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Abstract 
 

Compressed Sensing (CS) is a signal processing technique that allows for high-quality 

reconstruction of a source signal vector of dimension N from a number M << N of linear 

measurements (undersampling!), and Approximate Message Passing (AMP) is a recovery 

technique that works particularly well at very low complexity. It has been shown that CS 

recovery in the AMP framework can be seen as recovery of the N independent and 

identically distributed (iid) components of the source signal in a decoupled measurement 

model, with a Gaussian noise of a variance that is estimated adaptively during the AMP-

iterations; this variance contains the measurement noise as well as extra noise due to 

undersampling (i.e. M/N<<1). Hence, CS recovery in the AMP framework boils down to 

estimation of a signal in Gaussian noise of known variance. 

 

The Bayesian version of AMP (BAMP), which has the best performance, seems to require 

knowledge of the probability density function (pdf) of the signal prior; this may be seen as a 

major drawback in practice. It is known, however, that observations of a signal corrupted by 

Gaussian noise can be de-noised without knowing the signal prior explicitly, and the 

performance can be very close to that of the optimal Bayesian estimator knowing the pdf of 

the signal components. 

 

The contribution of this thesis is the use of kernel density estimator as an Empirical Bayes 

Least Squares Estimator in the BAMP recovery framework and to compare the performance 

with other, "semi-blind" approaches that exploit partial knowledge of the signal prior, e.g. 

schemes that assume a shape of the prior pdf and optimize for its parameters from the 

observed data. 
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Chapter 1: Introduction 
 

In recent years, high-dimensional datasets brought challenges such as complexity, along with 

numerous opportunities to be exploited. “Though many signals of interest live in a high-

dimensional ambient space, they often have a much smaller inherent dimensionality, which, if 

leveraged, lead to improved recoveries”[7]. For example, the notion of sparsity is a requisite in 

the compressive sensing (CS) field, which allows for accurate signal reconstruction from sub-

Nyquist sampled measurements given certain conditions. 

 

Compressed sensing works on the concept of undersampling a certain high-dimensional 

signal, while exploiting their characteristics to accurately reconstruct them. In case of a 

sufficiently sparse object in a known basis, accurate reconstruction is possible. Currently, 

convex optimization recovery offers a good sparsity–undersampling tradeoff, but it is 

expensive in important large-scale applications, so as an alternative, a simple cost-efficient 

modification to iterative thresholding has been introduced, as the new iterative-thresholding 

algorithms are inspired by belief propagation in graphical models.  

 

“When recovering a sparse signal from noisy compressive linear measurements, the 

distribution of the signal’s non-zero coefficients can have a profound effect on recovery” [10]. 

If the distribution is apriori known, computationally efficient Bayesian approximate message 

passing (AMP) techniques could be used that yield approximate minimum mean square error 

(MMSE) estimates or critical points to the maximum a posteriori (MAP) estimation problem. 

In practice, though, the distribution is unknown, which leads us to perform MMSE estimation 

without knowledge of signal’s prior using some approximations and applying Bayesian 

approximate message passing (BAMP) for recovery. A comparison with some other schemes 

that know the prior will be made to show that even though it is not as good as the other 

schemes which know the prior, it still gives good results without any assumptions. 

 

This chapter is mainly based on [1] and [7] 



2	

	

 

1.1 Structured Sparse Recovery 

1.1.1 Linear Observation Model 

The aim is to infer a signal x ∈ R! from noisy measurements y ∈ R!. In addition, we use 

signals that share a common low dimensional structure, called sparsity, where only a 

fraction of the signal elements are non-zero. We call a signal K-sparse if it has K non-zero 

elements. 

 

We next introduce the sensing matrix A of dimension m x n with m<n, i.e. 

 

y= Ax + w                                                              (1.1) 

 

The matrix A is assumed to have its full possible rank m and its components are 

independently drawn realizations of a real random variable that, e.g., has a 

Gaussian distribution. Moreover, the matrix column vectors A!, j = 1,2,...,n (each of 

dimensions m x 1 ) are assumed to have zero mean and be normalized  to unit l!-norm , i.e., 

 

A = {A!, A!,..., A!},                                                    (1.2) 

 

With 

 

||A!||!= 1 ∀ j.                                                          (1.3) 

 

The measurements are assumed to be affected by Gaussian noise that is modeled by the 

addition of the m–dimensional noise vector w ≐ {w!, j = 1,2,...,m} . The components w! of 

the noise vector are assumed to be iid Gaussian with variance σ! > 0. 

 

In traditional inverse problems, the signal is first recovered from measurements obtained 

from Shannon-Nyquist sampling (i.e., M ≥ N)) via standard tools, e.g., least squares 
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recovery. It can then be subsequently compressed, exploiting its underlying sparsity. 

Compressive sensing (CS), attempts to recover the sparse signal x using fewer 

measurements than unknowns, i.e., M < N. whereas signal recovery in the Shannon-Nyquist 

paradigm compresses after sampling, CS attempts to compress while sampling.  

 

The problem is to find the vector x given the measurements y and the matrix A. As the 

number of measurements m in (1.1) is smaller than the number of unknowns n in x, the 

problem is underdetermined. However, one tries to form a “good estimate” of x by 

exploiting extra information about x that may be available. Such “prior knowledge” can be 

of various types [10]: 

 

1) If x is “sparse” the solution x would be supposed to contain “few” non-zero components. 

2) The vector x might be known to have a “large” number of components that take the 

values ∓1. 

3) The probability distribution p!(x) of x might be known. 

 

The focus will be on case 3). In practice, the “given” p!(x) may, however, not be the “true” 

distribution” but it may be a good model for it or even only be useful to find a good solution 

to the problem of estimating x from a given observation vector y. the remaining are covered 

when choosing a suitable distribution p!(x). 

 

Regarding the design of the measurement matrix A, for simplicity we stick to the “random 

Gaussian” design but we keep in mind that AMP and BAMP will also work for non-

Gaussian designs. 

 

Normalizing the matrix A can simplify notation, it is however, not necessarily required. 
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1.2 Review of Vector Spaces 

Since	our	signal	is	of	a	linear	model,	we	model	it	as	a	vector	living	in	an	appropriate	

vector	space,	which	in	return	preserves	the	linear	structure	we	are	after.	Going	back	to	

(1.1),	the	noisy	measurement	is	the	addition	of	both	the	signal	we	are	to	recover	and	

the	noise,	knowing	that	both	are	of	linear	structure	and	will	in	return	give	a	linear	

measurement	vector.	As	another	important	feature,	vector	spaces	pose	powerful	tools,	

such	as	lengths,	distances	and	angels,	to	describe	and	compare	signals	of	interest	

irrespective	of	our	signal	dimension.	

 

 
   Figure 1.1 Unit spheres in 𝐑𝟐 for the 𝐥𝐩 norms with p = 1; 2; ∞, and for the 𝐥𝐩 quasinorm with p = 𝟏 𝟐. 

 

1.2.1 Normed vector spaces 

The signal we are working on considered as real-valued function having domains that are 

either continuous or discrete, and either infinite or finite. In our simulations (chapter 5) we 

normalized the columns of the sensing matrix A using l!-norm, so we briefly discuss 

normed vector spaces to make the reader familiar with it. Signals in general can be viewed 

as vectors in an n-dimensional Euclidean space, denoted by R!. When dealing with vectors 

in R!, frequent use of the l! norms will be made, which are defined for p ∈ [1,∞] as 

 

| x |! =  ( |x!|!!
!!! )

!
! p ∈  [1,∞] 

max! |x!|  p =  ∞ 
                                         (1.4) 

 

The l! (quasi-)norms have notably different properties for different values of p . To 
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illustrate this, in Figure 1.1 we show the unit sphere, i.e., x: | x |! = 1  induced by each of 

these norms in R![1].  

	

It	is	also	good	to	consider	the	standard	inner	product	in	R!,	which	is	denoted	as	

 

x, z =  z!x =  x!z!!
!!!     (1.5) 

 

This inner product leads to the l! norm: | 𝑥 |! = 𝑥, 𝑥  

Some contexts extend the notion of l! norms to p < 1, which fails to satisfy the triangle 

inequality in (1.4). Such a norm is called quasi-norm. Also we introduce the notation 

| x |! ∶= supp(x) , where supp(x)= i: x!  ≠ 0  denotes the support of x and supp(x )  

denotes the cardinality of supp(x) and is frequently used in our Approximate Message 

Passing (AMP) recovery scheme . It is easily showed that lim!→! 𝑥 !
!= supp(x) , 

 
Figure 1.2 Best approximation of a point in 𝑹𝟐 by a one-dimensional subspace using the 𝒍𝒑 norms for p 

= 1, 2, ∞, and the 𝒍𝒑 quasinorm with p = 1/2. 

 

Typically	norms	are	used	to	measure	the	strength	of	a	signal,	or	the	size	of	an	error.	

Normally	the	aim	is	to	minimize	the	error	 x− x
!
.		The choice of p will significantly 

affect the properties of the resulting approximation error. An	example	is	illustrated	in	

Figure	1.2.	[1]	to	compute	the	closest	point	in	A	to	x	using	each	norm.	We	notice	that	

larger	p	spread	out	the	error	more	evenly,	while	smaller	p	unevenly	distributes	the	

error	(sparse). 
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1.3 Low-Dimensional Signal Models 

Finding	efficient	algorithms	is	of	big	importance	in	signal	processing,	in	order	to 

acquire,	process,	and	extract	information	from	different	types	of	signals. 

	

Accurate	models	for	specific	signals	are	normally	needed	to	design	such	algorithms.	In	

our	work	we	exploited	probabilistic	Bayesian	model	to	incorporate	the	apriori	

information	to	recover	the	signal	of	interest.	

	

High	dimensional	signals	suffer	from	small	number	of	degrees	of	freedom	compared	to	

their	ambient	dimensionality,	which	led	to	showing	interest	in	low	dimensional	signal	

models.		

 

In the following section we will give a brief overview of the most common low-dimensional 

structures encountered in the field of CS.  

 

1.3.1  Sparse models 

A	signal	is	called	sparse	if	we	can	approximate	it	as	a	linear	combination	of	just	few	

elements	from	a	known	basis.	Sparse	signal	models	present	the	fact	that	high	

dimensional	signals	contain	relatively	little	information	compared	to	their	dimension.	

 

1.3.1.1 Sparsity and nonlinear approximation 

Mathematically, we say that a signal x is k -sparse when it has at most k nonzero [1], i.e., 

| 𝑥 |! ≤ k. We let 

 

∑! =  𝑥 ∶   | 𝑥 |! ≤  k    (1.6) 
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denote the set of all k-sparse signals. The	signal	we	are	dealing	with	is	not	sparse,	but	

can	be	represented	as	one.	So	our	signal	x	will	be	referred	to	as	k-sparse,	with	x = Φc 

where | 𝑐 |!  ≤ k.	

 

Sparsity	is	already	exploited	in	compression,	denoising,	and	image	processing.	Figure	

1.3.	[1]	shows	an	image	and	its	best	K-term	approximation,	as	Large coefficients are 

represented by light pixels, while small coefficients are represented by dark pixels. Note 

that most of the wavelet coefficients are close to zero.  

 

 
Figure 1.3 Sparse representation of an image. (a) Original image. (b) Wavelet representation. 

 

1.3.1.2 Compressible signals 

In practice only few signals are strictly sparse, or can be well approximated by a sparse 

model. Such signals are often said to be compressible. “The compressibility of a signal can 
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be quantified by calculating the error incurred by approximating a signal” [1] x by some 

x ∈  ∑! as: 

 

σ!(x)! =  min!∈ ∑! | x− x |!    (1.7) 

 

If x ∈ ∑!, then clearly σ!(x)! = 0 for any p. Moreover, the term used in (1.7) results in 

optimal approximation for the thresholding used in Figure 1.3 	

	

1.4 Sensing Matrix 

As discussed in section 1.1 the sensing matrix A of dimension m x n is used as part of our 

process to recover the desired signal. The reason for that is to map R! to R!, where m<<n. 

The measurement is assumed to be non-adaptive, i.e. independent of previous 

measurements. 

 

Normally, we are interested in designing the sensing matrix A in such a way that it 

preserves the information in the signal x. To be able to do so, generally several properties 

are desirable to serve our purpose, such as null space condition, restricted isometry property, 

and coherence1. 	

	

 

 

 

 

 

 

 

																																																								
1	Properties	of	matrix	A	are	explained	in	reference	[1]	
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Chapter 2: Approximate Message Passing 
 

This chapter is excerpted from [2], [3], and [4]  

 

AMP is an iterative algorithm that solves a linear inverse problem by successively 

converting matrix channel problems into scalar channel denoising problems with additive 

white Gaussian noise (AWGN). “AMP has received considerable attention, because of its 

fast convergence and the state evolution (SE) formalism, which offers a precise 

characterization of the AWGN denoising problem for each iteration”[16]. 

 

Let’s assume that a vector y of m measurements is obtained from an unknown n-vector x 

according to: 

 

y = Ax + w,  m < <n      (2.1) 

 

Where A = {A!, A!, … ,A!} is the m x n measurement matrix which assumes normalized 

column vectors A! !
, and w is the measurement noise vector with dimension m and 

variance σ!! .  In practice both the pdf and sparsity are not known, and have to be estimated. 

 

Depending on the measurement noise variance σ!!  we have two algorithms 

  

2.1    Approximate Message Passing Algorithms 

2.1.1    AMP Algorithm 𝚰  

The presented math for the discussed algorithms is mainly taken from [4] 

 

In this algorithm we assume that the measurement noise variance σ!!  is known for iterations 
i = 1, 2, ...  

 x(!)= η (x(!!!) +  A!z(!!!);  βc(!!!));     i= 1,2,…   (2.2) 
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  b(!!!) =  !
!

 ||x(!)||!       (2.3) 

 z ! =  y –  Ax ! +  b !!! z !!!       (2.4) 

  c(!) =  σ!! + c !!! b !!!        (2.5) 

 

Where β is a regularization parameter. 

 

Initializations at i = 0: 

 

                              x(!) = 0!!"     (signal vector; dimension n > m)    (2.6) 

z ! = y (dimensions: m x 1)                                                        (2.7) 

 c(!) =  σ!! +
!
!

 ||z(!)||!!      (scalar)                                                   (2.8) 

 

We analyse the stability of the recursion in (2.5) Using Unilateral Z-transform (time index k 
= i – 1) while considering two cases 

 Case 1: we assume that the scheme recovers the correct s-sparse solution, with b(!!!) =

 !
!

 ||x(!)||! = !
!

 < 1, which is treated as a constant 

 

c(!) =  σ!! + c !!! b     (2.9) 

 

with  c(!!) =  σ!! +
!
!

 ||z(!)||!! > σ!!  for k= 0,1, … 

 

C(z) = σ!!
!

!!!
+ b z!!C z + bc!!    (2.10) 

 

Z-transform reads: 

C(z) = !!
!

!!!
!

!!!
− b !

!!!
+ bc!! !

!!!
    (2.11) 

 

and the solution in the time domain is: 
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c(!) =  !!
!

!!!
1− b!!! σ k + c!!b!!!σ k   (2.12) 

 c(!) =  !!
!

!!!
σ k + c!! +  !!

!

!!!
b!!!σ k    (2.13) 

 

Knowing that lim!→! b!!!σ k = 0, as |b| < 1, we are left with: 

 

lim!→! c(!) =  !!
!

!!!
 > σ!!   (2.14)  

 

Where c(!) is the noise variance of the iteration k to be used in the thresholding function, 

meaning that the effective noise variance c(!) in the n signal components will be greater 

than the measurement noise variance σ!!  in the m measurements. 

 

Case2: we assume that the scheme recovers the correct s-sparse solution, with b(!!!) is not 

a constant.  

b(!!!) =  !
!

 ||x(!)||!  ≥ 0 ; max||x(!)||! = n > m (2.15) 

 

If ||x(!)||! is close to m we obtain b(!!!) → 1. This means (k= i-1) 

 

c(!) =  !!
!

!!!
σ k + c!! +  !!

!

!!!
b!!!σ k    (2.16) 

 

When (1-b) is small, the noise variance of the iteration k (c(!)) tends to be very large. 

Mathematically speaking this is valid, as large c means that in the next iteration most 

components will be zeros by the soft thresholder η() used in (2.2), so (2.5) re-starts with 

c(!) = σ!! . For implementation purposes we use  

b(!!!) = max b(!!!),!!!
!

   (2.17) 
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2.1.2    AMP Algorithm 𝚰𝚰  

This algorithm assumes that the measurement noise variance σ!!  is unknown.  

 

 x(!) = η (x(!!!) +  A!z(!!!);  βc(!!!)); i= 1,2,…..   (2.18) 

 z ! = y – Ax ! +  z !!! !
!

 x !
!
                    (2.19)    

   c(!) =  !
!

 ||z(!)||!!      (2.20)  

 

We observe that b(!!!) is not present in this algorithm; also the noise variance is depending 

entirely on the input vector. 

 

Initializations at i = 0: 

 

x(!) =  0!"#     (signal vector; dimension n > m)   (2.21)  

 z ! = y      (dimensions: m x 1)   (2.22) 

           c(!) =  !
!

 ||z(!)||!!      (scalar)    (2.23) 

 

After introducing the AMP approach we are ready to work on (2.1) to recover our sparse 

signal vector x. 

 

The task at hand is to find an estimate 𝑥 that minimizes MSE i.e. 

 

x = argmin! E! X−  x !
! Y = y    (2.24) 

 

Using Bayes’ rule the solution for the conditional estimation is: 

 

x =  x p! ! x y dx =  !
!!(!)

 x p! ! y x  p!(x)dx                          (2.25) 
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Where the pdf p! ! y x  describes the noisy measurement process. In case of independent 

Gaussian noise components w! with variance σ!!  we obtain 

 

p! ! y x =  !
!"

!
!!! e

(!!!(!")!)
!

!!!! =  !

( !"!!! )!
exp − !

!!!!
y− Ax !

!  (2.26) 

 

and the prior pdf for signal vector x in case of independent components is: 

 

p! x =  p!! x!

!

!!!

                                                           (2.27) 

 

Using (2.26) and (2.27), unconditional pdf p! y  of the observations can be computed by 

the marginalization 

 

p! y =  x p! ! y x  p!(x)dx    (2.28) 

 

Substituting (2.28) in (2.25) we get: 

 

x =  !
!!(!)

 x !

( !"!!! )!
 exp (− !

!!!!
y− Ax !

!) p!! x!
!
!!!  dx   (2.29) 

 

We assume in our study that the prior is not known (as in practice), but with the restriction 

that x is “somehow sparse”. 

 

2.2    Bayesian Approximate Message Passing (BAMP) 

A version of AMP with exploiting the prior of the signal, which is normally, assumed 

known, but in reality it is most of the time not known. That’s why we will work with BAMP 

with unknown prior and try to estimate the prior (We will use kernel density estimation to 
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do so) before using the BAMP algorithm to recover our signal. 

 

Here we present two BAMP algorithms, but our work will focus on only one. 

 

2.2.1    BAMP algorithm I (known measurement noise variance 𝛔𝐰𝟐 ) 

Start at iteration i = 0 with the initializations 

 

       x(!) =  0!"# (signal vector;  dimension n >  m)  (2.30) 

                             z ! = y (dimensions: m x 1)    (2.31) 

     c(!) =  !
!

 ||z(!)||!! (scalar)    (2.32)

  

Then, for iterations i = 1, 2, ... : 

 

u(!!!) = u!
(!!!), u!

(!!!),… . , u!
(!!!) !

=  x(!!!) +  A!z(!!!)  (2.33) 

                x!
(!) = F(u!

!!! ;  c !!! )     (2.34) 

v!
(!) = G(u!

!!! ;  c !!! )    (2.35) 

 q!
(!) = F!(u!

!!! ;  c !!! )     (2.36) 

z ! = y – Ax ! +  z !!! !
!

 q!
(!)!

!!!     (2.37) 

with  x ! =  x!
(!), x!

(!),… . , x!
(!)              (2.38) 

 c(!) =  σ!! +  !
!

v!
(!)!

!!!      (2.39) 

 

Stop iterations, if x ! − x !!!
!
< ∈  x !!!

!
, e.g., with ∈= 10!! 

 

To approximately solve the MMSE problem (with the exact but infeasible solution (2.29)), 

the scalar operators in ((2.34), (2.35), and (2.36)) must be chosen according to: 
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 F u!; c = E!! X! U! = u!     (2.40) 

 G u!; c = Var!! X! U! = u!    (2.41) 

 F! u!; c = !
!!!
F u!; c     (2.42) 

 

A result of the derivation is that the pdf to compute (2.40), (2.41), (2.42) is given by: 

 

p!! !! x! u!; c =
!!!,!! !! !!;!

!!!(!!;!)
=

!!! !!
!! !!;! !!!(!!)

