
Motion Planning for a Six-Legged
Robot

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Technische Informatik

eingereicht von

Bernhard Wimmer
Matrikelnummer 0928776

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Asst.-Prof. Dr. Ezio Bartocci

Wien, 28. April 2016
Bernhard Wimmer Ezio Bartocci

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/ 
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich. 
 

http://www.ub.tuwien.ac.at 
 
 
 
 

The approved original version of this diploma or 
master thesis is available at the main library of the 
Vienna University of Technology. 
 

http://www.ub.tuwien.ac.at/eng 
 





Motion Planning for a Six-Legged
Robot

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Computer Engineering

by

Bernhard Wimmer
Registration Number 0928776

to the Faculty of Informatics

at the TU Wien

Advisor: Asst.-Prof. Dr. Ezio Bartocci

Vienna, 28th April, 2016
Bernhard Wimmer Ezio Bartocci

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at





Erklärung zur Verfassung der
Arbeit

Bernhard Wimmer
Aßmayergasse 23/8

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 28. April 2016
Bernhard Wimmer

v





Acknowledgements

I would like to express my gratitude toward my advisor, Ezio Bartocci, for giving me
the opportunity to work on a long-time passion of mine and for encouraging me to be
ambitious.

Furthermore I would like to thank my friends for always providing welcome diversions
and my sister in particular for putting up with me during frustrating times.

Finally, I wish to thank my parents for their mental as well as financial support during
my time as a student and throughout my life.

vii





Abstract

Motion planning refers to the process of translating high-level specifications of tasks into
low-level sequences of control inputs for a robot’s actuators.

Legged robots, although more flexible with respect to wheeled robots in uneven and
cluttered environments, are a very challenging application domain for motion planning.
Such systems may benefit from the use of a multi-modal planner that is able to switch
between discrete modes corresponding to the set of contact points of the robot with
the ground. Widely available single-mode planners can then used to find a continuous
trajectory through a given mode. Kinematic constraints usually require such paths to
be constrained to a submanifold of the configuration space, which limits the efficacy of
common single-mode planners and requires them to be adapted for this environment.

In this thesis I provide an introduction to modeling and simulating robotic systems under
the influence of dynamics, evaluate a multi-modal planner using different single-mode
planners for controlling a six-legged robot and develop a prototype hardware platform
for future development.

Two different scenarios are considered for the planner’s evaluation: walking on a flat
surface and climbing a step. For each scenario several metrics to compare the planners’
performance are collected, including the execution time of each algorithm, the required
number of single-mode planner instances and the error in the final positions of the footfalls
after the generated motions are executed by a closed-loop controller in a simulated
environment.

I believe this comparison is useful in helping others make informed decisions about
which of the common single-mode planners are effective in this context. Furthermore,
I hope to provide some insights on the changes necessary to adapt other planners for
this environment and future challenges that need to be solved for autonomous motion
planning.

ix





Contents

Abstract ix

Contents xi

1 Introduction 1

2 Mathematical/Physical Background 3
2.1 Differential Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Newtonian Particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Rigid bodies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4 Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.5 Articulated Rigid Body Dynamics . . . . . . . . . . . . . . . . . . . . . . 25

3 Direct Control 31
3.1 Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4 Motion Planning 37
4.1 Motion Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5 Implementation Details 53
5.1 Inverse Kinematics (IK) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.2 Collision Detection and Response . . . . . . . . . . . . . . . . . . . . . . . 56

6 Robot Platform 61

7 Results 63
7.1 Flat Surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
7.2 Step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

8 Conclusion and Future Work 69
8.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

A IROS 2017 Submission 71

List of Figures 79

xi



List of Tables 80

List of Algorithms 81

Bibliography 83



CHAPTER 1
Introduction

Legged robot locomotion is a topic that has been fascinating researchers for a long time.
The fact that legs are a common trait in many land animals indicates their advantage
in unknown and varying environments. Legs allow biological creatures to navigate in
cluttered terrain by stepping over or on top of obstacles. Consequently robots with legs
have been proposed for applications in mining, building inspection, fire-fighting and
planetary-exploration among others [MI79] [BBS94].

Autonomous behavior is an integral part of increasing the usefulness of such robots.
Hand-made motion sequences can be useful in many cases [PMS07] [RBN+08] but for
true autonomy these motions need to be generated automatically. Despite the long
history, motion planning for legged robots is still a challenging problem. The high number
of actuators and changing dimensionality of the problem require powerful computers and
sophisticated algorithms to perform reliable planning in acceptable time frames.

The configuration space of legged robots is unlike that of many, more conventional
robots. The robot can have a varying number of contact points with the ground
(footfalls). These contacts introduce constraints that limit the motion space to a sub
manifold of the original space. Additional footfalls decrease the dimension of the motion
space by adding more constraints. Removing a footfall (e.g. by raising a leg) removes
constraints and increases the dimension of the valid motion space. Planners for such
systems need to be able to traverse a discrete set of modes and plan motions in the
continuous space connecting those modes. This problem is referred to as multi-modal
planning and has been investigated in the context of grasping and re-grasping operations
[ALS94] [FB97] [NK00] [SCS02] [HNTHGB07], walking [CKNK03] [Hau08] as well as
re-configuring robots [CY99].

1.0.1 Overview

The following listing gives a short overview of the contents of each chapter.

1



1. Introduction

• Mathematical Background
This chapter serves as an introduction to the basics of simulating physical systems
and modeling robots as trees of links and joints.

• Direct Control
This chapter builds on the previous one by creating a closed-loop controller that
is able to return joint torques (or other controlling variables) from a specification
that provides a combination of target positions(/velocities/accelerations) for any
links or joints in the system.

• Motion Planning
In this chapter the general approach of the multi-modal planner is outlined along
with a selection of commonly used single-mode planners.

• Implementation and Platform
Those two chapters describe and justify choices made during the implementation of
the previously described planner. The latter focuses on the physical implementation
and a description of the employed hardware.

• Results
This chapter aims to compare and discuss the results of the implemented motion
planner. Particular focus lies on the performance of different single-mode planners
in the context of the overall approach.

2



CHAPTER 2
Mathematical/Physical

Background

2.1 Differential Equations

Differential equations are used to describe the relationship between some unknown
function and its derivatives. Solving a differential equations equates to finding a function
that satisfies this relation. Often this needs to be done while satisfying some additional
constraints. One class of such problems are the so-called initial value problems.

2.1.1 Initial Value Problems

A canonical initial value problem is an ordinary differential equation (ODE) of the form

ẋ = f(x, t) (2.1)

where ẋ denotes the derivative of x with respect to the time t.

As the name indicates the goal is to find an expression for x such that x(t0) = x0. Many
physical phenomena can be formulated as initial value problems and consequently finding
solutions to them is an important part of designing and building reliable systems.

2.1.2 Analytical Solutions

Analytical solutions are a way to describe the function x(t) in an explicit manner, i.e.
the solution can be written in the form of an integral. It is important to note that not all
ODEs have such a solution. The most common first order ODEs with analytical solutions
are:

Directly integrable: ẋ = f(x(t), t) = g(t) (2.2)

3



2. Mathematical/Physical Background

Linear: ẋ = f(x(t), t) = g(t)x(t) + h(t) (2.3)

Separable: ẋ = f(x(t), t) = g(t)h(x(t)) (2.4)

Homogeneous: ẋ = f(x(t), t) = g(x(t)/t) (2.5)

Exact: f(x, t)dt+ g(x, t)dx = 0
where the partial derivatives satisfy fx = gt

(2.6)

2.1.3 Numerical Solutions

Numerical solutions on the other hand evaluate the function f iteratively to obtain the
solution. For each step i an approximate change for x is calculated as ∆x = f(xi,∆t).
The value of xi+1 is then given by xi + ∆x. In this scenario the function f can be seen
as a black box - it is given some values for x and t and returns a numerical value for ẋ.

Euler’s method

The simplest numerical method is Euler’s method. With an initial value x0 = x(t0) the
goal is to find a value for x(t0 +h). Euler’s method simply calculates this value by taking
a step in the direction of the derivative:

x(t0 + h) = x0 + hẋ(t0) (2.7)

This method is very simple but also inaccurate. Fig. 2.1 shows what happens to x when
the integral curves of f are concentric circles. The correct solution has x orbit the origin
along a circle with the same radius. Due to the error of the Euler integration this circle
turns into a polygonal spiral. Smaller step sizes can slow the rate at which x distances
itself from the correct solution, but the error can not be eliminated.

x

y

x0

x1
x2

x3

x4

x5

x6

Figure 2.1: Example of error due to Euler integration (x2 + y2 = r2, ẋ = [−y, x]T )

4



2.1. Differential Equations

In some cases Euler’s method can also be completely unstable. Consider ẋ = −kx whose
solution has the form x(t) = e−kt: This function is clearly supposed to decay toward zero.
For small enough step sizes we get the desired behavior. If h > 1

k then |∆x| > |x| and
the result of the integration oscillates about 0. For larger values the oscillation diverges
and the results are useless.

To get an idea on how to improve this method it is useful to look at what this method
actually is. For this reason let’s compare it to the Taylor series. It is defined for infinitely
differentiable (i.e. smooth) functions and can be written as:

x(t0 + h) =
∞∑
n=0

hn

n! xn(t0)

or

x(t0 + h) = x(t0) + hẋ(t0) + h2

2! ẍ(t0) + h3

3!
...x(t0) + · · ·

The difference between this and Eq. 2.7 are the higher order derivatives. This means that
the Euler integration is only correct if the factors for the second, third, etc. derivatives
are all zero, i.e. if x is a linear function. Consequently the error consists of the remaining
terms. The dominating error term is h2

2! ẍ(t0) as the contributions of the higher order
derivatives decrease. The Euler integration’s local truncation error is thus often written
as O(h2). The local truncation error is the error incurred after each iteration. An easy
way to illustrate this, is to look at what happens when the step size (h) is changed. If
h is halved then the resulting error is around a quarter of the previous one. However,
it also means that twice as many steps need to be calculated to arrive at the original
stepsize’s value. Another consequence of this is that, in theory, the accuracy can be
improved as desired by reducing the step size at the cost of computation time.

Midpoint method

One way to improve on the results of the Euler integration is to add an additional term
of the Taylor series. Adding h2

2! ẍ(t0) to Eq. 2.7 gives

x(t0 + h) = x(t0) + hẋ(t0) + h2

2! ẍ(t0) (2.8)

If one additionally assumes that ẋ does not depend on t directly then it can be rewritten
as

ẋ = f(x(t)) (2.9)

using the chain-rule to calculate ẍ gives

ẍ = ∂f

∂xẋ = f ′f (2.10)

5



2. Mathematical/Physical Background

Calculating f ′ is often expensive and can be approximated by performing another Taylor
expansion. This time on f :

f(x0 + ∆x) = f(x0) + ∆xf ′(x0) +O(∆x2) (2.11)

Choosing ∆x = h
2f(x0) introduces ẍ to this expression:

f(x0) + h

2 f(x0) = f(x0) + h

2 f(x0)f ′(x0) +O(h2) = f(x0) + h

2 ẍ(t0) +O(h2) (2.12)

multiplying by h reduces the error term from O(h2) to O(h3) and gives

h2

2 ẍ +O(h3) = hf(x0 + h

2 f(x0))− f(x0) (2.13)

Finally the right hand side can be substituted into Eq. 2.8

x(t0 + h) = x(t0) + hf(x0 + h

2 f(x0)) (2.14)

Essentially this evaluates f(x0) to calculate some point between x0 and the next value
to evaluate the final result for x(t0 + h) (hence the name midpoint method).

Taking this approach even further to reduce the error is also possible. One popular
version of this method is called Runge-Kutta of order 4 (RK4) with a local truncation
error of O(h5). The derivation is similar to the one above (which could also be called
Runge-Kutta of order 2) and is not done here. The calculation is performed in the
following way:

k1 = hf(x0, t0)

k2 = hf(x0 + k1
2 , t0 + h

2 )

k3 = hf(x0 + k2
2 , t0 + h

2 )

k4 = hf(x0 + k3, t0 + h)

x(t0 + h) = x0 + 1
6k1 + 1

3k2 + 1
3k3 + 1

6k4

Adaptive stepsizes

Picking an appropriate stepsize is one issue that the above methods have in common.
On the one hand a bigger step size means that the result can be calculated more quickly
as fewer steps need to be taken and on the other this also equates to less precision. For
this reason adaptive stepsizes can be introduced. Their goal is to maximize the step size
while retaining the desired precision of the calculations.

6



2.1. Differential Equations

A way to calculate such an adaptive stepsize is step doubling - We calculate two different
results for x(t0 + h). The first one (xa) by taking one step of size h and the second
one(xb) by taking two steps of size h

2 . For the Euler method both of these results have
an error of O(h2). They also differ from each other by O(h2). This gives a convenient
way to estimate the current error:

e = |xa − xb| (2.15)

The new stepsize can then be calculated with the allowed tolerance for the error (tol) as

hadaptive =
(
tol

e

) 1
2
h (2.16)

The same approach can be used for the Runge-Kutta method [PTVF96]. When RK4 is
used this approach requires f to be evaluated eleven times - three times for each step
while k1 for the first step with h

2 and h are identical. One property of Runge-Kutta
formulas is that for orders (M) higher than four more than M evaluations of f are
required (but not more than M + 2). This is one reason why RK4 is so popular. It
requires a small number of evaluations but still gives a reasonably accurate result.

A different method was developed when Fehlberg discovered that the factors of a fifth
order method with six function evaluations could be recombined to give a fourth order
method as well. The difference between those two methods can then be used to adjust
the stepsize accordingly.

A fifth order Runge-Kutta formula has the form:

k1 = hf(x0, t0)
k2 = hf(x0 + b21k1, t0 + a2h)
k3 = hf(x0 + b31k1 + b32k2, t0 + a3h)
k4 = hf(x0 + b41k1 + b42k2 + b43k3, t0 + a4h)
k5 = hf(x0 + b51k1 + b52k2 + b53k3 + b54k4, t0 + a5h)
k6 = hf(x0 + b61k1 + b62k2 + b63k3 + b64k4 + b65k5, t0 + a6h)

x(t0 + h) = x0 + c1k1 + c2k2 + c3k3 + c4k4 + c5k5 + c6k6 +O(h6)

And the embedded fourth order method

x∗(t0 + h) = x0 + c∗1k1 + c∗2k2 + c∗3k3 + c∗4k4 + c∗5k5 + c∗6k6 +O(h5) (2.17)

For the values of the factors the ones found by Cash and Karp [CK90] in table 2.1 are
usually used as they have slightly better error properties than Fehlberg’s.

7



2. Mathematical/Physical Background

Table 2.1: Cash-Karp factors for Runge-Kutta method

i ai bij ci c∗i

1 37
378

2825
27648

2 1
5

1
5 0 0

3 3
10

3
40

9
40

250
621

18575
48384

4 3
5

3
10 − 9

10
6
5

125
594

13525
55296

5 1 −11
54

5
2 −70

27
35
27 0 277

14336

6 7
8

1631
55296

175
512

575
13824

44275
110592

253
4096

512
1771

1
4

j = 1 2 3 4 5

2.2 Newtonian Particles

The motion of Newtonian objects is described by f = m ∗ a or "force equals mass times
acceleration" in words. This can easily be rewritten in the canonical form:

ẍ = f
m

(2.18)

To apply the above methods, which operate on first order equations, we split this
expression into two coupled first order equations by introducing a variable v for the
velocity.

v̇ = f
m

(2.19)

ẋ = v (2.20)

This can be used to form a six-vector in the so called phase space

(
ẋ1 ẋ2 ẋ3 v̇1 v̇2 v̇3

)T
=
(
v1 v2 v3

f1
m

f2
m

f2
m

)T
(2.21)

Further assuming that the force f is a function of x and t leads us back to the canonical
form in Eq. 2.1. The concatenated vector of a single object can also be imagined as a
point traveling in the 6D phase space. Each Newtonian body adds another 6 elements to
this vector and the system in its entirety can be viewed as a point traveling in 6n-space.

8



2.3. Rigid bodies

Related nomenclature

In order to operate on a robot using mathematical tools, we will represent a robot
as single point in a so called configuration space C in later sections (4.1). This
configuration space is sometimes described as "Rm"-like, i.e. it is (locally) similar
to an Euclidean space of dimension m.
The set of tangent vectors at any q ∈ C forms a tangent space Tq(C). Since these
tangents are the derivatives at a point q it is also sometimes called velocity space.
Often it also makes sense to combine multiple such tangent spaces into a single
structure, called tangent bundle: T (C) = ∪q∈CTq(C).
A pair (configuration, velocity) is called phase in Physics and state in Control
Theory. Accordingly the tangent bundle of C is referred to as phase space and
state space depending on the context [Lat03].

From here on out we will use x(t) to denote the state of a system, i.e. the collection of all
parameters of the system that influence the "position" in this space. This is not limited
to the position and velocity of objects, but can also include their angles and angular
velocities.

Rewriting Eq. 2.18 using this vector and denoting the spatial position using p instead of
x gives us

ẋ =
(

ṗ(t)
v̇(t)

)
=
(

v(t)
F(t)
m

)
(2.22)

2.3 Rigid bodies

Rigid bodies, unlike Newtonian particles, are not just points in space that have mass
attached to them. It is not sufficient to describe them using just their position and
velocity. Their orientation is an essential part that needs to be considered. As the shapes
of rigid bodies can vary wildly we are going to describe the geometric properties in a
local coordinate system called the body-space. Additionally we assume that the origin of
the body space coincides with the center of mass of that body. This simplifies several
calculations and can be done without loss of generality.

If the rotation about the center of mass is denoted by R(t) and the translation by p(t)
then the transformation from the local coordinate system to the world coordinates can
be written as:

ri = R(t)rib + p(t) (2.23)

where rib is a point in body coordinates and ri the corresponding point in world coordi-
nates.

9



2. Mathematical/Physical Background

2.3.1 Linear Velocity

In order for a rigid body to move it needs a velocity. As the velocity is the rate of change
of the position we will write it as

v(t) = ṗ(t) (2.24)

Where p(t) denotes the center of mass of the body in world coordinates. Consequently v
is the velocity of the center of mass.

2.3.2 Angular Velocity

One of the big differences to Newtonian particles is that the orientation of rigid bodies
is important. Similarly to the Linear Velocity the rate of change of the rotation also
needs to be modeled. The angular velocity is usually denoted by ω(t). The direction of
this vector is the axis of the rotation and the magnitude corresponds to the speed of the
rotation. The next thing that needs to be determined is how R(t) and w(t) are related.
If we assume that R(t) is matrix then ω(t) can not be Ṙ(t) as ω(t) is a vector.

ω(t)
ω
(t)
×
b

b

r(t)

a

Figure 2.2: Rate of change of a rotating vector

Fig. 2.2 shows how an arbitrary vector r(t) is changed by the angular velocity. r(t) is
decomposed into a and b to calculate ṙ(t). a is parallel to ω(t) and b is perpendicular to
it. The resulting motion corresponds to r(t) tracing a circle that is perpendicular to ω(t)
and whose center lies on that same vector. As the tip of r(t) is moving along a circle the
instantaneous velocity has a magnitude of |b||ω(t)| and due to the fact that b and ω(t)
are perpendicular the magnitude of their cross product is also given by

|ω(t)× b| = |ω(t)||b| (2.25)

This results in ṙ(t) = ω(t)× b and since r(t) = a + b with a being parallel to ω(t) and
thus ω(t)× a = 0 we arrive at

ṙ(t) = ω(t)× b = ω(t)× b + ω(t)× a = ω(t)× (b + a) (2.26)

10



2.3. Rigid bodies

or simply
ṙ(t) = ω(t)× r (2.27)

Knowing that the columns of the rotation matrix R(t) correspond to the axes of the
rigid body in world coordinates we can now write the change in rotation as

Ṙ =

ω(t)×

rxxrxy
rxz

 ω(t)×

ryxryy
ryz

 ω(t)×

rzxrzy
rzz


 (2.28)

As that is a quite cumbersome way to express this we will rewrite the cross product of
two vectors in the following way

a × b =

 aybz − byaz
−axbz + bxaz
axby − bxay

 =

 0 −az ay
az 0 −ax
−ay ax 0


bxby
bz

 = a∗b (2.29)

This allows us to write Ṙ(t) as

Ṙ =

ω∗(t)
rxxrxy
rxz

 ω∗(t)

ryxryy
ryz

 ω∗(t)

rzxrzy
rzz


 = ω∗(t)R (2.30)

which is gives us an expression for Ṙ in canonical form.

