
Constraints and
Models@Runtime Support for

EMF Profiles

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Wirtschaftsinformatik

eingereicht von

Christian Wiesenhofer, BSc
Matrikelnummer 0926066

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Ass.Prof. Mag. Dr. Manuel Wimmer

Wien, 19. April 2017
Christian Wiesenhofer Manuel Wimmer

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

Constraints and
Models@Runtime Support for

EMF Profiles

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Business Informatics

by

Christian Wiesenhofer, BSc
Registration Number 0926066

to the Faculty of Informatics

at the TU Wien

Advisor: Ass.Prof. Mag. Dr. Manuel Wimmer

Vienna, 19th April, 2017
Christian Wiesenhofer Manuel Wimmer

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Erklärung zur Verfassung der
Arbeit

Christian Wiesenhofer, BSc
Sandgrubengasse 22, 3251 Purgstall

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 19. April 2017
Christian Wiesenhofer

v

Danksagung

Zuallererst möchte ich meinem Betreuer Manuel Wimmer danken. Vor allem, dass er
mir überhaupt erst ermöglicht hat, meine Arbeit zu diesem Themengebiet zu verfassen.
Weiters möchte ich mich auch für die Betreuung und die hilfreichen Wegweiser während
dieser Zeit bedanken.

Natürlich auch recht herzlichen Dank an meine Eltern für die Unterstützung und den
Beistand, nicht nur während meiner Studienzeit.

Allen Freunden und Bekannten während des Studiums sei an dieser Stelle auch gedankt,
einerseits für die lustige Zeit und andererseits auch für die tolle Zusammenarbeit und
Hilfsbereitschaft.

Zu guter Letzt möchte ich natürlich auch Magdalena von ganzem Herzen für ihre Geduld
und Unterstützung danken.

vii

Kurzfassung

Modellierungssprachen spielen in der Software-Entwicklung eine große Rolle. Zurzeit wird
hierfür hauptsächlich UML verwendet, sogenannte domänenspezifische Modellierungs-
sprachen (DSMLs) finden aber immer größeren Anklang. Ihr Hauptvorteil ist ein höherer
Abstraktionsgrad, wodurch die automatische Generierung von Quelltext erleichtert wird.
Solche DSMLs zu erstellen ist jedoch mit großem Zeitaufwand verbunden. Um dieses
Problem zu lösen wurde das EMF Profiles Projekt gestartet. Es ermöglicht, ähnlich wie
UML-Profile, die Verwendung von leichtgewichtigen Profilen, um ein bestehendes Modell
zu erweitern. Dadurch, dass mithilfe dieser Profile eine Änderung der Meta-Modelle
wegfällt und Bestandteile wiederverwendet werden können, verringert sich die benötigte
Entwicklungszeit.

Im Vergleich zu reinen Meta-Modell-basierten Sprachen, bestehen gewisse Einschränkun-
gen in EMF Profiles. So existiert zurzeit keine Möglichkeit starke Nutzungsbeschränkungen
oder Laufzeitverhalten in Profile einzubinden. Dadurch ist zum Beispiel ein typischer
Anwendungsfall - die gleichzeitige Verwendung mehrerer Sprachen - nicht möglich. Daher
stellte sich die Frage wie diese Funktionalitäten realisiert werden können.

In dieser Arbeit werden zwei Erweiterungen von EMF Profiles vorgestellt und prototypisch
implementiert. Zur Evaluierung dieses Prototypen wurde eine Fallstudie durchgeführt.
Die Lösung der Problemstellungen erfolgte durch einen OCL-Mechanismus für Beschrän-
kungen bei der Anwendung von Stereotypen, sowie durch einen Generator, der AspectJ
Code-Fragmente zu Profilen hinzufügt, die dann das Laufzeitverhalten eines Elements
ändern. Die Fallstudie beinhaltet eine Basis Petri-Netz Sprache, der drei Petri-Netz
Erweiterungen hinzugefügt wurden. Diese Erweiterungen sind als EMF Profile umgesetzt,
wobei all deren Spezifikationen vollständig umgesetzt werden konnten. Weitere Metriken
wurden erhoben, um die Vorgangsweise und den Prototypen bewertbar und vergleichbar
zu machen.

ix

Abstract

Modeling languages play an essential part in the software engineering process. Currently,
mostly UML is used for that purpose, but domain-specific modeling languages (DSMLs)
get more and more attention. Their main benefit is a higher abstraction-level, which
eases generating code from such models. One major drawback of DSMLs, is their time-
consuming development. To tackle this problem the EMF Profiles project was founded. It
provides a lightweight extension mechanism, just as UML profiles, to be used for DSMLs.
This way models can be altered without modifying their whole metamodel and domain
properties can be reused, thus reducing the required development time.

In comparison to pure metamodel-based languages there are certain limitations in EMF
Profiles. There is no way to model constraints regarding the restricted use of stereotypes
or to include runtime behavior. A typical use case is for example to use multiple languages
at once. However, considering these shortcomings, such an attempt is not possible. Thus
the question emerged, how these features can be realized.

In this thesis two extensions to EMF Profiles are presented and implemented as prototype,
which is then evaluated using a case study. The research problems were solved by
introducing an OCL constraint mechanism, which manages the stereotype application.
Furthermore a generator was implemented to add AspectJ-based code fragments to
profiles, so they can influence the runtime behavior of a model element. The case study
was conducted by creating a base Petri net language and adding three Petri net extensions,
implemented as EMF profiles, to it. All of their specifications could be fully implemented.
Further metrics about the approach and the prototype were collected, in order to ensure
it is assessable and comparable.

xi

Contents

Kurzfassung ix

Abstract xi

Contents xiii

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Statement . 2
1.3 Aim of the Work . 4
1.4 Methodological Approach . 5
1.5 Structure of the Work . 7

2 Prerequisites 9
2.1 Eclipse Modeling Framework . 9
2.2 Eclipse Equinox & OSGi . 13
2.3 Graphical Modeling Framework . 15
2.4 UML Profiles . 18
2.5 EMF Profiles . 19

3 Methodology 27
3.1 Overview . 27
3.2 Constraints . 28
3.3 Runtime Behavior . 33

4 Realization 51
4.1 Preconditions . 51
4.2 Constraints . 52
4.3 Runtime Behavior . 55
4.4 Summary . 66

5 Evaluation 69
5.1 Test Framework Setup . 69
5.2 Evaluation . 73

xiii

5.3 Results . 76
5.4 Critical Reflection . 80
5.5 Discussion of Open Issues . 80
5.6 Threats to Validity . 80

6 Related Work 83
6.1 Literature Study . 83
6.2 Comparison with existing Approaches 84

7 Conclusion and Future Work 91
7.1 Conclusion . 91
7.2 Future Work . 92

Bibliography 95

CHAPTER 1
Introduction

1.1 Motivation
Modeling languages play an essential part in the software engineering process. They are
used in the design stage to help visualize the software project with all its components and
behavior. The created models are important software artifacts, which not only ease the
design and development phases, but also maintenance and extension of software. While
UML is currently the primarily used language for this purpose, others such as Domain-
Specific Modeling Languages (DSMLs) [GNT+07] are catching up. They get more and
more attention, due to their benefits in certain areas over UML, as described later.
Several conferences and workshops cover topics out of the DSML domain, most notably
the annual Model Driven Engineering Languages and Systems (MoDELS) conference
or the Object-Oriented Programming, Systems, Languages & Applications (OOPSLA)
Workshop on Domain-Specific Modeling. Also noteworthy is the book called “Domain-
Specific Modeling: Enabling Full Code Generation” by Steven Kelly and Juha-Pekka
Tolvanen [KT08], where they propose to use DSMLs to generate source code. Both Kelly
and Tolvanen were major contributors to the field of DSML.

UML is designed to be a general-purpose language as described by the OMG UML
Standard up to version 2.4.1 (cf. bibliography entry [staf]). That means the language
design is held more generic to allow the modeling of a broad spectrum of domains. In
contrary, DSMLs are designed to fit to only one or a few domains. This way they provide
a higher abstraction-level than UML, since its abstraction-level can only rise up to the
common denominator of all supported domains. The concept of UML Profiles allows a
more domain-specific modeling with UML too. It uses profiles, a collection of stereotypes
and other mechanisms, to extend standard UML semantics with domain-specific semantics.
This approach however also does not reach the abstraction level of DSMLs. They can
only add semantics but not remove them, also the possibilities to add semantics are
restricted.

1

1. Introduction

Due to the fact that DSMLs can be tailored to the needs of one specific domain,
developers using these languages spend less time on general and low-level modeling parts
and therefore have more time to model the actual important domain-specific parts. These
precise specifications are also a prerequisite for code generation, where source code is
automatically generated based on a model. But not only source code can be generated
from models, depending on the framework even documentation, configuration and test
cases can automatically be generated. Code generation is not restricted to DSMLs. It is
also possible to generate code from UML models. The main difference between the two
approaches however, is the degree to which code can be generated. As addressed before,
the more general UML models only allow a broader code generation with less detail.

In software engineering the use of code generation marks the first major raise of abstrac-
tion, since the move from assembler to languages such as object-oriented programming
languages [KT08]. This abstraction leads to a significant raise in productivity. Accord-
ing to Kelly and Tolvanen case studies in companies showed a five to ten times faster
development, when using DSMLs and code generation, compared to traditional software
development.

The possibility to generate code from models is one of the main reasons to use DSMLs.
This feature brings a lot of benefits to software projects. The first and most important
benefit is the reduced programming effort. Most of the low-level code like getters and
setters can easily be generated, whereas it otherwise would have to be manually written
and, in case of changes, rewritten. Depending on the size of the software project, code
generation of a model can easily result in some thousand lines of code. These lines can
be worth a lot of money, since even simple lines of code do cost time and therefore money
to develop.

Also when it comes to security concerns code generation can be of much help. In case a
security flaw has been found in the code, the leak only has to be resolved once in the
generator and every generated program just has to be rebuilt with the new generator to
resolve the issue. Furthermore the generator ideally produces best practice code for a
given function and is therefore not prone to human errors such as lack of knowledge or
just pure mistake.

In conventional software projects the development is done by programmers. With code
generation however, the larger part could be done by modelers. Modelers, who at its best
don’t have to write code at all and, due to validations and restrictions, have nearly zero
risk of producing errors. These benefits suggest a bright future for DSMLs.

1.2 Problem Statement

One major drawback of DSMLs however is the time-consuming development of each of
those specific modeling languages. Over the time DSML tools were developed to ease and
reduce the effort required to create a new language. The three most evolved and used tools

2

1.2. Problem Statement

are the Eclipse Modeling Framework (cf. bibliography entry [Ecl]), MetaEdit+1 and DSL
Tools for Microsoft Visual Studio2. While such tools provide the needed functionalities to
create new languages and slightly reduce the effort to do so, the main problem - namely
time consuming development - is still an issue.

One reason as to why the language creation is so tedious is the reduced flexibility to
change the metamodel [LWWC12]. To tackle this problem the EMF Profiles project
was founded. EMF Profiles is a project developed by the Business Informatics Group
department at the TU Wien3. The project first started as a prototype for the paper
“From UML Profiles to EMF Profiles and Beyond” published in 2011 [LWWC11]. The
goal of EMF Profiles was to bring the benefits of the UML profile design to the DSML
area. The purpose of UML profiles is described in the Object Management Group UML
specification [stag] as follows: “The intention of Profiles is to give a straightforward
mechanism for adapting an existing metamodel with constructs that are specific to a
particular domain, platform, or method.” With the EMF Profiles project EMF too got a
lightweight extension mechanism to extend models without redefining their metamodels.

In EMF Profiles this was achieved, as in UML Profiles, through the use of so called
stereotypes. Stereotypes are indirect instances of EClass, as defined in the Ecore meta-
metamodel, that can be applied onto a model. They provide specific properties for a
domain and can, through profiles, be reused in different models, therefore minimizing the
overall development time.

With the problem of time consuming development mitigated another one emerged, which
limits the further usage of EMF Profiles and therefore DSMLs. One thing to keep in
mind is that developers of DSMLs are most of the time not the same ones that use these
languages afterwards. So a language should stand for itself and include all necessary
restrictions to create a valid model. Currently there is no possibility to apply stereotypes
only if certain constraints are valid. Modelers may therefore not be able to create certain
languages that require strong constraints. Even if a language with weaker constraints can
be created, it will result in tedious work to manually check every applied stereotype and
may even be unmanageable for larger models. With such an error-prone approach the
outcome will often be an invalid model. The severity of this problem becomes apparent
when keeping in mind that - as stated in [TK05] - the main reason to use DSMLs, besides
speeding up the development, is to reduce the number of errors in a model.

Another deficiency in the current EMF Profiles project is that there is no support to alter
the state of entities at runtime. Stereotypes can only have structural features within their
tagged values to decorate model objects with. This prohibits the use of EMF Profiles
for altering dynamic behavior. Developers can currently only use other products to
model such behavior, without the benefits of the profile concept and therefore probably
increased development time. When creating languages through a metamodel in EMF it

1MetaEdit+ website: http://www.metacase.com/mwb/
2Microsoft Visual Studio website: https://www.visualstudio.com/vs/
3Business Informatics Group website: http://www.big.tuwien.ac.at/

3

http://www.metacase.com/mwb/
https://www.visualstudio.com/vs/
http://www.big.tuwien.ac.at/

1. Introduction

generates executable DSMLs (xDSML), an extension to DSMLs which include runtime
behavior. Such behavior cannot yet be stereotyped. It should however be possible to
stereotype every aspect of a model. This way profiles will be powerful and reusable tools
to change models without redefining the metamodel.

This thesis aims to tackle the last two mentioned problems: the stereotype constraints
and the runtime behavior support. Solving these issues will increase the project’s area
of application, the speed of development, reduce possible errors and subsequently help
to spread DSMLs with all their benefits and prospects. DSML-modelers therefore gain
a powerful tool to create all or nearly all their languages with, in a time-saving and
error-preventing manner.

1.3 Aim of the Work
The aim of this work is to create a prototype of a generic framework as extension of
EMF Profiles to add constraint as well as runtime support. This should allow the
definition of various constraints for stereotypes, which will prohibit the application of
the corresponding stereotype to a model object, if a constraint is not met. Furthermore
the extension should be able to process runtime behavior and it should then be possible
to automatically change the behavior of certain events if a stereotype is applied.

With this framework it should be possible to answer the two research questions, “How
can EMF Profiles be expanded to support the creation of modeling languages, which by
definition have strong modeling constraints?” and “How can EMF Profiles be expanded to
support the adaptation of runtime behavior?”. To be able to assess these results it is also
necessary to create and evaluate a case study. In the end, there should be a comprehensive
case study to evaluate each of the implemented features and therefore deliver answers to
the research questions. The case study includes standardized languages, which are built
according to their specifications using EMF Profiles. The language specifications have to
include constraints and runtime behavior.

The evaluation should also result in an extensive list of strengths, weaknesses and metrics
of the approach. These gathered metrics serve as numeric criteria to compare and rate
different approaches as answer to the research questions. Metrics in this study may
for example be, how many classes needed to be changed and how many functions or
constraints could not be implemented as defined in the standard.

The prototype that is developed during this thesis should allow a comprehensive profiles
mechanism for EMF. This means a fully functional stereotyping feature, where every
language feature can be packed into a profile to use and reuse it, without any metamodel
or model changes. Reusable modeling parts - in this case profiles - reduce the development
time, the overall development amount and the error rate. The prototype itself is provided
as open source code, so it can be further extended and improved.

A more universal goal of this thesis is to increase usage of DSMLs and code generation.
With the increased power of EMF through the performance enhancing and lightweight

4

1.4. Methodological Approach

use of EMF Profiles, more developers may choose this approach to create their programs.
This way development projects can be completed quicker and require less effort and costs,
while still holding up an equal or even increased level of quality.

1.4 Methodological Approach

The methodological approach to develop these implementations and afterwards evaluate
their outcome is based on the general steps of design science. It consists of the four main
stages research, design, implementation and evaluation as follows:

1. Literature Research
An important first step towards a proper solution for the two research questions,
is to get an overview of published papers in the field. The probably best way
to do so is a systematic literature review (SLR), as proposed by Biolchini et al.
[dABMN+07]. This SLR process is a standardized, structured and efficient approach
to find papers and articles relevant to a specific research area. Using this systematic
literature review, papers regarding the general topics of DSMLs, Models@Runtime,
the existence of other tools for similar problems and best-practice approaches were
reviewed. This research was conducted as first step of the thesis, but systematic
and ad-hoc literature reviews were also conducted while working on the approach
definition, for any upcoming questions or in case of requiring new concepts and
technologies. For example the decision between Java or fUML (cf. bibliography
entry [stae]) as programming language, was the first decision which required a
review.

2. Designing the Approach
After the required information had been gathered, the main step of this thesis
followed. This is where the actual solution approach is proposed. One main
requirement the approach has to fulfill, is that the finished framework should still
offer a lightweight and independent profile mechanism. This means the support
of constraints and runtime should be usable without changing the metamodel or
model in any way other than applying the stereotype. Since there are two research
questions, this step is also divided into two subsections:

a. Constraint Support for EMF Profiles
The first part of the approach deals with a solution to the missing constraint
support, as this seemed to be the lesser problem of the two. The key goal
of this task was to find a standardized language that can define constraints.
These constraints have to be able to handle class structure. It should be
possible for instance to write constraints based on the value of an objects
attribute. The approach definition also lists the necessary changes in EMF
Profiles to support the additional notation of constraints for stereotypes, their

5

1. Introduction

evaluation at the time of stereotype application to a model object as well as
further required features.

b. Runtime Support for EMF Profiles
The approach-part for the implementation of runtime behavior was developed
next. A few concepts had to be researched and analyzed, regarding if they
could be used to achieve changing the runtime behavior of a model. The new
behavior should be based on a definition in the stereotype, but it should thus
only execute on an object that has the same stereotype applied to it. Other
objects, also those of the same class, should not have this new behavior, if
they do not also have the stereotype application. Furthermore the approach
also has to support the application of multiple stereotypes on the same model
object.

3. Realization
After the approach had been finalized it was implemented accordingly. In this
part the designed approach had to prove its suitability. If, at any point of the
implementation process, the approach would have appeared to not lead to a proper
solution or to not work at all, it would have been reconsidered and adjusted based
on the findings. The goal of this phase was to receive a working prototype, which
can afterwards be evaluated.

4. Evaluation
As a final stage in the research process it is necessary to evaluate the produced
prototype. Therefore a case study using the newly developed framework was
conducted. In this study standardized modeling languages were selected and
built according to their specifications, using the prototype. The chosen modeling
languages had to have a few constraints and runtime behavior in their specifications.
The evaluation was split into three parts, one for each research question plus another
one for a more general evaluation.

a. Evaluating Constraint Support
To evaluate the constraint support feature, language specifications regarding
restrictions on the usage of these languages were assessed and evaluated. This
tasks’ purpose was to show how many constraints could be implemented and
how many could not.

b. Evaluating Runtime Support
Additionally all functional specifications were evaluated, whether or not they
could be achieved using the prototypes stereotype features.

c. Evaluating Further Metrics
Finally additional metrics of the stereotype were collected. This was done
to get a comprehensive look on the prototype and make it comparable with
other approaches in every possible way. Therefore not only numerical but also

6

1.5. Structure of the Work

qualitative metrics were assessed. Metrics in this study are for example the
amount of changed classes.

1.5 Structure of the Work

The following six chapters document the research regarding the problem statement,
decisions taken in the process of finding a solution to the problems, implementation of
the prototype based on the beforehand defined methodology and finally an evaluation of
the prototype. All occurring issues, criteria, options and decisions are documented so the
final approach is fully comprehensible. With the information in this thesis it should of
course be possible to come to the same conclusions.

• Chapter 2 - Prerequisites deals with the base on which this thesis starts. All
used or required prerequisites are listed and explained. This is necessary to get
an overview on the presetting and restrictions, which affect the further approach
definition and solutions.

• Chapter 3 - Methodology analyzes all possible frameworks, technologies and
other components. Based on the findings an approach to develop a solution was
designed. The chapter is divided into three sections, the first one - Overview - offers
a quick introduction into the further process in this chapter. In the following two
sections the approach for each of the two research problems is defined.

• Chapter 4 - Realization covers the implementation of the combined approach
defined in chapter three. First, prerequisites to implement the approach are
documented, followed by the actual implementation of the constraint support and
secondly the runtime behavior support. The resulting prototypes’ source code is
available on GitHub [Pro]. Important parts of the source code are also documented
in this chapter.

• Chapter 5 - Evaluation includes the language selection for the case study, the
study itself and the resulting metrics. This chapter also includes a critical reflection
of the results, a summary of open issues and an assessment of possible threats to
the validity of the gathered results.

• Chapter 6 - Related Work covers other publications and mechanisms that deal
with similar problems or are relevant to the thesis in any other way. This chapter
also includes a short documentation on the systematic literature review that was
used to gather information and retrieve relevant papers for this chapter, but also
for the rest of the thesis.

• Chapter 7 - Conclusion and Future Work finally again lists the initial prob-
lems and a short overview of the proposed solution. Furthermore shortcomings and
resulting open items of the prototype are discussed. The last part of this chapter

7

1. Introduction

then proposes future work to be done in this context. This chapter concludes the
thesis.

All referenced papers, websites and other materials are accessible in the bibliography.

8

CHAPTER 2
Prerequisites

In this chapter the given or selected frameworks and technologies are presented, these
represent the environment in which to solve the research questions. The chapter also
provides an overview on what base within the EMF Profiles project - which is the main
component in this work - the development of the thesis starts. Before the explanation of
what EMF Profiles is and does, its foundation and the concepts on which it operates
are explained. EMF Profiles itself is explanation later in this chapter. The first section
describes the Eclipse Modeling Framework (EMF), the base DSML tool. After this
section the used technologies within Eclipse are explained. These are on the one hand
the underlying Equinox plugin system of Eclipse, and on the other hand the Graphical
Modeling Framework (GMF), which provides a generator for graphical editors. Afterwards
the UML Profiles concept is explained, which served as blueprint for EMF Profiles.
The last section offers a detailed description of the EMF Profiles project including its
technological composition. Throughout these sections, the main plugins and features
these frameworks use are also documented.

2.1 Eclipse Modeling Framework

EMF Profiles is an extension of EMF, the Eclipse Modeling Framework. EMF itself is a
tool which provides all required functionalities to create and use DSMLs. According to
the projects website the aim of the EMF project is to provide a modeling framework with
a code generation facility, in order to create tools and applications based on a structured
data model [Ecl]. The structured data model in the case of EMF Profiles is an Ecore
model as described later. The code generation facility can currently only generate Java
code and projects. Once generated, a fully functional executable DSML (xDSML) is
ready to use. The difference between common DSMLs and xDSML is that the latter are
runnable.

9

2. Prerequisites

In its core EMF is just another configuration of the Eclipse platform, so the basic Eclipse
IDE platform with a specific set of additional pre-installed plugins. The most relevant
plugins in this package are Ecore tools for the diagram editor, OCL as constraint language
in Ecore diagrams, GMF for the graphical editor as well as the core EMF plugin including
the code generator. EMF can be downloaded on the Eclipse project website (eclipse.org)
under the package-name Eclipse Modeling Tools.

History The Eclipse platform was initially developed by Borland, IBM, MERANT,
QNX Software Systems, Rational Software, Red Hat, SuSE, TogetherSoft and Webgain,
starting from November 2001, according to the websites history section. In 2004 it was
later released as open-source to further accelerate its development. Since then the newly
founded Eclipse Foundation is responsible for the development of all the Eclipse projects,
most importantly the Eclipse platform, also known as Eclipse IDE. One of those projects
is EMF, which already was an independent project since 2002.

