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Abstract (EN) 

 

Within this thesis we implemented online process monitoring and control in our labs using PAT 

(Process Analytical Technology) tools and scale-free control variables in mammalian CHO 

(Chinese Hamster Ovary) cell culture processes to improve productivity, robustness and 

predictability at different scales. Predictive models for cell physiology and sensor signals were 

established based on historical data analysis of industrial process development data at lab 

(2L) and pilot plant scale (80L). The developed models proved to be scale-independent and 

transferable to other CHO clones, which allowed their application on different processes with 

limited prior information. Optimization of feeding in fed-batch mode was achieved by controlling 

the specific glucose consumption rate within a narrow range in real time using PAT tools, such 

as an online metabolic analyser and a capacitance probe for monitoring and control purposes. 

This led to very stable glucose, lactic acid and pH profiles, improving productivity and 

robustness of the platform process with scale-free parameters.  

Mechanistic, statistical and in-silico models under dynamic fed-batch conditions were used to 

gain novel insights into cell metabolism, and allowed a predictive run forecast at 2L and 12000L 

scale. The established methodologies facilitate and improve process transfer and scale-up of 

industrial mAb (monoclonal Antibody) platform processes through advanced process 

monitoring and control. This is in line with recommendations from the FDA (Food and Drugs 

Administration) and EMA (European Medicines Agency) to implement PAT & QbD (Quality by 

Design) approaches in the biopharmaceutical industry to ensure consistent quality of 

medicines for the safety of patients.  

 

Keywords: Mammalian CHO Cell Culture Metabolism, PAT, Scale-up, Process Modelling, 

Monitoring and Control 

 



  VII 

Kurzfassung (DE) 

 

In dieser Arbeit wurden PAT (Process Analytical Technology) Systeme zur 

Prozessüberwachung und Prozesskontrolle für tierische CHO (Chinese Hamster Ovary) 

Zellkulturprozesse in unseren Laboratorien eingesetzt. Die Datenanalyse von historische 

Prozessdaten ermöglichte die Entwicklung von prädiktiven Modellen für Zellphysiologie und 

Sensorsignalen, welche für die Optimierung von Feedkontrolle eingesetzt wurden und neue 

Erkenntnisse über den Prozess lieferte. Die Kombination von fortgeschrittener statistischer, 

mechanistischer und in-silico modelierung vertiefte einerseits unser Prozessverständnis und 

ermöglichte andererseits Prognosen über den Zellmetabolismus sowie optimale 

Feedingstrategien unter dynamischen fed-batch Bedingungen. Die etablierten Methodolgien 

vereinfachen und verbessern Transfer und Scale-up von industriellen mAb (monoclonal 

Antibody) Platformprozessen durch erweitertes Prozessmonitoring und Prozesskontrolle. Das 

entspricht dem Ruf der FDA (Food and Drugs Administration) und EMA (European Medicines 

Agency), welche empfehlen, PAT und QbD (Quality by Design) Prinzipien in der 

biopharmazeutischen Industrie anzuwenden, um eine konsistente Qualität der erzeugten 

Arzneimittel zu erzielen, die der Sicherheit der Patienten dient.  

 

Keywords: CHO Zellkultur Metabolismus, PAT, Modellieren, Prozessmonitoring und 

Prozesskontrolle 
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1 Introduction 

1.1 Problem Statement 

 
In the biopharmaceutical industry, a variety of microbial and mammalian cell lines and clones 

are used to produce recombinant proteins at different scales. Due to the high level of variability 

in biological processes, relatively simple open or closed process control loops are the de-facto 

industrial standard [1][2]. In the simplest case, historical feed rates or feeding frequencies are 

tested in a previous process and applied with minor adaptations for the next. In more advanced 

scenarios, feed rates are based on real-time process feedback (closed loop) from i.e. a soft 

sensor [3][4][5] to estimate biomass and control the feed pumps accordingly. Table 1 

summarizes the Measurement, Modelling, Monitoring and Control (M3C) targets of this thesis, 

as suggested by the M3C Working Group. The M3C is a brand name of the European 

Federation of Biotechnology (EFB) and the European Society of Biochemical Engineering 

Science (ESBES) [6][7]. PAT (Process Analytical Technology) technology was applied to 

improve process understanding, with the aim of increasing the quality and robustness of 

bioprocesses, which are among the central themes in QbD (Quality by Design) [8]. Ideally, 

PAT technology could be employed throughout all scales, i.e. monitoring viable biomass in 

real time to adjust important control variables, such as the feed rate in fed-batch mode. 