2.3.3 Splitting a rigid body into particles

To make some of the next calculations easier to visualize we are going to pretend that a
rigid body consists of many distinct particles. These particles are enumerated using mi

and have a fixed position in body coordinates rib . The movement of such a particle in
world coordinates can be expressed using Eq. 2.23. The total mass of the rigid body is:

M =
N∑
n=0

mi (2.31)

Such a particle also needs a velocity.

It can be calculated using Eqs. 2.23 and 2.30

ṙi(t) = ω∗(t)R(t)rib + v(t) (2.32)

This allows us to rewrite ṙi(t) using the position p(t) of the rigid body:

11



2. Mathematical/Physical Background

ṙi(t) = ω∗(t)R(t)rib + v(t) (2.33)
= ω∗(t)(R(t)rib + p(t)− p(t)) + v(t) (2.34)
= ω∗(t)(rib(t)− p(t)) + v(t) (2.35)

with ω∗(t)a = ω(t)× a for any vector a this gives

ṙi(t) = ω(t)× (ri − p(t)) + v(t) (2.36)

It is important to note here that this allows us to split the velocity into an angular
ω(t)× (ri − p(t)) and linear v(t) part.

2.3.4 Force and Torque

Another important aspect is the force acting on a rigid body. Here we will use the
previously defined concept of particles again. Let us denote the forces acting on an
arbitrary point (particle) in this rigid body with Fi(t). Additionally the torque acting on
this particle is defined as

τi(t) = (ri(t)− p(t))× Fi(t) (2.37)

Intuitively this tells us that the torque depends on the distance of this particle from the
center of mass. The direction of τi(t) can be thought of as the axis the body would spin
about due to Fi(t).

The total force acting on a body is

F (t) =
N∑
n=0

Fi(t) (2.38)

and the total torque

τ(t) =
N∑
n=0

τi(t) =
N∑
n=0

(ri(t)− pi(t))× Fi(t) (2.39)

It is worth mentioning that the total force contains no information about the distribution
of forces over the body, while the total torque does.

2.3.5 Linear Momentum

A particle’s linear momentum is usually given as

p = mv (2.40)

with a mass m and the velocity v.

12



2.3. Rigid bodies

Similarly to the previous sections the total momentum of a rigid body can be written as

P (t) =
N∑
n=0

miṙi (2.41)

Using Eq. 2.36 this can be rewritten as

P (t) =
N∑
n=0

miṙi (2.42)

=
N∑
n=0

(miv(t) +miω(t)× (ri(t)− p(t))) (2.43)

=
N∑
n=0

miv(t) + ω(t)×
N∑
n=0

mi(ri(t)− p(t)) (2.44)

Here we will use the fact that we chose the origin of the rigid body as the center of mass
and its property given in Eq. 2.31. Thus the second sum equals

N∑
n=0

mi(ri(t)− p(t)) =
N∑
n=0

mi(R(t)rib + p(t)− p(t)) = R(t)
N∑
n=0

mib = 0 (2.45)

and

P (t) =
N∑
n=0

miv(t) = Mv(t) (2.46)

This tells us that the total linear momentum of a rigid body is identical to that of a
single particle with mass M and velocity v(t).

2.3.6 Angular Momentum

Angular Momentum is the analogue to the linear momentum for rotations. A very
important property of the angular momentum is that it is conserved in nature. A body
floating in space on which no torque acts has a constant angular momentum. This is not
the case for the angular velocity, however. Even if the angular momentum is constant
the corresponding velocity may not be - it can vary even if no force acts on the body.
This is a reason why it is chosen as a state variable over the angular velocity.

Eq. 2.46 shows the definition for the linear momentum. The angular momentum can be
written in a similar fashion

L(t) = I(t)ω(t) (2.47)

13



2. Mathematical/Physical Background

where I(t) is a rank 2 tensor called the inertia tensor or sometimes inertia matrix. It
describes the distribution of mass in a rigid body and depends on its orientation but not
its translation.

The linear momentum as well as the angular momentum are linear functions of the
velocity. The difference is that the angular momentum is scaled by a matrix while the
linear momentum is using a scalar. Additionally L(t) does not depend on translational
effects while P (t) is independent of rotational effects.

2.3.7 Inertia Tensor

The inertia tensor represents the transformation to get from the angular velocity to the
angular momentum. It can be calculated as

I(t) =
N∑
n=0

mi(r′2iy + r′2iz) −mir
′
ix + r′iy −mir

′
ix + r′iz

−mir
′
iy + r′ix mi(r′2ix + r′2iz) −mir

′
iy + r′iz

−mir
′
iz + r′ix −mir

′
iz + r′iy mi(r′2ix + r′2iy)

 (2.48)

where r′ = ri(t)− p(t), i.e. the distance of a particle from the center of mass. Generally
the above sum is replaced by an integral to calculate the inertia tensor. Calculating
this at each point in time can be very time consuming so rewriting it in terms of body
coordinates is a better approach. As r′Ti r′i = r′2ix + r′2iy + r′2iz, I(t) becomes

I(t) =
N∑
n=0

mir
′T
i r
′
iI −

 mir
′2
ix mirixr

′
iy mirixr

′
iz

miriyr
′
ix mir

′2
iy miriyr

′
iz

mirizr
′
ix mirizr

′
iy mir

′2
iz

 (2.49)

and further

I(t) =
N∑
n=0

mi(r′Ti r′iI − r′ir′Ti ) (2.50)

Using Eq. 2.23 and the fact that rotation matrices are orthogonal (RRT = I) we can
rewrite this as

14



2.3. Rigid bodies

I(t) =
N∑
n=0

mi(r′Ti r′iI − r′ir′Ti ) (2.51)

=
N∑
n=0

mi((R(t)rib)T (R(t)rib)I − (R(t)rib)(R(t)rib)T ) (2.52)

=
N∑
n=0

mi(rTibR(t)TR(t)ribI −R(t)ribr
T
ib

R(t)T ) (2.53)

=
N∑
n=0

mi(rTibribI −R(t)ribr
T
ib

R(t)T ) (2.54)

=
N∑
n=0

mi(R(t)rTibribR(t)TI −R(t)ribr
T
ib

R(t)T ) (2.55)

= R(t)(
N∑
n=0

mi(rTibribI − ribr
T
ib

))R(t)T (2.56)

Defining Ib as the matrix

Ib =
N∑
n=0

mi(rTibribI − ribr
T
ib

) (2.57)

gives us a nice way to rewrite the inertia tensor

I(t) = R(t)IbR(t)T (2.58)

Ib only needs to be calculated once for each body and can then be transformed using the
rotation of the rigid body to get the required matrix for each point in time.

The inverse of I(t) can also easily be given as

I(t)−1 = (R(t)IbR(t)T )−1 = R(t)T I−1
b R(t) (2.59)

2.3.8 The state of a rigid body

All of the above can now be combined to get the state vector for a rigid body, which
consists of the body’s pose (position and orientation) as well as its linear and angular
momentum.

X(t) =


p(t)
R(t)
P(t)
L(t)

 (2.60)

15



2. Mathematical/Physical Background

However what we also need is the derivative of the state.

Eq. 2.46 gives us an expression for the velocity (i.e. ṗ(t)) and Eq. 2.30 the counterpart
for the angular velocity. This leaves us with the derivative of the linear and angular
momentum.

Calculating Ṗ

Previously we conceptualized how forces act on a rigid body by splitting it into a
large number of small particles. However, this is not enough any more. In order
for the body itself to not deform each of those external forces Fi(t) needs some
internal constraint force that counteracts it. For the next part we will assume that
these internal forces act passively and do not perform any net work. If we denote
the internal constraint force with Fci(t) then the work performed by each particle
is ∫ t1

t0
Fci(t) · ṙi(t)dt (2.61)

with the velocity of that particle being ṙt(t) and two points in time t0 and t1.
The net work of that body is zero

N∑
n=0

∫ t1

t0
Fci(t) · ṙi(t)dt =

∫ t1

t0

N∑
n=0

Fci(t) · ṙi(t)dt = 0 (2.62)

and thus the sum over all particles at each point in time must also be zero. Using
the expression in Eq. 2.36 with r′i(t) = ri − p(t) leads to

N∑
n=0

Fci(t) · (v(t)− r′i(t)× ω(t)) = 0 (2.63)

which must be true for arbitrary values of v(t) and ω(t) as they are independent.
Choosing ω(t) = 0 gives

N∑
n=0

Fci(t) · v(t) = 0 (2.64)

and similarly letting v(t) = 0 shows
N∑
n=0
−Fci(t) · (r′i(t)× ω(t)) = 0 (2.65)

The net force on each particle is the sum of the external force Fi(t) and the internal
constraint force Fci(t). This means that we can write the acceleration of such a
particle as

r̈i(t) = d

dt
ṙi(t) = d

dt
(v(t)− r′i(t)×ω(t)) = v̇(t)− ṙ′i(t)×ω(t)− r′i(t)× ω̇(t) (2.66)

16



2.3. Rigid bodies

Each particle must also obey Newton’s law (f = ma) so

mir̈i(t)− Fi(t)− Fci(t) = 0 (2.67)

mi

(
v̇(t)− ṙ′i(t)× ω(t)− r′i(t)× ω̇(t)

)
− Fi(t)− Fci(t) = 0 (2.68)

Summing over all particles gives

N∑
n=0

mi

(
v̇(t)− ṙ′i(t)× ω(t)− r′i(t)× ω̇(t)

)
− Fi(t)− Fci(t) =

N∑
n=0

miv̇(t)−
N∑
n=0

miṙ
′
i(t)× ω(t)−

N∑
n=0

mir
′
i(t)× ω̇(t)−

N∑
n=0

Fi(t)−
N∑
n=0

Fci(t) =

N∑
n=0

miv̇(t)−
( d
dt

N∑
n=0

mir
′
i(t)

)
× ω(t)−

N∑
n=0

mir
′
i(t)× ω̇(t)−

N∑
n=0

Fi(t)−
N∑
n=0

Fci(t) =

0
(2.69)∑N

n=0mir
′
i(t) and d

dt

∑N
n=0mir

′
i(t) are both 0 because we chose a coordinate system

with the center of mass at the origin.
Finally we get

N∑
n=0

miv̇(t)−
N∑
n=0

Fi(t) = 0 (2.70)

or
Mv̇(t) = Ṗ = F (t) (2.71)

Calculating L̇

To get an expression for L̇(t) we will start with Eq. 2.68. Applying the ∗ operator
to both sides gives:

r
′∗
i (t)mi

(
v̇(t)−ṙ′∗

i (t)ω(t)−r′∗
i (t)ω̇(t)

)
−r′∗

i (t)
(
Fi(t)+Fci(t)

)
= r

′∗
i (t)0 = 0 (2.72)

Calculating the sum over all particles results in

N∑
n=0

r
′∗
i (t)miv̇(t)−

N∑
n=0

r
′∗
i (t)miṙ

′∗
i (t)ω(t)−

N∑
n=0

mir
′∗
i (t)r′∗

i (t)ω̇(t)

−
N∑
n=0

r
′∗
i (t)Fi(t)−

N∑
n=0

r
′∗
i (t)Fci(t) = 0

(2.73)

17



2. Mathematical/Physical Background

As
∑N
n=0 r

′∗
i (t)Fci(t) = 0 and

∑N
n=0mir

′
i(t) = 0 we get

−
( N∑
n=0

r
′∗
i (t)miṙ

′∗
i (t)

)
ω(t)−

( N∑
n=0

mir
′∗
i (t)r′∗

i (t)
)
ω̇(t)−

N∑
n=0

r
′∗
i (t)Fi(t) = 0 (2.74)

Using the definition of r′i and Eq. 2.39 leads to

−
( N∑
n=0

r
′∗
i (t)miṙ

′∗
i (t)

)
ω(t)−

( N∑
n=0

mir
′∗
i (t)r′∗

i (t)
)
ω̇(t) = τ(t) (2.75)

Remembering the definition of the ∗ operator shows that −a∗a∗ is equivalent to
(aTa)I − aaT . Thus

N∑
n=0
−mir

′∗
i (t)r′∗

i (t) =
N∑
n=0

mi

(
(r′T
i (t)r′i(t))I − r′i(t)r

′T
i (t)

)
= I(t) (2.76)

The last part we want to avoid is having to calculate
∑N
n=0 r

′∗
i (t)miṙ

′∗
i (t) as that

is just as expensive as calculating the inertia tensor in the first place. To that end
we will use the two equations ṙ′i(t) = ω(t)× r′i(t) and r′∗

i (t)ω(t) = −ω(t)× r′i(t)

N∑
n=0

miṙ
′∗
i (t)r′∗

i (t)ω(t) =0

N∑
n=0

mi(ω(t)× r′i(t))∗(−ω(t)× r′i(t) =0

N∑
n=0
−mi(ω(t)× r′i(t))× (ω(t)× r′i(t)) =0

(2.77)

Adding this to Eq. 2.75 and substituting Eq. 2.76 gives

( N∑
n=0
−mir

′∗
i (t)ṙ′∗

i (t)−miṙ
′∗
i (t)r′∗

i (t)
)
ω(t) + I(t)ω̇(t) = τ(t) (2.78)

Which can be simplified further by using the derivative of the inertia tensor

İ(t) = d

dt

N∑
n=0
−mir

′∗
i (t)r′∗

i (t) =
N∑
n=0
−mir

′∗
i (t)ṙ′∗

i (t)−miṙ
′∗
i (t)r′∗

i (t) (2.79)

to

İ(t)ω(t) + I(t)ω̇(t) = d

dt
(I(t)ω(t)) = τ(t) (2.80)

where the definition of the angular momentum from Eq. 2.47 is L(t) = I(t)ω(t)

18



2.4. Constraints

Another way this is often written is without the derivative of the inertia tensor:

İ = d

dt
RIbR

T (2.81)

= ṘIbR
T +RIbṘ

T (2.82)
= ω∗RIbR

T +RIb(ω∗R)T (2.83)
= ω∗I + Iω∗ (2.84)

which can be used with the identity ω∗T = −ω∗ to write τ as

τ(t) = I(t)ω̇(t) + ω(t)× I(t)ω(t) (2.85)

Finally using Eqs. 2.46 2.71, 2.47, 2.58 gives us

Ẋ(t) = d

dt


p(t)
R(t)
P(t)
L(t)

 =


v(t)

ω(t)∗R(t)
F(t)
τ(t)

 (2.86)

2.4 Constraints

2.4.1 Single Particle

So far we have looked at Newtonian particles and rigid bodies and how they behave
individually under the influence of external forces. To get more interesting and useful
results we will need to look at how they interact with each other and the environment.
Take a simple pendulum for example - so far we have described how a particle would
behave under the influence of gravity, for example, but no way of specifying that the
weight at the end of the pendulum is a fixed distance from some pivoting point.

This is where constraints come in. They are used to describe the legal states of a system.
They are of the form:

C(x) = 0 (2.87)

where x is the state of the system. C(x) is an implicit function, i.e. it relates all elements
of the vector x to each other. An implicit function that describes a unit circle could be
given by x2 + y2 − 1 = 0 for example.

If C(x) describes all allowed states of the system, then Ċ(x) and C̈(x) describe the valid
velocities and accelerations, respectively. Or

Ċ(x) = x · ẋ = 0 (2.88)

and
C̈(x) = ẍ · x + ẋ · ẋ = 0 (2.89)

19



2. Mathematical/Physical Background

This means that if the initial position and velocity satisfy the constraints then, in principle
all that needs to be done is to ensure that Eq. 2.89 is satisfied from that point onward.
To deal with constrains a new virtual force is introduced that counteracts the external
applied force in order to satisfy those constraints.

Newton’s law with this new force can be written as

C̈(x) = f + f̂
m

(2.90)

where f is a given applied force and f̂ is the unknown constraint force.

substituting the above equation in 2.89 leads to

C̈(x) = f + f̂
m
· x + ẋ · ẋ = 0 (2.91)

f̂ · x = −f · x−mẋ · ẋ (2.92)

This is an equation with two unknowns so we will need some other information to solve
it. For this reason we require that the constraint does not add or remove energy to the
system, i.e. it is passive and lossless. The kinetic energy can then be written as

T = m

2 ẋ · x (2.93)

with its derivative
Ṫ = mẍ · ẋ = mf · ẋ +mf̂ · ẋ (2.94)

The previously mentioned requirement implies that the second part of the equation is 0
for every valid ẋ (Eq. 2.88). This means that f̂ must point in the direction of x

f̂ = λx (2.95)

substituting in Eq. 2.92 allows us to solve for λ

λ = −f · x−mẋ · ẋ
x · x (2.96)

Finally f̂ can be calculated and the system can be iterated with ẍ = f̂+f
m instead of Eq.

2.18.

20



2.4. Constraints

2.4.2 Multiple Particles

Usually one is interested in simulating more than a single particle. For this reason we
will extend the above method to handle an arbitrary number of such particles. We start
by combining the positions of all particles into a single state vector q. Its length is 3n
for n particles in 3D. Similarly the masses are put into a diagonal matrix (M) where,
again for 3D, the first three diagonal elements are the mass of the first particle, the next
three the mass of the second and so on. The inverse of M can easily be calculated by
taking the reciprocal of each element to get another matrix W. Similarly to the state
vector all forces acting on the particles are collected in a vector Q. This allows us to
write Newton’s equation of motion as

q̈ = WQ (2.97)

All constraints on these particles are collected in a vector function C(q) which takes a
vector of length 3n and returns a vector of length m which is the number of constraints
in the system. Like in the previous section we require that C = Ċ = 0 and then attempt
to find a constraint force Q̂ that, when added to the applied force Q, guarantees C̈ = 0.

Differentiating C gives

Ċ = ∂C
∂q q̇ (2.98)

The matrix ∂C
∂q is usually referred to as the Jacobian and denoted with J. The sparsity

of this matrix depends on how the constraints interact with multiple particles. If, for
example, there are n constraints that act on each particle independently then the Jacobian
is a diagonal block matrix with each block describing the relation between x, y and z
coordinate of a particle.

Taking the derivative of Ċ gives

C̈ = J̇q̇ + Jq̈ (2.99)

where J̇ could be written as ∂J
∂q q̇. This would involve taking the derivative of a matrix

with respect to a vector which results in a rank 3 tensor (3D array) and is generally
cumbersome. In many cases an expression for Ċ is available and so J̇ becomes ∂Ċ

∂q instead
which is more manageable. Next we replace q̈ with the sum of constraint force and
applied force times the inverse mass matrix and set C̈ = 0

C̈ = J̇q̇ + JW(Q + Q̂) (2.100)
JWQ̂ = −J̇q̇ − JWQ (2.101)

21



2. Mathematical/Physical Background

Like in the previous case with only a single particle we have too many unknown variables
to solve the equation by itself. Again we make use of the principle of virtual work. All
legal velocities must satisfy Jẋ = 0 and consequently

Q̂ · ẋ = 0, ∀ẋ|Jẋ = 0 (2.102)

This allows us to express Q̂ as
Q̂ = JTλ (2.103)

where λ is a vector with the dimensions of C. A way of imagining this is to view the
matrix J as a collection of gradients for the constraint functions. Since C = 0 those
gradients are normals to the constraint hyper-surfaces and represent the directions the
system is not allowed to move in. Vectors of the form JTλ are the linear combinations of
those gradients and consequently span the set of prohibited directions. The principle of
virtual work then requires that the dot product with any allowed direction is zero.

