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Abstract

Graph Signal Processing is an emerging field of signal processing that
combines classical signal processing with graph theory. There are two
approaches which either use undirected weighted graphs that allow the us-
age of Laplacian matrix, or the more general approach, which is based on
algebraic features, including all weighted directed graphs.
We investigate the concept of causal graph signal processing that was

proposed by J. Mei and J.M.F. Moura. In a causal graph process, the
current signal depends on the past signals through graph filters that con-
sist of a polynomial of the graph shift matrix. With their algorithm, the
graph shift matrix and filter coefficients can be learned from a sequence
of observed data vectors. We evaluate the performance for estimating the
shift matrix from an artificially generated causal graph process.
Furthermore, we apply the estimation algorithm on two real-world data

sets. The first data set contains daily temperature data from different
countries. In the second example, we tried to model Austrian stock prices
with causal graph processes.

Kurzfassung

Graph-basierte Signalverarbeitung (graph signal processing) ist ein neu
entstehendes Gebiet in der Signalverarbeitung, das klassische Signalverar-
beitung mit der Graphentheorie vereint. Es gibt zwei Ansätze: einen mit
ungerichteten gewichteten Graphen, die es erlauben, die Laplacematrix
zu verwenden, und den allgemeineren Ansatz, welcher auf algebraischen
Eigenschaften basiert und alle gewichteten gerichteten Graphen abdeckt.
Wir untersuchen das Konzept der kausalen Graph-basierten Signalverar-
beitung, das von J. Mei und J.M.F. Moura vorgestellt wurde. In einem
kausalen Graphprozess hängt das aktuelle Signal von vergangenen Signalen
ab, auf die Graphfilter angewendet wurden. Die Graphfilter bestehen aus
einem Polynom – der „Graph Shift“-Matrix. Mit ihrem Algorithmus kön-
nen die „Graph Shift“-Matrix und die Filterkoeffizenten aus einer Folge
von beobachteten Datenvektoren gelernt werden. Wir evaluieren die Leis-
tungsfähigkeit der Methode für die Schätzung der „Graph Shift“-Matrix
aus einem künstlich generierten kausalen Graphprozess.
Weiters wenden wir den Schätzalgorithmus auf zwei reale Datensätze an.
Der erste Datensatz enthält tägliche Temperaturdaten aus verschiedenen
Ländern. Im zweiten Beispiel versuchten wir österreichische Aktienmark-
tpreise mit kausalen Graphprozessen zu modellieren.
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1 Introduction

With the ongoing digitalization of our surroundings comes the need for new approaches
on how to handle the flood of data. Therefore, it is natural to search for the connections
and structure inside seemingly unorganized sets of numbers.
Over the last century, the manipulation of time series resulted in the field of signal

processing. Different techniques were developed to filter, analyze and synthesize time
signals that appear in various fields of science and engineering. Starting from simple
one-dimensional time series the analysis evolved to higher-dimensional signals. With
more and more sources of signals, the increasing complexity limits the investigation of
all possible pairwise relations between data series. The search for sparser models led
signal processing researchers to discover graphs, which were previously investigated in
the scope of graph theory.
Combining graphs with signal processing resulted in the field of graph signal process-

ing, which aims to incorporate connections characterized by graphs into the processing
of signals. By associating each node of the graph with a signal value, we speak of graph
signals. Since the field of graph signal processing is still new, there is still no canonical
approach to the area.
Therefore, in this work, after giving a short definition of graphs, we try to present two

popular approaches to graph signal processing, as well as mentioning their benefits and
drawbacks. The first approach makes use of Laplacian matrices, which have their origins
in graph theory: this was popularized by Shuman [1]. It is characterized by undirected
graphs and offers an intuitive entry point to graph signal processing. As a second
approach, we discuss the more formal path that was introduced by Sandryhaila and
Moura [2]. It emphasizes the position of graph signal processing as a strict generalization
of classical signal processing, by axiomatically requiring properties of signal processing
and showing that these can be fulfilled by their graph counterpart.
To apply the framework of graph signal processing, one always needs the combination

of signals and an associated graph. While there are some applications where the choice
of the graph appears natural as in images or social networks, there is the intention to
extend the scope of graph processing to other areas. One option is to derive the graph
from the given nodes using a metric between them. This approach was chosen in [1]
to create a graph between weather stations based on their geographical distance. By
the undirected nature of distances, this always yields undirected graphs. It can capture
similarities but not “causal” dependencies.
Another way is to learn the graph from known data that is interpreted as graph signals

associated with an unknown, to be learned graph as it was shown in [3]. Again, there was
a lack of a method which leads to a directed graph. In 2016, Mei and Moura published
a paper introducing a new technique on how to learn a directed graph adjacency matrix
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assuming the training data conforms to what they call a causal graph process, in which
the current graph signal depends on previous signals over graph filters.

We discuss the algorithm, which they proposed, as well as the model of causal graph
processes. Further on, we then briefly describe the estimation performance regarding
the graph adjacency matrix and the graph filter coefficients by showing two different
examples. To complete the review, we obtained two openly accessible data sets. One
data set consists of daily temperature data from weather stations that are distributed
in selected countries. The second data set, we used to test the algorithm with, are daily
prices from the Austrian stock market.
In the end, we summarize our findings and conclusions from our experiments.



2 Graph Signal Processing

Signal Processing is an important area of telecommunications but also of many other
fields such as control, finance or seismology.
Due to the continuous nature of our world, the first concepts of signals representing

physical quantities were mostly described by continuous calculus. Numerical and discrete
techniques were employed when finding analytical solutions was infeasible.
According to [4], starting in the 1950s, the field of discrete signal processing began

gaining more and more attention. Sampling of analog signals resulted in discrete signals
that could be analyzed, processed and stored in computers. Since then, computers have
become faster and more affordable, which made digital signal processing very attractive.
Nowadays, the digital paradigm prevails and analog systems have been pushed to niche
applications.
Since computers are a part of our everyday life, a new type of signal is becoming

of importance. Signals are no longer only simple sampled representations of their ana-
log counterparts, but enormous amounts of data generated by information systems all
around the world. Sensor networks, social networks and business systems, generate sig-
nals where a clear notion of time, as in a sampled physical quantity, is less important.
We are interested to find, analyze and make use of connections and relations hidden in
those signals.
This motivated the emerging field of Graph Signal Processing [1], which tries to bring

together graph theory and signal processing. Each node of the graph is assigned a signal
value and is related to the other nodes over the weighted graph.
In the following, we first introduce the different concepts of graphs and how those can

be used to generalize (digital) signal processing to graph signal processing.

2.1 Types of Graphs
We start by introducing the variations of graphs that will be discussed in this thesis
following the notation of [5]. In literature, we can find a variety of graph-like structures,
but we will restrict ourselves to those which are used later.

2.1.1 Graphs and Directed Pseudographs
In graph theory a graph G, can be defined as an ordered couple (V (G), E(G)), where
V (G) is an nonempty set of vertices and E(G) is the set of edges. Each edge e is a set
e = {v1, v2} with v1, v2 ∈ V (G). An example is shown in Figure 2.1a.
While a graph connects different nodes with each other, a directed pseudograph can

be seen as a more general version of a graph. A directed pseudograph G is a an ordered
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couple (V (G), A(G)) of a nonempty set of vertices V (G) and a set of arcs A(G). Each
arc is an ordered couple of the form a = (v1, v2) ∈ A(G) ⊆ V (G) × V (G). Note
that, although the definitions of graph and directed pseudograph look similar, there are
important differences.

First of all, the arcs of directed pseudographs are directed – they have a start and an
end node. Looking at two nodes, they can have an arc in a1 = (v1, v2), from node v1
to v2, and another one a2 = (v2, v1) in the opposite direction. Secondly, self-loops are
allowed, i.e. arcs of the form a = (v, v), that start and end in the same vertex.

Figure 2.1 shows a graphical representation of two examples.

(a) graph (b) directed pseudograph

Figure 2.1: Examples of a graph and a directed pseudograph

2.1.2 Weighted Graphs and Weighted Directed Pseudographs

In the previous section we defined graphs and directed pseudographs. Both structures
include a binary decision for each pair of nodes – connected or not connected. For some
applications, it might be beneficial to introduce a weighting for each edge or arc.

As an extension to a graph, we introduce a weighted graph G as the ordered triple
(V (G), E(G), w). For this, we extend the graph with a function w : E(G) → R that
assigns a real weight to each edge in E(G).

In a similar fashion, we define the weighted directed pseudograph as the corresponding
ordered triple (V (G), A(G), w). Again, we need a weighting function w : A(G)→ R.

Figure 2.2 shows two examples based on the graphs on Figure 2.1 but now the
edges/arcs are weighted.

14



(a) weighted graph (b) weighted directed pseudograph

Figure 2.2: Examples of a weighted graph and a weighted directed pseudograph

Until now, we introduced four different graph like structures. For clarity, a summary
of all of them is shown in Table 2.1.

undirected directed
unweighted graph directed pseudograph

weighted weighted graph weighted directed pseudograph

Table 2.1: Introduced graphs

In the following, we will mostly use the weighted directed pseudograph and simply call
it directed graph. The defined graphs enable us to proceed with the discussion of graph
signals.

2.2 Graph Signals

Analyzing nodes and their connections are parts of graph theory. We can interpret each
node as an entity that is generating signal values. For example, we can see a node as
a temperature sensor that outputs temperature values. Nowadays, sensors are common
and the temperature sensor might be part of a network of temperature sensors. For a
given time, each sensor produces a reading, and we can establish a mapping from the
nodes to the signal written as

x : V (G)→ C, vi 7→ xi. (2.1)

We call x graph signal. This is not restricted to sensor values. The signal values can
for example be representations of opinions in a network of blogs, like it is shown in
Figure 2.3b. They could also be color values of an image pixel as in 2.3a. For example the
temperature values from weather stations in France are interpreted as a graph signal and
shown in the Figure 2.4. The length of the red bars visualizes the relative temperature
at each sensor node.
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(a) pixels in a picture (from [6]) (b) connected political blogs (from [7])

Figure 2.3: Examples of graphs

Given N nodes, we number them in an arbitrary way and see the graph signal as a
vector

x = [x1, x2, . . . , xN ] ∈ CN . (2.2)

This way, we could treat the graph signal as a classical vector signal, but we would
ignore the additional information we obtain when we make use of the underlying graph
G the signal is living on. Until now, we only specified a mapping from the nodes to the
signal values and deliberately left open how the connection information is incorporated
within the model.
The literature on graph signal processing can be divided into two big groups that

introduce the additional graph information in a different way. In the following, we will
give a short introduction of their main ideas.

2.2.1 Graph Signals - the Laplacian Approach

The first approach to graph signals became well known by the paper of Shuman [1]
which we will, in the scope of this thesis, briefly sum up. In this framework, graphs are
usually assumed weighted and undirected. After labeling the nodes in our graph, the
graph signal can be written as a vector x. Each edge of the graph is represented by
an entry Wi,j in the symmetric weight matrix W. Non-zero entries imply the presence
of an edge, while zeros in the weight matrix tell that the corresponding nodes are not
connected. Since no self-loops are allowed in a normal weighted graph, the matrix W
has a zero diagonal.
A major question of graph signal processing is the question how the graph should be

constructed. In the Laplacian approach, the graph weights often represent similarity
between the nodes. Two nodes are connected with a high weight if they are alike. In
contrast, a small or zero weight indicates low or no similarity. To express the similarity
between two nodes, a notion of distance is needed. If a distance between the nodes

16
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Figure 2.4: Distance based graph of temperature sensor network in France and temper-
ature values shown as red bars for each station

can be calculated, [1] proposes to build the graph weights using a thresholded Gaussian
kernel weighting function such as

Wi,j =
{

exp−d(i,j)2

2θ2 , d(i, j) ≤ ε
0, otherwise

. (2.3)

Here d(i, j) is a distance between the nodes i and j. The nodes are connected if their dis-
tance is smaller than some threshold ε and the weights are based upon the closeness with
respect to the chosen distance d(·, ·). Figure 2.4 shows a graph which is connected ac-
cording to equation 2.3, where we used the geographical distance to determine the graph
between the temperature sensors. A maximum distance of ε = 200 km between the nodes
was used. Even tough this way of constructing the graph appears to be straightforward
a potential disadvantage is visible in our example. Because of the maximum distance,
the two weather stations on Corsica are disconnected from the rest of the graph, which
could be of disadvantage if the disconnected signal part should be recovered from the
other signal values. An algorithm that does not share this property is described in [8].
The way of constructing the graph should be inferred from the problem type. Using

the geographical distance to connect the stations follows from the underlying assumption
that geometrically close nodes measure similar data. Note that the unweighted nature
of the graph suggests similarity of connected nodes, but it cannot make statements
regarding cause and effect, i.e., two nodes might have similar values because they are
close and are influenced by the same weather phenomenon but one cannot say whether
or how they influence each other. We will now try to formulate the notation of similarity
in a mathematical way. For this, we will need the Graph Laplacian.
Given a weight matrix W, we can define a diagonal degree matrix D which contains

the sum of all incident weights Di,i =
∑N
j=1 Wi,j . Using D and W we can define the

graph Laplacian L as
L := D−W.
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The Graph Laplacian L can be seen as a difference operator that can be applied to
graph signals x ∈ CN . The component-wise result is