However, this is easier said than done, and a frequent reason for this is that industrial 

processes undergo a significant scale up from lab to commercial scale. Especially the 

estimation of viable biomass and its metabolic state cause challenges in the benchmarking 

and implementation of new technologies [9], some of which were addressed in different peer-

reviewed publications that comprise this thesis.  
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Table 1: Overview of M3C methodology applied in this thesis. 

Measurement Modeling Monitoring Control  Benefits Ref 

Capacitance  Statistical 
model 

Biomass Stoichiometric 
feedrate  

PAT tools were used to construct 
real-time, statistical biomass 
models. The models were 
interchangeable between scales 
and cell lines, making them 
universally applicable for the CHO 
cell fed-batch processes observed 
in our labs. 

[10] 

Capacitance, 
Metabolic Analyzer 

Statistical 
model 

Biomass, GLC, 
LAC, GLN, GLU, 
NH4, IgG  

Low GLC setpoint 
to control the 
metabolic state in 
an industrial fed-
batch 

Application of the universal 
biomass model to implement 
robust process control. Reduced 
LAC accumulation during fed-
batch operation correlated with 
high productivity, indicating a link 
between metabolic state and 
product formation.  

[11] 

Transcriptome and 
isozyme 
composition of 
different cell lines, 
clones and tissues 

Complex 
mechanistic 
model  

External and 
internal 
metabolites, fluxes 
and 
external/internal pH 

Cell line 
engineering and 
process control 
parameters to 
control the 
metabolic state 

Mechanistic modelling revealed 
potent engineering targets to 
reduce LAC accumulation by 
improved clone design. In-silico 
simulation allowed the exploration 
of possible performance of control 
conditions, in particular to 
investigate the effect of pH on 
metabolism. 

[12] 

Biomass, GLC and 
metabolic state 
estimation with 
high errors 

Simple 
mechanistic 
or statistical 
models 

Biomass, GLC, 
LAC, metabolic 
state 

GLC setpoint, 
metabolic state    

A generally applicable control 
strategy for novel sensor 
technologies that may come with 
high errors. In-silico DoEs may be 
used to select setpoints that lead 
to both low sampling requirements 
and low LAC accumulation in 
industrial fed-batch processes. 

[13] 

 
Capacitance probes proved to be the most promising technology for scale up of mammalian 

CHO (Chinese Hamster Ovary) cell processes. The challenge of estimating biomass across 

scales and clones could be solved using transfer learning. Unlike machine learning techniques, 

which try to learn each task from scratch, transfer learning tries to transfer the knowledge from 

a previous task to a target task, especially when the target task has smaller available data sets 

[14] or setup/conditions are changed [15], which was both the case here [10]. The biomass 

model was validated in wet lab experiments in our labs and used successfully to control a 

dynamic fed-batch process to reduce lactic acid build-up and stabilize the pH profile [11].  

While statistical models are very well suited for process control, they might not be very intuitive 

to study the root cause why clones behave differently. Therefore, mechanistic models of the 

glycolytic pathway of different tissues, cell lines and clones of CHO spp. could help to answer 

some of these questions. It is clear that the genetic fingerprint of different clones has an 
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important influence on metabolism, which drives the cells to produce or consume lactic acid, 

and turn them into low or high producing cell factories [16]. However, when process conditions 

(i.e. pH and substrate availability) and the genetic background are considered together instead 

of in isolation, then improved processing conditions to reduce variability may be already found 

in-silico, before a potential high producer is assessed in wet lab experiments [12].  

Novel technologies are changing the odds completely and bring new opportunities in the 

landscape of the production of biopharmaceuticals. These sensors may be faster, in-situ 

sterilised, cheaper, smaller or otherwise better than current technologies. However, they may 

also come with a higher measurement error, which could potentially delay their immediate 

application in industry. To address this challenge, a sensor strategy that accepts high 

uncertainty and errors of various input signals was developed [13]. The control strategy was 

tested on process development and industrial datasets and over 500 in-silico DoEs (Design of 

Experiment) led to the best operating conditions for different clones and process scenarios. 

Our strategy incorporated the uncertainty of especially biomass and metabolic state in its 

design, which helped to find operating conditions in-silico to maximize process robustness by 

holding glucose concentration setpoints within the desired target range at all times.  