Finally this allows us to rewrite Eq. 2.101 in the following way

JWJTλ = −J̇q̇ − JWQ (2.104)

which can be solved for λ and used to calculate Q̂.

Compensating for numerical drift

As with all systems with limited precision the numerical calculations of the above
matrices will accumulate drift over time. This can be compensated by changing
the requirement that C̈ = 0 slightly. Two new terms are introduced to pull the
system back toward legal states

C̈ = −ksC− kdĊ (2.105)

ks and kd can be viewed as spring and damping constants, respectively. The final
constraint force equation that can be solved for λ is then given by

JWJTλ = −J̇q̇ − JWQ− ksC− kdĊ (2.106)

2.4.3 Lagrangian Dynamics

Constrained particle systems may be sufficient to describe a number of scenarios, but
we do not want to have to split rigid bodies into a large number of particles that are
connected by constraints. What we want is to describe constraints that operate on these
rigid bodies themselves. Previously each constraint described a hyper-surface in our
state space and the intersections of these hyper-surfaces described our valid states. This
time the constraints are described using parametric functions, i.e. a function q(u) with

22



2.4. Constraints

dim u < dim q which specifies all legal states. Using a particle on a unit circle again such
a function could be q(u) = q([θ]) = [cos θ, sin θ]T . This has the advantage of reducing
the degrees of freedom. Instead of depending on x and y, now the constraint only depends
on θ.

The constrained system’s equations of motion need to be rewritten in terms of the new
constrained representation rather than the unconstrained one we used previously. The
advantage of that method is that it removes redundant information. This improves the
stability of the simulation, but automatically combining constraints becomes a lot harder.
These new equations are known as Lagrange’s equations of motion.

We will start with the global state vector q, the diagonal mass matrix M and the forces
Q and Q̂. This time the elements of q are not independent variables but are given by a
function q(u) instead. The goal is to solve for ü while keeping the constraints satisfied.

The Jacobian of the constraint function is used again

J = ∂q
∂u (2.107)

The valid velocities and accelerations can again be calculated using the chain rule

q̇ = Ju̇ (2.108)
q̈ = Jü + J̇u̇ (2.109)

The principle of virtual work requires

Q̂TJu̇ = 0,∀u̇ (2.110)

Similarly to the previous description this means that JT Q̂ = 0 and the unconstrained
equation of motion is given by

Mq̈ = Q + Q̂ (2.111)

This time instead of solving for the constraint force we remove it completely by multiplying
both sides with JT

JTMq̈ − JTQ = 0 (2.112)

Substituting Eq. 2.109 for q̈ gives us the classical Lagrangian equation of motion

JTMJü + JTMJ̇u̇− JTQ = 0 (2.113)

23



2. Mathematical/Physical Background

Dynamics Equation

In the literature one will often find the equation

M(q)q̈ + C(q, q̇) = Q (2.114)

instead. The equation contains the mass matrix M , the Coriolis and centrifugal
term C and the vector of generalized forces Q. The similarity to Eq. 2.113 should
be obvious, but in the hopes of making it entirely clear we will derive the above
equation using the Newton-Euler equations. We start by rewriting Eq. 2.85 and
f = ma in vector form:(

mI3 0
0 I

)(
v̇
ω̇

)
+
(

0
ω × Iω

)
=
(

f
τ

)
(2.115)

Then the Jacobian is split into terms for v and ω(
v
ω

)
= J(q)q̇ =

(
Jv
Jω

)
q̇ (2.116)

and the matrix Mc defined as

Mc =
(
mI3 0

0 I

)
(2.117)

With Eq. 2.109 in mind this allows us to rewrite Eq. 2.115 as

Mc
˙(J ˙ )q +

(
0

(Jωq̇)× IJωq̇

)
=
(

f
τ

)
(2.118)

McJ q̈ +McJ̇ q̇ +
(

0 0
0 (Jωq̇)∗

)
McJ q̇ =

(
f
τ

)
(2.119)

As a last step the Cartesian forces are converted to the generalized space by
multiplying with JT to get

(JTMcJ)q̈ + (JTMcJ̇ + JT
(

0 0
0 (Jωq̇)∗

)
McJ)q̇ = JTv f + JTω τ (2.120)

This allows us to list the factors in Eq. 2.114

M(q) = JTMcJ (2.121)

C(q, q̇) = (JTMcJ̇ +
(

0 0
0 (Jωq̇)∗

)
McJ)q̇ (2.122)

Q = JTv f + JTω τ (2.123)

24



2.5. Articulated Rigid Body Dynamics

2.5 Articulated Rigid Body Dynamics
Next we want to expand on the previous sections by introducing articulated rigid bodies.
Such an articulated rigid body system is represented by a tree-like structure of rigid links
connected by joints. An important point here is that each body has exactly one parent,
but there is no restriction on the number of children.

The state of the system will be expressed in terms of the generalized coordinates. As the
root of the tree does not have any parents the generalized coordinates of the system are
the degrees of freedom (DOF) of that link.

The state of this system can be expressed as (xk, Rk,vk, ωk) where k = 1, ..,m is the
number of links in the system. xk and Rk denote the position of the COM and the
rotation of the link, respectively. vk and ωk are the linear and angular velocity in the
world frame. The Cartesian force and torque applied to each link in the world frame are
given by (fk, τk).

The system can also be expressed in generalized coordinates where the state is given by
(q, q̇), with q = (q1, ...,qi, ...,qm). Each qi is the set of DOFs of the joint connecting
the link i to its parent.

k = 1

k = 2

k = 3

k = 4

Ball joint
Universal joint
Hinge joint

q1 = {q11, q12, q13}

q2 = {q21, q22}

q3 = {q31}

q4 = {q41}

Figure 2.3: Example of an articulated rigid
body system

In order to make the following sections
more concise we will introduce several no-
tations:

• p(k) gives the index of the parent
link. E.g. p(4) = 2 in Fig. 2.3.
Additionally p(1, k) returns the set
of rigid links from the root to the link
denoted by k. E.g. p(1, 3) = {1, 2, 3}

• n(k) returns the number of degrees
of freedom of the joint connecting
link k to its parent. E.g. n(1) = 3,
n(3) = 1. The total number of DOFs
is denoted by n (n = 7 in Fig. 2.3)

• Rk denotes the rotation matrix for
the link k from its parent. It only
depends on the DOFs qk. R0

k is the
product of the rotations from the
world frame to the local frame. A recursive definition is R0

k = R0
p(k)Rk with

R0
p(1) = I3

Eq. 2.116 shows the relationship between the generalized coordinates and Cartesian
coordinates for a single rigid body. We will need to produce a similar expression for

25



2. Mathematical/Physical Background

an articulated rigid body system. Such an expression for the angular velocity (in skew
symmetric matrix form) can be derived in the following way:

ω0
k = Ṙ0

kR
0
k
T (2.124)

= ˙(R0
p(k)Rk)(R

0
p(k)Rk)

T (2.125)

= (Ṙ0
p(k)Rk +R0

p(k)Ṙk)R
T
kR

0
p(k)

T (2.126)

= Ṙ0
p(k)R

0
p(k)

T +R0
p(k)(ṘkR

T
k )R0

p(k)
T (2.127)

≡ ω0
p(k) +R0

p(k)ωkR
0
p(k)

T (2.128)

ω0
k denotes the angular velocity of link k in the global frame and ωk is used for the

angular velocity in the frame of the link’s parent.

Eq. 2.116 allows us to write ωk = ˆJωkq̇k where ˆJωk is the local 3×n(k) Jacobian relating
the joint velocity of the link k to the angular velocity in the parent frame.

The second part of Eq. 2.128 can be rewritten using the a property of skew symmetric
matrices - RωRT = Rω:

ω0
k = ω0

p(k) +R0
p(k)

ˆJωkq̇k (2.129)

=
∑

l∈p(1,k)
R0
p(l)Ĵωlq̇l (2.130)

≡ Jωkq̇ (2.131)

where Jωk is
Jωk = ( ˆJω1 · · · R0

p(l)Ĵωl · · · 0 · · · ) (2.132)

The 3× n(l) zero matrices in the above equation are the DOFs that are not part of the
chain from the root to the link k.

Examples for Fig. 2.3

To illustrate what typical local Jacobians and the corresponding angular velocities
look like we will give a few example for the ones in Fig. 2.3.

ω1 = ( ˆJω1 0 0 0)q̇ (2.133)
ω3 = ( ˆJω1 R

0
1 ˆJω2 R

0
2 ˆJω3 0)q̇ (2.134)

with ˆJω1 ∈ R3×3, ˆJω2 ∈ R3×2 and ˆJω3 ∈ R3×1

If we further assume that the ball joint at the link k = 1 is represented by three
Euler angles Rx, Ry and Rz with R1(q1) = Rx(q11)Ry(q12)Rz(q13) then

ˆJω1 =

1
0
0

Rx

0
1
0

 RxRy

0
0
1


 (2.135)

26



2.5. Articulated Rigid Body Dynamics

vk can be written in a similar fashion:

vk = Jvkq̇ (2.136)

Jvk are the partial derivatives of the position with respect to the generalized coordinates:

Jvk = ∂xk
∂q = ∂W 0

k ck
∂q (2.137)

where W 0
k denotes the homogeneous transformation from the world frame to the local

frame, i.e. W 0
k includes the translations between links. ck is the center of mass of the

rigid link in its local frame.

This allows us to write the Cartesian velocities in this way:

(
vk
ωk

)
=
(
Jvk
Jωk

)
q̇ (2.138)

Vk = Jkq̇ (2.139)

Since the kinetic energy of the whole system is the sum of the kinetic energies of its parts
we can write the equations of motion of our system as (cmp. Eq. 2.114)∑

k

JTk Q =
∑
k

(JTk MckJk)q̈ +
∑
k

(JTk MckJ̇k + JTk ωkMckJk)q̇ (2.140)

2.5.1 Inverse Dynamics

In the previous section we looked at how a system behaves when all forces are given and
we want to calculate the resulting motion of that system. In many cases, however, we
want to specify the motion of a system and calculate the required forces at certain points
of interest (e.g. joints). This problem is called inverse dynamics.

The sum of forces for each link k must be zero. If the forces acting on a link from the
parent are given by (fk, τk) and the set of the children by c(k) then the total force acting
on the body is:

mkv̇l = f lk −
∑
i∈c(k)

Rif li (2.141)

where the superscript l denotes quantities in the local frame. A similar expression for
the angular velocity is:

Ickω̇lk + ωlk × Ickωlk = τ lk − ck × f lk −
∑
i∈c(k)

(Riτ
l
i + (di − ck)× (Rif li )) (2.142)

where di is the vector from the parent joint to the child joint and ck the vector from the
parent joint to the center of mass of the link.

27



2. Mathematical/Physical Background

The actual calculation is usually done in two passes: first the velocities and accelerations
are calculated and then these are used with the Newton-Euler equations to compute the
forces and torques transmitted between links.

Velocity and Acceleration

Since we are using a tree structure to represent the rigid body system we can calculate
the required values recursively. That is, if the corresponding values of the parent joint
(vlp(k), ω

l
p(k), (v̇p(k))l, (ω̇p(k))l) are known then we can calculate the values for the child

link. The linear velocity of the child with the center of mass in the global frame W0
kck

(a 4× 4 matrix) is

vk = Ẇ0
kck = Ẇ0

p(k)Wkck + W0
p(k)Ẇkck (2.143)

= Ẇ0
p(k)(cp(k) + Wkck − cp(k)) + W0

p(k)Ẇkck (2.144)

= vp(k) + Ẇ0
p(k)(Wkck − cp(k)) + W0

p(k)Ẇkck (2.145)

Note that the fourth column of Wkck − cp(k) as well as Ẇck is zero to remove the
translational part of the transformation. This allows us to express vk in Cartesian space
as:

vk = vp(k) + Ṙ0
p(k)(Rkck + dk − cp(k)) + R0

p(k)Ṙck (2.146)
= vp(k) + ω∗p(k)R

0
p(k)(Rkck + dk − cp(k)) + R0

p(k)ω̂
∗Rkck (2.147)

To transform the velocity into the local frame we need to multiply the previous result
with the transpose (inverse) of the rotation matrix.

vlk = R0
k
Tvk = RT

k R0
p(k)

Tvk (2.148)

= RT
k (vp(k) + ω∗p(k)(Rkck + dk − cp(k)) + ω̂∗Rkck) (2.149)

= RT
k (vp(k) + ω∗p(k)(dk − cp(k))) + RT

k (ω∗p(k) + ω̂∗)Rkck (2.150)

= RT
k (vp(k) + ωp(k) × (dk − cp(k))) + ωlk × ck (2.151)

The angular velocity can be calculated in a similar fashion:

ω∗k = Ṙ0
kR0

k
T (2.152)

= ( ˙R0
p(k)Rk)RT

k RT
k R0

p(k)
T (2.153)

= Ṙ0
p(k)RkRT

k R0
p(k)

T + R0
p(k)ṘkRT

k R0
p(k)

T (2.154)

= ωp(k) + R0
p(k)ω̂

∗R0
p(k)

T (2.155)

28



2.5. Articulated Rigid Body Dynamics

This can be transformed into the local coordinate frame again:

ωlk
∗ = (R0

k
T
ωk)∗ (2.156)

= R0
k
T (ωk)∗R0

k (2.157)

= RT
k (R0

p(k)
T
ω∗p(k)R

0
p(k) + ω̂∗)Rk (2.158)

= RT
k (ω∗p(k) + ω̂∗)Rk (2.159)

which gives
ωlk = RT

k (ωp(k) + ω̂) (2.160)

The next step is to calculate the linear and angular acceleration for each link. It is
important to note that v̇lk 6= (v̇k)l as the former does not take into account the Coriolis
forces caused by the moving reference frame.

(v̇k)l =R0
k
T Ṙ0

p(k)(v
l
p(k) + ωlp(k) × (dk − cp(k)))+ (2.161)

RT
k (v̇lp(k) + ω̇lp(k) × (dk − cp(k)))+ (2.162)

R0
k
T Ṙ0

k(ωlk × ck) + ω̇lk × ck (2.163)
=RT

k (v̇lp(k) + ωlp(k) × vlp(k) + ω̇lp(k) × (dk − cp(k))+ (2.164)

ωlp(k) × (ωlp(k) × (dk − cp(k))))+ (2.165)

ωlk × (ωlk × ck) + ω̇lk × ck (2.166)
=RT

k ((v̇p(k))l + ω̇lp(k) × (dk − cp(k)) + ωlp(k) × (ωlp(k) × (dk − cp(k))))+ (2.167)

ωlp(k) × (ωlp(k) × ck) + ω̇lp(k) × ck (2.168)

The angular acceleration (ω̇k)l on the other hand is identical to ω̇lk.

(ω̇k)l = RT
k ((ω̇p(k))l + ˙̂ωk + ωlp(k) × ω̂k) (2.169)

Force and Torque

This pass traverses the tree from the leaves of the tree to the root node and uses the
previously calculated values to solve for fi and τi in Eqs. 2.141 and 2.142. Since the leaf
nodes have no children the force and torque at those links is zero. Similarly they are also
zero for the root link.

Gravity can easily be modeled by setting the linear acceleration of the root link to −g
which is equivalent to a fictitious force −mkg at each link.

29





CHAPTER 3
Direct Control

One of the most important aspects of controlling a system is to find a way to express
the goals and constraints in a usable manner. This is often done in the form of matrices,
representing equality and inequality constraints.

Au = b and Cu ≤ d (3.1)

where u denotes the joint commands necessary to control the system. One such joint
command that lends itself well to that task is the joint acceleration, which can then be
used to calculate the required torque for motors for example.

3.1 Constraints

3.1.1 Position and Orientation of links

In many cases a system should be controlled such that a link reaches some specified
position (xd) and orientation (Rd). In order to achieve that, these goals need to be
expressed in terms of the joint accelerations. Since the links have a linear relationship
with the control commands we can express the linear and angular accelerations (Ẍ ∈ R6)
of a link as

Ẍ = ∂Ẍ
∂q̈a

q̈a + Ẍ0 (3.2)

where ∂Ẍ
∂q̈a

is the derivative of the link acceleration with respect to the joint command
and Ẍ0 is the link acceleration when q̈a = 0. This is used to build an equality constraint

∂Ẍ
∂q̈a

q̈a = Ẍd − Ẍ0 (3.3)

31



3. Direct Control

with the desired link acceleration Ẍd = (ω̇d, ẍd). The linear and angular parts can be
calculated as

ẍd = kp(xd − x)− kvẋ (3.4)
ω̇d = k′pR log(R−1Rd)− k′vω (3.5)

where log() is the matrix logarithm, xd and Rd the desired position and orientation and
x and R the current position and rotation of the link. The factors kp, kv, k′p, k′v can be
used to adjust how aggressively the link should move toward the desired state.

The matrix logarithm of an orthogonal 3x3 matrix is a 3-element vector and can
be calculated using its skew-symmetric part [Eng01]. R and Rd in Eq. 3.5 refer
to rotation matrices, so R−1 can be replaced with RT . However, rotation matrices
are not the only way to represent rotations in 3D space. The theory of Lie groups
provides a unified way to deal with such rotations in the form of the special
orthogonal group in 3 dimensions (SO(3)). This allows us to treat 3D rotations
as black boxes and the logarithm returns the corresponding element of the Lie
algebra (so(3), a 3-vector). A library implementing operations in this group may
internally represent the rotation using matrices in which case Eq. 3.5 becomes

ω̇d = k′pR log(RTRd)− k′vω (3.6)

Alternatively if the rotation is internally represented using a quaternion then the
multiplication of R ∗ x is defined as

R ∗ xq ∗R−1 (3.7)

where xq is a quaternion containing the elements of x and 0 as its real part.

3.1.2 Joints

Joint constraints can be set up in a similar fashion. Depending on what the goal is the
equations change slightly. If the joint should reach a desired position then the constraint
can be expressed as:

q̈ia = kp(qid − qi)− kv q̇i (3.8)

where the superscript i is used to indicate the index of the joint coordinate that needs to
be controlled. If the goal is a specified velocity then

q̈ia = kv(q̇id − q̇i) (3.9)

where kp and kv can be used to control the speed with which the desired state is reached.

32



3.1. Constraints

q̇i

q̈i

qUi

qi

Figure 3.1: Joint position limit parabola

The joint position limits can be handled in a graceful manner (i.e. without introducing
sudden impulses) by defining a region close to the limits where the allowed acceleration
is reduced. This reduction is only activated when the joint is moving toward that limit.

q̈i ≤ q̈Ui if qi ∈ [qUi −∆i, q
U
i ] and q̇i > 0 (3.10)

q̈i ≥ q̈Li if qi ∈ [qLi , qLi + ∆i] and q̇i < 0 (3.11)
(3.12)

This can be done by setting up a parabolic arc that passes through the current position
qi with the current velocity q̇i and has its maximum (or minimum) at the joint limit (see
3.1). The maximum value of this parabola can be calculated as

|qUi − qi| =
q̇2
i sin

2(θ)
2q̈i

(3.13)

and since the angle θ is 90◦ the maximum allowed acceleration is given by

q̈Ui = − q̇2
i

2|qUi − qi|
(3.14)

Torque limits for joints can similarly be written as:

∂τu
∂q̈a

q̈a ≤ τUa − τa,0 (3.15)

−∂τu
∂q̈a

q̈a ≤ τa,0 − τLa (3.16)

where τa,0 denotes the torque at the joint when there is no acceleration. The partial
derivatives are calculated as part of the hybrid dynamics algorithm [KP11].

3.1.3 Constraint Solving

In many cases the system is under-determined, which enables us to optimize the control
input for some goal and in other cases there is no (exact) solution but we still want to

33



3. Direct Control

attempt to get as close as possible. In the previous sections we formulated the constraints
in terms of the accelerations of the articulated joints. Consequently trying to minimize
these accelerations is a good choice.