EMF is the defacto standard tool for development in the area of Model Driven Engineering
(MDE) [FNM+12]. A comprehensive book to learn and understand every aspect about
EMF was written by the main contributors to EMF, and is named “EMF: Eclipse
Modeling Framework” [SBPM09]. The first edition was released in 2004, but there is
also a newer edition to cover the numerous changes and newly developed parts of the
framework.

Composition EMF comprises three core-components, each with its own separate
purpose. The first one is the EMF core framework. It provides the main functionalities to
create and use Ecore, such as serialization into XMI format for persistence and a change
notification system based on the observer pattern to allow runtime behavior. According
to its project description this component also contains a reflective API to alter EMF
object in a generic fashion. This part includes very powerful functionalities to generically
access every aspect of the class hierarchy, such as operations or parent objects. The XMI
format was first developed and standardized by the OMG in 2005 and stands for XML
Metadata Interchange [stah]. It is a convenient way to serialize and store models as files.

The second framework is EMF.Edit. It provides generic classes used to create editors
for the Ecore models. These classes are primarily for common functionalities that do
not have to be specialized, such as providers, property sources and generic commands.
The third and last framework is EMF.Codegen, which, as the name already suggests,
provides code generators to generate the needed classes and parts for an EMF model
editor. The specific process to start and create models and editors for it are described in
detail in the paragraph “Using EMF”.

Meta-Object Facility EMF is based on the Meta-Object Facility (MOF) as stan-
dardized by OMG [stac] and also by ISO as standard ISO/IEC 19508:2014 [staa], which
are both publicly available. MOF defines a hierarchical metamodel architecture. This
architecture defines four separate levels called M0 up to M3, as depicted in Figure 2.1.

10

2.1. Eclipse Modeling Framework

Meta-Metamodel Meta-
Language

Metamodel

Model System

Language

represents

defines

defines

MOF, Ecore

UML, ER, …

Examples

Model
Instance

System
Snapshot

represents

UniSystem, …

A UniSystem
Snapshot

La
ng

ua
ge

En

gi
ne

er
in

g
D

om
ai

n
En

gi
ne

er
in

g

«conformsTo»

M3

M2

M1

M0

4-layer Metamodeling Stack

«conformsTo»

«conformsTo»

«conformsTo»

Figure 2.1: Meta-Object Facility architecture (taken from [BCW12]).

The start is at the highest, most abstract level M3, which is the meta-metamodel or
MOF level. The next level below is M2, the metamodel level and after that M1, the
model level. At last the run-time level M0 is the concrete object or data as instance of
the model in M1 [Tan09].

The purpose of the MOF architecture level is to define other metamodel languages. In
EMF this concept was adopted into Ecore, which is the base meta-metamodel language
for the conception of EMF metamodels. Ecore is essentially a subset of MOF, equally to
“Essential MOF” (EMOF). Although it is basically EMOF, it is called Ecore, apparently
to avoid confusion as stated by Ed Merks and Sridhar Iyengar at EclipseCon 2004. The
Ecore metamodels are the core part of any EMF project. They are used to generate the
actual source code.

Using EMF So far what EMF is and how it is composed was described. Now details
on how EMF is used follow. This is relevant because the core of EMF Profiles is also a
DSML generated by EMF.

The start of every EMF project, after being created through the right-click menu
under “New > Project...” as “Ecore Modeling Project” in the folder “Eclipse Modeling
Framework”, is a metamodel. The metamodel is the base of the whole project, it defines
the main classes and references to each other. Metamodels can be built in five different
ways. The most common and also the one used by EMF Profiles, is an Ecore model.
Since this is the approach used by EMF Profiles, it is described in detail later on. Next
to Ecore there are also options to describe the metamodel with Java Annotations, a

11

2. Prerequisites

UML model, XML Schema or XMI and later convert them into Ecore. For this Ecore
metamodel EMF will later generate an editor to create models. These models can then
be edited, serialized as XMI and validated.

Usually the Ecore file is already created automatically. In case of another project type or
if additional Ecore metamodels are used, they can be created in the right-click menu as
before under the folder “Eclipse Modeling Framework”. The next task is to fill the Ecore
model with classes, references, attributes and the likes according to the specifications of
the project at hand. Ecore files can be opened with a tree based or graphical editor, such
as the “Ecore Editor” or the “Sample Ecore Model Editor”. Once opened, the editor will
show only one item, which is a package, or EPackage to be more specific, serving as the
root node. Just as in object-oriented languages it is used to differentiate the underlying
classes from those in other packages. Within an EPackage there are five different possible
child elements:

• EAnnotation: Can be used to generate annotations prior to the operation def-
inition. The required information for the generation are in child elements called
Details Entry. EAnnotations can also be created in each of the sibling elements.

• EClass: This element represents an actual java class. Just as java classes it can
have annotations (EAnnotation), methods (EOperation), variables (EAttribute)
and relationships to other classes (EReference).

• EData Type: Is needed to include and use a data type that is not part of the
Ecore model.

• EEnum: It will generate an enumeration class based on the Literal elements it
contains.

• EPackage: Just as the EPackage one level above, the sub-package serves as further
differentiation of its child elements.

After the Ecore model is finished, it can be used to generate code. The generation is done
through the genmodel file. The genmodel file is usually created in the same folder as the
Ecore. In contrast to the Ecore file, whose purpose is to represent the class structure in
the domain, the genmodel file is purely for options regarding the generation process. It
therefore includes the referenced Ecore model as basis and decorates it with additional
properties, such as naming and editing options.

By right-clicking the root package there are five options available on what to generate
from the genmodel definition. By selecting to generate either Model-, Edit-, Editor-,
Test-Code or all of them, EMF automatically generates the corresponding eclipse projects.
These are generated into separate projects, except the main model code, which will be
generated into the current project where the genmodel is located. Within the model
project the generator will create three packages. The first and main package includes

12

2.2. Eclipse Equinox & OSGi

interfaces and a factory as in the factory pattern [GHJV95] to create new class instances.
Furthermore there are two sub-packages generated. The first one .impl includes the
concrete implementations for each of the interfaces in the main package. The second one,
.util, includes utility classes such as an adapter factory.

After making changes to the metamodel or genmodel the generated code can simply be
regenerated. In nearly every domain full code generation is not too simple, there are
certain aspects that cannot just be automatically generated. These can be parts where
Ecore is just not specific enough to model them or custom method bodies. In the case
of missing information to create a body for a method, the generated code will let the
code throw an exception if the method is called. For such cases the missing code can be
manually added to the class files. To check if the method should be overwritten with
the standard code upon regenerating, the code generator considers the Java annotation
“@generated”. This annotation is generated for every method by default and every method
marked with it will be overwritten upon regeneration. This can be avoided by changing
it to “@generated NOT” or delete the annotation entirely. Best practice however, is to
add the “NOT”.

2.2 Eclipse Equinox & OSGi
Eclipse Equinox is one of the main sub-projects of Eclipse. It is a fully standalone
implementation of the OSGi (Open Service Gateway Interface) framework specification
and therefore not dependent on the Eclipse runtime, as it could also be used within
the command line using the Java runtime. But it is the runtime environment for the
Eclipse IDE and RCP, and thus an inevitable component for Eclipse. Eclipse Equinox is
currently handled as the reference implementation of OSGi [MVA10].

OSGi defines a component and service model according to the eclipse documentation.
These main features are provided by the packages in the org.eclipse.osgi plugin. The
component framework consists of all the numerous plugins that are described in the
next paragraph. Each of these plugins can also extend other plugins or provide its own
API-hook for others to extend. This concept is explained in the last paragraph of this
section.

Plugins The whole Eclipse platform is completely based on plugins, also called bundles,
which provide functionality for a specific area. Plugins are encapsulated and modular
components - jar files containing Java, class and configuration files - that define their
own dependencies and offered API; the latter is done by exporting its Java packages
[Vog15]. An application within this framework can then consist of one or, in the usual
case, a set of bundles. The EMF Profiles project for example is too comprised of plenty
such Equinox plugins. A benefit of this plugin structure is to be able to easily reuse not
only the whole application but already some single packages or classes out of a plugin.

A plugin has to have a manifest file (META-INF/MANIFEST.MF) in which all relevant
OSGi meta information is declared. Within this file all exported packages are defined,

13

2. Prerequisites

as are required dependencies to other plugins or packages. This file also includes the
bundle-version and bundle-name which uniquely identify the plugin. All in the manifest
file entered dependencies are automatically added to the plugins classpath. The purpose
of exporting packages is that only those declared ones are available to other plugins, if they
have the exporting plugin in their dependencies. Other packages are not visible. OSGi
checks if all dependencies are loaded before starting a plugin. It reads all dependencies
defined in the manifest and resolves them or, if it is necessary, activates plugins if they
are not already active. If a dependency is not defined the classes are not available to the
plugin and any call to such classes would result in a class-not-found error. This ensures
all dependent plugins are completely resolved before the desired plugin starts.

Figure 2.2: Life-cycle of a plugin (Based on [Vog15]).

The complete life-cycle of a plugin is depicted in Figure 2.2. It shows two main sequences.
Within the system a plugin has to be installed first to start its life-cycle. From there
on it can either be uninstalled again or resolved by the OSGi framework. To be in the
resolved state all its dependencies are resolved first. It can then be started where it will
have the starting state. Once the start is successfully completed it will have the active
state. This is the most important state where it can actively run its code and offer its
API for other plugins to be used. Once the plugin is stopped it will go into the stopping
state and after completion again back into the resolved state.

To debug or control these states the framework also provides an OSGi console within
Eclipse. It offers OSGi actions to manually start, stop, un- and install a plugin. To
start the console the standard Console view has to be opened. Using the option “Open
Console”, the Host OSGi Console can be selected. By typing the command “ss” all

14

2.3. Graphical Modeling Framework

plugins are listed and also the state they are in. This is an easy way to look up in what
life-cycle state a certain plugin currently is.

Extensions & Extension Points Another important feature of Eclipse Equinox is
the extension mechanism. It provides a flexible and extensible way for collaboration
between applications. A plugin can define its extension point, which is a unique id. Each
other plugin can then provide their own extensions, by declaring an extension for the
extension point id. Both these declarations, extension points and extensions, are defined
within the plugin.xml file.

The plugin offering the extension point usually includes a singleton class, which is
responsible for processing the supplied extensions to this extension point. It therefore
also provides an XML schema definition for its extension point within the plugin.xml,
serving as contract according to which the supplied extensions have to be designed. This
feature therefore assures the extension can be successfully processed by the API.

2.3 Graphical Modeling Framework
Another important Eclipse project is the Graphical Modeling Framework (GMF). It
provides, just as EMF does for models and model editors, a generator framework to
create graphical editors. To do so it utilizes the Ecore metamodel provided through EMF.
Hence GMF is dependent on EMF. It is also dependent on three own metamodels to
generate the appropriate source code. They provide additional informations regarding the
user interface and its connection to the model as described in detail later. The generated
output is created as Eclipse plugin project, ready to be deployed.

The generated source code for the graphical editor is based on GMF Runtime, which
is again made up of EMF and GEF (Graphical Editing Framework) components. It is
therefore an extension to the EMF generator mechanism to further generate parts of
the program. All is implemented as a textbook MDE approach, where a model is the
core from which all further development is started. The resulting source code for the
graphical editor is then also generated into an Eclipse plugin project, to be deployed and
used as OSGi plugin.

GMF provides the following main benefits:

• Reuse: Components for the generation can be reused for multiple domains, for
instance the graphical definitions of entities. The shape of a class entity may well be
reused within several domains. Also the strict separation of the GMF metamodels
allows to unlink them from each other and reuse them somewhere else without
dependencies.

• Use of Patterns: Throughout the generated source code classes multiple software
design patterns are used. This way GMF provides an efficient, extensible and
state-of-the-art code base.

15

2. Prerequisites

• Fast Development: After a steep learning curve GMF allows a quick creation of
editors.

Development To aid developers through the process of creating and configuring the
metamodels, GMF provides a view called GMF Dashboard, as depicted in Figure 4.1. It
gives a quick overview on how the development process with GMF works and also on
the current progress of this development. Also further information such as the currently
configured and linked files are shown. This is very helpful since it can be quite confusing
where to start, using which metamodel and in what order. Within the dashboard however
every derive, combine or transform step is graphically displayed with connecting arrows.

Figure 2.3: Overview of the involved entities in the generation process of GMF (Taken
from GMF-Tooling project page).

All in the generation process involved entities can be seen in Figure 2.3, as depicted on
the GMF project page1. There are five important metamodels used for configuring the
editors generation. One of them, the domain model, is part of EMF the others are purely
GMF models. They are described in detail in the following listing:

• Domain Model: The Ecore metamodel is the main file used for generation. It
is the starting point, as it includes every class and relation that is defined for the
model.

1GMF-Tooling project page: http://www.eclipse.org/gmf-tooling/

16

http://www.eclipse.org/gmf-tooling/

2.3. Graphical Modeling Framework

• Tooling Definition Model: Within the tooling definition the complete tool
palette is defined, but also menus, toolbars and similar. The palette is a separate
box next to the diagram area, which includes every item that can be placed into
the diagram. The available tools can be ordered into groups, which are then put
together within the group and visually separated from other groups. The tools
themselves are displayed by a name label and a small icon next to it.

• Graphical Definition Model: As the name already states in this metamodel all
graphical components are defined. These are figures, shapes, links and so on of
various entities that should later be displayed within the diagram.

• Mapping Model: Within the mapping model the three already configured meta-
models will be combined. This includes also defining how the elements of each of
the metamodels are related to each other. For example which tool in the palette will
create which class out of the domain model, and what figure out of the graphical
model will it use to be displayed in the diagram area.

• Diagram Editor Generator Model: Out of the beforehand finalized mapping
model this generator model will be transformed. It can be customized to further
modify the outcome of the generation. Using this model the generation process can
be invoked, which will create all necessary Java files and packages for a ready-to-use
graphical editor.

Figure 2.4: Example graphical editor, generated by GMF.

17

2. Prerequisites

After a complete configuration of all metamodels and the generation process the final
editor will look like shown in Figure 2.4. Not on the picture however is the properties
view which shows all of the selected elements’ properties.

2.4 UML Profiles

The concept UML Profiles is a profiling mechanism to create domain specific parts for a
model saved within a profile. This way these profiles can be reused for multiple models
to extend the metamodel in a lightweight fashion without changing it. A profile package
may then consist of multiple stereotypes and package imports. These stereotypes then
include various attributes that can be used within the model. As already stated in the
introduction EMF Profiles uses the UML Profiles concept for its project. It is not entirely
the same concept as a few adaptation had to be made in order to work with EMF. The
difference between the two concepts will be detailed in the next section.

As thoroughly described by Langer et al. [LWWC12] the profile mechanism is an integral
part of UML. It is located on the meta-metalevel M3 in the UML architecture model, as
shown in Figure 2.5 as package Profiles. Using this setup it is easy to create a profile
application as concrete instance in level M1. On the metalevel M2, just as the UML
metamodel itself, resides the metamodel aProfile. This would be the metamodel of a
concrete domain-specific profile. From this package application, instances can be created
in M1. The profile mechanism in UML is therefore built just as UML itself, as it can be
seen in the architecture.

M
3

UML
Core Profiles

«import»

M
2 UML aProfile

«instanceOf» «instanceOf»

«instanceOf» «instanceOf»

«extend»

M
1 aUML

Model
aProfile

Application
«extend»

Figure 2.5: UML Architecture (Taken from [LWWC12]).

This concept has been a huge boost for the spread and usage of UML. Overall development
time can be reduced through these reusable profiles. Also these lightweight extensions
greatly increase the flexibility throughout the development. To summarize, UML may
very well be the main reason why UML is currently - and already for some time - the
most used and widespread modeling language.

18

2.5. EMF Profiles

2.5 EMF Profiles

EMF Profiles now uses all these concepts and frameworks above to also provide a profile
mechanism for EMF. EMF Profiles was originally hosted on Google Code [EMFb]. After
the service closed in January 2016 the project was transferred to GitHub. It is now
available under the project lead Philip Langers’ account [EMFa]. The branch chosen
for this thesis to develop the framework on, was the master branch. There is a second
one called develop, but it includes some untested and/or not finished work and should
therefore not be used as base to work on.

EMF Profiles can be installed into Eclipse through the installation manager under
Help/Install New Software. The update-site is located at modelversioning.org2.

Comparison with UML Profiles While UML has the profile feature as integral
component in its metamodel, EMF does not. This shortcoming of EMF Langer et al.
[LWWC11] tried to overcome as recapped in the following paragraphs. A main problem
was that in EMF it is not possible, or at least not very viable, to implement a profile
package at the meta-metalevel. Hence it is also not possible to instantiate a profile in M1.
This is however necessary to even use the profile mechanism. They eventually proposed
two approaches as depicted in Figure 2.6, where they decided to go with approach (b)
Metalevel Lifting by Inheritance.

EMF Profiles · 5

1. Metalevel Lifting By Transformation. The first strategy is to apply a
model-to-model transformation which generates a metamodel on M2, correspond-
ing to the specified profile on M1. The generated metamodel, denoted as aProfile
as MM in column (a) of Fig. 2, is established by implementing a mapping from
Profile concepts to Ecore concepts. In particular, the transformation generates
for each Stereotype a corresponding EClass and for each TaggedValue a cor-
responding EStructuralFeature. The resulting metamodel is a direct instance
of Ecore residing on M2 and therefore, it can be instantiated to represent profile
applications.

2. Metalevel Lifting By Inheritance. The second strategy allows to directly
instantiate profiles by inheriting instantiation capabilities (cf. «inheritsFrom»
in column (b) of Fig. 2). In EMF, only instances of the meta-metaclass EClass
residing on M3 (e.g., the metaclass Stereotype) are instantiable to obtain an
object on M1 (e.g., a specific stereotype). Consequently, to allow for the di-
rect instantiation of a defined stereotype on M1, we specified the metaclass
Stereotype in Profile MM to be a subclass of the meta-metaclass EClass. By
this, a stereotype inherits EMF’s capability to be instantiated and thus, a stereo-
type application may be represented by a direct instance of a specific stereotype.

() M t l l Lifti (b) M t l l Lifti

M
3

(a) Metalevel Lifting
by Transformation Profile Definition (b) Metalevel Lifting

by Inheritance

Ecore
«instanceOf»

«instanceOf»

M
2 aProfile as MM

«instanceOf»

Profile MM
«transformedTo»

«instanceOf»

«inheritsFrom»

M
1

aProfile aProfile
Application

aProfile
Application

«instanceOf»

Figure 2 – EMF Profile Architecture Strategies

We decided to apply the second strategy, because of the advantage of using only
one artifact for both, (1) defining the profile and (2) for its instantiation. This is
possible because by this strategy, a profile is now a dual-faceted entity regarding the
metalevels which is especially obvious when considering the horizontal «instanceOf »
relationship between aProfile and aProfileApplication (cf. Fig. 2). On the one hand, a
profile is located on M1 when considering it as an instance of the profile metamodel
(ProfileMM on M2)). On the other hand, the stereotypes contained in the profile
are indirect instances of EClass and are therefore instantiable which means that a
profile may also be situated on M2. Especially, when taking the latter view-point,
the horizontal «instanceOf » relationship between aProfile and aProfileApplication
shown in Fig. 2 will become the expected vertical relationship as in the UML metalevel
architecture.

Journal of Object Technology, vol. 11, no. 1, 2012

Figure 2.6: EMF Profiles Metamodel Lifting Approaches (Taken from [LWWC12]).

In this approach they created a new package on level M2 named Profile MM, the
metamodel for the profile class. A profile can then be directly instantiated, because

2EMF Profiles update-site:
http://www.modelversioning.org/emf-profiles-updatesite/

19

http://www.modelversioning.org/emf-profiles-updatesite/

2. Prerequisites

of the inheritance from EClass. In EMF to be able to create a concrete instance of a
metamodel in M1, it must be an instance of the meta-metaclass EClass in M3. So for
the stereotype metaclass, which is defined in the metamodel Profile MM, the definition
of EClass as a super type was also necessary as shown in Figure 2.7. This way also a
stereotype application of a specific stereotype can be created.

The main problem of a “missing” metalevel to instantiate every entity of the profile
mechanism was overcome by creating a multi-functional profile entity, whose functionality
spans over two metalevels, while only residing on one. A concrete profile is as an instance
of its metamodel, Profile MM on level M2, and located on level M1. But as it also
includes stereotypes that can be instantiated, because of their instance-of relationship
to EClass, it also serves again as metamodel. This opens up the possibility to create
the horizontal instance-of relationship shown in the figure between the concrete profile
(aProfile) and its profile application (aProfile Application). This relationship actually
represents the additional vertical relationship that was needed.

6 · Langer et al.

2.3 The EMF Profile Metamodel

The metamodel of our profile definition language is illustrated in package Standard
EMF Profile depicted in Fig. 3. As a positive side effect of choosing the metalevel
lifting strategy 2, the class Stereotype, being a specialization of EClass, may also
contain EAttributes and EReferences, which are reused to represent tagged values.
Thus, no dedicated metaclasses have to be introduced to represent the concept of
tagged values. To specify the applicability of stereotypes to metaclasses, the class
Stereotype comprises a reference to the class Extension. Thereby, users may define
the base metaclass of the stereotype, as well as the lower and upper bound of a
stereotype application. For instance, a lower bound of 1 in an Extension indicates
that the respective stereotype must be applied to each instance of the base metaclass
in order to obtain a valid profile application. Besides the upper and lower bound,
users may redefine or subset extension relationships of superstereotypes by setting the
reference redefined or subsetted, respectively. With these two references, we adopt
the modeling features known from Associations in UML (cf. Section 3.1 for more
details).

Profile

iconPath : EString
Stereotype Profile

Ecore

abstract: EBoolean
eSuperTypes : EClass
…

EClass
nsURI : EString
eClassifiers : EClassifier
…

EPackage

base

1

base

1

Standard EMF Profile

Generic Profile Meta Profile

isMeta : EBoolean
Stereotype

EClass

GenericType

<<merge>> <<merge>>

Complete EMF Profile <<merge>><<merge>>

expr : OCLExpression
Condition

0..*
isMeta : EBoolean

Profile

ProfileApplication

ProfileApplication

0..*

appliedTo : EObject
StereotypeApplication

lowerBound : EInt
upperBound : EInt

Extension
0..*

0..* 0..*
redefined subsetted

Figure 3 – EMF Profile Metamodel

Stereotype applications require to have a reference to the model elements to which
they are applied. Therefore, we introduced an additional metamodel package, namely
ProfileApplication in Fig. 3. This metamodel package contains a class Stereotype-
Application with a reference to arbitrary EObjects named appliedTo. Whenever, a
profile is saved, we automatically add StereotypeApplication as a superclass to each
specified stereotype. To recall, this is possible because each Stereotype is an instance
of EClass, which may have superclasses. Being a subclass of StereotypeApplication,
stereotypes inherit the reference appliedTo automatically. In the following subsection,
we further elaborate on the EMF Profile metamodel by providing a concrete example.
Please note that the so far unmentioned packages Generic Profile and Meta Profile in
Fig. 3 are discussed in Section 4. Furthermore, for presentation purposes, we have
used the package merge [DDZ08] from UML to structure the language features of EMF

Journal of Object Technology, vol. 11, no. 1, 2012

Figure 2.7: EMF Profile Metamodel (Taken from [LWWC12]).