1.2 Goals 

 
The goal of this thesis was to establish online monitoring and control in mammalian cell culture 

processes that were provided by our industrial partner Böhringer Ingelheim (BI). Our working 

hypothesis is that both todays and future PAT tools together with novel, real-time based control 

strategies can be readily implemented in modern industrial process formats. The proposed 

methodology would be applicable also to new processes so that they would become more 

robust and reliable by such improved process control. For this reason, predictive models for 

cell physiology and sensor signals were established based on historical data analysis from BI 

to optimize feed control and to enable predictive run forecast. Our scientific contributions are 

novel mechanistic and in-silico models, under dynamic fed-batch conditions that help to gain 
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novel insights into cell metabolism and process understanding. The established methods aim 

particularly at improving process transfer and scale up through better process monitoring and 

control of the industrial platform process, i.e. by estimating biomass for online feed control. 

This is in line with recommendations from the FDA (Food and Drugs Administration) and EMA 

(European Medicines Agency) to implement PAT & QbD approaches  in the pharmaceutical 

manufacturing environment [17][18][19][20]. As more in-line and offline data is captured to help 

understand potential challenges in the process, a part of our studies featured in-silico 

experiments for use in truly novel applications. For instance, simulations using transcriptomic 

data input may be an efficient way to complement screening high producers during cell line 

development prior to actual bioreactor experiments. In another example, novel and not yet 

publicly available in-silico inline biosensor data was used to test a very robust control strategy, 

to be used when the sensors are commercially available. By delivering solutions to both current 

and future challenges, we expect an increase of productivity and improvement of robustness 

in the novel process formats, as control strategies are based on metabolic demand rather than 

predefined empirical trajectories. This will go hand in hand with driving more rapid process 

development timelines as the developed tools are generally transferrable between new 

processes with limited amounts of process data.  
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1.3 Methodology 

 
PAT Tools 

 

 

Figure 1: Available PAT Tools in this project. 

 

An industrial mammalian CHO cell bioprocess was transferred from BI to VUT (Vienna 

University of Technology). Various online, at-line, in-line and off-line PAT tools (Figure 1) were 

tested at VUT and BI. Only the tools that worked best and justified the effort of installation in 

industry are considered in this contribution. A hard limitation on deciding which PAT tools to 

use simultaneously was the port space on our and the commercial scale fermenters. Only a 

careful selection of equipment could be used during the experiments (with the exception of 

offgas), therefore the risks and benefits had to be evaluated. In this project, we used 

combinations of pH, pO2, pCO2, capacitance, metabolic analyser membrane, 

inoculation/sampling, feed and inlet gas tubes. Offgas could have been a very valuable 

measurement taken in addition in our processes, as it would allow calculation of OUR (oxygen 

uptake rate) and therefore indirectly cell count without invasive technology. However, it turned 

out to be a very unreliable signal for the industrial platform process that we scaled down in our 

labs. Pure oxygen, process cascades with non-constant stirrer speeds and pH control using 

CO2 together with an overall strong CO2 buffer background made offgas analysis very 

challenging at benchtop scale. Regarding the other available sensors, we often had to choose 

between the pCO2 and the capacitance probe. We decided to go forwarding using the 
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capacitance probe, as the pCO2 probe had a tendency to drift, and because almost real-time 

monitored biomass was a very important signal that unlocked metabolic control in our 

processes.  

 

Data analysis 

The key to convert data to knowledge lies in structured data analysis. At the beginning, simple 

visualizations of individual or groups of variables plotted usually against time are tools to grasp 

any given dataset. Are there outliers, missing values, inconsistencies or artifacts? Which parts 

of the information require trimming and can all these actions be automated? Typically, simple 

excel sheets are used for small scale data analyses. However, bioprocesses record data every 

minute (or second), and excel sheets soon reach the limit of approximately 1 million rows when 

historical batch data is aggregated. Therefore, other platforms are needed that do not have 

such limitations. Matlab (Mathworks, Natick, MA, USA) was used to read, process and clean 

the data in a batch-wise manner. Its extensive library contained several useful algorithms that 

made routine tasks such as outlier detection (‘rlowess’ [21]), interpolation (‘pchip’ [22]) and 

curve fitting (‘sgolay’ [23]) much easier (Figures 2A, 2B and 2C). The fact that we were dealing 

with mostly non-linear curve functions with few data points (i.e. n=10 to 20) puts a big emphasis 

on robust algorithms that could cope with such challenges automatically in scripts. They were 

indispensable for obtaining important mechanistic features in our dataset such as specific 

metabolic rates and yields in our culture that would fuel further modelling efforts.  

A 

 

B 

 

C 
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Figure 2: Data processing algorithms that work well for small datasets as encountered in 
bioprocesses. Robust outlier detection, interpolation of missing values and curve fitting 

algorithms were important for automatic processing steps during data collection to turn raw 
data to knowledge. Figures adapted from [21][22][23]. 