An important part of picking a solution is deciding which constraints must not be violated
and which ones are less important. We can, for example, have a robot that cannot be
represented as a tree structure (which is required for recursively solving the dynamics).
In such a case a virtual cut in the structure is made and then treated like a robot that
can be represented by a tree structure. Since the robot cannot physically be cut the
solver must respect that. This is usually done by introducing an equality constraint that
guarantees that the point where the robot was cut in the global frame is identical for
both ends of the loop. That is if the subscript l denotes one side of the cut and r the
other then xl − xr = 0 and Rl −Rr = 0, where x and R are the position and rotation in
the global frame.

Goal positions can also be expressed in this manner. In that case xr and Rr (or xl and
Rl) are fixed in the global frame so xl = xG and Rl = RG. Often these constraints are
not intended to be inviolable, but rather used to find a solution that moves an end effector
as close to some target as possible. Naturally this presents a hierarchy of constraints and
is taken into account by solving the system for the more important constraints first and
then building a subspace in which the less important constraints are solved.

To illustrate we build three different sets of constraints:

Abx = bb (3.17)
Apx = bp (3.18)
Asx = bs (3.19)

(3.20)

The constraints denoted with the subscript b are ones that must not be violated such as
the loop constraints mentioned before. In this case the solution can be obtained directly
by solving the linear system (using a Pseudoinverse to get a minimal solution in the
least-square sense if necessary). Note that these equality constraints must not conflict
with the inequality constraints in order to use common solvers. The solution x0 and the
nullspace of Ab can then be used to build a subspace that can be explored further

x = xb + Nby (3.21)

The system can then be optimized for the primary (denoted by subscript p) constraints
by using the above equation and then solving for y, i.e. by solving the new system

Ap(xb + Nby) = bp and C(xb + Nby) ≤ d (3.22)
ApNby = bp −Apxb and CNby ≤ d−Cxb (3.23)

The final solution can be obtained by plugging the solution for y in Eq. 3.21.

34



3.1. Constraints

After the base constraints are solved we can optimize for the primary constraints by
building a Quadratic programming (QP) problem:

min ||Aq̈a − b||2 s.t. Cq̈a ≤ d (3.24)

Finally the secondary constraints are also formulated as a QP problem but on a subspace
of the primary constraints (like the above subspace of the base constraints), which ensures
that all secondary solutions are equally good solutions of the primary constraints.

35





CHAPTER 4
Motion Planning

4.1 Motion Planning

The term Motion Planning is used to describe the automatic generation of robot motions
from some higher level description. These generated motions generally need to satisfy
different constraints, while aiming to be as efficient as possible with regards to criteria
like speed, energy efficiency or safety.

4.1.1 The configuration space

A O

(a) An abstract robot
A and obstacle O. The
dot marks the origin in
the robot’s frame

Cobs

(b) The robot’s config-
uration space without
rotation

xy

θ

(c) Slices of the 3D con-
figuration space if the
robot can rotate

An important part of solving a problem is simplifying it or transforming it into another
easier or better understood problem. This is no different for motion planning tasks.
Consider the problem of an irregularly shaped robot navigating among arbitrary planar

37



4. Motion Planning

obstacles. While many may be aware of graph search algorithms such as A* it is not
immediately obvious how those can be applied to this problem. Capturing collisions in
the (familiar) Euclidean space is bothersome and potentially computationally expensive.
Reducing the robot to a single point and changing the world this robot lives in to the
configuration space simplifies the path planning considerably. Fig. 4.1a shows an abstract
example of such a robot. The triangle A represents the robot and its origin is marked
using a dot. The rectangle O represents an obstacle. For this first example the robot
is not allowed to rotate. This obstacle is transformed into the configurations space by
computing the Minkowski sum of the robot and the obstacle. The Minkowski sum of two
sets of vectors A and B is given by

A+B = a + b|a ∈ A,b ∈ B (4.1)

In non-mathematical terms this sum is created by sliding one object around the other
and tracing the outline. The resulting obstacle in the configuration space, Cobs, is shown
in fig. 4.1b.

If one additionally allows the robot to rotate around its origin the configuration space
gains an additional dimension (fig. 4.1c). This example also shows that while the obstacle
is convex for a fixed θ this is not necessarily the case for the corresponding obstacle in
the configuration space.

Many of the early motion planning approaches then try to capture the free space in its
entirety, by representing it as graph and reducing the problem to finding the shortest
path between the start and goal nodes (see. [Lat03]).

4.1.2 State space basics

Additionally robots operating in the real world come with certain physical limits such
as motor torque or physical stops for rotating parts. Traditionally the nature of such
constraints is used to categorize robots as holonomic or nonholonomic [Lat03]. Holonomic
constraints are equality relations among the parameters that define the configuration
of the robot. These equations can be solved for one parameter and (assuming minimal
cardinality of the parameters) reduces the configuration space by one dimension for
each such equation. An example of such a constraint is a revolute joint (or hinge).
The configuration space of two freely moving planar objects has a dimension of 6 (x,y
coordinates and angle of each object). If these objects are connected by a revolute joint,
however, the dimension of the configuration space is reduced to 4 (x,y coordinates and
angle of one object and the hinge angle). Nonholonomic constraints are equality relations
that involve not only the parameters of the configuration space but their derivatives as
well. These constraints do not reduce the dimensionality of the configuration space but
rather limit the possible differential motions and are usually much harder to deal with. A
car-like robot with the parameters (x, y, θ), where θ is the angle between the x-axis and
the main axis of the car is an example of a system with nonholonomic constraints. At each
instant the velocity (ẋ, ẏ) points along the main axis. The motion is thus constrained by

38



4.1. Motion Planning

−ẋsin(θ) + ẏcos(θ) = 0 which is non-integrable and thus does not reduce the dimension
of the configuration space (see [Lat03] for a more detailed description).

Historically this distinction between holonomic and nonholonomic robots was an important
one as complete planners were developed first. One of the most important parts of these
algorithms was to reduce the configuration space into as simple data structures as possible.
This led to acceptable planning times, but these planners had a hard time dealing with
differential motions and a such were mostly applied to quasi-static robots. The resulting
motions were often slow and rough.

More recently with the increasing popularity of randomized planners (RRT, PRM) the
importance of creating simple representations of the configuration space has diminished,
while more effort was put into generating highly dynamic motions.

These movements are usually modeled as transition equations of the form q̈ = h(q, q̇, u)
with the generalized coordinates q (as well as q̇ = dq

dt and q̈ = dq̇
dt ) and the control input

u. Since higher order differential equations are often difficult to handle a simple "trick" is
employed to turn them into several first-order equations at the cost of introducing more
variables. The simplest such system is the so-called double-integrator. The configuration
space C = R and the transition function is given by q̈ = h(q, q̇, u) = u. This corresponds to
a Newtonian particle accelerated by a force u. This representation is then converted into
the state space X = R2 by setting x1 = q and x2 = q̇ with (x1, x2) ∈ X . It is important
to note that ẋ1 = x2 and ẋ2 = u. In vector form this results in x = (x1, x2) = (q, q̇)
and ẋ = (ẋ1, ẋ2) = (x2, u). Finally the state transition function has been reduced to
ẋ = f(x, u) [LaV11].

One can see that moving from the configuration space requires twice the number of vari-
ables in the state space (the dimension of the planning problem is increased accordingly).

However this gives a unified way of dealing with a whole number of problems. Namely,
holonomic, nonholonomic and kinodynamic problems can now be solved using the same
algorithms.

Nonholonomic planning often arises from underactuated systems. This can happen
if the dimension of the configuration space is greater than the number of action
variables. Kinodynamic planning is used when the differential constraints on the
robot are of second order. This can arise, for example, if drift needs to be modeled
or the state of the robot changes, regardless of the control input [LaV11].

39



4. Motion Planning

4.1.3 Configuration-Time Space

t

x

y

x

y

x

y

x

y

Figure 4.2: Configuration-time space

In many real world cases the obstacles are not always fixed. They can move or be moved
over time which adds additional complexity. A straightforward way to extend planning
to these problems is by introducing an additional dimension to the configuration or state
space. This additional dimension, time, has one particular feature that makes it trickier
to deal with - the robot can only move forward in time. The resulting space is usually
referred to as configuration-time space. Sampling based and incremental planners are
generally easily modified to deal with this space by only connecting nodes if the trajectory
between them moves forward in time [LaV11]. Limits on the maximum velocity of the
robot make these problems yet more challenging by constraining the slope of paths along
the time axis.

40



4.1. Motion Planning

4.1.4 Multi-Modal Planning

The configuration space of legged robots has additional features that more traditional
robots, such as fixed base manipulators, do not. When such a robot touches the ground
with its legs, the possible motions lie in a subspace of the configuration space. If such a
contact is removed (i.e. by raising a leg) the dimension of the motion space is increased.
Making another step reduces the dimensionality again by introducing more kinematic
constraints. Motion planning for such robots requires the planner to be able to switch
between a discrete sets of modes. Such systems combining discrete and continuous
behavior are called hybrid systems and motion planning for such systems is usually
referred to as multi-modal planning.

There have been several attempts at multi-modal motion planning for robots. Many of
these approaches focus on developing planners for specific systems. Hybrid systems are
required to switch between modes which each have their own constraints. A planner for
such systems needs to be able to choose a discrete series of modes and traverse them in a
continuous manner. In many cases hard problems in both, the continuous and discrete
domains may need to be solved. A complete way to generate a collision free path through
the configuration space is exponential in the number of degrees of freedom [Lat03]. In
[Wil88] the author proves that navigation among moving 2D obstacles is NP-hard when
the number of obstacles is not fixed.

Multi-modal planning has been investigated in the context of grasping and re-grasping
operations [ALS94, FB97, NK00, SCS02, HNTHGB07], walking [CKNK03, Hau08] as
well as re-configuring robots [CY99].

The difficulty in exploring the configuration space for motion planning tasks has spawned
a popular class of motion planners - Probabilistic roadmap planners [KSLO96] as well as
Rapidly-exploring Random Trees (RRT) [KL00]. They build a graph that approximates
the connectivity of the configurations space by randomly sampling points in this space
and connecting them with straight line paths. They are limited to a single mode but are
still a very useful tool for multi-modal planners. Implementations of variations of these
algorithms are available in the open source Open Motion Planning Library [SMK12].

One common way of applying them across modes is to find an intermediate state that
is feasible in both modes and then attempting to find a path from the initial state
(in the first mode) to the intermediate state (in both modes) and finally to the goal
state (in the second mode). This approach has been successfully applied to manipulator
planning [NK00] [SCS02]. A drawback of this approach is that the random nature of these
algorithms means that they cannot answer that no path exists in finite time. In [Hau08]
a multi-modal planner has been proposed that addresses some of those problems by
exploiting the fact that the number of mode switches to achieve a goal is usually relatively
small. Differential constraints and under-actuated poses still present difficult problems.
More recently developed planners allow for more advanced motions like jumping [Shk10]
[DS12].

41



4. Motion Planning

Mode transitions

Qσ

Fσ ∩ Fσ′

Qσ

Fσ ∩ Fσ′

Qσ

Fσ ∩ Fσ′

Figure 4.3: Three abstract examples that show different possible intersection regions
between modes

An important aspect of multi-modal planners is their ability to plan paths across modes.
This necessarily requires them to find states that are part of multiple modes to be
considered for transitions. The generation of such states can be implicit or explicit
[Hau08]. Implicit methods follow a generate-and-test approach whereby states are
normally sampled and if they are part of the transition region a mode switch is executed.
Explicit methods sample directly from the transition region and then generate paths to
and from them using single mode planners. Consequently, mode switches are planned
before sampling and then connected while implicit methods need to check if any given
state can be used to connect multiple modes.

While implicit methods are often easier to implement they are not applicable in all
situations. Fig. 4.3 shows an abstract example, where the configuration space Q is
represented by a cube. In fig. 4.3 the dimension of the intersection (or the transition)
region is less that dim(Q)− 1 and it has zero volume in relation to Q. It follows that
the chance of sampling from this region is zero as well. Implicit methods cannot be
used in this case. Similarly (fig. 4.3), if the dimension of Fσ ∩ Fσ′ equals dim(Q) − 1
the chance sampling from this region is zero. However a path between two states may
intersect the transition region and implicit boundary-scan methods can be used. Lastly
if dim(Fσ ∩Fσ′) = dim(Q) then sampling from Q has a non-zero chance of also being in
the intersection region and implicit methods can be used.

Some planners employ a mixture of implicit and explicit methods where some mode
switches, such as making contact with a ground plane are explicit and others, like breaking
contact are implicit [HNTHGB07] [eCG98].

If both, explicit and implicit methods, are viable then choosing an appropriate one
depends on the shape and size of the intersection region as well as their implementation
details. Highly constrained systems may find solutions more quickly by using explicit
methods while systems with few constraints may be faster by using implicit methods
[Hau08].

42



4.1. Motion Planning

Especially in legged locomotion the number of constraints is usually large and like
described above choosing suitable footfalls at random is often very unlikely. For this
reason it makes sense in many instances to augment this procedure with additional
methods, such as inverse kinematics (IK) solvers. Analytical methods are sometimes
available for robots with few joints. The advantage is that the solution can be found
quickly (if one exists) which enables the planner to try more possibilities in the same
amount of time. The most flexible methods, however, find solutions numerically (e.g.
using a Newton-Raphson iteration), but have the disadvantage of needing to find the
pseudo-inverse of the Jacobian (see Ch. 3 and Sec. 5.1). The basic approach is to
generate the loop closure conditions (C(q) = 0) for the contacts and solve the resulting
system of equations. By using this method additional constraints can be included and
solved for simultaneously. A common constraint for legged robots is that they remain
statically stable and consequently inequalities that force the (projected) center of mass
inside a support polygon are added. Analytical solutions often only consider solutions for
a single leg, while numerical methods can easily adjust all joints to meet the requirements.
It may, for example be possible to reach a certain footfall by shifting the robots body,
which is generally not considered by analytical methods.

43



4. Motion Planning

Basic operation

σ1 σ2 σ3

σ4 σ5 σ6

σ7 σ8 σ9

(a)

σ1 σ2 σ3

σ4 σ5 σ6

σ7 σ8 σ9

(b)
σ1 σ2 σ3

σ4 σ5 σ6

σ7 σ8 σ9

(c)

Figure 4.4: A basic multi-modal planning approach

The basic multi-modal motion planner (Multi-Modal-PRM) presented in [Hau08] builds
Probabilistic Roadmaps across several modes and connects them via explicitly sampled
states from the transition regions. Each mode has a corresponding roadmap. Initially the
start and goal configurations are added to the appropriate modes. Then the following
steps are repeated:

1. Sample a configuration for each mode, if it succeeds add it to the roadmap and
connect it to existing waypoints.

2. For all pairs of adjacent modes sample a configuration from the transition region.
Add it to the roadmaps for both modes if it succeeds.

44



4.1. Motion Planning

If there exists a path from the start to the goal configurations the algorithm can be
terminated.

Fig. 4.4 shows an abstract example to illustrate the general approach. The blue and
green dots in fig. 4.4a are the start and goal configurations, respectively. Each square
represents a mode and the white regions represent valid regions in the configuration space.
The red lines between the squares indicate which modes are adjacent to each other. This
does, however, not mean that a transition from one mode to an adjacent one must exist.
Fig. 4.4b highlights the transition regions in blue and the blue arrows indicate which
modes they connect. The orange dots in fig. 4.4c are sampled according to the first step
above. Red points are configurations from the transition region (Step 2). The dashed
lines indicate that connected points are not distinct configurations but the same sample
in different modes.

Finally the separate roadmaps built in each mode can be merged into a single aggregate
roadmap.

Using Domain Knowledge

The above approach has the disadvantage that it may result in very unnatural-looking
motions which could be distracting to humans operating alongside such robots. In order
to mitigate this there have been several different suggestions. One way is to take the
solutions generated by the above algorithm and apply some smoothing operations to
blend the transitions. The authors of [GO04] reduce the jerkiness of the generated paths
by picking two random points along adjacent path segments and attempting to connect
them. Penalty based shortcutting techniques, whereby successful shortcuts are rewarded
and failed shortcuts are penalized, have been found to converge faster than randomly
picking points along the paths [Hau08].

Post-processing steps can only do so much, however. They cannot fix all unnatural
motions generated by the underlying method. Other approaches don’t use straight line
segments to connect states and instead use fixed-final-state-free-final-time controllers
to find optimal trajectories between states [WvdB13]. In this case the jerkiness of the
motion is entirely dependent on the number of sampled states.

There has also been some effort and success in the film and video game industry to
generate natural-looking motion from predefined motion primitives [RCB98], [WP95].
The goal of these methods is less to create physically accurate (or even possible) motions
but rather to create physically plausible (or good looking) motions.

45



4. Motion Planning

u(0)

u(1)

qinitial

qgoal

(a)

q0
q1

q2
q3 q4

(b)

q0
q1

q2
q3 q4

(c)

q0
q1

q2
q3 q4

(d)

Figure 4.5: Path warping using motion primitives

Similar work has been done in [HBHL08] where the authors use a library of predefined
motion primitives to generate feasible paths for the HRP-2 robot. They split the motion
primitives into several parts and transform it (see 4.5) so the initial stance of the robot
coincides with the one of the motion primitive and the goal stance matches the final
stance of the primitive. These milestones (where the motion primitive has been split)
are then used as root nodes for a sampling based planner. The algorithm terminates
when a path connecting the initial and final configurations has been found. The motion
primitives can easily be included in previously described multi-modal planner by assigning
them to the appropriate mode. This naive approach may waste unnecessary processing
time by greatly increasing the number of modes and consequently spending much time
on infeasible primitives and so care should be taken when using it.

4.1.5 Single Mode Planning

In order for the previously presented planner to work well it is important to pick a good
single mode planner. This sections aims to provide an overview of several approaches
and highlight their strengths and weaknesses.

46



4.1. Motion Planning

Over the years there have been several attempts at finding solutions to this problem.
The most popular approaches can be categorized as

• Roadmaps

• Rapidly Exploring Random Trees (RRT)

• Cell Decomposition

• Potential Field

• Reward Based

Roadmaps

These approaches attempt to capture the connectivity of the free configurations space as
a network of simple curves, also called the roadmap. This roadmap is often generated in
advance. The execution stage only needs to connect the initial and goal configurations
to this roadmap and then a use graph search algorithm (e.g. A*) to find a suitable
path. Examples of such an approach include the visibility graph, freeway nets, retrac-
tions methods (in particular Voronoi diagrams in 2D) and Probabilistic roadmaps. An
advantage of roadmaps is their reusability. Once a connectivity graph between a decent
number of states has been established the roadmap can be reused for differing start and
goal configurations. Such multi-query planners are popular for online planning since the
heavy computation can be done offline (provided the environment is known). Generating
a good roadmap can be difficult as it may end up turning into a high-dimensional grid
which reduces its usefulness. In order to deal with such problems good pruning strategies
are extremely valuable. The authors of [SLN00] for example split the configuration space
into visibility domains, which greatly reduces the size of the generated roadmap.

Rapidly Exploring Random Trees

As the name suggests RRTs build a tree structure from the initial configuration toward
the goal by randomly sampling the configuration space and attempting to connect the
new states with existing ones in the tree until the goal configuration can be reached
from an existing node in the tree. The sampling can be biased toward unsearched areas
of the configurations space (hence the Rapidly Exploring). They are well suited for
high dimensional problems with nonholonomic or kinodynamic constraints [LaV98]. One
disadvantage of this approach is that, unlike roadmaps, the tree needs to be rebuilt if
the initial (and to a lesser extent the goal) configuration changes. Such methods fall
under the so called single-query category which makes them less attractive for online
planning. There have been attempts to alleviate this by rewiring the paths inside the
tree if the initial state changes [NRH15]. The very simple concept and high versatility
of this approach has caused many researches to develop RRT variations with varying
advantages (including provable asymptotic optimality [KF11]) and disadvantages. This

47



4. Motion Planning

approach has been successfully applied to autonomous driving in urban environments
[KTF+09].

