
An infrastructure agnostic
application deployment

framework for the Internet of
Things

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Software Engineering & Internet Computing

eingereicht von

Peter Eder
Matrikelnummer 0926758

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Univ.Prof. Dr. Schahram Dustdar
Mitwirkung: Dr. Michael Vögler

Wien, 18. April 2017
Peter Eder Schahram Dustdar

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

An infrastructure agnostic
application deployment

framework for the Internet of
Things

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Software Engineering & Internet Computing

by

Peter Eder
Registration Number 0926758

to the Faculty of Informatics

at the TU Wien

Advisor: Univ.Prof. Dr. Schahram Dustdar
Assistance: Dr. Michael Vögler

Vienna, 18th April, 2017
Peter Eder Schahram Dustdar

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Erklärung zur Verfassung der
Arbeit

Peter Eder
Weimarer Strasse 3/3, 1180 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 18. April 2017
Peter Eder

v

Acknowledgements

I would like to thank my advisor Prof. Schahram Dustdar who gave me the opportunity
to write this thesis at the Distributed Systems Group. Many thanks also to my co-advisor
Dr. Michael Vögler who helped me in the course of writing this thesis. He always
provided very constructive and fast feedback, and continued supervising even after he
finished his PhD. Last but not least, I want to thank my parents, who made it possible
for me to study Computer Science in Vienna and supported me throughout the past
years.

vii

Abstract

In the last years terms like Smart Grid, Smart City or Smart Vehicle, became increasingly
popular. They all fall under the conception of the so called Internet of Things (IoT). It
is estimated that in 2020 will be up to 34 billion devices connected with the Internet.

However, the huge potentials of IoT come with various challenges. Among issues like
privacy, security, scalability, etc., the infrastructure in IoT is a significant problem. The
huge amount of different devices leads to a highly heterogeneous environment. Thus,
developing applications that respect these heterogeneous infrastructures is exceedingly
complex and in further consequence very error prone. A possible solution to this problem
is to abstract the hardware layer through virtualization.

In the course of this thesis we investigate how operating-system-level virtualization can be
used to cope with the heterogeneous environment. Therefore, commonly used IoT devices
are presented and an in-depth explanation of how operating-system-level virtualization is
implemented on different operating systems (e.g., Linux, FreeBSD, Solaris, Windows)
is given. Furthermore, currently available container engines with focus on Linux are
introduced and compared. We also explain the concept of continuous delivery, and why
this development approach facilitates agile development.

To show the feasibility of operating-system-level virtualization in the context of IoT, a
prototype of an application deployment framework is developed. This framework provides
distribution and deployment of applications within one click. Furthermore, it allows
to deploy on different CPU-architectures (e.g., ARM, x86) transparently to the user.
Additionally, it can easily be integrated within a continuous delivery pipeline through a
REST API. The features of the framework are demonstrated via the deployment of a
Building Managament System (BMS). In the last part of the thesis, the deployment time
of different applications on various devices is evaluated and discussed, which shows both,
feasibility and applicability of the proposed approach.

ix

Kurzfassung

In den letzten Jahren wurden Begriffe wie Smart Grid, Smart City, oder Smart Vehic-
les immer populärer. Sie fallen alle unter das Konzept des Internet der Dinge (IoT).
Schätzungen zufolge werden im Jahr 2020 bis zu 34 Milliarden Geräte mit dem Internet
verbunden sein.

Das große Potenzial von IoT ist mit vielen Herausforderungen verbunden. Neben Aspek-
ten wie Privatsphäre, Sicherheit, Skalierbarkeit, etc., ist die Infrastruktur des IoT ein
erhebliches Problem. Die große Anzahl an unterschiedlichen Geräten führt zu einem
sehr heterogenen Umfeld. Die Entwicklung von Applikationen, welche diese heterogene
Infrastruktur berücksichtigt, wird dadurch äußerst komplex und fehleranfällig. Eine
mögliche Lösung für dieses Problem ist die Abstrahierung der Hardwareschicht durch
Virtualisierung.

Im Zuge dieser Diplomarbeit wird die Verwendung von Betriebssystemvirtualisierung
in Verbindung mit dieser heterogenen Umgebung untersucht. In diesem Zusammenhang
werden häufig verwendete IoT Geräte vorgestellt. Zudem erfolgt eine detaillierte Be-
schreibung der Virtualisierung in verschiedenen Betriebssystemen (z.B.: Linux, FreeBSD,
Solaris, Windows). Neben der Vorstellung von aktuellen Container Engines mit Fokus
auf Linux, wird auch das Konzept der Continuous Delivery erläutert.

Zur Demonstrierung der Anwendbarkeit der Betriebssystemvirtualisierung im Kontext
von IoT, wird ein Application Deployment Framework entwickelt. Dieses Framework bietet
die Möglichkeit Applikationen mit einem Klick zu verteilen und einzusetzen. Zusätzlich
erlaubt es das Einsetzen auf verschiedenen CPU-Architekturen (z.B.: ARM, x86) und
vereinfacht die Integrierung in eine bereits vorhandene Continuous Delivery Pipeline
durch eine REST API. Die Funktionen des Frameworks werden durch den Einsatz
eines Gebäudemanagementsystems veranschaulicht. Im letzten Teil der Diplomarbeit,
wird die Verwendung von verschiedenen Applikationen auf unterschiedlichen Geräten
hinsichtlich der Realisierbarkeit und Anwendbarkeit des vorgestellten Ansatzes evaluiert
und diskutiert.

xi

Contents

Abstract ix

Kurzfassung xi

Contents xiii

1 Introduction 1
1.1 Problem Statement . 1
1.2 Aim of the Work . 2
1.3 Methodological Approach . 2
1.4 Structure of the Work . 3

2 Background 5
2.1 Internet of Things . 5
2.2 Virtualization . 9
2.3 Continuous Delivery . 13

3 State of the Art 19
3.1 IoT Hardware . 19
3.2 IoT Communication Standards . 22
3.3 Operating-System-Level Virtualization . 27
3.4 Container Deployment Frameworks . 42

4 Design & Implementation 49
4.1 Features . 49
4.2 Design . 50
4.3 Implementation . 58

5 Demonstration 63
5.1 Use Case Definition . 63
5.2 Application Deployment and Management 63
5.3 Summary . 67

6 Evaluation 69

xiii

6.1 Scenarios . 69
6.2 Benchmark . 70
6.3 Discussion . 77

7 Conclusion 79
7.1 Summary . 79
7.2 Future Work . 80

List of Figures 83

List of Tables 84

Bibliography 85

A Measurements 95
A.1 Notebook . 95
A.2 Hosted Server . 97
A.3 Raspberry Pi . 99

CHAPTER 1
Introduction

In the last years terms like Smart Grid, Smart City or Smart Vehicle, became increasingly
popular. They fall under the conception of the so called Internet of Things (IoT).
Basically, the idea behind IoT is to integrate the virtual world of information technology
seamlessly with the real world of things, as stated by Uckelmann et al. [114]. This
means that things that surround us in our everyday life are interconnected with each
other and can be used to gain information that is collected via the Internet.

The following numbers give some insights about the potential IoT has in the next years.
The Business Insider [84] estimates that in 2020 will be up to 34 billion devices connected
with the Internet. Where about ten billion devices will be out of the traditional computing
domain (PC, smartphone, tablet, etc.) and 24 billion devices will be real IoT devices.
Considering the world population estimation for 2020 [115] with 7.7 billion people living
on the earth, there will be about 4.4 connected devices per person.

A typical IoT application would be Assisted driving [21], where interconnected cars and
various sensors increase safety and efficiency through information exchange of current
traffic, road conditions, etc. In context of healthcare a possible application is Sensing [21],
which allows to monitor health conditions of patients remotely in real time, whereas
they are not restricted in their mobility. These are only two examples, but the possible
scenarios where IoT leads to a more intelligent environment are nearly endless.

1.1 Problem Statement
However, the huge potentials of IoT come with various challenges. Among issues like
privacy, security, scalability, etc., the infrastructure in IoT is a significant problem. The
huge amount of different devices leads to a highly heterogeneous environment. Thus,
developing applications that respect these heterogeneous infrastructures is exceedingly
complex and in further consequence very error prone. A possible solution to this problem

1

1. Introduction

is to abstract the hardware layer by so called Virtual machines as described by Chen
and Noble [32].

Beside infrastructure, another challenge is maintaining and managing IoT software. IoT
devices are naturally highly distributed, thus, applications must be managed remotely.
This means that a standardized interface to each node is needed to distribute and
deploy applications automatically. Since modern software development embraces short
development cycles with low risk releases this comes also in hand to establish a Continuous
Deployment Pipeline as described by Humble and Farley [64]. In addition to deploying,
it is also needed to monitor running applications. IoT applications are often deployed in
a massive scale and therefore hardware failures are the norm, not the exception. When
it comes to software bugs, tools are needed to overwatch running applications. Thus,
developers need easy access to logging output for debugging purposes.

1.2 Aim of the Work

The aim of this work is to investigate how the concept of virtualization can be applied
in the area of IoT to decrease the complexity of application deployment on highly
heterogeneous environments. Therefore, we will discuss different kind of virtualization
techniques that are currently available. We will also have a look on different frameworks
to manage applications on distributed devices.

The gained insights will be used to develop a prototype that allows to deploy and manage
distributed applications. There will also be an interface that makes it possible to integrate
the deployment framework in an existing continuous delivery pipeline. Furthermore, we
will evaluate the performance and feasibility of the implemented prototype in different
scenarios.

1.3 Methodological Approach

The methodological approach for this thesis consists of the following steps:

• The first step is to analyze different implementations of operating-system-level
virtualization. The differences will be evaluated in terms of applicability and
feasibility for IoT.

• Second, currently available deployment frameworks are analyzed. This will give an
overview of commonly supported features. The outcome will help in designing an
application deployment framework for IoT.

• In the next step, the architecture of the application deployment framework will
be designed and a prototype developed. The framework will follow a microservice
architecture [96] and offer a web interface.

2

1.4. Structure of the Work

• After development, the performance of the prototype will be evaluated. These
benchmarks will give insights about distribution and deployment time in various
real world scenarios. The test scenarios will consider different image sizes and
infrastructure types.

• Finally, the gained insights will be discussed in terms of applicability, performance,
etc. in the thesis. Furthermore, an outlook on future work is given.

1.4 Structure of the Work
The remainder of this thesis is structured the following way:

• Chapter 2 provides a detailed description of the topics and basic concepts covered in
this thesis. It introduces and defines IoT, explains different virtualization concepts
in context of IoT and describes the concepts behind continuous delivery.

• Chapter 3 shows various IoT hardware and explains commonly used communication
standards. Furthermore, it gives an overview of state of the art virtualization
engines and explains different application deployment frameworks.

• Chapter 4 describes the design and implementation of the deployment framework
prototype.

• Chapter 5 presents a typical use case and shows how the introduced framework
can be used to efficiently deploy and manage applications in that context.

• In Chapter 6 an evaluation of the prototype is made in terms of performance.
Therefore, deployment time of several images is measured in context of different
infrastructures.

• Chapter 7 presents the outcome of this thesis and gives an outlook on future work.

3

CHAPTER 2
Background

In this chapter we discuss several topics which are fundamental for the remainder of
this thesis. First, we will introduce the Internet of Things and explain applications
and important challenges. Second, we explain the concept of virtualization and give
an overview about the different types of virtualization. Finally, the last part describes
continuous delivery, a modern software development approach. It should give insights
why application deployment frameworks are essential for modern software development.

2.1 Internet of Things

It is considered that the term Internet of Things (IoT) first came up in a speech hold
by Peter T. Lewis in 1985 [109]. Later, in 1999, Kevin Ashton describe the shift from
humans who enter data into machines to machines, which can observe and identify the
world by their own [20]. In the last couple of years IoT gained more and more interest
because of increased miniaturization of computers and ubiquitous Internet access. In
2008 the U.S. National Intelligence Council named the IoT one of the six Disruptive Civil
Technologies for the future. The EU is investing 192 million Euro in the IoT research in
the years from 2014 to 2017. Also China is investing enormous amounts of money to
become a global leader in deployment of the Internet of Things.

2.1.1 Definition

The term IoT is widely used, but it is not easy to give a clear explanation what the IoT
really means. Today, several different definitions are used depending on the stakeholders
perspective. Atzorri et al. [21] describe three different kind of visions that converge
in the IoT paradigm: the things-oriented vision, the Internet-oriented vision, and the
semantic-oriented vision.

5

2. Background

The things-oriented vision comes from a perspective with simple objects like Radio-
Frequency IDentification (RFID) tags. Therefore, it is mainly focused on traceability of
objects and current properties like location, state, etc. On the other hand the Internet-
oriented vision is focused on the Internet Protocol for connecting objects and reusing of
web standards to connect surrounding objects with the Internet. The idea behind the
semantic-oriented vision is that the enormous amount of connected things and therefore
the large amount of collected data will be challenging to analyze and process. Thus,
semantic technologies could solve this issue with smart organization of the data. The full
potential of the Internet of Things can only be reached as a confluence of this different
kind of perspectives.

A commonly used definition for the Internet of Things is explained by Bassi and Horn.
The authors define the IoT as "a world-wide network of interconnected objects uniquely
addressable, based on standard communication protocols" [22]. Another, more general
definition was stated by Gubbi et al. They describe the Internet of Things as an
"Interconnection of sensing and actuating devices providing the ability to share information
across platforms through a unified framework, developing a common operating picture
for enabling innovative applications. This is achieved by seamless large scale sensing,
data analytics and information representation using cutting edge ubiquitous sensing and
cloud computing." [57].

2.1.2 Applications

Altough the number of possible applications for the IoT is large, they can be grouped in
the following domains [21]: Transportation and logistics, Healthcare, Smart environment,
and Personal and social.

Transportation and Logistics

A currently very popular application is assisted driving. Sensors and actuators used in
vehicles and the road itself lead to an enormous gain on information. This data can be
used to optimize routing depending on real time traffic conditions. Thus, assisted driving
leads to more efficient and safer transportation.

When it comes to logistics, the IoT brings a significant improvement of organization.
Since transported goods can be easily equipped with low cost RFID tags, it is possible to
track down the current position of each object in the supply chain. This helps identifying
bottlenecks and increases throughput.

Healthcare

A very important application is remote monitoring of patients. Sensors that track vital
functions, can provide real time information about the current conditions when used in
context of the IoT. Real time monitoring provides the possibility of faster life-saving
action in case of emergency. Also the patient is not bound locally, which offers a huge

6

2.1. Internet of Things

increase in quality of life for certain groups of patients. Furthermore, it also decreases
costs since patients do not have to be on-site all the time and therefore capacities in
hospitals are freed-up.

As for logistics, another applications is tracking of patients. This information can be
used to optimize organizational processes inside of hospitals and improve waiting time
and in further consequence customer satisfaction.

Smart Environment

The purpose of smart environments is to increase comfort and efficiency through in-
telligence of involved objects. An application in this domain that is nowadays widely
covered in the media is the smart home. Smart homes allow intelligent regulation of home
facilities. Some examples are: light regulation according to daytime; heat regulation in
context of weather conditions; automatic power off of unused electronic devices; etc.

Personal and Social

A very simple, but useful application in the personal domain is searching for lost objects.
For this purpose, the last tracked position of a tagged object can be used. When it comes
to social networking a use-case is automatic updating of current activities. Attending of
events for example can be automatically updated on location based services. This is of
course a highly controversial topic since it raises significant privacy issues that offer the
possibility of total supervision.

2.1.3 Current State

According to Uckelmann et al. [114] the evolution of the IoT follows a phased approach.
Starting from the Intranet of Things, evolving to the Extranet of Things and finally
becoming the actual Internet of Things. The first phase can be characterized by many
small intranets of things, where lots of different technologies are used and a lack of
standardization is prevalent. These networks cannot be accessed globally. The Extranet
of Things offers limited access for external individuals, but is still lacking the global
scope. Bassi et al. [126] describe the last phase, the true Internet of Things, as "a globally
integrated system". This implies that each device can be accessed universally. Uckelmann
et al. [114] state that currently most implementations are still in the first or second phase.

2.1.4 Architecture of the IoT

Want et al. [121] describe two different architectures for the IoT: a centralized IoT service
and a peer-to-peer approach. Using a centralized approach, all devices are connected
with the Internet and the services are communicating directly with the devices. In
general, centralized services are easier to manage and have better scalability compared
to a distributed approach. However, while some of the devices have the capability to
connect to the Internet directly, a big part of devices are ultra low power sensors and

7

2. Background

Figure 2.1: Example of a network architecture for the IoT

actuators with no or only less computing possibilities. RFID tags, for example, are
typically passive and cannot communicate directly with the Internet. Therefore, often
some kind of bridge is needed to make this devices universally accessible. A peer-to-peer
architecture with IoT gateways is used exactly for this purpose. Figure 2.1 shows an
example of an IoT architecture, where gateways are used to access actuators and sensors
through the Internet. As for RFID tags, the RFID readers can be seen as their gateway
to the Internet [41]. Other actuators and sensors can make use of standards designed
for communication of low power devices like ZigBee or 6LoWPAN to communicate with
each other and the gateway [53].

Enabling Technologies

Putting the vision of the IoT into the real world requires enabling technologies from
several different areas. Atzorri et al. [21] describe two major categories: Identification,
sensing and communication technologies and Middleware. As mentioned before, a key
technology for IoT will be RFID systems. RFID tags are of very low cost and do
not require batteries, which means they can be used over a very long period of time.
The problem of RFID tags is that they offer no processing power and no advanced
sensing capabilities. Basically, RFID tags can only be used to check the presence of
things. Another important technology will be wireless sensor networks (WSN). WSNs
are networks with usually a high number of sensing nodes, which communicate with
each other in a peer to peer fashion. WSNs have more advanced processing and sensing
capabilities compared to RFID systems, but require a battery. RFID sensor networks
(RFNs) are the combination of both technologies, RFID systems and WSNs. RFNs
support sensing and processing, but are still passive devices, which harvest their energy
during communication. The disadvantage of this technology is the low range it offers,
which is usually only a few meters. Middleware makes the low power devices universally
accessible. Furthermore, it helps to abstract the different technologies and thus, simplifies

8

2.2. Virtualization

software development.

According to Gubbi et al. [57], the ability to identify and address IoT devices by a unique
ID is a further key technology to establish the IoT. However, the address space of IPv4 is
almost exhausted. Its successor, IPv6 [38], allows theoretically about 3.4 ∗ 1038 different
addresses. Although IPv6 was proposed a couple of years ago by the Internet Engineering
Task Force (IETF), it still has a low degree of prevalence. In order to be able to address
every IoT device, establishing IPv6 is needed.

Important Challenges

Beside technologies that are needed to spread usage of the IoT we also have to address
important open research issues. Although there are many problems that still are not
solved we will focus here on issues concerning standardization, privacy, and security.

As mentioned earlier, the lack of standardization is one of the biggest problems in the
IoT. Standardized interfaces for sensors and actuators would help to decrease costs of
application development. Currently, many proprietary solutions are available that lead
to a highly heterogeneous environment.

When it comes to security the IoT is at high risk of attacks, because of several reasons as
described by Atzorri et al. [21]. First, IoT devices are typically deployed at a massive
scale, thus they can not be overseen directly most of the time. This makes it possible
for attackers to gain direct access physically. Second, IoT devices are mostly using
wireless connections to communicate with each other. And third, they are usually of
very low processing capability (e.g., RFID tags). These characteristics require new
security concepts to build common trust in the new technologies. Although, significant
effort in terms of research in this area has been taken, the proposed solutions often
require sophisticated cryptographic encoding and are not feasible for IoT devices with
low processing power.

Another important challenge of the IoT is privacy. This is a very sensitive topic, since
IoT devices are everyday things and therefore offer access to very private data (e.g., vital
function, localization data, etc.). This could lead to universal supervision in a way that
has never been possible before.

2.2 Virtualization
To understand what virtualization in context of computer systems means, we first have
to distinguish between emulation and virtualization. The difference has been explained
by Lowe in [92]. Using emulation the complete hardware is simulated with software.
This allows, for example, to run software that is only compatible for system A to run
on another system B, that is emulating system A. The architecture of system A and B
can differ in every aspect, as long as an emulation for system A is available. Since old
architectures can be simulated on new systems, it leads to a higher compatibility, but
comes with cost of performance. Although virtualization also uses some kind of scheduler

9

2. Background

to access hardware resources, these accesses are done directly. Thus, it has a significant
better performance compared to emulation. However, it is limited to software that is
built for the underlying hardware. Virtualization implementations often also use some
form of emulation for specific hardware resources to increase compatibility.

Nanda and Chiueh [33] define virtualization as follows: ”Virtualization is a technology that
combines or divides computing resources to present one or many operating environments
using methodologies like hardware and software partitioning or aggregation, partial or
complete machine simulation, emulation, time-sharing, and many others”.