 

For visualisations of the processed results we used Spotfire (TIBCO Software Inc., CA, USA), 

a program whose strength is a very strong filtering function to drill down and distil a dataset to 

its essence, which then can be exported for further analysis. With a tidy, tabular dataset that 

has meaningful features, modelling and predictive data analysis is possible. The first models 

were built using Datalab software [24] (kindly provided by Prof. Lohninger, Vienna University 

of Technology, Vienna, Austria). Other commercial software solutions like Modde and Simca 

(MKS Data Analytics Solutions, Umeå, Sweden), among many others, allowed a very fast 

extraction and visualisation of process knowledge from multivariate datasets.  

 

Modelling  

Mammalian cell culture exhibits a highly non-linear behaviour which makes it very challenging 

to represent fully and accurately with simple mathematical models. Cell growth and factors 

affecting it seem to be elusive, as biological systems, in particular mammalian systems, may 

react uniquely and time-dependently to what seem to have been identical process conditions 

or perturbations. It is clear that a simple model will always lack essential parts that represent 

all possible metabolic behaviours. However, for an aspiring modeller, it may not be so clear 

that a very well formulated, complex model may be lacking in unexpected areas. For instance, 

acquiring precise data for variables in a complex model from external sources such as 

publications that were not conducted with the particular model organism in the own lab, under 

conditions that almost certainly had an impact on those variables (i.e. medium components 

that influence cellular substrate transporter affinities), is problematic. It has to be therefore kept 

in mind that with rising model complexity, the requirements on the amount and precision of 

data will rise in equal proportion if the model should be predictive and accurate.  

Within this project, two areas of modelling were explored in more detail:  
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i) Multivariate statistical models, which estimate biomass [10] in different processes 

and clones, allow control of the process in real time [11] using PAT tools.  

ii) Complex mechanistic models [12], that combined genetic information of different 

clones and tissues of CHO cells with industrially relevant process control scenarios. 

Simple mechanistic models could be used in combination with prior knowledge to 

simulate likely process behaviour even under large uncertainty [13].  

 

 

Figure 3: General modelling techniques explored in this thesis. Where possible, simple and 
univariate techniques are applied. Where necessary, more complex models were employed that 
could address various challenges in more detail. Multivariate regression models (PLS-R) were 

more accurate than univariate regression models, while complex mechanistic models helped to 
gain fundamental understanding on cell metabolism, which simple models could not represent 

adequately.  

 
In Figure 2, Eqn. 1, �̂� represents an estimated variable (i.e. growth or cell count), where 𝑎1…𝑛 

are measured parameters (i.e. capacitance), while 𝑐1…𝑛 and 𝑑 are the regression coefficients 

respectively the intercept of the statistical model. Eqn. 2, µ represents growth rate, which is 

mechanistically linked to substrate availability 𝑆 and an empirical coefficient 𝐾𝑠 that describes 

the cell’s ability to take up substrate within its maximum possible growth rate µ𝑚𝑎𝑥. More 

complex versions of the Monod-Wyman-Changeux Model (often simply referred to as Monod 

model [25][26]) may add more substrate or inhibition terms, among others, to the base 

equation. Both Eqn.1 and 2 could be used to model the same variable, and sometimes one 
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model outperforms the other. While mechanistic models rely on parameters that need to be 

fitted to a particular mechanistic relationship of parameters in a given dataset, statistical 

models are fitted to a suggested relationship of multiple factors, in this example in the form of 

simple polynomials. These could be then used in an exploratory or predictive way, for instance 

by establishing which relationships may exist, or to estimate a variable that is otherwise hard 

to measure. We found both routes very attractive to gain more insights in our processes and 

presented our approach at various conferences [27][28]. Data-driven models may be very 

powerful as they grow more accurate with even more data and were especially well-suited for 

process control applications using PAT tools. Both approaches were implemented with 

success and were important at different stages in the project to predict or estimate variables 

which are otherwise difficult to monitor in real time [9].  

 

1.4 A short summary of the scientific publications  

 
Universal Capacitance Model for Real-Time Biomass in Cell Culture (Chapter 2.1) deals with 

the transformation of a capacitance probe’s signal into estimated biomass using a multivariate 

PLS-R model. The aim and novelty of this work was a methodology to construct the model in 

such a way that it was transferrable between different cell lines and processes, hence 

universally applicable for a standard CHO platform process. The mean error of our models 

was in the range of 20% for the whole process time, which made it very suitable for monitoring 

and control purposes. A simple linear factor was found to be responsible for the transferability 

of the model, indicating a link to the phenotype or physiology of different cell lines and clones.  