20

2.5. EMF Profiles

Metamodel The main parts of the EMF Profiles project are modeled within two ecore
diagrams. These two files serve as metamodels, where most of the code was generated
from, using EMF. As already depicted above in Figure 2.7, the EMF Profiles project was
developed according to this combined metamodel. This resulted in the already mentioned
two ecore metamodels, one for the profile in Figure 2.8 and the other one for the profile
application in Figure 2.9.

Figure 2.8: EMF Profiles Metamodel in Ecore

The profile metamodel consists of three classes: Profile, Extension and Stereotype. This
metamodel is saved in the file emfprofile.ecore, in the main EMF Profiles project under
the model folder. The Profile class inherits from EPackage and serves as container for
stereotypes. This can be seen by the operations to retrieve stereotypes defined in the
ecore metamodel. Therefore the profile manages a collection of stereotypes that are part
of it. Next, the class Stereotype includes all references to extensions that are connected
to it. It also includes the tagged values saved as EAttributes and provides methods to
retrieve them. Other important operations are the isApplicable ones. These a boolean
whether or not the stereotype can be applied onto a given eObject. Finally in the class

21

2. Prerequisites

Extension the source and target of the extension arrow are referred. Also its restrictions
on the amount of times it can be applied on the same model object is saved by the upper
and lower bounds attributes.

The second metamodel covers all aspects regarding the profile and stereotype application.
It is saved in the same folder as the profile metamodel and is named emfprofileapplica-
tion.ecore. It consists of four classes: ProfileApplication, ProfileImport, StereotypeAppli-
cation and StereotypeApplicability. The first one is part of the registry and keeps track
of the imported profiles and applied stereotypes. The imported profiles are references to
the class ProfileImport, which again has a reference to the actual Profile, whose import
it represents. The class StereotypeApplication represents an actual connection between
an object and an applied stereotype. Therefore it has references to the model object, the
extension of the stereotype it is targeted by and the profile application as opposite of the
containment reference of ProfileApplication. It also has an operation to return the base
stereotype this application is part of.

Figure 2.9: EMF Profiles Application Metamodel in Ecore

Noticeable in both metamodels are the multiple Ecore and OCL annotations. There
purpose is to declare validation delegates for their parent class. These delegates are
then executed in the editor to validate the state of the created model. Therefore OCL
annotations have to be created within a class, providing an identifier and the actual
expression. Secondly an Ecore annotation has to be created to declare all listed OCL
identifiers as constraints. In the generated editor the model elements can then be
validated by using the corresponding command in the right-click menu. This functionality
is specifically provided for ecore models by the OCLinEcore sub-project.

22

2.5. EMF Profiles

Components The EMF Profiles project is, as already mentioned, based on a DSML
generated with EMF. It consists of fifteen projects in the Eclipse workspace, whereof four
of those projects were generated through the basic EMF generator. These include the
main project, which also contains the Ecore models and genmodels, as well as the edit
editor and test projects. Another one was also generated, but by GMF not EMF. The
other projects are different registries and deployment projects. A detailed information on
each project will be given later in this section. Two projects are purely for deployment.
The other thirteen non-deployment projects are also plug-in projects. After deployment
they are available as jar-archives at the update-site and can be installed into an Eclipse
IDE. The technology used for these plug-ins is the Equinox/OSGi framework as described
above, on which the Eclipse platform is built on.

• org.modelversioning.emfprofile
This is the main project where the model code resides. It includes the two ecore
metamodels. The first, emfprofile, is used for the core model structure of profiles,
stereotypes and Extensions. The second one, emfprofileapplication, is the meta-
model representing everything related to the application of profiles and stereotypes
as well as to the registries. In this project are also all GMF related metamodels
and generator files.

• org.modelversioning.emfprofile.application.decorator.gmf
This project includes the support for GMF based editors. Its main purpose is to
check whether or not the current editor is GMF based and decorate it accordingly,
so it can be used for EMF Profiles’ profile and application registries.

• org.modelversioning.emfprofile.application.decorator.reflective
Again this project was created to add support for certain editors, in this case
reflective based editors.

• org.modelversioning.emfprofile.application.registry
This bundle is responsible for the core logic of the application registry. This is the
registry where all stereotype applications are saved to. The main use of it is for
the EMF Profile Applications view, where all applied profiles and stereotypes are
shown. This view is not to be confused with the second registry view Registered
EMF Profiles, where all available profiles are shown.

• org.modelversioning.emfprofile.application.registry.ui
As addition to the last project this one provides all user interface related classes.
This includes the main application view, wizards and the likes. The EMF Profile
Applications view shows all applied stereotypes for a selected model object in the
currently opened editor. The view can also be switched to show every stereotype
application within the model in the opened editor.

23

2. Prerequisites

• org.modelversioning.emfprofile.diagram
This project is mostly generated by GMF. It includes the necessary parts for the
editor in which the profiles are created. The generation is done through the gmfgen
file in the main org.modelversioning.emfprofile package.

• org.modelversioning.emfprofile.edit
The edit code in this project was auto-generated through the genmodel. It provides
a wizard to create new instances of the model.

• org.modelversioning.emfprofile.editor
In this second auto-generated project are the required classes for the editor to show
and modify the created model.

• org.modelversioning.emfprofile.feature
This project is for deployment. It provides a so called feature which includes a
category. Within this category there are all the thirteen plugins of the EMF Profiles
project. Eclipse offers a mechanism for applications to be updated or installed in to
the Eclipse instance. This is done by providing update-sites for these applications,
where Eclipse can download the application from. On these update-sites the offered
applications consist of one or more features which can be installed separately. These
features serve as logical folders to organize the containing plugins.

• org.modelversioning.emfprofile.project
The purpose of this project is to provide the EMF Profiles nature and utility
methods to it. A nature in Eclipse is a notation to a project on its structure.
Another example of a nature would be the Java nature, where the required plugin
dependencies, binary and source folders are created and registered. In this case the
required - and therefore created if missing - structures are a diagram file, an icons
folder and a plugin XML-file.

• org.modelversioning.emfprofile.project.ui
Based on the framework of the last project this one provides the wizards and their
background-logic to create an EMF Profiles Eclipse project.

• org.modelversioning.emfprofile.registry
This project creates and administers the EMF Profiles registry. All EMF Profiles
projects within the workspace and all such plugins are registered. Only herein
registered profiles are available to apply to a model later.

• org.modelversioning.emfprofile.registry.ui
This bundle provides the necessary user interface to the profiles registry. Its main
purpose is the Registered EMF Profiles view, where all profiles that were found in
the registry above are shown.

24

2.5. EMF Profiles

• org.modelversioning.emfprofile.tests
The fourth and last of the auto-generated projects is tests. For each of the model
classes some jUnit test cases were generated. Additionally to those, there are also
some manually created test cases for newly developed features.

• org.modelversioning.emfprofile.updatesite
In Eclipse an update-site is an address for a project, where the most recent version,
but also older ones, can be downloaded from. In this case the updatesite project is
linked to the feature project, which again provides the projects to deploy. Through
this projects site.xml a build process can be initiated. All linked plugins will be
compiled into jar files and provided under a new version number.

Profiles & Stereotypes The profile feature is similar to that of UML Profiles. The
starting package is a profile. Within this profile one or more stereotypes can be defined.
These stereotypes can later be applied to model objects, where first the profile itself has
to be applied to the model once. All these profile and stereotype definitions are made in
a graphical GMF-based editor provided by EMF Profiles. The corresponding diagram
file (*.emfprofile_diagram) is automatically opened upon creation of an EMF Profiles
project.

In the definition of stereotypes certain restrictions are also determined. The most
important one is the definition on what class the stereotype can be applied to. This is
done by pointing an extension arrow to an imported metamodel element or a self-created
class. Another restriction is the amount of times the stereotype can be applied to the
same object.

The stereotypes serve as container of the actual features that store additional information.
In EMF Profiles these are called Tagged Values. They are entities, set to a certain
type, and can then hold a value of that type. Valid types are all basic ones such as
String, Integer or Enum, but also a few more sophisticated ones, for example references
or collections. Once these stereotypes are applied to model objects, they extend them
with the data provided by the tagged values without recreating their metamodel.

For the profile registry to be able to assess all provided profiles within the Eclipse
instance, it uses the extension point mechanism. Each EMF Profile workspace project
is already a plugin project, so within its structure there is also a plugin.xml file cre-
ated. This XML-file declares to offer an extension to the extension point using the id
org.modelversioning.emfprofile.profile. The EMF Profiles registry plugin, which has an
extension point defined for this id, then collects all those extensions into its registry.
Once a profile is in the registry it can be used to be applied to a model.

An example profile including two stereotypes is depicted in Figure 2.10. It defines a class
Book which can be decorated by up to two different stereotypes. The first one named
EBook offers a tagged value named format. This stereotype can only be applied once.
Tags, the second stereotype, provides a tagged value called name. The type of name is

25

2. Prerequisites

Figure 2.10: Example EMF Profile with two stereotypes.

String, which can not be seen in this figure, but in the properties view of the editor. Tags
can be applied unlimited to decorate a Book object with String tags to categorize it.

Summary To summarize this section, the environment for the prototype in this thesis
is mainly dependent on the EMF Profiles project. The used environment consists of
the Eclipse Modeling Framework and the EMF Profiles project. These environments
furthermore take use of the Java object-oriented programming language, Equinox/OSGi
framework, Domain Specific Modeling concept, Ecore language, XMI persistency, the
Graphical Modeling Framework and UML Profiles.

Now that the environment and basis of this thesis are defined, solving the two research
problems within this context is explained in the following. Therefore in the next section
possible approaches towards a solution will be analyzed.

26

CHAPTER 3
Methodology

So far the used frameworks and technologies were explained. This chapter now covers
the selection process of frameworks, technologies, components, concepts and course of
actions as well as considerations along the way, towards finding approaches as solutions
to the stated problems. In the first section a small overview of the methods used in this
chapter to select these frameworks is presented. The next section includes decisions and
selections towards finding an approach solving the constraint issue. The third section
also covers an approach definition, this time however in regards to the problem of missing
runtime behavior for stereotypes.

All following approaches are chosen to work with or be implemented with Java. This is
mainly due to the fact that according to the GitHub statistics, the EMF Profiles project
is written entirely in Java. So it was reasonable to use it for this extension too, and not
to add another language and dependencies into the project. Thus keeping the project
lean and easier to maintain and extend.

3.1 Overview

In this thesis a prototype in the context described in the prerequisites Chapter 2 “Pre-
requisites” is provided to resolve the two research problems, mentioned in Chapter 1
“Introduction”. To be able to do so, an approach on how to create the prototype had to
be designed first. This design approach had to include technologies or methodologies as
solution for each of the two problems. An analytical approach was used to evaluate these
technologies regarding their fit for the design. This design evaluation is documented in
the following two sections.

In these sections the actual problems are reiterated, by defining the concrete shortcomings
or differences to the desired behavior in the current EMF Profiles project. Then options
on what could be done to achieve the desired behavior are present, including necessary

27

3. Methodology

criteria for a valid solution. Next, the design search process, as explained above, is
document. It was conducted by first searching through methods and technologies that
could satisfy the behavior defined in the options, and secondly actually evaluating them
regarding their fit for the design.

By using this prototype, developers of software projects gain a powerful tool to reduce
time and effort in the development process. Through the additional constraint feature
the error rate of profiles created with EMF Profiles is reduced. Furthermore EMF
Profiles’ area of application is expanded through the possibility to also stereotype and
reuse runtime behavior. Developers can therefore use EMF Profiles more often to solve
problems or assist their work. They then again profit from its benefits, such as the
lightweight extension mechanism and code reusability, and also from its underlying
technologies such as the EMF framework and its code generation ability. To summarize,
all these benefits aid the software development and maintenance process to be easier,
faster and produce less errors, which also saves costs.

In addition to the prototype as resulting artifact of this thesis, it also produced the
acquired design itself. This design can be used by other researchers as a reference solution
for similar problem statements.

3.2 Constraints
In this sectiona solution to the first research question “How can EMF Profiles be
expanded to support the creation of modeling languages, which by definition have strong
modeling constraints?” is proposed. The implementation of this proposed solution is
documented in the next chapter, Chapter 4 “Realization”, under section two. Thereafter
the implementation is evaluated in Chapter 5 “Evaluation”.

Problem Definition Profiles are created to decorate a model object with additional
data. The main intentions to do so are on the one hand the clean and separated adaptation
of models, on the other hand the re-usability of those features. In both these cases
the profiles provide an approach with less probability to make errors. This, however,
only applies to the features of the stereotypes themselves, not on errors regarding its
application. Potential restrictions on the application of stereotypes can only be checked
manually, since there is currently no way to extensively restrict the application. The only
restrictions that are possible are the quantity, such as lower and upper bound on how
often a stereotype can be applied to the same object, and the class type a stereotype can
be applied on. Advanced restrictions based on properties of the object are not possible.

Such tedious manual checks should not be necessary. Not only are they still erroneous,
but also the restrictions may not even be available to the users. Profiles are intended to
be used by multiple users for multiple uses. Hence the people who created the profile
are not necessarily the ones who use them afterwards. Therefore every profile should
be self-explanatory. Every restriction should be within the profile, so misuse can be
eliminated. This thinking follows the Japanese principle of Poka Yoke [Shi86], which

28

3.2. Constraints

originated in the production industry. According to this principle it should not even be
possible for users to make mistakes. So the goal must be to reduce or prohibit errors
by design. The tools we use should not even allow to make errors. In a production
environment this could be parts that are shaped to only fit into designated places and
nowhere else. In our case it would be stereotypes that can only be applied to objects
which entirely fulfill the stereotypes constraints. An important software engineering rule
also dictates to avoid or resolve errors in an early stage of development, since it is much
cheaper than in later stages. This rule would also be adhered that way.

Requirements A valid approach to solve this issue should therefore have some kind
of annotation mechanism for stereotypes, to store the constraints in any fashion. The
constraint definition should be available at the time of profile creation and it should
not be possible to change it after the profile was deployed. Furthermore at the point
of stereotype application next to the checks on bounds and class type, there should be
an additional check if the annotated constraints would be true in this context. The
stereotype application should then only continue if the constraints are true and otherwise
show an error message.

While it may seem reasonable to include the constraint annotation in the stereotype,
after a closer look it seemed the wiser choice would be to put it in the extension class. A
stereotype can have more than one extension, but also to different classes. Constraints
may factor in some class attribute, which are of course class dependent. Some other
classes may not even have the same attribute or may be allowed only within a different
range. Even if the constraints are the same for different classes, there should at least be
the option to write separate constraints on other extensions.

The constraint language itself should be:

• String-based,

The easiest way to store the constraints would be as a String property. It could
be modified and stored without extra editors and with common, already pre-built
mechanisms. Also retrieving the String for evaluation is simple.

• commonly known and used and

Developers should not have to learn a new language just for this task. A widespread
constraint language that is also not too hard to learn would be ideal. Thereby
also leaving the possibility open to use the constraints interchangeable for other
purposes. Chances are also higher that the constraints are already present in this
language. They then don’t have to be transformed, which would cut down a step
and speed up the development even further while also eliminating an error prone
task.

• able to process object attributes.

29

3. Methodology

The purpose of these constraints is to restrict the application of stereotypes based
on values of the object or other objects within the model. Therefore the constraint
language has to be able to read out such attributes and use them for comparisons.

Selecting OCL Based on these criteria an unstructured literature and web research
were done, which lead to the decision to select the Object Constraint Language (OCL) as
standardized by the OMG [stad]. The reasons to choose OCL are manifold, but in short:
OCL is quite perfect regarding the requirements. It is String-based and can easily be
edited and saved as a property of Extension. It is well-known and already used in plenty
applications including UML. It can also handle objects and their attributes and can even
use typing with the command oclAsType. Beside the fulfillment of the above determined
criteria, there are also additional pro-points to chose OCL for this sections approach.
The language is already used as part of MOF and therefore also in EMF. Ecore models
can be annotated with OCL constraints using EAnnotations, to allow a validation of the
model in the editor. So a modeler who uses EMF can presumably also already use OCL.

OCL is used to formulate restrictions and queries for certain aspects of a model. It allows
to add rules to a system, where the standard expressiveness is not sufficient enough or
the text-based OCL string is just easier to handle, manipulate and persist. Based on the
standard specifications, OCL expressions do not have side-effects. Thus any executed
expression will only return values, such as a boolean value for constraints, but will not
change the state of the model. A state can, however, be changed by a program based on
the outcome of these expressions.

OCL Usage OCL is widely used, for example in UML, where it is also part of the
official UML specification [stag] by OMG. The next largest area of application for
OCL is in model transformation languages. The purpose of model transformation is
to automatically process a model for different reasons, such as creating another model
from it or generating source code. Major languages in this area that use OCL are the
Atlas Transformation Language (ATL)[mis] and Query/View/Transformation (QVT) as
specified by the OMG[stab]. In these languages OCL is mainly used in the query phase
to gather the required model elements. In the actual transformation part it is also used
to calculate certain properties based on the queried elements or read out their attributes.
OCL can furthermore be used for any MOF-based metamodel, to further restrict or query
model elements.

OCL Features According to its specification OCL is a formal language to describe
expressions on models. These expressions can be of the following different kind:

• Constraints: Restrictions on model elements that need to be upheld in order to
return true and therefore be valid.

• Queries: Expressions used to filter a set of objects or properties of those objects,
based on the rules defined in the query.

30

3.2. Constraints

While constraints keep the model or system in a valid state, queries are used to collect,
calculate or derive values and elements, which will usually then be further processed by
the model code. In this thesis the OCL constraint feature is only used for the design
approach to restrict the application of stereotypes.

OCL Invariants OCL constraints can further be broken down into six types of con-
straints, as shown in the following listing.

• Invariants: Are restrictions on objects that need to be assured permanently. The
only exception is during the time when an object is executing a method.

• Pre- and Postconditions: Define conditions that must assert to true before
(precondition) or after (postcondition) a certain methods is executed.

• Initial & Derivation Rules: Define rules for the initial or derived value of an
objects’ attribute.

• Guards: Defines a guard for state transitions that needs to be true in order for
the transition to fire.

From these constraints only invariants are relevant for this thesis. They offer restrictions
on objects and can thereby be used to evaluate these restrictions on a model element,
that should receive a stereotype application.

OCL Structure The syntax of OCL expressions is designed to be intuitive and not
too mathematical, so average modelers without a vast mathematical background can
easily use it. Each OCL statement starts by first defining its context. This expresses
for which type of model element the statement was intended. An example code can be
seen in Listing 3.1, where the statement starts with the context keyword, followed by the
actual name of the elements’ type. Based on this keyword OCL also sets the available
environment including reachable paths as well as the attributes on the element.

Every OCL statement is an indirect instance of the class OCLExpression, which is again
a subtype of TypedElement. Hence all statements are typed elements and therefore have
a return value. A constraint statement for example always has a Boolean return value.
Regarding types, OCL supports the use of:

• basic types, such as Integer, Boolean, String etc.

• set-valued types, such as the collections Set(T), Bag(T) etc.

• user-defined types, such as classes, interfaces or enumerations.

31

3. Methodology

For these types there are also some predefined operations available to use. Basic types
have quite the same operations available as they would have in a programming language.
For integer these are for example summation, subtraction, multiplication or the function
abs(), which returns the absolute value of an integer. For Strings, operations such as
substring or size are available. Collections can use the exists operation, forAll or sum.
Objects of user-defined classes can also use their class-specific methods such as getName.
With all these types and operations OCL offers plenty of possibilities to restrict the
stereotype application based on states or property values of the model.

OCL Example As stated before, the most important OCL constraints in the field of
modeling are invariants, pre- and post-conditions. The first one is for objects, the other
two are for methods. So for this case invariants are needed. An example for the structure
of such an invariant would be the following term:

context Person inv: self.age >= 0;

Listing 3.1: Example OCL invariant.

The first part, context Person, declares the context of the statement. This is the class
type of the object on which the constraint is later evaluated. The declaration is important
to set the variables and methods available to the object. The keyword inv defines the
constraint to be an invariant. The last part is the actual invariant statement, a boolean
expression which should assert to true. In this statement the before mentioned operations
can be used. Additional assertions can be added by using the operators and, or or xor.

OCL Console The Eclipse sub-project OCLinEcore not only provides the function-
ality to process OCL expressions, but also provides an additional console to test these
expressions in the context of a model as shown in Figure 3.1. The console can be selected
by opening the standard Console view and choosing Interactive OCL in the Open Console
dialog on the upper right side of the view. By selecting a model element the context of
the expression can be set. Then any OCL expression can be evaluated on the object by
typing it into the lower half of the window. The result of the expression as well as the
expression will be displayed in the container above.

Approach Definition The approach to implement can now be composed using OCL.
For the additional String property it is necessary to alter the emfprofile Ecore metamodel.
In the class Extension there has to be one EAttribute of Type EString added, the Ecore
equivalent of a Java String. This additional property will hold the String for later
evaluation. The EAnnotation should be editable and the bounds should go from zero to
one. The code will automatically be generated upon reloading the genmodel file and then
selecting generate all. The constraints can then be saved to each Extension individually.

Now the only thing that is left, is the evaluation of the constraint at the time of application.
This should be implemented in the method isApplicable in the class Stereotype. No
metamodel changes are necessary for that, only an adaptation of the already existing

32

3.3. Runtime Behavior

Figure 3.1: OCL Console in Eclipse.

methods. There are four methods with the same name in the class Stereotype, each with
different parameters. The method to check the OCL constraint should be called within
those methods.

3.3 Runtime Behavior

In this section an approach to resolve the issue of missing runtime behavior for stereotypes
in EMF Profiles is proposed. This in turn should lead to an answer on the research
question “How can EMF Profiles be expanded to support the adaptation of runtime
behavior?”. Therefore possible technologies were researched and examined. The findings
of this task and the examination are documented in detail in the following subsection
called “Analysis of Approaches”. Based on the advantages and disadvantages of each
way over the others, one was selected and used to develop an approach definition as
documented in the second subsection.

As stated in the title this work pursues supporting the Models@Runtime concept in EMF
Profiles. As accurately stated by Fouquet et al. [FNM+12] “Models@Runtime aims at
taming the complexity of software dynamic adaptation by pushing further the idea of
reflection and considering the reflection layer as a first-class modeling space”. So the
focus of this field is on self adaptive systems, which can reflect on them-self, and react
dependent upon it. This field of study became popular not only in recent years and since
2006 has its own workshop, as part of the annual MoDELS conference. As one of the
main platforms for model driven engineering, or even the de-facto standard as stated by
many papers [FNM+12] [BGS+14], EMF is also an important tool for Models@Runtime

33

3. Methodology

environments. By extending EMF Profiles in a way to support the dynamic runtime
functionality mentioned in the introduction, it can contribute to this field within EMF.

To achieve Models@Runtime behavior using EMF Profiles the following additions are
necessary. Once a stereotype, which includes changed runtime behavior, is applied to
an object, the object should behave different according to the behavior defined in the
stereotype. These behaviors or additional operations that execute at runtime should
be overwritten. The crucial part is however that only those objects of a certain class
should behave different, which have a corresponding stereotype applied to them. Hence
the change will most likely interact at an objects’ runtime level not at class definition.
Furthermore the approach has to be lightweight as EMF Profiles is now, so no changes
to the models metamodel are to be made.

3.3.1 Analysis of Approaches

In this subsection each of the considered approaches are detailed. They were analyzed
whether or not they are suitable to be used for the runtime behavior. The analyzing
included gathering strengths and weaknesses or conditions, that proved the approach to be
unfit, if some arose. Then the ones, where breaking conditions were found, were discarded.
For the rest a trade off was performed to get a final selection. Four major concepts were
analyzed as documented below: inheritance, a few patterns and combination of patterns,
reflection and aspects. Finally there is also a short summary of the concepts, important
results and the selected technology, to start with defining an approach in the following
subsection.

