered Design
for the Web and Beyond. New Riders, 2nd edition, 2011.

[GT15] Clinton Gormley and Zachary Tong. Elasticsearch: The Definitive Guide.
O’Reilly Media, 1st edition, 2015.

[Gul10] Sumit Gulwani. Dimensions in Program Synthesis. Principles and Practice
of Declarative Programming, pages 1–1, October 2010.

[Gul11] Sumit Gulwani. Automating String Processing in Spreadsheets Using Input-
Output Examples. SIGPLAN Notices, 46(1):317–330, 2011.

[Hel08] Joseph M Hellerstein. Quantitative Data Cleaning for Large Databases.
United Nations Economic Commission for Europe (UNECE), 2008.

[HHH+05] Laura M Haas, Mauricio A Hernández, Howard Ho, Lucian Popa, and Mary
Roth. Clio Grows Up: From Research Prototype to Industrial Tool. In Pro-
ceedings of the 2005 ACM SIGMOD International Conference on Management
of Data, SIGMOD ’05, pages 805–810, New York, NY, USA, 2005. ACM.

[Hol05] Andreas Holzinger. Usability Engineering Methods for Software Developers.
Communications of the ACM, 48(1):71–74, January 2005.

[KHP+11] Sean Kandel, Jeffrey Heer, Catherine Plaisant, Jessie Kennedy, Frank Van
Ham, Nathalie Henry Riche, Chris Weaver, Bongshin Lee, Dominique Brod-
beck, and Paolo Buono. Research Directions in Data Wrangling: Visualizations
and Transformations for Usable and Credible Data. Information Visualization,
10(4):271–288, January 2011.

[KPHH11] Sean Kandel, Andreas Paepcke, Joseph Hellerstein, and Jeffrey Heer. Wran-
gler: Interactive Visual Specification of Data Transformation Scripts. In
Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, CHI ’11, pages 3363–3372, New York, NY, USA, 2011. ACM.

96

[MA14] Silvia Miksch and Wolfgang Aigner. Special Section on Visual Analytics: A
Matter of Time: Applying a Data–Users–Tasks Design Triangle to Visual
Analytics of Time-Oriented Data. Computer & Graphics, 38:286–290, February
2014.

[Mik10] Mike Loukides. What is Data Science? O’Reilly Media, June 2010.
https://www.oreilly.com/ideas/what-is-data-science, Accessed: 2017-04-11.

[MRS08] Christopher D Manning, Prabhakar Raghavan, and Hinrich Schütze. Intro-
duction to Information Retrieval. Cambridge University Press, 1st edition,
2008.

[Mun09] Tamara Munzner. A Nested Model for Visualization Design and Validation.
IEEE Transactions on Visualization and Computer Graphics, 15(6):921–928,
November 2009.

[New15] Sam Newman. Building Microservices. O’Reilly Media, 2015.

[Nie93] Jakob Nielsen. Usability Engineering. Morgan Kaufmann, 1993.

[Nor02] Donald A Norman. The Design of Everyday Things. Basic Books, 2002.

[Ras15] Rashid Khan. Timelion: The Time Series Composer for Kibana. Elastic,
November 2015. https://www.elastic.co/blog/timelion-timeline, Accessed:
2017-04-11.

[RCC05] George G Robertson, Mary P Czerwinski, and John E Churchill. Visualization
of Mappings Between Schemas. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, CHI ’05, pages 431–439, New York,
NY, USA, 2005. ACM.

[RH01] Vijayshankar Raman and Joseph M Hellerstein. Potter’s Wheel: An Interac-
tive Data Cleaning System. VLDB, 01:381–390, 2001.

[TC05] James J Thomas and Kristin A Cook. Illuminating the Path: The Research
and Development Agenda for Visual Analytics. IEEE Computer Society, 2005.

[Tuf01] Edward R Tufte. The Visual Display of Quantitative Information. Graphics
Pr, 2nd edition, 2001.

[WFH16] Ian H Witten, Eibe Frank, and Mark A Hall. Data Mining: Practical Machine
Learning Tools and Techniques. Morgan Kaufmann Series in Data Management
Systems. Morgan Kaufmann, 4th edition, 2016.

97

	Kurzfassung
	Abstract
	Contents
	Introduction
	Motivation
	Problem Statement
	Aim of the Work
	Methodological Approach
	Structure of the Work

	State of the Art
	Literature Study
	Analysis
	Comparison and Summary

	Design and Implementation
	Requirements Analysis
	Design of UI and Interactions
	Iterative Prototyping
	TempMunger
	Qualitative Evaluation

	Critical Reflection
	Comparison with Related Work
	Discussion of Open Issues
	Requirements Fulfillment
	Answering the Research Questions

	Summary and Future Work
	Software Design and Architecture
	Information Retrieval Background
	Supported Date/Time Formats
	List of Figures
	List of Tables
	List of Algorithms
	Index
	Glossary
	Acronyms
	Bibliography