Metabolic Control in Mammalian Fed-Batch Cell Cultures for Reduced Lactic Acid 

Accumulation and Improved Process Robustness (Chapter 2.2) uses the previously developed 

model to monitor and control a mammalian cell culture fed-batch in real time. The biomass 

estimation was so good that glucose-limiting conditions could be effectively held in a dynamic 
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fed-batch, reducing lactic acid build-up by controlling the specific glucose uptake rate in real 

time within a designed range and increasing productivity at lab scale. Multivariate data analysis 

(MVDA) was used to rank the importance of process parameters that need to be tightly 

controlled. The suggested control strategy shows that process-independent variables, such as 

specific glucose uptake and lactic uptake/production rates, could be tightly and reliably 

controlled, which resulted in a strong increase of robustness and productivity of the process.  

Improved metabolic process control by analysis of genetic clone background in mammalian 

cell culture (Chapter 2.3) explores the mechanistic reasons behind different clone behaviour 

regarding lactic acid production as observed in our historical datasets. We wished to explore 

the inherent reasons for high or lactic acid production in CHO cell culture, and a metabolic 

model kindly provided by the Hu group was coupled with transcriptomic information from 

different clones and cell lines. The extended new model involved the different compositions of 

isozymes involved in glycolysis, and was capable of simulating the transient response to pH, 

substrate and other process shifts that were relevant for process control purposes. Our 

simulations revealed an important link between the external and internal pH, which is also 

reported by other researchers [29][30], where key enzymes in glycolysis are influenced [31][32] 

and affect cell metabolism as function of the genetic background of the studied clone or cell 

line. Some enzymes, such as HK (Hexokinase), PFK (phosphofructokinase), PFKFB (6-

phosphofructo-2-kinase/fructose-2,6-bisphosphatase), PK (pyruvate kinase) and LDH (lactate 

dehydrogenase) among others, hold a key role in the lactic acid metabolism 

[33][34][35][36][37]. Our simulations under industrially relevant process conditions showed that 

these enzymes and their isoforms (i.e. HK-IV [38]  and LDH-C [39][40]) may be promising 

targets for epigenetic engineering and cell line development activities for more robust cell 

culture processes. Novel clones may be engineered by design, i.e. by screening for more 

variants which are more tolerant towards high glucose concentrations and reduced lactic acid 

production in industrial processes.  
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A robust feeding strategy to maintain set-point glucose in mammalian fed-batch cultures when 

input parameters have a large error (Chapter 2.4) builds on the extended modelling activities 

and distils the most important aspects of various clone behaviour into a simpler model 

representation. The clone-specific behaviour was thus coupled to an in-silico bioprocess 

simulation and results were, among others, ideal feeding trajectories and sampling times to 

hold glucose concentrations within a desired control range. This control strategy was tested 

for lab scale processes featuring a process shift, on an industrial dataset at commercial scale 

(12000L) and on several synthetic conditions that were obtained in a DoE, by turning critical 

assumptions into variables to verify adequate robustness of the control strategy. In brief, the 

developed algorithm was capable of detecting and slightly correcting when a process was 

going out of specifications in real time by using uncertainty trajectories. This study 

demonstrates that a robust and sufficient level of control could be demonstrated even with high 

errors for biomass, glucose or metabolic state estimation, as could be soon the case when 

novel sensor technologies are implemented that come with a high error.  

 

1.5 The scientific contribution to the field of study  

In the beginning of our journey to employ PAT tools for bioprocess monitoring and control, we 

expected the novel sensors to be well-developed, so that the sensor signal itself could be used 

directly and immediately to monitor and control the process. However, almost always some 

sort of data treatment was required, which led to the development of soft sensors. The soft 

sensor we developed was an estimation of biomass in CHO cell culture, which was adequate 

to monitor and control one of the most dynamic and complex process formats in fermentations: 

mammalian cell culture fed-batches. Our scientific contribution to the field lies in the way how 

the soft sensor was constructed. Extreme care must be taken when data-driven models are 

employed in predictions, as statistical models tend to overfit. If this was the case, it would be 

highly specific to the training dataset, but less transferable and applicable to new cases. 
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However, our models were built not only with data from different scales and validated on 

different clones, but also built with different clones at different scales. As a consequence, the 

test set was very robust from the start. This level of diversity was required to build a highly 

transferable biomass model that we could validate on a total of 4 clones and 2 scales, which 

was a quite remarkable accomplishment for a statistical model.  