Requirements A valid approach has to fulfill some criteria to be used as solution in
this matter. The frameworks and technologies in the next subsections were evaluated
according to whether or not the following requirements are fulfilled:

(1) The change of behavior has to be possible at runtime not just at design time.

(2) The change of behavior has to be possible on the object level not on class level. So
only an object with the corresponding stereotype should execute the new behavior,
but not others of the same class.

(3) An object can have multiple and eventually different stereotypes applied to it. The
approach therefore has to support multiple behavior changes on the same object.

(4) The approach also has to maintain the EMF Profiles property of being a lightweight
extension. Hence no modifications to the model, its class files or to code that
utilizes the model should be necessary.

Inheritance

The first way that came to my mind on how to solve the issue was the use of inheritance
[RH04]. The desired behavior is exactly what inheritance enables. Methods of the base

34

3.3. Runtime Behavior

class will be overwritten by the inheriting class. This way the same method can be called,
but on another object which executes different behavior.

Figure 3.2: Inheritance

Inheritance is one of the main features in object-oriented programming. Figure 3.2 depicts
the basic scheme of inheritance. Class A is the main class and one or more classes can
inherit methods and variables from it. In this case those are the classes B and C. It then
is again possible for another class to inherit from those classes B and C. In the figure,
this is class D. Such a behavior is called multi-level inheritance and is also allowed in
Java. The only thing that is not allowed in Java regarding inheritance is to inherit from
more than one class at once.

Although inheritance delivers the required functionality, in this special case it can not
be used, because the changing behavior is needed at runtime and not at design time.
The lightweight nature of stereotypes allows to add and remove them during runtime.
With inheritance however, the subtypes and therefore applicable classes must be defined
beforehand and cannot be changed afterwards. Also inheritance would apply for a whole
class and not, as required here, individually for each object. Because of this it is not
possible to rely, at least not purely, on inheritance as a solution. So to summarize,
inheritance does not comply to the requirements (1) and (2).

Patterns

Since plain inheritance was not useful, software design-patterns were tried next, to
overcome its deficiencies. The goal was to use or combine patterns, which can switch
methods dynamically at runtime and also do this on the object-level. To achieve this,
different patterns as documented in the next few paragraphs were analyzed. The patterns
that are analyzed here were all proposed by the so-called Gang of Four [JGVH95] and
hence are called GoF-patterns.

35

3. Methodology

Composite Pattern The composite pattern defines a part-whole relationship between
classes. For example a file system where there are files and folders. Each folder can then
again have files or folders in it, and is a composition of those. The actual files on the
other hand represent leafs. The pattern definition is depicted in Figure 3.3. Composite
patterns are used when the difference between compositions of objects and actual objects
does not matter.

Figure 3.3: Composite Pattern.

This is a valid feature for the approach, since it should not matter if the original method
is called or - in case a stereotype is applied - another method is called. The stereotypes
code must therefore be a composition of the original type to provide its method. The
call to a certain method would go to the abstract class Component. The actual object,
where the method is executed, would either be the original object, e. g. the leaf, or
a Composite object representing the stereotypes. In this Composite object multiple
stereotypes could be represented as children. Using this pattern, the differences between
actual implementation and its composition can be hidden. A call to a method would be
conducted identically, regardless if the original behavior or a stereotype behavior will be
executed.

While this pattern satisfies requirements (1), (2) and probably also (3), it would not
satisfy requirement (4). To be able to select the proper object, whose method should be
called, it is necessary to intercept the call or change the calling object. For the latter
option it would also be necessary to know all possible callers beforehand. Hence both
options are not viable and requirement (4) is not fulfilled.

Strategy Pattern The initial purpose of the strategy pattern is to switch underlying
algorithms, while always calling the same method. These algorithms can be any method
and do not have to be algorithms per se. The structure of the strategy pattern is given in
Figure 3.4. The interface IStrategy provides a method for a specific context. All actual
implementations of the method are designed towards the common interface, which makes
them completely interchangeable.

In this case the strategy pattern could be used to provide an interface for a behavior,
regardless if it is the original method or a method supplied by a stereotype. It would

36

3.3. Runtime Behavior

Figure 3.4: Strategy Pattern.

however also be necessary to intercept the call to the original method and redirect it
accordingly, which is not possible.

Decorator Pattern This next pattern decorates an existing class with additional
variables or methods. According to the Gang of Four it is a flexible way of using the
inheritance concept, and ideally what was the goal in this section to achieve with patterns.
The schematic concept of decorator patterns is depicted in Figure 3.5. It basically is
a combination of the last two examined patterns, the composite and strategy patterns.
Therefore it also combines their benefits, namely being able to use inheritance at runtime
and also, through the additional layer under the Decorator, switch method and hence
the actual code to be run.

Using these individual extensions, objects of a class can be decorated with additional
methods of stereotypes. The decorator object includes a pointer to the current component
reference. All underlying concrete methods are called through this pointer. To include
this decorator pattern and run these methods, however, again calls to the original method
have to be redirected.

Observer Pattern The observer pattern, as shown in Figure 3.6, offers a way to react
upon certain events. A notification method of the observer object will be called at specific
points within the code. The actual notification code that runs in these situations is
dependent on the concrete implementation, i.e. ConcreteObserverX. This way arbitrary
notification handlers can be invoked at points in the code, which would usually not be
accessible.

All the previous patterns revealed that a mechanism to intercept method calls to a model
object is necessary in order to achieve the desired behavior. This pattern may be a partial
solution to that problem. An event system using this pattern is already part of the EMF
framework. Each change event of a model object in EMF triggers a notification to inform
observers and listeners. Through this notification system it would be possible to react

37

3. Methodology

Figure 3.5: Decorator Pattern.

upon or maybe even intercept calls to a method. In these situations it would be possible
to run the new stereotype behavior, but most likely only in addition to the original code.
Hence this would mean that it is not possible to modify the original behavior.

Figure 3.6: Observer Pattern.

Further Patterns & Combinations After evaluating these design patterns it became
clear, that the issue of intercepting method calls cannot be resolved using patterns. So
the last two patterns that were selected through the search process, the visitor and proxy
pattern, were only analyzed rudimentary. Patterns are mostly designed to solve one
specific problem, but none of them was designed to solve the problem in this section. Also
combinations of the mentioned patterns were tried in order to receive a valid approach.

38

3.3. Runtime Behavior

The combination of patterns is a widely used way to solve design problems, as certain
problems often appear hand in hand.

Even combining patterns did not achieve the desired result. The focus in this task was
to use the in EMF already existing observer pattern in combination with other patterns,
since the observer pattern is an already existing feature, able to intercept a method call
and to serve as an entry point for additional behavior. But as explained before, using
patterns it is not possible to dynamically change behavior at runtime. In most cases
it would be necessary to alter the class or object, which executes the method call on
the model object. Therefore it would also be necessary to know all these calling objects
beforehand, which is impossible and also not feasible, as it would also mean the plugin
code has to be adapted each time other code in the IDE has changed. This setup is
immensely contradictory to the desired lightweight, dynamic and reusable approach.
Since none of these approaches seemed to overcome this main issue, different, more
sophisticated technologies were analyzed.

Reflection

The next analyzed approach was Java reflection [FF04], since patterns could not, even in
combination, overcome the issue of the unknown caller object. To solve this, an approach
that could intercept a method call and react upon it was needed. Using Java reflection,
methods can be called at runtime through variables. A call would therefore not be defined
at design time, but dynamically at runtime. A sample generic method call is listed in
Listing 3.2. It shows the retrieval of a method as an object, from another object, by
providing the methods’ name as String. With this method object it is then possible to
start various actions, such as invoking the method, as in line two of the sample.

1 Method method = eObject.getClass().getMethod("methodName", null);
2 method.invoke(eObject, null);

Listing 3.2: Reflection example in Java.

Java reflection offers a way for the program code to inspect and modify itself. More
precisely it can inspect interfaces, classes, methods and fields, and is also able to
instantiate, invoke or alter them. Java reflection can therefore change the behavior of a
class dynamically at runtime. Classes themselves can be loaded at runtime rather than
design time, and - using a custom classloader - also be reloaded. Due to these features
and possibilities it is therefore also a main framework in the field of Models@Runtime.
Java reflection is already included in the Eclipse Java framework, so no additional features
have to be installed.

Reflection: Drawbacks Next to these features there are also some drawbacks. The
official documentation1 at Oracle’s website lists the following drawbacks:

1Java Reflection documentation: https://docs.oracle.com/javase/tutorial/reflect/

39

https://docs.oracle.com/javase/tutorial/reflect/

3. Methodology

• Performance Overhead: Reflection tasks are quite resource intensive and will slow
down performance of a code section.

• Security Restrictions: Required runtime permissions may not be available to
reflection, depending on the security restrictions.

• Exposure of Internals: Reflection bypasses the standard Java accessing rules, defined
through the keywords private or protected, and may therefore result in unexpected
behavior.

For the EMF Profiles project, probably only the performance issue is relevant, while the
other two are a bit insignificant. Additionally to these technical deficiencies, there is also
another issue mentioned in [AGJ+11]. According to the statement, using Java reflection
is tricky for programmers and may even lead to a rise in unexpected software errors,
since the API does not provide a preview of the results of adaptations.

Reflection: Suitability In addition to these official drawbacks, there are also concrete
problems regarding the qualification as valid design approach in this section. While Java
reflection allows to react upon certain aspects of classes and objects through introspection,
it still cannot intercept a method call without changing the target class. There may be a
possibility to generically and automatically change these classes and add a check routine
to them, whether or not a certain stereotype is applied. This way the changes would be
object-specific, while no manual and permanent class changes are necessary. Hence this
would still be a proper design approach for this thesis.

Proxy Next to plain Java reflection, another component of the framework was analyzed
regarding this matter. The so-called Proxy class (java.lang.reflect.Proxy), based on design
principles of the Proxy pattern, can be used to create instances at runtime that are
implementing an interface. These instances can also implement multiple interfaces. This
would enable the use of proxies to implement the behavior of multiple stereotypes.

Three parts are necessary to create a new proxy instance 2:

• A classloader designed to load the specified proxy class.

• One or more interfaces, which will be implemented by the dynamic class.

• An invocation handler, which receives all method calls to the class and decides
upon its internal logic what to do with them, e.g. invoke another method.

All dynamic proxy classes and their instances implement the Proxy class. Through the
invocation handler all incoming method calls can be intercepted and a defined action be

2Oracle documentation on the Proxy class:
https://docs.oracle.com/javase/8/docs/api/java/lang/reflect/Proxy.html

40

https://docs.oracle.com/javase/8/docs/api/java/lang/reflect/Proxy.html

3.3. Runtime Behavior

taken. This would be ideal for the EMF Profiles extension, but would also mean that the
class of an object, decorated with a stereotype application, has to implement the proxy
interface.

Spring & CGLIB The final approach which was evaluated in the area of reflection,
was using the Spring framework together with the CGLIB library3. The former is a
Java-based framework - and therefore usable in Eclipse - to aid software development.
The latter is a software library for Java byte code generation and manipulation included
in the Spring framework. The combination of these two frameworks also allows method
interception in Java.

Through the Enhancer4 class dynamic subclasses can be created. This feature is more
powerful than the Proxy mechanism described before, since it also allows subclasses to
extend other classes and also provides hooks for individual implementations to intercept
methods. The interface MethodInterceptor5 is one of these implementations, already
provided by the framework.

With these technologies it would be possible to intercept method calls to a class and
run a check regarding the stereotype applications. Dependent on the applications other
methods could be invoked, such as the ones provided by those stereotypes. This approach
would therefore achieve all four requirements in this section.

Aspects

The final approach considered in this section, was to use aspects in the sense of aspect-
oriented programming (AOP). This subsection describes the fourth and only successful
approach to dynamically alter the behavior of models based on the applied stereotypes.
The first part contains an overview of and introduction into aspect-oriented programming.
Therein the basic concept of aspects is presented and how they collaborate with common
object-oriented programming. After that the concrete Java implementation called AspectJ
as well as a few examples are shown, to provide insight of the possibilities that aspects
provide.

Aspect Oriented Programming In contrary to the first impression, due to the name
similarity to object oriented programming, it is not an independent new programming
concept rather an addition to it. Aspect-oriented programming was designed as solution
to so-called cross cutting concerns. The paper Aspect-oriented programming by Kizcales
et al. [KLM+97] thoroughly describes the problem of cross-cutting concerns. According
to the paper there are often implementations that cannot efficiently be captured with
object-oriented methods and end up scattered throughout the code. This leads to code

3CGLIB project website: https://github.com/cglib/cglib
4API documentation for the Enhancer class:

http://cglib.sourceforge.net/apidocs/net/sf/cglib/Enhancer.html
5API documentation for the MethodInterceptor interface:

http://cglib.sourceforge.net/apidocs/net/sf/cglib/MethodInterceptor.html

41

https://github.com/cglib/cglib
http://cglib.sourceforge.net/apidocs/net/sf/cglib/Enhancer.html
http://cglib.sourceforge.net/apidocs/net/sf/cglib/MethodInterceptor.html

3. Methodology

tangling, which renders the code less readable and intuitive and is therefore difficult
for development and maintenance of a software. Also the design principle separation of
concerns [HL95] is then not adhered any more.

All these problems arise when a concern has to interact with multiple classes. Probably
the best example to show such behavior is logging. The call to a logger has to be made
in multiple different classes. One way is to log every exception, so in every catch block
there has to be a method call to the logger. These method calls however do not have
anything to do with the rest of the class in terms of semantics, and should therefore be in
a separate class. Changing or removing those lines is a tedious work. Also, if the logging
is only for testing purposes and has to be removed in the production code, the severity
of this problem becomes even more apparent.

Aspects can separate these concerns from each other by handling cross-cutting concerns
secondary. The aspects content could be to call the logging method each time a method
throws an exception, except within the logging class. The actual aspect-oriented changes
happen at build time. First the object-oriented classes will be built, just as usual. Then
the aspects contents are weaved into the class files as defined. The resulting files are
again class files, the aspect-weaver only changes the original class files according to its
advices and modifications specified in the aspects.

Using this concept can greatly increase clarity over a software project. It eases maintenance
since concerns are separated to modular points in the code. This produces clean code and
follows the separation of concerns principle [SSR+05], thus increasing the codes’ value.

Using aspects is also a way to overcome an issue that can arise when using subtype
polymorphism, namely the circle-ellipse problem or also called square-rectangle problem6.
They are a textbook example of where object-oriented programming reaches its limitations.
The core of these problems is that it is not always possible to define one class as complete
subtype of another class. For example a circle is a special kind of ellipse, which has the
same values for its x- and y-axes. It therefore should be a subtype of ellipse, but for
that it has to inherit all methods of ellipse. This also includes changing the length of
the axes independently from each other, which should not be possible for a circle as it
would not be a circle anymore. The change of this method to for example also change
the other axis to the same length would, however, not be the expected behavior of an
ellipse anymore. In Java only this approach to inherit classes is possible. Using aspects
with inter-type declarations this problem can be solved.

Due to the flexibility of aspects and their capabilities to alter already existing class
files and change their runtime behavior, AOP is often used for Models@Runtime related
development. This becomes apparent when looking through the published papers of a
Models@Runtime workshop.

6Circle-ellipse problem on Wikipedia:
https://en.wikipedia.org/wiki/Circle-ellipse_problem

42

https://en.wikipedia.org/wiki/Circle-ellipse_problem

3.3. Runtime Behavior

How does it work? Throughout the runtime of a program, there are occurring many
so-called join points. These can be the call of a method or its execution, but also an
exception that has been thrown and many more. Using aspect-oriented programming
these join points can be selected, and reacted upon. When the program reaches this
point a piece of code can then be executed, which is defined by the aspect. At the time
execution every variable that is available at this point is also available to the piece of
code provided by the aspect.

There are three important components to a working aspect:

• Aspect: An aspect is comparable to a class in Java. It serves as a container within
a package for advices and pointcuts.

• Pointcut: A pointcut is a selection of one or multiple join point events within the
runtime. Join points can be for example method calls or their actual execution.

• Advice: Advice is the actual code to run, it is comparable with a method in Java.
By connecting it to a pointcut it can execute at those, by the pointcut specified,
points in the runtime.

To define a pointcut also a position is necessary. This further specifies the time of
executing the advice in the context of the selected join point. Three positions for that
are possible to choose from. Their different behavior is explained below:

• Before: Using this position the advice will run before the selected pointcut, for
example before a method is executed.

• Around: This position lets the advices run instead of the join point. Using it is
the only way for an advice to specify a return value. It therefore needs a return
type notation prior to the position in the pointcut.

• After: Similar, but opposite, to the before operator, this position indicates that
the advice will run after the pointcut.

AspectJ So far aspect-oriented programming was explained in general, this was the
theoretical basic concept. Now the concrete Java implementation called AspectJ7 is further
described. The complete AspectJ developers guide is available within the documentation
section of the project site8, it thoroughly explains every part of the AspectJ usage and
architecture. The basic parts of the language are recapped as follows.

To be able to provide all these aspect-oriented features AspectJ has to reach deep into
how the classes are compiled. This is not possible without having full control over the

7AspectJ project website: http://www.eclipse.org/aspectj/
8AspectJ programming-guide:

https://eclipse.org/aspectj/doc/released/progguide/index.html

43

http://www.eclipse.org/aspectj/
https://eclipse.org/aspectj/doc/released/progguide/index.html

3. Methodology

compilation process. Therefore the original Java compiler has to be replaced by the
AspectJ compiler, also called ajc in short. It is completely based on the Java compiler,
but has the necessary additions to handle aspects as well. So a Java file will be compiled
entirely equal by both compilers, provided no aspects are configured to weave it.

AspectJ supports the following times, where the weaving-process of aspects into the class
files can happen:

• Compile-time weaving: This is the most common approach to weave classes. For it
to work the source code has to be available. Right at compiling, these files will be
processed by the AspectJ-compiler, just as they would be by the Java compiler but
with the additional inputs by the woven aspects. For certain features of aspects
only this weaving-variant can be chosen. For example if features are added to a
class that are also used by another class.

• Post-compile weaving: If the classes are already compiled into class files or jar files
post-compile weaving is used.

• Load-time weaving: This is the same approach as post-compile weaving. The only
difference is that the weaving process of a class is deferred until before it is defined
to the Java virtual machine (JVM). It therefore needs to intercept the class loading
process.

Another form of weaving is runtime weaving. According to the documentation it is not
supported by AspectJ, but there are certain coding patterns to achieve this behavior. In
runtime weaving classes are woven dynamically at runtime, while already being defined
to the JVM. This means a class may behave as it was defined in its source code, but then
the advice may be woven into it, changing its behavior. This behavior may very well be
exactly what is needed for the problem stated in this section. As already mentioned it is
not supported by AspectJ, but there are patterns to achieve it anyway.

1 @Before("call(* org.modelversioning.emfprofile..*(..)) && this(stt)")
2 public void applyStereotype(Stereotype stt) {
3 System.out.println("Applied Stereotype: " + stt);
4 }

Listing 3.3: Example AspectJ Annotation.

AspectJ Annotations To be able to define these functionalities, AspectJ introduces
new syntax to Java. The pointcuts and advices explained above, have to be declared
somewhere and connected to the methods or classes they relate to. For that AspectJ
started using additional Java annotations to declare pointcuts and the likes within Java
classes. Using the @-operator annotations of classes, variables and methods can be
defined, such as @Aspect to define a class as aspect or @After to define the position
of an advice. An example code of this usage is displayed in Listing 3.3, which shows a
method that is advised by a call-pointcut with the position before. Whenever a method

44

3.3. Runtime Behavior

within the class Stereotype is called, a message is written to the console before the call is
executed.

AspectJ Files This approach is still possible, but outdated. The newer approach is to
use separate aspect files, which include the necessary information. This way the original
classes are not polluted even more with additional code, hence cleaning out the code and
honoring the separation of concerns principle. AspectJ files end with the file extension
.aj. They are structured just like Java classes with a few modifications. The imports of
other packages and classes at the top are the same. Then the actual aspect definition
follows, which is similar to the class definiton of a Java class except for the keyword
aspect rather than class.

Within the content of these aspects pointcuts, advices and inter-type declarations can be
defined. Pointcuts and advices can either be defined as separate or combined statements,
the former is used to allow the reuse of the statements for other combinations. These two
are the dynamical parts of an aspect, as they react upon the runtime for their activation.
Inter-type declarations on the other hand, are static. They modify the structure of a
class by adding or altering variables, creating an inheritance relationship to another class
or let the class implement an interface.

Perhaps the most important and most used join points are those related to methods.
Especially the call and execution pointcuts are very useful. There are a few differences
to consider:

• The pointcut call intercepts a method call to run an advice and offers all included
parameters.

• Quite similar the execution pointcut is triggered at the actual execution of the
called method.

• Since they are active at different times in the runtime, they also have different
access to variables.

• Furthermore additional pointcuts, such as within, behave differently when they are
combined in the same pointcut statement with call or execution.

• When using call join points, only direct calls to the method on the object are
registered. If however the method would be called through a superclass, the join
point would not act upon it.

The examples in Listing 3.4 show code snippets for the two pointcuts. First a call pointcut
named notify is declared. It has catches every call to the isApplicable method, which
returns a boolean value and is part of Stereotype. The stereotype object it is called upon
is also retrieved as parameter. Defining it this way using an identifier, it can later be
used and combined with others, thus serving as a reference.

45

3. Methodology

Next, the execution pointcut named addCheck is created. It is activated each time a
method named isApplicable, which has a boolean return type and Object parameter,
is executed. This time it is not fixed on objects of the class Stereotype. Also through
using execution instead of call, each time this method executes is captured. Even if the
call was made to a supertype of the object. Finally a piece of advice is combined using
the before position operator and the beforehand declared notify pointcut. So before the,
by notify, captured call to the method is made, a console message will be created using
the stereotype object retrieved through the parameters. Altering the stereotypes’ or
objects’ attributes at this time would be able to change the outcome of the subsequent
applicability check, as this happens before the method starts to execute.

1 // Call
2 pointcut notify(Stereotype s): target(s) && call(boolean isApplicable(Object));
3
4 // Execution
5 pointcut addCheck(): execution(boolean isApplicable(Object));
6
7 // Advice
8 before(Stereotype s) notify(s) {
9 System.out.println("Check on applicability: " + s.getName());
10 }

Listing 3.4: Example AspectJ Pointcut.

There are also plenty of other pointcuts, for example handler(SomeException) to catch
the execution of an exception or cflow(call(..)) to restrict the valid pointcuts to those
which are in the control flow of the inner pointcut. None of these however seem to be
relevant to a solution of the problem at hand.

Feasibility towards Solution Using aspects for the approach seems very promising.
By using these code fragments within the plugins, they could bring their own runtime
functionality with them, altering the runtime behavior dynamically. A new technology
would be brought into the project, which is not desirable because of the goal to keep the
project lean. But the benefits seem promising and aspects are already widely used within
the Models@Runtime development.

To use AspectJ within Eclipse it is necessary to install the AspectJ Development Tools
(AJDT) sub-project of Eclipse. It provides the AspectJ functionality for the Eclipse
platform. This includes conducting setup tasks to effectively use aspects, such as setting
the AspectJ compiler instead of the Java compiler [CC05].

Summary

This concludes the analysis part of this section, which will now be quickly summarized.
The main difficulties these analyzed approaches had to overcome, were as follows:

• The behavior has to be modified for an object and not for the whole class.