(Lx)(i) =
N∑
j=1

Wi,j (x(i)− x(j)) =
∑
j∈N

Wi,j (x(i)− x(j)) . (2.4)

This shows that the i-th component of the Laplacian output is the weighted difference
of the signal value x(i) and the value at the adjacent nodes x(j). In equation 2.4 the
second equation clarifies that the sum only consists of signals from the set of neighbor
nodes N , with a Wi,j 6= 0, that are connected to node i. Before we discuss more on
smoothness, we want to introduce the concept of a Graph Fourier transform in this
setting.
In [1], the Graph Fourier transform is introduced by a comparison of eigenfunctions

and eigenvectors. It is known that the classical Fourier transform

F (jω) := 〈f(t), ejωt〉 =
∫ ∞
−∞

f(t)ejωtdt (2.5)

expands the function f(t) in terms of ejωt. These complex exponentials are the eigen-
functions of the one-dimensional Laplace operator which can be seen by calculating

−∆(ejωt) = ∂2

∂t2
ejωt = ω2ejωt. (2.6)

The eigenvalues are given by ω2 and therefore, closely related to frequency. If we want
to apply this concept to graph signal processing, we have to find the eigenvectors with
respect to the in equation 2.2.1 defined Laplace operator L.
Since the graph Laplacian L is, by definition, a real symmetric matrix, it has N

orthonormal eigenvectors uk which fulfill the equation

Luk = λkuk (2.7)

with the corresponding non negative eigenvalues λk. Analog to Equation 2.6 we can
obtain the k-th component of the graph Fourier x̂ of the graph signal x transform by
computing the scalar product with the matching eigenvector uk as

x̂(k) = 〈x,uk〉 = uHk x. (2.8)

By grouping all eigenvectors uk into the eigenvector matrix U = [u1, . . . ,uN ] we can
express the transform as

x̂ = UHx (2.9)
and since U is a unitary matrix, we can find the inverse graph Fourier transform to be

x =
(
UH

)−1
x̂ = Ux̂. (2.10)

Another analogy to the classical Fourier transform we want to address, is the smoothness
of the different Fourier components uk. The original Fourier transform has the eigen-
functions ejωt which correspond to the eigenvalues ω2, where ω is usually termed to be
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a frequency. Low frequencies - low ω correspond to a slowly changing harmonic signal
– the corresponding eigenfunction, and higher frequencies capture stronger fluctuations.
The ordering of the frequencies is naturally given by their magnitude.
The question arises whether such a notion of low and high frequencies can be ported

to the graph Fourier transform. To answer this question, one first needs to define how to
quantitatively define the concept of slow and fast variation, which seems clear intuitively
for 1D signals. Although the graph signal x can be seen as a vector in CN , it is not
enough to relate only the neighboring elements in the vector to each other. Instead, we
want to see how close the signal values on connected nodes are and specifically weigh in
differences of edges that are linked with a high weight. We first define a local variation
for one node index by i as

‖∇ix‖2 =

∑
j∈N

Wi,j(x(i)− x(j))2

 1
2

, (2.11)

the term can be interpreted as smoothness of the signal around the node i. Consequently,
we can build a global smoothness expression by summing over the local variation at all
nodes which yields

Sp(x) = 1
p

∑
i∈V
‖∇ix‖p2 = 1

p

∑
i∈V

∑
j∈Ni

Wi,j(x(i)− x(j))2


p
2

(2.12)

where Ni are again the neighboring nodes of i. The term Sp(x) was named p-Dirichlet
form of x and measures smoothness on the graph. It should be noted that this is not
the only way one can define smoothness and different definitions might fit to different
applications. If we choose p = 1, we get what [1] calls total variation of the graph signal
while [6] also use p = 1 but squared weights W 2

i,j in their definition of total variation.
Another option is to take, instead of the squared differences (x(i)−x(j))2, the absolute
value |x(i)− x(j)|. The latter definition has a smaller penalty to big differences and
might be beneficial when trying to recover images with edges.
Since this discussion is centered around the Laplacian approach of graph signal pro-

cessing, we want to focus on the definition given in Equation 2.12, furthermore, set p = 2
which enables simpler calculations. To avoid further naming confusion, we will refer to
S2(x) as global smoothness.

There is an interesting connection between global smoothness and the Laplacian L
given by

S2(x) = 1
2
∑
i∈V

∑
j∈Ni

Wi,j(x(i)− x(j))2 = xHLx. (2.13)

Using this form, one can easily compute the global smoothness of the eigenvectors uk to
be

S2(uk) = uHk Luk = uHk λkuk = λk, (2.14)

where we used Equation 2.7 and the orthonormality of the eigenvectors uHk uk = 1.
Therefore, if λj < λk ⇒ S2(uj) < S2(uk) and the value of λk, can be interpreted as the
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frequency of a certain component – the eigenvector uk. Given a graph Fourier transform
x̂, we can see the components of the vector x̂ that correspond to small λ as the low
frequencies and those for big λ as high frequency components.
Having a frequency representation, allows to introduce filtering. In classical DSP, we

are able to write the filter operation in the frequency domain as Y (jω) = H(jω)X(jω).
Each frequency component of the original signal X(jω) is multiplied by a numberH(jω).
Similarly, we can define the graph spectral filtering as

ŷ(k) = ĥ(k)x̂(k) (2.15)

whereby, we take each spectral component of the graph signal and multiply it with a
filter coefficient ĥ(k). As the Fourier transform is known to be x̂ = UHx and the inverse
transfrom is y = Uŷ, we specify the filtering also in the vertex domain as

y = U


ĥ(1) 0

0 . . . 0
0 ĥ(N)

UHx = Hx (2.16)

with the graph filter matrix H.
One example where a graph filter can be applied is the problem of Tikhonov regular-

ization. Given a noisy graph signal x = x0 + n, where x0 is the original signal and n is
iid Gaussian noise. To recover the original signal, we want to enforce global smoothness
on a chosen graph.
This leads to the minimization problem

argmin
y
‖y− x‖22 + γyTLy (2.17)

with a constant γ > 0 that weights smoothness against close representation.
The optimal solution to this problem can be found in [9] and can be written using the

graph filter ĥ(k) = 1/(1 + γλk). We can, therefore, compute the optimum solution to
equation 2.17 as

y = U

1/(1 + γλ1) 0

0 . . . 0
0 1/(1 + γλN )

UHx. (2.18)

If a greyscale image is the graph signal, the graph can be constructed by connecting each
pixel node to each neighboring pixel. In Figure 2.5, from [1] denoising performance of
the Tikonov method is compared against Gaussian filtering.
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(a) noisy image (b) gaussian filtering (σ = 1.5) (c) graph filtered

Figure 2.5: Detail view of the denoising results from [1]

This short introduction to Laplace-based graph signal processing should give the
reader an idea about the approach. Furthermore, a translation operator can be in-
troduced, as well as a concept similar to frequency modulation. Nevertheless, one has
to trust the arguments used to introduce the spectrum, and a strong focus is put on
the smoothness property. Moreover, the choice of the presented Laplacian is not unique.
Instead of the regular L = D −W, a normalized Laplacian L̂ = D−1/2LD−1/2 can be
used.
Additionally, the presented approach limits us to undirected graphs. Although this

ensures the existence of a Laplacian and therefore, a real well ordered spectrum, it
excludes applications where the directivity in the graph is needed. This motivates the
following algebraic approach to graph signal processing.

2.2.2 Graph Signals – an Algebraic Approach

Choosing the Laplace matrix as the defining relationship allows to define a real spec-
trum and also offers an intuitive relationship to a signal’s smoothness. Despite these
advantages it is relatively weak from an axiomatic view point. Why should the graph
Fourier transform be represented by the eigenvectors of the Laplacian? How can we
express non-symmetric relationships between nodes? What is the connection to classical
signal processing?
To answer these questions, we have to follow the more stringent path to graph signal

processing published in [2]. One of the authors - J. M. F. Moura tried to abstract
the main principles of signal processing, which are signals, filters, shifts and Fourier
transforms. This led to, what is called Algebraic Signal Processing (ASP) introduced in
[10], [11]. In the following section, we want to introduce the basic ideas of this concept
starting with the ideas of ASP as in [11].

2.2.2.1 Algebraic Signal Processing

The idea is that signal processing consists of an interplay between signals and filters.
To extend the framework into a more extensive setting, those interactions need to be
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identified. If the requirements to signals and filters are known, those can be applied
to introduce the more general signal processing on graphs (DSPG). We present the
requirements in the fashion of [11] rather than in a more mathematically precise way to
emphasize the intuition behind them.

We consider two sets, the set of signalsM and the set of filters A. The set of signals
is, per assumption, a vector space with a set of scalars α. Therefore, the following holds:

signal + signal = signal (2.19)
signal · α = signal. (2.20)

Two signals can be added to give another signal, and a signal can be scaled with a scalar.
We will only consider linear signal processing. We can define the interaction between a
signal and a filter, usually known as convolution, as a multiplication

filter · signal = signal (2.21)

which results in a signal from the signal space M. The linear property expresses itself
algebraically in a distributive law given by

filter · (signal + signal) = filter · signal + filter · signal. (2.22)

Onto the filter space A we have the requirements

filter + filter = filter (2.23)
filter · α = filter. (2.24)

that requireA to be a vector space. The first equation can be seen as a parallel connection
of filters and the second operation scales the filter. Additionally, filters have another
requirement that makes them different from signals, which is

filter · filter = filter. (2.25)

This is the algebraic requirement that ensures serial concatenation of two filters. We
conclude that the set of filters A has to be vector space and a ring that shares the same
addition which is known to be an algebra. The set of signals M is an A-module M.
Both constructs are defined more formally in the appendix of [11].
Axiomatically, we want to operate on signals and filters defined in equations 2.20-2.25.

In applications, signals are usually defined over a vector space V rather than a module
M. To apply filtering operations, we need to map the vector signals from V to the
moduleM. For this, we introduce a bijective linear mapping

Φ : V →M. (2.26)

As an example we can map infinite time series `(Z) to the Z-space:

Φ : V = `(Z)→M (2.27)
s 7→ S(z) =

∑
n

snz
−n (2.28)
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In this example, the mapping Φ is the well known Z-transform. According to [11], the
triplet

(A,M,Φ) (2.29)
is known as Linear Signal Model and is sufficient to introduce further signal processing
concepts as spectrum and Fourier transform. We will postpone the definition of the
Fourier transform so we can introduce it together with the specialized graph signal
processing.
There is one more important concept that should be introduced before we progress

to graphs. This is the notion of shift. We want to assume that every filter in our filter
algebra A can be expressed by only additions and multiplications of the shift filter.
In algebraic terms, this means that the chosen shift is a generator for the algebra A.
Staying with our previous example, the shift for the 1-D model is the time shift operator
x = z−1.
A further specialization of the signal model is the requirement for shift invariance. We

want the output of shifted and then filtered signal h(x s) to be equal to the output from
the signal shifted afterwards x(h s). Using the filter algebra this can be written as

x · h = h · x ∀h ∈ A. (2.30)

This requires the algebra A to be commutative. The reverse holds as well – a commuta-
tive algebra leads to a shift-invariant model. To obtain N -dimensional filter algebras, we
use polynomials modulo a polynomial p(x) of degree N . Without the modulo operation,
the product of two filter polynomials could have a higher degree than N and therefore,
not be part of the algebra – which would contradict equation 2.25. This theoretical back-
ground will be helpful in a more rigorous way of introducing graph signal processing in
the next section. A more detailed, lengthy discussion of algebraic signal processing can
be found in [10].