With a working soft senor to estimate biomass, we could investigate in detail how exactly 

glucose and pH interact to drive metabolic lactic acid production or consumption. Although 

literature states that higher (more alkaline) pH positively influences cell growth, and 

simultaneously always increases lactic acid production, by decoupling both effects we could 

demonstrate that this does not have to be the case. A very high pH setpoint could be selected, 

which may have influenced the internal pH and with it many internal enzymes [29], to enable 

fast cell growth. At the same time the specific glucose uptake rate could be controlled within 

the range of error for biomass and metabolic state estimation in a glucose limited fed-batch 

mode. With very precise knowledge of biomass concentration and a closed-loop control of the 

metabolic state, we witnessed the lowest lactic acid levels and the highest productivity of this 

process in our labs, which is consistent with the findings of other researchers [34][41][42][43]. 

A research exchange at the Hu group (CEMS, MN, USA) was undertaken to investigate and 

explore lactic acid behaviour. A mechanistic model that described a part of the central glycolytic 

pathway was kindly provided by the host lab. It was extended to include typical industrial 

process conditions such as external and internal pH gradients, different isozyme compositions 

and expression levels. Then, the model was used in-silico to simulate lactic acid and pH 

evolution with different model tissues and clones of CHO spp. origin [12]. Many factors, 

including process conditions (GLC, LAC, pH), different isozymes (HK, PFKFB, PFK, PK, and 

LDH), the energy pool (NAD/NADH), among others, were contributing and driving the cell’s 

metabolic behaviour [35][37]. In conclusion, it was shown that not just one, but several 

strategies can be employed synergistically to control the cell metabolism by design. Our 

contribution integrated protein-specific substrate specificity, genetic distribution of isoforms 
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and process control by pH shifts or glucose pulsing in a systems approach to make a qualitative 

statement about a screened clone’s potential future metabolic behaviour.  

With more in-depth knowledge on how to control lactic acid concentrations, we returned one 

more time to use these insights in combination with PAT tools for process control. The glucose 

consumption rate is the number one parameter that must be controlled within tight ranges 

because it impacts on how substrate is utilized [44][45], and whether precursors turn into lactic 

acid or into product. Our complex mechanistic model was reformulated as a minimalistic 

mechanistic model and fed with process development and manufacturing data. It is unlikely 

that any sensor or estimation method will ever be so accurate that there is absolutely no error. 

Therefore, we implemented errors on biomass estimation, the metabolic state and other critical 

parameters for a more robust control strategy [13]. The output was what we called uncertainty 

trajectories, which led to an automatic, slight adaptation of the feed rate to stay within a defined 

range around the glucose setpoint. Process development and manufacturing data was used 

to challenge the algorithm by permuting critical assumptions that could affect its robustness, 

such as the selected setpoint range, error on measurements and clone-specific substrate 

affinity resp. lactic acid behaviour. The main scientific output was a glucose setpoint control 

strategy for mammalian cell culture fed-batch modes, which allowed sufficient control, even if 

the available sensors and assumptions were not very accurate (>50% error). We are therefore 

confident that even novel sensor technologies [46] with potentially high errors in full scale could 

be used for process control purposes, speeding up development activities in a perpetually 

changing industrial environment.  
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1.6 Author contributions 

The author contributions are listed together with the major scientific focus of each contribution, 

which is depicted below as shaded area in four major topics: cell metabolism, data analysis, 

modelling, and process control. The individual chapters of this thesis are publicly available at 

the individual journal publishers at the time of writing. Chapter 2.3 is publicly available by the 

Marshall Plan Foundation, which holds the right of publication as specified in the Marshall Plan 

Foundation Grant Agreement. The other studies are peer-reviewed and DOI numbers are 

available: Ch.1: 10.3390/s150922128, Ch.2: 10.3390/bioengineering3010005 and Ch.4: 

10.1002/btpr.2438. 

Table 2: Author contributions and area of scientific focus in the publications. 

Manuscript Ch. Author contributions Mammalian 
CHO cell 
metabolism 

Soft 
sensors, 
data 
analysis 
and MVDA 

Statistical 
and 
Mechanistic 
Modelling 

Process 
Control using 
PAT 
Technology 

Universal 
Capacitance Model 
for Real-Time 
Biomass in Cell 
Culture, Sensors 

2.1 VK designed and performed 
a part of the experiments, 
analyzed the data, developed 
the universal models, 
performed statistical analysis, 
prepared tables, figures, 
additional files, drafted and 
wrote the manuscript.  