The basic RRT approach is as follows:

1. Initialize the tree with the starting configuration qinit

2. Sample a random configuration qrand

3. Discard if it is not in the free space (Cfree)

4. Find the nearest neighbor in the tree according to some metric

5. Use a local planner to attempt to connect the nearest node in the tree to the new
node

6. Repeat from step 2 until the goal configuration can be connected to a node in the
tree

There are several important details that need to be considered. Initially new configurations
were sampled using a uniform distribution [LaV98]. This approach has the disadvantage
of favoring large empty regions of the configuration space. Connecting states in these
regions is often straightforward and so unnecessary time may be wasted here. Other
implementations force sampling near obstacles [AW96] or use adaptive Gaussian sampling
based on obstacle and collision data [BOvdS99]. The authors of [SLN00] sample the
state space based on visibility regions which drastically reduces the number of nodes in
the graph.

Next, picking an appropriate metric for the nearest neighbor search is crucial. The goal
here is to quickly determine the cost of moving from one state to another. Common cost
metrics are the time required to change from one state to the other or the mechanical
energy required. This metric is calculated frequently so ideally it should be fast to
determine. A theoretical overview of several metrics is given in [WVDBH08]. Alternatively
or in conjunction different expansion strategies can be chosen to reduce the dependence
on metrics. Expansive Space Trees (EST) and Guided Expansive Space Trees (GEST)
[PBK04] select which nodes to expand based on their neighborhood. Path Directed
Subdivision Trees (PDST) [LK04] and the more recent Kinodynamic Motion Planning by
Interior-Exterior Cell Exploration algorithm (KPIECE) [ŞK12] choose the expanding
node based on its coverage in order to reduce the time spent in well-explored areas.

Since a large part of the total CPU time is spent checking for collisions [SLN00] there
have been several approaches to alleviate this problem. Some planners use the collision
checker to guide the search ([PBK04] [CL01]), adapt the sampling strategy ([KM12])
or improve the connectivity of the resulting graph ([SLN00]) to achieve this. Others
([NK00], [BK00]) delay the collision checking until a potential path has been constructed
(Lazy collision checking).

48



4.1. Motion Planning

qinit

qsample

(a)

qinit

qsample

(b)

qinit qnew

qsample

(c)

qinit qnew

(d)

Figure 4.6: Expansion using a reachability criterion

Connecting two states is another area that is highly dependent on the problem. For
quasi-static robots it is often sufficient to use straight line segments to connect states
(in this case the Euclidean distance can be used as a metric). This is often not enough
for nonholonomic and kinodynamic robots (shifting a car a few centimeters to the left
or right may require a number of control inputs to achieve if it is at all possible). In
these cases it is often useful to change the expansion of the graph slightly. The new
(sampled) configuration is not immediately discarded if it is unreachable. Instead the set
of reachable states is calculated for each node in the tree. If a reachable state is closer to
the sample it is added to the graph. If an existing node is closest, the sample is discarded
[SWT09]. While the set of reachable states can be hard to calculate explicitly it is often
sufficient to find its boundary by forward integrating the system at its action limits. Fig.
4.6 illustrates the basic approach. First a new configuration is sampled (red dot in fig.
4.6a), then the set of reachable states (gray circular sector in fig. 4.6b) is used to find
a state closer to the goal. Finally this state is added to the tree instead of the original
sample (figs. 4.6c and 4.6d).

Another modification of the basic RRT and PRM algorithms was presented in [KF11].
These variations of Rapidly Exploring Random Graphs (RRG) called RRT* and PRM*
guarantee asymptotic optimality. The nearest neighbor search is adapted to return all
nodes within a certain radius k of the new sample. This radius is calculated as

k = γ
( logn

n

) 1
d (4.2)

where d is the dimension of the C-Space, n the number of nodes in the graph and γ, a
factor based on the environment characteristics. The new sample is then connected to
the node that provides the lowest cost to the root. Lastly all nodes in the neighborhood
are connected to the new node if it decreases their cost to the root. Fig. 4.7 gives a
simple example. After sampling a new node (fig. 4.7a) all nodes inside the hypersphere

49



4. Motion Planning

qinit

qnew

(a)

k

qinit

qnew

(b)

k

qinit

qnew

(c)

k

qinit

qnew

(d)

Figure 4.7: RRT* algorithm

with radius k are found (orange dots in fig. 4.7b). Then the sample is connected to the
node with the lowest cumulative path cost (fig. 4.7c) and finally the neighboring nodes
are rewired if necessary (fig. 4.7d).

It is very important to note that this optimality is guaranteed in regards to the used
metric, so defining a metric that expresses the true cost of connections is vital.

Single-Query Bi-Directional Probabilistic Roadmap Planner with Lazy
Collision Checking (SBL)

SBL [SL03] builds a network of milestones between the start and goal and performs no
collision checking unless absolutely necessary. During each step either the tree rooted
at the start or goal nodes is chosen along with an existing milestone in that tree. This
milestone is then used to generate a (valid) nearby state which is inserted into the
appropriate tree. Following that an attempt to connect the two trees is made and if it
succeeds a path from the start to the goal is returned. The main difference to a lazily
evaluating bi-directional RRT planner is that an existing node in the tree is chosen first
and then a new sample is generated nearby, while RRTs sample first and find the closest
existing node later. Projections of the state space have been successfully used to guide
the planner toward exploring new areas.

Search Tree with Resolution Independent Density Estimation (STRIDE)

STRIDE [GMK13] is a planner for high-dimensional problems that maintains a Geo-
metric Nearest Neighbor Access Tree (GNAT) to estimate the sampling density in the
configuration space. This facilitates rapid exploration of all dimensions of the state space.

50



4.1. Motion Planning

Unlike SBL or KPIECE the density estimates are computed in the full dimensional space
directly rather than on a lower dimensional projection of it.

Kinodynamic Motion Planning by Interior-Exterior Cell Exploration
(KPIECE)

KPIECE [ŞK09] is a randomized planner that is suited to dealing with kinodynamic
problems (i.e. problems involving the velocity and acceleration of a system, [DXCR93]).
The resulting solution does not only provide a path in the state space but also the necessary
control input to achieve that path. It builds and uses a (hierarchical) discretization of
the state space to bias the search towards less explored regions. Boundary cells (cells
that have less than 2n explored neighboring cells, with n being the dimension of the
discretization) are given a higher priority when sampling. To further accelerate the
exploration a projection of the state space into a lower dimensional one is often used for
the discretization.

Cell Decomposition

Cell Decomposition methods divide the free space into cells, such that a path between
any two states in these cells can be easily generated. Methods in this category can further
be classified as exact or approximate cell decompositions, depending on whether the
free space is covered by the decomposition in its entirety or not. Common methods are
quadtrees (octees) or decompositions into convex objects. An advantage of approximate
decompositions is that in many cases the search time can easily be traded for accuracy.
Less accurate decompositions provide fast results while more accurate ones can find very
difficult paths until an exact decomposition is reached at which point the planner is
guaranteed to find a free path if one exists [Lat03].

Potential Field

This method is heavily inspired by physical phenomena. The robot is regarded as a
particle in the configuration space wherein obstacles induce a repulsive force on the robot
and the goal region an attractive one. The motion planning is then reduced to a fastest
descent search. Great care needs to be taken that the robot does not get stuck in local
minima, however.

Reward Based

Reward Based methods assume that the robot can take one of several actions at each
state. The result of such an action is, however, not definite. This means that even if the
robot chooses an action that results in state A it might end up in state B by chance (or
due to the uncertainty of its motion). Similarly to potential field methods some states
attract the robot (rewards) while others repulse it (punishments). Markov Decision
Processes provide a nice mathematical framework for these approaches and are often

51



4. Motion Planning

used to find optimal solutions. A disadvantage of this approach is that there is only a
discrete set of actions, which may unnecessarily limit the free space.

52



CHAPTER 5
Implementation Details

Figure 5.1

5.1 Inverse Kinematics (IK)

The planning algorithm in Sec. 4.1.4 first explores a stance graph where each stance
is defined by its contact constraints. In order to generate motions that satisfy these
constraints the joint positions of the robot need to be adjusted accordingly. However,
these constraints lie in a sub manifold of the configuration space (Q) that has a lower
dimension than Q. This means that a purely sampling based approach is not likely to
generate joint positions that satisfy the contact constraints (See Fig. 4.3).

53



5. Implementation Details

(a) (b) (c)

(d) (e) (f)

Figure 5.2: IK solutions for random poses of the root link

The problem of finding the joint positions based on the target poses of the end-effectors
is called Inverse Kinematics. Over the years several techniques to solve this problem
have been developed. Some of the most common ones are [AL09]:

• Jacobian-based: These numerical methods iteratively compute the joint positions
(θ) in this manner: θi+1 = θi + ∆θ. The change in the end-effector poses can
be estimated as ∆s ≈ J∆θ, with the Jacobian J . Setting ∆s to the error term
(e) gives us ∆θ = J−1e. However, the Jacobian is not necessarily square or even
invertible and even if it is it may work poorly in near singular configurations.
Alternatives to inverting J directly include:

– The Pseudoinverse (or Moore-Penrose Pseudoinverse):
The Pseudoinverse minimizes the least square error of J∆θ = e. Unlike the
real inverse of the Jacobian this method is guaranteed to find a solution, but
it also performs poorly in near singular configurations.

– The Jacobian Transpose:
This method calculates the change in joint positions as ∆θ = αJTe for some
scalar α. Calculating the transpose is obviously very different from calculating
the inverse, however this method can be justified using virtual forces [WE84].
In practice it is much quicker to calculate than the others in this category but
frequently suffers from convergence issues (e.g. oscillation).

– Dampened Least Squares (DLS):
One way to calculate the Pseudoinverse of the Jacobian is with the help of its
Singular Value Decomposition (SVD) J = UΣVT with the unitary matrices
U and V as well as the diagonal matrix Σ consisting of the eigenvalues of
J . The Pseudoinverse can then be calculated as VΣ†UT . Σ† is the diagonal
matrix that is generated from Σ by replacing its elements with their inverse,

54



5.1. Inverse Kinematics (IK)

i.e.:

σ†i =
{ 1
σi

σi 6= 0
0 σi = 0

(5.1)

The dampened least squares method (or singularity-robust inverse [NH86])
changes σ†i to

σ†i = σi
σ2
i + κ

(5.2)

with an appropriately chosen κ. This solution minimizes the equation ‖J∆θ−
e‖2 + κ‖∆θ‖2. The result is that the changes in joint positions in near
singular configurations are reduced. Picking an appropriate value for κ can be
cumbersome and strongly depends on the system.

– Selectively Dampened Least Squares [BK04]:
Similarly to DLS the goal is to avoid large changes in the joint positions due
to singularities. This is achieved by only dampening the effects of singular
values that induce canceling motions (e.g. the change in one joint moves the
end effector in one direction and a change in another joint moves it in the
opposite direction). Compared to DLS it converges faster and there are no
magic numbers to tweak [BK04].

All of the above methods (save for the Jacobian Transpose) are costly to compute,
but provide a nice way to encode additional constraints and priorities (by making
use of the null space of J).

• Cyclic Coordinate Descent (CCD, [WC91])
CCD is a fast, commonly used, heuristic that is often found in games, animations
and has even been employed in protein folding applications [CD03]. Starting from
the end-effector and moving toward the base it fixes all joint positions except for
the one it is currently operating on and attempts to reduce the error using that
joint only. Depending on the problem it may generate many different solutions and
choosing a good one is not always easy. Local constraints (e.g. joint limits) can
easily be incorporated in this method while global constraints often pose difficulties.
Additionally this method operates on a single chain only. The authors of [MD04]
extend this method to more complex systems by finding sub-chains and solving
them separately.

• Analytical Methods
Analytical solutions to the IK problem are exclusive to specific robot configurations
and often come with certain restrictions, such as only considering parts of the robot
(e.g. a single leg). They do, however, provide extremely fast solutions (if they can
be found).

For this implementation the DLS method was chosen as it a very general approach
and additional constraints can easily be incorporated. The SDLS method was also

55



5. Implementation Details

implemented, but not used as it seemed to suffer from poor convergence issues (possibly
due to bugs). Neither of those approaches are particularly fast, so first using a fast
solver (such as CCD) followed by a refinement step using a Jacobian based method was
considered. Ultimately this was not implemented due to the fact that in the context of
the multi-modal planner nearby valid configurations, that can be used as seeds for DLS,
are readily available.

5.2 Collision Detection and Response
An important part of any planning algorithm is a procedure to decide whether a particular
state of the robot is allowed or not. One aspect of such a procedure is often a check
if the robot’s geometry intersects with the environment (or itself) in an undesired
way. Most of the approaches mentioned in section 4.1.5 require many samples until
a path from the start to the goal is found so it is important to be able to quickly
decide if collisions are present. For this implementation LibCCD’s (available at https:
//github.com/danfis/libccd) Minkowski Portal Refinement (MPR) algorithm
was used. It is based on the Gilbert-Johnson-Keerthi distance algorithm (GJK), which
uses the Minkowski-sum to iteratively build intersection simplices near the colliding
vertices.

An advantage of this approach is that it only requires a support-function that takes a
vector and returns the farthest vertex of the object in that direction. This allows for
specialized implementations of certain objects without having to turn them into meshes
first. Additionally, model translations and rotations do not require the object itself to
be transformed; instead the input direction of the support function is rotated using the
inverse of the model rotation first and the output is transformed using the full model
transformation (including translation) later. For example, listing 5.1 shows the support
function for a cylinder (with its center at the origin and its flat sides in the xy-plane)
whose transformation from the local to the global coordinate frame is given by T .

For general convex meshes a hill-climbing approach can be used. Due to the low number
of vertices in the collision meshes used here this approach was, however, slower than
simply checking every vertex.

The GJK algorithm (and thus MPR) requires objects to be convex, so meshes from
CAD programs usually need to be pre-processed. The simplest form of preprocessing
could be done by calculating the convex hull of the mesh and using that as the input for
the collision detection algorithm. This potentially introduces many false positives for
concave objects and was not used here. Instead an approximate convex decomposition
was applied (https://github.com/kmammou/v-hacd) to generate several "near"
convex meshes. The meshes are preprocessed once during the loading process but if
necessary this could be done in advance as well. For the used robot model each of the
seven collision meshes has between 150000 and 700000 vertices and the decomposition
takes less than ten seconds in total on a mid- to low-end desktop graphics card (using the
OpenCL back end of the library). The decimated meshes contain less than 100 vertices

56

https://github.com/danfis/libccd
https://github.com/danfis/libccd
https://github.com/kmammou/v-hacd


5.2. Collision Detection and Response

Algorithm 5.1: Support function for a cylinder
1 Function sign(v)
2 if v < 0 then
3 return -1
4 else if v > 0 then
5 return 1
6 else
7 return 0
8 end
9 Function support(direction)

10 d← Rot(T )T ∗ direction
11 z-dist←

√
d.x2 + d.y2

12 if z-dist < ε then
13 return T ∗ [0, 0, sign(d.z)∗length

2 , 1]T
14 else
15 return T ∗ [ radius∗dxz-dist , radius∗dyz-dist , sign(d.z)∗length

2 , 1]T
16 end

(per convex object), which indicates that the original ones may be excessively detailed.
Nonetheless, it is more convenient for the user to not have to worry about potential
vertex count limits.

5.2.1 Collision Response

Collisions can be incorporated into the control approach described in chapter 3 in several
different ways.

One technique is to include them in the base constraints (eq. 3.20) so the primary and
secondary solutions can not violate the contact constraints. The controller, however,
can only affect powered joints, so the non-prescribed joints (e.g. the free 6-dof joint
connecting the robot to the ground) need to be adjusted in a second step. During this
second step the joint coordinates generated by the QP solver are fixed while the others
can be changed (in many cases this is only the root joint).

Alternatively the root joint can be changed to one with fewer degrees of freedom,
depending on the number of contacts and their locations. For example if the tip of one
of the robot’s legs touches the ground then the original root joint can be removed and a
new 3-dof joint, connecting the ground to the robot at the contact point, added that only
allows rotations and no translations. Similarly, if two legs touch the ground one of them
can be connected to the ground using a hinge joint (1-dof) with the vector between the
contact points as its axis. If there are three or more (non-collinear) contacts then the root
joint becomes a 0-dof fixed joint. The other contact points still need to be kept which
can be done by adding their loop closure equations to the QP problem. This method

57



5. Implementation Details

requires the robot kinematic tree to be rebuilt every time a contact is added or removed.
Additionally if the root joint is only adjusted for the controller (i.e. the simulation uses
the original 6-dof joint) then the integration step still needs to ensure that the collisions
are dealt with.

Instead of the above approach the collisions are handled by applying forces at the contact
points before the controller attempts to solve the system. This is done as in [Dru08]
where the contact forces are calculated in a similar fashion to how PID controllers operate.
The restorative force is calculated as

‖f(p)‖ = max(kpd(p, t)− kvv(p) + kiI

r
, 0) (5.3)

where d(p, t) is the penetration depth at the simulation step t for the contact point p, v(p)
the linear velocity at the contact, I the integral (sum) of the previous penetrations and r
the number of contacts. The gains kp,kv and ki control how quickly the error (penetration)
is reduced. The integral I is calculated for each link separately as

∑t−1
i=0 λ

t−i−1maxy(d(y, i))
with the exponential decay factor λ (set at 0.9). The amount of additional storage for
the penetration history is reduced by removing old values of d(y, i) if λt−i−1 becomes
less than 0.00001. kp,kv and ki were set at 100massrobot, 50massrobot and 20massrobot
respectively. In the implementation the deepest point method is used (see [Dru08] for a
comparison), however since MPR calculates the penetration normal and depth from a
simplex this is essentially equivalent to the presented multiple point method.

5.2.2 Single Mode Planners

All of the used single-mode planners have certain features and parameters that need to
be adjusted to work within the framework. The next sections aim to justify and explain
the choices made during the implementation.

5.2.3 SBL

A projection matrix from the state space to the grid is chosen randomly (see [AK+09]
for more refined alternatives).

As SBL samples new states in a neighborhood of existing ones we make use of the local
smoothness of the Jacobian (like [Hau08] and [YLK01]). Let the rank of the m × n
Jacobian (J) be r. This allows us to choose n − r independent random variables to
displace the configuration while the remaining k parameters are used to satisfy Jq = 0.
The SVD of J can be written as

J =
[
u1 · · · uk uk+1 · · · um

]

σ1

. . . 0
σk

0 0





vT1
...
vTk
vTk+1
...
vTn


(5.4)

58



5.2. Collision Detection and Response

The last n − k rows of V represent the null space of J and are used to calculate the
random displacements of the seed state qs as q = qs +

[
vk+1 · · · vn

]
randn−k×1().

After that the displaced seed state is repaired using using the IK-solver from section 5.1.

This new state (or milestone for the planner) is then added as a child of the existing
one until the trees originating at the start and goal configurations can be connected. At
this point the edges between milestones are checked for their validity. However, a state
generated by simply interpolating between two milestones will most likely not satisfy the
contact constraints and so it is transformed into a nearby state that does first. Listing
5.2 shows pseudo-code for a recursive implementation that checks if a path between two
states is valid. The algorithm essentially bisects the straight line path from the initial to
the final state and attempts to move the mid point onto the valid sub manifold. The
drawback of this approach is that the midpoint is most likely the point farthest from
being valid and consequently requires the most iterations to repair. This implementation
was chosen in order to be comparable to [Hau08] and because it provides a nice way to
specify the tolerance of the line segments.

Alternatively starting from q0 and moving by a small δ each step could have been
implemented but this approach would have the difficulty of choosing an appropriate δ.
For RRT in particular this approach can be even more useful as the goal state is not
necessarily valid and the path validity checker can simply return a state in the direction
of q1 (see fig. 4.6) [BS10]. However as only the KPIECE implementation can use this
feature currently this has not been further considered.