2.2.3 Algebraic Graph Signal Processing
In the previous section, we concluded that under certain circumstances a shift operator
with a signal space is sufficient to define signal processing basics. We will apply those
concepts and mainly follow the lines of [2] to develop graph signal processing.
As in the Laplacian approach we have in mind a graph G with vertices V (G). Each of

the vertices is assigned a signal value given by equation 2.1. To capture the connections
of the graph, we introduce a weighted adjacency matrix A similar to the weight matrix
W before. In contrast to the weight matrix the adjacency matrix A allows for directed
connections and self loops and therefore, describes a weighted directed pseudograph as
shown in figure 2.2b.
The strategy is to interpret this adjacency matrix as the shift operator in our filter

algebra operating on the graph signals x. This means we understand the operation

x̃ = Ax

as a shift of the graph signal x with respect to the underlying graph G whose connec-
tivity is captured entirely in the adjacency matrix A. A compelling argument why
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this is a reasonable thing to do is that we can represent the cyclic shift operation
x̃(n) = x(n− 1 mod N) and the operator z−1 by a special matrix A as

x̃ =



0 1
1 0

0 1 . . .
. . . 0
0 1 0


x = Ax. (2.31)

The corresponding directed graph is shown in Figure 2.6. This gives graph signal pro-
cessing with directed graphs an edge over undirected graphs where it is impossible to
represent a classical cyclic shift as a special case in the theory.

Figure 2.6: Graphical representation of the graph for the graph shift matrix A given in
Equation 2.31

An advantage of graph signal processing is that it implicitly solves the boundary
conditions, which had to be addressed with the modulo operation in the classical shift
operation.
Unlike in the Section 2.2.2.1, where we defined filter algebra α as an abstract construct,

we want to work with the practical objects, i.e. matrices and vectors and afterwards
make the connection to the corresponding polynomial algebra. To define graph filters
we first start with arbitrary matrices H ∈ CN×N . As matrices, they already fulfill the
requirement of linearity when applied to signals as shown in

H(αx1 + βx2) = αHx1 + βHx2 (2.32)

which holds for all signals x, as for any scalars α and β. As in classical signal processing
we wish shift invariance for filters, which can be expressed as

A(Hx) = H(Ax) (2.33)

in terms of filter matrices H and graph shifts A.
To define the structure of graph filters, we need the characteristic polynomial pA(x)

and the minimal polynomialmA(x), which are defined in Definition 6.1 and Definition 6.2
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of the appendix. If for an adjacency matrix A, pA(x) = mA(x), then the graph filter H
is shift invariant iff it can be written as matrix polynomial of the form

H = h0I + h1A + h2A2 + · · ·+ hLAL (2.34)

using complex coefficients hi ∈ C. These coefficients can be seen as taps equivalent to
the taps in classical filter responses.

Since we required matrices A that fulfill pA(x) = mA(x), we need a way to deal with
graphs G whose weighted adjacency matrix A does not fulfill this condition. According
to [2], for each A, with pA(x) 6= mA(x), there exists a function r that connects A over
A = r(Ã) with a matrix that complies with pÃ(x) = mÃ(x). We can then use our
graph filters h(A) = h(r(Ã)). Therefore, we can replace A with another graph using
the matrix Ã that has the same nodes but possibly different edges.
By using a polynomial division onto the filter polynomial h(x)

h(x) = q(x)mA + r(x) (2.35)

we can split the filter polynomial into a first part that contains the minimal polynomial
and a remainder part that has a degree of deg r(x) < N . Applying this to our filter we
see that

h(A) = q(A)mA(A) + r(A) = q(A)0 + r(A) = r(A). (2.36)
Therefore, we can conclude that the maximal filter length of a graph filter is N . With
this knowledge, we can define the algebra of graph filters as

F =
{

H : H =
N−1∑
l=0

hlAl

}
. (2.37)

To make the connection to the algebraic model introduced before, we need to define the
graph z-transform which is a generalization of the discrete time z-transform. Given a
filter algebra F and its elements H, we can use the mapping A 7→ x to map the graph
filter which is defined by a polynomial h(A) to a polynomial p(x) of the polynomial
algebra

A = C[x]
mA(x) . (2.38)

This mapping h(A) 7→ h(x) is an isomorphism from the filter algebra F to the polynomial
algebra A. The concatenation of filters is represented by the polynomial multiplication
modulo mA(x).
In contrast to classical signal processing, the graph z-transform is different for signals

and filters. We can see that the two z-transforms have to be different, just by looking at
the different structures of filters and signals. While a signal is represented by a vector
x ∈ V ⊂ Cn, the filters are matrices H ∈ F ⊂ CN×N .
Similar to the filter algebra A, we find as the z-domain representation of the signal

space V to be the A-moduleM:

M = C[x]/pA(x) =
{
v(x) =

N−1∑
i=0

vnbn(x)
}
. (2.39)
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In Equation 2.39, we already represented the polynomials v(x) ∈ M as a sum of basis
polynomials. The signal graph z-transform can be defined using those polynomials as
the mapping

v = (v0, . . . , vN−1)T ∈ V 7→ v(x) =
N−1∑
n=0

vnbn(x). (2.40)

We still have to determine how the basis polynomials can be calculated. According
to [2], we need to follow the subsequent procedure. We first need to group all basis
polynomials into a vector

b(x) = (b0(x), . . . , bN1(x))T . (2.41)

The basis polynomials have to satisfy the condition

b(r)(λm) =
(
b

(r)
0 (λm), . . . , b(r)

N−1(λm)
)T

= r!ṽm,0,r (2.42)

for 0 ≤ r < Rm,0 and 0 ≤ m < M , with λm and ṽm,0,r being the generalized eigenvectors
of AT . Here M are the number of distinct eigenvalues, Rm,0 is the length of the mth
Jordan chain and b(r)

i (x) is the rth derivative of bi(x). Those N equations are enough
to find all N2 coefficients of the basis polynomials.

In the graph z-domain filtering is performed as the multiplication

ṽ(x) =
N−1∑
n=0

ṽnbn(x) = h(x)v(x) mod pA(x). (2.43)

In Figure 2.7 the filtering operation is depicted in both domains.

v ∈ V ṽ ∈ V

v(x) ∈M ṽ(x) ∈M

signal
z-transform

H ∈ F
ṽ = Hv

h(x) ∈ A
ṽ(x) = h(x)v(x) mod pA(x)

Figure 2.7: Filtering in vector and z-transform domain

By defining the algebra A, the moduleM and the z-transform for the case of graph
signal processing, we have shown that the latter can be seen as a generalization of
classical signal processing. From now on, we will stick to the matrix and vector notation
as it is simpler to work directly with the given vectors and shift matrices than with the
corresponding polynomials.
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2.2.4 Frequency analysis
We want to decompose the signal space V into subspaces Vk that are invariant to filtering,
which means that

xk ∈ Vk ⇒ h(A)xk ∈ Vk ∀ h(A) ∈ F . (2.44)

This is equivalent to the effect of a filter onto a single frequency which only multiplies
it by a scalar H(ejωt). Given a graph signal x, we want to decompose it into xk ∈ Vk
such that

x = x1 + x2 + · · ·+ xK−1. (2.45)

All those subspaces should decompose the space V in the form

V = V1 ⊕ V2 ⊕ · · · ⊕ VK−1. (2.46)

Following [2], we identify these subspaces Vk as

Vk = span
{

vm,d,0, . . . ,vm,d,Rm,d−1
}

(2.47)

with the generalized eigenvectors vm,d,r, as defined in Definition 6.3. Each subspace is
related to the block matrix Vm,d. If we use the Jordan decomposition from Definition 6.3
A = VJV−1 we can reformulate graph filtering as

h(A) =
N−1∑
n=0

hn
(
VJV−1

)
= V

(
N−1∑
n=0

hnJn
)

V−1 = Vh(J)V−1. (2.48)

This spectral decomposition leads us to the graph Fourier transform given by the matrix
of generalized eigenvectors V

x̂ = V−1x (2.49)

where V−1 takes the role of a Fourier transform matrix F = V−1. The inverse Fourier
transform is given by

x = Vx̂. (2.50)

Filtering of graph signals can also be used in the spectral domain since

x̃ = h(A)x = Vh(J)V−1x = F−1h(J)Fx = F−1h(J)x̂ (2.51)

and therefore, we can describe the filtering operation as

˜̂x = h(J)x̂. (2.52)

To support the interpretation of the graph Fourier transform we reconsider the graph as
depicted in Figure 2.6. This graph has the adjacency matrix as given in Equation 2.31
and its decomposition yields according to [7]

A = 1
N

DFT−1
N


e−j

2π0
N

. . .
e−j

2π(N−1)
N

DFTN (2.53)
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with DFTN being the discrete Fourier transform matrix. Comparing Equation 2.53 with
the Jordan decomposition A = VJV−1, we see that in this example F = V−1 = DFTN .
Therefore, the regular discrete Fourier transform can be seen as a special case of the
graph Fourier transform with a cyclic graph as in Figure 2.6.
In the above example, the adjacency matrix A is diagonalizable, and there we can read

the eigenvalues from diagonal matrix J. When talking about graph signal processing it
is common to call those eigenvalues λn of A frequencies contrary to the classical case
where we would call the exponents of the eigenvalues i.e. 2π

N n frequencies.
As in the Laplacian case, we are again interested in ordering of frequencies – meaning

we want to be able to categorize them in low and high frequencies. One advantage of the
approach based on the Laplace matrix is that, due to its symmetry, N eigenvectors exist
for a N×N matrix L. By removing the restrictions on the adjacency matrix A, we allow
for non diagonalizable matrices. Although we can still define a Fourier transform matrix
consisting of the generalized eigenvectors, we want to restrict the further discussion onto
diagonalizable matrices.
To define a frequency ordering we will follow the approach of [7] that uses a concept

of total variation, which is similar to what we called global smoothness previously. For
classical time signals we can define total variation as

TV(x) =
N−1∑
n=0
|xn − xn−1 mod N | . (2.54)

This definition compares the absolute difference of consecutive signal values in the signal
vector v. A rapidly varying signal is expected to have a high total variation while for
a smooth signal, this metric should be small. If we take the adjacency matrix from
Equation 2.31 and name it Acycl, we can write the classical total variation as

TV(x) = ‖x−Acyclx‖1. (2.55)

This interprets the total variation as the difference of the vector signal and its (graph)
shifted counterpart. Naturally, we can generalize this definition to a graph total variation
that makes use of the graph shift A. A difference between the classical cyclic shift and
the graph shift is the effect on the signals norm ‖v‖2. While the cyclic shift with |λn| = 1
preserves the norm ‖Acyclv‖2 = ‖v‖2, a general graph shift A can decrease or increase
the signal’s norm. From the algebraic structure of the filter algebra F , we know that
we can scale the filters and also the shift freely. For the following statements about
frequency ordering it is convenient to work with a normalized shift

Anorm = 1
|λmax|

A (2.56)

which is scaled by the magnitude of the largest eigenvalue |λmax| of A. This ensures
that shifted signals will have a smaller norm because ‖Anormv‖2 ≤ ‖v‖2. Finally, we
can define the total variation on graphs in analogy to Equation 2.55 as

TVG(x) = ‖x−Anormx‖1. (2.57)
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We will now investigate the graph total variation of proper eigenvectors v. By applying
the total variation definition on v, we obtain

TVG(v) = ‖v−Anormv‖1 = ‖v− λ

|λmax|
v‖1 =

∣∣∣∣1− λ

|λmax|

∣∣∣∣ ‖v‖1. (2.58)

If we normalize all eigenvectors to ‖v‖1, the total variation of the eigenvectors only
depends on the eigenvalue. For the special case of all real eigenvalues, we obtain the
condition

λm < λn ⇒ TVG(vm) > TVG(vn), (2.59)
which is proven in [7]. For the real eigenvalues a big eigenvalue corresponds to an
eigenvector with a low total variation. This is similar to the conclusion we drew from
Equation 2.14 for the global smoothness. For complex eigenvalues no natural ordering
exists, and therefore, we ask how Equation 2.59 can be extended to this more general
case.

From [7] we find that then

||λmax| − λm| < ||λmax| − λn| ⇒ TVG(vm) < TVG(vn) (2.60)

holds. This condition expresses that the total variation is lower the closer the eigenvalue
for the corresponding eigenvector is to the point |λmax|+ 0j in the complex plane. This
situation is visualized in Figure 2.8a.