46

3.3. Runtime Behavior

• This behavior should also only run instead of the original in case a certain stereotype
is applied to it. Thus the original behavior also has to be preserved.

• The class itself cannot be altered at design time.

• Classes which call the method are not known, nor can they be modified.

The first approach that was looked into, was inheritance. This approach however can not
be used to solve the problem at hand, because of the static definitions at design time,
which cannot be altered at runtime. To work around this problem the use of patterns
alone and in combination was tried. Again none of the analyzed patterns lead to a
solution. They solved the mentioned problem, but since the calling object is not known
beforehand and the stereotyped object can also not be altered, these approaches did not
provide the required functionality.

The only approaches able to intercept a method call have to have some kind of reflective
capabilities. So next, Java reflection was tested to solve the issue. This powerful
technology can inspect parts of the program at runtime and also modify it to a certain
degree. Classes can be modified so method calls to its objects can be intercepted. This
is, however, not trivial. In this area also dynamic proxies and the CGLIB library were
evaluated. Both these concepts allow to intercept method calls and run custom code
instead. With dynamic proxies, the class has to implement an interface before methods
to it can be intercepted. This is not necessary using the CGLIB.

Finally aspect-oriented programming was analyzed, specifically AspectJ. It is able to
intercept method calls and also insert code fragments into existing classes. The code to
intercept and alter methods and classes can be completely separated from the remaining
source code, thus offering a clean and compact solution. In the end AspectJ was used
for the approach design, which is documented in the next subsection. This way less
code generation and no class reloading is necessary. Furthermore the runtime feature is
cleaner separated from other concerns. Lastly AspectJ is not solely available for Eclipse
and can therefore be independently used in other frameworks. This is beneficial to the
resulting approach defined in this thesis, which should serve as generic solution to similar
problems, regardless of their domains.

3.3.2 Approach Definition

This last part contains the actual approach definition for the implementation process
into the EMF Profiles project. There are a few separate parts to this approach which are
denoted by their own paragraph.

There are three possible options on how to implement the aspects.

• There could be another core EMF Profiles plugin which manages all aspects.
This way no projects have to be reconfigured to support the AspectJ nature and
dependencies. The downside of this approach, is that the plugin then holds all

47

3. Methodology

aspects of profiles that are developed on that platform. So without manually
changing the plugin they can only be distributed together. This however is in
contrast to the intended clean, modular and lightweight decoration of existing
models.

• The next option is to create a separate aspect project for each profile. This new
project will be created with Java and AspectJ natures and the corresponding
dependencies and configurations. Thereby each profile has its own aspect project,
which would correspond to the modularisation and eliminate the deficit of the core
plugin option. Also the original profile plugin project does not have to be modified.
This approach would however produce two plugins for just one profile, which is also
not feasible as it is good practice to have strong encapsulation.

• The third and last approach, which was chosen to be used out of the three, creates
the aspect within the profile project. The project itself has to be adapted to support
Java and AspectJ, For that it needs to have a binary and source folder, dependencies
to the Java and AspectJ runtime as well as a META-INF configuration file. In this
option the aspect is encapsulated with its project. It is also possible to have multiple
profiles with aspects within the same project, since this is on the development
agenda of the EMF Profiles project.

When a developer creates a profile, there has to be a possibility to attach runtime code
to a stereotype as well as a method which should be overwritten. Each profile plugin
should then also contain an aspect file to be able to change the behavior of a class. In
this aspect file the beforehand attached code should be included and run instead of the
selected method. Finally there is also a check needed within the aspect, so the new code
only runs if the corresponding stereotype is applied to the object. For this to work, there
also has to be some kind of identification to a stereotype. The following main parts that
are needed to this end were identified:

Plugin The current EMF Profiles project does not use aspects, also EMF itself is
not shipped with any aspect capabilities. So to process aspect features an additional
plugin is needed. AspectJ Development Tools (AJDT) provide the Eclipse platform
specific tool support for AspectJ. AJDT is an Eclipse bundle and has its own Eclipse
project page [Asp]. Since it is specifically designed for Eclipse, it already provides
commonly used features in an easy manner. For example there is a button in the context
menu to automatically convert the project to an AspectJ project. This method is also
available programmatically through an API. After installation and configuration the
plugin automatically handles the aspect weaving and also provides context highlighting
for the aj source files.

Operation Tool For the graphical editor, where profiles can be created, an additional
Operation element needs to be created in the GMF tool section. This includes the GMF
changes, graphics and underlying semantics, as well as a new class in the metamodel.

48

3.3. Runtime Behavior

The class Operation should handle the needed properties that are the new Java code, a
position (f.e. around) and a selection of methods to choose from. All this should be a
subcomponent of stereotype in the editor, so the operation class has to be referenced in
the stereotype class.

Aspect Generator After the definition of the profile is finished, a new aspect has to
be generated. The generation process for the aspect should run each time the profile is
edited and saved. The first generation also has to set up the profile for the use of aspects.
Since previous profiles do not have the proper natures, dependencies and configurations,
this is a necessary step. Two additional project natures have to be added, the Java
nature and the AspectJ nature. Both these natures also require some dependencies and
configuration. Current profile projects solely rely on the plugin.xml for configurations and
do not have a META-INF. Without this configuration file, however, aspects cannot work.
Furthermore the newly created files and folders all have to be included into the build file,
so a standard export procedure will create a working plugin with aspect features.

The AspectJ plugin has to have a notation in its META-INF configuration file, into which
other bundles it should be weaved. If the operator call would be used in the generated
aspects, every caller class would have to be known. This is not possible. Therefore only
the operator execution is a viable choice. Then only the class itself has to be known, as
every call to it will eventually end up in an execution of the method within the class.
The class that is to be weaved is the extended class in the profile editor. Its method
is selected by the developer as joinpoint of the operation in the stereotypes properties
view. The rest of the aspects content are the body of the advice and the position for the
pointcut, both are again properties of the operation and easy to retrieve.

Callback Routine The content of the generated aspect files needs to include a callback
mechanism to check whether or not a specific stereotype is applied to the current model
object. Since each profile plugin is a part of it own, this task is not so straight forward.
The plugin cannot interfere with method calls to the model class defined in its aspect, if for
example EMF Profiles is not even used. Yet it still has to check every method-execution
if a stereotype is applied. Stereotypes alone do not have a unique identifier. Also after
compilation there is no connection between the aspect code and the profile itself, let alone
the stereotype the code came from. Thus an UID, consisting of the unique namespace
identifier plus the stereotypes name, was proposed to be used. The stereotype name is
unique within the profile and the profiles namespace is per definition also unique. With
this unique stereotype identifier it is possible to compare stereotypes from a plugin with
those in the registry. A simple check routine as method of the profile application registry
singleton is sufficient.

All put together In the end the profile developer saves the source code for the new
behavior into the stereotype definition. After saving it the project is automatically
reconfigured and generates the aspect. The developer can then, as usual, export the
project as plugin and use it in any Eclipse instance with AspectJ enabled. In a model

49

3. Methodology

with an object of the class that is extended through the stereotype, the stereotype can
be applied, provided all other restrictions are met. Once applied, the new behavior will
execute if the joinpoint-method is called on the object. Each other object of the same
class in the model will still execute the original method once called.

50

CHAPTER 4
Realization

The following sections document the implementation of the approaches for both the con-
straint problem and the runtime problem. Therefore the concepts, frameworks, languages
and the likes defined in the last chapter were used to extend the EMF Profiles project.
The end-result of this section should be a working prototype of EMF Profiles, including
the newly developed extensions to allow runtime behavior and additional constraints.
The evaluation of this implementation is conducted in chapter five - Evaluation, where
the prototype was used in a case study to acquire metrics for comparability.

The First section covers preconditions that are necessary for the next parts to properly
work, such as required plugins. In the second section documents the process of imple-
menting the constraint support. After that, in the third section, the implementation of
the runtime behavior for stereotypes is documented. The hereby documented implemen-
tation process should allow skilled developers to recreate the prototype and achieve the
same result. Therefore important code snippets are described in detail with all their
connections and purpose. Furthermore each of the two implemented features are detailed
within their own section, to also allow the independent implementation of just one of
them.

4.1 Preconditions
This section explains all necessary preconditions to run EMF Profiles in the same state,
that was used for this thesis to start. All used versions and requirements are listed as
well. This again should allow to recreate the extensions on the same base as used here.

The first and main precondition is the Eclipse Framework. It requires a recent Java SDK
to be installed on the system. Eclipse has multiple different packages to download from
its website. Each of these packages is just the core Eclipse framework with a bundle
of plugins pre-installed to fit a certain area of application. EMF Profiles requires the

51

4. Realization

Eclipse Modeling Tools package. For this thesis the version Neon.1 was used. This
package already includes the most important plugins for Java, Ecore, code generators and
transformation. Required plugins which are not in the package, but probably existent
on an instance that is already used for modeling, are Xtext (including Xtend), GMF
Tooling and OCL in Ecore.

After that all essential frameworks and plugins are installed. So the next part is to
import the actual EMF Profiles project from its GitHub project page [EMFa]. There are
a few options on how to get the project. To checkout the project with Git or SVN use
the link provided on the page. It is also possible to just download the whole package
as ZIP file and import it into Eclipse. The important thing to remember is to use the
master branch and not develop. The latter is for development purposes and includes not
yet finished or untested code. At this point EMF Profiles should work and it is best to
create a profile and try it out first to ensure everything is working correct until here.

The best way to this is to use another EMF instance. EMF Profiles is already shipped
with the necessary feature and plugin declarations for a working update-site. In the first
instance open the project updatesite and select the site.xml. Then select build all to
create the contents for the update-site. Once the build process is finished you can use
this update-site in the second EMF instance to install EMF Profiles. After a restart
of the second instance it should be possible to create a new EMF Profiles project in
the workspace. In this development workbench a profile and the model code have to be
created. The latter provides the model from which later a concrete model will be created
in the runtime workbench. Within this concrete model, the model object can then be
extended by EMF Profiles. The model itself can either be installed into the development
workbench as plugin or reside as project in the workspace. When the definition of a
profile is finished and the model is available the runtime workbench can be started. This
is done by right-clicking a project and select Run As / Eclipse Application.

Within the runtime workbench, check whether the two property views work correctly.
Those are the Registered EMF Profiles and EMF Profile Applications views. If none
of them throw an error the Registered EMF Profiles view should show the beforehand
created profile. After this the concrete model can be created and opened in a reflective
or GMF-based editor, such as the Sample Reflective Ecore Model Editor. In the EMF
Profile Applications view using the Apply Profile button, a new profile application can
be created. From there on the stereotypes can be applied to model objects they were
designed for. If the application works and is also shown in the view afterwards, the test
was successful.

4.2 Constraints
In this section the EMF Profiles framework will be extended by an additional evaluation
system for OCL constraints. This prototype will be implemented according to the
approach definition and consists of two subsections. Each documenting one of the two
tasks planned in the conception. The first will describe the changes to the metamodel,

52

4.2. Constraints

while the second one will describe the integration of OCL and the implementation of the
checking-method. The main feature of this section is to provide a possibility to declare
OCL constraints for each extension of a stereotype. The application of a stereotype to
an object is then only possible if the declared constraint is valid. Therefore enabling an
additional option to restrict the stereotype application and consequently reducing the
amount of faulty models.

4.2.1 Metamodel Changes

As a first step the metamodel has to be adapted, because the class Extension needs another
String property to store the constraints. These changes have to be made in the core emf-
profiles ecore metamodel, not the second metamodel which is called emfprofileapplication.
In the Extension class a new child EAnnotation was created. The name for this EAnnota-
tion is constraints and can be edited in the properties view. Its EType property has to be
changed to EString with the URI http://www.eclipse.org/emf/2002/Ecore#//EString,
not the local referenced one starting with the /resource/ identifier. Other important
properties are the lower and upper bound of the attrbite which have to be set to 0 and 1
respectively. To modify the attribute later in the editor, the property changeable has to
be set to true. From here on all crucial properties are set and the ecore file can be saved.

Since the ecore file has been changed the genmodel file needs to be reloaded. This can be
done by right-clicking the file in the workspace and selecting Reload. In the genmodel
file the option Property Multi-line was also changed to true, to enable a bigger text field
for entering the constraints. These OCL strings can get long, and within a single line
property this would lead to confusion. After this change the projects can be regenerated
by right-clicking the EMFProfile package and selecting Generate All. This concludes the
metamodel changes, the only thing that is left is the evaluation of those Strings at the
time of application.

4.2.2 Constraint Evaluation

To be able to include an additional check into the application procedure, where and how
the current evaluation takes place had to be searched first. The initial entry point to
apply a new Stereotype is the Apply Stereotype menu item in the right-click menu of a
model object. The purpose of this menu item is to open a dialog window, showing all
applicable stereotypes based on found profiles in the profile registry. A developer can
then select one of the stereotypes and apply it to the object. The application registry
will then be updated. It triggers a command which is specified in the plugin.xml of the
two editor-specific projects for GMF-based and reflective-based editors. Each of them is
only responsible for its kind of editor, hence there are two commands. The commands
delegate the action to a command handler class named ApplyStereotypeHandler. These
registered handlers differ regarding to the specifics of the editor, but within their logic
they both call the same method to further process the command.

53

4. Realization

For that the handlers call the method applyStereotype of the singleton instance of
ActiveEditorObserver. The function of this class is, according to the Javadoc written by
its author, to manage the mapping of opened editors to the generated id for an opened
model in the editor. The method searches through the registry to retrieve all applicable
stereotypes for the model object and starts the dialog window with these results, using
the method ApplyStereotypeOnEObjectDialog.openApplyStereotypeDialog.

Once an applicable stereotype has been selected out of the list and confirmed using
the OK button, the method applyStereotype of class ProfileApplicationDecorator will
be executed. This methods only purpose is to call the appropriate method within the
ProfileFacade, a class created according to the facade design pattern [GHJV95]. Thus
the ProfileFacade serves as limited interface for profile management, which also includes
access on each stereotype within a loaded profile. Through three convenience methods
named apply and isApplicable, finally the actual isApplicable method on the stereotype
is called. If this boolean method returns true the facade will apply the stereotype by
creating a new stereotypeApplication and setting its extension and appliedTo attributes.

The content of this method is as follows:
1 return isApplicable(eObject)
2 && getApplicableExtensions(eObject, appliedExtensions)
3 .contains(extension);

The first line consists of checks, whether or not the stereotype is a metabase or abstract
and if there are any extensions on the stereotype, that fit the class of the object. The rest
of the statement retrieves a list of all applicable extensions, which still have remaining
applications left based on their upper bound and the already existing applications, and
checks if it contains the supplied extension. Here the constraint check is just an additional
method that needs to return true, so the following line had to be added:

1 && checkOCLConstraint(eObject, extension);

Within the new checking method the OCL in Ecore environment needs to be initiated
and the String constraint converted to an OCL invariant. Since the constraint is only
a part of an OCL invariant, the other part, namely the context, has to be set. The
extension itself is just a feature of EMF Profiles and most likely will not be the target of
the constraint. So it would make the most sense to take the applicant object as default
context. This way each constraint does not have to navigate to the object first in order
to use the constraint, that may even already be created in this context beforehand for
other purposes. The resulting source code can be seen here:

1 private boolean checkOCLConstraint(EObject eObject, Extension extension) {
2 if(extension.getConstraints().isEmpty()) {
3 return true;
4 }
5 Constraint invariant = null;
6 OCL ocl = OCL.newInstance();
7 Helper helper = ocl.createOCLHelper();
8 helper.setInstanceContext(eObject);
9 try {

54

4.3. Runtime Behavior

10 invariant = helper.createInvariant(extension.getConstraints());
11 } catch (ParserException e) {
12 // No valid Constraint
13 return false;
14 }
15 if(invariant == null){
16 // No valid Constraint
17 return false;
18 }
19 Query invariantQuery = ocl.createQuery(invariant);
20 return invariantQuery.check(eObject);
21 }

Listing 4.1: Method to evaluate the OCL expression.

The used classes for the evaluation, Constraint, OCL, Helper and Query, are all part of the
package org.eclipse.ocl.ecore. It is crucial to use those classes and not their correspondent
counterparts within the org.eclipse.ocl parent package, since these do not provide the
necessary features to handle Ecore models. OCLHelper provides convenience methods for
building queries. With its method setInstanceContext the context of the expression will
be set, by using the class type of the supplied object. Next, the method createInvariant
will create the whole invariant statement for the beforehand set context, adding the inv
operator and the actual constraint using the supplied String parameter. This invariant
can finally be queried and evaluated.

To quickly test the implementation, a small library example was used. A stereotype
EBook can be applied to objects of class Book, but only for a specific title. Therefore
the simple constraint title = ’something’ is enough. The stereotype could not be applied
unless the title was ’something’.

4.3 Runtime Behavior
In this section the implementation of the second approach regarding the runtime behavior
for stereotypes will be documented. The implementation follows the formal approach
defined in chapter 3 section 3 and additionally documents the more specific decisions
taken in the process as well as important code fragments. The section is furthermore
divided into four subsections, each regarding a separate part of the implementation
process. The first subsection covers the necessary metamodel changes. The second one
covers the changes that were made to the graphical editor in which the profiles are created.
The third subsection includes the main component towards runtime behavior, the aspect
file generator. Finally a conclusion of the implementation completes the section.

4.3.1 Metamodel Changes

To store additional information about the aspects and the method body, a few changes
are to be made in the metamodels. These changes have to be done in the emfpro-
file.ecore file mainly, but also in emfprofileapplication.ecore. Both of them are within the
org.modelversioning.emfprofile package, just as for the constraint implementation. First a

55

4. Realization

new class called Operation has to be created to hold the method body String, the selected
joinpoint and the position of the advice. The position itself is an enumerator holding one
of three possible values, thus the EEnum Position has to be created beforehand. Then
the operations have to be referenced within the assigned Stereotype class. Finally an
additional operation has to be created within ProfileApplication to retrieve stereotype
applications. These changes assure all required data can be saved within a profile. The
use of this data to change the behavior of models will be described in later subsections.

Position Referencing a position for the advice needs an enumerator class. Within ecore
models this class type is called EEnum. The count of literals it contains is fixed to only
three options: Before, Around and After. Each of those EEnum Literal also contains a
numeric id to identify them. I ordered them by the time they come into effect, regarding
the execution of a method as joinpoint: Starting with Before as 0, then Around with 1
and After with 2.

Operation The main part of the necessary changes is the new class Operation. It
holds all the relevant information for one method, that should be executed. This includes
the new method body that should be executed, the original method it should be executed
instead and the aspect position. Since all these data relate to each other, it makes sense
to encapsulate them within their own class rather than including them in the Stereotype
class. Starting with the modifications I first created a new EClass named Operation, which
inherits from EOperation, the Ecore type representing a method. This way Operation
inherits already implemented features to represent a method, like parameter or exception
handling. Not within those properties is however a way to specifiy the methods body.
Therefore an EAttribute child has to be created. I named it body and selected EString
as its type. This lets the Operation keep the source code that should later be executed
serialized as a String.

The next attribute to create is the position as to where the advice should run relative to
the pointcut. For this I choose an EAttribute named position and used my beforehand
created enumerator Postition as type, so the developer can then select one of the three
predetermined values. EAttributes let you choose a default value, this is the value that
is used if no other value is entered in the properties view. For position I chose the
Around literal as default, because, compared to After and Before, it seems to be the most
desirable as it simply replaces the original method. Furthermore it is the only option to
specify a return value. The final addition to the class Operation is the EReference named
joinpoint. Its purpose is to save a reference to the original method, which should be the
joinpoint serving as pointcut. The references type is set to EOperation, thus allowing
the selection of any method that is defined within the metamodel of another class. The
lower and upper bounds of each of these three child elements are 0 and 1 respectively.
According to common naming conventions the class names were chosen to start with a
capital letter, their child elements names start with a lower case letter.

56

4.3. Runtime Behavior

Stereotype The last changes to the metamodel are within the existing Stereotype class.
To retrieve the operations and reference them to the stereotypes, two EOperations have
to be created. The first one is to retrieve all specified Operations of the stereotype, hence
I named it getOperations and set its bounds from 0 to -1. No parameters are necessary
for this operation as it does not further filter the returned operations. The second
EOperation is used to return a specific Operation by its name. I called it getOperation
and set its bound from 0 to 1. Furthermore I created a parameter of type EString as
child, which will represent the name of the desired Operation. Both of these EOperations
of course have Operation set as their return type.

Profile Application The only changes to the second ecore file, the emfprofileappli-
cation.ecore, are within the class ProfileApplication. Here an additional operation is
needed to retrieve stereotype applications for the aspect code as described later. The
EOperation is named getStereotypeApplication and has two parameters. One of type
EObject named eObject, and one of type EString named stereotypeId. The first one
represents the object that the stereotype has been applied to, and the second represents
the applications stereotype. As return type I selected StereotypeApplication and set the
upper bound to 1.

Generation & Adaptation After all these changes were made to the ecore metamod-
els, the model files can be regenerated. This is done by reloading the ecore file into the
genmodel file and generating all source code, through the right-click menu on the package
(e.g. EMFProfile). Prior to the generation a small configuration to the emfprofile genera-
tor model has to be made. The body attribute in Operation should have its multi-line
property set to true. This enables a separate editor window with multiple lines to edit the
attributes String-value later in the profile editors property view. After this change the
code can be generated. The two new methods within the Stereotype class were generated
only as husks, since no information on the content was provided to the generator. These
two have to be implemented manually, so the first action to take in the implementing class
StereotypeImpl within the package org.modelversioning.emfprofile.impl, is to add a NOT
after the @generated annotations to save them from being overwritten. Their purpose is,
as stated above, to retrieve all Operations or respectively one specific Operation from a
stereotype. The source code to achieve this is quite simple, as depicted in the following
code fragment in Listing 4.2. The second method just uses this method and filters the
names according to the supplied String parameter.

1 public EList<Operation> getOperations() {
2 EList<Operation> operations = new BasicEList<Operation>();
3 for(EOperation eoperation : getEOperations()){
4 if(eoperation instanceof Operation){
5 operations.add((Operation)eoperation);
6 }
7 }
8 return operations;
9 }

Listing 4.2: Manually created method getOperations within StereotypeImpl class.

57

4. Realization

4.3.2 GMF Editor

Profiles and stereotypes in EMF Profiles are defined through a graphical editor, more
specifically a GMF-generated editor. There are two main features to the GMF editor,
the design area and the tool palette, which provides the elements to be placed on the
design area. The palette of the editor currently includes Stereotypes, Tagged Values
and Extensions in the EMF Profiles group, and additionally the full Ecore features in
a separate group, such as EClass or Attributes. For the definition of operations a new
element has to be created in the EMF Profiles group. As defined in the metamodel, the
name in the palette will also be operation.

The GMF-based editor is auto-generated through a gmfgen file, which will then process
the input data into the editors Java source files, similar to the genmodel file in EMF.
The way to a fully functional editor is through a series of configuration and combination
steps of model files which in turn derive into the final gmfgen file. For the additional
feature these generation input files have to be adapted. First a tool has to be created in
the palette box. Then the graphics, determining how the component will look like in the
editor area and where it can be applied to, have to be defined. After that the connection
between the tool and its logic, based on the generated model, has to be established.
Finally, in the beforehand mentioned gmfgen file, some configurations to fine-tune the
java code generator can be done.