Algorithm 5.2: Path validity checker used by the local planners
1 Function is_path_valid(stance, q0, q1)
2 if distance(q0, q1) < ε then
3 return true
4 qmid ←interpolate(q0, q1, 0.5)

/*apply Newton-Raphson iteration mentioned in sec. 5.1 */
5 qmid ← transform qmid s.t. it satisfies the constraints in stance
6 if qmid was successfully transformed then

/*check if qmid is collision-free and satisfies all
constraints */

7 if qmid is valid then
8 return is_path_valid(stance,q0,qmid) and is_path_valid(stance,qmid,q1)
9 else

10 return false
11 end
12 else
13 return false
14 end

59



5. Implementation Details

5.2.4 STRIDE

An advantage of the STRIDE implementation is that there are very few parameters to
adjust so the default values were kept. Nonetheless a projection was supplied to make
the results comparable. Like SBL this planner also samples near existing states and the
same approach was used. The main difference is that the implementation immediately
checks any potential paths connecting states for collisions (more on that in chapter 7).

5.2.5 RRT

Unlike SBL, RRT and its derivatives do not sample near existing states. This presents a
problem as sampling randomly is unlikely to generate valid states. One possible solution
is to attempt to repair the random states like the sampler used for SBL does, but without
the advantage of having a nearby state to use as a seed. Another option is to allow
for errors in the contact constraints. This means the volume of the sub manifold the
constraints span is no longer zero and can consequently be sampled.

The first approach tended to turn the sampling process into a costly operation that
hindered the progress of the planner more than it helped. The second led to some limited
success (see chapter 7).

To check the validity of paths the same algorithm as in the previous section was used
(5.2). Since the path validity checking is also a fairly costly operation (compared to
sampling), a RRT version using lazy path checking was utilized ([BK00]).

5.2.6 KPIECE

Similarly to SBL this implementation uses a projection to reduce the number of dimensions
for the discretization. To keep the results comparable a random projection matrix was
chosen in this case as well. The discretization hierarchy has a single level and collision
checking is performed lazily.

60



CHAPTER 6
Robot Platform

A six-legged robot was built with the intention of testing the results of the multi-modal
planner on a physical platform and to verify the simulation results.

One of the main goals was to make it as easily manufacturable as possible. The design was
done in a way that makes it easy to 3D print, without the need to use glue. The chassis
can be printed using widely available printers that employ fused filament fabrication
techniques. Not needing to glue parts together facilitates its expandability as many
internal components can be changed without having to reprint parts. Besides a few
short pieces of aluminum, screws and ball bearings the entire robot can be printed.
The aluminum is used to connect the separate pieces of the main body and to provide
mounting points for future expansions. The main body needed to be cut into several
pieces for printing because the available 3D printer’s printing bed was too small to fit
the entire construction.

Each of the legs has three degrees of freedom and consists of three main sections - a
connector that links the leg to the main body, a femur (thigh bone) and a tibia (shin
bone). The tibia contains a 9DOF IMU (accelerometer, gyroscope and magnetometer)
intended to detect when a leg makes contact with an object and to be used for closed
loop controllers.

To keep the costs low, the initial version (shown in 6.1a) uses conventional hobby servos
to actuate its joints. Unfortunately this makes executing highly dynamic motions difficult
as the servos are moved by providing a target position directly rather than the motor
acceleration. Hitec HS-645MG servos with up to 9.6kg-cm of torque are used for the
joints farthest from the body and Hitec HS-485HB servos (with up to 6kg-cm torque) for
the ones connecting the legs to the body.

The IMUs (MPU-9250) can be connected using either an Inter-Integrated Circuit (I2C) or
Serial Peripheral Interface (SPI) bus. The advantage of I2C is that it only requires four
wires (VCC,GND,SCL and SDA) to be connected to a central controller that configures

61



6. Robot Platform

(a) Assembled robot (b) Assembly of the robot

Figure 6.1: The Robot

the chips and reads their data. Additional devices employing this protocol could be built
into the legs without introducing extra wiring. The maximum frequency of the bus is
400kHz. The accelerometer and gyroscope are capable of sampling at 4kHz while the
magnetometer is only able to do so at 8Hz. The values are sampled using 16-bit ADCs
so the overall sustainable data rate is almost 385kbit/s. As this is very close to the I2C
bus’ maximum data rate SPI was chosen instead. It is capable of dealing with bus speeds
of up to 1MHz. The main disadvantage is that a total of six wires are necessary - VCC,
GND, SCLK, MOSI, MISO and SS. Additional devices can share most of these, but
each needs its own SS pin. This reduces the flexibility of this approach slightly. More
sensors could be added with the help of an intermediate device that handles the sensors
and makes them available to the main controller via the existing wiring. This would also
allow one to reverse the master-slave relationship with the central device. Rather than
constantly asking for new data the central processor is free to do other work until it is
notified of new data.

The servos are connected to the system via two 12-bit PWM controllers (PCA9685)
that are controlled using I2C. These chips are capable of operating even at 3.3V which
simplifies the overall power management of the system as the IMUs require 3.3V, while
the servos’ nominal operating voltage is between 4.8V and 6.0V

An ESP8266 WiFi capable processor was chosen to provide the main interface for external
commands (such as the ones provided by the controller in chapter 3). Its sole ADC pin is
used to monitor the battery voltage and warn the user if necessary. Currently this device
is only used as to interface with a program running on a desktop computer but future
versions may use more sophisticated soft- and hardware to increase the robot’s autonomy.
FPGAs, in particular offer a number of advantages and opportunities for improvement.

62



CHAPTER 7
Results

All experiments were performed on a machine with a 3.06Ghz i7-950 processor and
24GB of RAM (the application itself used less than 1.5GB in all tests). Since not
all the considered single-mode planners have a multi-threaded version available, the
single-threaded version for all the planners was used.

The result of each single-mode planner is given to a path-simplification routine that
attempts to shortcut and smooth the generated paths.

7.1 Flat Surface

Figure 7.1: States while walking on a flat surface

At first the planner was tested on a flat surface. The objective was to find a path that
moves the robot one meter to the side. Five single-mode planners were tested - SBL,
STRIDE, KPIECE, RRT and BFMT* [SGS+15](as a bidirectional extension of FMT*

63



7. Results

SBL STRIDE LBKPIECE1

0

50

100

150

To
ta
l

To
ta
l

To
ta
l

Pl
an

Pl
an

Pl
an

Si
m
pl
ify

Si
m
pl
ify

Si
m
pl
ify

Sa
m
pl
e

Sa
m
pl
e

Sa
m
pl
e

tim
e
(m

in
ut
es
)

Runtime

Figure 7.2: Planning time for movement on a flat surface

[JSCP15]). Three planners, SBL, STRIDE and KPIECE, managed to find a path in
reasonable time (less than 3 hours). Fig. 7.2 shows the average time each planner spent
on certain parts of the algorithms over several attempts using the same sequence of
stances. Error bars indicate the fastest and slowest results of all attempts using that
particular planner. The total time, shown in red, includes all operations to generate a
smooth path between two stances. Right of that the planning time (in blue) is only the
time spent by the respective single mode planner. This does not include any smoothing
or path simplification (in green). Planning time and simplification time do not add up
to the total exactly as that is the average of the sums of planning and simplification
time and not the sum of the averages. The rightmost bar indicates how much time
each planner spent sampling new states. In the case of SBL and STRIDE all of that
time is spent sampling nearby states (as described in 5.2.3). KPIECE is able to use
nearby samples as well as arbitrary ones so this number is the sum of both. However,
the total time spent on arbitrary samples was less than one second so all three bars show
essentially the same thing.

The extreme difference in planning time between STRIDE and the others (SBL in
particular as STRIDE was designed as an improvement to it) can be attributed to
how they handle connecting new states. In the case of SBL collision checking is done
lazily, so more time is spent sampling new states until a potential path is available at
which point the edges are checked for validity. Similarly a variant of KPIECE with lazy

64



7.1. Flat Surface

collision checking was chosen. At the time of writing, the STRIDE implementation in
the Open Motion Planning Library was still considered experimental and did not have a
version with lazy collision checking so all edges are checked for their validity immediately
which is a costly operation that includes matrix inversions (see listing 5.2). Despite this
disadvantage the planner managed to find reasonable paths. The long duration of the
path simplification process can also be attributed to this disadvantage, since the planner
generates fewer samples (resulting in more jagged paths) and so more time is spent on
transforming invalid paths to valid ones.

Two variations of RRT were also tried. RRT-Connect, which builds two trees starting
from the start and goal states, respectively and LazyRRT which only builds a single
tree. Similarly to STRIDE RRT-Connect spends most of its time connecting states while
LazyRRT only builds a single tree which has trouble connecting the goal configuration.

If collision checking is relaxed such that intersections with the ground outside the defined
footfalls is permissible (and only joint limits remain) then RRT variations often find paths
in reasonable time as in many of these cases the start and goal states can be connected
directly. Most solution paths only slightly intersect with the ground. Additionally BFMT*
([SGS+15]) was also tested as an alternative. This algorithm is bi-directional as well as
lazy and generally performs better than plain RRT. However, it was also unable to find
paths within the allotted time.

SBL STRIDE KPIECE
1.8

2
2.2
2.4
2.6

di
st
an

ce
(m

)

(a) Average distance moved by each leg
SBL STRIDE KPIECE

0

5

10

di
st
an

ce
(c
m
)

(b) Error in the final position of the legs

SBL STRIDE KPIECE

30

35

40

tim
e
(s
)

(c) Execution time by the controller

SBL STRIDE KPIECE
0

200

400
43% 45% 36%

#
of

ru
ns

(d) Successful planning instance

Figure 7.3: Movement on a flat surface

Fig. 7.3 compares the results after simulating the movement using the control approach
presented in chapter 3. The first graph shows how far the tip of each leg moved in order to
reach the goal. This can be used as an indication of how successful the path simplification

65



7. Results

was. Interestingly there is quite a bit of variation between different solutions. Additionally,
when compared with the third plot the execution speed does not seem to correlate much
with the path length for this particular problem.

The second plot shows the average error in the final position of the leg tips after simulating
the movement. The main cause of these errors is the dynamic friction introduced by
solutions that move the leg tip close to the ground. Dynamic friction also makes the
paths generated by RRT variants virtually unusable, so they have not been included. To
reduce these errors the area of allowed collisions near potential footfalls could be reduced
at the cost of increased planning time.

Lastly, the bottom right plot lists how many of the single-mode planner instances were
created and how many of those could be solved successfully. The red horizontal bar
indicates the lower bound on the number of planner instances. It corresponds to the
number of node transitions and is 57 for this particular set of solutions.

For this experiment each planner was given a maximum of 15 seconds per transition (i.e.
moving from one stance to the next). The influence of this value is two-fold - on the one
hand increasing it gives the planner more time to find a path while on the other hand
this also means that more time is wasted on impossible or needlessly difficult transitions.

Another interesting observation here is that despite STRIDE managing to solve slightly
more transitions (fig. 7.3d) than the others, it still ends up performing more planning
steps overall. Since the goal states are randomly chosen, some of these samples may result
in the robot ending up in unfavorable positions. The better performance of STRIDE
leads to it still being able to solve the problem in many cases. However, this poor goal
state is the start for the next, more difficult planning problem. The increased difficulty
means it is more likely to fail and consequently requires backtracking to a previous path
segment which wastes time.

SBL finds fewer transitions (especially with poor start and goal states) but these paths
often end up providing a better starting point for the following runs of the planner,
resulting in less backtracking and faster solutions overall.

7.2 Step

The aim of the second experiment was to find a path in a more difficult environment.
Similarly to the previous one the robot needed to move one meter to the side, however
this time the goal position could only be reached after climbing a 10cm step. Since only
SBL, STRIDE and KPIECE found solutions previously only those planners were tested.
Fig. 7.5 shows the time spent by each planner. The ratios are very similar to the ones in
fig. 7.2, with STRIDE in particular spending very little time sampling (less than one
minute) and an even greater portion simplifying the path. The main difference to the
movement on a flat surface is that the planning time was increased to 60 seconds per
transition.

66



7.2. Step

Figure 7.4: Step in the simulation

SBL STRIDE LBKPIECE1

0

200

400

600

To
ta
l

To
ta
l

To
ta
l

Pl
an

Pl
an

Pl
an

Si
m
pl
ify

Si
m
pl
ify

Si
m
pl
ify

Sa
m
pl
e

Sa
m
pl
e

Sa
m
pl
e

tim
e
(m

in
ut
es
)

Runtime

Figure 7.5: Planning time for climbing a step

Fig. 7.6 compares various metrics of the solutions. An important note here is that while
SBL and STRIDE eventually solved the problem, KPIECE only did so once during more
than ten attempts (cut off after a day). This is the reason why there are no error bars
for KPIECE in figs. 7.5 and 7.6. The single solution calculated by the KPIECE based
planner also failed to climb the step and consequently no meaningful data could be
derived.

67



7. Results

SBL STRIDE

3

4

5
di
st
an

ce
(m

et
er
s)

(a) Average distance moved by each leg

SBL STRIDE

10

20

30

40

di
st
an

ce
(c
m
)

(b) Error in the final position of the legs

SBL STRIDE
30

35

40

45

50

tim
e
(s
ec
on

ds
)

(c) Execution time by the controller

SBL STRIDE KPIECE
0

500

1,000 54% 91% 35%

#
of

ru
ns

(d) Successful planning instance

Figure 7.6: Climbing a step

The paths found by SBL and STRIDE were usable by the controller most of the time.
The ones that failed usually clipped the step in some way, which resulted in the robot
pushing itself away from the ledge such that the following stances were nowhere close to
their intended positions. These results have not been included in the graphs. However
solutions where a majority (but not necessarily all) of the legs reached the upper part of
the step were considered successful and have been included.

One observation is that the error in the final position increased noticeably. This indicates
that dynamic friction has more of an impact than initially assumed. This is exacerbated
by planning the entire path ahead of time and relying on the robot being where it is
assumed to be. More local planning approaches (such as only planning the next step)
may be more successful here. Control based planning can also help while keeping the
global nature of this approach.

The number of single-mode runs gives an idea of how much time each planner wastes on
infeasible paths. As the planning time per transition was increased we see an impressive
91% solve rate for STRIDE. Unfortunately, as discussed previously, back-tracking means
that many of those paths are discarded.

68



CHAPTER 8
Conclusion and Future Work

A multi-modal planner has been implemented to automatically derive sequences of
footfalls and connect them using various single-mode planners. Motion planning is an
essential part of robotics and particularly, as robots become more sophisticated, necessary
for them to efficiently interact with their environment.

Legged robots are challenging to work with as they need to be able to move through dif-
ferent submanifolds of their often high-dimensional configuration space. These manifolds
are of varying dimensionality themselves and come with their own sets of constraints.
The high number of probabilistic planners that are in use today makes it difficult to
gauge which ones are applicable to this problem domain and how they need to be adapted
in order to be useful.

The work in this thesis can be summarized as follows:

• The implementation of a generic planner that is able to determine a sequence of
steps necessary to reach a goal as well as the motions connecting them.

• A comparison of different popular single-mode planners along with adaptations to
make them work in the context of legged-locomotion.

• A physical platform to facilitate further development in this domain.

8.1 Future Work

8.1.1 Planning with Dynamics

Dynamics are an important part of smooth and efficient movement. Most of the work
presented in this thesis can be adapted to include dynamics at the cost of further
increasing the dimension, and thus planning time, of the problem. The closed-loop

69



8. Conclusion and Future Work

controller and simulation are already capable of operating with dynamics. Modifications
to the hardware may be necessary as conventional position controlled servos are used,
rather than directly controlling the motor current.

8.1.2 Planning with Uncertainty

Currently the planner assumes that the robot is where the planner wants it to be.
From the simulation alone it has become clear that in many cases this is not enough to
arrive at the desired goal. Further work may investigate how these uncertainties can be
incorporated to find safer footfalls or compensate for errors during the execution.

8.1.3 Reducing the Planning Time

It is clear that minutes or even hours of planning time are not adequate to operate
in an ever changing environment like the real world. Combining purely reactionary
control ([RBN+08] [PMS07]) with higher level motion planning like the one presented
here might drastically improve the overall performance. Learning efficient gaits ahead of
time [Hau08] or generating and gradually improving frequently used sequences of steps
may also lead to significant speed and quality gains.

70



APPENDIX A
IROS 2017 Submission

71



An Evaluation of Probabilistic Motion Planners in the Setting of a
Multi-Modal Planner for a Six-legged Robot

Bernhard Wimmer1 and Ezio Bartocci1

Abstract— Motion planning consists in translating high-level
specifications of tasks into low-level sequences of control inputs
for the robot’s actuators.

Legged robots, although more flexible with respect to wheeled
robots in uneven and cluttered environments, are a very chal-
lenging application domain for motion planning. Such systems
may benefit from the use of a multi-modal planner that is
able to switch between discrete modes corresponding to the set
of contact points between the legged robot and the ground.
A single-mode planner then resolves the continuous trajectory
that is constrained to a submanifold of the configuration space.

In this paper we evaluate a multi-modal planner using
different single-mode planners for controlling a six-legged
robot. Two different scenarios are considered: walking on a flat
surface and climbing a step. For each scenario we collect several
metrics to compare the planners’ performance, including the
execution time of each algorithm, the required number of single-
mode planner instances and the error in the final positions of
the footfalls. We believe this comparison is useful in helping
others to make informed decisions about which of the common
single-mode planners is effective in this context. Furthermore,
we also provide some insights on the changes necessary to adapt
other planners for this environment.

I. INTRODUCTION

Motion planning is the process of automatically translating
a high level specification of a task into a low-level sequence
of control inputs for the robot’s actuators. The generated
trajectories generally need to satisfy different constraints,
while aiming to be as efficient as possible with respect to
criteria like speed, energy efficiency or safety.

Legged locomotion has been an active area of research
for many years due to its obvious advantage in uneven
and cluttered environments over wheeled robots. However,
besides the difficulty of finding suitable motion sequences,
legged robots often have a large number of actuators with
varying constraints resulting in a more complex configura-
tion space to explore, turning motion planning into a very
challenging task. For example, when a legged robot touches
the ground, the possible motions lie in a subspace of the
original configuration space. If such a contact is removed
(e.g. by raising a leg) the dimension of the motion space is
increased. Taking another step reduces the dimensionality
again by introducing more kinematic constraints. Motion
planning for such robots may benefit from the use of a multi-
modal planner that is able to switch between a discrete set
of modes defined by the contact points between the legged
robot and the terrain. A single-mode planner then generates a

1Bernhard Wimmer and Ezio Bartocci are with the Faculty of Informatics,
Institute of Computer Engineering, Vienna University of Technology, Vi-
enna, Austria bernhard.wimmer@student.tuwien.ac.at,
ezio.bartocci@tuwien.ac.at

Fig. 1: Six-legged robot.

continuous trajectory through the corresponding submanifold
of the configuration space.

Multi-modal planning has been investigated in the context
of grasping and re-grasping operations [ALS94], [FB97],
[NK00], [SCS02], [HNTHGB07], walking [CKNK03],
[Hau08] as well as re-configuring robots [CY99].

A complete way to generate a collision free path through
the configuration space is exponential in the number of
degrees of freedom [Lat03].

The difficulty in exploring the configuration space of
such motion planning tasks has spawned a popular class
of planners that forgo capturing the entirety of the config-
uration space in favor of randomly sampling representative
portions of it. Probabilistic roadmap planners [KSLO96] and
Rapidly-exploring Random Trees (RRT) [LaV98], [KL00]
were among the first, with new variations and improvements
still being developed. They build a graph that approximates
the connectivity of the configurations space by randomly
sampling points in this space and connecting them with
(usually) straight line paths. They are limited to a single
mode and cannot decide if no path exists in finite time.
Such algorithms are still a very useful tool for multi-modal
planners. Implementations of variations of these algorithms
are available in the open source Open Motion Planning
Library [SMK12]. A common way to extend their application
across modes is to find an intermediate state that is feasible
in both modes and then attempting to find a path from the
initial state (in the first mode) to the intermediate state (in
both modes) and finally to the goal state (in the second



mode). Differential constraints and under-actuated poses still
present difficult problems. More recently developed planners
enable robots to perform more advanced motions like jump-
ing [Shk10], [DS12].

Over the years a large number of planning algorithms have
been proposed. They are usually tested and developed for
spaces that do not change or are easily sampleable. This
work attempts to test their applicability on a problem where
contact constraints drastically alter their typical environment.
In particular we provide a performance evaluation of a multi-
modal planner controlling a six-legged robot (see Figure 1)
by using different single-mode planners.

Two different scenarios are considered: walking on a flat-
ground and climbing a step. In all of the experiments the
planner is given the initial and final footfalls as well as
the pose of the root link in the initial stance. After that
a sequence of stances to reach the goal is generated. This
sequence is used to give all planners the same starting con-
ditions. During normal operations this sequence is generated
automatically and may change based on the feasibility of
randomly generated transition states. If the algorithm termi-
nates successfully, then the generated motions are executed
by a closed-loop controller in order to see how useful these
results are in a simulated environment. For each scenario we
measure the execution time of each algorithm, the number
of single-mode planner instances required and the error in
the final position of the footfalls.

Organization of the paper. In Section II we provide a
background on multi-modal planning, followed by a short
overview of the employed single mode planners. In Sec-
tion III we present a description of the experimental setup.
Section IV compares and discusses the results of different
approaches in two different scenarios. Finally, we draw our
conclusion in Section V.

II. MOTION PLANNING

A. MULTI-MODAL PLANNING

Formally the robot moves through a set of modes (referred
to as stances in the rest of this paper) Σ = σ1, σ2, · · · , σn.
Each mode may constrain the configuration space Q of the
robot to a set of feasible states Fσ . These constraints fall
into one of two categories:

• dimensionality-reducing constraints: lower the dimen-
sion of the feasible space (in relation to Q). This
includes loop-closure constraints (e.g. contacts). They
are commonly written in the form Cσ(q) = 0.

• volume-reducing constraints: reduce the volume of the
feasible space but not its dimension. Collisions and
joint limits fall into this category. These constraints are
expressed as inequalities Dσ(q) > 0.

In order to switch modes, it is necessary to find the states
from a transition region between stances. Planning between
modes is performed from a state qσ in Fσ to a transition
state qσ′ in Fσ ∩Fσ′ . This transition state can then be used
to find a path through Fσ′ .

The planner terminates once a path from the initial state
to any transitions state in Fσn−1

∩ Fσn
through the mode-

graph is found. It can be trivially extended to terminate in
an arbitrary state in Fσn

.
Fig. 2 shows an abstract example of the planning approach.

A path from the initial (blue node in σ1) to the goal state
(green node in σ9) needs to be found. The set of feasible
states Fσ is represented by the outlined white blobs. Note
that each mode can have a number of non-connected com-
ponents, so failure to find a path through a single mode does
not imply that no such path exists in a different component
(even if one assumes that the used single mode planner
finds a path through a component if it exists). The transition
regions between modes are highlighted in blue, and dashed
lines indicate which transition states (in red) are identical.
A network of straight lines connecting the nodes is used to
represent potential paths generated by a single-mode planner.

In this work we implement a hierarchical planner solving
the planning problem by interleaving stance exploration with
trajectory generation. Initially it is given a stance (defined by
the contact locations of the legs that touch the ground) and
iteratively explores neighboring stances until the goal can
be reached. This neighborhood is represented as a stance-
graph where nodes correspond to stances and edges indicate
possible transitions. Each node has an associated cost that
aims to encode the quality of a particular distribution of
footfalls. Like [Hau08] we have chosen a weighted sum of
several factors including: similarity to the nominal stance,
distance to the goal and number of iterations required to
sample a valid state in the stance. Additionally a penalty
for all stances that do not share a footfall with the goal
is added. This helps to reduce the number of nodes that
need to be explored when the distance to the goal (δ) is
very low. In such stances the corresponding factor of the
cost function (αδ, with some weight α) is not sufficient to
guide the stance exploration toward the goal. This can, for
example, lead to cases where only a single footfall needs
to be changed to reach the final stance. However, instead of
exploring the neighborhood of this stance the planner picks
a different stance with fewer correct footfalls due to them
having a slightly shorter distance to the goal (and a shorter
path from the root, which results in the planner exploring
stances close to the goal in a breadth-first manner).

Edge costs are initialized to one and are increased if a
single-mode planner fails to find a path between stances con-
nected by an edge. During each iteration an existing stance
with the lowest cost (i.e. the sum of the edge costs leading
to this node and the cost of the stance itself) is chosen. If
that stance is not the goal then the algorithm attempts to
find transition states in the neighboring stances and adds
them to the graph alongside their corresponding cost. Due
to the relatively high computational effort required to fully
explore the neighborhood of a given stance the footfalls are
placed on a grid (this can easily be changed to allow for
different contact locations depending on the environment).
If a particular distribution of footfalls is already part of the
graph, then its cost is updated with the minimum of the



σ1 σ2 σ3

σ4 σ5 σ6

σ7 σ8 σ9

Fig. 2: Multi-modal planning

current and old value (the cost depends on how many tries
were necessary to find a valid configuration). Transitions
to well connected nodes are sampled more frequently (at
least once per explored neighboring stance), which increases
the probability of finding good states in this stance. Good
transition states increase the reusability of partial paths
and reduce the likelihood of having to backtrack (see the
discussion about STRIDE in Section IV).

Finally the stance is added to a blacklist so it is not
examined repeatedly. If the chosen stance is the goal then
the shortest path through the stance graph is determined
and explored by single-mode planners. Failure to generate
a valid trajectory results in an increase of the edge cost
corresponding to the failed planner instance followed by the
start of the next iteration. Note that the goal stance is not
added to the blacklist.

B. SINGLE MODE PLANNING

In the following we provide a short overview of the single-
mode planners we have used for our test.

1) Rapidly-exploring Random Trees: RRTs [LaV98],
[KL00] build one or more tree-structures by sampling ran-
dom (feasible) configurations and connecting them to the
nearest node in the tree. Narrow passages and dead ends
initially led to long planning times but extensions, such as
building two separate trees from the start and goal configu-
rations help to alleviate some of these problems.

The nature of the configuration space of walking robots
adds some challenges to this approach - directly sampling
from the sub manifold induced by the contact constraints is
generally not possible, and random samples from the config-
uration space have zero probability of satisfying dimension-
reducing constraints (or a very low chance if the constraints

are rewritten as inequality constraints |C(q)| < ε). Alterna-
tively one can use a sample from the configuration space,
along with its nearest valid neighbor in the tree to transform
the valid state toward the sampled state along the constraint
manifold [BS10].

2) Single-Query Bi-Directional Probabilistic Roadmap
Planner with Lazy Collision Checking (SBL): SBL [SL03]
builds a network of milestones between the start and goal and
performs no collision checking unless absolutely necessary.
During each step either the tree rooted at the start or goal
nodes is chosen along with an existing milestone in that tree.
This milestone is then used to generate a (valid) nearby state
which is inserted into the appropriate tree. Following that an
attempt to connect the two trees is made and if it succeeds
a path from the start to the goal is returned. The main
difference to a lazily evaluating bi-directional RRT planner
is that an existing node in the tree is chosen first and then
a new sample is generated nearby, while RRTs sample first
and find the closest existing node later. Projections of the
state space have been successfully used to guide the planner
toward exploring new areas.

3) Search Tree with Resolution Independent Density Es-
timation (STRIDE): STRIDE [GMK13] is a motion planner
designed for high-dimensional, highly constrained systems.
It uses a geometric nearest neighbor tree to estimate the
sampling density of the configuration space. Unlike SBL or
KPIECE the density estimates are computed in the full di-
mensional space directly rather than on a lower dimensional
projection of it.

4) Kinodynamic Motion Planning by Interior-Exterior
Cell Exploration (KPIECE): KPIECE [ŞK09] is a planner
for kinodynamic systems (that has later been adapted for non-
kinodynamic ones). In addition to the kinematic constraints
(joint position limits and collisions) of geometric planners,
kinodynamic ones need to be able to operate while respecting
additional dynamic constraints like torque, velocity or accel-
eration limits [DXCR93]. It explores the state space with the
help of a hierarchical, grid-based discretization. Sampling
of new states is biased toward the boundary between the
explored and unexplored space.

5) Bi-directional Fast Marching Tree (BFMT*): BFMT*
[SGS15] is an extension of the original Fast Marching Tree
[JSCP15] implementation to bi-directional search aiming
to provide similar guarantees on its runtime, probabilistic
completeness and asymptotic optimality.

A dynamic programming recursion is performed on ran-
dom samples to grow trees toward regions that minimize
the cost-to-come (for our system without dynamics this was
chosen to be the distance to the goal). This can be imagined
as two wavefronts expanding from the initial states. The
trees are grown by expanding nodes on the boundary of
this wave-front (frontier-nodes) according to some expansion
strategy. The alternating tree strategy operates similarly to
SBL [SL03] and RRT-Connect [KL00] by picking one of the
two trees at each iteration and extending it. The balanced tree
strategy picks the tree with the lowest cost to the frontier.
A hard upper limit on the runtime is guaranteed by fixing



the number of probabilistic samples before the planner is
executed. The main reason for including this planner was
its ability to sample near existing states like SBL, STRIDE
and KPIECE. No serious attempts to improve the planner’s
performance on this problem were made (doing so might
lead to more success in the future).

III. EXPERIMENTAL SETUP

We test our implementation in two different scenarios.
First, we establish a baseline for our evaluation of the
planning performance by considering a test case where the
six-legged robot needs to find a path to move across a flat
surface. Second, we evaluate a more challenging scenario
where the six-legged robot needs to climb a ledge.

In all of the experiments the planner is given the initial and
final footfalls as well as the pose of the root link in the initial
stance. After that a sequence of stances to reach the goal is
generated. This sequence is used to give all planners the
same starting conditions. Additional stances and transitions
may be generated automatically during the run if the planner
fails to pass certain transitions repeatedly.

If the algorithm successfully terminates a closed loop
controller is employed in a simulated environment to follow
the trajectory from the start state to a state in the goal stance.
The average difference between the achieved and desired
positions of the leg tips is reported as well as the number of
single-mode planner instances and the corresponding solve
rate.

Using this setting we test several different single-mode
planners implemented in the Open Motion Planning Li-
brary (OMPL,[SMK12]) including: SBL [SL03], STRIDE
[GMK13], KPIECE [ŞK09], RRT variants [KL00] [LaV98]
and BFMT* [SGS15].

Path validity checking is performed by recursively bisect-
ing the path and moving the midpoint onto the constraint
manifold until the distance between neighboring states is
small enough. The path is valid if all transformed states are
collision free and within the joint limits.

Among the aforementioned planners, SBL, STRIDE and
KPIECE provide a direct interface for sampling from the
constraint manifold so similarly to [Hau08] and [YLK01]
we find an orthonormal basis for the tangent space of the
constraint manifold using the Singular Value Decomposition
(SVD). New valid samples near a provided one can then be
generated by following the tangent space and repairing the
resulting state using a (small) number of Newton-Raphson
iteration steps.

Since the other planners have no such ability a different
approach can be used. Instead of assuming that the final state
of a potential path is valid, the starting state can be iteratively
moved toward the goal (along the constraint manifold) until
a state close enough to the goal, projected onto the manifold,
is reached. This intermediate point is then used instead
of the random sample [BS10]. While OMPL provides a
way to achieve that during the motion-validation step, only
KPIECE currently uses this feature (edges connecting states

Fig. 3: Snapshots of motion on a flat surface

are discarded completely if the path is not valid in its entirety
in the other cases).

To be able to use these planners the contact constraints
have been slightly relaxed (i.e. turned into inequality con-
straints |C(q)| < ε, with a small ε), by considering a contact
valid if it is with a certain radius of the desired footfall.
This makes the transition regions sampleable and as a result
some paths could be found. In the context of the multi-modal
planner, however, sampling this region is still very unlikely
and finding a trajectory through the entire stance sequence
takes an impractical amount of time.

IV. RESULTS

We have performed all the experiments on a machine with
a 3.06Ghz i7-950 processor and 24GB of RAM (the appli-
cation itself used less than 1.5GB in all tests). Since not all
the considered single-mode planners have a multi-threaded
version available, we used the single-threaded version for all
the planners.

The results of the single-mode planners are given to a path-
simplification routine that attempts to shortcut and smooth
the generated paths.

A. Planning on a flat surface

We first test our implementation on a flat terrain with the
goal to move the robot one meter to its side.

Fig. 4 shows how much time was spent on various parts of
the algorithm. The total time (in red) is the sum of the time
spent planning (in blue) followed by a path simplification
step (in green).

The yellow bars indicate how much of the planning time
was spent sampling new states. The experiment was repeated
several times (using the same sequence of stances) and the
best and worst cases are marked using error bars. STRIDE
is at a slight disadvantage as the planning time was limited
to 15 seconds per stance-transition and, unlike the other two,
it checks if any potential path segment is valid immediately.
SBL and the chosen KPIECE variant both use lazy collision
checking, so only a small part of the overall runtime is taken
up by path validity checking. In STRIDE’s case a significant
amount of time is also spent simplifying the resulting path,
due to the often jerky paths between states caused by poor
coverage of the planning space.

After a valid trajectory has been generated it is given to a
closed loop controller that generates the motor commands



SBL STRIDE LBKPIECE1

0

50

100

150
T
o
ta
l

T
o
ta
l

T
o
ta
l

P
la
n

P
la
n

P
la
n

S
im

p
li
fy

S
im

p
li
fy

S
im

p
li
fy

S
a
m
p
le

S
a
m
p
le

S
a
m
p
le

ti
m
e
(m

in
u
te
s)

Runtime

Fig. 4: Planning time on a flat surface

during a simulation. Fig. 5a shows the error in the final
position of the footfalls. The main cause of the inaccuracies
here are the effects of dynamic friction caused by quickly
shifting a significant amount of mass as well as trajectories
that touch the ground slightly. Fig. 5b gives an idea of
how effective the single mode planners are in this context.
The left bars (in blue) list how many single mode planning
instances were launched in total. The green bars indicate how
many of those were successfully solved. The percentages at
the top show the success rate for a given planner. The red
line sets a lower bound for the best possible solution (one
where each stance transition requires only a single planner
instance). Note here that there are more solved transitions
than necessary due to the occasional need to backtrack. It
may, for example, be possible to find a path between two
stances but the resulting goal state could end up being a
poor starting state for the next transition, which means the
planner needs to find a better goal for the previous planning
problem to continue.

SBL STRIDE KPIECE
0

5

10

d
is
ta
n
ce

(c
m
)

(a) Error in final position

SBL STRIDE KPIECE
0

200

400 43% 45% 36%

#
of

ru
n
s

(b) Number of single-mode planner instances

Fig. 5: Walking on a flat surface

B. Climbing a step

In this test case the robot needs to move one meter
to the side, similarly to the experiment on a flat surface.
However, the final position is now on top of a 10 cm high

SBL STRIDE LBKPIECE1

0

200

400

600

T
o
ta
l

T
o
ta
l

T
o
ta
l

P
la
n

P
la
n

P
la
n

S
im

p
li
fy

S
im

p
li
fy

S
im

p
li
fy

S
a
m
p
le

S
a
m
p
le

S
a
m
p
le

ti
m
e
(m

in
u
te
s)

Runtime

Fig. 6: Planning time to climb a ledge

Fig. 7: Snapshots of climbing a step

step. In this environment we tested only the three planners
that were able to solve the previous problem. We ran each
instance several times, however the KPIECE based planner
could solve the problem only once (the other attempts were
terminated after 12 hours each), so the runtime shown in fig.
6 should not be viewed as being representative. The other
two were successful in all runs.

Fig. 6 lists the time spent on various parts of the algorithm.
Like in the previous case STRIDE spends very little time
sampling new states (less than one minute total) and ends
up simplifying the path for a long time instead.

Unlike in the case of walking on a flat surface not all
solutions provided by the planner could be executed by the
controller. In some cases the accumulated error was enough
for the robot to push itself away from the ledge rather than
climb it. Only results where a majority of the legs reached
the top of the stair were included in fig. 8 (this includes
solutions that could be considered stuck, e.g. if two legs are
still touching the lower portion of the step). The single valid
solution returned with KPIECE as the single-mode planner
failed to climb the ledge and has not been included in the
graph.

Fig. 8b lists the number of planner instances for this
problem. The maximum allowable time for each instance
was increased to 60 seconds (from 15 seconds). The result
is that slightly more problems were solved by SBL and that
a majority of the STRIDE instances were successful. This
highlights an important issue - longer planning times and thus
more solutions do not necessarily imply a better performance
overall. In particular, the high solve rate of STRIDE meant
that paths to many poor goal states were found that needed



to be revised after a successive goal could not be found.

SBL STRIDE

10
20
30
40

d
is
ta
n
ce

(c
m
)

(a) Error in final position

SBL STRIDE KPIECE
0

500

1,000 54% 91% 35%

#
o
f
ru
n
s

(b) Number of single-mode planner instances

Fig. 8: Climbing a ledge

V. CONCLUSIONS

In this work we present an implementation of a multi-
modal planner in the context of legged-locomotion. In par-
ticular our research focuses on the comparison of different
planning strategies that can be employed in the discrete
modes of our planner. In order to verify and compare the
computed solutions, we have performed two experiments in
a simulated environment - moving on a flat surface and
climbing a step. Additionally a robot was developed to
further test the results on a physical platform.

The results indicate that many of the commonly used mo-
tion planning methods are only applicable with modifications
that often end up nullifying their advantages. Many of the
assumptions made during the implementation, such as the
ability to follow a given trajectory precisely, do not hold up
in the real world or even a simulated one in some cases.

During the simulation we have observed that friction and
other dynamic effects play a critical role in the overall
performance of legged robots. The closed loop controller
can compensate for some of these effects but global position
changes and uncertainties need to be accounted for during
the planning phase.

Currently the dynamics of the system are only respected
during the simulation step, but in future work the general
planning approach can be adopted to use optimizing and
control-based single-mode planners. Another point of interest
lies in uncertainties that are inherent to systems in the real
world. For such problems the planner could be improved to
adapt to local changes with the help of sensor input.

REFERENCES

[GMK13] Bryant Gipson, Mark Moll, and Lydia E Kavraki. Resolution in-
dependent density estimation for motion planning in high-dimensional
spaces. In Robotics and Automation (ICRA), 2013 IEEE International
Conference on, pages 2437–2443. IEEE, 2013.

[SL03] Gildardo Sánchez and Jean-Claude Latombe. A single-query bi-
directional probabilistic roadmap planner with lazy collision checking.
In Robotics Research, pages 403–417. Springer, 2003.

[DS12] Christopher M Dellin and Siddhartha S Srinivasa. A framework for
extreme locomotion planning. In Robotics and Automation (ICRA),
2012 IEEE International Conference on, pages 989–996. IEEE, 2012.

[ŞK09] Ioan A Şucan and Lydia E Kavraki. Kinodynamic motion planning
by interior-exterior cell exploration. In Algorithmic Foundation of
Robotics VIII, pages 449–464. Springer, 2009.

[YLK01] Jeffery Howard Yakey, Steven M LaValle, and Lydia E Kavraki.
Randomized path planning for linkages with closed kinematic chains.
IEEE Transactions on Robotics and Automation, 17(6):951–958, 2001.

[KSLO96] Lydia E Kavraki, Petr Svestka, J-C Latombe, and Mark H Over-
mars. Probabilistic roadmaps for path planning in high-dimensional
configuration spaces. IEEE transactions on Robotics and Automation,
12(4):566–580, 1996.

[Hau08] Kris Hauser. Motion planning for legged and humanoid robots.
ProQuest, 2008.