Virtualization was first used in the 60s by IBM, in the area of mainframes [33]. It was
developed to increase utilization of the expensive systems via concurrent access. Over
the last decades significant effort in terms of research and optimization was taken, to
improve virtualization technologies. Today modern servers are virtualized, because of
several inherent benefits [124]:

• Server consolidation: Several under-utilized servers can be virtualized on one
physical machine. This increases efficiency and, thus, decreases hardware expenses.
Furthermore, maintenance costs are reduced when less physical machines are needed.

• Fault tolerance: Untrusted programs can easily be isolated to protect the physical
resources. This can also be done to create secure environments for end users.

• Intrusion detection: Virtualization can be used to set up an environment as a so
called honeypot to catch intruders.

• System migration: Virtualized environments, are a software implementation of a
real machine, and therefore can easily be transfered to different physical machines.
This leads to lower down time in case of hardware failure.

• Virtual appliance: Already set-up applications, packed within their needed environ-
ment (operating system, database, etc.) allows costumers fast and easy deployment
of new software. Since the environment is standardized and known by the vendor,
updating and bug fixing of their applications is less error prone.

• Debugging and testing: Virtualization offers the possibility to clone production
systems and create identical test systems within no time. This makes developing
and testing in production environments very easy and leads to better software
quality.

Virtualization is basically implemented with an added virtualization layer somewhere
between hardware and application. The control instance at the virtualization layer is
called a Virtual Machine Monitor (VMM), or sometimes referred to as Hypervisor. There
are different virtualization concepts available, depending on where the layer is put and
how resources are virtualized. Each approach has its specific use case and is always a
trade off between efficiency, isolation, reliability, and compatibility [111, 123].

10

2.2. Virtualization

Figure 2.2: Different levels of virtualization

Goldberg and Popek [99] described three fundamental properties that are important for
virtualization: efficiency, resource control, and equivalence. Efficiency in this context
means all safe instructions are executed directly by the hardware without use of the
virtualization layer. Resource control is defined as complete control of the resources
by the Hypervisor. Thus, guest operating systems cannot allocate resources through
bypassing the virtualization layer. This also means that every program executed inside a
virtual environment has the same access to privileged instructions as executed without
virtualization. Although these requirements were defined in 1974, and computer systems
and architecture changed since then, they are still valid [97].

The classification of the different virtualization concepts is not clearly defined in the
literature. We will follow the taxonomy as described by Nanda and Chiueh [33], where the
concepts are grouped by the level of the abstraction layer. Furthermore, we will focus on
hardware-level virtualization, operating-system-level virtualization, and application-level
virtualization. Figure 2.2 gives an comparison of the different levels. The name guest
operating system stands for the operating system that runs in a virtualized environment,
the host operating system, on the other hand, is the operating system that hosts the
virtual machines.

2.2.1 Hardware-Level Virtualization

In hardware-level virtualization, the virtualization layer sits right on top of the hardware
layer. The virtualized environments with their isolated operating systems are often called
Virtual machines.

There are several different kinds of virtualization techniques available on the hardware-
level. The two most commonly used are Native virtualization and Paravirtualization.

Native Virtualization

Native virtualization, or sometimes called full virtualization, allows to run operating
systems and software as if they would be installed on original hardware [123]. This
means that the guest operating system in the virtual machine is not aware of the
underlying virtualization. Native virtualization is achieved through a compromise of

11

2. Background

emulation and direct hardware access. This technique leads to a very high compatibility
of operating systems since there is no adaptation needed. However, this comes with
possible performance issues, in cases where instructions mainly have to be emulated
instead of directly processing by the hardware.

Paravirtualization

Gribble et al. [122] introduced Paravirtualization as a lightweight alternative to native
virtualization that offers better scalability, performance, and simplicity. Basically, in
Paravirtualization guest operating systems are aware of the virtualization of the hardware
and thus, can give more information about current state to the Hypervisor. The
Hypervisor uses this information for more intelligent assignment of resources to each
virtual machine. For example, if the operating system is idle, normally the guest operating
system would still waste resources in an idle loop, but since the guest operating system
can inform the Hypervisor, resources can be assigned to another virtual machine. The
main disadvantage of Paravirtualization is that the guest operating system has to be
adapted for usage.

2.2.2 Operating-System-Level Virtualization

As described by Chan et al. [119] operating-system(OS)-level virtualization uses a modified
operating system that allows running multiple isolated instances. These instances are
often called containers or jails. Containers share the kernel of the host system and thus,
are bound to its kernel version. Altough, all containers share the same kernel, each
instance can be booted, shut down and rebooted the same way as a normal operating
system [111]. Isolation of containers is achieved through various OS-kernel features
depending on the implementation. OS-level virtualization has the advantage of very
little virtualization overhead [44]. Thus, performance is close to the native approach
without virtualization. Furthermore, little resources like memory and CPU are wasted.
The containers are also very lightweight when it comes to disk space, because it is not
necessary to have a whole clone of the operating system for each container. The main
drawback of this method is that since all containers are using the same kernel it is not
possible to run operating systems with different kernels. Another problem is that the
kernel is a single point of failure, since a crash of it causes a crash of all containers.

2.2.3 Application-Level Virtualization

Application-level virtualization puts the virtualization layer between host operating
system and the application itself [107]. The application layer is usually an application
that runs on top of the host operating system. Virtualized applications are then executed
by this virtualization layer. Each application is executed in its own virtual environment.
The abstraction of the underlying system can offer high compatibility where the virtualized
application can be executed on different operating systems without any modifications.
Furthermore, it can also be used as a sandbox to execute untrusted applications in a safe

12

2.3. Continuous Delivery

environment. Since only the application itself is virtualized, it uses significantly less disk
space compared to a container or virtual machine. Another advantage is that multiple
versions of the same application can be run simultaneously since they are isolated from
each other and no installation conflicts can occur. On the other hand, it only allows
to isolate single programs but not a whole operating system instance. Typical example
for an application-level virtualization implementation is the well known Java Virtual
Machine (JVM).

2.3 Continuous Delivery

Modern software development requires fast adaptation on changing requirements, bug
fixing, customer feedback, etc. Extreme programming, Scrum, DSDM, Crystal, Feature-
Driven Development are some example techniques to achieve such an agile environment.
In 2001 The Agile Alliance, a group of leading software development experts, defined
the Agile Manifesto [24]. The Agile Manifesto is composed of four values and twelve
principles that lead to agile software development. The first principle is defined as:
"Our highest priority is to satisfy the customer through early and continuous delivery of
valuable software." Thus, continuous delivery of software is an integral part of an agile
culture. Fowler [49] describes continuous delivery as "a software development discipline
where you build software in such a way that the software can be released to production
at any time."

Farley and Humble explain the principles and methodologies of continuous delivery in
[64]. They state that the main goal is to "deliver high-quality, valuable software in an
efficient, fast, and reliable manner."

2.3.1 Why Continuous Delivery?

Releasing new software is often a manual process. Since modern software projects tend
to be very complex with numerous dependencies, every step in this procedure is very
error prone. Doing it manually means that every release is very risky because of potential
human mistakes. Therefore, a release is very stressful for everybody who is involved.
Furthermore, because deploying new software into production takes so much effort,
software teams are likely to make only a few, but big releases. The problem with big
and infrequent releases is that feedback takes a long time. Thus wrong assumptions are
fixed in a late stage of development, which means a lot of effort compared to early stages.
Another common problem software projects often face is that production environments
are configured manually by the operations team. This leads to test systems that differ
from production and in further consequence, tests are not reliable anymore.

Continuous delivery can solve these problems. In detail, this can be achieved through
frequent, automated releases. Automation is needed to make the whole process from
building to releasing, repeatable and standardized. As a further consequence automation
reduces errors since reviews and improvements can be done transparently and every release

13

2. Background

is done in the exact same way. A high level of automation can only be reached through
extensive test automation, which is also an inherent part of continuous delivery. Frequent
releases, on the other hand keep the delta between releases low. Small, incremental releases
have the benefit that the risk of releasing software decreases significantly. Furthermore,
if new functionality or changes are released frequently, we get quick feedback from users,
and thus, can adjust fast if the product is not meeting their expectations. Summarized,
continuous delivery brings several benefits for software development [63]:

• Low risk releases: As described, automation removes potential human errors and
makes releasing standardized and repeatable.

• Faster time to market: The ability to make frequent releases requires a fast way
to bring new software into production. Therefore, development teams are forced
to improve the whole development process from building to releasing. Continuous
delivery makes bottlenecks visible since releasing is way more transparent compared
to traditional approaches. Ultimately, new functionality is deployed faster, because
of constant improvements.

• Higher quality: Reliable automated tests give fast feedback about correct imple-
mentation of functional requirements. This allows development teams to focus
on high level testing of, for example, usability, performance and security, which
ensures a higher quality of the software.

• Lower costs: Establishing continuous delivery takes some effort at the beginning
since a high degree of automation and test coverage is required. But in the long
run it pays of, because the fixed costs of releasing are significantly lower compared
to manual releasing.

• Better products: Small, incremental releases allow fast customer feedback, which
helps to meet their needs.

• Happier teams: Since releasing becomes an effortless everyday task, the typical
stressful days before a deadline vanish. Reducing or even removing painful and
error prone tasks that had to be done by developers in order to release new software
helps to keep them motivated since they can focus on the interesting parts like
developing of new features.

2.3.2 Establishing Continuous Delivery

Basically, three concepts build the foundation for establishing continuous delivery [63]:
configuration management, continuous integration, and continuous testing.

14

2.3. Continuous Delivery

Configuration Management

Farley and Humble [64] define configuration management as follows: "Configuration
management refers to the process by which all artifacts relevant to your project, and the
relationships between them, are stored, retrieved, uniquely identified, and modified."

The key element of configuration management is universal version control. We need to
version control everything that is required for the software project. This means source
code, test and deployment scripts, infrastructure configuration, application configuration,
project dependencies, project documentation, etc. are kept in a central version control
system, that is accessible by the whole team. The two main goals of configuration
management are reproducibility and traceability. Reproducibility means it should be
possible to automatically provision an environment and get identical copies if needed at
anytime. Traceability refers to the ability to determine the version of every part, which
was used to create the environment. Furthermore, it should be possible to easily compare
different versions of the environment.

Continuous Integration

The main idea of continuous integration [48, 42] is that every developer integrates his
work to the main branch frequently. Frequently means that developers merge with the
mainline at least daily. While integrating regularly, it has to be ensured that the main
branch is in a working state all the time. If the mainline breaks, it is fixed immediately.
Continuous integration was first brought up by Kent Beck as a part of XP (extreme
programming) [23]. It guarantees that developer branches are not drifting away from
trunk. Since small changes are integrated into the main branch frequently instead of
big changes rarely, merging with trunk becomes less error prone. However, establishing
continuous integration comes with some challenges that have to be addressed. For
example, since only code that can be built and is tested, is allowed to be merged into
trunk, developers tend to commit very infrequently or stick to a low degree of test
coverage. In general, continuous integration requires a cultural shift in the development
team. There are several practices, which are needed to establish effective continuous
integration [64, 48]:

• Check in regularly: Committing frequently is the fundamental practice of continuous
integration. It has to be ensured that all developers are using the main branch and
not separate feature branches, which would undermine the whole concept.

• Automated testing: Since testing has to be done after each commit, there is a high
degree of automation needed. Manual tests would slow down the building and
testing and is not feasible. To make sure that the main branch is in a working
state, a high degree of test coverage is needed.

• Keep the build fast: Building is done after every commit. Thus, building and
testing of the code needs to be fast so that the developers get rapid feedback about

15

2. Background

their code. This can be quite challenging but it is a very important aspect when it
comes to continuous integration.

• Never check in if building fails: Developers have to synchronize with the trunk
branch and test their build locally or on a integration machine before they merge
with the master. If the build fails, they are not allowed to merge.

• Fix immediately: If building of the mainline fails, it has to be fixed immediately. In
case finding a solution to the problem takes longer than ten minutes the mainline
should be reverted to its last successful build.

• Test in an environment that is identical to production: To get confidence in the
tests, it is essential to test in a clone of the production environment. Otherwise
there is always a significant risk that a successful build breaks in production.

Continuous Testing

Humble explains the idea of continuous testing as follows: "Our goal is to run many
different types of tests — both manual and automated — continually throughout the
delivery process." [62]. The different types of tests include automated tests like unit
tests, component tests, system tests, functional and nonfunctional acceptance tests, etc.
and manual tests like usability testing or nonfunctional acceptance tests that cannot
be automated. Thus, continuous testing is not only about test automation, it is about
implementing a comprehensive testing strategy. However, the automation of tests should
be as high as possible. Since fast feedback is needed the first tests should run really fast.
Therefore, unit tests should be run first and give feedback within a couple of minutes. If
this tests pass, more complex automated tests can be run. Only if all automated tests
are successfully executed, time-consuming manual tests are carried out. The goal is to
achieve a high test coverage and variety of different kind of tests so that developers have
confidence that the application can safely be deployed to production. This is essential
for frequent deployment.

The Deployment Pipeline

As described above, automation of building and testing is fundamental for continuous
delivery to get fast feedback. The problem is that extensive tests can take a long time
to complete and some tests cannot be automated. Modeling the delivery process as a
Deployment pipeline helps to overcome this problem by splitting up the whole process
from compiling to deployment in several stages as stated by Fowler [50]. Figure 2.3 shows
an example of a typical deployment pipeline. It was first mentioned by Humble et al. [65]
in 2006. The deployment pipeline consists of several steps where each step can be seen
as a barrier that has to be taken so that the application can proceed to the next stage.
The feedback takes longer the more stages are passed. Therefore, the first stage, often
called commit stage, checks if the application can be build successfully and runs only
fast tests. Humble [61] states that it should not take longer than 10 minutes to pass the

16

2.3. Continuous Delivery

Figure 2.3: Deployment pipeline, adapted from [64]

commit stage. The next stage carries out more sophisticates tests, as integration tests,
performance tests, etc. To make processing faster, some stages can be parallelized in a
way that complex tests are executed simultaneously.

Maturity of Continuous Delivery

To get clear insights about how well continuous delivery is established in the development
process, some metrics are needed. It is important to make the improvements and the
progress during implementation of a deployment pipeline visible. An often used metric is
the cycle time. Farley and Humble [64] define the cycle time as "the time from deciding
that you need to make a change to having it in production". Thus, the goal is to keep
the cycle time as low as possible, while keeping a high test coverage which ensures that
quality requirements are met.

2.3.3 Continuous Delivery vs. Continuous Deployment

A concept that is often used interchangeably with continuous delivery is continuous
deployment [64]. Although, many people use them as synonyms there is an important
difference between them. While the goal of continuous deployment is to bring every
change that passes the deployment pipeline into production, continuous delivery only
guarantees that deployment can be done whenever wanted. This means that the last step
of the deployment pipeline, deploying the software into production, is done manually
in continuous delivery and automatically when continuous deployment is implemented.
Thus, continuous deployment relies on a well established continuous delivery process and
goes one step further. It can be seen as the evolution of continuous delivery. However,
for some projects it is not feasible to release new software several times a day. Therefore,
deciding which software development approach fits best always depends on the software
project.

17

CHAPTER 3
State of the Art

This chapter gives an overview about currently available IoT hardware and modern
communication standards that are used in the IoT domain. Furthermore, it shows how
operating systems support virtualization in detail and describes the features of popular
container engines. The last section presents state of the art application deployment
frameworks.

3.1 IoT Hardware

In the last years many different IoT hardware platforms were introduced. We will
present some common devices that are used in context of IoT development in this
section. Therefore, we focus on three different types of devices: sensors, gateways, and
development platforms.

3.1.1 Sensors

There are many different sensors for all kind of applications available. Some examples
are temperature sensors, humidity sensors, light meters, accelerometers, magnet sensors,
motion sensors, etc. These sensors are mostly sold as microchips and come without any
further computational power or higher level connectivity. Thus, a sensor node is needed,
which is directly connected to the sensor or in a low distance when RFID is used. A
sensor node allows to access the sensors through various interfaces like WLAN, ZigBee,
etc. An example for such a node is the Arduino Uno [15]. Table 3.1 gives an overview of
its specifications. Although the Arduino is mostly used for development purposes, its
specifications should give some insights about the typical capabilities of sensor nodes.

19

3. State of the Art

Arduino Uno Revision 3

Microcontroller ATmega328
Clock Speed 16MHz
Digital I/O Pins 14
Analog Input Pins 6
Flash Memory 32KB
SRAM 2KB
EEPROM 1KB
Price approx. 8$

Table 3.1: Specifications of the Arduino Uno Revision 3 [15]

Dell Edge Gateway 5000

Processor up to 1.75GHz
Architecture x86 64bit
RAM up to 8GB
Storage up to 256GB
Supported OS Ubuntu Core 16, Snappy Ubuntu 15.04, Intel Wind

River Linux 3.1, Windows 10 IoT, ...
Supported Interfaces WLAN, Ethernet, LTE, CAN Bus, ZigBee, HDMI, ...
Price starting from approx. 900$

Table 3.2: Specifications of the Dell Edge Gateway 5000 [39]

3.1.2 Gateways

Typically, sensor nodes are cheap, but have very limited computing power, hence, they
cannot communicate with the Internet in a sufficient manner. Therefore, so called
gateways are used as a bridge between sensor nodes and the Internet. When IoT
gateways were introduced, they were mostly used as plain bridges without any further
processing. However, nowadays many gateways allow complex processing of collected
sensor data. An example for a commercial gateway is the Dell Edge Gateway 5000 [39].
Table 3.2 gives an overview of its specifications. Gateways often run a full OS and, hence,
allow to run custom applications as explained by Vögler et al. [118]. Furthermore, it is
also possible to connect sensors directly to the gateways through input/output pins.

3.1.3 IoT Development Platforms

IoT development boards became popular for prototyping and are often used in IoT hobby
projects. Two well known IoT development platforms are the Raspberry Pi [47], and the
UDOO NEO [82]. While these boards come with powerful processors, they also allow to
connect sensors directly through input/output pins and support a wide range of different

20

3.1. IoT Hardware

Raspberry Pi 3 Model B

Processor 1.2GHz quad-core
Architecture ARMv8
RAM 1GB
Storage MicroSD-Card
Supported OS Raspbian, Snappy Ubuntu, Ubuntu Mate, Windows

10 IoT, ...
Supported Interfaces WLAN, Ethernet, Bluetooth Low Energy, HDMI, I2C,

UART, ...
Input/Output Pins 24
Price approx. 30$

Table 3.3: Specifications of the Raspberry Pi 3 Model B [47]

UDOO Neo Full

Processor 1GHz
Architecture ARMv7
RAM 1GB
Storage MicroSD-Card
Supported OS Android, UDOObuntu2, ...
Supported Interfaces WLAN, Ethernet, Bluetooth Low Energy, HDMI, I2C,

UART, CAN Bus, ...
Input/Output Pins 32
Price approx. 60$

Table 3.4: Specifications of the UDOO Neo Full [82]

interfaces out of the box. Both boards support Linux and other operating systems. These
aspects and the cheap price make them very well suited for prototyping and even for use
in production environments. Table 3.3 and Table 3.4 show some specification details of
these boards.

The UDOO Neo comes out of the box with integrated accelerometer, magnetometer,
and digital gyroscope. Since both boards have powerful processors they can be used for
many different purposes. The Raspberry Pi, for example, is often deployed as a gateway
in hobby projects. Moreover, they can be easily extended with additional functionality
through standardized interfaces.

3.1.4 CPU Architectures

As shown above, many IoT devices use processors with a different architecture, compared
to traditional x86 CPUs. The so called ARM architecture is a Reduced Instruction Set
Computing (RISC) architecture, while x86 processors use the Complex Instruction Set

21

3. State of the Art

Computing (CISC) architecture. The difference between this two designs is described as
follows by Afuah [14]:

"In the design of CISC processors, a primary goal in instruction set design was to have
so-called semantically rich instructions—instructions that get the hardware of the CPU to
do as much as possible per instruction, moving as much of the burden of programming—of
closing the semantic gap between human and computer—as possible from software to
hardware. RISC technology calls for the opposite—simple instructions that get the
hardware to do less per instruction thereby moving the programming burden from
hardware back to software. With their simpler instructions, RISC microprocessors take
up less chip real estate, ceteris paribus."

These fundamental design differences lead to incompatibility of software between the two
architectures. This means, software that is compiled for the x86 architecture cannot be
run on an ARM processor. Therefore, applications have to be recompiled for the specific
platform.

Java, on the other hand, allows portability since it uses the JVM to abstract from the
underlying architecture. However, platform independence breaks when native libraries or
the Java Native Interface (JNI) are used.

3.2 IoT Communication Standards

IoT devices, especially sensors and sensor nodes, are typically distributed devices with
low computing power. Furthermore, they are often operated by batteries, and thus, need
to be optimized for low energy consumption. In this section we will describe various
communication standards that take these characteristics into account and hence, are well
suited for IoT applications. Figure 3.1 shows an overview of IoT standards and their
corresponding layers in the OSI model [58].

3.2.1 Datalink and Physical Layer

IEEE 802.15.4

The IEEE 802.15.4 [13] standard defines the physical layer and the datalink layer
for Wireless Personal Area Networks (WPANs). The protocol focuses on low energy
consumption, secure communication, and low cost of hardware. The data rate can reach
up to 250kbits/s, depending on the frequency band used. The transmission range is
usually between 10 and 200 meters and the peak current consumption is <15 mA [113].

There are two different node types: full-function devices (FFD) and reduced-function
devices (RFD). FFDs can be used as common nodes or coordinators. They are able to
talk to all other devices and can relay messages. RFDs are simple devices with very
limited computing power. They can only be used as common nodes and are only able to
communicate with coordinators.

22

3.2. IoT Communication Standards

Figure 3.1: Standards used in IoT applications [58]

IEEE 802.15.4 supports peer-to-peer and star network topologies. Each network needs at
least one coordinator that organizes communication.

Bluetooth Low Energy

Bluetooth Low Energy was introduced by Nokia in 2006 as Wibree. It was added to
the Bluetooth specification in 2010 and renamed to Bluetooth Low Energy (BLE) [25].
The main idea behind BLE is that it only sends data and connects when required.
This means that there is no constant connection, which lowers the power consumption
tremendously. This suits very well for IoT applications, where sensors only need to
transfer their state infrequently. For example, a temperature sensor, may only update
the current temperature once every minute or less and is most of the time in idle mode.

The supported data rate of BLE v4.2 is up to 1 Mbits/s, the range can be up to 100
meters and the peak current consumption is <15 mA [113]. The network topology in
BLE is called star-bus or tree network. A star-bus network consists of master and slave
nodes, where each slave is connected to a master using a star topology and each master
is connected with the other masters through a bus.

23

3. State of the Art

The next version, Bluetooth 5, was unveiled in June 2016. Among other things it increases
the range significantly and doubles the speed compared to the old version [68].

RFID and NFC

Radio-Frequency Identification (RFID) is a term that describes technologies that use
electromagnetic fields to identify and localize objects [120]. RFID uses so called tags
that are attached to objects and readers that can read out information stored in the tags.
There are two different types of tags available: passive and active. Passive tags harvest
the energy during communication and therefore, do not need any battery. However, this
limits the maximum distance between reader and tag, which is typically between 1 and
12 m. Active tags, on the other hand, have a power supply (e.g. battery) and thus, can
communicate up to 200 m depending on the implementation. There are several standards
specified depending on the application. For example the ISO/IEC 14223 specifies a
standard for animal identification and the ISO/IEC 18000 defines specifications for item
management. RFID devices mainly use three different frequency ranges: Low Frequency
(LF) (125 - 134 kHz), High Frequency (HF) (13.56 MHz), and Ultra High Frequency
(UHF) (856 MHz - 960 MHz).

The Near Field Communication (NFC) [85] standard is based on existing RFID protocols
and extends them further. It operates within the High Frequency range of RFID, but
requires devices to be in a very close proximity. Typically, NFC devices must be in a
range of about 10 cm to each other to be able to communicate. The low range was
a design decision that was made to enable NFC for sensitive applications that require
explicit user actions (e.g., contact-free payments). NFC devices can operate in three
different modes [45]: reader/writer, peer-to-peer, and card-emulation. Reader/writer
mode allows the NFC device to read from tags and write data to them. Peer-to-peer
enables NFC devices to communicate interactively. Card-emulation mode lets a NFC
device act as a passive smartcard and therefore, allows other readers to read out data.

Others

Common WiFi standards (e.g., 802.11a, 802.11n, etc.) are widely established, but they
are not well suited for IoT applications because of low range and high power consumption.
The WiFi Alliance announced a new standard for IoT communication called WiFi HaLow
in early 2016 [16]. It allows a range of up to 1 km and is highly optimized regarding
power consumption. The standard is not yet fully approved, according to the official
IEEE Working Group Project Timelines [19].

The 3rd Generation Partnership Project (3GPP) is an association of telecommunication
institutions. The goal of the collaboration is to provide world wide standards for
telecommunication. The 3GPP defined the specifications for GSM, LTE, LTE-Advanced,
UMTS, etc.

24

3.2. IoT Communication Standards

Figure 3.2: The IPv6 header (adapted from [38])

3.2.2 Higher Layers

IPv6 and 6LoWPAN

IPv6 [38] was introduced in 1998 because of the upcoming scarcity of IPv4 addresses. As
explained in Chapter 2, IPv6 allows to address more than 3.4 ∗ 1038 different devices. An
IPv6 address is represented as eight groups of four hexadecimal digits, where the groups
are divided by colons (e.g., 900f:01bd:4233:2222:0000:8a2e:d3ba:1124).

An IPv6 packet consists of the header and the payload. Figure 3.2 shows the composition
of an IPv6 header. It has a minimum length of 320 bits and can be extended if needed.
The payload field in the header has a length of 16 bits and thus, allows a maximum
payload of 65535 bytes. There also exists the possibility of larger payloads, but this
feature is rarely used.

A problem that comes up when IPv6 is used for IoT applications is that it defines
a Maximum Transfer Unit (MTU) of 1280 bytes, while for example IEEE 802.15.4
defines a MTU of 127 bytes on the physical layer. This means that there is the need of
fragmentation of IPv6 packets to fit larger packets in the IEEE 802.15.4 frame. Another
issue is that since 40 bytes are needed by the IPv6 header there is not much space left
for the payload. In the worst case the payload on the application layer is only 33 bytes
when the overhead of each layer is taken into account.

25

3. State of the Art

IPv6 over Low-Power Wireless Personal Area Networks (6LoWPAN) [94] was defined
to handle these issues. 6LoWPAN is an adaption layer between the datalink layer and
the networking layer. Beside support of fragmentation, it is able to compress the IPv6
header down to 7 bytes or to 2 bytes in special scenarios. This means that the IPv6 +
UDP header can be reduced to 6 bytes, which leads to a maximum payload of 75 bytes
in the best case.

ZigBee

ZigBee is a proprietary standard developed by the ZigBee Alliance [17]. Main focus of
the ZigBee Alliance was to define a standard that allows to use cheap and energy efficient
hardware. It builds up on top of the IEEE 802.15.4 standard and includes network layer,
transport layer, and parts of the application layer. ZigBee adds routing, encryption,
and application services to the communication stack. The networks typically consist of
three different types of nodes: coordinators, routers, and end devices. Each network
has exactly one coordinator. Routers transmit the information of the end devices to the
coordinator. End devices can only communicate with routers or coordinators directly.
ZigBee supports star, tree, and mesh topologies.

3.2.3 Application/Data Layer Protocols

The Constrained Application Protocol (CoAP) [110] is a synchronous protocol that is
interoperable with HTTP. It was defined by the IETF in 2014. Compared to HTTP
it uses much smaller packets and thus, is better suited for devices with low resources.
Furthermore, it uses UDP instead of TCP. It applies a client/server architecture, where
the client makes GET, PUT, POST and DELETE requests to the server.

Message Queue Telemetry Transport (MQTT) [86] follows a lightweight publish/subscribe
messaging approach. Basically it has three main components: publishers, subscribers,
and a broker. The sensors are publishers and send their data to the broker. The broker
groups the sensor data in topics and sends the data to all applications that are subscribed
to certain topics. MQTT uses TCP for reliable connections. MQTT-SN [66] extends the
MQTT protocol with focus on sensor networks. MQTT-SN does not rely on TCP/IP
and can be used with other transport layer protocols (e.g., UDP).

The Advanced Message Queuing Protocol (AMQP) [117] is an asynchronous messaging
protocol that was proposed by the IEEE in 2006. It follows a publish/subscribe architec-
ture similar to MQTT and uses TCP for reliable connections. Compared to MQTT it
provides way more complex message scenarios and features. AMQP supports transactions
and advanced security features. Furthermore, it uses a different broker architecture. The
broker consists of two main parts: the exchange component and queues. The exchange
component receives all published messages and distributes them to the queues according
to certain pre defined rules.

Data Distribution Service (DDS) [55] is a standard that was developed with focus on
time critical embedded systems. It offers very low latency, high performance, advanced

26

3.3. Operating-System-Level Virtualization

security, high scalability and reliability. DDS uses a publish/subscribe pattern with a
peer-to-peer architecture. This means there is no central broker required. Moreover, it
offers automatic discovery of publishers and subscribers.

Extensible Messaging and Presence Protocol (XMPP) [108] is a messaging protocol defined
by the IETF that supports both publish/subscribe and request/response architectures.
The basic message format is XML, which creates additional overhead compared to binary
formats.

Which protocol to choose depends on the special use case. DDS, for example, fits very
well for time critical, reliable applications, while CoAP offers high interoperability with
the Internet and low resource usage.

3.3 Operating-System-Level Virtualization

Operating-system-level virtualization is widely used these days. We will give an overview
about how virtualization is implemented in Linux, Windows, and FreeBSD. The main
focus will be on Linux and Docker, since Docker is currently by far the most popular
container engine [40].

3.3.1 Linux

In context of Linux, OS-level virtualization is realized through so called containers.
Containers are using several Linux kernel features. The most important once are:
namespaces, control groups, and the chroot system call. Furthermore, often some security
modules are used to harden container security.

Namespaces

The official Linux man pages describe namespaces the following way: "A namespace
wraps a global system resource in an abstraction that makes it appear to the processes
within the namespace that they have their own isolated instance of the global resource.
Changes to the global resource are visible to other processes that are members of the
namespace, but are invisible to other processes." [6]. In other words, namespaces allow
to run processes isolated and in their own namespace.

The first namespace was added for mount points in 2002 in the kernel version 2.4.19 [5].
Since then several new namespaces were implemented. Currently there are seven different
namespaces supported: mount, PID, network, IPC, users, UTS, and cgroup.

• Mount (since kernel version 2.4.19 [88]): The mount namespace of a process
is basically the mounted filesystem a process sees. Usually there is only one
global mount namespace and a child process has a reference to the parents mount
namespace. If a new namespace for a child process is created, the child process gets

27

3. State of the Art

a copy of the parents namespace instead, and can modify it without reflecting of
the changes back to the parent process.

• PID (since kernel version 2.6.24 [28]): Traditionally, processes have a unique process
id (PID) within the whole operating system. PID namespaces allow different
processes to have the same PID as long as they have different PID namespaces [89].
This makes containers independent of the host system since there cannot be any PID
conflicts after migration. Basically a process has two PIDs if a separate namespace
is used. One unique global PID in the global namespace and another PID that is
used inside its own PID namespace as described by Kerrisk [88].

• Network (since kernel version 2.6.24 [28]): Every network namespace has its own
network stack with unique network devices, IP addresses, port numbers, etc. This
allows for example to bind several web servers on the same port as long as they
are in separate network namespaces. Internally this is achieved through routing of
network packets by the host system [88].

• IPC (full support since kernel version 2.6.30 [54]): The Inter-Process Communication
(IPC) namespace allows to isolate the childs System V IPC objects (semaphores,
message queues, and shared memory) and POSIX message queues from the parent
process [6].

• Users (since kernel version 3.8 [29]): This feature offers the ability to map user and
group ids for each namespace differently. This means, for example, that a standard
Linux user in the parent scope can be mapped to the root user in the namespace of
the child process [88].

• UTS (since kernel version 2.6.19 [88]): UTS namespaces allow the definition of a
different hostname and domainname.

• cgroup (since kernel version 4.6 [30]): cgroup namespaces allow to isolate cgroup
hierarchies. A process that creates a new namespace sees its own cgroup as the
root cgroup [1]. Thus, the ancestor cgroups are invisible to the process.

The usage of separate namespaces can be enabled at the creation of a child process
with flags that are used as parameters for the clone system call. Listing 3.1 shows the
prototype of the clone function in C and an example call where new namespaces for the
network stack and PID are used.

Listing 3.1: The clone system call for C in Linux
1 /* prototype */
2 int clone(int (*fn)(void *), void *child_stack, int flags, void *arg)
3
4 /* example */
5 int pid=clone(childFunc, stackTop,
6 CLONE_NEWPID | CLONE_NEWNET, argv[1]);

28

3.3. Operating-System-Level Virtualization

Another way to enable a separate namespaces for a running process is through the system
call unshare. The only difference compared to the clone call is that if it is used to create
a new PID namespace, only the child processes are placed in the new namespace but
not the caller itself. Listing 3.2 shows the prototype of the unshare function in C and
demonstrates how a process can create a new namespace for mount points, and user and
group IDs.

Listing 3.2: The unshare system call for C in Linux
1 /* prototype */
2 int unshare(int flags);
3
4 /* example */
5 int error=unshare(CLONE_NEWNS | CLONE_NEWUSER);

cgroups

The official Linux man pages describe cgroups as follows: "Control groups, usually referred
to as cgroups, are a Linux kernel feature which allow processes to be organized into
hierarchical groups whose usage of various types of resources can then be limited and
monitored." [2]. This means cgroups allow to control and monitor resource usage in a
fine-grained manner.

cgroups version 1 was initially released with the Linux kernel 2.6.24 [28]. The current
version 2 was officially released with the kernel 4.5 [90]. Since a lot of virtualization
engines still use the old version we will first explain how cgroups were implemented in
version 1. Afterwards we will describe the changes in version 2.

Basically, a cgroup is a set of tasks that can be bound to several limits or parameters.
A task can be a process or a thread. cgroups are ordered hierarchically. There can be
several different hierarchies while each hierarchy is bound to one or more subsystems
(resource controller). Figure 3.3 shows an example hierarchy that is bound to the CPU
subsystem. The root cgroup cpu_cg is split up in two cgroups called cg1 and cg2. The
cg1 cgroup is then divided again in cg1_1 and cg1_2. In this example cg1 gets a 60%
share of the CPU, while cg2 receives a share of 40%. All tasks in cg1_1 get 75% of the
cg1 share, which results in a 45% share of the CPU overall.

According to the official Red Hat Customer Manual [100], there are several important
rules for cgroup hierarchies. A hierarchy can have one or more resource controllers
attached. When a new hierarchy is created every task of the system is automatically a
member of the default cgroup in this hierarchy (the root cgroup). Furthermore, each
task can only be member of exactly one cgroup inside a hierarchy. When a task creates a
child task, the child task inherits the cgroup membership of its parent. After forking, the
child task is handled separate from the parent and can become member of every cgroup
independent of the parents membership.

29

3. State of the Art

Figure 3.3: Example of a cgroup hierarchy attached to the CPU subsystem (adapted
from [100])

There are 12 different controllers available in cgroup v1 [106]. We will focus on the most
important once:

• CPU: The CPU resource controller allows to define CPU shares for each cgroup.
The resource restriction is a soft limit, which means that a cgroup can have a higher
CPU usage as long as the CPU is not fully utilized.

• PIDs: This subsystem controls the number of tasks that can be created within a
cgroup.

• memory: The memory controller permits limiting of memory available to a cgroup.

• freezer: The freezer subsystem allows to suspend and resume all tasks in a cgroup.
If the parent of a process is frozen all of its children are frozen too.

• devices: Allows to define access control per device.

• blkio: The blkio subsystem allows to limit the IO rate of each device.

• perf_event: The perf_event subsystem offers the ability to monitor all processes
with the perf tool in a hierarchy it is attached to.

• net_prio: This controller allows to set priorities per network interface for each
cgroup.

Due to many inconsistencies among the cgroup controllers, the new cgroup version 2
has some major changes compared to the initial release [59]. There is only one unified
hierarchy in cgroup v2. Furthermore, a process can only belong to one cgroup and

30

3.3. Operating-System-Level Virtualization

processes can only be attached to leaves and no internal nodes. Assigning of tasks was
restricted to processes instead of both, processes and threads.

Currently there are three resource controller implemented in cgroup v2 [59]. These are
the memory, io, and pids controllers. It is possible to mount different controllers under
version 1 and version 2 hierarchies. But it is not allowed to mount the same controller
on a version 1 and version 2 hierarchy at the same time.

chroot

Chroot is an abbreviation for change root. The official Linux man pages describe the
chroot system call the following way: "chroot() changes the root directory of the calling
process to that specified in path. This directory will be used for pathnames beginning with
/. The root directory is inherited by all children of the calling process." [4]. Listing 3.3
shows the prototype of the chroot system call and an example usage where the root
directory is changed from "/" to "/tmp/". To make the new chroot environment practically
usable we would also have to hardlink or copy various binaries to the "/tmp/" folder
since the process can only see what exists inside its chroot environment.

Listing 3.3: The chroot system call for C in Linux
1 /* prototype */
2 int chroot(const char *path);
3
4 /* example */
5 int error=chroot("/tmp/")

The chroot system call was first introduced in 1979 during the development of Unix
V7 [80]. Later on it was added to BSD in 1982 [3]. Using a separate root environment
for some processes can increase security slightly, but does not guarantee that it cannot
be escaped since there are several ways to break out of the environment. This is because
it was never intended to be a security feature and allows the root user to get out the
environment by design [26]. Therefore, chroot should not be used for processes that are
run by root.

AppArmor, SELinux, and seccomp

AppArmor, SELinux, and seccomp are Linux kernel security modules that add another
layer of security to the system.

AppArmor and SELinux enable mandatory access control (MAC) on Linux systems.
AppArmor stands for Application Armor and allows to specify rules that define which
resources can be accessed by an application [11]. These rules are called profiles. AppArmor
can be used in a default allow or default deny behaviour. The former one means that if
no rule is defined for a resource, it can be generally accessed, the latter one follows a
whitelist approach, which is way more secure.

31

3. State of the Art

SELinux is an abbrevation for Security Enhanced Linux and was initially developed by
the NSA. Like AppArmor, it allows to set rules that define which objects can access
resources. These rules are bundled in so called policies. SELinux has 3 different modes [67]:
enforcing, permissive, and disabled. In enforcing mode access is denied strictly if the
policy does not allow it. When permissive mode is used, access is not denied, but actions
that would be denied in enforcing mode are logged. SELinux is considered to be more
secure than AppArmor, but this comes with the cost of higher complexity compared to
AppArmor.

Seccomp is short for Secure Computing. As described by Edge [43], it allows to define
which system calls can be invoked by a process. If a process makes a system call that
is not allowed, the default action is to kill that process. Many applications only need
a subset of the system calls available by the Linux kernel, thus restricting the set of
available system calls can lead to a significant improvement of security, in cases where
intruders gain control over an application. On the other hand, it is often hard to predict
which system calls are used by an application, thus filtering of them can be cumbersome.

3.3.2 FreeBSD

The FreeBSD operating system is a successor of the Berkley Software Distribution (BSD).
Among other BSD based operating systems like OpenBSD and NetBSD, it is currently
the most popular one. FreeBSD was the first OS that offered OS-level virtualization
support out of the box through so called jails [80].

Jails

Jails were implemented by Poul-Henning Kamp in 1999. Watson and Kamp describe the
concepts behind jails in detail in [87]. Jails are often called chroot on steroids, because
they build up on the chroot system call. While chroot was not planned as a security
feature, jails were designed with focus on security. Thus, they have more sophisticated
features in terms of security and feasibility compared to chroot. Chroot only isolates the
view on the filesystem, a jail also isolates processes from each other. Therefore, jailed
processes can only see the processes in the same jail. An unjailed process, on the other
hand, has a view on all processes on the machine. Basically, this allows to watch processes
inside a jail while they cannot see the watcher. Furthermore, jails have a separate set of
users and a separate root account. This means that, a jail root account has only admin
rights inside the jail and cannot do changes to the system outside its jail. Therefore, it is
by design no root escape possible. Each jail also has a separate hostname and IP address.
This isolation features are comparable to the namespaces in Linux as described earlier.
Control of resource usage of jails can be done through the program rctl [8]. It allows to
limit memory usage, cpu usage, etc.

32

3.3. Operating-System-Level Virtualization

Listing 3.4: The jail system call in the shell in FreeBSD
1 //synopsis
2 jail [-i] [-l -u username | -U username] path hostname ip-number

command ...
3
4 //example usage
5 jail /tmp/jails/exampleJail exampleHost.org 10.0.0.12 /bin/sh

Listing 3.4 shows the usage of the jail system call and gives an example invocation. The
example uses "/tmp/jails/exampleJail" as the root directory, exampleHost.org as the
hostname and 10.0.0.12 as the ip address for the jail. "/bin/sh" is the command that
is run after the jail is created. The jail call can only work if the folder where the jail is
placed contains required resources (e.g., binaries, shared files, etc.). All jails are further
configured in the jail.conf configuration file.

3.3.3 Microsoft Windows

In the last decade open source operating-system-level virtualization was mainly available
and used on Unix-like operating systems like FreeBSD and Linux. But recently Microsoft
opened up and joined the market of open source lightweight virtualization solutions.
The virtualized partitions follow the established naming conventions and are also called
containers on Windows.

Containers

Since Microsoft Windows Server is closed source it is naturally hard to find information
about how the kernel supports virtualization. According to a talk by John Starks at
dockercon 16 [75], the kernel offers features comparable to cgroups and namespaces in
Linux. These features are not accessible through a public interface. This means that it
is currently not possible for other vendors to offer operating-system-level virtualization
solutions for Windows, which make use of these features. Microsoft focused on supporting
Docker and thus, ported the Docker Engine so that it can be used on the Windows
platform. All changes they made were contributed to the open source project. Since
the containers share the Windows kernel it is not possible to run Linux containers on
Windows. Currently there are two types of base images supported: NanoServer and
WindowsServerCore. Both are based on Windows Server 2016, but while the first one is a
minimal system with focus on performance, the latter one is optimized for compatibility
and needs about 10 times the diskspace of the NanoServer image. Since the normal
Docker Engine can be run on Windows, also all additional management tools offered
by Docker can be used. Another feature that is offered by Docker on Windows are
Hyper-V containers. Hyper-V containers are virtual machines where each VM runs
one Docker container. This means that every container has its own environment, and
therefore, its own kernel. This approach offers a better isolation compared to the normal

33

3. State of the Art

operating-system-level virtualization approach, but comes with a performance overhead
since it is a type of hardware virtualization. Hyper-V runs a Windows Server 2016
VM, which has full support for Docker out of the box. Although Windows also offers
an Ubuntu subsystem that allows to run Linux applications on Windows without any
adaptations, this subsystem does not allow to run Linux containers. It still uses the
Windows kernel, and thus, does not support namespaces and cgroups as needed by Linux
containers.

3.3.4 Solaris

Operating-system-level virtualization on Solaris was introduced in Solaris 10 in 2004 [102].
Solaris containers consist of two parts: the Solaris Zone and the resource manager. Zones
offer a mechanism for isolation similar to Linux namespaces. There are two type of
Zones in a container: the global Zone and non-global Zones [37]. The global Zone is
the traditional operating system environment and has control over the non-global Zones.
Non-global Zones are the container specific environments. Usually non-global Zones are
simply referred to as Zones if not stated otherwise. Non-global Zones are isolated from
each other in terms of processes, file system, and network interface [35]. They also have
their own hostname and IP address. The resource manager allows to control and limit
the usage of CPU, memory, number of processes, etc. Non-global and global Zones can
be configured as so called immutable Zones, which allows to define read-only access to
folders of the container [36]. This adds another layer of security.

3.3.5 Open Container Initiative

In the last years container virtualization became increasingly popular. While Docker
is the de facto standard, also many other vendors came up with different container
runtimes and container image formats [40]. To improve user experience and ensure that
there is no vendor lock-in, standards had to be defined. Therefore, CoreOS announced
an open specification called App Container (appc) in December 2014 [69, 98]. Half
a year later, the Linux Foundation launched the Open Container Initiative (OCI) [7].
The OCI is a consortium of major IT leaders and cloud providers like Google, Docker,
VMware, Microsoft, Amazon, Facebook, CoreOS, Resin.io, etc. The mission of the OCI
is defined as follows: "The Open Container Initiative provides an open source technical
community within which industry participants may easily contribute to building a vendor-
neutral, portable and open specification and runtime that deliver on the promise of
containers as a source of application portability backed by a certification program." [83].
Therefore, they defined specifications for the container runtime and the container image
format. Furthermore, the goal of OCI is to provide a container runtime according to
these specs. The cornerstone of these standards are the Docker runtime, runC, and the
Docker image format, which were donated by the company. Also the appc specification
eventually merged into the OCI and thus, it is becoming the universal standard for
OS-level virtualization.

34

3.3. Operating-System-Level Virtualization

3.3.6 Important Concepts

This subsection describes some important concepts that are used by various container
engines. Furthermore, we will clarify some common misunderstandings when it comes to
operating-system-level virtualization.

Copy-on-write

Copy-on-write is a strategy that is used by many container engines to efficiently manage
the disk usage of images and containers. The idea behind that strategy is that if a
duplicate of some data is needed, the resource is not duplicated but shared in a read
only manner. The data is only copied if changes are made to the shared resources. This
method allows to start up new containers very quickly since already existing images can
be used and no data has to be copied. Furthermore, it reduces the disk utilization of
unmodified copies significantly. Unmodified copies are very typical for containers since
they often have a similar root file system. The drawback of this concept is that it adds a
performance overhead when resources are modified heavily.

System Container vs. App Container

There are two different purposes for which container engines are designed: app containers
and system containers. App containers are mainly designed to run only a single appli-
cation per container with the minimal system needed. System containers are more like
virtual machines and thus, designed to be used as a full operating systems with various
applications running.

Container Engine vs. Container Runtime

The terms container engine and container runtime are often used interchangeably,
although their meaning differs. Sometimes it is hard to distinguish between these two
terms, but basically a runtime refers to the low level software that, among other things,
takes care of starting and stopping a container. A container engine uses a runtime, but
adds additional features like networking, creating the container filesystem, etc.

3.3.7 Container Engines

In the last years many different container engines came up. Since the foundation of the
OCI, significant effort in terms of standardization has been taken, that led to universal
standards. These standards are already supported by some engines. We will describe the
features of currently available container engines in detail. The focus is on open source
container engines available for Linux, since they are most widely used.

Docker Engine

Docker is currently by far the most popular container engine. According to a study
by ClusterHQ, 94% of people who use operating-system-level virtualization are using

35

3. State of the Art

Figure 3.4: The Docker Engine architecture [101]

Docker [40].

The Docker Engine is available for Linux, Windows and MacOS. While it runs natively
on Windows and Linux, MacOS needs to virtualize specific Linux kernel features that are
used [77]. Support for FreeBSD is still in experimental state [52]. It is licensed under the
Apache 2.0 license and the source code is available on GitHub [76]. Docker containers
are designed to be used as app containers.

The Docker Engine uses a client-server architecture, where the server is called docker
daemon and exposes its functionality via a REST API to the client, which is called
docker cli. Figure 3.4 shows an overview of the architecture. The docker daemon uses the
containerd runtime which "can manage the complete container lifecycle of its host system:
image transfer and storage, container execution and supervision, low-level storage and
network attachments, etc." [74]. Containerd is part of the runC project and uses runC
as the container runtime. RunC is the reference implementation of the Open Container
Initiative’s runtime specification. It has full support of Linux namespaces and cgroups.

Docker uses a layered approach to build images and containers, as described by the
official userguide [78]. Figure 3.5 shows how this is done in detail. Each layer only stores
the differences to the layer underneath. Every image layer gets an ID, which is computed
through cryptographic hashing. Furthermore, the layers of the image are read only. If
containers are run, a new read/write layer for each container is added on top of the image
layers. This approach has some important benefits. Since the base image layer stays the
same, it can easily be reused for other images. Thus, the required disk space is highly
optimized. Beside that, each image can be used for several containers, because they are
read only. This improves the start time of a container significantly since only a thin
read/write layer for each container has to be created on start up. When a container is
removed, all changes that are made to the read/write layer are lost. If permanent writes
are needed, a separate space has to be mounted inside the container. Docker also uses a
copy-on-write strategy for images and containers, which is very similar to the layered

36

3.3. Operating-System-Level Virtualization

Figure 3.5: A Docker image with the container layers on top [78]

approach.

New Docker images can be created by committing all changes that are made inside
a container. To make this process less error prone, this can be done automatically
with a Dockerfile. This file allows to define how an image is built and configured. An
example Dockerfile that installs and runs an apache2 server on Ubuntu 16.04 is shown in
Listing 3.5. The first line defines the base image that is used, which is Ubuntu 16.04 in
this case. Line 3 defines some metadata about the image. In line 5 the apache2 server
is installed. The following commands set environment variables that are used for the
apache user, group, and log file directory. In the last line the command that is executed
on container startup is specified.

Listing 3.5: An example Dockerfile
1 FROM ubuntu:16.04
2
3 MAINTAINER Peter Eder version: 0.1
4
5 RUN apt-get update && apt-get install -y apache2
6
7 ENV APACHE_RUN_USER www-data
8 ENV APACHE_RUN_GROUP www-data
9 ENV APACHE_LOG_DIR /var/log/apache2

10
11 CMD ["/usr/sbin/apache2", "-D", "FOREGROUND"]

Docker creates three different networks during installation, according to the official user

37

3. State of the Art

guide [73]. Namely these are: bridge, none, and host. The bridge is part of the host
network stack and is called docker0 on the host. If no network is specified on container
startup the container attaches to the bridge network by default. When the none option is
selected, the container gets a network stack that is detached from the host and therefore
from the outside world. Thus, only the loopback interface is enabled. If the host option
is chosen, the container attaches directly to the host network without any different
configuration. This means, that the same IP address, hostname, etc. are used.

Docker makes use of iptables on Linux to manage network traffic. Docker sets up a rule
to masquerade the container traffic by default. While containers can communicate with
the outside world, hosts from outside cannot connect to the containers by default. If
container ports should be exposed, they have to be mapped to ports on the host. This is
done on container startup. Internally the port mapping is again done through iptable
rules.

Docker offers a basic seccomp policy that can be used when a container is started.
Furthermore, containers are started with a predefined AppArmor profile by default.

Docker comes with native support for cluster management via Docker Swarm. It was
merged into the Docker Engine with version 1.12 and allows to administrate Docker hosts
on a large scale. The Docker Engine can also be accessed through the Remote API. This
allows to easily control Docker hosts over the network.

Usually the term Docker refers to the Docker Engine, but beside the engine itself, several
other useful tools for container management are available:

• Docker Hub: The Docker Hub is a registry service for Docker images hosted by
Docker Inc. It is used by default when new images are pulled. There are official
images available like Ubuntu, MySQL, etc. Searching and pulling of images can be
done anonymously, but pushing of images requires registration.

• Docker Registry: The Docker Registry can be seen as a private Docker Hub. This
means that it can be installed locally and used as a private registry. A private
Docker registry enables full control over image storage and distribution.

• Docker Compose: Docker Compose is a tool that allows to define and run applica-
tions that consist of several containers. It introduces a file called docker-compose.yml
to define and configure all services (containers) that are used by the application.

• Docker Machine: This tool can be used to provision Docker hosts. It supports
provisioning of virtual machines on physical machines, on cloud platforms, etc.
through various drivers.

rkt

rkt [71] is an open-source container engine that is mainly developed by CoreOS Inc. It is
available for the Linux OS and licensed under the Apache 2.0 license. rkt supports the

38

3.3. Operating-System-Level Virtualization

appC standard, which was later merged into the OCI standards as already mentioned.
Native OCI runtime spec support is currently under development. It is also possible to
run Docker images with rkt. The main focus of rkt is on app containers.

rkt does not launch a long running daemon as Docker does with containerd, but uses the
init system like systemd to manage the lifecycle of containers. Furthermore, it uses the
concept of pods as the unit of execution [69]. A pod consists of one or more containers
and metadata that is applied to the pod. Metadata could be resource constraints for
example. All containers in a pod share the same context, which also includes networking.
This means all containers inside a pod can reach each other via localhost (127.0.0.1). The
image format used in rkt is called Application Container Image (ACI), which consists of
a tarball that is containing the rootfs and an image manifest with metadata.

Container execution is split up into three different stages, according to the official rkt
documentation [72]. Stage 0 is invoking of the rkt binary. This includes some initial
tasks as generating a pod UUID, generating a pod manifest, creating the filesystem of
the pod, setting up the directories for the following stages, etc. In stage 1 the necessary
steps for launching a pod are taken. These are container isolation, creating the network,
mounting of the filesystem, etc. There are several different isolation environments, called
"flavors", available in rkt:

• systemd/nspawn: an isolation environment that is using cgroups and namespaces
(this is the default behaviour)

• fly: a chroot only environment

• kvm: uses hardware virtualization through the kvm hypervisor

Stage 2 uses the environment as set up by stage 1 and executes the container. Figure 3.6
gives an overview of these different stages.

Images are created with a command line tool called acbuild, which has a quite similar
workflow as Dockerfiles. There are bash script templates available, which can be used to
automate building an image.

rkt has two different categories of network options as mentioned in the official docu-
mentation [70]: host mode, and contained mode. In host mode, the pod shares the
network stack with the host machine. Thus, IP addresses, hostname, routes, iptable
rules, etc. will be used as configured on the host. Contained mode uses a separate
network namespace for the pod. There are three different built in networks for this
purpose: default, default-restricted, and none. Similar to docker, none mode only sets
up a loopback interface and isolates the container from the host. The default network
consists of a virtual ethernet (veth) and loopback interface. The veth can be used as
bridge, macvlan, ptp, etc. The default-restricted network is similar to the default, but
with the restriction that no default route and IP masquerading is setup. Therefore, the
pod can only communicate with the host. rkt uses seccomp isolators by default when the

39

3. State of the Art

Figure 3.6: The different stages of rkt [72]

containers are started. There are several predefined filters available, which can easily be
adapted.

LXD/LXC

LXD is an open source container engine that builds up on Linux containers (LXC) [93].
Basically LXD is a daemon that can be seen as a hypervisor for LXC containers. It is
designed to run full system containers. Furthermore, it offers a REST interface that
allows to control containers remotely. LXD is published under the Apache 2 license
and the driving force behind LXD is Canonical Ltd. LXC was released in 2008 and is
published under the GNU LGPL v.2.1 license. Initially Docker used LXC as container
runtime, but later they switched to runC. LXD and LXC do not support any standards
as defined by the OCI.

The engine itself, is based on cgroups and namespaces. It can run two different types of
containers: privileged and unprivileged. Privileged containers are using the global root
also inside the container. This is a potential security issue, since a root escape from a
container leads to global root rights for intruders. Unprivileged containers, on the other
hand, are using root users inside containers that are mapped to normal global users.
They are the default when a container is launched.

There are two image types in LXD: unified images and split images. Unified images are
a single tarball that consists of a rootfs directory with the root file system, metadata
file and a templates directory. Split images consists of two tarballs, one with the root

40

3.3. Operating-System-Level Virtualization

file system and one with the metadata and templates directory. Split images are mostly
used to if there is already an existing compressed root file system available.

LXD adds a new virtual ethernet interface during installation that is called lxdbr0.
lxdbr0 serves as a bridge that is connected to each container by default. LXD also
allows to define new network interfaces or usage of existing physical interfaces directly.
All containers in LXD are running with a seccomp policy and an AppArmor profile by
default.

Others

OpenVZ is another container engine that was mainly designed to be used for system
containers. It was initially released in 2005 and is available under GNU GPL. The
current version, OpenVZ 7, offers HW virtualization support, live migration, thin disk
provisioning, etc. [12]. The proprietary container engine Virtuozzo 7 builds up on OpenVZ
7 and adds additional features and commercial support.

"Let Me Contain That For You", or lmctfy, is an operating-system-level virtualization
engine developed by Google Inc. It was used as Google’s container stack and was later
published as open-source. The core concepts were merged into the Docker project and
further development was stopped in 2014.

3.3.8 Container Security

There are some security concerns, which have to be addressed when it comes to operating-
system-level virtualization as explained by Mouat [95]. Since many containers run on one
host, it would be fatal if intruders gain control over the host system, since they would
gain control over several applications. Another problem is that all virtual environments
share one kernel. This means that a kernel panic caused by malicious software takes
down all containers. Compared to hardware virtualization this is a critical security risk.
Moreover, a shared kernel also means that a kernel bug affects all containers. Since
resources are shared between all containers, it is possible that a container can starve
out other containers. This makes containers exceedingly vulnerable to Denial-of-service
(DoS) attacks.

In the last years significant effort was taken to enhance security and counteract these
vulnerabilities. A major improvement was established by integrating of user namespaces
into container engines. As explained earlier, user namespaces allow to map unprivileged
users to root users inside the container [88]. This means that normal local users are used
as root inside the container. Thus, if root escape happens, intruders only have normal
user rights on the host. This avoids many security risks by design.

Another way of hardening security of containers, was the integration of SELinux, Appar-
mor, and seccomp. As explained above, Docker, rkt, and LXC use default profiles for
some of these features. This adds another layer of security.

41

3. State of the Art

Cgroups are an effective way to reduce the potential impact of DoS attacks. Many
container engines have them integrated, and hence, allow to define limits for resource
usage of containers.

Overall, container security was raised significantly over the last years. However, there
are still some risks (e.g., the shared kernel) that have to be considered when operating-
system-virtualization is used.

3.4 Container Deployment Frameworks

In this section we will describe some commonly used build and deployment frameworks.
Furthermore, we discuss their feasibility for container deployment and how they can be
applied in the domain of IoT.

3.4.1 Jenkins

Jenkins [103] is an open-source build automation server. It was initially developed by
Sun Microsystems as Hudson. Due to some disagreements between the community and
Oracle after they have bought Sun, Hudson was forked and renamed to Jenkins. It is
released under the MIT license and the development is managed by the Jenkins project.

Jenkins is considered to be the market leader when it comes to build automation and
continuous integration for the Java programming language [125]. This is mainly due to
fact, that Jenkins is highly extensible through plugins and thus, it can easily be integrated
into a continuous delivery pipeline.

Jenkins calls the workflow from source code to deployment a pipeline. A pipeline typically
consists of several stages: source code checkout, build, test, and deployment. Thus,
although Jenkins is mainly used for build automation and continuous integration, it
can also be used for deployment to production. There are several plugins available that
support automatic building of Docker images and deployment of containers. Another
way to deploy docker containers is to use plain shell commands, which can be triggered
after each stage. Since it is possible to execute any type of shell script, there are many
different ways to use Jenkins for deployment. However, deployment through shell scripts
tends to be cumbersome and is difficult to maintain. Another problem that comes up
when Jenkins is used for container deployment is that there is no support for further
management of containers (e.g., lifecycle management or log access).

3.4.2 Kubernetes and OpenShift

The Cloud Native Computing Foundation describes Kubernetes as follows: "Kubernetes
is an open source system for managing containerized applications across multiple hosts,
providing basic mechanisms for deployment, maintenance, and scaling of applications." [46].
Kubernetes is the successor of Googles internal cluster manager called Borg [116]. In 2015,
Google donated the first stable version v1.0 to the Cloud Native Computing Foundation,

42

3.4. Container Deployment Frameworks

Figure 3.7: Architecture of Kubernetes [91]

which is hosting the project now. The project is released under the Apache License 2.0.
Currently, Kubernetes is among the top 0.01% projects on GitHub and number 1 when
it comes to activity [18].

The basic architecture of the Kubernetes system is shown in Figure 3.7. In general, a
Kubernetes system consists of one ore more Kubernetes masters and several nodes.

The master is the central managing component and has four different subsystems: the
API server, the controller manager, the scheduler, and etcd. The API server exposes the
REST API and command line tool to the user and thus, provides the frontend of the
cluster. The controller manager runs several different controllers that are responsible
for replication, health checking of nodes, endpoints, etc. The scheduler selects the nodes
to which newly created pods are assigned. A pod in Kubernetes is conceptually the
same as a pod in rkt [69]. This means that a pod is a group of one or more containers
that share the same context. The pod is the smallest unit that can be scheduled and
deployed in Kubernetes. Etcd is a distributed key value store and the primary datastore
in Kubernetes. It uses the Raft consensus algorithm and can handle hardware failures
and network partitions [34].

A node is a physical or virtual machine on which containers/pods are executed. The

43

3. State of the Art

most important components are the kubelet, the kube-proxy, and the container engine.
The kubelet is the main agent on the machine. Among other tasks, it watches all pods,
mounts volumes, runs containers, periodically checks liveness of containers, etc. The
kube-proxy is responsible for networking that enables so called service endpoints. Since
pods are typically deployed and destroyed frequently there is another layer needed to
make them accessible through a static interface. Therefore, Kubernetes uses the concept
of services. A service has a static IP and a hostname, and can be seen as the loadbalancer
for the pods that are attached to it. Basically, this is done through iptables rules. The
service endpoints are found through DNS.

By default Kubernetes uses containerd and therefore, runC as container runtime as
described by Chanezon [31]. But it can also be used with rkt, although this is still in
experimental state. Furthermore, Kubernetes offers a runtime interface that makes it
easier for other vendors to integrate their container runtime [60]. However, the interface
is still in alpha state.

Beside these components, there are also processes running for supervising, cluster-level
logging, etc., on a Kubernetes node.

Kubernetes offers several powerful features for container/pod management:

• Auto-scaling: Kubernetes allows to automatically scale pods horizontally according
to CPU utilization or some application specific metric.

• Self-healing: If a pod fails, a new instance is automatically started according to the
configuration.

• Rolling updates: When updates need to be deployed without downtime, so called
rolling updates can be used in Kubernetes. Basically, a rolling update means that
a new node is deployed and an old one is taken down afterwards. This is done
iteratively until all old pods are replaced. If an error occurs during the update, the
roll out is stopped and can easily be reverted.

• Resource monitoring: Kubernetes supports very detailed resource monitoring on a
container, pod, or even cluster base.

• Volume management: Kubernetes offers pod-wide volumes that can be mounted by
each container inside a pod and are attached to the pods lifecycle. This allows to
keep data independently of containers state.

Kubernetes can be used through a command line client, a REST API, and a Web UI.
While it offers many tools to manage the deployment and lifecycle of containers, it does
not support building of applications and packing them into containers. However, since all
features are accessible through a REST API it can easily be integrated into a continuous
deployment pipeline.

44

3.4. Container Deployment Frameworks

OpenShift [81] is an open source container application platform developed by Red Hat.
It builds on top of Kubernetes and extends it with many features. OpenShift integrates
the whole development pipeline into Kubernetes, this means it is directly connected to
the source code management (SCM) and allows to build images and to deploy containers
directly from source code. Thus, it has an continuous deployment pipeline integrated.
Furthermore, it offers several templates for services like MySQL, PHP, NodeJS, etc. out
of the box.

There are several different versions of OpenShift available. The open-source project
is called OpenShift Origin [104]. Furthermore, an enterprise version with commercial
support and some added functionality is provided.

Both, Kubernetes and OpenShift are very powerful tools for container management
in clusters. However, they are both only limited applicable for IoT applications since
there is a significant overhead of resources for managing containers. Furthermore, IoT
applications differ significantly from applications that are operated in a cluster. For
example, networking capabilities between IoT nodes are restricted. Moreover, many
features are not useful for the IoT domain. For example, if an IoT gateway fails, starting
a new one somewhere else is usually not possible or not feasible, because many IoT
devices will not be able to reach the new gateway anymore.

3.4.3 Resin.io

Resin.io [9] is an application deployment service with focus on IoT. It uses Docker to
distribute and deploy software to IoT devices. Resin.io is provided as Software as a
Service (SaaS).

Deploying a new container on an IoT device is very simple as described by resin.io [105].
If devices are already setup correctly, the whole deployment process comes down to a
git push into the resin.io repository. This triggers an internal workflow that builds the
application, packs it into a container, transfers the image to the configured device and
deploys the container. The whole deployment process from source to deployment is
illustrated in Figure 3.8.

All devices are connected through a virtual private network (VPN) to the resin.io server.
Transferring the Docker images is achieved through a Docker registry: The image is
deployed to the registry and then pulled by the device.

Figure 3.9 shows the architecture of a resin.io device. Each device runs a container with
the resin.io agent. This agent manages the user applications on the device. It connects
to the resin.io server, pulls the newest application, and monitors resources as well as the
application itself. Resin.io uses Yocto Linux [10] as host operating system on the devices.
Yocto Linux is a customizable distribution with focus on embedded products.

Provisioning of IoT devices is done through a standardized image that needs to be
installed on the device. On startup the device automatically connects to the resin.io
server and registers on the users dashboard. After that, the resin.io agent is started and

45

3. State of the Art

Figure 3.8: Application deployment with resin.io [105]

registers on the VPN to receive a unique API key. Afterwards, the device shows up as
online on the dashboard and is ready for deployment.

Resin.io uses a Linux OS that has the minimum features to be able to run Docker. This
allows to run it on many devices with constrained resources. Furthermore, the application
container runs in privileged mode, which enables full control over the hardware.

46

3.4. Container Deployment Frameworks

Figure 3.9: IoT device architecture in resin.io [105]

47

CHAPTER 4
Design & Implementation

This chapter explains the design and implementation of the prototype. First, we will
describe the main features of the framework. Afterwards, the design decisions are discussed,
and the architecture is presented. The last part explains the implementation in detail.

4.1 Features
The main goal of the application deployment framework we are implementing is to provide
operating-system-level virtualization in the IoT domain. Thus, the framework needs to
support creation and distribution of images, and full remote control over the applications.
The particular features that need to be implemented are explained in this section.

Containerization

Since we want to provide a showcase for OS-level virtualization the framework needs to
be able to pack the application into an image. We call this procedure containerization,
because this term is often used in this context, although in fact we create an image. The
whole containerization process should be completely transparent to the user.

Image Distribution

Created images need to be distributed. Therefore, the framework must be able to transfer
the image to the corresponding device, depending on the selection of the user.

Application Management

The user should be able to control the application on the device remotely. Hence, a user
interface is needed that allows to run, stop, pause, and remove an application. This
should be realized through a web UI.

49

4. Design & Implementation

Maintenance

In order to be able to maintain a distributed application, it is necessary to detect and
debug failures. Therefore, the framework should support access to the logging output.
Furthermore, it should be able to get an overview of the utilization of the resources of
each container on a device. Both should be presented through a web UI.

One Click Deployment

Deployment of an application should be as easy as possible. Therefore, a deployment
feature should be offered, that triggers containerization and distribution of an application
within one click.

Device Management

In order to manage the deployment of the applications an overview of all devices is
needed. This overview should show all devices that are registered. Furthermore, it should
give information about the current state of the device (online or offline).

4.2 Design

This section explains the main design decisions that were made during development of the
framework. Furthermore, the architecture is described in detail. The last part illustrates
the deployment process of an application from upload by the user to deployment on the
corresponding device.

4.2.1 Design Decisions

During the implementation of the prototype three important design decisions were made.
These were: the container engine, the architecture of the framework, and the if there
should be an agent used on the devices.

Docker Engine

We decided to use the Docker Engine as the underlying container engine. There are
several reasons why Docker fits well for our purpose:

• Docker Engine API: Docker offers a powerful remote API. This allows to control
the engine remotely on each device without relying on any other service.

• Docker Registry: As explained earlier, Docker comes with a private registry. The
registry simplifies the distribution of images, since it is well integrated within the
Docker platform. Thus, we do not need to implement our own mechanism to
transfer images to the devices.

50

4.2. Design

• The community: As mentioned before, Docker has by far the highest market share
of all container engines. Hence, there is a huge community behind the project. As
a result, many libraries are available. Furthermore, many recurring problems are
already discussed and solved in public forums. Another advantage is that numerous
official images are offered on the public registry (e.g., debian, java, nginx, mysql).

• OCI compliant: Currently, Docker is the only container engine that is fully compliant
to the OCI standard. Both, the container runtime and the image format fulfill the
OCI specification. This minimizes the risk of a vendor compared to other engines
that are not fulfilling any standards.

Microservice Architecture

We decided to implement the framework with a microservice architecture. The term
microservice coined up a couple of years ago and is currently one of most popular topics
in software development. Sam Newman defines microservices as follows: "Microservices
are small, autonomous services that work together." [96]. Microservices are small services
that focus on doing one thing and doing it well. This is similar to a key concept of the
UNIX philosophy. Microservices are autonomous in terms that they can be deployed
independently. Communication between services is done through network interfaces.

As outlined by Sam Newman [96] and Martin Fowler [51] this architectural style has
many benefits compared to a monolithic architecture:

• Partial deployment: Since all microservices are deployed independently, deployment
of new versions does not imply deployment of the whole system. This limits the risk
to the updated service, instead of the whole application. In further consequence,
new features can be delivered faster and with small incremental changes.

• Availability: Compared to a single monolithic application where a failure often
crashes the whole application, a failure in a microservice based application is often
limited to a single service. Hence, all other service can still operate and the overall
system is still available.

• Well defined interfaces: A microservice style enforces developers to use well defined
interfaces between the services, because it is the only way how the services can
communicate between each other.

• Loose coupling: Microservices are loosely coupled by design, because each services
operates independent of the other services.

• Scalability: A large monolithic service can only scale as a whole. Microservices
allow to scale only the real bottlenecks in a more fine grained manner.

• Technology heterogeneity: Each service can use a different underlying technology,
as long as the communication pipe between the services stays the same (e.g., HTTP

51

4. Design & Implementation

requests). This allows to use the technology that fits best for a certain task (e.g.,
relational database vs NoSQL database, functional language vs object oriented
language)

However, there is no such thing as a free lunch and thus, these benefits come with some
trade-offs:

• Complexity: A microservice architecture adds significant complexity to a system.
For example, orchestration of all services needs to be handled. Since there can be
hundreds of services, this is a very crucial task. Moreover, it comes with all the
complexities and pitfalls of a distributed system.

• Inter service refactoring: Refactoring or adding new features that cover several
services can get cumbersome. There is the need for deployment strategies for rolling
out such features. For example, if the API needs to change, it is possible to deploy
two API versions at the same time. The old version can be marked as deprecated,
but is still available for other services that are not updated yet. Although, this can
be handled, compared to a monolithic application, it requires way more effort.

• Communication overhead: While normal method calls in a monolithic application
are cheap and reliable, this is not true for microservices. Using the network interface
to communicate between services adds an overhead in terms of network latency
and computing resources. Furthermore, it can not be guaranteed that the messages
are delivered correctly.

Since we want to provide the deployment framework as a web service, a microservice
architecture makes sense, despite the drawbacks listed above. The major advantage for
our purpose is the possibility of fine grained scaling. For example, containerization of
applications is a potential bottleneck and implemented as a microservice it can easily be
scaled out.

Agentless

Since Docker offers the Docker Engine API we decided to implement the framework
without any agent on the devices. The main advantage of this approach is that we save
resources and reduce complexity. Since IoT devices typically have limited computing
power and storage capabilities, the available resources should not be wasted. However,
this is a trade-off in terms of flexibility and capability since we are limited to the interface
Docker provides.

4.2.2 Architecture

To give an overview of the architecture of the deployment framework we follow an
approach described by Brown [27], where different layers of abstraction are used to

52

4.2. Design

Figure 4.1: Container diagram of the framework

describe a system. First, we will describe it with a high level point of view, and then we
give a more fine grained overview.

High Level Architecture

Figure 4.1 shows the container diagram of the prototype. Basically, the application
deployment framework creates an image with the uploaded application and pushes the
image to the Docker Registry. Afterwards, the framework triggers the pull command on
the device and the device downloads the image from the Docker Registry. Controlling
of the deployed containers is done through the web interface of the framework, which
communicates directly with the devices through the Docker Engine API.

Component Diagram

Figure 4.2 presents all components of the framework and their dependencies. The
Web Service used as an API gateway that forwards all requests to the corresponding
microservice. Both, the Machine Service and the Authentication Service run their own
database instance to store information about device and the users. The Containerization
Service uses the local Docker Engine to build Docker images with the uploaded application.
The Audit Service, Logging Service, and Deployment Service communicate directly with
the device through the Docker Engine API.

Deployment Diagram

Figure 4.3 illustrates the deployment of the framework. Since we developed the framework
with a microservice architecture, each service can be deployed on a different server. In

53

4. Design & Implementation

Figure 4.2: Component diagram of the framework

Figure 4.3: Deployment diagram of the framework

order to support devices with ARM and x86 architecture, we deploy two Containerization
Services on two different servers. This allows to build Docker images for each platform.
Containerization requires most computing power compared to the other services, and
thus, the two microservices are deployed on a dedicated server. All other microservices
are deployed on the same server to ensure fast communication between them. The Docker
Registry should also be running on a separate server for security reasons, because it
needs to be accessible by user devices. Furthermore, it needs a significant amount of disk
space to store all Docker images.

The Containerization Services require a running Docker Engine to build the Docker
images. This also applies for the Docker Registry, which is provided as a Docker image
and thus, needs the Docker Engine as execution environment.

In order to deploy several instances of a service a load balancer is necessary. To duplicate
the Authentication Service and the Machine Service it is necessary to switch to a separate
Database instead of the embedded one.

54

4.2. Design

4.2.3 Microservices

The framework consists of seven different microservices. In the following we will describe
each of these services.

Web Service

The Web Service delivers the static web content to the user and serves all user requests
through a REST API. Thus, it is used as an API gateway to all microservices. The web
page is a single page application where all requests are done through AJAX calls to the
REST API. All requests are then forwarded to the corresponding microservice. The Web
Service also stores the session for currently logged in users. Moreover, it offers a REST
interface to integrate the framework in a continuous delivery pipeline.

Containerization Service

The Containerization Service is one of the main components of the framework. It generates
a Docker image with the user application according to the Dockerfile that was uploaded
by the user. The resulting image is then pushed to the internal Docker Registry. In more
detail, this works as follows:

• The service gets the configuration data for the Docker image (e.g., base image,
application name, RUN commands, port mapping) and generates a Dockerfile.

• The uploaded application is downloaded from the Web Service.

• The local Docker Engine is called through the Docker Engine API to build the
image according to the generated Dockerfile. The registry URL and a timestamp is
added to the image name so that we can guarantee that the image has a unique ID.

• After the image is created, the image is pushed to the internal Docker Registry.

Deployment Service

The Deployment Service manages all states of the containers and distributes the Docker
images to the devices. A container can have the following states: running, paused, and
stopped. The Deployment Service exposes a REST API to switch containers to each
of theses states. It also allows to retrieve information about the current state and to
remove containers and images from the device. The service communicates directly with
the device through the Docker Engine API. The distribution of the image is handled
through triggering of the pull command on the device, so that it pulls the image from
the internal Docker Registry.

Machine Service

The Machine Service gives access to all registered devices for each user. It also offers an
interface to ping registered devices in order to check if they are online. The database

55

4. Design & Implementation

stores the URL of each device, the port number through which the Docker Engine can
be accessed, and the corresponding user id.

Authentication Service

The Authentication Service allows to add new users and authenticate them on login.
It uses the pbkdf2 algorithm with the HmacSHA256 hashing function to generate and
validate the passwords. Furthermore, we use 10000 iterations for the hash computation.
The Authentication Service has its own database instance where it stores the username,
the password hash, the salt, and the number of hashing iterations.

Logging Service

The Logging Service gives access to the logging output of each container. It uses the
Docker Engine API to attach to a container on a certain host and delivers the whole
logging output.

Audit Service

The Audit Service allows to monitor the resource utilization on a device. This is done
through the Docker Engine API, which returns the CPU and RAM utilization for each
container. To get the utilization of the whole device, we add up the resource usage of
each container. The problem with this approach is that we only get the resource usage of
the Docker containers without the processes outside of the containers. Docker does not
support access to the system utilization.

4.2.4 Deployment process

Deployment of a new container involves several microservices and other applications.
Figure 4.4 shows the sequence diagram of the deployment process starting with the
upload of a new application. The following describes each step involved in this process in
more detail:

• Step 1: The user uses the web UI to configure the container (e.g., port mapping,
container name, or commands for the Dockerfile) and uploads the application.

• Steps 2 & 3: The Web Service requests the machine data from the Machine Service
(e.g., URL or state)

• Step 4: The Web Service triggers the build process of the image on the Container-
ization Service.

• Steps 5 & 6: The Containerization Service downloads the application from the Web
Service.

56

4.2. Design

Figure 4.4: Sequence diagram of the deployment process

• Steps 7 & 8: The Containerization Service builds a Dockerfile according to the user
configuration and executes the build command on the Docker Engine on the same
host.

• Steps 9 - 13: The Containerization Service calls the push command on the local
Docker Engine so that the image is pushed to the private Docker Registry.

• Step 14: The Web Service triggers the distribution of the image and the container
creation for the selected machine on the Deployment Service.

• Steps 15 - 18: The Deployment Service triggers pulling of the image on the machine.
The machine downloads the image from the Docker registry and responds with
HTTP code 200 if there was no error.

• Steps 19 - 20: The Deployment Service triggers creation of the container on the
machine.

57

4. Design & Implementation

• Steps 21 - 22: The Deployment Service requests container information.

• Steps 23 - 24: The container information is passed to the user, who sees the resulting
container in the web UI.

4.3 Implementation

This section describes the technologies and libraries that were used for the implementation
of the framework in detail. The last part covers Lessons learned, where some problems
that came up during development and how we solved them are explained.

4.3.1 Technology Stack

The framework bases on three main technologies: Java 8, the Docker Engine, and the
HSQLDB database.

Java

Java is an object-orientated programming language with static and strong typing. It was
initially developed by Sun Microsystems which was acquired by Oracle Corporation in
2010. As explained in Chapter 2, Java uses the concept of application virtualization that
enables platform independence. This is realized through the Java Virtual Machine (JVM)
which executes the Java applications. Currently Java is available in version 8.

Today, Java is one of the most popular programming languages for web applications.
This means that there are many frameworks and libraries available. Moreover, it is widely
supported by build tools. For build automation we used Apache Maven. Although Maven
supports various programming languages it is mainly used for Java projects.

Docker Engine

We used the Docker Engine in version 1.12.6. The following technical details are explained
in this section: how images are built, how to configure the Docker Engine API, how the
Docker Registry is deployed and integrated, and how networking works with Docker.

To build new images we generate a Dockerfile. Listing 4.1 shows the basic schema of this
file. Line 1 defines the base image according to the user input. If the user configured
extra commands for the image they are added in line 2. In line 3 the uploaded application
is copied inside the container. The ENTRYPOINT command in line 4 ensures that the
user application is executed on startup.

58

4.3. Implementation

Listing 4.1: The generated Dockerfile
1 FROM <selected base image>
2 [USER COMMANDS]
3 ADD <user_application> <user_application>
4 ENTRYPOINT ["java","-jar","<user_application>"]

The Docker Engine API is a HTTP API that is mostly REST. It is used by the Docker CLI
to communicate with the Docker daemon and offers remote access. Thus, everything that
can be done with the local Docker CLI, can also be done through the API. To enable remote
access, it is necessary to bind the Docker daemon on a TCP socket. This is done in the
global config file which is stored in /etc/docker/daemon.json on Linux. The option
"hosts":["127.0.0.1:2375","unix:///var/run/docker.sock"] binds the
daemon to the port 2375 on localhost, and the default UNIX socket docker.sock.

The Docker Registry can easily be deployed on a host. Listing 4.2 presents the command
used to download the Docker Registry image and run the container attached to port 5000.
Each client needs to set the Docker option insecure-registry with the IP and port
where the registry is listening, to enable access. This is also done in the global config file.
It is only needed to use an insecure registry, because we do not use TLS for the prototype.
In order to use the private registry, images have to be tagged with the hostname or IP
and port where it is reachable (e.g., 192.168.0.20:5000/ubuntu), otherwise the default
registry is used which is typically the official Docker Hub.

Listing 4.2: Deploying of the Docker Registry
1 docker run -d -p 5000:5000 --name registry registry:2

By default, Docker uses a bridge network called docker0. The Docker Engine automat-
ically creates a subnet and a gateway to the network. Each container gets an IP address
in this subnet through which it can be accessed. Users can define a port mapping of host
ports to container ports in the web UI of the framework. The mapping automatically
forwards all packets from the host to the container. This is done through iptable NAT
rules. The port mapping needs to be set when the container is created from the Docker
image, which is done through a Docker Engine API call. By default containers can
connect to the outside world, but are not reachable from the outside. The implemented
prototype allows to use both, the host network or a bridge network.

HSQLDB

HSQLDB [56] is an open source relational database management system which is available
under a license that bases on the BSD license. We use HSQLDB as the database for
the framework, because of two reasons: First, it is written in Java and hence, easy to
integrate in a Java project. Second, the Spring Framework supports auto-configuration
for HSQLDB. Basically, adding the HSQLDB dependency in Maven is sufficient to get it

59

4. Design & Implementation

up and running. We use it in embedded mode, which means that it runs in the same
JVM as the application and is invisible to the user.

4.3.2 Used Frameworks & Libraries

Several frameworks and libraries are used for the implementation of the framework. The
most important once are the Spring Framework, AngularJS, and the Spotify Docker
Client.

Spring Framework

The Spring Framework is a framework for enterprise applications and a Inversion of
Control container for Java. It provides several different modules, where each fits a certain
use case. A commonly used module is Spring Boot. It allows to create stand-alone Spring
applications with minimal effort in terms of configuration. There are also so called starter
artifacts available that bundle several modules which are often used in combination. We
used version 1.5.2 of the framework.

All microservices include the spring-boot-starter-parent and the spring-boot
-starter-web artifacts. The spring-boot-starter-parent enables some default
configurations that are typically used within Spring, which reduces the configuration effort
even more. The spring-boot-starter-web artifact comprises a servlet container
(Apache Tomcat), spring-webmvc, jackson-databind, etc., hence, it fits well for web
applications.

To enable Spring Boot it is sufficient to add the dependencies in Maven and configure
the main-class as shown in Listing 4.3.

Listing 4.3: Spring Boot configuration for the Authentication Service
1 @SpringBootApplication
2 public class AuthApp{
3 public static void main(String[] args){
4 SpringApplication.run(AuthApp.class,args);
5 }
6 }

The Web Service uses the spring-boot-starter-security, which makes it very
simple to secure a web application. The whole configuration is done in the WebSecurity
Config class, where basic HTTP authentication is enabled and the authentication
provider is registered.

Both, the Machine Service and the Authentication Service use the spring-boot
-starter-data-jpa artifact to access the HSQLDB database. Spring Data extends
the Java Persistence API (JPA) with useful features that avoid boiler plate code. For
example, it allows to use so called Repositories that have out-of-the-box support for
basic operation like save, find, count or delete.

60

4.3. Implementation

The REST API of each microservice makes use of the Spring RESTController annota-
tion. This annotation allows to configure the API through annotation of the methods.
Listing 4.4 shows the implemented method to get the machine information by machine
id. Line 2 defines the path of the method (e.g., /machine/1) and the allowed HTTP
request method. The returned DTO is automatically converted into a JSON object by
the Spring Framework.

Listing 4.4: Annotated method of Machine Service REST API
1 @RequestMapping
2 (value="/machine/{machineId}", method= RequestMethod.GET)
3 public MachineDTO getMachineById(@RequestParam Long machineId){
4 return machineService.getMachineById(machineId);
5 }

AngularJS

AngularJS [79] is a front-end web application framework for single-page applications. We
used version 1.5 in combination with the Twitter Bootstrap CSS framework to implement
the front-end of the deployment framework.

The main page of the application is index.html. Navigation is done through loading
of other HTML templates into this page. Furthermore, we defined so called directives
that can be used for recurring elements. These directives are used for the list elements of
the user machines and the list elements in the container overview.

The web application consists of four main pages: login, dashboard, container overview,
and container logging. The login page is a simple form that allows the user to enter
the username and password, and to login. The dashboard gives an overview about the
registered devices, and supports removing and adding of new devices. The container
overview shows all containers that are available on a particular device. Furthermore, it
allows to control each container (e.g., start, stop, pause) and to upload a new application.
The logging page shows the logging output of a selected container.

AngularJS follows the Model-View-Controller (MVC) pattern. Hence, we defined four
different controllers, one for each main page. The controllers define all available javascript
methods of the corresponding page. For example, when the add button on the dashboard
is clicked, attached method in the dashboard controller is called.

After the application is loaded the first time, all further communication with the Web
Service is done through AJAX calls on the REST interface.

Spotify Docker Client

The Spotify Docker Client [112] is an open source Docker client developed in Java. It can
be seen as a wrapper for the HTTP calls to the Docker Engine API. Using this library
makes it very simple to control the Docker Engine remotely.

61

4. Design & Implementation

Listing 4.5 shows how the dockerClient object is created and some example methods
that are available. Line 2 configures the IP address and port number where the Docker
Engine API is reachable and line 3 defines the timeout limit of the connection. Line
8 demonstrates an example call that pulls the test_image from the official Docker
Registry to the device defined in line 2.

Listing 4.5: Spotify Docker Client usage
1 final DockerClient dockerClient = DefaultDockerClient.builder()
2 .uri(URI.create("http://192.168.0.20:2375"))
3 .connectTimeoutMillis(3000)
4 .build();
5
6 String response=dockerClient.ping();
7 Info info=dockerClient.info();
8 dockerClient.pull("test_image");
9

10 dockerClient.close();

4.3.3 Lessons Learned and Pitfalls

During development we encountered several pitfalls and learned some important lessons.

One thing we experienced was that the commands in a Dockerfile can be quite missleading
and have to be read carefully. For example, the EXPOSE command does not expose
the port to the host, instead it just exposes the port to other Docker containers. The
VOLUME command does not support to mount a host directory inside the container, this
has to be done within starting of a container.

Concerning Spring, a lesson that we learned was to check implicit dependencies carefully.
On the one hand the framework comes out of the box without any need of complicated
configuration, which makes it straightforward getting a new project up and running.
On the other hand this means that many settings are hidden from the developer and
it is hard to understand what really happens under the hood. The starter artifact, for
example, implicitly defines Java 6 as the compiler level, which had to be overwritten in
order to use Java 8.

When it comes to development itself, we learned that before new libraries are integrated,
release notes and dependencies should be checked precisely. We wanted to use the Spring
Eureka library for automatic service discovery. This worked well for the Web Service and
the Machine Service. When we tried to integrate it in the Containerization Service, we
ended up with a library conflict. The problem was that Eureka still used Jersey version
1, while the Spotify Client relied on version 2. In the end we had to get rid of Spring
Eureka because of that.

62

CHAPTER 5
Demonstration

This chapter describes a typical IoT application and shows how the developed application
deployment framework simplifies the deployment and maintenance.

5.1 Use Case Definition

In order to demonstrate the feasibility of the introduced application deployment framework
for the IoT domain, we define a typical use case in this section. We will implement the
following Building Management System (BMS):

Let’s assume we have a building with three floors (basement, 1. floor, and 2. floor) where
we want to deploy a BMS. Each floor consists of a Raspberry PI that is connected to
the WiFi of the building. There are several sensors located in the building: temperature
sensors, humidity sensors, smoke detectors, motion detection sensors, contact sensor for
the entrance door, etc. The Raspberry PIs are the central communication devices for
these sensors on the corresponding floor. The sensors send their collected data through
Bluetooth Low Energy to their assigned Raspberry PI. The data is then exposed in the
network through a REST API. One Raspberry PI is also used as the central web server,
and therefore, it aggregates the sensor data and makes it accessible via the Internet.
Furthermore, the web server offers a GUI that shows an overview of the current conditions
of the building.

5.2 Application Deployment and Management

The BMS consists of two different applications. One application is called sensor_collector
and is used on every Raspberry Pi to collect sensor data. The second application is called
web_server and needs to be deployed on one central Raspberry Pi to serve as web server.

63

5. Demonstration

5.2.1 Preconditions

We have to define some preconditions for the devices in order to be able to deploy
the introduced BMS with the implemented framework. In particular the following
requirements have to be fulfilled:

• The Rasperry PIs are reachable through the network (WLAN or LAN).

• Each device is provisioned with Linux and the Docker Engine that exposes the
Docker Engine API on the network.

• Every Raspberry PI allows access to the insecure Docker Registry.

5.2.2 Application Deployment

Using the Web UI

The deployment of the BMS is done in several steps:

Figure 5.1: Registration of a new device.

Step 1: Login and register all Raspberry PIs with the IP addresses and the ports where
the Docker Engine API can be accessed. Figure 5.1 shows how to add a new device
through the Web UI.

Step 2: Upload the application that collects the sensor data and configure the following
parameters: container name, Docker base image, and the network type. Figure 5.2 shows
the form to create and distribute the container.

Step 3: Start the container after uploading as presented in Figure 5.3. Figure 5.4
demonstrates the overview of all containers, the device information (e.g., architecture,
operating system), and of the current resource utilization.

Step 4: Watch the logging output to make sure that the application starts up without
any error. Repeat Step 2 - 4 for each application that collects sensor data and provides
the REST API.

64

5.2. Application Deployment and Management

Figure 5.2: Upload of the application.

Figure 5.3: Start of the deployed container.

Step 5: Upload the web server application with the following parameters: container name,
Docker base image, and network type.

Step 6: Check the logging output of the web server to ensure that it started up correctly.

Using the REST API

Since we implemented services with a REST API we can integrate the framework in a
continuous delivery pipeline. Listing 5.1 shows the command that is necessary to deploy
a new application to the Raspberry PI. This command produces the same container as
described before through the Web interface. We used the username test and the password
1234 for authentication. The web server is hosted at 192.168.0.20 and the Raspberry PI
is reachable through 192.168.0.29. In order to deploy the application as illustrated in
Listing 5.1, the user has to register the device first.

65

5. Demonstration

Figure 5.4: Running container with resource utilization.

Listing 5.1: Command to deploy an application through the REST API.
1 #upload the application to the web server (192.168.0.20:8080) and
2 #deploy it to the raspberry pi (192.168.0.29)
3 curl --user test:1234 \
4 -F "ip=192.168.0.29" \
5 -F "networkConfig=host" \
6 -F "containerName=sensor_collector" \
7 -F "imageName=dordoka/rpi-java8" \
8 -F "file=@sensorcollector-1.0-SNAPSHOT.war" \
9 192.168.0.20:8080/upload

5.2.3 Application Management

After deploying all applications, the resource utilization for each device and every container
can be overseen through the Web UI, and thus, performance problems are encountered
fast.

Let us consider that we want to role out a new Web Server GUI. In order to do that, we
upload the new application to the corresponding Raspberry PI. If the same base image is
used for the update, only the changed application has to be downloaded, which makes

66

5.3. Summary

Figure 5.5: Logging output of the selected container.

the distribution very fast. To be able to start the new container, first we have to stop
the old web server to avoid port conflicts. Afterwards we can start the new container.

5.3 Summary
As presented in this chapter, deployment of an application is done within a few clicks
using the introduced deployment framework, since configuration effort is reduced to a
minimum. The only configuration that is required is the container name and the base
image. All other parameters are automatically set by the introduced framework. If
needed, fine grained control of the Dockerfile commands is possible, which allows to set
up the resulting Docker image according to the users needs.

Furthermore, we described how the framework can be integrated within a continuous
delivery pipeline through the REST API.

67

CHAPTER 6
Evaluation

In this chapter we evaluate the deployment time of different Docker images on various
platforms.

6.1 Scenarios
In order to evaluate the deployment time we define three different deployment scenarios:

• Scenario 1: A new application is deployed on a device. The base image was never
used before and thus, is not stored in the local cache or Docker Registry.

• Scenario 2: An application is deployed on a device that has already been deployed
before. Therefore, the resulting Docker image is already stored in the local cache
and Docker Registry.

• Scenario 3: A modified application is deployed on a device. The base image and the
Dockerfile commands have already been used before, only the uploaded application
changed.

Furthermore, we use two different Dockerfiles for each scenario. One Dockerfile without
any user specific commands (only the standard commands to add the uploaded application
and execute it on startup), and another Dockerfile with a larger base image and commands
to run apt-get update and install the apache2 server. The first Dockerfile (without run
commands) is identified with a small a (e.g., 1a) and the second one with a small b (e.g.,
1b).

Deployment in the context of this evaluation means that we create the Docker container
on the device. We don’t start the container since the start-up time is mostly depending
on the application that gets started inside the container and not on Docker itself.

69

6. Evaluation

Device Image from Dockerfile a Image from Dockerfile b

Notebook & hosted server 138MB 677MB
Raspberry Pi 319MB 460MB

Table 6.1: Different image sizes used

OS Ubuntu 14.04 LTS
Kernel Kernel 4.4.0-72
Processor Intel i5-4200U 2x 1.60GHz (up to 2.60)
Architecture x86 64bit
RAM 12GB DDR3
Harddisk SSD Samsung EVO 840 250GB
Docker 17.04.0-ce
Network 1000MBit

Table 6.2: Specifications of the Notebook

The base images used for the x86 architecture (Notebook and hosted server) are called
anapsix/alpine-java (a) and java:8 (b). For the ARM architecture (Raspberry
Pi) we used jsurf/rpi-java (a) and dordoka/rpi-java8 (b). The uploaded user
application has 14.1MB.

6.2 Benchmark

6.2.1 Setup

We use three different devices for deployment: a Notebook, a Raspberry Pi 3 Model B,
and a hosted server. The detailed specifications for the Notebook and the hosted server
are listed in Table 6.2 and Table 6.3. The basic specifications of the Raspberry Pi are
described in Chapter 3. It has the Raspbian operating system installed, which is based
on Debian 8.

The application deployment framework is deployed on a PC in the local network. Table 6.4
shows its specifications. In order to be able to build a Docker image for the Raspberry Pi
(armv8/armv7l architecture), we use another Raspberry Pi where the Containerization
Service is executed. Thus, we have two Containerization Services, one for the ARM
architecture and one for the x86 architecture. Furthermore, the Docker Registry is also
running on the PC. This means that all microservices except one of the Containerization
Services communicate via the Linux loopback device with each other.

Each scenario was tested ten times with an automated script. The registry and local
cache are purged after each deployment for scenario 1. The error bar diagrams show the
average, as well as the min and max of the measured times. The measured values can be

70

6.2. Benchmark

OS Ubuntu 16.04 LTS
Kernel Kernel 4.4.0-72
Processor Intel Xeon E5-2650L 2x 2.3 GHz
Architecture x86 64bit
RAM 2GB DDR3
Harddisk 40GB SSD
Docker 17.03.1-ce
Vendor DigitalOcean
Location Frankfurt
Round-trip time 20ms - 30ms

Table 6.3: Specifications of the hosted server

OS Ubuntu 16.04 LTS
Kernel Kernel 4.4.0-72
Processor Intel i5-3570k 4x 3.40GHz
Architecture x86 64bit
RAM 8GB DDR3
Harddisk SSD Samsung EVO 850 250GB
Network 1000MBit
Docker 1.12.6
Internet 75MBit Download 7.5MBit Upload (measured)

Table 6.4: Specifications of the used PC

found in the Appendix A of the thesis.

6.2.2 Notebook

As we can see in Figure 6.1 the deployment time is quite high for new applications, but
decreases significantly if the Docker image is already cached on the device (e.g., scenario
2). Figure 6.2 shows that the high variation of the deployment time of scenario 1b
comes mostly from the image building process. Furthermore, Figure 6.3 and Figure 6.4
illustrate that pushing to the Docker Registry takes nearly twice the time than pulling.
In Figure 6.5 we can see that container creation is very fast, but also varies heavily.

71

6. Evaluation

Sc
en
ar
io
1a

Sc
en
ar
io
1b

Sc
en
ar
io
2a

Sc
en
ar
io
2b

Sc
en
ar
io
3a

Sc
en
ar
io
3b

0

50

100

150
tim

e
(s
)

Figure 6.1: Overall deployment
Sc
en
ar
io
1a

Sc
en
ar
io
1b

Sc
en
ar
io
2a

Sc
en
ar
io
2b

Sc
en
ar
io
3a

Sc
en
ar
io
3b

0

20

40

60

80

100

120

tim
e
(s
)

Figure 6.2: Image building

Sc
en
ar
io
1a

Sc
en
ar
io
1b

Sc
en
ar
io
2a

Sc
en
ar
io
2b

Sc
en
ar
io
3a

Sc
en
ar
io
3b

0

5

10

15

20

25

30

tim
e
(s
)

Figure 6.3: Pushing to registry

Sc
en
ar
io
1a

Sc
en
ar
io
1b

Sc
en
ar
io
2a

Sc
en
ar
io
2b

Sc
en
ar
io
3a

Sc
en
ar
io
3b

0

5

10

15

tim
e
(s
)

Figure 6.4: Pulling of the image

72

6.2. Benchmark

Sc
en
ar
io
1a

Sc
en
ar
io
1b

Sc
en
ar
io
2a

Sc
en
ar
io
2b

Sc
en
ar
io
3a

Sc
en
ar
io
3b

0

20

40

60

80

100

120

140

160

tim
e
(m

s)

Figure 6.5: Container creation

6.2.3 Hosted Server

Figure 6.6 demonstrates a very high deployment time for new applications. As can be
seen in Figure 6.7 this is not caused by the image building process, but by pulling the
image to the server (Figure 6.9). This can be explained by the limited upload speed of
the deployment server.

73

6. Evaluation

Sc
en
ar
io
1a

Sc
en
ar
io
1b

Sc
en
ar
io
2a

Sc
en
ar
io
2b

Sc
en
ar
io
3a

Sc
en
ar
io
3b

0

100

200

300

400
tim

e
(s
)

Figure 6.6: Overall deployment
Sc
en
ar
io
1a

Sc
en
ar
io
1b

Sc
en
ar
io
2a

Sc
en
ar
io
2b

Sc
en
ar
io
3a

Sc
en
ar
io
3b

0

10

20

30

40

50

tim
e
(s
)

Figure 6.7: Image building

Sc
en
ar
io
1a

Sc
en
ar
io
1b

Sc
en
ar
io
2a

Sc
en
ar
io
2b

Sc
en
ar
io
3a

Sc
en
ar
io
3b

0

5

10

15

20

25

30

tim
e
(s
)

Figure 6.8: Pushing to registry

Sc
en
ar
io
1a

Sc
en
ar
io
1b

Sc
en
ar
io
2a

Sc
en
ar
io
2b

Sc
en
ar
io
3a

Sc
en
ar
io
3b

0

50

100

150

200

250

300

tim
e
(s
)

Figure 6.9: Pulling of the image

74

6.2. Benchmark

Sc
en
ar
io
1a

Sc
en
ar
io
1b

Sc
en
ar
io
2a

Sc
en
ar
io
2b

Sc
en
ar
io
3a

Sc
en
ar
io
3b

0

100

200

300

400

tim
e
(m

s)

Figure 6.10: Container creation

6.2.4 Raspberry Pi

The Raspberry Pi has by far the highest deployment time compared to the other devices.
As can be seen in Figure 6.12, Figure 6.13, and Figure 6.14, each deployment process
takes significantly longer than on other devices and it is not due to one particular event.
This is mostly caused by the bad I/O performance of the SD-card that is used in the
Raspberry Pi.

75

6. Evaluation

Sc
en
ar
io
1a

Sc
en
ar
io
1b

Sc
en
ar
io
2a

Sc
en
ar
io
2b

Sc
en
ar
io
3a

Sc
en
ar
io
3b

0

200

400

600

800
tim

e
(s
)

Figure 6.11: Overall deployment
Sc
en
ar
io
1a

Sc
en
ar
io
1b

Sc
en
ar
io
2a

Sc
en
ar
io
2b

Sc
en
ar
io
3a

Sc
en
ar
io
3b

0

100

200

300

400

tim
e
(s
)

Figure 6.12: Image building

Sc
en
ar
io
1a

Sc
en
ar
io
1b

Sc
en
ar
io
2a

Sc
en
ar
io
2b

Sc
en
ar
io
3a

Sc
en
ar
io
3b

0

50

100

150

200

250

tim
e
(s
)

Figure 6.13: Pushing to registry

Sc
en
ar
io
1a

Sc
en
ar
io
1b

Sc
en
ar
io
2a

Sc
en
ar
io
2b

Sc
en
ar
io
3a

Sc
en
ar
io
3b

0

50

100

150

200

250

tim
e
(s
)

Figure 6.14: Pulling of the image

76

6.3. Discussion

Sc
en
ar
io
1a

Sc
en
ar
io
1b

Sc
en
ar
io
2a

Sc
en
ar
io
2b

Sc
en
ar
io
3a

Sc
en
ar
io
3b

0

1,000

2,000

3,000

4,000

5,000

tim
e
(m

s)

Figure 6.15: Container creation

6.3 Discussion

As we can see in Figure 6.1, Figure 6.6, and Figure 6.11, the deployment time for new
applications with a new base image (scenario 1), heavily relies on the image size and
whether additional Dockerfile commands are executed or not. The high variation of
deployment times on the Notebook for scenario 1b is caused by the image building process
as shown in Figure 6.2. This is mostly because the apt-get update command checks
for updates on many servers, which can lead to delays if one of the servers has a high
response time. The deployment time on the hosted server was mainly influenced by
pulling the image to the device. This is due to the fact, that it requires uploading from
the local Docker Registry to the hosted server, which is limited to 7.5Mbit. The long
time for deployment on the Raspberry Pi can be explained with the bad I/O performance
of the device. This is caused by the SD card, which is way slower compared to the
SSDs used for the other devices. Considering that we also use a Raspberry Pi for image
building this has a massive effect on the deployment time. Faster image creation could
be achieved by using of an ARM server or with a Network File System (NFS) mounted
within the Raspberry Pi.

When an application is deployed a second time (scenario 2), the deployment time decreases
tremendously. This is caused by the intelligent caching mechanism implemented in Docker,
which compares the hashes and run commands, and recognizes if an image has already
been built before. It is independent of the resulting image size and whether commands
in the Dockerfile are used or not.

77

6. Evaluation

The measurement also shows that if a changed application is deployed (scenario 3), the
caching works very well. Only the changed application is transferred to the device and
thus, the deployment time is very low compared to a new deployment (scenario 1).

Creating a container out of the resulting Docker image is done fast as shown in Figure 6.5,
Figure 6.10, and Figure 6.15, since Docker uses the copy-on-write mechanism. The image
is used for the container without copying of any data, only a writeable layer is added on
top of the image. The measurement also showed that the creation time varies significantly,
independent of image size or device. It is worth mentioning that the container creation
on the Raspberry Pi takes longer for the smaller image. The reason for this is probably
that the smaller base image has way more layers than the larger base image. This is
because the image is created from another base image itself. The high time variation on
the hosted server is probably also caused by the round trip time to the datacenter.

78

CHAPTER 7
Conclusion

This chapter discusses the outcome of the thesis and gives an outlook on future work.

7.1 Summary
Application deployment is a critical topic in the domain of IoT. Since there are naturally
many devices used, managing application distribution and deployment manually becomes
very time consuming and error prone. Furthermore, the variety of devices lead to a
heterogeneous environment with different CPUs and thus, different architectures.

In the course of this thesis, we investigated how operating-system-level virtualization
can be applied to cope with these problems. When it comes to platform independence
this approach offers a good way to abstract from the underlying operating system and
allows to deploy the same image on different devices without any adaptations needed.
However, there are some device specific features that cannot be abstracted. For example,
applications that are compiled for a x86 architecture cannot be deployed on an ARM
device. Moreover, also Java has some limitations when native libraries or JNI is used, as
described in Chapter 3.

OS virtualization offers nearly native performance, because it is a very lightweight
virtualization approach as described in Chapter 2. The only drawback compared to a
native approach is that containers require a significant amount of disk space since the
whole Linux userspace is packed into it. As explained in Chapter 3 and evaluated in
Chapter 5, Docker handles this problem very well through smart layering of the images
and applying of the so called copy-on-write concept. This allows to reuse an image for
every container that builds upon it. Furthermore, the startup time is very low because
no data has to be copied.

The introduced framework allows to deploy, monitor, and debug applications within a
few clicks, and therefore, simplifies application deployment and management. Moreover,

79

7. Conclusion

since it is developed as a microservice architecture, each service can easily be distributed
according to the domain specific needs. This allows, for example, to deploy the service
that builds the Docker images on different architectures and thus, leads to better platform
independence.

There are some limitations using operating-system-level virtualization in context of IoT.
The most crucial one is that it requires an operating system with support for a container
engine installed on the device. Considering that many IoT devices have limited computing
power, this limits the number of usable devices. Another drawback is that it is restricted
to platforms that are supported by the container engine. Currently, Docker only supports
the x86 and ARM architecture.

In summary, in this thesis we showed that operating-system-level virtualization can be
applied for IoT and offers platform independence to a great extent. The implemented
prototype gave insights in the deployment time of different applications. The time to
create and distribute images is quite high for new applications, because of the huge image
sizes, but decreases significantly when images are already cached on the device.

7.2 Future Work
Since the developed prototype is a proof of concept, there are many features and changes
that could be considered for future work. The most important once are described in this
section.

7.2.1 Security

During designing and developing we did not take care of security issues. For example,
the Docker Engine API is not protected at all and can be used on the devices without
any authentication. Obviously, this cannot be done in production. Therefore, significant
effort has to be taken to secure the clients and the Docker Registry. Since this is a very
sensitive topic when it comes to IoT, securing of the application has to be done with
great caution and very carefully.

7.2.2 Client Agent

We decided to use an agent less approach for the prototype to save resources. As described
this makes the framework highly dependable on the Docker Engine API. To offer more
features and support other container engines it is required to implement an agent for the
devices. Another approach would be to use ssh, which would allow full control of the
device. Although this approach requires more resources, the benefits outweigh the cost.

7.2.3 Source Compilation

In order to enhance support of different platforms and programming languages it is
necessary to compile the source code on the respective architecture. Therefore, an option

80

7.2. Future Work

to upload the source code together with the build instructions instead of the application
would offer more flexibility. Currently only Java is supported since it is to a great extent
platform independent.

7.2.4 Image Overview

Since the deployment time of new applications is highly dependent on whether the base
image is already used or not, it is necessary to show currently stored images on a device.
This allows the user to reuse old images, and therefore, only the new application has to
be delivered to the selected device.

7.2.5 Dockerfile Storage

A typical usecase is to deploy a new version of an application. Thus, most of the time the
Dockerfile to build the image will not change. Therefore, an option to use the Dockerfile
of an already created container would make the deployment configuration much faster
and less error prone.

7.2.6 Container Management

In terms of container management there are plenty of features that need to be implemented
to offer better support. Some very interesting once are:

• Continuous monitoring and health checking

• Automatic redeployment in case of container failures

• Automatic replication to scale out on high load

• Rolling updates

81

List of Figures

2.1 Example of a network architecture for the IoT 8
2.2 Different levels of virtualization . 11
2.3 Deployment pipeline, adapted from [64] . 17

3.1 Standards used in IoT applications [58] . 23
3.2 The IPv6 header (adapted from [38]) . 25
3.3 Example of a cgroup hierarchy attached to the CPU subsystem (adapted

from [100]) . 30
3.4 The Docker Engine architecture [101] . 36
3.5 A Docker image with the container layers on top [78] 37
3.6 The different stages of rkt [72] . 40
3.7 Architecture of Kubernetes [91] . 43
3.8 Application deployment with resin.io [105] . 46
3.9 IoT device architecture in resin.io [105] . 47

4.1 Container diagram of the framework . 53
4.2 Component diagram of the framework . 54
4.3 Deployment diagram of the framework . 54
4.4 Sequence diagram of the deployment process 57

5.1 Registration of a new device. 64
5.2 Upload of the application. 65
5.3 Start of the deployed container. 65
5.4 Running container with resource utilization. 66
5.5 Logging output of the selected container. 67

6.1 Overall deployment . 72
6.2 Image building . 72
6.3 Pushing to registry . 72
6.4 Pulling of the image . 72
6.5 Container creation . 73
6.6 Overall deployment . 74
6.7 Image building . 74
6.8 Pushing to registry . 74

83

6.9 Pulling of the image . 74
6.10 Container creation . 75
6.11 Overall deployment . 76
6.12 Image building . 76
6.13 Pushing to registry . 76
6.14 Pulling of the image . 76
6.15 Container creation . 77

List of Tables

3.1 Specifications of the Arduino Uno Revision 3 [15] 20
3.2 Specifications of the Dell Edge Gateway 5000 [39] 20
3.3 Specifications of the Raspberry Pi 3 Model B [47] 21
3.4 Specifications of the UDOO Neo Full [82] . 21

6.1 Different image sizes used . 70
6.2 Specifications of the Notebook . 70
6.3 Specifications of the hosted server . 71
6.4 Specifications of the used PC . 71

A.1 Overall deployment (ms) . 95
A.2 Create image (ms) . 95
A.3 Push image (ms) . 96
A.4 Pull image (ms) . 96
A.5 Create container (ms) . 96
A.6 Overall deployment (ms) . 97
A.7 Create image (ms) . 97
A.8 Push image (ms) . 97
A.9 Pull image (ms) . 98
A.10 Create container (ms) . 98
A.11 Overall deployment (ms) . 99
A.12 Create image (ms) . 99
A.13 Push image (ms) . 99
A.14 Pull image (ms) . 100
A.15 Create container (ms) . 100

84

Bibliography

[1] CGROUP_NAMESPACES(7) Linux Programmer’s Manual.

[2] CGROUPS(7) Linux Programmer’s Manual.

[3] CHROOT(2) FreeBSD System Calls Manual.

[4] CHROOT(2) Linux Programmer’s Manual.

[5] MOUNT_NAMESPACES(7) Linux Programmer’s Manual.

[6] NAMESPACES(7) Linux Programmer’s Manual.

[7] Open Container Iniatitive. https://www.opencontainers.org Accessed
11/2016.

[8] RCTL(8) FreeBSD System Manager’s Manual.

[9] resin.io. https://resin.io/ Accessed: 03/2017.

[10] Yocto Project. https://www.yoctoproject.org/ Accessed: 03/2017.

[11] AppArmor FAQ, 2011. http://wiki.apparmor.net/index.php/FAQ Ac-
cessed 01/2017.

[12] Comparison, 2016. https://openvz.org/Comparison Accessed 01/2017.

[13] Ieee standard for low-rate wireless networks. IEEE Std 802.15.4-2015 (Revision of
IEEE Std 802.15.4-2011), pages 1–709, April 2016.

[14] Allan Afuah. How much do your" co-opetitors’" capabilities matter in the face of
technological change? Strategic Management Journal, pages 387–404, 2000.

[15] Arduino AG. Arduino Uno SMD, 2017. https://www.arduino.cc/en/Main/
ArduinoBoardUnoSMD Accessed 02/2017.

[16] Wi-Fi Alliance. Wi-Fi Alliance introduces low power, long range
Wi-Fi HaLow. http://www.wi-fi.org/news-events/newsroom/wi-
fi-alliance-introduces-low-power-long-range-wi-fi-halow Ac-
cessed: 02/2017.

85

https://www.opencontainers.org
https://resin.io/
https://www.yoctoproject.org/
http://wiki.apparmor.net/index.php/FAQ
https://openvz.org/Comparison
https://www.arduino.cc/en/Main/ArduinoBoardUnoSMD
https://www.arduino.cc/en/Main/ArduinoBoardUnoSMD
http://www.wi-fi.org/news-events/newsroom/wi-fi-alliance-introduces-low-power-long-range-wi-fi-halow
http://www.wi-fi.org/news-events/newsroom/wi-fi-alliance-introduces-low-power-long-range-wi-fi-halow

[17] ZigBee Alliance et al. ZigBee Specification, 2006.

[18] Matt Asay. Why Kubernetes is winning the container war. http:
//www.infoworld.com/article/3118345/cloud-computing/why-
kubernetes-is-winning-the-container-war.html Accessed: 03/2017.

[19] Alex Ashley and Stephen McCann. Official IEEE 802.11 Working Group
Project Timelines - 2017-01-26. http://grouper.ieee.org/groups/802/11/
Reports/802.11_Timelines.htm Accessed: 02/2017.

[20] Kevin Ashton. That ’Internet of Things’ Thing, 2009. http://
www.rfidjournal.com/articles/view?4986 Accessed 09/2016.

[21] Luigi Atzori, Antonio Iera, and Giacomo Morabito. The internet of things: A
survey. Computer networks, 54(15):2787–2805, 2010.

[22] Alessandro Bassi and Geir Horn. Internet of things in 2020: A roadmap for the
future. European Commission: Information Society and Media, 2008.

[23] Kent Beck. Extreme Programming Explained: Embrace Change. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 2000.

[24] Kent Beck, Mike Beedle, Arie Van Bennekum, Alistair Cockburn, Ward Cunning-
ham, Martin Fowler, James Grenning, Jim Highsmith, Andrew Hunt, Ron Jeffries,
et al. Manifesto for agile software development. 2001.

[25] SIG Bluetooth. Covered Core Package, Version: 4.2;. Specification of the Bluetooth
System, 2014.

[26] Joshua Bressers. Is chroot a security feature?, 2013. https://
access.redhat.com/blogs/766093/posts/1975883 Accessed 12/2016.

[27] Simon Brown. Agile software architecture sketches and nouml, 2013.
https://www.infoq.com/articles/agile-software-architecture-
sketches-NoUML Accessed: 03/2017.

[28] Diego Calleja. Linux 2 6 24, 2010. https://kernelnewbies.org/Linux_2_
6_24 Accessed 11/2016.

[29] Diego Calleja. Linux 3.8, 2013. https://kernelnewbies.org/Linux_3.8
Accessed 11/2016.

[30] Diego Calleja. Linux 4.6, 2016. https://kernelnewbies.org/Linux_4.6
Accessed 12/2016.

[31] Patrick Chanezon. Docker containerd Kubernetes sig node. https:
//www.slideshare.net/chanezon/docker-containerd-kubernetes-
sig-node Accessed: 03/2017.

86

http://www.infoworld.com/article/3118345/cloud-computing/why-kubernetes-is-winning-the-container-war.html
http://www.infoworld.com/article/3118345/cloud-computing/why-kubernetes-is-winning-the-container-war.html
http://www.infoworld.com/article/3118345/cloud-computing/why-kubernetes-is-winning-the-container-war.html
http://grouper.ieee.org/groups/802/11/Reports/802.11_Timelines.htm
http://grouper.ieee.org/groups/802/11/Reports/802.11_Timelines.htm
http://www.rfidjournal.com/articles/view?4986
http://www.rfidjournal.com/articles/view?4986
https://access.redhat.com/blogs/766093/posts/1975883
https://access.redhat.com/blogs/766093/posts/1975883
https://www.infoq.com/articles/agile-software-architecture-sketches-NoUML
https://www.infoq.com/articles/agile-software-architecture-sketches-NoUML
https://kernelnewbies.org/Linux_2_6_24
https://kernelnewbies.org/Linux_2_6_24
https://kernelnewbies.org/Linux_3.8
https://kernelnewbies.org/Linux_4.6
https://www.slideshare.net/chanezon/docker-containerd-kubernetes-sig-node
https://www.slideshare.net/chanezon/docker-containerd-kubernetes-sig-node
https://www.slideshare.net/chanezon/docker-containerd-kubernetes-sig-node

[32] Peter M Chen and Brian D Noble. When virtual is better than real [operating
system relocation to virtual machines]. In Hot Topics in Operating Systems, 2001.
Proceedings of the Eighth Workshop on, pages 133–138. IEEE, 2001.

[33] Susanta Nanda Tzi-cker Chiueh. A survey on virtualization technologies. RPE
Report, pages 1–42, 2005.

[34] CoreOS. etcd. https://github.com/coreos/etcd Accessed: 03/2017.

[35] Oracle Corporation. Features Provided by Non-Global Zones, 2010.
https://docs.oracle.com/cd/E19044-01/sol.containers/817-1592/
zones.intro-9/index.html Accessed 01/2017.

[36] Oracle Corporation. Immutable Zones, 2014. http://docs.oracle.com/cd/
E36784_01/html/E36848/glglv.html Accessed 01/2017.

[37] Oracle Corporation. Zones Overview, 2014. http://docs.oracle.com/cd/
E36784_01/html/E36848/zones.intro-2.html Accessed 01/2017.

[38] S Deering and R Hinden. Internet protocol, version 6 (ipv6) specification. 1998.

[39] Dell Technologies Inc. Edge Gateway 5000 Series Spec Sheet, 5 2016.

[40] DevOps.com, ClusterHQ. Container market adoption, 2016. https:
//clusterhq.com/assets/pdfs/state-of-container-usage-june-
2016.pdf Accessed 11/2016.

[41] Sandra Dominikus and Jörn-Marc Schmidt. Connecting passive rfid tags to the
internet of things. In Interconnecting Smart Objects with the Internet Workshop,
Prague, 2011.

[42] Paul Duvall, Stephen M. Matyas, and Andrew Glover. Continuous Integration:
Improving Software Quality and Reducing Risk (The Addison-Wesley Signature
Series). Addison-Wesley Professional, 2007.

[43] Jake Edge. A seccomp overview, 2015. https://lwn.net/Articles/656307/
Accessed 01/2017.

[44] Wes Felter, Alexandre Ferreira, Ram Rajamony, and Juan Rubio. An updated
performance comparison of virtual machines and linux containers. In Performance
Analysis of Systems and Software (ISPASS), 2015 IEEE International Symposium
On, pages 171–172. IEEE, 2015.

[45] NFC Forum. What are the operating modes of NFC devices? http:
//nfc-forum.org/resources/what-are-the-operating-modes-of-
nfc-devices/ Accessed: 02/2017.

[46] Cloud Native Computing Foundation. Kubernetes, 2017. https://github.com/
kubernetes/kubernetes Accessed 03/2017.

87

https://github.com/coreos/etcd
https://docs.oracle.com/cd/E19044-01/sol.containers/817-1592/zones.intro-9/index.html
https://docs.oracle.com/cd/E19044-01/sol.containers/817-1592/zones.intro-9/index.html
http://docs.oracle.com/cd/E36784_01/html/E36848/glglv.html
http://docs.oracle.com/cd/E36784_01/html/E36848/glglv.html
http://docs.oracle.com/cd/E36784_01/html/E36848/zones.intro-2.html
http://docs.oracle.com/cd/E36784_01/html/E36848/zones.intro-2.html
https://clusterhq.com/assets/pdfs/state-of-container-usage-june-2016.pdf
https://clusterhq.com/assets/pdfs/state-of-container-usage-june-2016.pdf
https://clusterhq.com/assets/pdfs/state-of-container-usage-june-2016.pdf
https://lwn.net/Articles/656307/
http://nfc-forum.org/resources/what-are-the-operating-modes-of-nfc-devices/
http://nfc-forum.org/resources/what-are-the-operating-modes-of-nfc-devices/
http://nfc-forum.org/resources/what-are-the-operating-modes-of-nfc-devices/
https://github.com/kubernetes/kubernetes
https://github.com/kubernetes/kubernetes

[47] Raspberry Pi Foundation. Raspberry Pi 3 Model B, 2017. https://
www.raspberrypi.org/products/raspberry-pi-3-model-b/ Accessed
02/2017.

[48] Martin Fowler. Continuous Integration, 2006. http://martinfowler.com/
articles/continuousIntegration.html Accessed 11/2016.

[49] Martin Fowler. Continuous Delivery, 2013. http://martinfowler.com/
bliki/ContinuousDelivery.html Accessed 10/2016.

[50] Martin Fowler. DeploymentPipeline, 2013. http://martinfowler.com/
bliki/DeploymentPipeline.html Accessed 11/2016.

[51] Martin Fowler. Microservice trade-offs, 2015. https://martinfowler.com/
articles/microservice-trade-offs.html Accessed: 03/2017.

[52] FreeBSD. Docker on FreeBSD, 2016. https://wiki.freebsd.org/Docker
Accessed 01/2017.

[53] Vangelis Gazis, Manuel Görtz, Marco Huber, Alessandro Leonardi, Kostas Math-
ioudakis, Alexander Wiesmaier, Florian Zeiger, and Emmanouil Vasilomanolakis.
A survey of technologies for the internet of things. In 2015 International Wireless
Communications and Mobile Computing Conference (IWCMC), pages 1090–1095.
IEEE, 2015.

[54] Fred Grosshans and Diego Calleja. Linux 2 6 30, 2009. https://
kernelnewbies.org/Linux_2_6_30 Accessed 11/2016.

[55] OMG Object Managment Group. Data Distribution Service, V1.4, 2017. http:
//www.omg.org/spec/DDS/1.4/ Accessed 03/2017.

[56] The HSQL Development Group. Hypersql, 2017. http://hsqldb.org/ Accessed:
03/2017.

[57] Jayavardhana Gubbi, Rajkumar Buyya, Slaven Marusic, and Marimuthu
Palaniswami. Internet of things (iot): A vision, architectural elements, and future
directions. Future Generation Computer Systems, 29(7):1645–1660, 2013.

[58] Patrick Guillemin, Friedbert Berens, Marco Carugi, Marilyn Arndt, Latif Ladid,
George Percivall, Bart De Lathouwer, Steve Liang, Arne Bröring, and Pascal
Thubert. Internet of things standardisation—status, requirements, initiatives and
organisations. RIVER PUBLISHERS SERIES IN COMMUNICATIONS, page 259,
2013.

[59] Tejun Heo. Control Group v2, 2015. https://www.kernel.org/doc/
Documentation/cgroup-v2.txt Accessed 12/2016.

88

https://www.raspberrypi.org/products/raspberry-pi-3-model-b/
https://www.raspberrypi.org/products/raspberry-pi-3-model-b/
http://martinfowler.com/articles/continuousIntegration.html
http://martinfowler.com/articles/continuousIntegration.html
http://martinfowler.com/bliki/ContinuousDelivery.html
http://martinfowler.com/bliki/ContinuousDelivery.html
http://martinfowler.com/bliki/DeploymentPipeline.html
http://martinfowler.com/bliki/DeploymentPipeline.html
https://martinfowler.com/articles/microservice-trade-offs.html
https://martinfowler.com/articles/microservice-trade-offs.html
https://wiki.freebsd.org/Docker
https://kernelnewbies.org/Linux_2_6_30
https://kernelnewbies.org/Linux_2_6_30
http://www.omg.org/spec/DDS/1.4/
http://www.omg.org/spec/DDS/1.4/
http://hsqldb.org/
https://www.kernel.org/doc/Documentation/cgroup-v2.txt
https://www.kernel.org/doc/Documentation/cgroup-v2.txt

[60] Yu-Ju Hong. Introducing Container Runtime Interface (CRI) in Ku-
bernetes. http://blog.kubernetes.io/2016/12/container-runtime-
interface-cri-in-kubernetes.html Accessed: 03/2017.

[61] Jez Humble. Deployment pipeline anti-patterns, 2010. https:
//continuousdelivery.com/2010/09/deployment-pipeline-anti-
patterns/ Accessed 11/2016.

[62] Jez Humble. Continuous Testing, 2013. https://continuousdelivery.com/
foundations/test-automation Accessed 11/2016.

[63] Jez Humble. Continuous Delivery, 2016. https://continuousdelivery.com
Accessed 10/2016.

[64] Jez Humble and David Farley. Continuous delivery: reliable software releases
through build, test, and deployment automation. Pearson Education, 2010.

[65] Jez Humble, Chris Read, and Dan North. The deployment production line. In
AGILE, volume 6, pages 113–118, 2006.

[66] Urs Hunkeler, Hong Linh Truong, and Andy Stanford-Clark. Mqtt-s—a publish/-
subscribe protocol for wireless sensor networks. In Communication systems software
and middleware and workshops, 2008. comsware 2008. 3rd international conference
on, pages 791–798. IEEE, 2008.

[67] Sadequl Hussain. An Introduction to SELinux on CentOS 7 – Part 1: Basic Con-
cepts, 2014. https://www.digitalocean.com/community/tutorials/an-
introduction-to-selinux-on-centos-7-part-1-basic-concepts
Accessed 01/2017.

[68] Bluetooth SIG Inc. Bluetooth 5: What it’s all about, 2017.
https://www.bluetooth.com/specifications/bluetooth-core-
specification/bluetooth5 Accessed 03/2017.

[69] CoreOS Inc. App Container basics. https://coreos.com/rkt/docs/latest/
app-container.html Accessed 11/2016.

[70] CoreOS Inc. Networking. https://coreos.com/rkt/docs/latest/
networking/overview.html Accessed 02/2017.

[71] CoreOS Inc. rkt - the pod-native container engine, 2017. https://github.com/
coreos/rkt/ Accessed 01/2017.

[72] CoreOS Inc. rkt architecture, 2017. https://coreos.com/rkt/docs/latest/
devel/architecture.html Accessed 01/2017.

[73] Docker Inc. Docker container networking. https://docs.docker.com/engine/
userguide/networking/ Accessed 02/2017.

89

http://blog.kubernetes.io/2016/12/container-runtime-interface-cri-in-kubernetes.html
http://blog.kubernetes.io/2016/12/container-runtime-interface-cri-in-kubernetes.html
https://continuousdelivery.com/2010/09/deployment-pipeline-anti-patterns/
https://continuousdelivery.com/2010/09/deployment-pipeline-anti-patterns/
https://continuousdelivery.com/2010/09/deployment-pipeline-anti-patterns/
https://continuousdelivery.com/foundations/test-automation
https://continuousdelivery.com/foundations/test-automation
https://continuousdelivery.com
https://www.digitalocean.com/community/tutorials/an-introduction-to-selinux-on-centos-7-part-1-basic-concepts
https://www.digitalocean.com/community/tutorials/an-introduction-to-selinux-on-centos-7-part-1-basic-concepts
https://www.bluetooth.com/specifications/bluetooth-core-specification/bluetooth5
https://www.bluetooth.com/specifications/bluetooth-core-specification/bluetooth5
https://coreos.com/rkt/docs/latest/app-container.html
https://coreos.com/rkt/docs/latest/app-container.html
https://coreos.com/rkt/docs/latest/networking/overview.html
https://coreos.com/rkt/docs/latest/networking/overview.html
https://github.com/coreos/rkt/
https://github.com/coreos/rkt/
https://coreos.com/rkt/docs/latest/devel/architecture.html
https://coreos.com/rkt/docs/latest/devel/architecture.html
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/

[74] Docker Inc. containerd, 2016. https://containerd.io/ Accessed 01/2017.

[75] Docker Inc. Windows Server and Docker - The Internals Behind Bringing
Docker and Containers to Windows by Taylor Brown and John Starks, 2016.
http://de.slideshare.net/Docker/windows-server-and-docker-
the-internals-behind-bringing-docker-and-containers-to-
windows-by-taylor-brown-and-john-starks Accessed 02/2017.

[76] Docker Inc. Docker, 2017. https://github.com/docker/docker Accessed
01/2017.

[77] Docker Inc. Install Docker on macOS, 2017. https://docs.docker.com/
engine/installation/mac/ Accessed 01/2017.

[78] Docker Inc. Understand images, containers, and storage drivers, 2017.
https://docs.docker.com/engine/userguide/storagedriver/
imagesandcontainers/ Accessed 01/2017.

[79] Google Inc. Angularjs, 2017. https://angularjs.org/ Accessed: 03/2017.

[80] Pivotal Software Inc. Moments in container history, 2016. https://pivotal.io/
platform/infographic/moments-in-container-history Accessed
12/2016.

[81] Red Hat Inc. OpenShift. https://www.openshift.com/ Accessed: 03/2017.

[82] SECO USA Inc. UDOO NEO, 2017. http://www.udoo.org/udoo-neo/ Ac-
cessed 02/2017.

[83] Open Container Initiative. Open Container Initiative Charter. https://
www.opencontainers.org/about/governance Accessed 11/2016.

[84] Business Insider. How the ’Internet of Things’ will impact con-
sumers, businesses, and governments in 2016 and beyond, 2016.
http://www.businessinsider.de/how-the-internet-of-things-
market-will-grow-2014-10?r=US&IR=T Accessed 07/2016.

[85] Information technology – Telecommunications and information exchange between
systems – Near Field Communication – Interface and Protocol (NFCIP-1). Standard,
International Organization for Standardization, Geneva, CH, March 2013.

[86] Information technology – message queuing telemetry transport (mqtt) v3.1.1.
Standard, International Organization for Standardization, Geneva, CH, June 2016.

[87] Poul-Henning Kamp and Robert NM Watson. Jails: Confining the omnipotent
root. In Proceedings of the 2nd International SANE Conference, volume 43, page
116, 2000.

90

https://containerd.io/
http://de.slideshare.net/Docker/windows-server-and-docker-the-internals-behind-bringing-docker-and-containers-to-windows-by-taylor-brown-and-john-starks
http://de.slideshare.net/Docker/windows-server-and-docker-the-internals-behind-bringing-docker-and-containers-to-windows-by-taylor-brown-and-john-starks
http://de.slideshare.net/Docker/windows-server-and-docker-the-internals-behind-bringing-docker-and-containers-to-windows-by-taylor-brown-and-john-starks
https://github.com/docker/docker
https://docs.docker.com/engine/installation/mac/
https://docs.docker.com/engine/installation/mac/
https://docs.docker.com/engine/userguide/storagedriver/imagesandcontainers/
https://docs.docker.com/engine/userguide/storagedriver/imagesandcontainers/
https://angularjs.org/
https://pivotal.io/platform/infographic/moments-in-container-history
https://pivotal.io/platform/infographic/moments-in-container-history
https://www.openshift.com/
http://www.udoo.org/udoo-neo/
https://www.opencontainers.org/about/governance
https://www.opencontainers.org/about/governance
http://www.businessinsider.de/how-the-internet-of-things-market-will-grow-2014-10?r=US&IR=T
http://www.businessinsider.de/how-the-internet-of-things-market-will-grow-2014-10?r=US&IR=T

[88] Michael Kerrisk. Namespaces in operation, part 1: namespaces overview, 2013.
https://lwn.net/Articles/531114/ Accessed 11/2016.

[89] Michael Kerrisk. Namespaces in operation, part 3: PID namespaces, 2013. https:
//lwn.net/Articles/531419/ Accessed 11/2016.

[90] Michael Kerrisk. Linux 4.5, 2016. https://kernelnewbies.org/Linux_4.5
Accessed 11/2016.

[91] Khtan66. File:Kubernetes.png. https://commons.wikimedia.org/wiki/
File:Kubernetes.png Accessed: 03/2017.

[92] Scott D. Lowe. What is the difference between emulation vs. virtualiza-
tion?, 2013. http://www.virtualizationadmin.com/blogs/lowe/news/
what-difference-between-emulation-vs-virtualization.html Ac-
cessed 10/2016.

[93] Canonical Ltd. What’s LXD? https://linuxcontainers.org/lxd/
introduction/ Accessed 02/2017.

[94] Gabriel Montenegro, Nandakishore Kushalnagar, Jonathan Hui, and David Culler.
Transmission of IPv6 packets over IEEE 802.15. 4 networks. Technical report, 2007.

[95] Adrian Mouat. 5 security concerns when using Docker. https:
//www.oreilly.com/ideas/five-security-concerns-when-using-
docker Accessed: 02/2017.

[96] Sam Newman. Building Microservices. O’Reilly Media, Inc., February 2015.

[97] A Peter and José Fortes. Resource virtualization renaissance. 2005.

[98] Alex Polvi. App Container and the Open Container Project, 2015. https:
//coreos.com/blog/app-container-and-the-open-container-
project/ Accessed 11/2016.

[99] Gerald J Popek and Robert P Goldberg. Formal requirements for virtualizable
third generation architectures. Communications of the ACM, 17(7):412–421, 1974.

[100] Red Hat Customer Portal. Relationships Between Subsystems, Hierarchies, Control
Groups and Tasks. https://access.redhat.com/documentation/en-US/
Red_Hat_Enterprise_Linux/6/html/Resource_Management_Guide/
sec-Relationships_Between_Subsystems_Hierarchies_Control_
Groups_and_Tasks.html Accessed 12/2016.

[101] Arnaud Porterie. Docker 1.11: The First Runtime Built On Containerd And Based
On OCI Technology, 2016. https://blog.docker.com/2016/04/docker-
engine-1-11-runc/ Accessed 01/2017.

91

https://lwn.net/Articles/531114/
https://lwn.net/Articles/531419/
https://lwn.net/Articles/531419/
https://kernelnewbies.org/Linux_4.5
https://commons.wikimedia.org/wiki/File:Kubernetes.png
https://commons.wikimedia.org/wiki/File:Kubernetes.png
http://www.virtualizationadmin.com/blogs/lowe/news/what-difference-between-emulation-vs-virtualization.html
http://www.virtualizationadmin.com/blogs/lowe/news/what-difference-between-emulation-vs-virtualization.html
https://linuxcontainers.org/lxd/introduction/
https://linuxcontainers.org/lxd/introduction/
https://www.oreilly.com/ideas/five-security-concerns-when-using-docker
https://www.oreilly.com/ideas/five-security-concerns-when-using-docker
https://www.oreilly.com/ideas/five-security-concerns-when-using-docker
https://coreos.com/blog/app-container-and-the-open-container-project/
https://coreos.com/blog/app-container-and-the-open-container-project/
https://coreos.com/blog/app-container-and-the-open-container-project/
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Resource_Management_Guide/sec-Relationships_Between_Subsystems_Hierarchies_Control_Groups_and_Tasks.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Resource_Management_Guide/sec-Relationships_Between_Subsystems_Hierarchies_Control_Groups_and_Tasks.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Resource_Management_Guide/sec-Relationships_Between_Subsystems_Hierarchies_Control_Groups_and_Tasks.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Resource_Management_Guide/sec-Relationships_Between_Subsystems_Hierarchies_Control_Groups_and_Tasks.html
https://blog.docker.com/2016/04/docker-engine-1-11-runc/
https://blog.docker.com/2016/04/docker-engine-1-11-runc/

[102] Daniel Price and Andrew Tucker. Solaris zones: Operating system support for
consolidating commercial workloads. In LISA, volume 4, pages 241–254, 2004.

[103] The Jenkins Project. Jenkins. https://jenkins.io/ Accessed: 03/2017.

[104] Red Hat Inc. OpenShift Origin. https://www.openshift.org/ Accessed:
03/2017.

[105] resin.io. How does resin.io work?, 2017. https://resin.io/how-it-works/
Accessed 03/2017.

[106] Rami Rosen. Understanding the new control groups API, 2016. https:
//lwn.net/Articles/679786/ Accessed 12/2016.

[107] J. Sahoo, S. Mohapatra, and R. Lath. Virtualization: A survey on concepts,
taxonomy and associated security issues. In Computer and Network Technology
(ICCNT), 2010 Second International Conference on, pages 222–226, April 2010.

[108] P. Saint-Andre. Extensible Messaging and Presence Protocol (XMPP): Core. RFC
6120, RFC Editor, March 2011.

[109] Chetan Sharma. Correction of IoT History. http://www.chetansharma.com/
IoT_History.htm Accessed 11/2016.

[110] Z Shelby, K Hartke, and C Bormann. The constrained application protocol (coap).
Technical report, 2014.

[111] Stephen Soltesz, Herbert Pötzl, Marc E Fiuczynski, Andy Bavier, and Larry Peter-
son. Container-based operating system virtualization: a scalable, high-performance
alternative to hypervisors. In ACM SIGOPS Operating Systems Review, volume 41,
pages 275–287. ACM, 2007.

[112] Spotify. docker-client - a simple docker client for the jvm, 2017. https://
github.com/spotify/docker-client Accessed: 03/2017.

[113] Rohan Tabish, Adel Ben Mnaouer, Farid Touati, and Abdulaziz M Ghaleb. A
comparative analysis of BLE and 6LoWPAN for U-HealthCare applications. In
GCC Conference and Exhibition (GCC), 2013 7th IEEE, pages 286–291. IEEE,
2013.

[114] Dieter Uckelmann, Mark Harrison, and Florian Michahelles. An architectural
approach towards the future internet of things. In Architecting the internet of
things, pages 1–24. Springer, 2011.

[115] United Nations, Department of Economic and Social Affairs, Population Division.
World population prospects: The 2015 revision, 2015.

92

https://jenkins.io/
https://www.openshift.org/
https://resin.io/how-it-works/
https://lwn.net/Articles/679786/
https://lwn.net/Articles/679786/
http://www.chetansharma.com/IoT_History.htm
http://www.chetansharma.com/IoT_History.htm
https://github.com/spotify/docker-client
https://github.com/spotify/docker-client

[116] Abhishek Verma, Luis Pedrosa, Madhukar R. Korupolu, David Oppenheimer, Eric
Tune, and John Wilkes. Large-scale cluster management at Google with Borg. In
Proceedings of the European Conference on Computer Systems (EuroSys), Bordeaux,
France, 2015.

[117] Steve Vinoski. Advanced message queuing protocol. IEEE Internet Computing,
10(6), 2006.

[118] Michael Vögler, Johannes M Schleicher, Christian Inzinger, and Schahram Dust-
dar. A Scalable Framework for Provisioning Large-scale IoT Deployments. ACM
Transactions on Internet Technology, 16(2):11:1–11:20, March 2016.

[119] John Paul Walters, Vipin Chaudhary, Minsuk Cha, Salvatore Guercio Jr, and Steve
Gallo. A comparison of virtualization technologies for hpc. In 22nd International
Conference on Advanced Information Networking and Applications (aina 2008),
pages 861–868. IEEE, 2008.

[120] Roy Want. An introduction to rfid technology. IEEE pervasive computing, 5(1):25–
33, 2006.

[121] Roy Want, Bill N Schilit, and Scott Jenson. Enabling the internet of things. IEEE
Computer, 48(1):28–35, 2015.

[122] Andrew Whitaker, Marianne Shaw, Steven D Gribble, et al. Denali: Lightweight
virtual machines for distributed and networked applications. Technical report,
Technical Report 02-02-01, University of Washington, 2002.

[123] Joshua White and Adam Pilbeam. A survey of virtualization technologies with
performance testing. arXiv preprint arXiv:1010.3233, 2010.

[124] Yang Yu. Os-level virtualization and its applications. ProQuest, 2007.

[125] ZeroTurnaround. Java Tools and Technologies Landscape Report
2016. https://zeroturnaround.com/rebellabs/java-tools-and-
technologies-landscape-2016/ Accessed: 03/2017.

[126] Michele Zorzi, Alexander Gluhak, Sebastian Lange, and Alessandro Bassi. From
today’s intranet of things to a future internet of things: a wireless-and mobility-
related view. IEEE Wireless Communications, 17(6):44–51, 2010.

93

https://zeroturnaround.com/rebellabs/java-tools-and-technologies-landscape-2016/
https://zeroturnaround.com/rebellabs/java-tools-and-technologies-landscape-2016/

APPENDIX A
Measurements

A.1 Notebook

Average Max Min

Scenario 1a 29606.3 32600 28744
Scenario 1b 109446 160792 99018
Scenario 2a 2864.2 3187 2730
Scenario 2b 2995.1 3266 2771
Scenario 3a 5169 5703 4919
Scenario 3b 5117 5268 4934

Table A.1: Overall deployment (ms)

Average Max Min

Scenario 1a 13441.4 14086 13098
Scenario 1b 61894.8 114251 51535
Scenario 2a 2424.7 2688 2330
Scenario 2b 2440 2677 2340
Scenario 3a 3084.4 3168 2972
Scenario 3b 3074 3234 2866

Table A.2: Create image (ms)

95

A. Measurements

Average Max Min

Scenario 1a 11479.1 12048 9947
Scenario 1b 30090.9 31555 29100
Scenario 2a 94.5 103 89
Scenario 2b 170.2 303 133
Scenario 3a 988.3 1050 931
Scenario 3b 990.7 1054 950

Table A.3: Push image (ms)

Average Max Min

Scenario 1a 3932 6571 3589
Scenario 1b 16725.2 16942 16444
Scenario 2a 41.9 49 35
Scenario 2b 85.5 458 35
Scenario 3a 676.9 713 660
Scenario 3b 758.4 791 722

Table A.4: Pull image (ms)

Average Max Min

Scenario 1a 92 158 64
Scenario 1b 81.8 109 64
Scenario 2a 80.1 100 62
Scenario 2b 80.3 96 66
Scenario 3a 79.1 94 62
Scenario 3b 85.8 107 75

Table A.5: Create container (ms)

96

A.2. Hosted Server

A.2 Hosted Server

Average Max Min

Scenario 1a 96879 99528 94519
Scenario 1b 391361.4 394467 389427
Scenario 2a 3461.1 3970 3264
Scenario 2b 3914.1 4412 3542
Scenario 3a 19886.7 20074 19273
Scenario 3b 19332.8 19645 19174

Table A.6: Overall deployment (ms)

Average Max Min

Scenario 1a 13462.9 15089 13063
Scenario 1b 51609.8 53685 50077
Scenario 2a 2503.7 2992 2354
Scenario 2b 2712 2944 2522
Scenario 3a 3372.4 3478 2967
Scenario 3b 3123 3358 2923

Table A.7: Create image (ms)

Average Max Min

Scenario 1a 11132.6 11765 9253
Scenario 1b 29740.7 30933 28704
Scenario 2a 114.1 146 96
Scenario 2b 180.2 225 139
Scenario 3a 1029.7 1096 956
Scenario 3b 996.5 1025 951

Table A.8: Push image (ms)

97

A. Measurements

Average Max Min

Scenario 1a 71388.2 71966 70863
Scenario 1b 308995.3 311716 307096
Scenario 2a 297 321 273
Scenario 2b 294.5 310 270
Scenario 3a 14894.4 15000 14757
Scenario 3b 14702.1 14792 14628

Table A.9: Pull image (ms)

Average Max Min

Scenario 1a 90.1 137 65
Scenario 1b 127.7 369 69
Scenario 2a 100.7 161 78
Scenario 2b 97.2 122 72
Scenario 3a 97.1 137 68
Scenario 3b 81.8 114 71

Table A.10: Create container (ms)

98

A.3. Raspberry Pi

A.3 Raspberry Pi

Average Max Min

Scenario 1a 485861.9 529779 464612
Scenario 1b 853426.9 887962 821605
Scenario 2a 27948.4 32482 24717
Scenario 2b 26907.9 32381 23827
Scenario 3a 48462.5 53717 44569
Scenario 3b 50118.6 56770 43455

Table A.11: Overall deployment (ms)

Average Max Min

Scenario 1a 212901.8 228299 198653
Scenario 1b 404557.7 418438 387992
Scenario 2a 24301.3 28999 20878
Scenario 2b 23534.3 29406 20517
Scenario 3a 28143.9 32181 25108
Scenario 3b 29183 34681 24995

Table A.12: Create image (ms)

Average Max Min

Scenario 1a 149451.2 152219 146370
Scenario 1b 224107.5 229373 217764
Scenario 2a 1004 681 1570
Scenario 2b 1212.9 2489 757
Scenario 3a 11531.1 13060 9972
Scenario 3b 11819.2 13084 10136

Table A.13: Push image (ms)

99

A. Measurements

Average Max Min

Scenario 1a 120030.7 150743 105790
Scenario 1b 222079.1 246153 188846
Scenario 2a 142.3 586 85
Scenario 2b 89.1 106 77
Scenario 3a 6030.3 9253 4983
Scenario 3b 6729.6 12005 4998

Table A.14: Pull image (ms)

Average Max Min

Scenario 1a 1100.2 5101 140
Scenario 1b 143.3 219 117
Scenario 2a 594.5 2696 174
Scenario 2b 152 181 130
Scenario 3a 783.4 4198 149
Scenario 3b 281.4 1504 114

Table A.15: Create container (ms)

100

	Abstract
	Kurzfassung
	Contents
	Introduction
	Problem Statement
	Aim of the Work
	Methodological Approach
	Structure of the Work

	Background
	Internet of Things
	Virtualization
	Continuous Delivery

	State of the Art
	IoT Hardware
	IoT Communication Standards
	Operating-System-Level Virtualization
	Container Deployment Frameworks

	Design & Implementation
	Features
	Design
	Implementation

	Demonstration
	Use Case Definition
	Application Deployment and Management
	Summary

	Evaluation
	Scenarios
	Benchmark
	Discussion

	Conclusion
	Summary
	Future Work

	List of Figures
	List of Tables
	Bibliography
	Measurements
	Notebook
	Hosted Server
	Raspberry Pi