(a) graph Fourier transform (b) classical Fourier transform

Figure 2.8: Frequency ordering depending on the position of the eigenvalues λ in C. Both
graphics are from [7]

This can also be compared to the corresponding plot for the classical Fourier transform
in Figure 2.8b. As the eigenvalues are as well complex, they have to be compared to
eigenvalue λ0 that represents the DC component of the signal. Conjugated complex
eigenvalues correspond to the same frequency and therefore, also share the same total
variation.
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2.2.5 The importance of the graph shift
Up to now we argued that discrete time signal processing can be generalized to graph
signal processing using a shift matrix A. We saw that this generalization fulfills the
requirements we derived from classical signal processing. Furthermore, there are equiva-
lents to the z-transform and more importantly to the Fourier transform for graph signals.
Under some circumstances the latter also allows for a frequency ordering, that is related
to the signal variation on the graph. More advanced topics which build on the graph
framework are the closely connected areas of signal sampling and recovery [12][13] or the
extension to “big data” as suggested by [14].
Nevertheless, the usefulness of graph signal processing stands or falls with the actual

graph information and its interpretation which, in case of the Moura-approach, has to
be answered for each application separately, that is packed into the graph shift. One can
easily withdraw to the theoretic standpoint and argue that due to similar properties, it
is simply a generalization of the 1D-shift, and therefore, a graph shift is “the same” for
graphs. Unfortunately, this position is, despite arguably being correct as shown before,
not particularly constructive.
It is a common practice to use graph shifts that represent graphs that are directly

given by the application, for example a network of connected political blogs, discussed
in [7]. There every link represents a directed link in the graph and one entry in the
graph shift matrix. Given a graph signal, which can be interpreted as a snapshot of the
current political position of each blog, the application of the shift would then correspond
to a kind of (political) believe propagation and might be used to predict future changes
in the opinion. The same graph can also be used for semi supervised classification, like
it was used in [15], where the authors try to induct the political orientation of all blogs
from a low number of initially known starting points.
If data is available, but the inherent graph connection between the nodes is not initially

visible, we can still want to apply graph signal processing. For this, we need a method
to infer the graph first. In the remaining part of this thesis, we want to focus on one
proposed method and evaluate its practicality and interpretation.
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3 Causal Graph Signals
In the previous chapter, we introduced the concepts of graph signal processing. Until
this day, the scientific community that is pushing the graph signal technology shares
a limited number of examples ie. the network of US weather stations [14][7][2][12],
the Minnesota road graph [1][16] or a blog network [7][15]. This suggests the question
why these examples were used by so many authors. First of all, one could argue that
many authors work together and share their results on common known graphs to make
their results comparable. Another reason could be that these given examples are usually
intuitive to understand and there is a kind of shared expectation for the desired outcome.
However, there is one more important reason which we want to address in this chapter.
That reason is the availability of appropriate graphs that can be associated with graph
signals. Even if graphs and corresponding signals are available, there is a computational
restriction on the size that can be treated in analysis. For example, the straight-forward
application of the graph Fourier transform requires an eigenvalue decomposition of the
adjacency/shift matrix as well as computing the inverse of the eigenvector matrix. Until
this is addressed the choice of useable graphs is limited by their size, and this leads to
the same examples being used repeatedly.
Another approach than applying graph signal processing to learn more about the

technique itself, is rooted in the desire to understand and process available unstructured
data that arises in different applications. This was the motivation for the paper [17]
which we want to investigate in this and the following chapters. The main idea is that
we obtained a realization of a graph signal process, which contains consecutive snapshots
of a graph signal and assumes that the process follows a certain model. Then we can
estimate the parameters that make up the model using an algorithm given in [17] which
in this case includes an adjacency/shift matrix. Unlike existing methods as for example
[3] this method has the advantage that we do not restrict ourselves to symmetric shift
matrix and smooth signals. In the following, we will introduce the used model.

3.1 Causal Graph Processes
We start from an observed graph signal

x[k] = (x0[k], x1[k], . . . xN−1[k])T ∈ CN (3.1)

on a graph with N nodes that is indexed by a time index k. Furthermore, we want to call
the ensemble of x[k] for all available k a graph process. In [17], those graph processes
are further specialized to causal graph processes. The basic idea behind this class of
processes is that the signal x[k] at a time k depends on the past graph signals x[k − 1],
x[k − 2], and so on.
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A Causal Graph Process is defined as a process of the form

x[k] = z[k] +
M∑
i=1

Pi(A, c)x[k − i] (3.2)

= z[k] +
M∑
i=1

 i∑
j=0

cijAj

x[k − i].+ (3.3)

We observe that the current graph signal x[k] depends on a noise term z[k] and M past
graph signals x[k − i] which are filtered by the graph filters Pi(A, c). In Equation 3.3,
the graph filters are seen to be matrix polynomials in a shift matrix A, and therefore,
conform with the filters defined in [2]. We will call the parameterM of the graph process
model order of the process.
To get a better understanding for this rather complex expression we want to show the

first terms of the process are

x[k] = z[k] + [c10I + c11A] x[k − 1]

+
[
c20I + c21A + c22A2

]
x[k − 2]

+
[
c30I + c31A + c32A2 + c33A3

]
x[k − 3] + . . .

+
[
cM0I + · · ·+ cMMAM

]
x[k −M ]

(3.4)

where I is a N ×N identity matrix. To describe a graph process next to the graph shift
A also the filter coefficients cij have to be known.

According to [17], the full parameterization in Equation 3.4 with all cij has problems
with identifiability. If we assume that P1(A, c) 6= αI, which is a reasonable assumption
since if P1(A, c) = αI and also A = α′I and therefore, Pi(A, c) = α′′i I with some
α′′i . Then, without loss of generality, we can set c10 = 0 and c11 = 1 and therefore,
P1(A, c) = A. Using a full parameterization with the coefficients c′ij and the shift
matrix A′ we want to describe the same process with only a shift matrix A - this yields

P1(A′, c′) = c′10I + c′11A′ = A = P1(A, c). (3.5)

Because we assumed c′11 6= 0 we can solve for A′ and obtain

A′ = (c′11)−1(A− c′10I). (3.6)

After a lengthy calculation that can be found in [17], we can write the graph filters
Pi(A′, c′) =

∑i
k=0 cikAk = Pi(A, c) with the new coefficients

cik =
i∑

j=k
c′ij(c′11)−j

(
j

k

)
(−c′10)j−k (3.7)

and can fix P1(A, c) = A for further usage. To summarize this technical section, we can
represent the causal graph process as

x[k] = z[k] + Ax[k − 1] +
[
c20I + c21A + c22A2

]
x[k − 2] + . . . (3.8)
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with implicitly setting c10 = 0 and c11 = 1.
With the process formal being defined in Equation 3.4, or the reduced form in Equa-

tion 3.8, we want to develop a better intuition for the model. Unfortunately, the original
paper [17] is rather parsimonious with explanations of their model. The authors claim
that they are, in some sense, generalizing the idea of a light cone used in the paper [18],
to the graph domain. Underlying is the idea that the information that is captured in
the nodes’ signal values spreads with the constant speed of one graph shift per sampling
time. This explains why the order of the graph filter grows for samples that are located
further in the past. While the previous signal x[k−1] enters the current signal in a once
shifted version Ax[k − 1] the signal x[k − i] has terms for all shifts A1,A2, . . . up to
Ai which results from a i-times shifted signal. Additionally, there is also one term that
includes the identity matrix I, which can capture self-loops in case the graph process
correlates with itself.
Figure 3.1 shows how the past samples influence the current sample of the causal

graph process. Multiple applications of the shift matrix A ie. A2, A3 are represented
by more than one hop.
We are using the reduced formulation given by Equation 3.8, which does not include

explicit self-loops in the form of an identity matrix for the first term. If a signal strongly
depends on the same nodes’ values of the previous signal, this dependency has to be
modeled into the shift matrix A as diagonal entries. Therefore, for higher order graph
shifts the self loops can either be included through the shift matrix A or through the
identity term I.

Figure 3.1: Visual representation of a causal graph signal process with model order 3

To show the spreading through the graph shifts Figure 3.2 gives a visualization how
the signal value of one node propagates through the graph through multiple graph shifts.
Notice that Figure 3.2 shows the matrix polynomial P3(A, c) which is only one term
that has to be added and one node is depicted because otherwise the Figure would not
be intelligible. Also a simple graph without own loops was chosen to focus upon the
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shift effect.

Figure 3.2: Visualization of the information spreading through graph shifts for P3(A, c)

The matrix polynomials Pi(A, c) contain up to i shift operations. The order of the
matrix polynomial and, therefore, also the model order of the process is limited by
the graph’s number of nodes N . Since Pi(A, c) are as well graph filters, they can be
represented by a filter with N taps [2] – meaning the highest possible shift is AN−1.
If we follow the shifts in Figure 3.2 for the selected node, we see that another shift,
i.e. A4 would not have any effect. This behavior strongly depends upon the structure
of the underlying shift/graph and we therefore choose the graph from Figure 2.6 with
N cyclically connected nodes. In this case, the signal shifted from any node reaches
the same node after N shifts and can therefore be replaced by the shift A0 = I. We
can clearly see that a graph filter of an order bigger than N − 1 cannot be well defined
for this example, but also on any other graph. Later, we will see that, when treating
the problem of estimation, the model order is usually much smaller than the number of
nodes N and this case is not practically relevant.
In this section, we defined the class of causal graph signals. The next section will

describe the algorithm presented in [17] which can be used to estimate the shift matrix
A and the graph filter coefficients cij from a given set of realizations x[k].

3.2 The algorithm

This section should describe the algorithm used in work that originated from the paper
[17]. Finding the shift A and the coefficients cij for a process of the form given in
Equation 3.8 appears to be non trivial. We assume that K consecutive realizations of
the graph signal process xk are given, and that the samples x[k] can be described by the
causal graph signal model. In Chapter 4, we will apply the model on real-world data.
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The first approach for the estimation task can be formulated in the minimization
problem

(A, c) = arg min
A,c

1
2

K−1∑
k=M

∥∥∥x[k]−
M∑
i=1

Pi(A, c)x[k − i]
∥∥∥2

2
+ λ1‖vec(A)‖1 + λ2‖c‖1. (3.9)

In Equation 3.9 we collected all coefficients cij into the coefficient vector

c = (c10 c11 c20 c21 c22 . . . cij . . . cMM .)T (3.10)

and the vec operator to vectorize the shift matrix A. The minimization varies three
terms to find unknown shift A and all the filter coefficients c. While the first term has
the obvious function of minimizing the squared error between the accessible samples of
the process and the estimation using the past samples, the two regularization terms need
to be discussed.

The term λ1‖vec(A)‖1 influences the resulting shift in a way that solutions with many
entries are penalized by the l1-norm. This is a way of forcing the model described by
the shift A to be sparse. A sparse shift relates to a graph with few connections that
should ideally help to discover the hidden dependencies in the unstructured data. The
constant λ1 is a positive weighting factor that determines the level of sparsity we require
from our solution.

Secondly, we investigate the term λ2‖c‖1 which also promotes sparsity but this time
in the coefficient vector c. The authors of [17] argue that this works in the way of a
model order selection when we choose M to be larger as the causal graph process we try
to estimate. We can imagine a process where Pi(A, c) = 0 for all i bigger than M ′. The
regularization on the coefficient vector would then try to null all cmj with m > M ′. If
the model order can be guessed correctly or is known through some genie knowledge, this
term is of questionable value. As the first regularization a positive constant λ2 regulates
its influence.

3.2.1 The base algorithm
Unfortunately, Equation 3.9 is very hard to solve directly because it is non convex.
This is due to the first term which includes polynomials of the target A. To make this
problem solvable by convex optimization, the paper suggests to instead solve a substitute
problem. The idea is (instead of directly solving for A) to solve for the resulting matrix
polynomials Ri = Pi(A, c). This approach leads to the following procedure:

1. Solve the substitute problem to find Ri

2. Using Ri recover the shift A

3. Estimate the filter coefficient vector cij

We name the procedure described in the following the base algorithm to distinguish it
from a simplified version that will be discussed afterwards.
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3.2.1.1 Solving for Ri

In the first step we need to solve the minimization problem

R̂i∀i = arg min
Ri∀i

1
2

K−1∑
k=M

∥∥∥x[k]−
M∑
i=1

Rix[k − i]
∥∥∥2

2
+ λ1‖R1‖1 + λ3

∑
i 6=j
‖[Ri,Rj ]‖2F . (3.11)

The first term in the optimization problem formulated in Equation 3.11, closely resembles
the first term of Equation 3.9, assuming R1 = P1(A, c). Also the second summand
can be related to the original problem under the assumption that we used a reduced
representation of the causal process and therefore, P1(A, c) = A. Lastly, we are left
with the last term λ3

∑
i 6=j‖[Ri,Rj ]‖2F which was not present in the original problem.

The used model represents the influence of past signals over the graph filters Pi(A, c).
In our substitute problem, we allow for arbitrary matrices Ri instead. To restrict those
matrices to be more graph-filter-like, we want to require them to commute, which is
a basic property of graph filters. This requirement can be enforced by minimizing the
term

‖[Ri,Rj ]‖2F = ‖RiRj −RjRi‖2F (3.12)

for all i and j with i 6= j. For commutative matrices, the resulting matrix inside the
norm would be the 0 matrix. In the optimization problem, we desire to achieve a small
difference which is measured with the squared Frobenius norm.

Despite the reduced complexity, the problem from Equation 3.11 is still not convex. It
is, however, multi-convex [17] which means that if we minimize for one Ri while holding
all other Rj with j 6= i constant the problem is convex. In one iteration, we have to
solve M problems of the form

R̂i = arg min
Ri

1
2

K−1∑
k=M
‖x[k]−

M∑
i=1

Rix[k − i]‖22 + λ1‖R1‖1 + λ3
∑
i 6=j
‖[Ri,Rj ]‖2F . (3.13)

which looks almost like Equation 3.11, but the important difference is that we minimize
for only one matrix Ri each while keeping the other Rj constant. We start with all Ri

set to I and then estimate for one Ri at a time, until we have an estimation for all Ri.
This can be iterated multiple times until the difference in the estimate matrices is below
a preset threshold, and the iteration yields the estimates for the matrix polynomials
Pi(A, c).

3.2.1.2 Recovering A

The iteration of convex estimation problems yields matrices R̂i from which we desire to
extract our estimation of the actual shift matrix A. The simplest and most straight-
forward approach is to the estimate Â = R̂1 that is motivated by the reduced form in
Equation 3.8.
This method just uses the R1 to recover A while the other Ri only enter implicitly in

the optimization for all matrices. As a second proposal [17], offers another minimization
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problem

Â = arg min
A

= ‖R̂1 −A‖22 + λ1‖vec(A)‖1 + λ3

M∑
i=2
‖
[
A, R̂i

]
‖2F (3.14)

that explicitly uses all estimated matrices R̂i. It can be compared to another iteration
step of the minimization that finds the R̂i. The idea is, that since all R̂i should be graph
filters, they should commute with the graph shift matrix A.

3.2.1.3 Estimate the coefficient vector c

In the last step the base estimation algorithm needs a way to find the coefficients cij ,
that are needed for the graph filters. While [17] presented two different methods to
achieve this, we will only present one since it produced satisfactory results and didn’t
appear to be the weak point of the whole procedure.
Again, we formulate an convex optimization problem to find the coefficients for each

matrix polynomial by

ĉi = arg min
ci

1
2‖vec

(
R̂i

)
−Qici‖22 + λ2‖ci‖1 (3.15)

with the matrix
Qi =

(
vec(I) vec(A) vec(A2) . . . vec(Ai)

)
(3.16)

and the estimation for the filter coefficients of Pi(A, c)

ci = (ci0 ci1 . . . cii)T . (3.17)

Besides requiring the filter coefficients to be chosen in such a way that the resulting graph
filters closely reassemble the estimated matrices R̂i, there is again a regularization term
λ2‖ci‖1. This term is the equivalent to λ2‖c‖1 in the original formulation of Equation 3.9
and also ensures model order selection, in case we chose a too high M for the process
that we are estimating.
This three-step algorithm can produce estimates for the shift A and the vector c.

Due to possible multiple required iterations over the multi-step optimization process of
Equation 3.13, the algorithm turns out to be computationally rather complex for large
graphs that contain many nodes. Especially the commutativity enforcing term [Ri,Rj ]
requires a considerable amount of computation time. For these reasons, we will also
adopt the simplified algorithm of [17].

3.2.2 The simplified algorithm
Especially for problems with big graphs the base algorithm turns out to be slow. By
modifying it, we can save computational power while still capturing important features
of the base algorithm.
The simplified algorithm shares the same three-step structure with its predecessor. It

turns out that the bottle neck of the base algorithm is the first step of the procedure
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and there especially the commutativity term causes problems. By dropping this term,
we obtain for our first step the minimization problem

R̂ = arg min
R

K−1∑
k=M
‖x−

M∑
i=1

Rix[k − i]‖22 + λ1‖vec(R)‖1. (3.18)

Note that by dropping the last term a global optimization over all Ri became feasible.
We, therefore, not only save the expensive matrix multiplication operation of potentially
large matrices, but also skip the iteration of convex optimization problems. Instead we
can solve the first step of the now simplified algorithm by one optimization problem.
This, of course, comes at the price of not enforcing commutativity and can yield matrices
that do not approximately commute and the estimated matrices R̂ are strictly not
commutative graph filters.
After this step, A can either be estimated by Â = R̂1 or the optimization from Equa-

tion 3.14. As most of the complexity lies in the first step, both options are viable. Finally,
the coefficient vector should be estimated with the problem described in Equation 3.15.
This concludes the description of the simplified algorithm. In Section 3.2.3 we will

summarize both algorithms in a compact form.

3.2.3 Summary of the presented Algorithms

The previous section described the two used algorithms to estimate causal graph pro-
cesses in some detail. For convenience, both algorithms are shown in concise pseudo code
form. The first algorithm that is shown, Algorithm 1, is the base estimation algorithm.

Algorithm 1 Base estimation algorithm
Input: X, M , λ1, λ2, λ3, ε
1: Initialize step t = 0, R̂(0) = 0, R̂(−1) =∞
2: while d(R̂(t), R̂(t−1)) > ε do
3: for i = 1 : M do
4: minimize to find R̂(t)

i with fixed R̂(t)
<i , R̂(t−1)

>i by Equation 3.13
5: end for
6: t← t+ 1
7: end while
8: Set A = R̂(t)

1 or use Equation 3.14 to obtain A
9: Use Equation 3.15 from R̂ and A
Output: A, c

As input the base algorithm needs:

• X – the K given samples grouped as X = (x[0], . . . x[K − 1])

• M – the model order of the process we try to fit

• λ1 – larger λ1 prefer more sparse A
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• λ2 – larger λ2 prefer more sparse c

• λ3 – larger λ3 are more strict on commutativity of Pi(A, c)

• ε – defines a stopping criterion, a smaller ε leads to slower convergence

The output of the algorithm are the shift matrix A and the coefficient vector c.

Algorithm 2 Simplified estimation algorithm
Input: X, M , λ1, λ2
1: Initialize R̂ = 0
2: Estimate R̂ using Equation 3.18
3: Set A = R̂(t)

1 or use Equation 3.14 to obtain A
4: Use Equation 3.15 from R̂ and A
Output: A, c

The simplified version of the base estimation algorithm is the simplified algorithm that
is shown in Algorithm 2. All inputs and outputs that coincide with their counterparts
in the base algorithm, have the same interpretation. It should be mentioned that the
simplified algorithm simply replaces the while loop with a single optimization.
In the following section, we will discuss the implementation of the algorithm in the

scope of this work. Further on, numerical examples try to show the workings of the
procedure and the effects of the input parameters on the output.

3.3 Numerical Experiments
With all parameters and algorithms defined, we can now proceed to an investigation
of the model and algorithm introduced in [17]. Both Algorithm 1 and Algorithm 2
require solving multiple convex optimization problems. For this task, the MATLAB
[19] environment and programming langue was used. To solve the convex optimization
problems, we used a third party MATLAB toolbox, called CVX, in which one can
specify and solve convex programs [20], [21]. CVX was chosen because it is widespread
and specifying the problem was very intuitive. The actual convex solver which was used,
was SDPT3 [22], [23] which is the default solver that is shipped with CVX and is freely
obtainable under a non commercial GNU GPL v2 license.
In this section, we want to evaluate the performance of the estimation algorithm based

on several examples. For this purpose, we will assume that the model for the generation
of the graph signal samples x[k] is known and those signal samples are grouped into the
matrix X. This is a first test of the viability of the presented algorithm. The purpose is
to better understand the used signal model and the parameter values that are needed to
accurately recover the generating process’ parameters the shift matrix A and the filter
coefficients cij . Even though, this might seem redundant at a first glance, it is necessary
to choose the algorithms parameters correctly when estimating the model’s parameters
for data, where the underlying procedures are not known. It is also beneficial for the
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interpretation when applying the algorithm to real data, which is shown in Chapter 4.
We want to start our discussion with a simple process.

3.3.1 A first simple example
In our first example, we want to investigate the recovery performance of the algorithm
for a small dimensional problem of low complexity. For this purpose, we pick the N = 5
case of Figure 2.6, which is redrawn for clarity with the chosen number of nodes in
Figure 3.3.

Figure 3.3: A simple Graph used to test the algorithm

Figure 3.3 can be represented by the unweighted directed graph shift matrix

A =


0 0 0 0 1
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

 . (3.19)

We can see that each connection has the same weight which is set to 1. This choice
allows the signal energy to remain constant under the shifting process. Therefore, we
do not need additional tinkering regarding the shift matrix. This is a special case, and
we will see which problems arise if this, as usual, not the case. Of course, specifying the
shift matrix is not sufficient to specify a causal graph process.
Our graph process will be the simplest possible – which is a process of order M = 1.

The causal graph process of equation 3.8 reduces to

x[k] = z[k] + Ax[k − 1]. (3.20)

The current signal consists of the previous sample and a noise vector which we pick as
iid N (0, σ2) distributed. Besides interpreting Equation 3.20 as a causal graph signal
process associated with the shift depicted in Figure 3.3, it can also be seen as a Vector
Autoregressive Process (VAR) of order 1. Note that even this simple example of directed
nature would not be accessible to a Laplacian analysis.
For the numerical example, we generated the first signal sample randomly from five

values between 0 and 1. The remaining samples we produced along Equation 3.20 with
a given standard deviation σ of the noise. This had to be iterated until we obtained
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K samples of the causal graph process which were grouped into a matrix X. The filter
coefficients are given by c10 = 0 and c11 = 1, which is necessary, if we want to conform
to the reduced model presented in Equation 3.8.
The natural test of the algorithm is to recover the underlying shift matrix A. As our

model order is M = 1 there is only one matrix R1 to be estimated, which by default,
“commutes” with itself. Therefore, it is unnecessary to additionally enforce this property
by the use of the base estimation algorithm which is Algorithm 1. We can safely choose
the simplified Algorithm 2. Since we have no need to estimate coefficients, the only
parameter needed is λ1 which controls the sparsity of A. We set λ1 = 0.1 to obtain
Figure 3.4 for a causal graph signal of length K = 20.
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Figure 3.4: Recovery of A used in the model defined by Equation 3.20 for different noise
standard deviations σ, process length K = 20 using λ1 = 0.1

In Figure 3.4 the recovery results for different levels of noise are shown. The σ = 0
case without noise works so well, that we can use it as a reference result. To give the
results a quantitive dimension, we introduced a MSE metric. This metric is defined as

MSE(A,Aest) = 1
N2 ‖A−Aest‖2frob = 1

N2

N∑
i=1

N∑
j=1

∣∣∣(A−Aest)i,j
∣∣∣2 . (3.21)

While the recovered results always show one exemplary trial of the recovery process,
we ran the algorithm 20 times at each noise level to calculate an average MSE. While
the MSE might be problematic when used a general-purpose metric, it underlines the
qualitative results one can perceive visually.
It can be seen that the performance at higher levels of noise the process gradually

decreases. Intuitively we would expect a steeper decline in the estimation performance,
but we need to keep in mind that the additive noise in some sense, drives the process.
Meaning a stronger noise also results in larger additional terms from past signal samples,
which compete with the randomness in the current sample.

41



Furthermore, it should be said that for the noiseless case, we have to see the process
with initial random values since otherwise, the signal would be 0 for all samples, and
no structure could be estimated from that. This emphasizes the double-edged sword
character of the noise in the causal graph process.
Another feature of causal graph processes that already shows up in this simple example

is visible in Figure 3.5. In both plots the absolute values of the graph signal samples
x[k] are shown over time for the process discussed in Equation 3.20. The upper part
of the plot shows, the noiseless case with σ = 0 that is only seeded an initial random
signal. It can be seen clearly that during the absence noise, those initial samples are
just rotated through the graph. The same rotation is also present in the second plot,
but it is superimposed with a noise of standard deviation of σ = 100. Since the chosen
shift matrix A preserves the signal’s energy and has no dampening effect, the energy
added by the noise ramps up after several samples. We have to keep track of this effect,
especially for more complicated examples with a higher model order M .
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Figure 3.5: Absolute value of the graph Process |X| with and without noise, process
length K = 20

To show the effect of a shift that does not keep the energy of the shifted signal constant
we scaled the shift from Figure 3.3 down by a factor 0.8 and used this scaled shift

A′ = 0.8A (3.22)

while keeping the rest of the model unchanged. We first give the results for the recovered
A′ in Figure 3.6. The performance compared with the simulation results showed in
Figure 3.4, decreased qualitatively as well as quantitatively in the MSE. This can be
explained by the lesser amount of signal that is contained in the current sample as the
shifted past value is now damped by 20%.

The working of the dampening shift is also visible in the plot of the signal in Fig-
ure 3.7. For the no-noise case, the initial seed signal quickly dies out over the samples.
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Nevertheless, the shift structure is still clearly visible and also the result in terms of MSE
is still good. In the case with σ = 100, the dampening process is not that obvious since
the strong noise keeps driving the process. By comparing Figure 3.7 and Figure 3.5, we
can see that the scaled shift matrix compensated the growth of the signals magnitudes.
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Figure 3.6: Recovery of the dampened A′ for different noise standard deviations σ, pro-
cess length K = 20 using λ1 = 0.1

When we want to generate test signals for causal graph processes of higher order or
simply graph shifts with more complicated adjacency matrices, we need a more precise
way to deal with stability. We need a criterium on how to check, if the chosen shift A
and the graph filters Pi(A, c), lead to stable processes. We cannot use processes that
“explode” after a few samples. For this, we need to realize that a causal graph processes
of model orderM can be interpreted as vector autoregressive process of orderM – short
a VAR(M) process. For this, we need to go back to Equation 3.3 and rewrite it using
Pi(A, c) = Ri as

x[k] = R1x[k − 1] + R2x[k − 2] + · · ·+ RMx[k −M ] + z[k]. (3.23)

From [24] we know that a VAR(M) process like the one presented in Equation 3.23 is
stable if

det
(
I−R1x− · · · −RMx

M
)
6= 0 ∀ |x| ≤ 0. (3.24)

Since the causal graph processes are special cases of the VAR model, this criterion, can
be used to check if a potential graph process is stable. With the stability criterion in
Equation 3.24, we can analyze our simple model process by setting R1 = A. Using
MATLAB’s symbolic math toolbox, we can solve the equation det (I−Ax) = 0 and
visualize the poles in a complex plot shown in Figure 3.8. The regular shift A aggregates
the energy that is introduced to the process in form of the noise and is therefore, not
stable with poles on the complex unit circle. By having all poles with magnitude 1, it is
the limiting case and all scaling factors α < 1 will lead to stable processes independent
of the noise power introduced into the process.

43



sigma = 0

2 4 6 8 10 12 14 16 18 20

1

2

3

4

5

0.2

0.4

0.6

0.8

1

1.2

sigma = 100

2 4 6 8 10 12 14 16 18 20

1

2

3

4

5

50

100

150

200

250

300

350

400

Figure 3.7: Absolute value of the graph Process |X| for the dampened matrix A′ with
and without noise, process length K = 20
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Figure 3.8: Poles of the stability determining polynomial for A and 0.8A, if all poles lie
outside of the unit circle the process is stable

3.3.2 More general examples

For the further numerical analysis, we want to switch to less general shift matrix Am1,
which is shown in Figure 3.9. We obtained this 8 × 8 matrix by randomly selecting 20
entries of the matrix and set them to numbers selected from a Gaussian distribution.
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Afterwards, we clipped a few entries with big magnitudes and scaled the matrix down
to make the causal graph process of order M = 1 stable by satisfying Equation 3.24.
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Figure 3.9: A slightly more complicated shift matrix Am1 that was generated randomly
with 20 non zero entries, if used for M = 1 causal graph process, it will be
stable

Until now, we always investigated a process with model order M = 1 and tried to
estimate a process of the same order for a regular shift matrix. The authors of [17] claim
that the Algorithms 1 and 2 implicitly perform model order selection. To test this claim,
we used the matrix Am1 shown in Figure 3.9 in the Equation 3.20.
While the process is of order M = 1, we tried to estimate the intermediate graph shift

matrices Ri under the assumption that a process of order M = 1, 2, 3 is present. We
expect that the estimation yields the shift matrix R1 = Am1 and sets the other matrices
R2,3 to 0. Figure 3.10 shows the result of the simulation. In the first column, we always
present the ground truth Am1 as a reference. We observe that the matrices R1 for all
three trials closely resemble the shift matrix both qualitatively but also quantitatively in
terms of the MSE defined in Equation 3.21. For the matrices R1 and R2 we calculated
the MSE with a reference to the expected all zero matrix 0. From the results, we
conclude that the algorithm is robust enough to find the right intermediate results for a
simple graph signal process.
In a next step, we chose the simplest estimation to find Aest which is to choose

Aest = R1 because the MSE shows already good agreement. We then used the third
step of the algorithm which is to estimate the coefficients cij . Under the assumption that
our causal graph signal model is of the form given in Equation 3.8, we selected c10 = 0
and c11 = 1. This left only the coefficients of higher orders for estimation. We expected
all of them to be close to 0 and indeed for both cases the magnitude of every coefficient
was smaller than 10−7. Therefore, in this example, the algorithm could recover both
the shift matrix and the coefficients to a high degree of accuracy. For the estimation of
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the shift matrices, we again used the simplified Algorithm 2, as both yield very similar
results and the base estimation algorithm takes more time. To achieve this precision, a
process with K = 500 graph signal samples had to be observed.
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Figure 3.10: Results for the first step of the algorithm for generating a process of order
M = 1 from a process of length K = 500, σ = 1 with λ1 = 0.1

We want to demonstrate that the estimation algorithm also works for processes with
order M = 2. For this, we reuse the shift matrix Am1 shown in Figure 3.9, but this time
with two graph filters. As a generating causal graph process we use equation

x[k] = z[k] + Am1x[k − 1] +
[
c20I + c21Am1 + c22A2

m1

]
x[k − 2] (3.25)

with the coefficients c20 = 0.3, c21 = 0.5 and c22 = 0.5. To ensure stability of the process,
we checked that the process is stable according to Equation 3.24. Since this process is
more complicated, we used K = 1000 samples for the estimation results. Figure 3.11
shows the resulting filter matrices R1 and R2. Both matrices are very similar to the
ground truths R1 = Am1 and R2 = c20I + c21Am1 + c22A2

m1. Despite these good results
the filter coefficients are estimated to ĉ20 = 0.29, ĉ21 = 0.42 and ĉ22 = 0.2 which shows
that this estimation is troublesome even with accurately estimated graph filter matrices.
The coefficient estimation captures if the model order is too high compared to the real
process and sets the higher-order coefficients to 0, but it gives only a rough estimate for
the real coefficients.
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Figure 3.11: Results of the matrix estimation using the simplified algorithm to find Ri

for the process described in Equation 3.3.2 K = 1000, σ = 1 with λ1 = 0.1

Another point that needs to be discussed, is the choice of the simplified algorithm 2
over the more sophisticated base algorithm 1. We ran several estimations of the discussed
process with different parameters using both algorithms. While the performance of both
algorithms is relatively similar, the base estimation is about 3 times slower for this
small example. This computation advantage becomes even bigger if we turn to problems
with larger N and longer sequence lengths K, where the base estimation algorithm
turns infeasible. The results of both simulations are shown in Table 3.1. We see that

base Algorithm 1 simplified Algorithm 2
MSE(R1,R1,est) 0.003 0.0007
MSE(R2,R2,est) 0.003 0.001
‖[R1,est,R2,est]‖2fro 0.045 0.042

c2i [0.21, 0.22, 0]T [0.29,0.42,0.2]T
simulation time ≈ 90 s ≈ 30 s

Table 3.1: Performance comparison between the simplified algorithm and the base algo-
rithm for a process of order M = 2, Am1 and c2i = [0.3, 0.5, 0.5]T with the
parameters: N = 8, K = 1000, λ1 = 0.1, λ2 = 0.1, λ3 = 0.1, maxiter = 5,
ε = 0.01

the simplified algorithm is more accurate, faster, leads to superior estimates of the
coefficients. It even yields matrices that resemble commutative filters better, with smaller
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‖[R1,est,R2,est]‖2fro than the base estimation, that incorporates this term explicitly in its
minimization process. We conclude that for causal graph processes with small filter
orders the simplified estimation algorithm is a viable replacement for the more complex
base algorithm.

In the previous examples, we always chose a fixed set of parameters to do the per-
formance comparison. Even when using the simplified algorithm, we can besides the
model order M also vary the two sparsity parameters λ1 and λ2. While λ1 controls
the sparsity of the shift matrix A, the second λ2 influences how sparse the solution of
the coefficient vector should be. As an example, we will keep λ2 = 0.1 constant and
change the first sparsity λ1. To measure the performance, we employ the same MSE
as in Equation 3.21 for the Ri and use the squared 2-norm of the differences for the
coefficient vector containing c2i.
The results for the filter matrices are shown in Figure 3.12. While the MSE seems to

decrease for larger values of λ1, the difference is not as dramatic and the MSE stays in
around 10−3 for all simulated λ1s.
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Figure 3.12: MSEi between the estimate and actual Ris
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Figure 3.13: MSEi (‖·‖22) between the estimate and actual coefficient vector c2i

When we have a look at the MSE of the coefficient vector in Figure 3.13 the differences
appear more drastic. In contrast to the error in the filter matrices a small λ1 leads
to a more accurate filter vector. Specifically, the figure shows a step like behavior.
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By inspecting the values of c2i before and after the jumps, it becomes clear that the
optimization algorithm yields nonzero components for all c2i as long as lambda is low.
After the first step, it sets c22 to zero and for even larger λ1 also c21 = 0.

From these plots, it appears that our choice for λ1 achieves relatively good approxima-
tions for the coefficient vector with a reasonable MSE in the filter matrices. Furthermore,
we encounter a major problem of the algorithm – the question of how to find the right
λ1 and λ2? As long as we have known the ground-truth this can be answered by running
many exhaustive simulations but in real-world problems, we cannot use this method,
and we need to use another way to deal on this issue for those kinds of problems.
Before moving to the real data examples, we want to address a point that we touched

several times. We need to discuss the effect of the process length K on the estimation
quality. Generally, we assumed that for bigger K the estimation performance improves,
which is the intuition one has when running multiple simulations. To confirm this
expectation, we ran the estimation algorithm for the process discussed in Equation with
the parameters λ1 = λ2 = 0.1 and M = 2.
While varying K we again looked at the same MSEs we already addressed in Fig-

ure 3.12,3.13. The results are depicted in Figure 3.14 for the matrices Ri and for the
coefficient vector c2i in Figure 3.15.
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Figure 3.14: MSEi between the estimate and actual Ris for different process lengths K
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Both figures are more accurate the more samples are included, but this comes at the
price of long computation times. To give an example, simulations with K = 100 take
≈ 5 seconds, while those with K = 10000 take around 15 minutes. Clearly, especially
for simulations with bigger graphs, this becomes an ever more important issue and a
tradeoff between better estimation and simulation effort is needed.
Throughout this chapter, we discussed the Algorithms 1 and 2. We concluded that

the simplified algorithm works well enough for problems with a low model order M
and is much more efficient. The overall estimation of artificially generated causal graph
processes works well especially in terms of the shift matrix A but worse for finding the
accurate coefficient vector c. This means, we can capture the effects between nodes
well, but we might estimate differing graph filters. We also showed that the choice
of the parameters λ1 and λ2 has a non negligible influence on the simulation results.
Unfortunately, there is no clear rule how to choose them in advance. If the sparsity of
the solution is known, we can adapt the parameters to make use of this information.
Overall, these parameters turn out to be the weak point of the model. In the next
chapter, we want to apply the simplified algorithm to two real-world examples.
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4 Experiments with Real World Data

In the previous chapter, we evaluated the algorithm proposed in [17] for artificially
generated data. We analyzed its performance regarding the recovery of shift matrices A
and filter coefficients c from generated causal graph processes. Despite difficulties that
arise in the choice of parameters, the shift matrices could be well recovered in general.
These results motivated us to apply the same procedure onto real-world data.
It turns out that finding suitable data, which can be fed into the estimation algorithm,

is challenging. We want to find groups of time series that are, in some sense, dependent
and or influencing each other. Additionally, the algorithm’s complexity imposes a soft
limit to the size of the data we can use to learn the shift matrix in the length K as well
as in the number of nodes N . Besides the upper limit due to complexity, the number
of nodes should be not too small to deduce some non trivial conclusions. Last but not
least, the data should be openly available in a reasonable format to facilitate further
processing.
In the scope of this thesis, we found and analyzed two data sets, which fulfill all stated

requirements. As a first example, we chose data from temperature sensors which we
obtained from the European Climate Assessment Dataset [25]. The ECAD homepage1

allows downloading historic weather data for specific countries. For our analysis, we
focused on the daily mean temperature data.
While the interconnection between weather stations that are distributed over a country

allows some hand-waving interpretation of the domain, the second example is more
abstract. Instead of weather data, we tried to estimate the dependencies of daily stock
prices listed on the Austrian stock exchange.
Both examples intend to showcase the usefulness of the algorithm to real-world ap-

plications. Without a clear ground truth, validation is difficult. It should be seen as
a first approach to the problem rather than a comprehensive study of all dependencies
and interrelations that might be hidden behind the real data.

4.1 Experiment 1 – Temperature Sensor Data
In our first example, we will apply the model of causal graph processes to daily mean
temperature data of multiple countries. As raw data, we obtained the daily mean tem-
perature values for one country a time from the webpage of ECAD using custom queries.
To test the performance, we took temperatures from the year 1979 and the following
years. We first estimated the shift matrix A from one to three years of sensor data and
used the learned model to forecast the next days temperature for the following year under

1Data available at http://www.ecad.eu/dailydata/index.php
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the assumption that the days before are known perfectly. For the simulations, we always
grouped all the temperature data of all stations into a N×1 vector x[k] and then stacked
these vectors together into a data matrix X = (x[1], . . . ,x[K − 1]) ∈ RN×K . From the
so assembled data, we estimated the shift matrix A using the simplified Algorithm 2.
We estimated causal process assuming a model order M = 1 or M = 2 due to largely
increased complexity for higher-order processes. The choice of order M = 1 appeared
to be especially appealing as it decreased the available parameter space to the choice of
the sparsity parameter λ1 as the only parameter influencing the solution. Furthermore,
this also facilitates the interpretation of the shift matrix A as we will see later.

One of the first countries we want to investigate is Spain. It has a relatively large
number, N = 97, of weather stations from which we know the mean temperature,
and therefore, seemed to be a worthwhile country to be investigated. In Figure 4.1a,
we depicted the geographic boundary of Spain, including the mainland as well as the
Canary and the Balearic Islands. Each cross indicates a weather station from which data
is available. The downside of this data set is that we have several groups of stations in
close vicinity. As an example we zoomed in on the red boxed area of Figure 4.1a and
show this part on the map magnified in Figure 4.1b.
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Figure 4.1: Locations of the weather stations in Spain

In the magnified map, we marked a group of three base stations that are particularly
close. Due to their closeness, we expect the measured temperature data to be very
similar. One might expect this would simply lead to large coefficients of the stations
towards each other. Unfortunately, the proposed algorithm yields a different result.

Because of the number of base stations and simplicity of the model, we chose model
order M = 1 with a sparsity coefficient of λ1 = 0.01 that already yielded accurate
results for artificial examples discussed in the last chapter. With these parameters, the
algorithm yields the shift matrix A which is depicted in Figure 4.2a.
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Figure 4.2: Estimated shift matrix A for the temperature data of Spain with K = 365,
M = 1, λ1 = 0.01

With that many stations distributed over the country, we would expect a sparse shift
matrix that contains several entries representing effects of different, usually closely lo-
cated base stations connected to each other. If we look upon the solution in Figure 4.2a,
we are presented a model that can in a first approximation be described as

x[k] ≈ A(:,12)x12[k − 1] + A(:,33)x33[k − 1] + A(:,96)x96[k − 1] (4.1)

where A(:,i) denotes the i-th column of the matrix A. This means if we interpret x[k] as
an estimate for the next vector of temperature values x̂[k], the estimate only consists of
a weighted combination of three stations past temperatures. This strange behavior can
be explained by investigating the stations coefficients more closely. For this purpose,
we plotted the three coefficients in Figure 4.2b. Since the stations 33 and 96 which are
the closest to each other (which is visible in Figure 4.1b) have approximately the same
coefficients ie. A(:,33) ≈ A(:,96), we displayed their sum instead of the individual values.
It can be seen that this sum is a negative copy of the coefficients A(:,12). This means, if
we assume that the three close stations have about the same temperatures at day k− 1,
their weighted sum for Equation 4.1 collapses to

x[k] ≈
(
A(:,12) + A(:,33) + A(:,96)

)
x12,33,96[k − 1] ≈ 0. (4.2)

This says that all the most dominant coefficients in A, that were included in the three
mentioned columns, basically cancel each other out. Even if the remaining coefficients
which are comparatively small lead to a good estimation, the resulting shift matrix is
heavily misleading. We can conclude that groups of time series that have very similar
values can introduce unwanted results and make the interpretation difficult. In the given
example of a geographical map, one could apply a clustering based on geographical
distance and replace the clusters with one virtual station. This cannot be seen as a
general solution since it depends upon the assumption that a metric like in this example,
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the geographical distance exists, which can be used to filter out problematic groups of
time series. Alternatively, the purging of the training data could be done by directly
searching for similar values. In any case, a preprocessing step appears to be necessary
to avoid falling into this numerical trap.

Since this work was done in Vienna, it is the obvious candidate for investigation in
Austria. The downside of using Austria stations for this analysis is the small number of
participating weather stations that can be obtained from the ECAD dataset. There are
only N = 6 stations with available temperature measurements. We ran the algorithm
on the Austrian data using the same parameters as in the previous example.

Before we presented the resulting shift matrix A in visualization that closely resembled
the matrix structure. To facilitate the interpretation, we chose a new way of displaying
the result. Looking at the shift matrix, we interpret an entry Aij as an outgoing con-
nection from station j towards the target station i. We can say that the signal value
xj [k− 1] influences the station j over the term Aijxj [k− 1]. A positive Aij indicates an
influence with the same sign as the signal value while a negative entry shows that the
next value of i is estimated to be smaller if j is bigger.
Therefore, we have chosen green arrows from i to j to represent positive Aij and red

arrows for the negative counterpart. The intensity of the color represents the strength of
the connection. Bright green and red arrows show the strongest entries in the shift A. In
Figure 4.3a, we see the shift matrix visualized in this way. It also immediately shows the
biggest problem of this approach – it results in too many connections. Even tough we
require the shift A to be sparse, in real applications the resulting applications appear to
be densely populated. There are however, fewer coefficients, that have larger magnitude
then all others. To highlight the strongest coefficients we selected a threshold which is in
this example 0.2 and consecutively only show coefficients whose magnitude exceeds this
value. This results in Figure 4.3b with only several arrows representing the strongest
links. As the temperature is strongly correlated with the previous day, the strongest
arrows are drawn for the self-loops showing that the last day is estimated to be the
strongest predictor.
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Figure 4.3: Estimated shift matrix A for the temperature data of Austra with K = 1095,
M = 1, λ1 = 0.01
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We can see that the Sonnblick station has no strong connections to other stations
but only to itself. This could be explained by the location of this station, which is
3106m above sea level while all others in the 500m range. Other than this, no definite
conclusions can be drawn from the resulting figure.
As the third country, we have a look at France. It is a bit larger than Spain, but

there are fewer weather stations available. In total, we have data from N = 39 stations
that are distributed quite uniformly over the whole country. This makes the country a
more promising candidate than Austria with too few and Spain with too close weather
stations.
For the two already mentioned countries, we chose the sparsity parameter without

further discussion, since we could reveal the problems without calibrating the sparsity
parameter λ1. In this example, we elaborate more on the parameter choice. While we
could calibrate λ in the previous chapters against the ground truth, this option is no
longer available for real data. Since in the causal graph process the current sample x[k]
is dependent on the previous graph signals x[k −m], it seems natural to compare the
signal values predicted from past samples using the causal graph process using

x̂[k] = Ax[k − 1] +
(
c20I + c21A + c22A2

)
x[k − 2] + . . . (4.3)

where x[k − m] are the known values of past signals. This gives only a prediction of
the next which is on itself not particularly useful. Luckily, we are less interested in the
prediction performance itself but in comparing the predicted value with the real known
value for the purpose of evaluating how well the model fits the given data.

First, we set the model order to M = 1 and used the temperature data of three years
K = 3 · 365 to estimate the shift matrix A. With this matrix we evaluated Equation 4.3
for each day of the 4th year to obtain 365 estimated graph signals x̂[k]. As a reference,
we used MATLAB’s yulewalker function to estimate an auto regressive model (AR) for
each time series. These model only considers the autocorrelation of the time series and
cannot make use of other stations’ data.
Figure 4.4 shows an example for a time series for one sensor containing all the one day

ahead predictions. As a ground truth, we plotted the actual temperature values. Next
we show the forecast achieved with the AR model of order 3, also always predicting the
next day. Then, we show results obtained with Equation 4.3 using the shift matrices A
we estimated with λ1 = 0.1, 0.01, 0.001. Despite the figure only showing the time series
of one station, the general trend is similar for the other weather stations. The estimation
performance with λ1 = 0.01 and λ = 0.001 is comparable to the autoregressive process.
When we choose λ1 = 0.1 the sparsity requirements are too strict to predict the next
day’s temperature.
To capture the estimation performance for all stations quantitatively, we grouped all

predictions x̂[k] into the matrix X̂ and all actual values into Xref . Then we calculated
the MSE of the prediction for a method with the predicted values X̂ as

MSE(X̂) = 1
K ′ ·N

‖X̂−Xref‖2fro (4.4)

where we used set K ′ = 365′ to normalize for each day and N = 39.
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Figure 4.4: One day ahead prediction for one temperature sensor in France. Ground
truth shows the real temperatures, AR is an auto regressive model of order 3
and the the others were estimated using causal graph processes with matrices
that were obtained by varying λ1

Table 4.1 shows the MSE results for M = 1 as well as M = 2. We used the autore-
gressive model order of m = 3 in Figure 4.4 as a reference. With higher orders of m
the MSE steadily decreases, but only by a insignificant amount. To show this we also
provide the error for the AR order 50.

MSE M = 1 MSE M = 2
AR(m = 3) 4.45 4.45
AR(m = 50) 4.43 4.43
Causal graph process λ1 = 0.1 17.90 36.87
Causal graph process λ1 = 0.01 3.90 7.02
Causal graph process λ1 = 0.001 3.73 5.90

Table 4.1: MSE evaluated by Equation 4.4 for an autoregressive model and different
estimation parameters

The results in Table 4.1 confirm the visually observable trend of Figure 4.4. The causal
graph process gives better results when the sparsity constraint is relaxed by choosing
smaller values of λ1. While the results for λ1 are worse than the simple prediction based
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on autocorrelation, we can outperform it with the causal graph process prediction with
model order M = 1 and λ ≤ 0.01 by using interrelations of different base stations.

Looking only at the MSE metric one would be tempted to select λ1 as small as possible.
Instead, we fix λ1 = 0.01 because it outperforms the autoregressive process while still
providing a reasonably sparse solution. When we visualize the results, we have to drop
entries Aij with a small magnitude for the solution to be interpretable. If we back off
too much on the sparsity, the visualized part of the solution might be misleading as we
drop too many entries.
Figure 4.5 shows the estimated shift matrix A for the France temperature data using

a model order M = 1 and λ1 = 0.01. For the sake of clarity, we only show 5% of
the coefficients which have the biggest magnitude. The shift contains many positive
self-loops which capture the autocorrelation with the previous temperature values. In
contrast to Figure 4.2a, we do not observe stations that cancel their effects, which could
lead to wrong interpretations. Notably, station 21 has negative weights to many different
stations for which we lack an explanation.
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Figure 4.5: Estimated shift matrix A for the daily mean temperature data of France
using K = 3 · 365 days and N = 39 stations with a sparsity parameter
λ1 = 0.01 showing 5% of the matrix entries that have the largest magnitude

While Figure 4.5 gives us some first insights, plotting the same entries on a geo-
graphical map in Figure 4.6 reveals potential interpretations. Besides the strong auto
correlations of the stations, there seems to be a trend of western stations on the coast
influencing those in the central and eastern part of the country. The same trend, a west
to east directivity of the weather, can be observed in Figure 4.7.
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Figure 4.6: Visualization of the estimated graph shift of France’s weather stations using
model order M = 1 and λ1 = 0.01
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Figure 4.7: Visualization of the estimated graph shift of France’s weather stations using
model order M = 2 and λ1 = 0.01

In the figure for model order M = 2, the west to east directivity seems to be more
clearly. It might be tempting to call Figure 4.7 the “better” result since it looks more
convincing. This, however, is a weak statement considering the MSE results shown in
Table 4.1, showing the forecast performance for M = 2 to be worse than M = 1 and
even not as good as the simple AR prediction.

This section showed that the algorithm could be used to investigate weather trends
based on temperature data. For France, we could find a trend similar to that shown
in [17] for the USA. The results, however, should be handled with care as we have
shown that difficulties might arise with stations that are too close or there are too few
data sources available. The next experiment will leave the physical domain towards the
finance world were physical laws are not available and interpretations are even harder.
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4.2 Experiment 2 – Austrian Stock Data

In this section, we want to apply the causal graph process estimation algorithm to stock
prices and especially point out some additional points of failure we spotted. It is not
intended as a rigorous financial or economic investigation.

The Viennese stock exchange2provides daily stock price data of all companies under
the Austrian Traded Index (ATX). These market prices are available in the form of .csv
files for each day. For this thesis, we manually downloaded the data for 1500 trading
days3 and parsed into MATLAB for further analysis.
From the 113 companies that were traded between January 2011 until March 2017, we

selected those 61 which were continuously listed on the ATX. This reduces the problem
size to be dealt within reasonable computation time. The time index k is relative to the
first trading day in 2011 and simply excludes days where no trading took place. For each
day, we know the market end price in Euros. Grouping the market closing prices for one
day for each company, we obtain a vector sample x[k] for the trading day k. We again
stack all these samples into the training matrix X = (x[1] . . .x[K]) for all K = 1500
trading days.
Before applying the algorithm onto the stock data set, we plotted all time series into

one graph. This is shown in Figure 4.8a where they y-axis shows the stock price in
Euro. Besides the rapidly varying nature of some stocks, we can also observe a large
difference in the average stock price. Especially the highest stock has an average that
is magnitudes larger than the cheaper stocks. We expected this disparity to affect the
numeric results for the estimation algorithm. Figure 4.9a shows the largest coefficients
in the shift matrix A for the stocks depicted in Figure 4.8a.
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Figure 4.8: All stocks over time with and without scaling to mean 1

2https://www.wienerborse.at/
3Daily statistics are available at https://www.wienerborse.at/marktdaten/statistiken/

tagesstatistiken/tagesstatistik-download/
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Figure 4.9: Estimation result for A with K = 1500 days, N = 61 stocks, M = 1,
λ1 = 0.01

In the shift matrix shown in Figure 4.9a, we observe that the stocks number 2, 16
and 24 have many incoming connections. It appears unlikely that this is due to some
economic relations and points towards a numerical problem. If we trace those three
stocks in Figure 4.8a and mark them in red it is obvious that they correspond to some
of the most expensive stocks. The algorithm tries to derive their next stock price from
past other stocks but needs to use large coefficients because their value is so much larger
than those of the others. This problem is not visible in the temperature data as most
sensors have measurements of the same magnitude.
To overcome this potential pitfall, we decided to scale all stock price time series to

have a mean of 1 over all 1500 trading days. This removes the direct interpretation as
a price but since the relations are relative, we can afterwards rescale them to the actual
prices if needed. The scaled time series are plotted in Figure 4.8b with the former pricey
stocks drawn in red. When we run the algorithm using this averaged time series, we
obtain the Figure 4.9b. We see that the horizontal lines in the shift matrix vanished
and, as the biggest influence, we find diagonal entries in A. We conclude that given the
scaled stocks the best prediction for the next day is most of the time using the previous
day’s stock price.
As we were trying to find potential interrelations between the different stocks and their

companies, the almost diagonal shift matrix was not a desired result. Since the stock
prices of some stocks change vary rapidly, while others remain constant, we suspected
that those short time effects would overlay the long term relations we were interested
in. Therefore, we decided to group always a number of Ng trading days together and
replace their daily prices with one average price for each Ng days. In Figure 4.10 we
show this grouping for the example of 100 days of Telekom Austria AG’s stock prices.
While the blue curve represents the daily changing market prices, the red curve shows
the averaged prices for our virtual days. It can be seen, that, while the 5 day average
still follows the price quite closely, the 15 day average is only weakly influenced by daily
fluctuations in the market.
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Figure 4.10: Temporal averaging of stock prices grouping 5, 10 and 15 days to into one
data point

This casts our original problem of estimating the stock price of the next day to the
question how the average of the last Ng affects the average of the next Ng trading days.
We, then again, used the algorithm to estimate the shift matrices. To compare the
results, we used a MSE as in the Equation 4.4 but with the stocks’ data as a reference.
Because there was only a limited amount of days available, especially in the case of
grouped days, we calculated the prediction MSE using the same data as the one used to
learn the matrix A.

In Table 4.2, we show the MSE results we achieved for different parameters. All sim-
ulations were done with the sparsity parameter set to λ1 = 0.01. We see that the graph
based estimation method achieves results in the order of the autoregressive simulation.
The resulting shift matrix for M = 1 and groups of Ng = 5 averaged days is shown
in Figure 4.11. Besides the high autocorrelation we also observe a matrix which has
no obvious algorithmic problems. This is in contrast to the other matrices, that were
estimated after stronger averaging, which are shown in Figure 6.1, Figure 6.2 and Fig-
ure 6.3. These contain more horizontal and vertical “lines” of high coefficients, which
can be seen the appendix. This could be explained by the shorter training sequences
due to the averaging.
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Ng MSE AR MSE M = 1 MSE M = 2
5 0.0067 0.0070 0.0290
10 0.0138 0.0139 0.0149
15 0.0202 0.0189 0.0200

Table 4.2: MSE for the stocks estimation using different parameters
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Figure 4.11: 2.5% largest entries in A estimated from Austrian stock data using λ = 0.01,
M = 1, grouping Ng = 10 trading days

As we were interested in potential interpretations of the shift recovered from the stock
data, we chose to visualize the largest possible directions of the shift shown in Figure 4.11
as a graph in Figure 4.12. The only observation we could draw from the graph is
that there are multiple bank stocks, which affect multiple other stocks. Otherwise, the
connected companies show no common ownership structure nor even similar or related
products.
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Figure 4.12: Strongest positive connections for N5 = 5,M = 1 shown as a directed graph

Finally, we want to sum up this chapter of real-world examples. The weather data
estimation yielded reasonable results when it was applied to countries with a uniform
distribution of weather stations. Further preprocessing could potentially increase the
significance in the results.
The stocks example with no clear expectation did not lead to promising results. De-

spite this, we described with scaling and averaging two processing steps that could be
applied before starting the estimation algorithm. It is unclear if further tuning were
needed or the domain of daily stock data cannot reasonably be modeled with causal
graph processes, and we, therefore, leave this question open for future research.
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5 Conclusion

In this thesis, we dealt with the topic of graph signal processing. It extends the field
of signal processing by incorporating graphs to tackle data with irregular structure.
Naturally, the graph itself plays an important role in this area of signal processing.
Research in this area is focused on two different approaches.
The first approach we examined is based on unweighted graphs and the closely related

Laplace matrix. It is often connected to a notion of smoothness, which requires graph
signal values that are associated with connected nodes to be of similar value. Because
of the symmetric matrices that describe the graph, the graph Fourier transform leads to
real eigenvalues that can be interpreted as frequency equivalents. The downside of this
approach is the inability to capture non-symmetric relations, which cannot be described
by symmetric graphs.
Secondly, we reviewed the competing approach in which graph signal processing is seen

as a generalization of classical signal processing in a more axiomatic way. By identifying
key features of signal processing, the requirements for signals and filters lead to the basic
building block of a graph shift. The graph shift itself can be seen as a more involved
realization of the cyclic shift which is part of classical filter operations. Besides its
interpretation as a shift, it can further be seen as a matrix representation of the graph.
In contrast to the Laplacian direction, this branch of graph signal processing is capable
of handling directed graphs.
While basic tools of the signal processing toolbox have been ported to graph based

signal processing, the choice of the graph shift or simply the graph is still an interesting
research question. In this work, we investigated a method of learning graph shifts, which
was presented in [17]. In it, the authors propose the model of causal graph signals, which
connect multiple time samples with graph filters. They assume that the current graph
signal at one node is dependent on past samples at this node as well as past samples of
connected nodes.
Assuming that an N dimensional time series can be modeled using such a causal graph

process, [17] provides an algorithm that estimates the graph shift as well as the coeffi-
cients used in the graph filters that make up the causal graph model. This is achieved by
casting the learning problem into a convex minimization task. There are two versions of
the algorithm: the more complex base algorithm and its simplified counterpart. While
the base algorithm requires multiple iterative convex minimization steps, the simplified
algorithm recovers the shift matrix through only one minimization problem.
We investigated the performance of the algorithm by multiple artificial examples where

we generated training data by using a causal graph process with a known shift matrix
and known filter coefficients. When generating data we need to be careful to choose
stable processes since otherwise the signals’ magnitude tend to infinity and make us
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hit the limits of floating point processing. We showed that, given filter coefficients and
a shift matrix, the stability can be evaluated using a criterion used for vector auto
regressive processes. For causal processes, we simulated both versions of the algorithm
could recover the shift matrix with a high degree of accuracy for low model orders. The
recovery of the filter coefficients appears less reliable. The simplified algorithm is less
complex and even outperforms the more sophisticated base algorithm for causal graph
processes with a short memory. The successful tests on toy examples motivated us to
apply the same model to real-world data.

As the traditional example in the area of graph signal processing, we used weather data
from weather stations distributed in selected countries. We had difficulties applying the
model to countries with many close stations as they had very similar signal values. This
lead to artifacts produced by the minimization procedure which render the interpretation
not useful. For the network of France’s weather stations, we could identify a directivity
in the graph shift, similar to the one presented in the original paper.
After the weather stations, we additionally tried to apply the algorithm to snapshots

of the Austrian stock market, treating the individual stocks as nodes on an unknown
graph. This example showed the difficulties induced by high dynamics between the signal
values as well as high temporal fluctuations. We employed two different approaches of
preprocessing to the raw data. Still the interpretation of the graph shift as relation
between companies was inconclusive. We decided to include this example as it shows
the reality in which models do not fit every type of data.
The investigated algorithm appears capable of estimating data that follows the causal

graph model, but has shortfalls when applied to real world data. Preprocessing steps are
likely to be needed to make raw data accessible to this graph learning technique. Further
research should focus on the applicability of the model to the investigated domain and
how the data needs to be modified before the estimation algorithm can be applied.
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6 Appendix

6.1 Definitions
Definition 6.1. The Characteristic Polynomial pA(x) of a N × N -matrix A is the
polynomial pA(x) = det(xI−A).

Definition 6.2. The Minimal Polynomial mA(x) of a N × N -matrix A is the monic
polynomial of smallest degree such that mA(A) = 0.

Definition 6.3. Given a N × N -matrix A there exists a Jordan decomposition of the
form

A = VJV−1 (6.1)

where V is a a matrix containing the generalized eigenvectors of A and J is called the
Jordan normal form of A.

If A has N eigenvalues the Jordan normal form is a diagonal matrix containing the
eigenvalues and V contains all eigenvectors of A. OtherwiseM ≤ N distinct eigenvalues
exist and eigenvalue λm has Dm independent eigenvectors vm,0, . . . ,vm,Dm−1 where Dm

is called the geometric multiplicity of λm. Each eigenvector vm,d generates a Jordan
chain of Rm,d ≥ 1 linear independent generalized eigenvectors vm,d,r with 0 ≤ r < Rm,d
and the first generalized eigenvector is the eigenvector i.e. vm,d = vm,d,0. The generalized
eigenvectors satisfy the equation

(A− λmI)vm,d,r = vm,d,r−1. (6.2)

Each eigenvector vm,d corresponds to a Jordan block of dimension Rm,d of the form

Jrm,d(λm) =


λm 1

λm
. . .
. . . 1

λm

 . (6.3)

For each eigenvalue λm there are Dm Jordan blocks of the form of equation 6.3. Fur-
thermore we can group all generalized eigenvectors that correspond to an eigenvector
vm,d to a N ×Rm,d matrix

Vm,d = (vm,d,0 . . .vm,d,Rm,d−1). (6.4)

Grouping all those block matrixes Vm,d into one matrix we obtain

V = (V0,0 . . .VM−1,DM−1) (6.5)
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as the matrix of generalized eigenvectors. Those belong to the Jordan normal form

J =


JR0,0(λ0)

. . .
JRM−1,DM−1

(λM−1).

 (6.6)

This definition is adapted from the Appendix A of [2].

6.2 Additional Figures

This section contains additional figures that did not make it into the main text.
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Figure 6.1: 2.5% largest entries in A estimated from Austrian stock data using λ = 0.01,
M = 1, grouping Ng = 10 trading days
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Figure 6.2: 2.5% largest entries in A estimated from Austrian stock data using λ = 0.01,
M = 1, grouping Ng = 15 trading days
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Figure 6.3: 2.5% largest entries in A estimated from Austrian stock data using λ = 0.01,
M = 2, grouping Ng = 5 trading days
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