The overall picture of the combination and generation process as well as the progress of
the current GMF project is depicted in its own eclipse view, the so called GMF-Dashboard.
As it can be seen in Figure 4.1, the generation process is aided tremendously by this view.
It offers a clear overview on how the process works and furthermore provides links to
quickly configure, combine or generate files. The starting point of the generation process
is the emfprofile.ecore domain model of the EMF. It just serves as input and does not
have to be adapted for GMF. The metamodel was of course adapted by adding additional
functionality, but this was done within the EMF domain to obtain the model code and
not for GMF per se. After this, the next models that have to be created and or edited
are the Tooling Definition Model, Graphical Definition Model, Mapping Model and the
Diagram Editor Generation Model in this order. All these files and their changes are
described in detail in the following paragraphs.

Tooling Definition Model The modifications in the tooling definition model are only
small ones. This model keeps the logical representation of the tool palette. No graphical
representation of these entities are adjusted here, nor is the linking to the domain models
functionality. To this end the models main node is the Tool Registry, followed by the
only palette the EMF Profiles project has, since it only uses one editor, the Palette
emfprofilePalette. This palette includes all used tool groups. For the operation tool the
Tool Group EMF Profiles has to be extended. Then a new child of type Creation Tool
has to be created. There are only two properties to set for it: the title, which I set to
Operation, and the description, which I set to Add a new Operation to a stereotype. The
last task to do in the tooling definition is to order the created tool within its group. I

58

4.3. Runtime Behavior

Figure 4.1: GMF-Dashboard view

chose to order it as third item, between the Tagged Value and Extension tools. This
position should make it more obvious that the operation is a subcomponent of Stereotype,
just as Tagged Value.

Graphical Definition Model In the Graphical Definition Model the graphical repre-
sentation for the tools has to be created, which will later be combined with the Tooling
Definition Model into the Mapping Model. In the editor the new Operation tool should
be displayed just like Tagged Values, but in their own compartment. So a second
sub-compartment for Stereotype is needed as displayed in Figure 4.2. The lower part
containing the two operations is the goal to achieve.

Figure 4.2: Stereotype in EMF Profiles editor.

The main node in the gmfgraph file is the Canvas called emfprofile. Entering it shows
one Figure Gallery where the main design parts to be displayed are located. One figure
is for example the Stereotype figure, without any tagged values or labels on it, consisting
of a rectangle, background color and labels. In this node I created a Figure Descriptor
named OperationDisc for the additional label that is used in the editor to change the
operations name. Next I created a Label child element named OperationLabel, to assign
the text label to the descriptor. This is the only graphical figure necessary and can
now be used by other components outside of the gallery. So again in the main node I

59

4. Realization

created a Compartment named OperationComp and a Labels Diagram Label named
Operations. The first one defines the logical compartment area, which will later be
placed on the bottom of the stereotype figure, the second one defines the Label area. In
the compartments properties I set the figure to the already existing Figure Descriptor
StereotypeFigure, so it has the same design as the stereotypes have. For the diagram
label I set the figure-property to the beforehand created Figure Descriptor OperationDisc.
These are all the adaptation in the graphical model. In the next steps the graphics have
to be mapped to the tools and logic.

Mapping Model The mapping model combines the information of the graphical
and tooling models. It also maps these model informations to the actual model logic,
as to which classes or entities these tools actually represent. Within the main node
Mapping of the gmfmap file is an element called Canvas Mapping. It can only be created
once and includes the linking to the visual representations and tooling as stated above.
This element is of course already created in the EMF Profiles project and does not
have to be updated. The only changes to this file are within the Top Node Reference
<eClassifiers:Stereotype/Stereotype>, which represents the Stereotype class.

In its child element Node Mapping, a new Child Reference and Compartment Mapping
have to be created. In the Compartment Mapping the Compartment OperationComp
(StereotypeFigure) has to be selected as compartment property. The Child Reference
declares the affiliation between the operation and the stereotype. Two Properties have to
be set: Under Compartment the just created Compartment Mapping has to be selected
and as Containment Feature the type EClass.eOperations:EOperation has to be set. This
concludes the mapping as a child to the stereotype, now the actual operation has to
be mapped. Therefore the child reference needs to have a child element of type Node
Mapping and within that element a Feature Label Mapping. The label mapping references
the label to the property of the Operation that should be editable by this label, in this case
the name. Hence the Feature to display has to be set to ENamedElement.name:EString.
Furthermore the Diagram Label property has to be set to Diagram Label Operations.
For Node Mapping three properties have to be set. The first one being the Element
property which has to be set to the type Operation, then for Diagram Node again the
label Diagram Label Operations has to be selected. Finally the editor tool Creation Tool
Operation has to be linked in the Tool property.

Diagram Editor Generation Model With all the mapping between the models
completed, the only task left is to adjust the generator details in the generation model.
By right-clicking the gmfmap file in the workspace, the command Create generator
model... can be used to create or update a gmfgen generator model. After selecting the
gmfmap and genmodel files in the wizard, the gmfgen file will be created. No further
modifications to the model are required. The actual diagram source code can then be
generated by using the command Generate diagram code in the gmfgen files right-click
menu. From this point on the editor should show the additional operation tool and its
properties. To quickly check everything is working as intended, the runtime instance of

60

4.3. Runtime Behavior

Eclipse can be started which compiles the projects into active plugins. After creating a
new EMF Profiles project or opening a diagram file of an existing project, the new editor
is shown.

By default a star icon is chosen to decorate the operation element in the tool palette.
This icon is rather meaningless and should be changed to a more meaningful one, so
developers can quickly recognize it by the icon and associate it with methods. Since it is
already known to represent operations, I decided to take a gear icon used in Ecore for
the EOperations class. The icon can be found in the org.eclipse.emf.ecore.edit package.
After extracting the GIF file out of the bundle, I renamed it to Operation.gif and
overwrote the existing default icon file in the folder-path icons/full/obj16 of the package
org.modelversioning.emfprofile.edit.

Another adaptation which is a bit more important, is the filter method to retrieve a
selection for the joinpoint property in the properties view of the editor. Currently by
default all EOperations that are defined within the involved ecore files are shown. So if
for example a stereotype EBook has an extension to the imported class Book, then the
property would show each operation that is defined within the emfprofile metamodel and
the metamodel of the book, such as getTitle. So this would by default show all EMF
Profiles operations such as getContainerClass, getEOperation and so on. This behavior
will not be intended, but also be confusing because of the sheer mass of results.

To tackle that problem I decided to filter the results using a property descriptor in the
operations item provider. Each property entry has its own descriptor method, which
is automatically generated by EMF based on its type and the configurations made in
the generator model, such as multi-line, editable, sorting etc. The joinpoints property
descriptor is located in the class OperationItemProvider, which is part of the project
org.modelversioning.emfprofile.edit, within the package provider. Therein the method
addJoinpointPropertyDescriptor creates a new ItemPropertyDescriptor object. At this
point I altered the code to override the method getChoiceOfValues to filter the results and
only return EOperations of classes that are connected to the stereotype by an extension.
This was achieved by adding the piece of code in Listing 4.3.

1 {
2 @Override
3 public Collection<?> getChoiceOfValues(Object object) {
4 Operation operation = (Operation) object;
5 Stereotype stereotype = (Stereotype) operation.eContainer();
6 List<EOperation> joinpoints = new ArrayList<EOperation>();
7 for(Extension extension : stereotype.getAllExtensions()){
8 joinpoints.addAll(extension.getTarget().getEOperations());
9 }
10 return joinpoints;
11 }
12 }

Listing 4.3: Filter method for joinpoint property.

The operation tool is now properly represented in the editor and can be used to extend
stereotypes with it. The item as part of a stereotype and also its properties are able to

61

4. Realization

be saved and loaded through the XMI serialization mechanism of the editor, as the rest
of the profile. Until here the creation part of the new runtime feature is finished. The
next part is the actual functionality to alter the runtime behavior. This will be done
using an aspect generator, as described in the following subsections.

4.3.3 Aspect Generator

Each profile that uses at least one operation in a stereotype has to have an aspect file
for it. Therefore the file should be generated when a profile is saved in the editor. This
functionality requires a generator mechanism which will be the main part to achieve
altered runtime behavior through stereotypes. Necessary tasks are to make the project
ready to handle aspects, to create an aspect file with basic functionality, to create
pointcuts and advices for operations within this file based on the position type (eg.
around or before), to include it in the build process and also register it properly for later
use in the plugin.

The whole generator mechanism is built in a way so profiles can still be used without
the need for AspectJ, if they don’t use operations. As soon as an operation is placed
into a stereotype, upon the next save the project will be converted and the aspect will
be created. In the following subsections the implementation process of this generator
mechanism will be explained.

AspectJ Preconditions

To be able to use AspectJ, a few prerequisites are required. The default Eclipse or the
Eclipse Modeling Tools package for that matter, do not support AspectJ out of the box.
The AspectJ Development Tools (AJDT) bundle [Asp] has to be installed first, which
includes the AspectJ libraries and provides additional features to integrate it into the
Eclipse IDE. It also takes care of choosing the AspectJ compiler instead of the default
Java compiler. Currently there is only a development version of AJDT available for
Eclipse Neon. In fact the last release version was provided for Eclipse 3.7 (Indigo), up
until current editions only development version are provided. These versions nevertheless
work stable and as intended. For Eclipse Neon I installed the development build for
Eclipse 4.6.

After its installation there is also a bit of configuration necessary for the aspects to
be woven. Aspect get woven into compiled class files. To do so the AspectJ runtime
plugin has to be started before the desired class file is compiled. The runtime should
therefore be started as soon as possible. This also shows some limitations of AspectJ
as it cannot weave into the earliest core files that are loaded and are essential to even
start the compilation and Eclipse. To achieve this the run configurations for an Eclipse
Application have to be modified. This can be done in the tab Plug-ins, where for
org.eclipse.equinox.weaving.aspectj the parameter Auto-Start has to be set to true and
Start Level set to 2. The start level is the indicator in which order the plugins will be
loaded. A lower start value means earlier loading. Most plugins are set to default, which

62

4.3. Runtime Behavior

is a variable that can be changed but is most commonly and by default set to four. If
more than one plugin have the same start value then their loading is done alphabetically.
According to forum posts there is a workaround, which can weave into those plugins
anyway, but that is neither trivial nor needed for this thesis.

Class Structure

Now that all preconditions are fulfilled, the actual implementation of the generator can
begin. As stated above the generation process should start when a profile is saved. The
check whether or not a file will actually be generated - this is the case, if the profile
includes an operation element - is also placed inside the generator. Saving a profile
in the diagram editor calls the method doSave of the class EMFProfileDiagramEditor,
which is in the project org.modelversioning.emfprofile.diagram under sub-package part.
This method is called regardless if either the save button in the menu is pressed or the
command CTRL + S is used. The class is mainly generated by GMF, so is the doSave
method. The generated method was extended with the beforeSave hooking method. In
this method I placed the call to the generator and used the profile and the diagrams URI
as parameters. If no object of the generator exists, one will be created, otherwise the
existing object will be used, hence for one editor there is one aspect generator.

The generator class resides in the main project org.modelversioning.emfprofile within the
sub-package org.modelversioning.emfprofileapplication.util and is named ProfileApplica-
tionAspectGenerator. Due to the call and the generator being in different projects, a
new dependency to the generator classes project has to be created in the diagram project.
This concludes the generators basic class structure. The following section will deal with
its content.

Project Setup

The original profile projects in the workspace, were designed to provide only the basic
features. Those are the diagram and optionally some icons. However no Java files or
anything that has to be compiled were necessary. That is why there is also no support
for Java compilation, such as the needed source and binary folders. AspectJ requires
the project to have the aspect nature to work, but to include the aspect nature the
project already has to be a Java project. The only natures EMF Profiles projects have
are the equinox plugin nature and the EMF Profiles natures. These setup tasks have to
be performed on the first save if the project does not already have those natures. But
also other tasks to update the project have to be performed, like creating a manifest file
or updating the build file.

Natures The first thing to do when the generators method to create an aspect is called,
is to check the projects natures. If it has no Java nature or no AspectJ nature, they
have to be added. With the Java nature also the following required files, folders and
configurations are created:

63

4. Realization

• Java Nature: To identify the project as a Java capable one, the project descrip-
tion has to be updated. This is achieved by adding the Java nature id Java-
Core.NATURE_ID to the description file.

• Source and Binary Folders: A Java projects needs registered source and binary
folders. They are created by the method createSrcAndBin. The bin folder is
registered as output location for the project. Also a package for the aspect file is
created in the source folder for later use.

• Build Properties: The build configuration file has to be adapted to include the
newly created files and folders. These are the input and output locations as
well as the manifest file. The method in which these updates are done is called
createBuildProperties.

• Classpath: The main part for a Java project to function is the Java runtime
environment. Therefore the JRE has to be registered within the classpath as
developed in the setClasspath method. Furthermore the source folder and plugin
dependencies have to be registered.

Projects can be converted to an AspectJ project by using the command in the right-click
menu. This command executes a utility method within the AJDT plugin that is public
and can therefore also be called from within source code. In my generator this part is
handled by the configureAspectJNature method, with the important part being the call
to AJDTUtils.addAspectJNature.

Manifest EMF Profiles projects solely rely on the plugin.xml configuration file, for
dependencies and plugin declarations. With the current OSGi environment, this approach
is deprecated, as such informations should only be in the manifest.mf file. The purpose of
the plugin.xml remains only for the definition of extensions and extension points. Other
meta data that it currently includes, such as id, name and version, should all be written
to the manifest. This data and the file itself are also required for the aspect feature.
The aspect compiler for example uses informations out of the manifest file, such as
where the aspect files in the project are located or which bundles they supplement. The
method in the generator to create this file is called createManifest. The most important,
aspect-related keys within the manifest are:

• Export-Package: Exports the aspect, so it can be considered by the compiler.

• Eclipse-SupplementBundle: Lists the bundles that include classes in which the
aspects should be weaved into.

• Require-Bundle: This item includes the main runtime libraries for AspectJ through
the bundle org.aspectj.runtime, as well as again all bundles that should be weaved
into, so their classes can be used in the body of an aspects advice.

64

4.3. Runtime Behavior

Aspect Content

The only part that is left now, is the generation of the aspect file with its contents. This
is entirely done by the method saveAspect, which builds a String that will at the end
be written as file into the beforehand created package. The whole method is built as
a template where variable parts are inserted at specific points. The first parts needed
to be created are the package definition, various import declarations and the default
public aspect construct. For each operation an advice will then be generated. Here it is
important to differentiate between the position types. While around advices have a type
and can return values, before and after do not. An example for the pointcut part of an
advice can be seen in Listing 4.4.

1 boolean around(petrinet.Transition eObject):
2 target(eObject) && execution(boolean isEnabled()) {

Listing 4.4: Generated example pointcut.

I referred the pointcut to the method that was selected as joinpoint in the stereotype
operation. Separately I also used its class type with the full package name as context to
further restrict the application. By declaring the target object and generically naming
it eObject, I also provided the target variable to be used in the body property of the
operation. As stated in the approach definition I used the operator execution instead
of call, since I do not have control over the calling object. This way only the declared
method is altered by the advice and every call to it, regardless which bundle made the
call, triggers its execution and therefore the advice code.

Callback Routine Up until now the advices in the generated aspects are invoked each
time a pointcut is found, for instance when a method is executed. For the full runtime
the new source code from within the body property will run instead of the original one,
for every object of the targeted class and in every editor or other code that calls the
method. This behaviour is not intended, rather the advice should only be executed in an
editor where the profile is loaded and only if the corresponding object has a stereotype
application of the respective type. To achieve this another query has to be generated
in the advice before the body execution. In this query it should be checked in current
editors registry, whether or not the object has a stereotype application of the stereotype
that provided the operation.

For this to work it is also necessary to have a mechanism to uniquely identify a stereotype.
As a solution to that, the universally unique namespace identifier, which is entered by the
profile creator in the property view under the property Ns URI, and the stereotype name
were combined. The Ns URI is per definition globally unique and the stereotype name is
unique within a profile, so this combined String then represents a unique identifier for
each stereotype even in different EMF instances. The String is then written into the
aspect advice to be available for later comparison.

The EMF Profiles stereotype application registry keeps a separated registry for each
supported editor. Therefore the advice has to retain the model ID for the editor in

65

4. Realization

which the target object resides. The only way this is possible is to retrieve it through a
method in a singleton class as entry point, because there is no reference to any EMF
Profiles objects in the weaved code at runtime. To achieve this the ActiveEditorObserver
singleton class was used, which provides utility methods regarding the currently active
editor. It was extended by an additional method, which returns the model ID of the last
active editor.

1 String stereotypeID = "http://test/petrinet/priority/Priority";
2 String modelId =
3 ActiveEditorObserver.INSTANCE.getModelIdForLastActiveWorkbenchPart();
4 StereotypeApplication stereotypeApplication = ProfileApplicationRegistry.INSTANCE.

getStereotypeApplication(modelId, eObject, stereotypeID);
5 if(stereotypeApplication != null) {
6 [...body...]
7 } else {
8 return proceed(eObject);
9 }

Listing 4.5: Generated example callback routine.

The third line in the advice is the actual check in the registry. With the gathered
information another new method in the singleton class ProfileApplicationRegistry can
be called. In this method the registry looks for a ProfileApplicationManager object
for the provided model ID, and if found searches its profile applications the provided
object. If it is found the applied stereotype is compared to the provided id. This
comparison method getStereotypeApplication was added earlier in the metamodel to the
class ProfileApplication.

Now that it is evident which objects do have a stereotype application, the only thing that
is left is to react upn the result. Therefore a simple if query is sufficient to differentiate if
the provided body should run or not. While for the positions before and after nothing
more has to be done after the check, with around as position this is not the case. The
operator around specifies that the advice should run instead of the original method, as it
now always runs and checks the applications the original method has to be invoked if no
stereotype application has been found. An example of this case can be seen in Listing 4.5,
where return proceed(eObject) is called.

4.4 Summary

In this chapter the implementation process that followed the approach defined in Chapter 3
was presented. Important source code fragments were included and the structure of the
newly developed features was illustrated. The full source code of the prototype can be
inspected and downloaded at the GitHub repository [Pro].

• Using OCL statements the application of a stereotype can now be further restricted,
through an additional property in the extension. No further requirements are
necessary for this restriction mechanism.

66

4.4. Summary

• The context of the OCL invariant is already inferred as the target object and the
invariant operator is also already hard-coded, so the only part of the statement
that has to be provided is the constraint expression.

• The implemented runtime feature lets stereotypes carry an operation including
source code. Model objects can be decorated with such a stereotype and have their
runtime behavior changed, without changing any source code or metamodel.

• The plugin is encapsulated and can therefore be deployed to any other EMF
instance, provided it has the AJDT installed. It also works without AJDT being
configured, if no operations are used within profiles.

• The extended EMF Profiles project does use a new AJDT bundle dependency for
the generator class. Furthermore the AspectJ runtime library is necessary in the
actual profile projects, respectively profile plugins if they are deployed.

• In the editor each save of the profile generates or regenerates an aspect. The first
save also sets up the project to support aspects, if it does not already.

• For every method that is used as joinpoint by any stereotype in any profile plugin
within the EMF instance, an additional check code is inserted. This code does not
alter any runtime behavior unless the object has a stereotype applied to it which
uses the runtime feature.

• To check if the weaving process is working correctly, the debug mode can be turned
on, as described in the AspectJ problem diagnosis guide. The compiler will then
print every weaving action to the console.

67

CHAPTER 5
Evaluation

This chapter evaluates the beforehand implemented framework as solution to the research
questions. The evaluation is divided into five separate sections. It starts with the overall
setup for the evaluation process in section one. The case study is based on a petri net
metamodel from which a model was generated and extended by a simulator. The purpose
of the simulator is to have a runnable place/transition net, according to the specifications
by the ISO/IEC-15909 series. Then the second section documents the actual evaluation
of the case study. Three petri net extensions are implemented as profiles using the new
prototype, and their feasibility regarding the specifications are analyzed.

The third section presents the results of the evaluation and compares them to the research
questions to achieve appropriate answers to them. Afterwards in the section critical
reflection, benefits and shortcomings of the prototype and the approach as a whole
are discussed. Next, open issues that exist in the evaluated approach are listed and
discussed. Finally threats to validity are documented, which could distort the results of
the evaluation.

5.1 Test Framework Setup

This section covers the necessary pre-work towards the evaluation of the prototype. In
order to use the prototype later, a model to work with had to be created first. This
model is a basic Petri net with default features and restrictions as documented in the
next sub-section. After that a simulator was created on top of the model, as documented
in the second sub-section. Then the actual extensions were created as stereotypes and
evaluated, but these tasks are documented in later sections.

69

5. Evaluation

5.1.1 Petri Net

The evaluation was concluded through the use of Petri nets [Pet77]. There are plenty of
other possible modeling languages that could have been taken. The following reasons
were decisive for the use of Petri nets: the language is well known, has a simple structure
with only a few components in its metamodel and the language, and its models are easy
to understand. Furthermore the additional standardized extensions that are available for
Petri nets are ideal to be used as stereotypes.

Figure 5.1: Petri net example.

An example graphical representation of a Petri net can be seen in Figure 5.1. The main
features of a Petri net are places (P1 - P4), which can have tokens, and transitions (T1 -
T2), which serve as decision maker in between places. These elements are connected to
each other by arcs, where an arc can only connect a place to a transition or vice versa.
It cannot however connect two transitions or places with each other. The purpose of a
Petri net is for a token to travel through the net along arcs from one place to another,
based on the outcome of transitions. Each of the incoming arcs of a transition has their
enabling method. This method returns true if the amount of tokens on the connected
place is equal or higher than its weight attribute. This attribute is an integer value,
which is by default set to one. If all those incoming methods return true, the transition
will fire. Petri nets enable a way to simulate decision system.

Petri Net Metamodel To be able to use Petri nets for the evaluation I built the
language as DSML using EMF. The metamodel is depicted in Figure 5.2. After completing
the metamodel the full source code was generated. Using the generated editor I created
a sample Petri net model to evaluate.

The petri net metamodel consists of six classes within the petrinet EPackage. The first
class is PetriNet, the top-level class, which represents the whole petri net model itself.
Its child elements are two EReferences and one EAttribute. The first one is a reference
to nodes with multiplicity from zero to infinity. This collection of nodes includes all
places and transitions as explained later. The next reference collection is called arcs and

70

5.1. Test Framework Setup

Figure 5.2: Petri net metamodel in ECore

includes all arcs in the petri net. Lastly there is an EAttribute called name with the type
EString. This is a single String to keep a name for the petri net for identification.

The class Node is an abstract class and can therefore not be instantiated. Its purpose is
to serve as an abstraction of Place and Transition classes, which both have connected arcs
to it, either as source or target or both. Therefore the class Node has two EReference,
one for each the outgoing and the incoming arcs, as children. Their multiplicity has a
lower bound of zero and an upper bound of infinite.

The first of the two implementations of Node is the Transition class. Additionally to
the inherited references of Node it has two EOperations defined. The first operation is
fire. It has no return type or parameters and is responsible to fire the transition – that
is to collect the designated amount of tokens on each source place and add again the
designated amount of tokens to the target places –, but only if the operation isEnabled
returns true. IsEnabled checks whether or not the transition itself is enabled. In the
basic petri net logic, this is the case if all the places connected to the transition on an
incoming arc have at least the amount of tokens, that is defined as weight attribute in
the connecting arc.

The second implementation of Node is the class Place. Place serves as a storage for
tokens and is the only element in the petri net to hold tokens. The maximum amount of
tokens it can simultaneously store is defined by the EAttribute capacity of type Integer.
Furthermore there is the EReference collection named tokens, which can be empty and has

71

5. Evaluation

no upper bound. The third and last child element of Node is the operation hasCapacity.
Its purpose is to check whether or not a specified amount, given as integer-parameter, in
addition to the count of tokens already on the place, would be lower than the defined
capacity and to return a Boolean value accordingly.