    

Metabolic Control 
in Mammalian Fed-
Batch Cell Cultures 
for Reduced Lactic 
Acid Accumulation 
and Improved 
Process 
Robustness 

2.2 VK designed, planned and 
performed the experiments at 
Vienna University of 
Technology, analyzed the 
data, performed statistical 
analysis, prepared tables, 
Figures, additional files, 
drafted and wrote the 
manuscript.  

    

Improved metabolic 
process control by 
analysis of genetic 
clone background 
in mammalian cell 
culture 

2.3 VK designed and performed 
the simulations, wrote the 
manuscript, prepared tables, 
figures and adapted the 
source code for the 
simulations. 

    

A robust feeding 
strategy to maintain 
set-point glucose in 
mammalian fed-
batch cultures 
when input 
parameters have a 
large error 

2.4 VK designed, planned and 
performed the experiments at 
Vienna University of 
Technology, built the model 
and designed the algorithm, 
set up, analyzed and 
interpreted the DoE, 
analyzed the results, 
performed statistical analysis, 
prepared Tables, Figures, 
additional files, drafted and 
wrote the manuscript.  
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2 Scientific publications 

2.1 Chapter 1

 



  
16 

 
  



  
17 

 
  



  
18 

 
  



  
19 

 
  



  
20 

 
  



  
21 

 
  



  
22 

 
  



  
23 

 
  



  
24 

 
  



  
25 

 
  



  
26 

 
  



  
27 

 
  



  
28 

 
  



  
29 

 
  



  
30 

 
  



  
31 

 
  



  
32 

 
  



  
33 

 
  



  
34 

 
  



  
35 

 
  



  
36 

 
  



  
37 

 
  



  
38 

2.2 Chapter 2 
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2.3 Chapter 3 
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2.4 Chapter 4 
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3 Summary & Conclusions 

 
Summary 

Online process monitoring and control in our labs was implemented to improve productivity, 

robustness and predictability at different scales. Predictive models for cell physiology and 

sensor signals using PAT tools were established, combining our own and industrial data sets 

at lab (2L) and pilot plant scale (80L). The developed models proved to be scale-independent 

and transferable to other CHO clones, and processes with limited prior information were 

demonstrated to be effectively controlled in our labs. Feed control in fed-batch mode was 

achieved by setting the specific glucose consumption rate within narrow ranges, using an inline 

capacitance probe for control and a metabolic analyser for process monitoring. Not only could 

we show that statistical biomass models generated in other processes were transferable, but 

we also held stable glucose, lactic acid and pH profiles, improving productivity and robustness 

of the platform process with scale-free parameters. Novel mechanistic models were combined 

with transcriptomic and fermentation process data inputs in-silico to gain novel insights into the 

root cause of lactic acid overflow metabolism. The results suggest interesting targets for cell 

line development and imply that timelines may be shortened using novel in-silico bioreactor 

screening runs, which utilize the available genetic information as input parameter. Simpler 

versions of the mechanistic model allowed predictive run forecast at 2L and 12000L scale to 

hold glucose levels tightly with uncertainty trajectories, using novel PAT sensor technology. 

The developed control strategy was developed, tested and validated on both lab and industrial 

scale datasets, where it was shown in over 500 in silico simulations to adequately cope with 

high uncertainty and error in key process variables, such as biomass, glucose and metabolic 

state.  
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Conclusions 

All established methodologies were developed to facilitate and improve process transfer and 

scale-up of an industrial platform CHO cell process. This was realized by implementing PAT-

capable control loops in the studies to further develop the platform, and using historical 

industrial datasets to demonstrate the applicability of the developed methods for large scale 

cultures. In summary, M3C using PAT technology was employed throughout this work and, 

where no measurements were available yet, industrial and process development data was 

mimicked as input for in-silico simulations. Reliable and robust process control could be 

demonstrated both in theory and in practice, and additional supplementary material, including 

data, can be found on the publisher’s websites. Novel control strategies were established with 

the intended purpose to overcome challenges as more PAT sensor data will become available 

in the near future. In conclusion, this thesis aims at a facilitated scale-up of industrial mAb 

platform processes through advanced process monitoring, modelling and control for the benefit 

of patients who depend on medicines, which are produced robustly and predictably to the 

highest quality standards by design, as demanded by regulators from the FDA and EMA.  
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4 Technical Experience  

 
• Launched Mammalian Cell Culture 2012 at the Research Division Biochemical 

Engineering, Herwig Group, Vienna University of Technology  

• Experience with adherent and suspension cell lines in shake flasks and bioreactors 

• Tech transfer and establishment of an industrial mammalian cell culture scale-down 

model  

• Extensive hands-on experience in specifying, operating, monitoring and controlling 

mammalian cell culture bioprocesses from cryo-vial to bioreactor (Infors Bioreactor) 

• Experience with scripting process management software (Lucullus PIMS, 

Securecell) for automated process control 

• Experience with online-capable sensors and equipment for process development 

(pH, pO2, pCO2, Turbidity, Capacitance, Offgas, Dialysis, Online Analyzer) 

• Development of new HPLC methods (biogenic amines) and transfer of known 

methods (amino acids) in research division 

• Prepared SOPs for autoclaving, amino acid measurement, cell measurement, 

technical operation of an enzymatic analyzer in online mode, seed train, and 

bioreactor preparation and operation. 