[LaV98] Steven M LaValle. Rapidly-exploring random trees: A new tool
for path planning. 1998.

[Lat03] Jean-Claude Latombe. Robot motion planning. The Kluwer
international series in engineering and computer science ; 124. Kluwer,
Boston [u.a.], 7. print. edition, 2003.

[NK00] Christian L Nielsen and Lydia E Kavraki. A two level fuzzy
prm for manipulation planning. In Intelligent Robots and Systems,
2000.(IROS 2000). Proceedings. 2000 IEEE/RSJ International Con-
ference on, volume 3, pages 1716–1721. IEEE, 2000.

[KL00] James J Kuffner and Steven M LaValle. Rrt-connect: An efficient
approach to single-query path planning. In Robotics and Automation,
2000. Proceedings. ICRA’00. IEEE International Conference on, vol-
ume 2, pages 995–1001. IEEE, 2000.

[SGS15] Joseph A Starek, Javier V Gomez, Edward Schmerling, Lucas
Janson, Luis Moreno, and Marco Pavone. An asymptotically-optimal
sampling-based algorithm for bi-directional motion planning. In
Intelligent Robots and Systems (IROS), 2015 IEEE/RSJ International
Conference on, pages 2072–2078. IEEE, 2015.

[BS10] Dmitry Berenson and Siddhartha S Srinivasaz. Probabilistically
complete planning with end-effector pose constraints. In Robotics and
Automation (ICRA), 2010 IEEE International Conference on, pages
2724–2730. IEEE, 2010.

[SCS02] Anis Sahbani, Juan Cortés, and Thierry Siméon. A probabilistic
algorithm for manipulation planning under continuous grasps and
placements. In Intelligent Robots and Systems, 2002. IEEE/RSJ
International Conference on, volume 2, pages 1560–1565. IEEE, 2002.

[Shk10] Alexander C Shkolnik. Sample-based motion planning in high-
dimensional and differentially-constrained systems. PhD thesis, Mas-
sachusetts Institute of Technology, 2010.

[SMK12] Ioan A Sucan, Mark Moll, and Lydia E Kavraki. The open motion
planning library. IEEE Robotics & Automation Magazine, 19(4):72–
82, 2012.

[Wil88] G. Wilfong. Motion planning in the presence of movable obstacles.
In Proceedings of the Fourth Annual Symposium on Computational
Geometry, SCG ’88, pages 279–288, New York, NY, USA, 1988.
ACM.

[ALS94] Rachid Alami, Jean-Paul Laumond, and Thierry Siméon. Two
manipulation planning algorithms. In WAFR Proceedings of the
workshop on Algorithmic foundations of robotics, pages 109–125. AK
Peters, Ltd. Natick, MA, USA, 1994.

[FB97] Pierre Ferbach and Jérôme Barraquand. A method of progressive
constraints for manipulation planning. IEEE Transactions on Robotics
and Automation, 13(4):473–485, 1997.

[HNTHGB07] Kris Hauser, Victor Ng-Thow-Hing, and H Gonzales-Banos.
Multi-modal planning for a humanoid manipulation task. In Intl.
Symposium on Robotics Research, Hiroshima, Japan, 2007.

[CKNK03] Joel Chestnutt, James Kuffner, Koichi Nishiwaki, and Satoshi
Kagami. Planning biped navigation strategies in complex environ-
ments. In IEEE Int. Conf. Hum. Rob., Munich, Germany, 2003.

[CY99] Arancha Casal and Mark H Yim. Self-reconfiguration planning
for a class of modular robots. In Photonics East’99, pages 246–257.
International Society for Optics and Photonics, 1999.

[DXCR93] Bruce Donald, Patrick Xavier, John Canny, and John Reif. Kin-
odynamic motion planning. Journal of the ACM (JACM), 40(5):1048–
1066, 1993.

[JSCP15] Lucas Janson, Edward Schmerling, Ashley Clark, and Marco
Pavone. Fast marching tree: A fast marching sampling-based method
for optimal motion planning in many dimensions. The International
journal of robotics research, 34(7):883–921, 2015.





List of Figures

2.1 Example of error due to Euler integration (x2 + y2 = r2, ẋ = [−y, x]T ) . . . 4
2.2 Rate of change of a rotating vector . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Example of an articulated rigid body system . . . . . . . . . . . . . . . . . . 25

3.1 Joint position limit parabola . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.2 Configuration-time space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.3 Three abstract examples that show different possible intersection regions

between modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.4 A basic multi-modal planning approach . . . . . . . . . . . . . . . . . . . . . 44
4.5 Path warping using motion primitives . . . . . . . . . . . . . . . . . . . . . . 46
4.6 Expansion using a reachability criterion . . . . . . . . . . . . . . . . . . . . . 49
4.7 RRT* algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.2 IK solutions for random poses of the root link . . . . . . . . . . . . . . . . . . 54

6.1 The Robot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

7.1 States while walking on a flat surface . . . . . . . . . . . . . . . . . . . . . . . 63
7.2 Planning time for movement on a flat surface . . . . . . . . . . . . . . . . . . 64
7.3 Movement on a flat surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
7.4 Step in the simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
7.5 Planning time for climbing a step . . . . . . . . . . . . . . . . . . . . . . . . . 67
7.6 Climbing a step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

79



List of Tables

2.1 Cash-Karp factors for Runge-Kutta method . . . . . . . . . . . . . . . . . . . 8

80



List of Algorithms

5.1 Support function for a cylinder . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.2 Path validity checker used by the local planners . . . . . . . . . . . . . . . 59

81





Bibliography

[AK+09] Ioan Alexandru, Lydia E Kavraki, et al. On the performance of random lin-
ear projections for sampling-based motion planning. In Intelligent Robots
and Systems, 2009. IROS 2009. IEEE/RSJ International Conference On,
pages 2434–2439. IEEE, 2009.

[AL09] Andreas Aristidou and Joan Lasenby. Inverse kinematics: a review
of existing techniques and introduction of a new fast iterative solver.
University of Cambridge, Department of Engineering, 2009.

[ALS94] Rachid Alami, Jean-Paul Laumond, and Thierry Siméon. Two manip-
ulation planning algorithms. In WAFR Proceedings of the workshop on
Algorithmic foundations of robotics, pages 109–125. AK Peters, Ltd. Natick,
MA, USA, 1994.

[AW96] Nancy M Amato and Yan Wu. A randomized roadmap method for
path and manipulation planning. In Robotics and Automation, 1996.
Proceedings., 1996 IEEE International Conference on, volume 1, pages
113–120. IEEE, 1996.

[BBS94] Leoncio Briones, Paul Bustamante, and Miguel A Serna. Wall-climbing
robot for inspection in nuclear power plants. In Robotics and Automation,
1994. Proceedings., 1994 IEEE International Conference on, pages 1409–
1414. IEEE, 1994.

[BK00] Robert Bohlin and Lydia E Kavraki. Path planning using lazy prm. In
Robotics and Automation, 2000. Proceedings. ICRA’00. IEEE Interna-
tional Conference on, volume 1, pages 521–528. IEEE, 2000.

[BK04] Samuel R Buss and Jin-Su Kim. Selectively damped least squares for
inverse kinematics. 2004.

[BOvdS99] Valérie Boor, Mark H Overmars, and A Frank van der Stappen. The
gaussian sampling strategy for probabilistic roadmap planners. In Robotics
and automation, 1999. proceedings. 1999 ieee international conference on,
volume 2, pages 1018–1023. IEEE, 1999.

83



[BS10] Dmitry Berenson and Siddhartha S Srinivasaz. Probabilistically complete
planning with end-effector pose constraints. In Robotics and Automation
(ICRA), 2010 IEEE International Conference on, pages 2724–2730. IEEE,
2010.

[CD03] Adrian A Canutescu and Roland L Dunbrack. Cyclic coordinate descent: A
robotics algorithm for protein loop closure. Protein science, 12(5):963–972,
2003.

[CK90] Jeff R Cash and Alan H Karp. A variable order runge-kutta method
for initial value problems with rapidly varying right-hand sides. ACM
Transactions on Mathematical Software (TOMS), 16(3):201–222, 1990.

[CKNK03] Joel Chestnutt, James Kuffner, Koichi Nishiwaki, and Satoshi Kagami.
Planning biped navigation strategies in complex environments. In IEEE
Int. Conf. Hum. Rob., Munich, Germany, 2003.

[CL01] Peng Cheng and Steven M LaValle. Reducing metric sensitivity in ran-
domized trajectory design. In Intelligent Robots and Systems, 2001. Pro-
ceedings. 2001 IEEE/RSJ International Conference on, volume 1, pages
43–48. IEEE, 2001.

[CY99] Arancha Casal and Mark H Yim. Self-reconfiguration planning for a class
of modular robots. In Photonics East’99, pages 246–257. International
Society for Optics and Photonics, 1999.

[Dru08] Evan Drumwright. A fast and stable penalty method for rigid body
simulation. IEEE Transactions on Visualization and Computer Graphics,
14(1):231–240, 2008.

[DS12] Christopher M Dellin and Siddhartha S Srinivasa. A framework for
extreme locomotion planning. In Robotics and Automation (ICRA), 2012
IEEE International Conference on, pages 989–996. IEEE, 2012.

[DXCR93] Bruce Donald, Patrick Xavier, John Canny, and John Reif. Kinodynamic
motion planning. Journal of the ACM (JACM), 40(5):1048–1066, 1993.

[eCG98] Mo ez Cherif and Kamal K Gupta. Planning for in-hand dextrous manip-
ulation. 1998.

[Eng01] Kenth Engø. On the bch-formula in so (3). BIT Numerical Mathematics,
41(3):629–632, 2001.

[FB97] Pierre Ferbach and Jérôme Barraquand. A method of progressive con-
straints for manipulation planning. IEEE Transactions on Robotics and
Automation, 13(4):473–485, 1997.

84



[GMK13] Bryant Gipson, Mark Moll, and Lydia E Kavraki. Resolution independent
density estimation for motion planning in high-dimensional spaces. In
Robotics and Automation (ICRA), 2013 IEEE International Conference
on, pages 2437–2443. IEEE, 2013.

[GO04] Roland Geraerts and Mark H Overmars. Clearance based path optimiza-
tion for motion planning. In Robotics and Automation, 2004. Proceedings.
ICRA’04. 2004 IEEE International Conference on, volume 3, pages 2386–
2392. IEEE, 2004.

[Hau08] Kris Hauser. Motion planning for legged and humanoid robots. ProQuest,
2008.

[HBHL08] Kris Hauser, Timothy Bretl, Kensuke Harada, and Jean-Claude Latombe.
Using motion primitives in probabilistic sample-based planning for hu-
manoid robots. In Algorithmic foundation of robotics VII, pages 507–522.
Springer, 2008.

[HNTHGB07] Kris Hauser, Victor Ng-Thow-Hing, and H Gonzales-Banos. Multi-modal
planning for a humanoid manipulation task. In Intl. Symposium on
Robotics Research, Hiroshima, Japan, 2007.

[JSCP15] Lucas Janson, Edward Schmerling, Ashley Clark, and Marco Pavone.
Fast marching tree: A fast marching sampling-based method for optimal
motion planning in many dimensions. The International journal of robotics
research, 34(7):883–921, 2015.

[KF11] Sertac Karaman and Emilio Frazzoli. Sampling-based algorithms for
optimal motion planning. The International Journal of Robotics Research,
30(7):846–894, 2011.

[KL00] James J Kuffner and Steven M LaValle. Rrt-connect: An efficient ap-
proach to single-query path planning. In Robotics and Automation, 2000.
Proceedings. ICRA’00. IEEE International Conference on, volume 2, pages
995–1001. IEEE, 2000.

[KM12] Ross A Knepper and Matthew T Mason. Real-time informed path sam-
pling for motion planning search. The International Journal of Robotics
Research, page 0278364912456444, 2012.

[KP11] Junggon Kim and Nancy S. Pollard. Direct control of simulated nonhuman
characters. IEEE Comput. Graph. Appl., 31(4):56–65, July 2011.

[KSLO96] Lydia E Kavraki, Petr Svestka, J-C Latombe, and Mark H Overmars.
Probabilistic roadmaps for path planning in high-dimensional configuration
spaces. IEEE transactions on Robotics and Automation, 12(4):566–580,
1996.

85



[KTF+09] Yoshiaki Kuwata, Justin Teo, Gaston Fiore, Sertac Karaman, Emilio Fraz-
zoli, and Jonathan P How. Real-time motion planning with applications
to autonomous urban driving. IEEE Transactions on Control Systems
Technology, 17(5):1105–1118, 2009.

[Lat03] Jean-Claude Latombe. Robot motion planning. The Kluwer international
series in engineering and computer science ; 124. Kluwer, Boston [u.a.], 7.
print. edition, 2003.

[LaV98] Steven M LaValle. Rapidly-exploring random trees: A new tool for path
planning. 1998.

[LaV11] Steven M LaValle. Motion planning. IEEE Robotics & Automation
Magazine, 18(1):79–89, 2011.

[LK04] Andrew M Ladd and Lydia E Kavraki. Fast tree-based exploration of
state space for robots with dynamics. In Algorithmic Foundations of
Robotics VI, pages 297–312. Springer, 2004.

[MD04] Damian Merrick and Tim Dwyer. Skeletal animation for the exploration of
graphs. In Proceedings of the 2004 Australasian symposium on Information
Visualisation-Volume 35, pages 61–70. Australian Computer Society, Inc.,
2004.

[MI79] Robert B McGhee and Geoffrey I Iswandhi. Adaptive locomotion of a
multilegged robot over rough terrain. IEEE transactions on systems, man,
and cybernetics, 9(4):176–182, 1979.

[NH86] Yoshihiko Nakamura and Hideo Hanafusa. Inverse kinematic solutions
with singularity robustness for robot manipulator control. Journal of
dynamic systems, measurement, and control, 108(3):163–171, 1986.

[NK00] Christian L Nielsen and Lydia E Kavraki. A two level fuzzy prm for
manipulation planning. In Intelligent Robots and Systems, 2000.(IROS
2000). Proceedings. 2000 IEEE/RSJ International Conference on, vol-
ume 3, pages 1716–1721. IEEE, 2000.

[NRH15] Kourosh Naderi, Joose Rajamäki, and Perttu Hämäläinen. Rt-rrt*: a
real-time path planning algorithm based on rrt. In Proceedings of the 8th
ACM SIGGRAPH Conference on Motion in Games, pages 113–118. ACM,
2015.

[PBK04] Jeff M Phillips, Nazareth Bedrossian, and Lydia E Kavraki. Guided
expansive spaces trees: A search strategy for motion-and cost-constrained
state spaces. In Robotics and Automation, 2004. Proceedings. ICRA’04.
2004 IEEE International Conference on, volume 4, pages 3968–3973. IEEE,
2004.

86



[PMS07] Dimitris Pongas, Michael Mistry, and Stefan Schaal. A robust quadruped
walking gait for traversing rough terrain. In Robotics and Automation,
2007 IEEE International Conference on, pages 1474–1479. IEEE, 2007.

[PTVF96] William H Press, Saul A Teukolsky, William T Vetterling, and Brian P
Flannery. Numerical recipes in C, volume 2. Citeseer, 1996.

[RBN+08] Marc Raibert, Kevin Blankespoor, Gabriel Nelson, Rob Playter, and
T Bigdog Team. Bigdog, the rough-terrain quadruped robot. In Proceedings
of the 17th world congress, volume 17, pages 10822–10825. Proceedings
Seoul, Korea, 2008.

[RCB98] Charles Rose, Michael F Cohen, and Bobby Bodenheimer. Verbs and ad-
verbs: Multidimensional motion interpolation. IEEE Computer Graphics
and Applications, 18(5):32–40, 1998.

[SCS02] Anis Sahbani, Juan Cortés, and Thierry Siméon. A probabilistic algorithm
for manipulation planning under continuous grasps and placements. In
Intelligent Robots and Systems, 2002. IEEE/RSJ International Conference
on, volume 2, pages 1560–1565. IEEE, 2002.

[SGS+15] Joseph A Starek, Javier V Gomez, Edward Schmerling, Lucas Janson, Luis
Moreno, and Marco Pavone. An asymptotically-optimal sampling-based
algorithm for bi-directional motion planning. In Intelligent Robots and
Systems (IROS), 2015 IEEE/RSJ International Conference on, pages
2072–2078. IEEE, 2015.

[Shk10] Alexander C Shkolnik. Sample-based motion planning in high-dimensional
and differentially-constrained systems. PhD thesis, Massachusetts Institute
of Technology, 2010.

[ŞK09] Ioan A Şucan and Lydia E Kavraki. Kinodynamic motion planning by
interior-exterior cell exploration. In Algorithmic Foundation of Robotics
VIII, pages 449–464. Springer, 2009.

[ŞK12] Ioan A Şucan and Lydia E Kavraki. A sampling-based tree planner
for systems with complex dynamics. IEEE Transactions on Robotics,
28(1):116–131, 2012.

[SL03] Gildardo Sánchez and Jean-Claude Latombe. A single-query bi-directional
probabilistic roadmap planner with lazy collision checking. In Robotics
Research, pages 403–417. Springer, 2003.

[SLN00] Thierry Siméon, J-P Laumond, and Carole Nissoux. Visibility-based
probabilistic roadmaps for motion planning. Advanced Robotics, 14(6):477–
493, 2000.

87



[SMK12] Ioan A Sucan, Mark Moll, and Lydia E Kavraki. The open motion
planning library. IEEE Robotics & Automation Magazine, 19(4):72–82,
2012.

[SWT09] Alexander Shkolnik, Matthew Walter, and Russ Tedrake. Reachability-
guided sampling for planning under differential constraints. In Robotics
and Automation, 2009. ICRA’09. IEEE International Conference on,
pages 2859–2865. IEEE, 2009.

[WC91] L-CT Wang and Chih-Cheng Chen. A combined optimization method
for solving the inverse kinematics problems of mechanical manipulators.
IEEE Transactions on Robotics and Automation, 7(4):489–499, 1991.

[WE84] William A Wolovich and H Elliott. A computational technique for inverse
kinematics. In Decision and Control, 1984. The 23rd IEEE Conference
on, pages 1359–1363. IEEE, 1984.

[Wil88] G. Wilfong. Motion planning in the presence of movable obstacles. In
Proceedings of the Fourth Annual Symposium on Computational Geometry,
SCG ’88, pages 279–288, New York, NY, USA, 1988. ACM.

[WP95] Andrew Witkin and Zoran Popovic. Motion warping. In Proceedings of the
22nd annual conference on Computer graphics and interactive techniques,
pages 105–108. ACM, 1995.

[WvdB13] Dustin J Webb and Jur van den Berg. Kinodynamic rrt*: Asymptotically
optimal motion planning for robots with linear dynamics. In Robotics
and Automation (ICRA), 2013 IEEE International Conference on, pages
5054–5061. IEEE, 2013.

[WVDBH08] Ron Wein, Jur Van Den Berg, and Dan Halperin. Planning high-quality
paths and corridors amidst obstacles. The International Journal of
Robotics Research, 27(11-12):1213–1231, 2008.

[YLK01] Jeffery Howard Yakey, Steven M LaValle, and Lydia E Kavraki. Ran-
domized path planning for linkages with closed kinematic chains. IEEE
Transactions on Robotics and Automation, 17(6):951–958, 2001.

88


	Abstract
	Contents
	Introduction
	Mathematical/Physical Background
	Differential Equations
	Newtonian Particles
	Rigid bodies
	Constraints
	Articulated Rigid Body Dynamics

	Direct Control
	Constraints

	Motion Planning
	Motion Planning

	Implementation Details
	Inverse Kinematics (IK)
	Collision Detection and Response

	Robot Platform
	Results
	Flat Surface
	Step

	Conclusion and Future Work
	Future Work

	IROS 2017 Submission
	List of Figures
	List of Tables
	List of Algorithms
	Bibliography