For the connections between a place and a transition, the Arc class was defined. It
includes two EReferences source and target. Both have to reference exactly one object of
type Node. An EAttribute weight saves an Integer, which defines the amount of tokens
to be transported upon firing the connected Transition. In case the Arc connects a Place
to a Transition (incoming Arc), weight is the amount of Tokens required in the Place
so the Arc is enabled and the Transition can fire. It is also the amount of Tokens that
will be removed from the Place upon firing. In the reverse case, when the Arc connects
a Transition to a Place (outgoing Arc), the weight defines the amount of Tokens that
will be created in the target Place. These requirement calculations are provided by the
operation isEnabled as specified in the metamodel. In the context of a Transition, the
sum of incoming Tokens – the combined weights of incoming arcs – does not have to be
the same amount as the sum of outgoing Tokens – the combined weights of outgoing arcs.
The weights are not dependent on any other weights. In the standard case however, a
Transition is a mere deflector where incoming Tokens pass the Transition and flow on to
a targeted Place. The amount of incoming and outgoing Tokens is - in this case - exactly
the same.

At last there is the Token class, which represents a Token that can travel from one place
to another place. The places must be connected through Arcs and a Transition. The
decisions when and where the Tokens will travel is up to the Transitions. A Token has
no further properties in the metamodel. It also has no inherited or other properties in
the model editor later on, since it does not inherit any class.

5.1.2 Simulator

Petri net models do have runtime semantics and behavior, therefore a simulator is needed
to provide this runtime behavior for the actual Petri net models. For this purpose I
created the class SimulatorCommandHandler in the package petrinet.handlers along with
FireTransitionCommand in the same package.

FireTransitionCommand This command extends the EMF class CompoundCom-
mand. The purpose of this approach is to have a command combined with multiple
sub-commands. The only functionality this command has, is to remove tokens from
places that are connected by incoming arcs with the transition. The amount of tokens to
remove is defined in the weight property of each of those arcs. After the removal new
tokens are created for each place connected by an outgoing arc. Again the amount of
tokens to create is defined in the weight property of the arcs. Each of those remove and
create actions is a separate sub-command. This way these actions can easily be undone
and redone.

72

5.2. Evaluation

SimulatorCommandHandler The simulation handler class provides two commands
for the right-click menu, to start the simulation. One action is to execute the fire method
of a transition when right-clicking it. The second command is provided on the right-click
menu of a PetriNet element. It will not only fire one transition but all transitions in the
Petri net for as long as there are enabled transitions. Both these commands also log their
actions in the Java console. The core action of these commands is to call the fire method
on the transition object. This method then calls its isEnabled method to check whether
or not it can fire and does so if true.

5.2 Evaluation

Additionally to the core place/transition Petri net three extensions were chosen, namely
priority net, timed Petri net and inhibitor arcs. These extensions were implemented as
profiles of EMF Profiles. The evaluation documents to what extent the standardized
definitions of each of the extensions could be implemented through the use of stereotypes.
The finished Petri net extensions should include every restriction and behaviour, specified
in the definitions by Hillah et al. [HKLP12].

These three extensions were chosen because they require constraints to be upheld in order
to use them for an object, and also they offer runtime behavior that relies on changes in
already existing methods. Furthermore it also still makes sense to use all three extensions
together within a model, so this scenario, whether or not they play well together, can
also be tested. After their design in the EMF Profiles editor, the profiles can be exported
as plugin for the use in a runtime instance to extend models.

5.2.1 Extension: Inhibitor Arc

The first extension to build using the new EMF Profiles prototype is that of inhibitor arcs.
Inhibitor arcs are a special kind of arc. In contrary to default arcs which are enabled if
a specific amount of tokens are on the connected place, inhibitor arcs are enabled if no
tokens are on the place. Hence only incoming arcs can be inhibitor arcs in the context of
transitions. According to the specifications the only difference is the logic of the enabling
rule.

Figure 5.3: Profile - Inhibitor Arc

The inhibitor arc functionality is created as a stereotype as shown in Figure 5.3, according
to definition five in Hillah et al. [HKLP12]. The stereotype has to extend the class
Arc. As it can be seen there is only one additional operation necessary and no tagged

73

5. Evaluation

values. The operations position is set to Around and the selected joinpoint was the
method isEnabled of Arc. The bodies content can be seen in Listing 5.1. It overwrites
the enabling rule to return true only if no tokens are present in the source Place and
otherwise return false. The functionality was fully implemented as stereotype.

1 Node node = eObject.getSource();
2 if (node instanceof Place) {
3 if(((Place) node).getTokens().size() == 0)
4 return true;
5 }
6 return false;

Listing 5.1: Inhibitor Arc profile: content of body property.

Finally I also created an OCL expression for the property in extension, displayed in
Listing 5.4. It restricts the application of a inhibitor arc stereotype if the weight property
is not set to zero. This would otherwise be illogic as there are no tokens on the place
when it fires, but with a positive weight number there would be some tokens deleted
from it. The second and third part of the expression check the source and target to be of
type Place and Transition respectively, so the arc is definitely an incoming arc.
weight = 0 and source.oclIsTypeOf(Place) and target.oclIsTypeOf(Transition)

Listing 5.2: OCL invariant in extension of Inhibitor Arc profile.

5.2.2 Extension: Priority

The Petri net extension Priority dictates an additional - for example integer - value as
property of transitions which serves as a priority order. The relevant definitions are
number six to eight [HKLP12]. Transitions can then only fire if no other transitions in
the net with a higher priority value are enabled. The ordering policy of the value is not
fixed to ascending or descending by its specifications, but of course fixed to just one of
them within the same Petri net. The value can either be statically as in my example or
dynamically returned by a method, which relies on factors within the net. As for the
previous extension the only affected method is the enabling rule isEnabled. This time
however not within the Arc class but within the Transition itself.

Figure 5.4: Profile - Priority

To achieve this behavior I created a tagged value within the stereotype. I named it
priority and set its type to EInt with a default value of 0. Secondly I created a new
operation named isEnabled, that uses the transitions isEnabled method as joinpoint. It

74

5.2. Evaluation

overwrites its behavior by selecting Around as position and entering the body shown in
Listing 5.3. Within this aspect code I run through all transitions in the Petri net and
check whether or not they have a stereotype application of the same type and a tagged
value named priority. If so I further check if it is higher than the own priority and if the
transition is enabled. So for this code I used the ascending policy where higher value
means a higher priority.

1 if (eObject.eContainer() instanceof PetriNet) {
2 int priorityA = (int) stereotypeApplication.eGet(
3 stereotypeApplication.getStereotype().getTaggedValue("priority"));
4 for (Node node : ((PetriNet) eObject.eContainer()).getNodes()) {
5 if(node instanceof Transition) {
6 StereotypeApplication sACompare = ProfileApplicationRegistry.INSTANCE.

getStereotypeApplication(modelId, node, stereotypeID);
7 int priorityB = sACompare == null ? 0 : (int) sACompare.eGet(sACompare.

getStereotype().getTaggedValue("priority"));
8 if(priorityB > priorityA && ((Transition)node).isEnabled()){
9 return false;
10 }
11 }
12 }
13 }
14 return proceed(eObject);

Listing 5.3: Priority profile: content of body property.

For the extension I entered the OCL code in Listing 5.4, to ensure all places connected
to an outgoing arc have more or equal capacity than the weight of the arc specifies.
out->forAll(

target.oclAsType(Place).capacity >= weight or target.oclAsType(Place).capacity < 0)

Listing 5.4: OCL invariant in extension of Priority profile.

5.2.3 Extension: Time

The third and last extension I implement as stereotype is the time extension. As per
definition nine to twelve [HKLP12], transitions in a timed Petri net can only fire after
certain time intervals passed since the last firing, simulating a cool down phase. For
these intervals there are one or more clocks which continuously count forward. Again
there are different policies on how the intervals and clocks relate to the enabling rule of
the transitions.

Figure 5.5: Profile - Time

75

5. Evaluation

I realized these specifications within the stereotype extending the class Transition and
using two tagged values and an operation. The first tagged value is named interval and
of type EInt. Its default value is set to zero and it serves as numerical interval given in
seconds. The second tagged value is named lastFire and of type EDate. Its default value
is a date in the past and it serves as timestamp of the last firing. Finally the operation
fire uses the Around position and the fire method of Transition as joinpoint. The body
content can be seen in Listing 5.5. With this source code I implemented a local clock
for each of the transitions. The interval starts from the last time the transition fired.
As long as the upper bound of the interval is not reached it cannot fire again. Finally I
update the lastFire value to the new timestamp.

1 int interval = (int) stereotypeApplication.eGet(stereotypeApplication.getStereotype().
getTaggedValue("interval"));

2 Date lastFire = (Date) stereotypeApplication.eGet(stereotypeApplication.getStereotype()
.getTaggedValue("lastFire"));

3 long ms = interval * 1000 + lastFire.getTime();
4 if(ms > System.currentTimeMillis())
5 return;
6 if(eObject.isEnabled())
7 new FireTransitionCommand(eObject);
8 stereotypeApplication.eSet(stereotypeApplication.getStereotype().getTaggedValue("

lastFire"), new Date(System.currentTimeMillis()));

Listing 5.5: Time profile: content of body property.

In this profile I also created the same OCL expression as for the priority extension.

5.3 Results

Now that all components are implemented they can be evaluated and the results assessed.
For this I divided the section into four sub-parts. First I present a quick demonstration
of the prototype in action. The next part deals with the constraint support evaluation,
how many and how well constraints could be implemented. The third part evaluates the
same for the runtime behavior. Lastly I also assessed general metrics of the prototype to
make it entirely comparable to other approaches. These finding are documented in the
last subsection.

5.3.1 Demo

How the finished prototype looks like in EMF is shown in Figure 5.6. In this example
a model element got decorated with a priority profile. The model My.petrinet can be
seen on the upper left side of the figure. It is a basic Petri net model consisting of three
places, which are connected serial by a combination of arcs and transitions. The first
transition T1, connecting the places P1 and P2, has a priority stereotype applied to it.
This can be seen in the lower window in the EMF Profile Applications view, provided by
EMF Profiles. Based on the setting, this view shows all stereotype applications for the
selected element or the whole model.

76

5.3. Results

After selecting this stereotype application, its values can be seen and modified in the
default Eclipse Properties view. In this example that includes only the Priority integer
value. The other properties are all read-only properties, which are created for every
profile. The operation that is also part of the priority profile is not shown in this view,
as it is also read-only and represents the runtime logic that is behind this application.

Figure 5.6: Example profile application, shown in EMF.

A graphical representation of a Petri net, which is extended by the beforehand created
profiles, is depicted in Figure 5.7. For this figure I used the starting example of a graphical
Petri net from Figure 5.1 and added the various stereotype applications as annotations.

Figure 5.7: Petri net example, including annotated extensions.

77

5. Evaluation

While the first transition T1 only has a priority application, the second one additionally
also has a time component applied to it. Hence the second transition is only enabled, if
its priority is higher than the first transitions’ or if the first transition is not enabled.
Furthermore through the time stereotype, the transition is only enabled within certain
time-frames. After the transition fired, it requires a cool-down phase in which it cannot
be fired again. The third profile type is the inhibitor arc, which is applied to the incoming
arc of the transition T2. It therefore also affects the transitions’ enabled state. Only
if there are no tokens on the inhibitor arcs source place it is enabled. The following
transition is again dependent on its incoming arcs to be enabled. These stereotypes can
now freely be applied onto model elements and directly alter the Petri nets’ runtime
behavior.

5.3.2 Constraints

The research question for this part was “How can EMF Profiles be expanded to support the
creation of modeling languages, which by definition have strong modeling constraints?”.
These modeling languages with strong constraints are the extensions defined in the
previous section according to the specifications in [HKLP12].

• For inhibitor arcs a constraint was necessary to restrict the stereotype from being
applied, if the arcs weight is not set to zero.

• Furthermore the inhibitor arc stereotype can also only be applied to incoming arc.

• The third implemented constraint for priority and time stereotypes, was to not
allow the application if places on outgoing arcs have a lower capacity than the
weight of the connecting arc.

All these required restrictions were fully realized. So to answer the research question:
EMF Profiles can be expanded by a constraint within the extension of a stereotype, to
restrict the application of stereotypes for each different applicable class. The constraint
itself may be an OCL invariant expression.

5.3.3 Runtime Behavior

Regarding the runtime behavior issue the research question was “How can EMF Profiles
be expanded to support the adaptation of runtime behavior?”. Each of the three picked
extensions has their own runtime functionality replacing or extending the original Petri
net behavior.

• The inhibitor arc stereotype alters the enabling rule of arcs to invert its behavior,
returning true only if there are no tokens on the source place.

78

5.3. Results

• For the priority extension the stereotype alters the enabling rule of a transition
object, to check all other transitions in the Petri net for a higher priority. If this is
the case and that transition is also enabled, the transition object is not enabled.

• The time extension stereotype alters the fire behavior of a transition. Using the
stereotype it is also dependent on a time interval, starting with the last firing of
the transition, that has to be surpassed before the next firing.

Again all required functionality was fully implemented. The answer to the research
question two is as follows: EMF Profiles can be expanded by using the AspectJ technology.
Through the generation of aspects including stereotype-specific advices, it is possible to
dynamically add, modify or remove the behavior of single model objects.

5.3.4 General Metrics

Through the implementation of the extensions as stereotypes and using the prototype, I
detected the following further possibilities and limitations of the approach:

+ No metamodel changes are necessary to the model.

+ No classes have to be changed in the model.

+ No methods have to be manually changed in the model. The aspects however
automatically alter the advised joinpoint methods.

+ Concurrent use of multiple stereotypes on the same model object is possible.

− Orthogonality problems can arise, if multiple stereotypes alter the same method
and even more if they also use the same pointcut-position.

− Constraints regarding the application of other stereotypes are not possible. For the
inhibitor arc stereotype it would for example make sense to restrict its application
only to arcs, where the target transition also has non inhibitor arcs. Otherwise the
only incoming arc is constantly true and the simulator would end up in an endless
loop. This is however not possible in the prototype.

− One additional plugin - AJDT - plus its configuration is needed for the approach
to work.

− An additional technology has to be learned to use the approach. It is not necessary
to completely understand AspectJ, but some basics are required, for example what
positions are and what they do or how to use the proceed operator. The aspect code
is generated entirely. Only imports may have to be manually added, depending on
the body properties code, but these are not AspectJ related.

79

5. Evaluation

5.4 Critical Reflection

The evaluated prototype has proven to be a solution to both the proposed problems. It
has drawbacks and added new issues, but it is still a prototype and most of these issues
seem to be solvable by further work. A minor issue for example is the way stereotypes
are uniquely identified through the aspect. The technique to add the profiles URI and
the stereotypes name to form a unique id is depending on the developers to uphold best
practices and not use the same combination in different profiles. One constraint issue
remains and an issue regarding the runtime behavior emerged throughout the case study,
as discussed in the next section.

Overall however the approach was able to entirely implement the specifications for the
selected extensions in the case study. Where are now profiles for each of the extensions,
that can be used and removed as desired. The concurrent use of these profiles is also
possible in this case, however, as stated above, can be problematic in some cases.

The prototype now offers a powerful profiling mechanism to add information and modify
behavior. The behavioral parts effect is, according to the conceptual reference model of
aspect oriented programming by Wimmer et al. [WSK+11], an enhancement, but can
also be used for replacement and deletion.

5.5 Discussion of Open Issues

There are two quite important open issues and a few lesser important ones. The first
is the missing constraining ability for other stereotypes. Also with the new prototype
there is no way to restrict a stereotype from being applied based on another stereotype
application. The second one is about orthogonality. Multiple stereotypes altering the
same method can lead to undesired behavior. There should be a way to avoid such
collisions or at least have a documentation what concepts and combinations to avoid.

The remaining issues are just minor ones and mostly about usability. Firstly, the OCL
constraint String property is bad to use for more than one constraint, as they all have
to be added by an and operator which renders the String unreadable after a few decent
expressions. The body property window for an operation is a plain String-window and
does not have any syntax marking. There should be a widget that supports Java syntax
to ease the development. Finally within the generated aspect there can be unresolved
classes that are used in the body property. These can be quickly added in the aspect
file using the IDE, but should be generated automatically or at least half-automatically
through a window that lets the user choose the appropriate package.

5.6 Threats to Validity

This was my personal critical reflection of the evaluation, there are however to a certain
degree still threats to its validity, which need to be addressed. According to Wohlin et al.

80

5.6. Threats to Validity

[WRH+12], when conducting a case study, there are four aspects of validity to consider,
which could bias the outcome of the evaluation. A reflection of these threats to validity
in the context of this study is presented in the following paragraphs.

Construct Validity Construct validity examines to what extent the chosen evaluation
set-up really measures what was intended by the research questions. Both my research
questions are about mechanisms to achieve a desired functionality. For the evaluation
set-up I chose to build a Petri net and develop a few of its extensions as EMF Profiles. As
a result I analyzed how much of these extensions’ specifications could be implemented as
a profile. Either a functionality could be implemented or not. These metrics are therefore
mostly binary and have a low threat to construct validity. There are no statistical metrics
and no metrics that were delivered or evaluated by other people, hence no dependencies
or misinterpretations by others are possible.

Internal Validity Internal validity is concerned with the threat that investigated
factors are affected by unknown additional factors or to a different extent than it is
known. For the actual evaluation of the extensions no relations had to be examined. The
general metrics, however, include the point of orthogonality problems. I did not further
analyze this problem, but there could exist some unknown factors which also affect the
ability to combine two stereotypes on the same element. Other than that no threats to
internal validity should exist.

External Validity When conducting case studies, there is no statistical data about
the evaluated system available, just one case. External validity deals with the threat that
results of the case study evaluation are not relevant to other cases or not generalizable.
In this thesis I evaluated the prototype regarding its suitability for Petri net extensions.
There are, however, plenty of other and different fields of application for the prototype.
So there is a threat that the results may not be as meaningful for other cases. The
threat is, however, also not too high, as the evaluated metrics cover characteristics for
constraints and runtime behavior. If any other cases would be evaluated with these
functionalities, the results would probably be quite similar.

Reliability The reliability threat to this thesis is concerned with the chance that the
evaluation results are dependent on the specific researcher, and another researcher could
not receive the same results when conducting the evaluation. This is not an issue in
this case study. The prototypes’ functionality is given as input to this evaluation, and it
is evaluated against specifications. As long as I did not misinterpret the specifications
another researcher would most likely come to the same conclusions, since there are no
estimated values, subjective criteria or other metrics that could be interpreted differently.
Only if there is bad or too few documentation on a part of this case study, the result
could differ.

81

CHAPTER 6
Related Work

This chapter presents papers, frameworks and mechanisms that are related to this work.
These can either be related by dealing with similar problem definitions or offering similar
concepts. To receive these related papers and concepts, a systematic literature review
as well as unstructured literature researches were conducted. So, the first section starts
by documenting this information gathering process. In the second section the findings
are presented and explained as well as compared to the design approach and resulting
prototype of this thesis.

6.1 Literature Study

This section covers the information retrieval process for this master thesis. The goal of
this exercise was to get an overview of the DSML area, the Models@Runtime concept
and the EMF Profiles project. Furthermore implementation approaches or solutions to
similar problems as the ones faced in this thesis were searched. Lastly also common
metrics to be used as indicators of software development quality were researched. These
software metrics were taken into account in the evaluation phase in chapter five.

The chosen approach to obtain these informations was to do a systematic literature
review (SLR) as proposed by Biolchini et al. [dABMN+07] and in addition unstructured
literature researches. The benefit of the SLR approach is the structured and well defined
process used to search through databases and obtain relevant papers, articles and books.
This way the search process becomes traceable and repeatable.

An SLR starts by defining research questions for which relevant literature should be found.
For my search this were the two problem statements defined in Chapter 1 “Introduction”.
Based on these research questions a list of keywords was defined, plus some others based
on the greater context of this thesis, such as Models@Runtime. Using these keywords,
different search strings were built and used to get results from the following selected

83

6. Related Work

databases: ACM Digital Library1, DBLP2, Springer Link3 and IEEExplore4. Next, an
analysis matrix was created to collect all publications, sort out duplicates and perform
a quick analysis based on the abstract of the papers. Some resulting publications are
referenced within this thesis, and a few are covered in detail in the next section.

6.2 Comparison with existing Approaches
This section serves as overview on related work that offers similar approaches or deals
with similar problems. They are listed as follows describing their purpose and also
comparing them against the two approaches defined and developed in this thesis.

6.2.1 Tool Support

This thesis worked with the EMF Profiles project, which again is based on the DSML tool
EMF. EMF is the main tool used for MDE [FNM+12], but as stated in the introduction
chapter, there are also other important DSML tools available. According to my research
none of them offer any similar profiles concept, let alone my newly developed runtime
mechanism. There is one small exception though, the so-called AToMPM [SVM+13]
web-based modeling tool, which offers a basic stereotyping concept. This tool is however,
based on its usage and its capabilities, not comparable to EMF, MetaEdit+ and the likes.
From this point of view EMF Profiles is quite unique, at least in the DSML domain. As
already stated in the beginning there are UML profiles too.

6.2.2 UML Profiles

Regarding these UML profiles the first difference to mention, is that they are not available
for DSML development. Hence the EMF Profiles project was founded. They do however
offer the same profile and stereotype mechanism to add semantics of a specific domain
using tagged values. The important part is that they can only add semantics. With the
hereby developed prototype it is also possible to alter existing semantics or even remove
them, by overwriting them. Furthermore the concept of defining operations in stereotype,
to dynamically alter the runtime behavior of the model, is a novelty. Such a mechanism
is not available for UML profiles.

Constraints UML profiles also includes a constraint feature for stereotypes. It is
however different from the feature implemented in this thesis. While here a constraint
mechanism was developed to restrict the application of stereotypes onto model elements,
in UML profiles OCL constraints are defined within stereotypes to be, just as tagged
values, passed on to the model element. Their purpose is to restrict its attributes based
on these expressions.

1ACM Digital Library: http://dl.acm.org/
2DBLP Computer Science Bibliography: http://dblp.uni-trier.de/
3Springer Link: https://link.springer.com/
4IEEExplore: http://ieeexplore.ieee.org/

84

http://dl.acm.org/
http://dblp.uni-trier.de/
https://link.springer.com/
http://ieeexplore.ieee.org/

6.2. Comparison with existing Approaches

Runtime Behavior These were the available concepts for the default UML profiles
mechanism. A paper by Tatibouet et al. [TCGT14] proposes the addition of a mechanism
to formalize the execution semantics of UML profiles using fUML. This was done as a step
to structure semantics of UML profiles, as they are usually not present in a structured,
automated processable manner. The approach further allows to directly execute those
models using UML profiles. They conducted this by introducing new classes, which
override the runtime behavior of their parents with default object-oriented concepts. This
approach is however limited to the modification of the standard UML execution behavior.
So not as in my approach, which enables overriding the behavior of every class, except
those compiled before the AspectJ framework is started.

Orthogonality Another paper by Noyrit et al. [NGTS10] proposes an approach to use
multiple DSMLs, implemented as UML profiles, in combination. These are typically not
designed to be combined with each other. Therefore, just as it was experienced in this
thesis, orthogonality problems can arise when multiple such UML profiles are combined.
So, the paper deals with the same problem as this thesis did, but in the context of UML
profiles rather than EMF Profiles. Nevertheless these findings can just as much be used
for the EMF Profiles domain.