• Instructing and training students in autoclaving, safe handling of liquid nitrogen, 

sterile working in a cell culture laboratory and the art of operating bioreactors 

• Programming, data analysis, MVDA and modeling in MATLAB, R, Excel, Spotfire, 

Modde, Simca and related software 

• Upstream mammalian cell culture process monitoring and control using soft 

sensors and PAT technology 
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5 Abbreviations 

 
µmax  Maximum growth rate 
µ   Growth rate 
a_(1…n) Parameters in a multivariate model 
BI  Böhringer Ingelheim 
c_(1…n) Coefficients in a multivariate model 
CHO  Chinese Hamster Ovary Cells 
DoE  Design of Experiment 
EMA   European Medicines Agency 
ESBES European Society of Biochemical Engineering Science  
FDA  Food and Drugs Administration 
GLC  Glucose 
GLN  Glutamine 
GLU  Glutamate 
HK   Hexokinase 
IgG  Immunoglobulin G, mostly referred to as product 
Ks   Substrate affinity coefficient 
LAC  Lactic acid 
LDH   Lactate dehydrogenase 
M3C  Measurement, Modelling, Monitoring and Control 
MVDA  Multivariate Data Analysis 
NAD/NADH Nicotinamide adenine dinucleotide 
NH4  Ammonia 
PAT  Process Analytical Technology 
PFK   Phosphofructokinase 
PFKFB 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 
PIMS  Process Information Management System 
PK   Pyruvate kinase 
QbD  Quality by Design 
S  Substrate, here mostly GLC 
SOP  Standard Operating Procedure 
VK  Viktor Konakovsky 
VUT  Vienna University of Technology 
y  Predicted variable in a multivariate model 
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6 Scientific contributions 

 

 Year Title Ref 

Poster 
contributions 

   

 2014 Real-time process control with PAT tools [27] 

 2015 Online monitoring, modeling and process control in 
mammalian cell culture 

[47] 

Oral 
presentations 

   

 2014 Lactic acid consumption without collinear effects [28] 

 2015 Bridging transcriptomics, modeling and process control in a 
systems approach for mammalian cell culture 

[48] 

 2015 BioPro World Talent Campus case study - Full scale 
fermentation heterogeneity 

[46] 

 2016 Metabolic Control Of Mammalian Fed-Batch Processes With 
Transferable Biomass Models 

[49] 

 2017 Universal Capacitance Model for Real-Time Biomass in Cell 
Culture 

[50] 

Publications    

 2015 Improved metabolic process control by analysis of genetic 
clone background in mammalian cell culture 

[12] 

 2015 Universal Capacitance Model for Real-Time Biomass in Cell 
Culture 

[10] 

 2016 Metabolic Control in Mammalian Fed-Batch Cell Cultures for 
Reduced Lactic Acid Accumulation and Improved Process 
Robustness 

[11] 

 2017 A robust feeding strategy to maintain set-point glucose in 
mammalian fed-batch cultures when input parameters have 
a large error 

 

[13] 
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7 Tables 

 
Table 1: Overview of M3C methodology applied in this thesis. ............................................... 2 

Table 2: Author contributions and area of scientific focus in the publications. .......................14 

 

8 Figures 

 
Figure 1: Available PAT Tools in this project. ........................................................................ 5 

Figure 2: Data processing algorithms that work well for small datasets as encountered in 
bioprocesses. Robust outlier detection, interpolation of missing values and curve fitting 
algorithms were important for automatic processing steps during data collection to turn 
raw data to knowledge. Figures adapted from [21][22][23]. ............................................ 7 

Figure 3: General modelling techniques explored in this thesis. Where possible, simple and 
univariate techniques are applied. Where necessary, more complex models were 
employed that could address various challenges in more detail. Multivariate regression 
models (PLS-R) were more accurate than univariate regression models, while complex 
mechanistic models helped to gain fundamental understanding on cell metabolism, 
which simple models could not represent adequately. .................................................... 8 
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