!!!(!!;!)
  j=1,2,…., n  (2.43) 

 

(with standard Bayes’ rule) where 

 

p!! !! u! x!; c =  !
!"!

exp (− !
!"

x! − u!
!)   (2.44) 

 

The variance c of this Gaussian distribution is computed during the BAMP iterations in 

(2.39), and c is strictly larger than the variance σ!!  of the measurement noise. 

 

“The Gaussian pdf in (2.44) applies for j = 1, 2, ..., n, but we have only m < n 

measurements, which gives a new decoupled measurement model in n dimensions (instead 

of m)” [4] 

 

u! = x! +w! j =  1, 2, . . . ,n, and w! ∼  N(0, c)      (2.45) 

 

BAMP algorithm II (unknown measurement noise variance) 

Start at i = 0 with the initializations 

 

x(!) =  0!"#      (signal vector;  dimension n >  m)    (2.46) 

z ! = y (dimensions: m x 1)    (2.47) 



16	

	

c(!) =  !
!

 ||z(!)||!! (scalar)     (2.48) 

 

Then, for iterations i = 1, 2,.... : (Stopping rule as for BAMP I) 

 

u(!!!) =  x(!!!) +  A!z(!!!)   (2.49) 

   x!
(!) = F(u!

!!! ;  c !!!     (2.50) 

                                    z ! = y –Ax ! +  z !!! !
!

 F!(u!
!!! ;  c !!! )!

!!!   (2.51) 

     c(!) =   !
!

 ||z(!)||!!        (2.52) 

 

Note that the scalar operators F (uj; c), F′ (uj; c) defined in (2.40) and (2.42) are applied 

component-wise. 
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Chapter 3: MMSE Estimator Construction  
 

In the previous chapter we mentioned the need to estimate the pdf of our sparse signal. We 

are interested in doing so using minimal mean square error, which will be in return used by 

the Bayesian Approximate message passing. This chapter is entirely dependent on [6], and 

[10] to show the computation of the MMSE estimator relying on the measurement vector. 

 

3.1    Computing MMSE estimates  

Assume the signal x to be recovered is iid. Without knowing its pdf, it helps to rely on the 

observed data to form the Bayesian MMSE estimates of the signal components [6] 

according to 

 

x u = u+ c !!
! (!)
!!(!)

        (3.1) 

 

This is possible, if we have enough realizations u!, ℓ = 1, 2,...,L. From (3.1) we notice that 

both the pdf P! u  of the observations and the known variance c of the effective Gaussian 

noise within BAMP are required to form the estimates x u . Having enough realizations, 

gives the opportunity to estimate the pdf based on a histogram approach. The drawback is 

the spikiness of the histogram estimates, which leads to particular difficulties when 

approximating the derivative P!!(u).  

 

Our	aim	is	to	efficiently	compute	an	estimator	function	(3.1)	from	the	observed	data.	

“We	start	by	splitting	the	real	axis	of	u	into	non	overlapping	intervals	according	to	

figure	3.1”[10],	where	g!< g!!! for all indices i = 0, 1,.... , next we approximate the actual 

pdf within each interval by an exponential function as follows[6]:	

 

P! u =  q!e!!(!!!!)  g! ≤ u < g!!!                                        (3.2) 
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where g! marks the left limit of the interval, and is constant, so: 

 

P! u =  q!e!!"  g! ≤ u < g!!!                                            (3.3) 

 

with a different constant q! (instead of q!). This choice is based on the need of the derivative 

of the log-pdf for our estimator, which is computed as: 

 
!
!"

 logP! u =  !!
! (!)
!!(!)

=  !!!!!!
!!!!

!!!!!!!
=  −a!  g! ≤ u < g!!!                  (3.4) 

 

this estimator is very simple, and (3.4) implies that, “we first need to identify the interval i 

to find the right value for a! to use in the resulting approximate estimator”[10] as: 

 

x u = u+ c !!
! (!)
!!(!)

= u− ca!   g! ≤ u < g!!!                              (3.5) 

 

For small intervals, we will get a good approximation, e.g. when the binwidths 

 

h! ≐ g!!! −  g!                                                          (3.6) 

 

a!	is	estimated	from	the	observed	data	points	u!, with having large number of realizations 

u! in each interval. The use of a maximum likelihood (ML) estimator [6] is necessary to 

estimate a!. The indices of the data points are written in a set as follows:	

 

S! =  l ϵ 1,2,… . , L ∶   g! ≤   u! <  g!!!                                  (3.7) 

 

We	condition	the	pdf	on	the	fact	that	the	considered	values	are	in	the interval [g!, g!!!), 

while (3.2) is defined on the whole support of u, so the conditional pdf is: 
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P! ! ! !!,!!!! u u ϵ g!, g!!! =
!!,! ! !!,!!!!

!,! ! !!,!!!!

!!,! ! !!,!!!!
 ! ! !!,!!!!

                    (3.8) 

 

 
Fig 3.1. Splitting the support of the pdf into non-overlapping intervals and exponential approximation 

of the pdf. 

 

The denominator is a normalizing probability that can be computed by integration over the 

interval g!, g!!! , from the approximate pdf in (3.2), so we get: 

 

P! ! ! !!,!!!! u u ϵ g!, g!!! =
!

!!!!!!!!"
!!!!
!!

q!e!!!!                  if u  ϵ g!, g!!!  

0                                                  otherwise
 (3.9) 
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The upper part can be simplified2 according to 

 

P! ! ! !!,!!!! u u ϵ g!, g!!! =       =
!!
! !

!!!(!! !! )

!"#$!!!! !
  (3.10) 

 

with g! =  !
!
(g! +  g!!!)    (3.11) 

 

so the conditional pdf is: 

 

P! ! ! !!,!!!! u u ϵ g!, g!!! =
!!
! !

!!!(!! !! )

!"#$!!!! !
                 if u  ϵ g!, g!!!  

0                         otherwise
     (3.12) 

 

It integrates to “one” over the whole support of u, with g! defined in (3.11) and h! defined in 

(3.6). “Next we try to optimize the interval limits g!, g!!! (which define g! and h! as well as 

the constant a!)”[10]. 

 

We assume an interval g!, g!!! , and try to estimate the exponential parameter a! using an 

ML estimator. We consider the joint conditional pdf 

 

P(u!! a!) ≐  P! ! ! !!,!!!! u! u! ϵ g!, g!!!∀!!!!                    (3.13) 

 

The fact that both the signal and the noise are iid makes it possible to write them as a 

product. The ML estimator maximizes the value of the joint pdf. Since the log-function is 

strictly monotone, we maximize as follows: 

 

a! =  argmax!! logP! ! ! !!,!!!! u! u! ϵ g!, g!!!                         (3.14) 

																																																								
2		For	complete	derivation	refer	to	[10]	
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 = argmax!! logP! ! ! !!,!!!! u! u! ϵ g!, g!!!∀!!!!                (3.15) 

 

=   argmax!! log
!!
! !

!!!(!!! !! )

!"#$!!!! !∀!!!!                                               (3.16) 

 

Using the properties of the log, neglecting the constant ½, and dividing by the constant |Si| 

we arrive to the following: 

 

a!= argmax!! log a! − a!(
!
!!

u!∀!!!! − g!)− log sinh a!h! 2           (3.17) 

 

We also describe the average of the observations uℓ in the interval g!, g!!!  using the 

abbreviation: 

u! ≐
!
!!

u!∀!!!!                                                              (3.18) 

 

To find the maximum, we take the derivative of (3.25): 

 
!
!!!

 . .  = !
!!
− u!  − g! −

!!
!
coth (a!h! 2)    (3.19) 

 

then we set the derivative to zero, to find the estimate a!, i.e., 

 
!
!!
− u!  − g! −

!!
!
coth (a!h! 2) = 0   (3.20) 

so 
!

!!
!!
!

− coth (a!h! 2) =
!! –!!  
!!
!

.   3.21  

 

The difference u!  − g! can at most take the value ±h! 2. “Hence, the magnitude of the 

right-hand side of (3.21) can at most take the value of one”[10]. Of course, this also applies 

to the function !
!
 − coth(x) on the left-hand side, which cannot be inverted analytically. 
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Fig. 3.2. Approximation of 𝟏

𝒙
− 𝐜𝐨𝐭𝐡(𝒙) by the invertible function sign(x)(e−|x|/2.6 − 1). 

 

The inversion of (3.21) is difficult to deal with numerically and we look for an 

approximation. The values of u! should more or less spread across the whole interval, so we 

hope u! takes a value close to the center g! of the interval, and then find a good 

approximation of the odd function !
!
−  coth(x) around “zero”. “A possible approximation 

of !
!
−  coth(x) by the invertible function sign(x)(e! ! !.! − 1) is shown in Figure 3.2.”[10]. 

We notice that if right-hand side magnitude of (3.21) is smaller than 0.6, the approximation 

 
!
!
− coth x = sign x e! ! !.! –  1   (3.22) 

 

is indeed very good. Since both the sign-function and the magnitude-function in the 

exponent don’t pose a problem for inversion, as the function is odd, and the negative sign of 

the argument x and the sign of the result are the same. Hence, 
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sign a!
!!
!

e! !!
!!
! !.!  −  1 ≈  !

!!
!!
!

− coth a!
!!
!

                 (3.32) 

 

as the function is odd, the approximation simplifies to 

 

e! !!
!!
! !.!  −  1 ≈  − !! –!!

!!
!

                                                (3.23) 

so 

 

− a!
!!
!

2.6 ≈ log 1− !! –!!
!!
!

                                     (3.24) 

 

Note that, as !! !!!
!!
!

 < 1 the log-function will produce a negative value. In the next step we 

obtain 

a! ≈ − !.!
!!
log 1− !! –!!

!!
!

   (3.25) 

 

taking (3.6), (3.11) and (3.22) into consideration we right the end result as: 

 

a! ≈
!.!
!!

 sign u!  − g!  log 1− !
!!

u! – g!   (3.26) 

  

Note that u! is computed from the observed data which falls into the interval g!, g!!! ; the 

open question is how to choose the intervals. 

 

3.2    Choice of binwidth 

To find the optimal binwidth, an MSE estimate must be taken into consideration to figure 

out how good an estimate is. This estimate can be written as: 

E (a− a)! =  E ( a− E a +  E a − a )!  
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= Var a +  E a − a !                                         (3.27) 

 

where a is an estimate of the true value a. The first term is the variance of the estimate and 

will decrease if we increase the binwidth of the interval. While the second term is the 

squared bias, which will conversely increase as the interval is increased, thus a bias-

variance tradeoff will exist. 

 

For small h (due to large amount of data points N), the number falling in the interval h is 

approximated as: 

  

n ≈  P! u Nh                                                     (3.28) 

 

Hence,  
 

Var a = C
n    (3.29) 

 

where C is an appropriately chosen constant. 

Also as h → 0 the bias for the interval will decrease to zero. For small h [6] assumes that 

 

E a − a ! ≈ Dh!      (3.30) 

 

where D depends on the shape of  P! u . If the density is smooth enough according to [6] 

the dependence of D on P! u  is ignored, and treated as a constant for all values of u. After 

theses assumptions the approximation can be written as: 

 

E (a− a)! ≈ !
!
+  Dh!          (3.31) 

 

Deriving the equation and setting it to zero with respect to h gives: 
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h = !
!"#

!
!!!   (3.32) 

 

(3.32) verifies the assumption that h → 0 as the amount of data (N) increases., and that the 

MSE, go to zero as N → ∞ . Thus the optimal binwidth is chosen such that the product of 

the number of points which fall in the interval times some power of the binwidth of the 

interval is constant [6].  

 

3.3    Simulation Example 

This example is taken from [10], where we have 10000 realizations and 47 bins. It shows 

the histogram of the original data (discrete ±1 source), the noisy measurements, and the 

recovered data as well as a scatterplot of the same data.  

 
Fig 3.3 Histograms of the original data (discrete ±1 source), the noisy measurements and the recovered 

data 
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Fig 3.4 scatterplot of the same data as in Fig 3.3 

 

Note that the number of bins is dependent on the number of realizations. It is also worth 

noticing that Fig 3.4 describes equation (3.5), where subtracting the constant c forms the 

estimates a! from the input measurement u, with a! being computed for each bin according 

to (3.26). It is a strong simplification, caused by the exponential approximation of the pdf 

within each interval. 
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Chapter 4: KERNEL DENSITY ESTIMATION VIA DIFFUSION 
 

4.1    Introduction 

Nonparametric density estimation is an important tool in the statistical analysis of data. One 

example is to estimate the parameters in a specified model via the likelihood principle. The 

advantage of this approach is the great flexibility in modeling a given dataset. Currently, 

kernel density estimation is the most popular nonparametric approach for estimation. 

Despite being an attractive approach for estimation, selecting a technique to estimate the 

optimal bandwidth is quite dependent on the dataset and it is not always feasible. 	

 

Another draw back, is the lack of local adaptivity, which in return results in a large 

sensitivity to outliers, the presence of spurious bumps, and overall unsatisfactory bias 

performance- a tendency to flatten the peaks and valleys of the density [8]. 

 

Also, in case of nonnegative data, kernel estimators suffer from boundary bias—a 

phenomenon caused by the fact of not taking specific knowledge about the domain of the 

data into account. Smoothing	the	signal	we	want	to	recover	is	of	a	big	concern.	One	can	

use	kernel	density	estimation	method	based	on	the	smoothing	properties	of	linear	

diffusion	processes	[8].	The	linear	diffusion	used	leads	to	a	kernel	estimator	with	

reduced	asymptotic	bias	and	mean	square	error.	The proposed estimator deals well with 

boundary bias [8]. 

	

We	start	by	describing	the	Gaussian	kernel	density	estimator	and	show	that	it	is	a	

special	case	of	smoothing using a diffusion process.	Then,	we	analyze	the	asymptotic	

properties	of	the	general	linear	diffusion	estimator	and explain how to compute the 

asymptotically optimal plug-in bandwidth [8]. The used approach demonstrates an 

improved bias performance, low computational cost, and a boundary bias improvement. 

 

 



28	

	

4.2    Background 

Given N independent realizations 𝒳! ≡ {X!, . . . , X!} from an unknown continuous 

probability density function (pdf.) f on 𝒳, the Gaussian kernel density estimator is defined 

as 

 

f x; t = !
!

∅(x,X!; t)!
!!!  , x ∈ R,                                               (4.1) 

 

Where 

 

∅ x,X!; t =
1
2πt

e!
(!!!!)!

!"  

 

Is a Gaussian pdf (kernel) with location X! and scale t . The scale is usually referred to as 

the bandwidth. Note that the performance of f depends crucially on the scale value. The 

Mean Integrated Squared Error (MISE) is used to determine the optimal t as follows [8]: 

 

MISE{f}(t) = E! [f x; t − f(x)]! dx , 

 

The MISE depends on the bandwidth t  and f in a quite complicated way but can be 

simplified using asymptotic approximation to the MISE (AMISE) “under the consistency 

requirements that t = t! depends on the sample size N such that t! ↓ 0 and N t! →∞ as N 

→∞, and f is twice continuously differentiable.”[8]  

 

The Gaussian kernel density estimator (4.1) is a unique solution to the diffusion partial 

differential equation (PDE) [8] 

 
!
!!
f x; t =  !

!
!!

!!!
f x; t ,   x ∈  𝒳, t > 0                              (4.2) 
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With X ≡ R and initial condition f x; 0  = ∆(x)where ∆(x)  = !
!

δ(x−!
!!! X!)  is the 

empirical density of the data 𝑋! [here δ(x−Xi) is the Dirac measure at Xi] [8]. The Gaussian 

kernel in (4.1) is the so-called Green’s function3 for the diffusion PDE (4.2). Thus, the 

Gaussian kernel density estimator f x; t  can be obtained by evolving the solution of the 

parabolic PDE (4.2) up to time t. 

 

4.3    The diffusion estimator 

All the upcoming results are taken from [8]4. The extension of the simple diffusion model 

(4.2) is based on the smoothing properties of the linear diffusion PDE [8]: 

 
!
!!
g x; t = Lg x; t   x ∈ 𝒳, t > 0                                    (4.3) 

 

“where the linear differential operator L is of the form !
!
!
!"

a x !"
!"

.
! !

 , and a and p 

can be any arbitrary positive functions on X with bounded second derivatives, and the initial 

condition is g(x, 0) = ∆(x). If the set X is bounded, we add the boundary condition 
!
!!

! !;!
! !

= 0 on ∂X , which ensures that the solution of (4.3) integrates to unity”[8]. The 

PDE (4.3) describes the pdf of X! for the Ito diffusion process (X!, t > 0) [8] given by 

 

dX! = µ(X!) dt + σ(X!) dB!,                                          (4.4) 

 

where the drift coefficient µ(x) = !"(!) 
!"(!) 

, the diffusion coefficient σ x = !(!)
!(!)

 , the initial  

state X! has distribution ∆(x) , and (B!, t > 0) is standard Brownian motion [8]. Clearly,  

if a = 1 and p = 1, we go back to the simpler model (4.2). What makes the solution g(x; t) to 

(4.3) a plausible kernel density estimator is that g(x; t) is a pdf with the following properties. 

																																																								
3		You	can	read	more	about	green’s	function	in	[8]	
4		The	derivations	of	the	mentioned	results	can	be	found	in	reference	[8]	
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First, g(.; 0) is identical to the initial condition of (4.3), that is, to the empirical density This 

property is possessed by both the Gaussian kernel density estimator (4.1) and the diffusion 

estimator (4.3). Second, if p(x) is a pdf on X , then 

 

lim!→! g(x;  t) = p x  , x ∈X. 

 

In the context of the diffusion process governed by (4.4), p is the limiting and stationary 

density of the diffusion. Third, similar to the Gaussian kernel density estimator (4.1), the 

solution of (4.3) can be written as [8] 

 

g x; t =
1
N κ x,X!; t                                                    (4.5)

!

!!!

 

 

Where for each fixed y ∈X the diffusion kernel κ satisfies the PDE 

 

∂
∂x
κ x, y; t = Lκ x, y; t  x ∈  𝒳, t > 0

κ x, y; 0 = δ x− y  x ∈  𝒳
                                  (4.6) 

 

In addition, for each fixed x ∈X the kernel κ satisfies the PDE 

 

∂
∂x
κ x, y; t = L∗κ x, y; t  x ∈  𝒳, t > 0

κ x, y; 0 = δ x− y  x ∈  𝒳
                               (4.7) 

 

 

Where L∗ is of the form !
!" !

!
!"
(a y !"

!"
 . ) that is, L∗  is the adjoint operator of L. Note 

that L∗  is the infinitesimal generator of the Ito diffusion process in (4.4). If the set 𝒳 has 

boundaries, Neumann boundary condition can be added [8] 



31	

	

 

∂
∂x

κ x, y; t
p x |!∈ !𝒳 = 0 ∀t >  0                                  (4.8) 

 

and  !
!!
κ x, y; t |!∈ !𝒳 = 0 to (4.6) and (4.7) respectively. These boundary conditions ensure 

that g(x; t) integrates to unity for all t ≥ 0.  

 

4.4    Bias and variance analysis 

In the following we will examine the asymptotic bias, variance and MISE of the diffusion 

estimator (4.5). In order to derive the asymptotic properties of the proposed estimator, a 

small bandwidth behavior of the diffusion kernel satisfying (4.6) is needed [8].  

 

Theorem 1. Let t = t! be such that lim N → ∞ t!= 0, lim N → ∞ N t! = ∞. Assume that f 

is twice continuously differentiable and that the domain X ≡ R. Then: 

 

1.The pointwise bias has the asymptotic behavior 

 

E! g(. ; t) − f x = tLf x +  O t! ,     N → ∞.                            (4.9) 

 

2. The integrated squared bias has the asymptotic behavior 

 

E! g(. ; t) − f !~t! Lf ! =  !
!
t! a( !

!

!
)!

!
,   N → ∞.        (4.10) 

 

3. The pointwise variance has the asymptotic behavior 

 

Var! g(x; t) ~
!(!)

!" !!!(!)
   N →∞.                                   (4.11) 

 

Where σ!= a(x)/p(x). 
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4. The integrated variance has the asymptotic behavior 

 

Var! g(x; t) dx~
E! σ!!(x)
2N πt

N → ∞.                               (4.12) 

 

5. Combining the leading order bias and variance terms gives the asymptotic approximation 

to the MISE 

 

AMISE{g}(t) = !
!
t! a !

!

! ! !
+ !! !

!! !
!" !!

                         (4.13) 

 

6.Hence, the square of the asymptotically optimal bandwidth is 

 

t∗ =
E! σ!! x
2N πt Lf !

!
!

                                                   (4.14) 

 

Which gives the minimum 

 

min
!
AMISE g t = N!! !

5E! σ!! x

2!" !π! !

!
!
Lf !!

!                    (4.15) 

 

First, if p ≠ f, the rate of convergence of (4.15) is O(N!! !). According to [8] The 

multiplicative constant of N!! !, can be made very small by choosing p to be a pilot density 

estimate of f Preliminary. Second, if p ≡ f, then the leading bias term (4.9) is 0. In fact, if f is 

infinitely smooth, the pointwise bias is exactly zero, as we see from 

 

E! g(x; t) = !!

!!
L!f x ,      f ∈  C!!

!!!                              (4.16) 
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Where L!!! = LL! and L! is the identity operator. In addition, if a = p ∝ 1, then the bias 

term (4.9) is equivalent to the bias term (4.19) of the Gaussian kernel density estimator. 

Third, (4.11) suggests that the ideal variance behavior results when the diffusivity σ(x) 

behaves inversely proportional to f(x). 

 

4.5    Bandwidth Selection Algorithm 

4.5.1    Bandwidth selection for the diffusion estimator 

We discuss the bandwidth choice for the diffusion estimator (4.5). “In the following we 

assume that f is as many times continuously differentiable as needed” [8]. Computation of t∗ 

in (4.14) requires an estimate of Lf ! and E! σ!! x . We estimate E! σ!! x  via the 

unbiased estimator !
!

σ!! x!!
!!! . The identity Lf ! = E!L∗Lf(X) suggests two possible 

plug-in estimators. The first one is 

 

E!L∗Lf ∶=
!
!

L∗Lg(x; t!)|!!!!
!
!!!     (4.17) 

 

where g(x; t2) is the diffusion estimator (4.5) evaluated at t2, and X ≡ R. The second 

estimator is 

 

Lf ! ≔  Lg . ; t! !          (4.18) 

 

The optimal t!∗ 5 is derived in the same way that ∗t!6 is derived for the Gaussian kernel 

density estimator. That is, t!∗  is such that both estimators E!L∗Lf and f ! have the same 

asymptotic mean square error. 

 
																																																								
5		t∗	is	the square of the asymptotically optimal bandwidth   

6		∗ t	is the asymptotically optimal value of t which minimizes AMISE  
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when p(x) = a(x) = 1, t!∗  and ∗t! are identical. Thus the following bandwidth selection and 

estimation procedure is suggested for the diffusion estimator (4.5). There are three different 

algorithms for that, but in the following we will present only one [8]. 

 

Algorithm 

1.Given the data X1, . . . ,X!, run Algorithm 17 to obtain the Gaussian kernel density 

estimator (4.1) evaluated at ∗t and the optimal bandwidth ∗ t for the estimation of f !! !. 

This is the pilot estimation step. 

 

2. Let p(x) be the Gaussian kernel density estimator from step 1, and let a(x) = p∝ x  for 

some α ∈ [0, 1]. 

 

3. Estimate Lf ! via the plug-in estimator (4.18) using t!∗ = ∗ t!, where ∗ t! is computed in 

step 1. 

 

4. Substitute the estimate of Lf ! into (4.14) to obtain an estimate for t∗. 

 

5. Deliver the diffusion estimator (4.5) evaluated at t∗ as the final density estimate. 

 

The bandwidth selection rule used for the diffusion estimator in the Algorithm is a single 

stage direct plug-in bandwidth selector, where the bandwidth t!∗  for the estimation of the 

functional Lf ! is approximated by ∗ t!, instead of being derived from a normal reference 

rule.  

 

 

 

																																																								
7		To know how Algorithm 1 is constructed please refer to [8]  
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4.6 Conclusion 

A kernel density estimator based on a linear diffusion process was presented. The key idea 

is to consider the most general linear diffusion with a stationary density equal to a pilot 

density estimate when constructing an adaptive kernel. Also, “the estimator is consistent at 

boundaries”[8]. The contribution was to implement this kernel estimator as a part of 

the code used in the simulations conducted in the next chapter. The new scheme provides 

better smoothness of the recovered signal, with faster run time and less resource 

consumption compared to the "ksdensity"-estimator implemented in Matlab8. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

																																																								
8		Type	help	ksdensity	in	Matlab	to	know	how	the	ksdensity	estimator	works	
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Chapter 5: Simulations 
 

In this chapter we will present the simulations that have been done to compare the BAMP 

scheme w.r.t other recovery schemes. We will briefly discuss each recovery scheme and 

mention the parameters used, but before we proceed we will give a brief introduction about 

the modulation schemes used. 

 

In our simulations we compared the performance of different recovery schemes using 3 

modulation schemes to be defined shortly in what follows. 

 

5.1    Modulation Schemes 

5.1.1    Normal Distribution  

The normal distribution or, as it is often called, the Gauss distribution is the most important 

distribution in statistics. The distribution is given by  

 

f x;  µ,σ! =
1

σ 2π
e!

!
!
!!!
!

!

 

 

where µ is a location parameter, equal to the mean, and σ the standard deviation. For µ = 0 

and σ = 1 we refer to this distribution as the standard normal distribution. In many 

connections it is sufficient to use this simpler form since µ and σ simply may be regarded as 

a shift and scale parameter, respectively. In figure 5.1 we show the standard normal 

distribution. 
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Fig 5.1: Standard normal distribution 

 

5.1.2    Phase Modulation 

Given a sinusoidal carrier with frequency: fc, we may express a digitally-modulated 

passband signal, S(t), as:  

 

S(t) = A(t)cos(2πfc t +θ(t)), 

 

where A(t) is a time-varying amplitude modulation and θ(t) is a time-varying phase 

modulation. For digital phase modulation, we only modulate the phase of the carrier, θ(t), 

leaving the amplitude, A(t), constant. 

 

5.1.2.1    Binary Phase Shift keying (BPSK) 

BPSK is the simplest form of digital phase modulation. For BPSK, each symbol consists of 

a single bit. Accordingly, we must choose two distinct values of θ(t), one to represent 0, and 

one to represent 1 

 



38	

	

Since there are 2π radians per cycle of carrier, and since our symbols can only take on two 

distinct values, we can choose θ(t) as either 0 and π or as -!
!
  and !

!
 referring to θ1(t) and 

θ0(t). Fig 5.2 shows the BPSK modulation for 0 and π choice [13]. 

 

 
Fig 5.2:BPSK Modulation (case 0 and 𝝅) 

 

5.1.3    Amplitude Modulation 

5.1.3.1    Amplitude Shift Keying (ASK) 

ASK is an amplitude modulation that represents digital data as variations in the amplitude of 

a carrier wave. In an ASK system, the binary symbol 1 is represented by transmitting a 

fixed-amplitude carrier wave and fixed frequency for a bit duration of T seconds. If the 

signal value is 1 then the carrier signal will be transmitted; otherwise, a signal value of 0 

will be transmitted. 
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Any digital modulation scheme uses a finite number of distinct signals to represent digital 

data. ASK uses a finite number of amplitudes, each assigned a unique pattern of binary 

digits. Usually, each amplitude encodes an equal number of bits [13].  

 

The simplest and most common form of ASK operates as a switch, using the presence of a 

carrier wave to indicate a binary one and its absence to indicate a binary zero. This type of 

modulation is called on-off keying (OOK). 

 

5.2    Sparse Recovery Schemes 

We have previously discussed both AMP and BAMP with prior and without prior. In this 

section we are going to briefly declare the rest of the schemes that are present in our 

simulations. 

 

5.2.1    Expectation Maximization for Gaussian mixtures 

An elegant and powerful method for finding maximum likelihood solutions for models with 

latent variables is called the expectation-maximization algorithm, or EM algorithm. “It is 

used to obtain the variational inference framework”[11]. We used this method to estimate 

the parameters of the BAMP recovery scheme (BAMP/EM). 

 

Given a Gaussian mixture model, the goal is to maximize the likelihood function with 

respect to the parameters [11] (comprising the means and covariances of the components 

and the mixing coefficients). 

 

1. Initialize the means µ!, covariances Σ! and mixing coefficients π!, and evaluate the 

initial value of the log likelihood. 

 

2. E step. Evaluate the responsibilities using the current parameter values 
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γ z!" =
π!𝒩 x! µ!, Σ!
π!𝒩 x! µ!, Σ!!

!!!
 

 

3. M step. Re-estimate the parameters using the current responsibilities 

 

µ!!"# =
1
N!

γ z!" x!

!

!!!

 

Σ!!"# =
1
N!

γ z!" (x! −
!

!!!

µ!!"#)(x! − µ!!"#)! 

π!!"# =
N!
N  

 

where 

N! = γ z!"

!

!!

 

 

4. Evaluate the log likelihood 

 

ln X µ, Σ,π =  ln π!𝒩 x! µ!, Σ!

!

!!!

!

!!

 

 

and check for convergence of either the parameters or the log likelihood. In case the 

convergence criterion is not satisfied return to step 2. 

 

5.2.2    Orthogonal Matching Pursuit 

OMP is greedy algorithm that can reliably recover a signal with m nonzero entries in 
dimension n given O(m ln𝑛) random linear measurements of that signal. The results for 
OMP are comparable with results for another algorithm called Basis Pursuit (BP). The OMP 
algorithm is faster and easier to implement, which makes it an attractive alternative to BP 
for signal recovery problems. We simulated this scheme with other schemes, as it is often 



41	

	

used in practice. Note that it doesn’t work well for high dimensions and large number of 
non-zero components as a pseudo-inverse has to be computed. 

 

5.3    Simulations 

In the following section we present the simulations that were done assuming different 

scenarios, where BAMP/HI (a scheme based on using the histogram model after estimating 

the pdf of the unknown signal x to be recovered using the kernel density estimator presented 

in the previous chapter), AMP, and OMP work without knowledge of the prior, and 

BAMP/EM estimates the prior using EM algorithm. The priors used are for the BAMP 

(curves in the figure below). We introduce and define some of the parameters to be 

considered fixed for all simulations while altering the rest. 

 

N = 400, (signal dimension) 

 

Where this chosen value is considered to be relatively big, and constrained by OMP scheme. 

 

N!"#! = 100, 

 

where N!"#! is the number of blocks simulated. We use large value to reduce the size of the 

significance interval. 

 

S=60 

 

Sparsity, as we have in our simulations 60 non-zeros for representing the recovered data. 

Now we present each simulation with the respective parameters and prior chosen 
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5.3.1 Simulation 1 

First simulation assumes a sparse Gaussian as a prior, and the noise levels for the CS 

observation vector y as stdwv = [0.075, 0.125, 0.2]; 

 

 
Fig 5.3: Comparison of BAMP without knowledge of the prior with other schemes assuming sparse 

Gaussian as a known prior 

 

We notice that in general BAMP/HI has the exact same performance as BAMP, which is 

better than all other schemes.  

 

 

 



43	

	

5.3.2 Simulation 2 

Second simulation assumes sparse BPSK as a prior, and the noise levels for CS observation 

vector y as stdwv = [0.075, 0.125, 0.2]; 

 
Fig 5.4: Comparison of BAMP without knowledge of the prior with other schemes assuming sparse 

BPSK as a known prior 

 

BAMP/HI performs better than AMP and OMP in general and gets closer to BAMP/EM for 

high measurement ratio. Also, note that BAMP can get inf-SNR because it decides for 

sufficient SNRy correctly, while other schemes don’t know that only two BPSK signal 

levels exist, so an exact match can be found by recovery.  
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5.3.3 Simulation 3 

Third simulation assumes sparse 4-ASK as a prior, and the noise levels for CS observation 

vector y as stdwv = [0.05, 0.1, 0.15] 

 
Fig 5.5: Comparison of BAMP without knowledge of the prior with other schemes assuming sparse 

BPSK with slow fading as a known prior 

 

Also in this case we find that BAMP/HI get closer to BAMP performance and performs 

better than AMP and OMP. We would like to point out that the number of iterations for the 

BAMP/HI is higher than other schemes used to be able to learn the prior. 
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Chapter 6: Conclusion: 

 

BAMP without knowledge of the prior performs better than OMP and AMP knowing that 

also the OMP and AMP schemes have no knowledge of the prior as well, but when 

compared to the BAMP schemes which know the prior, it is evident that they will have a 

better performance since they know the prior, but in practical situations we don’t know the 

prior. On the on hand BAMP/HI has a reduced complexity compared to other schemes that 

assume knowledge of the prior. Also there is some degradation in the performance, but it is 

safe to say that it is in the acceptable range of SNR and relatively close to the optimum 

performance, while AMP and OMP are considered way below the acceptable SNR range. A 

trade off between complexity and performance is quite dependent on where our interest lies, 

but the results are quite promising with far less complexity than expected. The contribution 

in this thesis was substituting the offered kernel density estimator which is built-in in 

MATLAB (ksdensity) by a kernel density estimator (kde) programmed in a way that 

requires at most half the time to run the simulations defining similar parameters for both 

functions, with the ability to estimate the optimum bandwidth for improved smoothness, and 

even less resource consumption while running the simulations (CPU, memory). 
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Appendix A: GAUSSIAN KERNEL DENSITY ESTIMATOR PROPERTIES 

 

In this appendix, we present the technical details for the proofs of the properties of the 

diffusion estimator(chapter 4). In addition, we include a description of our plug-in rule in 

two dimensions. We use  .  to denote the Euclidean norm on R. 

 

Assume that f !! is a continuous square-integrable function. The integrated squared bias and 

integrated variance of the Gaussian kernel density estimator (4.1) have asymptotic behavior 

 

E! f(. ; t) −  f
!
=  1

4
t2 f′′

2
+  O t2 ,     N → ∞.    (4.19) 

And 

 

VarF f(x; t) dx =  !
!" !!

+ O ( Nt)!! ,     N → ∞.   (4.20) 

 

respectively. The first-order asymptotic approximation of MISE, denoted AMISE, is thus given by 

 

AMISE f t = !
!
t2 f′′

2
+ 1

2N πt
   (4.21) 

 

The asymptotically optimal value of t is the minimizer of the AMISE 

 

∗ t = !

2N πt f′′
2

!
!
   (4.22) 

 

giving the minimum value 

 

AMISE f ∗ t = N!! ! ! f′′
2
5

!
!
!!

!
!
  (4.23) 

 

For a simple proof , see [12] 