Their proposed approach was to create composite profiles that combine the concepts
out of multiple component profiles. They found out that there is always some human
intervention necessary in order to create these compositions. Noyrit et al. also stated
in their paper that much more research on the matter is necessary, mainly to further
increase the degree of automation required to create composites.

6.2.3 Java Annotations, C# Attributes

Regarding the dynamic changing of runtime behavior there are similar constructs in the
programming area. Most notably Java annotations and its counterpart C# attributes
are relevant. They too alter the behavior of methods at runtime based on the notations
in the source code, written above a method. The similarity is even more apparent when
considering that AspectJ at first also used Java annotations to express its commands.
They are however written directly into a class and therefore not as modular and lightweight
as my approach. Profile plugins could, using this approach, not be passed on to another
instance and still work.

Java Annotations Typical Java annotations are for example @Override, to mark
that a method overrides an equally named method of a superclass, and @Deprecated,
to tag methods that they will not be supported anymore in future releases and should
therefore no longer be used. These annotations serve developers as information in the
JavaDoc descriptions and also for the compiler to issue warnings. In addition to those
default annotations there are also meta-annotations, which annotate other annotations.

85

6. Related Work

One of these is @Retention5. This meta-annotation allows to set a policy when the
subsequent annotation will be discarded. By default this would be after compilation at
runtime. However, using the value RetentionPolicy.RUNTIME the subsequent annotation
is available throughout the runtime. This way enables accessing Java annotations at
runtime, using reflection.

The application of Java annotations and the creation of a custom annotation are shown
in the following example code in Listing 6.1. The fourth code line shows the application
of the custom Entity annotation and the provided key-value pair. From line fourteen
onwards, the creation of the Entity annotation is shown. The @Target annotation
restricts the application of the following custom annotation to the TYPE class. Through
@interface, a new annotation can be defined. In this case the annotation is named Entity
and has the key-value pair name as String. After this declaration the custom annotation
can be used for classes, interfaces and enumerations, as specified by ElementType.TYPE.

1 package [...];
2 import javax.persistence.Entity;
3
4 @Entity (name = "Order")
5 public class Order {
6 [...]
7 }
8
9 [...]
10
11 package javax.persistence;
12 import java.lang.annotation.*;
13
14 @Target (ElementType.TYPE)
15 public @interface Entity {
16 String name() default "";
17 }

Listing 6.1: Java annotation example. Taken from [BGWK16].

New Features Java annotations first started to annotate methods and classes with
meta information. This concept quickly evolved to the comprehensive annotation system
it is now. With the current Java 8, Oracle introduced additional new features to make
the annotation mechanism even more powerful6. Through the new type annotations it is
possible to not only change the behavior of methods, but also influence further aspects of
the program flow. These new features were achieved by including the checker framework7

into Java.

The main goal of the checker framework is, according to its project website, to help
developers to detect and prevent errors in Java programs. It does so by making as much

5Annotation Type Retention API:
https://docs.oracle.com/javase/8/docs/api/java/lang/annotation/Retention.html

6Oracle blog entry on Java 8 features:
https://blogs.oracle.com/java-platform-group/entry/java_8_s_new_type

7Checker Framework project page: https://checkerframework.org/

86

https://docs.oracle.com/javase/8/docs/api/java/lang/annotation/Retention.html
https://blogs.oracle.com/java-platform-group/entry/java_8_s_new_type
https://checkerframework.org/

6.2. Comparison with existing Approaches

source code information as possible able to be annotated and therefore machine readable.
These informations are currently mostly written into documentations or are only in the
heads of developers, who design the program accordingly. But the program is then only
designed to avoid these invalid values and states as much as possible, since there are
always unknown code paths or other sources of errors. Therefore the program itself can
never fully guarantee to uphold these restrictions or behave as intended. By making them
machine readable, they can be validated automatically and assured by the compiler, thus
producing better code while reducing the need for manual checks as well as the error
rate.

Type Annotations Through the checker framework a new kind of annotations was
introduced in Java 8, the so-called type annotations. According to the checker framework
project page, for each of these new annotations a plugin is added to the compiler, which
is responsible to check the constraints affiliated with these annotations. The goal of all
these mechanism within the checker framework is to minimize runtime errors. To this
end the framework also allows developers to write custom checker plugins. The actual
new type annotations are listed below:

• @NonNull: This type annotation assures a variable cannot be null. The compile-
time checker would otherwise issue a warning, after analyzing all possible paths,
whether or not the variable could receive a null value.

• @ReadOnly: The read-only annotation prohibits any modification of an object.
Again, the compiler will verify this property at compile-time and issue warnings
accordingly.

• @Regex: Verifies whether or not the content of String variables are valid regular
expressions. These verifications only check the correct formatting, not, however,
any application of these expressions onto Strings.

• @Tainted & @Untainted: Marks variables or objects as incompatible to each
other. A tainted variable can for instance not be used as parameter for a method,
that is marked as untainted. The variable must first be somehow validated and
then marked as untainted, to be used in such a method. This mechanism may be,
for example, used to validate untrustworthy user input before processing it. This
increases the stability and security of a program, by avoiding attack scenarios like
SQL injections. Beside such security concerns, it can of course also be used to just
validate input regarding a valid syntax or forbidden symbols.

• @m: This last annotations deals with correctly annotating and using measurement
units. It ensures that multiple numbers are only used in the proper unit and have
been correctly converted.

87

6. Related Work

These pre-defined type annotations basically cover some of the most common causes of
defects in software projects. Additionally, through the use of custom annotations and
checkers, even more specific, project-related checks can be implemented.

Constraints for Java Annotations An article by Cordoba-Sanchez et al. [CdL16]
describes a DSML language named “Ann”, to further constrain Java annotations. “Ann”
was, just as my prototype in this thesis, implemented as Eclipse plugin for EMF. It
was developed because of some shortages in the current framework. For instance the
application of the custom annotation created in Listing 6.1 can only be limited to the
preset enumeration values, given by the framework. In this example it is restricted to
classes, interfaces and enumerations. It is, however, not possible to further restrict these
types; For example, to restrict a class based on its internal structure or attributes.

As a solution to this problem, Cordoba-Sanchez et al. proposed the use of the language
“Ann”. This mechanism is able to validate Java annotations, and can therefore prohibit
certain applications that are not intended. A developer can design a new annotation
using “Ann” by defining the syntax and static semantics. The necessary Java code is
then generated from these designs. The resulting code consists of two files. The first one
declares the annotations’ syntax definition, while the second one offers an annotation
processor, which checks constraints regarding the static semantics. Constraints can either
be requirements or prohibitions that need to be fulfilled in order to apply an annotation.

Differences Java annotations and C# attributes can both be used to alter the behavior
of programs at runtime based on the notations. This ability is equal to my prototypes’.
They are, however, fully integrated into the source code definitions and hence not as
lightweight and reusable as my approach. Also, it is possible to directly write complete
Java code into EMF Profiles, whereas hereby additional classes have to be written to
interpret the annotations. A benefit over my approach is that Java annotations and C#
attributes are part of a default installation. My prototype, however, has to be installed
additionally and is also dependent on further non-default plugins and frameworks, such
as AJDT.

Furthermore, the ability to restrict their application is not as manifold as through the
new constraint feature of my prototype. The DSML “Ann” improves this shortcoming
for the default Java annotations, but is still limited. Whereas in my prototype OCL
invariants can be defined, which can even include the result of a method or a variables
value in its expression.

6.2.4 Petri Net Generator

An article by Hillah et al. [HKLP12] proposes an extension framework for Petri nets.
Just as my prototype, this extension framework was implemented in EMF. Using this
framework, Petri net types can be created through constraints and enabling rules. The

88

6.2. Comparison with existing Approaches

resulting types are implemented in PNML (Petri Net Markup Language)8, an XML-like
markup language designed for Petri nets. The framework can, however, only generate
the syntax of these new Petri net types, but no semantics. The resulting extensions are
in contrast to profiles by my prototype completely orthogonal.

8Petri Net Markup Language website: http://www.pnml.org

89

http://www.pnml.org

CHAPTER 7
Conclusion and Future Work

This final chapter reiterates what this thesis’ goal was to begin-with, what has been
achieved by the end and which future work unfolded. This chapter concludes the thesis.

7.1 Conclusion
The purpose of this thesis was to receive answers to the research questions “How can EMF
Profiles be expanded to support the creation of modeling languages, which by definition
have strong modeling constraints?” and “How can EMF Profiles be expanded to support
the adaptation of runtime behavior?”. Answers to these questions are important, because
of the high vulnerability to error, due to the missing constraint feature at stereotype
application. And secondly, because not all aspects of a xDSML can be stereotyped using
the original EMF Profiles. It currently offers no way to stereotype runtime behavior.
Most languages or features that should be stereotyped, however, have their own behavior
and therefore need to be able to alter existing or add new runtime behavior. Adding these
features will ultimately lead to increased re-usability as well as reduced development
time and amount of defects. It also assures that developers can use EMF Profiles more
often for their projects, and thus helps to further spread the use of DSMLs and code
generation.

The research methods used in this thesis followed the general approach in design science.
After designing an approach, an artifact - the prototype - was created accordingly. This
artifact was then evaluated using a case study. So to answer these research questions,
requirements for each of the two problems were worked out. Based on these requirements
possible mechanisms and technologies that could be used for a working approach were
searched and evaluated. For that purpose the following were analyzed: OCL, inheritance,
various software patterns, reflection and AspectJ. The final approach consisted of OCL
invariants to offer restrictions for the application of stereotypes, and AspectJ to invoke
the stereotypes’ runtime behavior.

91

7. Conclusion and Future Work

After implementing a prototype according to this approach it was evaluated, as described
in Chapter 5 “Evaluation”. A case study was used to assess its capability to resolve the
issues. For this case study Petri nets and their extensions were chosen. A default Petri net
was implemented as DSML in EMF. Furthermore three Petri net extensions were created
as EMF profiles. The case study should show how many of the extensions’ specifications
could be implemented as EMF profile and how many could not. The result was that
every specification of the three selected extensions - inhibitor arcs, priority and timed
Petri net - could be implemented. Furthermore additional metrics were collected about
the approach, so these strengths and weaknesses can be compared to other approaches as
answer to the research questions. The approach proved to be lightweight, as no classes
or metamodels had to be modified. Beside the additional AspectJ dependencies that are
needed, the approach has one additional noteworthy shortcoming. If multiple stereotypes
are applied onto one object and both modify the same method, orthogonality problems
can arise. The executed behavior may not be entirely as intended.

The results of this thesis are on the one hand a working prototype of the EMF Profiles
project, including means to restrict the application of stereotypes and to enable modifying
the runtime behavior of model objects by applying a stereotype. Furthermore the thesis
extended the knowledge on how runtime behavior can be influenced in a lightweight
fashion, by providing an evaluated design approach for it. This design for a dynamic
runtime mechanism may for example be used within the research field of Models@Runtime.
All source code created in this thesis is available at GitHub1.

7.2 Future Work

With the development of this prototype and its evaluation other problems and interesting
research topics emerged. Three points unfolded, which are either too far from this thesis’
scope or simply too much work to be solved in here, but nevertheless are useful or
interesting.

Inter-Stereotype Constraints Regarding the constraint issue that was dealt with in
this thesis, there is still a matter open. These OCL constraints do not support the entire
spectrum of restrictions that could be needed. While they are able now to cope with the
issue of missing constraints regarding the model object and every further object that is
accessible from it, they can not be used to restrict the application of a stereotype based
on whether or not another stereotype is already applied or has a certain value. While
this does not prohibit to build a model element according to its own specifications and
restrict it that way, it could however not prevent illicit or undesired interdependencies
with other stereotypes. In this case a model would be developed which, in reality, is not
possible. Such a constraint mechanism is an interesting feature to look into. A research
question for this could be “How can EMF Profiles be expanded to support inter-stereotype

1GitHub repository for the prototype: https://github.com/cmodw/emf-profiles/

92

https://github.com/cmodw/emf-profiles/

7.2. Future Work

constraints?”. To achieve this with EMF Profiles the constraint mechanism would have
to be able to retrieve informations from the EMF Profiles application registry.

Orthogonality Another shortcoming of the implemented prototype that came up in
the evaluation, was missing orthogonality. If multiple stereotype are applied onto the
same model object and alter the same method using operations and aspects, it can lead to
undesired and also undefined behavior. For example when one stereotype alters a method
using the before position and changes a variable, a second stereotype using around can
overwrite the method, its variables and even its execution entirely. Furthermore when
multiple around aspects advice the same method, AspectJ has its own routine on the
order in which to apply the advices. For this issue a research question could be “How to
avoid collisions of stereotypes, when using operations in EMF Profiles”. For that matter
it would be interesting to analyze which combinations of certain factors, such as position,
type of advice and the overall structure of the method, are problematic.

Regarding this topic, the already mentioned paper by Noyrit et al. [NGTS10] should also
be considered. It defines an approach to overcome orthogonality issues using multiple
UML profiles. While this approach currently almost always needs human intervention,
future work could further automate it. These results are interesting as they probably
also serve as a good base for the orthogonality issue of my prototype or may even be
entirely adopted.

Reflection Approach As part of the approach definition also the area of Java reflection
was analyzed as solution to the runtime problem. As stated in Chapter 3, the decision
was made to use AspectJ instead, since it seemed to be the more promising choice. The
approaches including the Java reflection Proxy class or the CGLIB library, presented
within Chapter 3, were not completely dismissed as it seemed they would basically work.
But, because of AspectJ’s advantages, it was decided not to take them. So another
possible future work would be to simply choose these two approaches instead of AspectJ
to develop and evaluate a prototype. The research question would then again be one of
my original questions: “How can EMF Profiles be expanded to support the adaptation of
runtime behavior?”.

93

Bibliography

[AGJ+11] Uwe Aßmann, Sebastian Götz, Jean-Marc Jézéquel, Brice Morin, and
Mario Trapp. A Reference Architecture and Roadmap for Models@run.time
Systems. In Models@run.time - Foundations, Applications, and Roadmaps,
pages 1–18, 2011.

[Asp] AspectJ Development Tools. http://www.eclipse.org/ajdt/. Accessed:
2017-01-02.

[BCW12] Marco Brambilla, Jordi Cabot, and Manuel Wimmer. Model-Driven Soft-
ware Engineering in Practice. Synthesis Lectures on Software Engineering.
Morgan & Claypool Publishers, 2012.

[BGS+14] Amine Benelallam, Abel Gómez, Gerson Sunyé, Massimo Tisi, and David
Launay. Neo4EMF, A Scalable Persistence Layer for EMF Models. In
Proceedings of the 10th European Conference on Modelling Foundations and
Applications, ECMFA 2014, Held as Part of STAF 2014, pages 230–241.
Springer, 2014.

[BGWK16] Alexander Bergmayr, Michael Grossniklaus, Manuel Wimmer, and Gerti
Kappel. Leveraging annotation-based modeling with Jump. Software &
Systems Modeling, pages 1–25, 2016.

[CC05] Adrian M. Colyer and Andy Clement. Aspect-oriented programming with
AspectJ. IBM Systems Journal, 44(2):301–308, 2005.

[CdL16] Irene Córdoba-Sánchez and Juan de Lara. Ann: A domain-specific language
for the effective design and validation of Java annotations. Computer
Languages, Systems & Structures, 45:164–190, 2016.

[dABMN+07] Jorge Calmon de Almeida Biolchini, Paula Gomes Mian, Ana Candida Cruz
Natali, Tayana Uchôa Conte, and Guilherme Horta Travassos. Scientific
research ontology to support systematic review in software engineering.
Advanced Engineering Informatics, 21(2):133–151, 2007.

[Ecl] Eclipse Modeling Framework. https://www.eclipse.org/modeling/emf/.
Accessed: 2017-01-02.

95

[EMFa] EMF Profiles Repository on GitHub. https://github.com/planger/emf-
profiles. Accessed: 2017-01-02.

[EMFb] EMF Profiles Repository on Google Code.
https://code.google.com/archive/a/eclipselabs.org/p/emf-profiles.
Accessed: 2017-01-02.

[FF04] Ira R. Forman and Nate Forman. Java Reflection in Action. In Action
Series. Manning, 2004.

[FNM+12] François Fouquet, Grégory Nain, Brice Morin, Erwan Daubert, Olivier
Barais, Noël Plouzeau, and Jean-Marc Jézéquel. An Eclipse Modelling
Framework Alternative to Meet the Models@Runtime Requirements. In
Proceedings of the 15th International Conference on Model Driven Engi-
neering Languages and Systems, MODELS 2012, pages 87–101. Springer,
2012.

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design
Patterns: Elements of Reusable Object-oriented Software. Addison-Wesley,
1995.

[GNT+07] Jeff Gray, Sandeep Neema, Juha-Pekka Tolvanen, Aniruddha S. Gokhale,
Steven Kelly, and Jonathan Sprinkle. Domain-Specific Modeling. In
Handbook of Dynamic System Modeling. 2007.

[HKLP12] Lom-Messan Hillah, Fabrice Kordon, Charles Lakos, and Laure Petrucci.
Extending PNML Scope: A Framework to Combine Petri Nets Types.
Transactions on Petri Nets and Other Models of Concurrency, 6:46–70,
2012.

[HL95] Walter L. Hürsch and Cristina Videira Lopes. Separation of Concerns.
Technical report, 1995.

[JGVH95] Ralph Johnson, Erich Gamma, John Vlissides, and Richard Helm. Design
Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley,
1995.

[KLM+97] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina
Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-Oriented Program-
ming. In Proceedings of the 11th European Conference on Object-Oriented
Programming, ECOOP’97, pages 220–242. Springer, 1997.

[KT08] Steven Kelly and Juha-Pekka Tolvanen. Domain-Specific Modeling -
Enabling Full Code Generation. Wiley, 2008.

96

[LWWC11] Philip Langer, Konrad Wieland, Manuel Wimmer, and Jordi Cabot. From
UML Profiles to EMF Profiles and Beyond. In Proceedings of the 49th Inter-
national Conference on Objects, Models, Components, Patterns, TOOLS
2011, pages 52–67, 2011.

[LWWC12] Philip Langer, Konrad Wieland, Manuel Wimmer, and Jordi Cabot. EMF
Profiles: A Lightweight Extension Approach for EMF Models. Journal of
Object Technology, 11(1):1–29, 2012.

[mis] ATL Transformation Language, https://eclipse.org/atl/. Accessed: 2017-
01-02.

[MVA10] Jeff McAffer, Paul VanderLei, and Simon Archer. OSGi and Equinox:
Creating Highly Modular Java Systems. Addison-Wesley Professional, 1st
edition, 2010.

[NGTS10] Florian Noyrit, Sébastien Gérard, François Terrier, and Bran Selic. Con-
sistent Modeling Using Multiple UML Profiles. In Proceedings of the 13th
International Conference on Model Driven Engineering Languages and
Systems, MODELS 2010, Part I, pages 392–406, 2010.

[Pet77] James L. Peterson. Petri Nets. ACM Computing Surveys, 9(3):223–252,
1977.

[Pro] Prototype Repository on GitHub. https://github.com/cmodw/emf-
profiles/. Accessed: 2017-01-02.

[RH04] Peter Van Roy and Seif Haridi. Object-Oriented Programming, pages
489–568. Concepts, Techniques, and Models of Computer Programming.
MIT Press, 2004.

[SBPM09] David Steinberg, Frank Budinsky, Marcelo Paternostro, and Ed Merks.
EMF: Eclipse Modeling Framework 2.0. Addison-Wesley Professional, 2nd
edition, 2009.

[Shi86] Shigeo Shingo. Zero Quality Control: Source Inspection and the Poka-Yoke
System. Taylor & Francis, 1986.

[SSR+05] Arnor Solberg, Devon M. Simmonds, Raghu Reddy, Sudipto Ghosh, and
Robert B. France. Using Aspect Oriented Techniques to Support Separa-
tion of Concerns in Model Driven Development. In 29th Annual Interna-
tional Computer Software and Applications Conference, COMPSAC 2005,
Volume 1, pages 121–126, 2005.

[staa] ISO/IEC 19508:2014 - Information technology – Object Management
Group Meta Object Facility (MOF) Core.

97

[stab] OMG Meta Object Facility (MOF) 2.0 - Query/View/Transformation
Specification, Version 1.3, 2016, http://www.omg.org/spec/QVT/1.3/.

[stac] OMG Meta Object Facility (MOF) Core Specification, Version 2.5.1, 2016,
http://www.omg.org/spec/MOF/2.5.1/.

[stad] OMG Object Constraint Language, Version 2.4, 2014,
http://www.omg.org/spec/OCL/2.4/.

[stae] OMG Semantics of a Foundational Subset for Executable UML Models
(fUML), Version 1.2.1, 2016, http://www.omg.org/spec/FUML/1.2.1/.

[staf] OMG Unified Modeling Language TM(OMG UML), Version 2.4.1, 2011,
http://www.omg.org/spec/UML/2.4.1/.

[stag] OMG Unified Modeling Language TM(OMG UML), Version 2.5, 2015,
http://www.omg.org/spec/UML/2.5/.

[stah] OMG XML Metadata Interchange (XMI) Specification, Version 2.5.1,
2015, http://www.omg.org/spec/XMI/2.5.1/.

[SVM+13] Eugene Syriani, Hans Vangheluwe, Raphael Mannadiar, Conner Hansen,
Simon Van Mierlo, and Hüseyin Ergin. AToMPM: A Web-based Modeling
Environment. In Joint Proceedings of MODELS’13 Invited Talks, Demon-
stration Session, Poster Session, and ACM Student Research Competition,
pages 21–25, 2013.

[Tan09] Wei Tang. Meta Object Facility, pages 1722–1723. Encyclopedia of
Database Systems. Springer, 2009.

[TCGT14] Jérémie Tatibouet, Arnaud Cuccuru, Sébastien Gérard, and François
Terrier. Formalizing Execution Semantics of UML Profiles with fUML
Models. In Proceedings of the 17th International Conference on Model-
Driven Engineering Languages and Systems, MODELS 2014, pages 133–
148, 2014.

[TK05] Juha-Pekka Tolvanen and Steven Kelly. Defining Domain-Specific Model-
ing Languages to Automate Product Derivation: Collected Experiences.
In Proceedings of the 9th International Conference on Software Product
Lines, SPLC 2005, pages 198–209, 2005.

[Vog15] Lars Vogel. Eclipse Rich Client Platform. vogella series. Lars Vogel, 2015.
http://www.vogella.com/tutorials/eclipse.html.

[WRH+12] Claes Wohlin, Per Runeson, Martin Höst, Magnus C. Ohlsson, and Björn
Regnell. Experimentation in Software Engineering. Springer, 2012.

98

[WSK+11] Manuel Wimmer, Andrea Schauerhuber, Gerti Kappel, Werner Rets-
chitzegger, Wieland Schwinger, and Elisabeth Kapsammer. A survey on
UML-based aspect-oriented design modeling. ACM Computing Surveys,
43(4):28:1–28:33, 2011.

99

	Kurzfassung
	Abstract
	Contents
	Introduction
	Motivation
	Problem Statement
	Aim of the Work
	Methodological Approach
	Structure of the Work

	Prerequisites
	Eclipse Modeling Framework
	Eclipse Equinox & OSGi
	Graphical Modeling Framework
	UML Profiles
	EMF Profiles

	Methodology
	Overview
	Constraints
	Runtime Behavior

	Realization
	Preconditions
	Constraints
	Runtime Behavior
	Summary

	Evaluation
	Test Framework Setup
	Evaluation
	Results
	Critical Reflection
	Discussion of Open Issues
	Threats to Validity

	Related Work
	Literature Study
	Comparison with existing Approaches

	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography

