
SAT-Based Approaches for the
General High School Timetabling

Problem

PhD THESIS

submitted in partial fulfillment of the requirements for the degree of

Doctor of Technical Sciences

within the

Vienna PhD School of Informatics

by

Emir Demirović
Registration Number 1228470

to the Faculty of Informatics

at the TU Wien

Advisor: Priv.-Doz. Dr. Nysret Musliu

External reviewers:
Prof. Andrea Shaerf. University of Udine, Italy.
Univ.-Prof. Dr. oec. Martin Geiger. Helmut Schmidt University, Germany.

Vienna, 1st February, 2017
Emir Demirović Nysret Musliu

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Die approbierte Originalversion dieser
Dissertation ist in der Hauptbibliothek der
Technischen Universität Wien aufgestellt und
zugänglich.
http://www.ub.tuwien.ac.at

The approved original version of this thesis is
available at the main library of the Vienna
University of Technology.

http://www.ub.tuwien.ac.at/eng

Declaration of Authorship

Emir Demirović
Favoritenstrasse 9, 1040 Wien, Austria

I hereby declare that I have written this Doctoral Thesis independently, that I have
completely specified the utilized sources and resources and that I have definitely marked
all parts of the work - including tables, maps and figures - which belong to other works
or to the internet, literally or extracted, by referencing the source as borrowed.

Vienna, 1st February, 2017
Emir Demirović

iii

Personal Note

The topic of high school timetabling is of personal interest to me and has not been
selected by chance. During my education, I have had first-hand experience with problems
that suboptimal timetables bring, seen my peers struggle with similar issues, and in
addition observed the pains that timetablers go through. It is timetabling that motivated
me to pursue studying combinatorial optimization. The idea that various problems (in
particular, timetabling) can be improved ”merely” by using already available resources in
a more clever way, rather than investing into new resources, seemed compelling. Moreover,
the decisions related to the mentioned resource usages can be left to a computer, which
is able to examine significantly more scenarios than a human. It was a very exciting
moment for me when I was given the opportunity to explore algorithms for high school
timetabling as my PhD. In my thesis, I aimed to provide new scientific contributions to
the timetabling community, but also offer schools (and other institutions) accessible and
practical automatized software for generating timetables. The former is presented in the
following text, while the latter remains to be done in the upcoming years, in order to
improve the lives of hundreds of students and staff members.

v

Acknowledgements

I would like to wholeheartedly thank my supervisor Nysret Musliu. His expertise in
combinatorial optimization and his warm personality made my PhD time very pleasant.
He has been of tremendous support and has helped me to further grow as a professional
in the field of combinatorial optimization. It was an extraordinary coincidence to have
met Nysret just as I was starting my PhD, as our research interests aligned perfectly,
and I am ever-so thankful that such a marvelous opportunity presented itself to me.

It goes without saying that I would not be the person I am today without the support
of my friends and family, especially my mother. Their love has been vital for me as a
person, but also as a professional. They have always been there for me, encouraging me
to pursue my dreams, and providing both material and moral support, without which
my thesis would not be possible.

Lastly, I would like to express my endless gratitude towards two people, who I often
refer to as the heroes of my young adulthood: professors Željko Jurić and Ališer Sijarić.
Although not directly influencing my PhD, both have molded my life in such a way that
it is unimaginable for me now to lead life differently.

The work was supported by the Vienna PhD School of Informatics and the Austrian
Science Fund (FWF): P24814-N23.

vii

Abstract

High School Timetabling (HSTT) is a well known and widespread problem. The problem
consists of coordinating resources (e.g. teachers, rooms), times, and events (e.g. lectures)
with respect to various constraints. Unfortunately, HSTT is hard to solve and just finding
a feasible solution for simple variants of HSTT have been proven to be NP-complete.
In this work, we consider the general HSTT problem, abbreviated as XHSTT. Despite
significant research efforts for XHSTT and other timetabling problems, no silver bullet
algorithm has been found so far. Many problems have yet to be efficiently and/or
optimally solved.

The main goal of this thesis is to explore the relation between propositional logic and
high school timetabling, as well as related approaches. We model the complex formalism
of XHSTT using Boolean variables and basic logical connectives only. We evaluated
different cardinality constraint encodings, solvers, and important special cases in order
to significantly simplify the modeling in practice. We note that resource assignment
constraints have been considered only for special cases, rather than in general. In addition,
we investigated a maxSAT-based satisfiability modulo theories (SMT) approach. Another
model we studied in this work is based on bitvectors. By using a series of bitvector
operations (such as AND, OR, and XOR) on the set of event bitvectors, we were able
to model all constraints, with the exception of resource assignment constraints. The
bitvector models serves as an efficient data structure for local search algorithms such as
hill climbing and simulated annealing. To integrate maxSAT into a hybrid algorithm, we
combined local search with a large neighborhood search algorithm that exploits maxSAT.
Furthermore, to the best of our knowledge, it is the first time maxSAT is used within a
large neighborhood search scheme.

We carried out thorough experimentation on important benchmark instances that can be
found in the repository of the third international timetabling competition (ITC 2011) and
compared with the state-of-the-art algorithms for XHSTT. Detailed experiments were
performed in order to determine the most appropriate maxSAT solvers and cardinality
constraint encodings, evaluate our SMT approach, and compare with integer programming
and the ITC 2011 results. Computational results demonstrate that we outperform the
integer programming approach on numerous benchmarks. We are able to obtain even
better results by combining several maxSAT solvers. When compared to the leading KHE
engine for XHSTT, the bitvector modeling approach provided significant improvements

ix

for local search algorithms such as hill climbing and simulated annealing. Lastly, our
large neighborhood search algorithm excelled in situations when limited computational
time is allocated, being able to obtain better results than the state-of-the-art solvers and
the pure maxSAT approach in many benchmarks.

Contents

Personal Note v

Abstract ix

Contents xi

1 Introduction 1
1.1 Motivation and Problem Statement . 1
1.2 Goal of the Thesis . 2
1.3 Main Contributions . 3
1.4 Publications . 5
1.5 Structure of This Work . 5

2 Problem Description 7
2.1 Informal Description . 7
2.2 Formal Description . 9

3 State-of-the-Art for XHSTT 19
3.1 Simulated Annealing and Variable Neighborhood Search 21
3.2 Hyper Heuristics . 27
3.3 KHE . 29
3.4 Decomposition . 31
3.5 Integer Programming . 32
3.6 Hybrid Approaches . 33

4 Modeling High School Timetabling as Partial Weighted maxSAT 37
4.1 Modeling XHSTT as maxSAT . 38
4.2 SMT approach . 57
4.3 Computational Results . 60
4.4 Summary . 65

5 Modeling High School Timetabling with Bitvectors 77
5.1 Modeling XHSTT with Bitvectors . 78
5.2 Computational Results . 93

xi

5.3 Summary . 98

6 MaxSAT-Based Large Neighborhood Search for High School Timetabling101
6.1 Algorithm Description . 101
6.2 Experimental Results . 106
6.3 Summary . 113

7 Conclusion 115
7.1 Future Work . 116

List of Tables 119

List of Algorithms 121

Bibliography 123

CHAPTER 1
Introduction

1.1 Motivation and Problem Statement

The problem of high school timetabling (HSTT) is to coordinate resources (e.g. rooms,
teachers, students) with times in order to fulfill certain goals (e.g. scheduling lectures).
It is a well known and widespread problem, as every high school requires some form of
timetabling. The difference between a good and a bad timetable can be significant, as
timetables directly contribute to the quality of the educational system and satisfaction
of students and staff, among other things. Every timetable affects hundreds of students
and teachers for prolonged amounts of time, since each timetable is typically used for at
least a semester, making HSTT an extremely important and responsible task. However,
constructing timetables by hand can be time consuming, very difficult, and error prone.
Thus, developing algorithms that automatically generate high quality timetables is of
great importance.

Unfortunately, high school timetabling is hard to solve and merely finding a feasi-
ble solution of simple variants of high school timetabling has been proven to be NP-
complete [EIS75]. Apart from the fact that practical problems can be very large and have
many different constraints, high school timetabling requirements vary from country to
country. Due to this, many variations of the timetabling problem exist. A lot of progress
has been made and HSTT is still an active field of research, even having its own specific
competition in 2011 - the third International Timetabling Competition (ITC 2011).

To introduce standardization, researches have proposed a general high school timetabling
problem formulation [PDGK+13, PKA+14] called XHSTT. This was an important step
for HSTT, as before it was difficult to compare HSTT algorithms, as authors from different
countries would consider similar, albeit different HSTT problems. Therefore, it was
unclear what was the state-of-the-art. With the introduction of XHSTT, algorithms could
now be fairly compared on well-established benchmarks. The ITC 2011 has endorsed this

1

1. Introduction

formulation and attracted 17 research groups from across the globe, further encouraging
and advancing research for HSTT. XHSTT is still the de facto standard for high school
timetabling and it is the formulation that we consider in this thesis.

There has been significant research done for XHSTT and other timetabling problems,
but many problems have yet to be efficiently or optimally solved. New methodologies
and techniques are continuously being developed. Many different methods for solving
XHSTT exist with most of the research focused around local search algorithms. The
winner of ITC 2011, GOAL [dFST+16], used a simulated annealing and iterated local
search approach. It was later outperformed by a variable neighborhood search algorithm
[FS14]. Another approach, named KHE14 [Kinb], is based on ejection chains and uses
procedures specialized for each XHSTT constraint to repair and improve solutions.
Recently hyper-heuristics have been used successfully for XHSTT [AÖK15, KK16], where
a high-level heuristic dictates the usage of low-level heuristics depending on the instance.
An exact approach in the form of integer programming has been proposed in [KSS15].
A decomposition technique in [Sør13a] splits the solution process into two phases: time
and resource assignment phases. Several hybrid techniques have been developed which
combine integer programming and large neighborhood search [SS, FSC16a, DdAB14].

Unfortunately, despite significant research efforts, no silver bullet algorithm has been
found so far. Each state-of-the-art algorithm has its own scenarios where it performs
better than the competition. For example, KHE14 is very effective at producing high
quality solutions given very limited computational time (e.g. a few minutes). However, it
cannot reach (or prove) optimal solutions as some other methods even if longer times are
considered. The integer programming approach is somewhat the opposite, where good or
optimal solutions can be obtained when significantly more time is allocated, but is not
as competitive when solutions need to be generated very quickly. The other methods
typically lie in between these two extremes, where the quality of their solutions depends
on the structure of the instances in question. Therefore, presenting new methods, ideas,
and view points are very important for this active field of research.

1.2 Goal of the Thesis
In a broader sense, the goal of this work is to investigate innovative approaches and
algorithms for XHSTT. This includes formally modeling XHSTT, developing and ana-
lyzing new methods and paradigms, and lastly implementing algorithms which, given
an input of timetabling requirements, produce high quality timetables without further
human intervention. By doing so, we strive to improve the state-of-the-art for XHSTT
and motivate further research.

More specifically, we aim to explore the relation between propositional logic and high
school timetabling, as well as related approaches. The problem of determining whether a
propositional logic formula has a solution is called the satisfiability problem (abbreviated
as SAT). In this work, we investigate SAT-based approaches for high school timetabling.
There is an innate connection between timetabling and SAT, as it has many logic charac-

2

1.3. Main Contributions

teristics and as such some of its constraints can be naturally expressed in propositional
logic (e.g. if assignment X is made, then Y cannot be made). This and the fact that it
has not yet been done for XHSTT motivated us to further investigate different paradigms
and approaches related to propositional logic and see if the gap between SAT-based
approaches and high school timetabling can be bridged. In addition, we would like to
carry out a research on the use of these methods in hybrid algorithms by combining them
with local search and large neighborhood search.

Thus, the main goals of this thesis are:

• Study if SAT-based approaches are suitable for XHSTT. In particular, the objective
is to investigate whether XHSTT can be expressed as a propositional logic formula
and if the obtained SAT problems can be addressed by existing SAT solving
techniques. Furthermore, we would like to research different modeling strategies
and determine their impact on the solution process.

• Investigate other SAT-related modeling approaches for XHSTT, such as bitvector
modeling. Compare the models and determine which one is the most appropriate.
In addition, analyze whether the developed models can be exploited in local search
algorithms.

• Examine the possibility of hybridizing the developed SAT-based approaches with
local search and large neighborhood search. Use domain-specific knowledge to
augment the SAT solving algorithm by initially focusing the search in areas that are
most likely to contain high quality solutions, and gradually increasing the allowed
scope of search until the complete search space is exhaustively explored.

• Compare the developed approaches with the state-of-the-art for XHSTT on impor-
tant benchmark instances from the literature.

These goals are addressed in further text, with the first three points having their own
dedicated chapters. In each chapter we provide a detailed comparison with the state-of-
the-art to assess our approach.

1.3 Main Contributions
The main contributions of this thesis are the following:

• We modeled XHSTT as a propositional logic formula, using Boolean variables and
basic logical connectives only. Hard constraints are translated into propositional
Boolean formulas (SAT). To account for the soft constraints, the model is extended
with the use of Partial Weighted maxSAT. We evaluated different cardinality
constraint encodings, solvers, and important special cases in order to significantly
simplify the modeling in practice. We note that resource assignment constraints

3

1. Introduction

have been considered only for special cases, rather than in general. In addition, we
investigated a maxSAT-based satisfiability modulo theories (SMT) approach. The
experimental results on numerous benchmarks prove that our maxSAT approach
provides competitive results, outperforming the state-of-the-art complete approach
based on integer programming.

• We provided a bitvector modeling of XHSTT. A single bitvector is associated with
each event (e.g. a lecture). Each bit can take the values zero or one, indicating
if the event assigned to it is taking place at a discrete time associated with the
bit. By using a series of bitvector operations (such as AND, OR, and XOR) on
the set of event bitvectors, we were able to model all XHSTT constraints, with the
exception of resource assignment constraints. One of the key points of the bitvector
modeling is that modern processors have built-in support for bitvector operations,
allowing us to efficiently compute constraint violations. The resulting bitvector
model is mainly used as an efficient data structure for the representative of XHSTT
for local search algorithms. In addition, SMT solvers that support the bitvector
theory can be used to generate XHSTT solutions.

• We developed a hybrid algorithm which exploits maxSAT for XHSTT. We combined
local search and large neighborhood search to solve XHSTT instances which are
modeled as maxSAT (as described in Chapter 4). Iteratively, starting from an
arbitrary solution, a part of the solution is destroyed by using one of the two
neighborhood vectors, and is then repaired by maxSAT. We have experimented
with several variants in order to show the importance of each component of the
algorithm. Our approach outperformed the state-of-the-art solvers on important
benchmarks. Furthermore, to the best of our knowledge, it is the first time maxSAT
is used within a large neighborhood search scheme.

4

1.4. Publications

1.4 Publications
Some of the results presented in this thesis have been included in the following publications:

• Journals

– MaxSAT-Based Large Neighborhood Search For
High School Timetabling,
Emir Demirović, Nysret Musliu,
Computers & Operations Research, 78:172–180, 2017.

– Modeling High School Timetabling With Bitvectors,
Emir Demirović, Nysret Musliu,
Annals of Operations Research, doi:10.1007/s10479-016-2220-6, 2016.

• Conferences and Workshops

– Solving High School Timetabling with
Satisfiability Modulo Theories,
Emir Demirović, Nysret Musliu,
Proceedings of PATAT-14, pages 142-166.

– Modeling High School Timetabling as Partial Weighted maxSAT,
Emir Demirović, Nysret Musliu,
LaSh 2014: The 4th Workshop on Logic and Search, a SAT/ICLP workshop
at FLoC 2014.

Chapter 4 is a significant extension of the workshop paper and is planned to be published
as a journal paper. In addition, Chapter 3 will be the basis of another journal publication.

1.5 Structure of This Work
In the next chapter we introduce the general high school timetabling problem XHSTT,
both informally and formally. In Chapter 3 we provide an overview of the state-of-the-art
for XHSTT. The most important works are selected and their contents are discussed
in enough detail to understand the general idea of the work. This is followed by the
main contributions of this thesis: Chapters 4, 5, and 6. Each of these chapters presents a
distinct approach to XHSTT and answers one of the goals of the thesis. A comparison to
the state-of-the-art is given immediately after presenting the details of the approach in
order to demonstrate its effectiveness. In Chapter 4 we present our modeling of XHSTT
as a propositional logic formula, evaluate various encodings, solvers, techniques, an SMT
approach, and compare to integer programming. A bitvector model proposed as an
alternative way of representing XHSTT is discussed in Chapter 5. In Chapter 6 we
present our large neighborhood search algorithm which exploits maxSAT to solve XHSTT.
Lastly, in Chapter 7 we give a conclusion and discuss future work.

5

CHAPTER 2
Problem Description

In this chapter we describe the general high school timetabling problem XHSTT. We
give a simple informal introduction, followed by a detailed formal problem statement,
which is a translation of the problem definition discussed in [PDGK+13, PKA+14] into
a more formal language.

2.1 Informal Description

High school timetabling has been studied extensively in the past. However, a lot of work
has been done exclusively for country-specific educational systems, which resulted in many
different timetabling formulations. Thus, it was difficult to compare algorithms and clearly
determine the state-of-the-art. To solve this issue and encourage timetabling research,
researchers agreed on a standardized formulation called XHSTT [PDGK+13, PKA+14].
This formulation was general enough to be able to model education systems from different
countries and was endorsed by the International Timetabling Competition 2011. This is
the formulation used in our work.

XHSTT specifies three main entities: times, resources, and events. Times refer to
the available discrete time units, such as Monday 9:00-10:00 and Monday 10:00-11:00.
Resources correspond to, for example, available rooms, teachers, students. The main
entities are the events, which in order to take place require certain times and resources.
An event could be a mathematics lecture, which requires a math teacher and a specific
student group (both the teacher and the student group are resources) and two units
of time (two times). Events are to be scheduled into one or more solution events or
subevents. For example, a mathematics lecture with a total duration of four hours can
be split into two subevents with a duration of two hours each, but can also be scheduled
as a single subevent with a duration of four hours. Constraints may restrict the durations
of subevents.

7

2. Problem Description

Constraints impose limits on the desirable type of assignments. They may state, for
example, that a teacher can teach no more than five lessons per day or that younger
students should attend more demanding subjects (e.g. mathematics) in the morning.
It is important to differentiate between hard and soft constraints. The former are very
important and are given precedence over the latter, in the sense that any single violation
of a hard constraint is more important than all soft constraints violations combined.
Thus, one aims to satisfy as many hard constraints as possible, and then optimize for the
soft constraints. In the general formulation, any constraint may be declared hard or soft
and no constraint is predefined as such, but rather left as a modeling option based on
specific timetabling needs. Additionally, each constraint has several parameters, such as
the events or resources it applies to and to what extent (e.g. how many idle times are
acceptable during the week), its weight, and other properties, allowing great flexibility.

We now give an informal overview of all the constraints in XHSTT (as reported in
[PKA+14]). There is a total of 16 constraints (excluding preassignments of times or
resources to events, which are not listed explicitly). The constraints apply to a specified
subsets of events, resource, or times.

Constraints related to events:

1. Assign Time Constraints – events must be assigned a certain number of times.
Typically all events are included in this constraint.

2. Split Events Constraints – the duration and amount of subevents must be within
certain limits. Distribute Split Events Constraints (below) gives further control on
subevents.

3. Distribute Split Events Constraints – the number of subevents with a particular
duration must be within certain bounds.

4. Prefer Times Constraints – stated times are preferred over others for specified
events.

5. Avoid Split Assignments Constraints – subevents derived from the same events
should be assigned the same resources.

6. Spread Events Constraints – events must be spread over the week.

7. Link Events Constraints – events must take place simultaneously.

8. Order Events Constraints – certain events may only take place after other events
have finished.

Constraints related to resources:

1. Assign Resource Constraints – resources must be assigned to events.

8

2.2. Formal Description

2. Prefer Resources Constraints – certain resources are preferred over other ones for
given events.

3. Avoid Clashes Constraints – resources cannot be used by two or more subevents at
the same time.

4. Avoid Unavailable Times Constraints – resources cannot be used at certain times.

5. Limit Idle Times Constraints – resources must have their number of idle times for
specified days lie between given values.

6. Cluster Busy Times Constraints – resources’ activities must all take place within a
minimum and maximum number of days.

7. Limit Busy Times Constraints – resources within specified days must have their
number of busy times lie between given values.

8. Limit Workload Constraints – resources must have their workload lie between given
values.

We now proceed with the formal description of these constraints.

2.2 Formal Description
In this section we give our mathematical formulation of the problem description given in
[PDGK+13, PKA+14]. The main entities of XHSTT are events (e.g. lessons that need to
be scheduled). Each event has a predetermined duration (e.g. a mathematics lesson has
a duration of two hours) and requirements for resources (e.g a lesson requires one teacher
and one room). Events are split into one or more subevents, as previously described in
Section 2.1. Note that an event may be ”split” into a single subevent. The resources can
be predetermined or left open to the solver to assign them. Every resource requirement
in an event has two additional properties: its role and workload. These two properties
are described in Section 2.2.3 under Assign Resource Constraints and Limit Workload
Constraints. In XHSTT terminology, subevents and roles correspond to solution events
and event resources, respectively.

Resources are partitioned depending on their resource type (e.g. teachers, students,
rooms). Apart from this, resources have no other special properties, but are used
extensively in constraints which define how resources may be used.

Events, resources, and times can be grouped into any number of event, resource, or time
groups. Groups are used when defining constraints.

We now discuss the auxiliary functions and variables used to describe XHSTT. Note that
within the constraint descriptions we will include additional helper variables in order to
ease the notation.

9

2. Problem Description

2.2.1 Variables

1. Xe,i,t = 1 if the subevent i of event e takes place at time t, and Xe,i,t = 0 otherwise.

2. Se,i,t = 1 if the subevent i of event e starts at time t, and Se,i,t = 0 otherwise. The
starting time of a event is the first time in which it takes place.

3. Mk,r
e,i = 1 if the subevent i of event e is assigned resource r for the role k, and

Mk,r
e,i = 0 otherwise. We constrain the assignments further by stating that for any

given e, k, i, there can be at most one r such thatMk,r
e,i = 1 . The importance of these

variables will become apparent when modeling resource assignment constraints.

4. Xr,t = 1 if resource r is being used at time t by any event and Xr,t = 0 otherwise.

A solution to XHSTT is an assignment of values to all variables. The solution quality is
evaluated as a sum of constraint violations. These are discussed in detailed in Section
2.2.3.

2.2.2 Functions

1. duration(e) computes the duration of e, but this depends on whether e is an event
or a subevent. If e is an event, it returns the total duration for an event e. In this
case the value is fixed within an given instance. If e is a subevent, it returns the
duration of the subevent. Note that for subevents this value is determined by the
end solution and is not fixed up front, although constraints may impose restrictions.

2. subevents(e) returns the set of subevents that event e has been divided into. For
similar reasons as above, the set is not fixed and depends on the final solution,
although the sum of the durations of subevents of e must be equal to duration(e).

3. events(R) computes the set of events to which resource R has been assigned to.

4. step(x) = 1 if x > 0, otherwise step(x) = 0.

5. bound_violation(x, a, b) = |a− x| ∗ step(a− x) + |x− b| ∗ step(x− b). If the value
x lies in the interval [a, b], it will evaluate to zero. Otherwise, it will evaluate to
how far x is from the interval. This function is important as it is frequently used in
XHSTT, as a common constraint is that a certain property value should be within
a given interval (hard constraint), or as close to it as possible (soft constraint).

6. equal(a, b) = 1− step(a− b)− step(b− a). Evaluates to one if the arguments a and
b are equal and zero otherwise.

10

2.2. Formal Description

2.2.3 Constraints

Each constraint applies to a subset of events, resources, and times. These will be denoted
by the index spec, e.g. Espec, Tspec, Rspec. These subsets are in general different from
constraint to constraint. Note that it is possible to have several constraints of the
same type, but with different subsets defined for them. For example, we may have two
constraints of type prefer times constraint, but each of them can have different sets Espec

and Tspec, indicating that different events have different preferred times.

A point of application for a constraint is the object to which the constraint applies to. For
example, for prefer times constraint, a point of application is a single event. An integer
value called the deviation is computed for each constraint’s point of application, which
represents how severe the violation of the constraint is at that point. The procedure for
computing the deviation is unique and is described for each constraint individually.

A cost function is applied to the deviation and the value produced is multiplied by a
weight in order to obtain the cost of the particular point of application. There are three
cost functions that can be applied to the deviation: linear, quadratic, and step. The
linear function makes no changes to the deviation, the quadratic function squares the
deviation, while the step function evaluates to 1 if the deviation is nonzero and evaluates
to 0 otherwise. The cost of a constraint is the sum of its deviations.

Constraints are labeled as either hard or soft. The goal is to minimize the sum of the
costs of hard constraints and then minimize the sum of the costs of soft constraints. Note
that no constraint is predefined as hard or soft, as this is left for the instance modeler to
determine based on specific timetabling needs.

In the following, we describe the constraints and the way the deviation is computed
at a single point of application. Auxiliary functions used in the constraint are given
immediately below the equation which describes the deviation computation. Recall that
in order to compute the cost of a particular constraint, one calculates the deviation for
each point of application and applies a cost function to it, sums up all these values, and
multiplies them by the given constraint’s weight. Each constraint defines a number of
sets (e.g. Espec and TGspec) and constants, as appropriate.

Assign Time Constraints

Every event must be assigned a certain amount of times. For example, if a lecture lasts
for two hours, two times must be assigned to it. Formally, it imposes that specified events
should be assigned a number of times equal to their duration. The point of application is
an event and the deviation for a single event e is calculated as follows:

deviationatc(e) = (
∑

i∈subevents(e)

∑
t∈T

Xe,i,t)− duration(e) (2.1)

11

2. Problem Description

Split Events Constraints

This constraint has two parts. The first part limits the number of starting times an
event may have within certain time frames. For example, an event may have at most one
starting time during each day, preventing it from being fragmented within a day. The
second part limits the duration of the event’s subevents. For example, if four times must
be assigned to a Mathematics lecture, we may limit that the minimum and maximum
duration of a subevent is equal to two. Thus, it is ensured that the lecture will take place
as two blocks of two hours, forbidding having the lecture performed as one block of four
hours.

Formally, it limits the minimum dsplitec
min and maximum dsplitec

max duration of subevents and
the minimum Asplitec

min and maximum Asplitec
max amount of subevents that may be derived

from specified events. The point of application is an event and the deviation for a single
event e is calculated as follows:

deviationsplitec(e) = bound_violation(|subevents(e)|, dsplitec
min , dsplitec

max) + asplitec(e) (2.2)

asplitec(e) =
∑

i∈subevents(e)
bound_violation(duration(i), Asplitec

min , Asplitec
max) (2.3)

Distribute Split Events Constraints

This constraint specifies the minimum and maximum number of starting times for
subevents of a specific duration. For example, if duration(e) = 10, we may impose that
the lecture should be split so that at least two subevents must have duration three.

Formally, it limits the minimum Adsec
min and maximum Adsec

max amount of subevents of
specified duration d for specified events. The point of application is an event and the
deviation for a single event e is calculated as follows:

deviationdsec(e) = bound_violation(adsec(e), Adsec
min, A

dsec
max) (2.4)

adsec(e) =
∑

i∈subevents(e)
equal(duration(i), d) (2.5)

Prefer Times Constraints

This constraint specifies for certain events which times are allowed (hard constraint) or
preferred (soft constraint). If an optional parameter n with value d is given, then this
constraint only applies to subevents of duration d. For example, a lesson of duration=2
must be scheduled on Monday, excluding the last time on Monday.

12

2.2. Formal Description

Formally, let notPrefTimes denote the set of times which are not preferred. The point of
application is an event and the deviation for a single event e is calculated as follows:

deviationptc(e) =
∑

i∈subevents(e)

∑
t∈notPrefTimes

Se,i,t ∗ duration(i) (2.6)

If the constraint specified the optional parameter d, then the inner expression of the
above equation should be multiplied by (equal(duration(i), d)).

Spread Events Constraints

Certain events must be spread across the timetable, e.g. to avoid situations in which an
event would be completely scheduled only in one day.

Formally, it imposes the minimum Aspreadec
min and maximum Aspreadec

max amount of starting
times in specified time groups (sets of times) for events from specified event groups (sets
of events). The point of application is an event group and the deviation for a single event
group eg is calculated as follows:

deviationspreadec(eg) =
∑

tg∈T Gspec

bound_violation(aspreadec(eg, tg), Aspreadec
min , Aspreadec

max)

(2.7)

aspreadec(eg, tg) =
∑
e∈eg

∑
i∈subevents(e)

∑
t∈tg

Se,i,t (2.8)

Avoid Clashes Constraints

Specified resources can only be used by at most one event at a time. For example, a
student may attend at most one lecture at any given time.

As mentioned in the beginning of the section, each resource requirement for an event e
has an additional property: its role and its desired resource type. For example, a sport
lesson may require two resources of type teacher with the following roles: senior and
junior. For a particular role k, all requests for resources with the role k must be of the
same resource type.

When an event is split into multiple subevents (including the case of a single subevent),
each subevent is assigned a (possibly different) resource to satisfy the role requirement.
Once a resource is assigned to a subevent, it remains in its use during the complete
duration of the subevent. As noted in Section 2.2.1, the variables Mk,r

e,i determine the
role resource assignments to subevents. At most one resource may be assigned to satisfy
the role requirements for a subevent. If a resource is preassigned to an event, then the
corresponding variables Mk,r

e,i are fixed with respect to the reassignment. Otherwise,

13

2. Problem Description

the solver needs to assign resources to events, which is done via the assign resource
constraints.

Formally, it imposes that specified resources cannot be used by two or more subevents
at the same time. The point of application is a resource and the deviation for a single
resource r is calculated as follows:

deviationacc(r) =
∑
t∈T

step(aacc(r, t)) ∗ aacc(r, t) (2.9)

aacc(r, t) = (
∑

e∈events(r)

∑
i∈subevents(e)

∑
k∈roles(e)

Mk,r
e,i ∗Xe,i,t)− 1 (2.10)

The function aacc(r, t) calculates how many events are using resource r at time t.

Limit Idle Times Constraints

This constraint specifies the minimum and maximum number of times in which a resource
can be idle during times in specified time groups. For example, a typical constraint is
to impose that students should not have any idle times. An idle time for a resource r
within a time group tg is a time t ∈ tg in which r is not busy, but is busy at some other
times before and after t within tg.

Formally, it imposes the minimum Alitc
min and maximum Alitc

max amount of idle times for
specified resources within specified time groups. The point of application is a resource
and the deviation for a single resource r is calculated as follows:

deviationlitc(r) = bound_violation(alitc(r), Alitc
min, A

litc
max) (2.11)

alitc(r) =
∑

tg∈T Gspec

∑
t∈tg

I(tg, t, r) (2.12)

I(tg, j, r) = before(tg, j, r) ∗ (1−Xr,j) ∗ after(tg, j, r) (2.13)

after(tg, j, r) = step(
∑

t∈tg∧t>j

Xr,t) (2.14)

before(tg, j, r) = step(
∑

t∈tg∧t<j

Xr,t) (2.15)

14

2.2. Formal Description

Avoid Unavailable Times Constraints

Specified resources are unavailable at certain times. For example, a teacher might be
unable to work on Friday.

Formally, it imposes that specified resources cannot be used at specified times. Let
UT denote the set of unavailable times. The point of application is a resource and the
deviation for a single resource r is a calculated as follows:

deviationautc(r) =
∑

t∈UT

Xr,t (2.16)

Cluster Busy Times Constraints

This constraint specifies the minimum and maximum number of specified time groups in
which a specified resource can be busy. For example, we may specify that a teacher must
fulfill all of his or her duties in at most three days of the week.

Formally, it imposes that specified resources’ activities must all take place within a
minimum Acbtc

min and maximum Acbtc
max amount of specified time groups. The point of

application is a resource and the deviation for a single resource r is calculated as follows:

deviationcbtc(r) = bound_violation(bcbtc(r), Acbtc
min, A

cbtc
max) (2.17)

bcbtc(r) =
∑

tg∈T Gspec

acbtc(tg, r) (2.18)

acbtc(tg, r) = step(
∑
t∈tg

Xr,t) (2.19)

Limit Busy Times Constraints

This constraints imposes limits on the number of times a resource can become busy
within a certain time group, if the resource is busy at all during that time group. For
example, if a teacher teaches on Monday, he or she must teach for at least three hours.
This is commonly used to prevent situations in which teachers or students would need to
come to school to attend only a lesson or two.

Formally, it imposes for specified resources the minimum Albtc
min and maximum Albtc

max

amount of busy times within specified time groups. As a special case, if a resource is
not busy at all during a time group, then the violation cost is ignored for that time
group. The point of application is a resource and the deviation for a single resource r is
calculated as follows:

15

2. Problem Description

deviationlbtc(r) =
∑

tg∈T Gspec

(bound_violation(albtc(tg, r), Albtc
min, A

lbtc
max) ∗ step(albtc(tg, r))

(2.20)

albtc(tg, r) =
∑
t∈tg

Xr,t (2.21)

Link Events Constraints

Certain events must be held at the same time. For example, sport lessons for all classes
of the same year must be held simultaneously.

Formally, it imposes that specified events from specified event groups must take place at
the same time. The point of application is an event group and the deviation for a single
event group eg is calculated as follows:

deviationlec(eg) =
∑
t∈T

step(alec(eg, t)) ∗ (1− equal(alec(eg, t), |eg|)) (2.22)

alec(eg, t) =
∑
e∈eg

∑
i∈subevents(e)

Xe,i,t (2.23)

Order Events Constraints

This constraint specifies that one event can start only after another one has finished. In
addition to this, optional parameters Bmin and Bmax which define the minimum and
maximum separation between the two events. The constraint specifies a set of pairs of
events to which it applies.

Formally, it imposes that two specified events must take place one after the other with a
minimum Aoec

min and maximum Aoec
max times between them. The point of application is a

pair of events and the deviation for a single pair of events ep = 〈e1, e2〉 is calculated as
follows:

deviationoec(ep) = bound_violation(boec(e2)− aoec(e1), Aoec
min, A

oec
max) (2.24)

boec(e2) = min {t : i ∈ subevents(e2) ∧ Se2,i,t = 1} (2.25)

aoec(e1) = max {t+ duration(i) : i ∈ subevents(e1) ∧ Se1,i,t = 1} (2.26)

16

2.2. Formal Description

Assign Resources Constraints

This constraint specifies that resources must be assigned to certain events. Assign
Resource Constraints (ARC) is defined with a specific role k and merely states that
resource assignment requests with the role k must be fulfilled, while other constraints
may limit the assignments of resource to certain roles. For example, a lesson might
require a room to take place, leaving the solver to decide which room it will use.

Formally, it imposes that resources of the specified type must be assigned to specified
events to fulfill the role k. Let Rtype denote the set of resources of the specified type.
The point of application is an event and the deviation for a single event e is calculated
as follows:

deviationarc(e, k) =
∑

i∈subevents(e)
(1− aarc(e, i, k)) ∗ duration(i) (2.27)

aarc(e, i, k) =
∑

r∈Rtype

Mk,r
e,i (2.28)

Prefer Resources Constraints

This constraint specifies for certain events and roles which resources are allowed (hard
constraint) or preferred (soft constraint). For example, for the role senior teacher only a
subset of the teachers may be considered.

Formally, let notPrefResources denote the set of resources which are not preferred for
the role k. The point of application is an event and the deviation for a single event e is
calculated as follows:

deviationarc(e, k) =
∑

i∈subevents(e)
aarc(e, i, k) ∗ duration(i) (2.29)

aarc(e, i, k) =
∑

r∈notPrefResources
Mk,r

e,i (2.30)

Events to which no resource has been assigned are effectively ignored by this constraint.

Avoid Split Assignments Constraints

This constraint specifies that for certain events and roles a single resource must (or should)
be used throughout the complete duration of the events. For example, a mathematics
lecture for class c must always take place in the same room, but the room itself is not
determined before hand.

17

2. Problem Description

Formally, it limits the number of different resources that may be used through the
duration of an event for the role k. The point of application is an event and the deviation
for a single event e is calculated as follows:

deviationasac(e, k) = step(aasac(e, k)) ∗ aasac(e, k) (2.31)

aasac(e, k) = (
∑

i∈subevents(e)

∑
r∈R

Mk,r
e,i)− 1 (2.32)

Events to which no resource has been assigned are effectively ignored by this constraint.

Limit Workload Constraints

This constraint imposes that specified resources must have a certain workload. For
example, a teacher must teach six hours per week, but he or she is not preassigned to
any events.

The workload(e, r) is real number defined for every pair of events and resources. The
value can be explicitly stated for the pair (e, r). If it is not, it assumes the value of
the workload of the event, which is either given or equal to its duration, depending on
whether it was specified or not.

Formally, it limits the minimum Wmin and Wmax workload of a resource. Let role(e)
be the set of roles required by event e. The point of application is a resource and the
deviation for a single resource r is calculated as follows:

deviationlwc(r) = bound_violation(dblwc(r)e,Wmin,Wmax) (2.33)

blwc(r) =
∑

e∈Espec

∑
i∈subevents(e)

∑
k∈role(e)

Mk,r
e,i ∗ alwc(e, i, r) (2.34)

alwc(e, i, r) = duration(i) ∗ workload(e, r)
duration(e) (2.35)

With this constraint we conclude the formal description of XHSTT.

18

CHAPTER 3
State-of-the-Art for XHSTT

The aim of this chapter is to provide an overview of the most important XHSTT-based
research. As noted in Chapter 2, there has been done a lot of work for high school
timetabling. However, it is difficult to compare the works, as different authors considered
similar, albeit different, timetabling problems. This motivated researchers to devise
a standardized formulation for high school timetabling: one which would be general
enough to accommodate all the diverse constraints and requirements. Thus, XHSTT
[PDGK+13, PKA+14] was introduced. In the light of this, our work is based on XHSTT
and we review state-of-the-art research on timetabling related to XHSTT. For a survey
on other timetabling work, we direct the interested reader to [Pil14, Sch99]. We note that
we do not include the work done in this thesis (Chapters 4, 5, and 6) in our overview.

We classified the surveyed works based on the solution approach. We now list all of
the papers and provide brief descriptions of their content to give an overview of the
state-of-the-art methods and techniques used. Afterwards, we allocate a section to each
of the selected papers and describe them in more detail.

• Stochastic local search algorithms

– GOAL [dFST+16] – the winner of the ITC 2011. The algorithm generates
an initial solution using KHE [kina] (described later on) and then combines
iterative local search with simulated annealing to improve the solution. Today
this approach is outperformed by its successors (see next two points).

– Variable neighborhood search (VNS) – these algorithms [FS14] share a common
search pattern: iteratively, based on the currently examined solution, a random
solution is chosen from one of the available neighborhoods, after which a decent
method is applied. The resulting solution is then accepted to take place instead
of the current one if certain criteria is fulfilled. The main difference between
the VNS algorithms is the acceptance criteria and the neighborhoods.

19

3. State-of-the-Art for XHSTT

– Late acceptance hill climbing [FSC16b] – a local search algorithm which
accepts solutions based on their comparison with the k-th previous solution,
rather than comparing with the best solution found so far.

• Hyper-heuristics [KOP, AÖK15, KK16] are a general domain independent strategy
which is able to automatically adapt for a wide range of problems. Hyper-heuristics
are high-level heuristics that are used to generate or select other low-level heuristics.
They are usually equipped with a mechanism that allows self-tuning to the problem
in question. Such approaches were considered for XHSTT, where a set of low-
level heuristics was defined (e.g. moving an event from one time to another, or
exchanging the assigned times of two events) and hyper-heuristics determined the
way these low-level heuristics were used. In Section 3.2, we narrow our focus to
hyper-heuristics that gave good results for XHSTT.

• KHE algorithms [Kinb] represent a set of complex algorithms for high school
timetabling, all of which are distributed and implemented with KHE. According to
its website [kina], KHE is an “open source ANSI C software library, written by Jeff
Kingston, whose main aim is to provide a fast and robust foundation for solving
instances of high school timetabling problems”. All of the algorithms are based
on local search, but are significantly different from the other ones presented here,
which is why a separate category has been dedicated to them. Additionally, other
algorithms (e.g. the VNS approach [FS14] and our work in Chapter 6) use (some)
of these methods. Here we highlight only the (arguably) most important parts and
refer the interested reader for more details to [Kinb]. The main focus of this work
is to provide high quality solutions within very limited time (a few minutes).

– Initial solution generation [Kinc] is done in several phases, according to hier-
archical timetabling: structural, time assignments, and resource assignments
phase. This alone allows other algorithms to provide further optimization
(for example, simulated annealing and VNS algorithms). Ejection chains can
be used to augment the process, as explained below, resulting in a fast and
effective algorithm.

– Polymorphic ejection chains [Kinb] focus directly on repairing defects (vio-
lations of constraints). Constraint violations are examined individually and
specialized repairing procedures are developed for most constraints. While
repairing one defect, new defects might be introduced, and the process is
repeated recursively until there are no new defects, or other criteria are met
(for example, the maximum chain length is reached).

• Decomposition of XHSTT [Sør13a] divides the solution process into two phases:
time and resource assignments. The solution to the first phase is passed to the second
phase as a parameter. Information about the second phase is incorporated into the
first phase to ensure that good solutions can be found using the decomposition. In
some cases the decomposition guarantees optimality.

20

3.1. Simulated Annealing and Variable Neighborhood Search

• Integer programming (IP) [KSS15] models XHSTT as an integer program and then
a commercial solver is used to generate solutions. Solving is done in two phases.
The first phase optimizes hard constraints, after which soft constraints are added.
This is the only exact algorithm for XHSTT, apart from the one presented in this
thesis. By exploring the complete search space, it guarantees to find an optimal
solution if given sufficient time. Typically longer running times are required when
compared to the other (heuristic) approaches.

• Hybrid approaches combine metaheuristics with complete algorithms. The motiva-
tion is that complete methods perform well when considering a small number of
variables. In an iterative fashion, a metaheuristic algorithm is used to select small
subproblems which the complete method can efficiently solve. The complete method
determines the best assignments for variables that are related to a neighborhood,
while the other variables are fixed with respect to the current solution. For example,
if the neighborhood consists of a single teacher, than the complete algorithm will
calculate the best assignment for the given teacher’s events, without changing
the assignments of the other events. All algorithms presented here use integer
programming as their complete method of choice.

– Matheuristic [SS, Sør13b] - an adaptive large neighborhood search approach.
The size of the neighborhood changes during the execution of the algorithm,
depending on the estimate of how easy the neighborhoods are to solve (based
on the IP gap). In addition, when selecting a neighborhood, preference is
given to the ones that have previously been able to improve the solution.

– VNS and IP [FSC16a] - a hybrid algorithm that uses a large neighborhood
search algorithm to further improve the initial solution obtained by the VNS
approach [FS14]. The neighborhoods consist of a set of randomly chosen
resources. The size of the neighborhood is adjusted at run-time, depending on
the estimate of the algorithm’s performance.

– Fix-and-Optimize [DdAB14] – an algorithm used to solve a special case of
XHSTT. Neighborhoods consisting of k teachers or classes are considered,
where k is initially set to two and increased with time.

In the following we look at each algorithm in more detail.

3.1 Simulated Annealing and Variable Neighborhood
Search

In this section we describe the winner of the ITC 2011 and its successors following a
similar algorithm theme. The common element these algorithms share is that they start
from an initial solution and optimize through a sheer amount of randomized local search
moves, using several neighborhoods. The initial solution is generated using KHE (see its
description in Section 3.3.1) and here we describe the optimization algorithm.

21

3. State-of-the-Art for XHSTT

3.1.1 GOAL

This algorithm [dFST+16] was the winner of the ITC 2011, providing the best solutions (at
that time) on most instances. Today it is outperformed by its successors [FS14, FSC16a],
but we still believe it is worth mentioning in order to get an overview of how algorithms
for XHSTT evolved. The main part of the algorithm is simulated annealing. Afterwards,
iterated local search is used to provide final improvements to the best solution found.

Simulated Annealing

Simulated Annealing (SA) was first proposed in [Kir84] as a probabilistic metaheuristic
based on an analogy with the physical process of heating a material and then cooling it
to decrease defects.

An important concept for SA is the neighborhood of a solution. Abstractly speaking,
given a solution s, the neighborhood of s is a set of other solutions that are related to s
according to some specified criteria. Typically the neighborhood solutions are somehow
similar to S. The neighborhoods used are described later on.

The cost difference of two solutions s1 and s2 is denoted as ∆(s1, s2). A negative value
for ∆(s1, s2) states that s1 has a lower cost than s2, meaning s1 is a better solution
in terms of the objective cost function (for a minimization problem). In SA, given a
current solution s0, a random solution sx is drawn from the neighborhood of s0, N(s0). If
∆(sx, s0) ≤ 0, then the newly generated solution sx is accepted, that is, it takes the place
of the current solution s0, s0 = sx. Otherwise if ∆(s0, sx) > 0, the solution is accepted
with probability e−

∆
T , where T is the temperature. Initially during SA, T is a set to a high

value and as the algorithm iterates the temperature is decreased (for example, T = T ∗α,
where α ∈ (0, 1)). A high (low) value for the temperature T makes the probability of
acceptance higher (lower), encouraging diversification (intensification). After T reaches a
very low value, reheating takes place, increasing the value of T . This process is repeated
iteratively until a stop criteria is met. In the case of GOAL, temperature decreasing is
done after each m iterations, reheating is done SAreheating times, and there are several
different neighborhoods (Nk(s0) is the k-th neighborhood of s0) from which a solution
can be drawn from. The Algorithm is outlined in Algorithm 3.1.

Iterated Local Search

Iterated local search (ILS) was first proposed in [LMS03] as a metaheuristic that perturbs
and optimizes solutions in local optimum. In GOAL, the starting point of the algorithm
is a solution generated by simulated annealing. Iteratively, nperturb perturbations are
performed and a random-non-ascend method is then applied to lead the solution to a
(possibly different) local optimum. The non-ascent algorithm, unlike simulated annealing,
systematically enumerates neighborhoods solutions, with the order of exploration being
changed randomly. It only accept solutions whose quality is at least the same as the
current solution. A perturbation consists of the unconditional acceptance of a solution

22

3.1. Simulated Annealing and Variable Neighborhood Search

Algorithm 3.1: Simulated Annealing for XHSTT
input: Initial solution sinitial, initial temperature Tinitial, number of reheats

reheatsmax, number of iterations before cooling nmax, cooling rate α.
output: Optimized solution sbest.

1 begin
2 sbest ←− sinitial; scur ←− sinitial; niter ←− 0; Tcur ←− Tinitial; reheats←− 0
3 while reheats < reheatsmax ∧ there is time left do
4 while niter < nmax do
5 niter ←− niter + 1
6 k ←− selectNeighborhood()
7 snew ←− selectNeighbor(Nk(scur))
8 ∆←− cost(snew)− cost(scur)
9 if ∆ < 0 ∨ e−∆/Tcur > random(0, 1) then

10 scur ←− snew

11 if cost(scur) < cost(sbest) then
12 sbest ←− scur

13 end
14 end
15 end
16 Tcur ←− α ∗ Tcur

17 niter ←− 0
18 if Tcur < Tmin then
19 reheats←− reheats+ 1
20 Tcur ←− Tinitial

21 end
22 end
23 return sbest

24 end

from the KC or RTT neighborhoods (see next section). The number nperturb is set to an
initial value and is increased if no improvements were found after a certain number of
iterations. It is reset to its initial value when a improving solution is found or when its
reaches a threshold value. The ILS algorithm used in GOAL is outlined in Algorithm 3.2.

Neighborhoods

The following neighborhoods were used in GOAL:

• Event Swap (ES): The times of two events are swapped.

• Event Move (EM): An event is moved from its current time to another.

23

3. State-of-the-Art for XHSTT

Algorithm 3.2: Iterated Local Search for XHSTT
input: Initial solution sinitial, initial number of perturbations nperturb, threshold

value nperturb
max .

output: Optimized solution sbest.
1 begin
2 sbest ←− descentPhase(sinitial)
3 nperturb ←− ninitial; niter ←− 0
4 while there is time left do
5 niter ←− niter + 1
6 snew ←− sbest

7 for j = 1..nperturb do
8 snew ←− selectNeighbor(NKC(snew) ∪NRRT (snew))
9 end

10 snew ←− descentPhase(snew)
11 if cost(snew) < cost(sbest) then
12 sbest ←− snew

13 nperturb ←− ninitial

14 niter ←− 0
15 end
16 if niter = niter

max then
17 niter ←− 0
18 nperturb ←− (nperturb + ninitial) mod nperturb

max

19 end
20 end
21 return sbest

22 end

• Event Block Move (EBM): Similar as ES, but if the move would cause the events
to overlap, they are instead assigned times such that the second event starts
immediately after the first one.

• Resource Swap (RS): The resources of two events are swapped. Only one resource
per event is changed.

• Resource Move (RM): A resource of an event is replaced by another.

• Kempe Move (KM): Two times are chosen and a number of chains are considered.
A chain is a series of event moves (EM), where two consecutive events share a
common resource. The best chain with respect to the objective function is then
selected as a neighbor.

• Reassign Resource Times (RRT): A set of events which all share a same common
resource are selected and every possible permutation of their times among each

24

3.1. Simulated Annealing and Variable Neighborhood Search

other is considered. The best permutation with respect to the objective function is
chosen as a neighbor.

Note that the last last two neighborhoods are very computationally expensive when
compared to the others. KM and RRT are used in the iterative local search algorithm
for diversification purposes. KM is, in addition, used for optimization, but seldom (only
2% of the moves are KM). With this we conclude the description of GOAL and its main
components.

3.1.2 Variable Neighborhood Search

The variable neighborhood search (VNS) method was proposed in [MH97]. It is similar
to iterated local search, with the difference being in the way the solution is perturbed. A
hierarchy of the neighborhoods is defined and one neighborhood is set as the active one.
The active neighborhood is used to perturb the solution. Initially, the first neighborhood
is set as the active neighborhood. In every iteration in which the descent phase did
not result in a better solution than the best one found so far, the next neighborhood
(according to the hierarchy) is set as the active neighborhood. When a better solution is
found or when all of the neighborhoods have been used, the active neighborhood is reset
to the the first one. The algorithm has been applied to XHSTT [FS14] and we give its
outline in Algorithm 3.3. We refer to it as the Basic VNS (BVNS).

Algorithm 3.3: Basic Variable Neighborhood Search Algorithm for XHSTT
input: Initial solution sinitial

output: Optimized solution sbest

1 begin
2 while there is time left do
3 k ←− 1
4 while k ≤ kmax do
5 snew ←− selectNeighbor(Nk(sbest))
6 snew ←− descentMethod(snew)
7 if cost(snew) < cost(sbest) then
8 sbest ←− snew

9 k ←− 1
10 else
11 k ←− k + 1
12 end
13 end
14 end
15 return sbest

16 end

25

3. State-of-the-Art for XHSTT

For XHSTT, the neighborhoods are the same as in GOAL, but without the RRT
neighborhood. Their hierarchy is in the order as listed previously. In addition to BVNS,
three other variations have been implemented for XHSTT. We describe them in the
context for XHSTT as follows:

• Reduced VNS (RVNS) - similar as BVNS, but without the descent phase.

• Sequential Variable Neighborhood Descent (SVND) - similar as BVNS with the
restriction that only the k-th neighborhood is considered in the descent phase,
rather than allowing all neighborhoods (k is the currently active neighborhood, the
one that is used the perturb the solution).

• Skewed VNS (SNVS) - as SVND, but in addition to the restriction to the neigh-
borhoods during the descent phase, a relaxed rule is used to accept the solution.
The relaxed rule takes into consideration the cost of the solution, as well as the
distance from the best solution. To calculate the distance between two solutions
s1 and s2, they are first represented as strings of length n, where n is the number
of events. The i-th element of the string contains information on the times and
resources associated with the i-th event. The distance δ(s1, s2) is the hamming
distance1 of the two strings. When evaluating a solution s′′ for acceptance, the
formula f(s′′)− δ(s′′, sbest) is used instead of just its cost f(s′′).

Overall, RVNS performs poorly when compared to GOAL and other VNS algorithms.
Its performance is somewhat expected, as it is unlikely better solutions will be found by
randomly going through neighborhoods without more sophisticated guidance. Another
reason is that exploring large and expensive neighborhoods may slow down the search in
cases when improvements can be found using simple and smaller neighborhoods.

The other three VNS algorithms, BVNS, SVND, and SNVS, all perform better than
GOAL on average. Among the three, the results are very similar, although SVNS typically
gives better results. This is attributed to the ability to easily escape local optima, as
more diverse solutions are explored when compared to GOAL. Further improvements to
VNS are made by hybridizing with integer programming (see Section 3.6.2).

However, it is worth noting that for easy instances, another VNS approach [BFT+12b]
(not discussed here) performs better than the ones presented. The approach in [BFT+12b]
uses Simulated Annealing instead of a descent method for VNS. The reason is that it is
“easier” to find improvements for easy instances with SA than by the descent method,
due to the diversification part of SA. According to the results report in [FS14], VNS-SA
was better in 5 out of 19 instances.

1The hamming distance of two strings of the same size is the number of positions in which they have
different elements.

26

3.2. Hyper Heuristics

3.1.3 Late Acceptance Hill Climbing

Late acceptance has first been proposed in [BBb]. In traditional hill climbing, a solution
is accepted after a local search move if its objective value is strictly better (lower for
minimization, greater for maximization) than the current solution. In late acceptance
hill climbing, a parameter k is defined. When deciding whether to accept a solution, it is
accepted if it has a better objective value than the k-th previous solution. Therefore, it
can be seen as a generalization of hill climbing for k > 1. Late acceptance hill climbing
provides a simple way of introducing diversification and extending hill climbing while
retaining a simple acceptance criteria.

After a certain number of iterations, improving moves will naturally become less frequent.
Therefore, all of the previous k solutions will be identical and the method degenerates
into a standard hill climbing method. To combat this situation, the authors in [FSC16b]
have introduced a variant called stagnation-free late acceptance hill climbing (sf-LAHC).
With sf-LAHC, after no improvement has been made in the last f(k) iterations, the list
of previous solutions is reset to the value it had the last time a improvement was made.
For simplicity the authors chose f to be a linear function. The algorithm is outlined in
Algorithm 3.4.

When combined with simulated annealing (SA-sf-LAHC) and applied to XHSTT, the
method outperformed GOAL (Section 3.1.1) by a large margin, but it is still not compet-
itive when compared to the VNS approach (Section 3.1.2). Even though late acceptance
is not the state-of-the-art from XHSTT, we believe it is still worthwhile to consider, as it
is a relatively new and simple technique that demonstrated good performance. Therefore,
we believe it is a promising approach for XHSTT.

3.2 Hyper Heuristics

Hyper-heuristics can be divided into two categories, depending on whether their focus is
on generating or selecting heuristics. In the following we focus on the latter, as it has
been successfully applied for XHSTT.

The general idea is to have two sets of heuristics: low-level and high-level. Low-level
heuristics are problem specific and range from simple to more complicated local search
moves. For timetabling, as examples of a low-level heuristic, we may consider the
neighborhoods discussed in GOAL (Section 3.1.1), such as exchanging the time assignment
for two events, or moving a single event from one time to another. These also include
procedures which perturb the search space with the aim of diversifying the solution.
High-level heuristics define strategies to make use of a large number of low-level heuristics
(e.g. in [KK16], authors consider 15 different low-level heuristics). In addition, one may
also consider several different acceptance strategies, such as the ones used in hill climbing
or simulated annealing. Ideally, hyper-heuristics can be used for many different problems
and are not domain specific.

27

3. State-of-the-Art for XHSTT

Algorithm 3.4: Stagnation-Free Late Acceptance Hill Climbing for XHSTT
input: Initial solution sinitial, maximum number of iterations before reset

nstagnation
iter

output: Optimized solution sbest

1 begin
2 n←− f(k)

// p = 〈p0, p1, ..., p(n− 1)〉
3 pi ←− cost(sinitial) ∀i ∈ {0, 1, ..(n− 1)}
4 p′i ←− pi

5 sbest ←− sinitial

6 scur ←− sinitial

7 i←− 0
8 while there is time left do
9 snew ←− selectNeighbor(N(scur))

10 v ←− i mod k
11 if cost(snew) < pv then
12 scur ←− snew

13 if cost(snew) < cost(sbest) then
14 sbest ←− scur

15 p′ ←− p
16 i←− 0
17 end
18 end
19 pv ←− cost(scur)
20 i←− i+ 1
21 if i = nstagnation

iter then
22 p←− p′
23 i←− 0
24 end
25 end
26 return sbest

27 end

28

3.3. KHE

In [AÖK15], the authors used a hyper-heuristic approach with nine low-level heuristics.
Iteratively, the high-level heuristics would select one of the low-level heuristics and apply
it to the current solution. The selection of a particular heuristic depends on three criteria:
previous performance, pair-wise dependency with the previously used heuristic, and the
time passed since the last time it was used.

Hyper-heuristics based on hidden Markov chains have been studied in [KK16]. They
used 15 different low-level heuristics. Iteratively, a sequence is selected and applied. A
sequence is an ordered list of low-level heuristics and the heuristics are applied with respect
to their ordering. This is one of the main differences from previous hyper-heuristics
approaches (e.g. [KOP, AÖK15]) which can somewhat be seen as hyper-heuristics dealing
with sequences of length one. In [AÖK15], this has partially been addressed by the
pair-wise dependency measure between heuristics. The length of the chain and the
low-level heuristics are selected stochastically, as given by the hidden Markov model.
The probabilities are set to an initial value and are adjusted at run-time. Each time a
sequence has been applied, its performance is recorded and the probabilities are modified
accordingly. Therefore, better performing heuristics have a higher chance of being
selected.

These approaches are very flexible for several reasons. Heuristics are adapted to the
instances that is being solved, rather than being preselected, tuning the algorithm at
run-time to the instance being solved. It also allows the consideration of sequences
of heuristics, which is beneficial as certain heuristics only perform well when paired
with other heuristics. This alleviates two problems. First, certain heuristics may be
inefficient on some instances, but very efficient on others. Therefore, with this approach,
the algorithm is more likely to spend most of its time on the most appropriate heuristics
for the instance. Second, given its robust tuning mechanism, it removes the burden that
the algorithm designer faces when handling low-level details.

3.3 KHE

In this section we describe local search algorithms implemented in and distributed with
KHE, an open source software library. The main focus is to provide fast and robust
algorithms that can produce quality solutions in low amount of time (a few minutes).
Due to these desirable features and its availability as open source, they have been used
in other XHSTT works as well (for example, see Sections 3.1 and 6.1.3).

We aim to discuss only the (arguably) most important parts of the algorithms and refer
the interested reader for more details to [Kinb]. We describe generating initial solutions,
as they are used in works described in Sections 3.1 and 3.6.2, and polymorphic ejection
chains, as they are the main features of KHE14 [Kinb]. The algorithm KHE14 in a sense
incorporates ejection chains in the initial solution generation method to provide high
quality solutions. We now proceed to describe these two parts and refer to interested
reader to [Kinb] for full details.

29

3. State-of-the-Art for XHSTT

3.3.1 Initial Solution Generation

The initial solution generation is done in three phases, according to hierarchical timetabling
[Kinc]: structural, time assignment, and resource assignment phase. As mentioned above,
all of these phases can be improved with the use of polymorphic ejection chains (see next
section).

The structural phase can be seen as a preparation phases for the next stage. Event are
split into subevents, according to the Split Events Constraint. Subevents that share
certain logical connections are grouped into nodes. The logical connections are influences
by several factors: the original event from which the subevent is derived from, preassigned
resources, and the relation of the subevent to other subevents with respect to spread and
split events constraints. Subevents are assigned to other subevents if they are constrained
by the link event events constraints. This ensures that the subevents will be scheduled in
the same time, avoiding violations of the link events constraints. Assigning subevents to
other subevents supports hierarchical timetabling, a methodology where smaller parts
of the timetable are constructed and then incorporated into the complete timetable.
During this phase, the set of possible times and resources are determined for each event,
according to preferred times or resource constraints. Additionally, a certain level of
regularity is enforced. While it does not directly contribute to the objective function, the
author in [Kinb] claims that good solution are more likely to be found if regularity is
maintained, although it is difficult to evaluate experimentally.

Times are assigned to subevents in the times assignment phase. A number of layers are
created, which can be seen as a subset of subevents which share preassigned resources.
A complex heuristic algorithm based on the maximum matching problem is solved to
determine the time assignments for each layer. Afterwards, resources are assigned in
the resource assignment phase. The algorithms in this phase are based on bin packing,
constructive algorithms guided by a maximum matching algorithm, data structures to
ensure the satisfaction of certain resource assignment constraints, and other techniques.

3.3.2 Polymorphic Ejection Chains

The idea is to analyze defects (constraint violations) and use specialized procedures to
repair them depending on what kind of defect has been encountered. These procedures
are called augment functions. This approach is different from the ones presented in
Section 3.1, as constraint violations are handled by procedures tailored to individual
constraints, rather than by attempting to perform a (random) move from one of the
neighborhoods (e.g. as in the VNS approaches). Thus, this approach is more focused on
specific problems in the solution and attempts to solve them one by one.

The repair procedure for a single defect is as follows. An augment function is called
to repair the constraint violation. During this repair, a number of other defects can
be introduced. If no other defects have been produced and the initial defect has been
fixed, the procedure is successful and terminates. If one significant defect has appeared,
its appropriate augment function is called, recursively repeating this procedure. A new

30

3.4. Decomposition

defect is said to be significant if its removal would reduce the objective function below
the value before the repair procedure has been initiated. Otherwise, if two or more
significant defects have been introduced, the procedure stops and the solution is reverted
to before the repair attempt, hence the name ejection chain. In principle, all of the newly
produced defects could be recursed on, forming an ejection tree, but this is done only in
special cases, as it is likely to be unsuccessful.

Additionally, there are two ways that can be used to limit the size of the chain: imposing
that the chain cannot be larger than a fixed constraint, or by constraining that entities
cannot be visited more than once in the same chain.

The augment functions are designed for each constraint in XHSTT. They typically
attempt to move the entity in question (event or resource) to every other possible time.
The move can be a simple event move or kempe chain as described in Section 3.1.1 (with
the additional option of ejecting other entities, that is, unassigning their time), or other
constraint specific moves.

In this section our goal was to give the reader the main ideas concerning the KHE
algorithms. For more details, we refer the interested reader to [Kinb] as the main KHE
algorithm description, where additional references are given.

3.4 Decomposition

In this approach XHSTT is decomposed into two phases [Sør13a]: time and resource
assignments. The motivation is that it might be simpler to solve each phase separately,
rather than handling the whole problem at once. Information about the second phase
is incorporated into the first phase to ensure that good solutions can be found using
the decomposition. If certain conditions are met, the decomposition is exact, preserving
optimality. Unfortunately, the decomposition method is not developed enough to compete
with the state-of-the-art results. Nevertheless, for two instances it outperforms the pure
IP approach, indicating that it is possibly a good research direction for future research.
We note that similar approaches, where times are assigned before resources, have been
effective for the KHE algorithms (see Section 3.3) and that a similar approach has been
used for another related timetabling problem [SD14]. We briefly sketch the main ideas
and refer the interested reader to [Sør13a] for more details.

In the first phase, times are assigned to events. The key element of the decomposition is
the way additional constraints are inserted into the first phase to take into consideration
the objective function of the second phase. Therefore, a “good” solution of the first phase
is likely to transition into a “good” solution to the second phase. This is accomplished by
considering a bipartite graph for each time, in addition to the subset of the constraints
of the first phase. The bipartite graph has two sets of nodes: subevents and resources.
Subevent nodes are linked with resource nodes if the corresponding resource can be
assigned to the given subevent. Some of the resource constraints from XHSTT can be
directly modeled by in the bipartite graph, while other not. Therefore, a solution to

31

3. State-of-the-Art for XHSTT

the first phase is a lower bound to the original problem (with an exception, which we
do not describe here). Hall’s Theorem provides a sufficient and necessary condition for
the bipartite graph to have a matching for all subevent nodes to resource nodes. An
assignment of resources to subevents corresponds to a matching. In the other direction,
a matching resembles an assignment. The reason why it only resembles an assignment is
because not all constraints of the problem are taken into account. (Soft) Constraints are
modeled to guide the solution towards one which satisfies the conditions of Hall’s theorem.
Lastly, the graph’s contribution to the objective function is modeled by adding its lower
bound value via the theorem on the lower bound for minimum weight maximum matching
[SD14]. It is important to note that the complete bipartite graph is not directly modeled,
but only the parts necessary to capture the modeling related to the two theorems. This
concludes the first phase, which is allocated 95% of the computational time. After a
solution is found to the first phase, it is passed to the simpler second phase, which
performs resource assignments considering all of the constraints with respect to the
already assigned times. A solution to the original problem can be built based on the
solutions of the two phases. Under certain post-conditions the decomposition guarantees
to preserve the optimal solution.

3.5 Integer Programming

In [KSS15], the authors model XHSTT as an integer program and then use Gurobi,
a commercial IP solver, to compute solutions for XHSTT instances. The solving is
done in two phases. In the first phase only hard constraints are considered. After the
optimal solution has been computed for the first phase (note that it might include hard
constraint violations), soft constraints are added and the cost of hard constraints is fixed
to the previously calculated optimal value. This captures the lexicographical objective
function of XHSTT, where hard constraints are significantly more important than soft
ones. The integer programming approach is exact (or complete), typically requiring
longer computational times (e.g. days), but can provide good results along with lower
bounds and proofs of optimality.

The basic variables for the IP model xse,t,er,r are Boolean, representing whether subevent
se is taking place at time t while using resource r for its event resource2 er. The
formulation create every possible subevent for an event and the appropriate xse,t,er,r

variables are defined. For example, given an event with duration four, subevents with the
following durations are generated: 1, 1, 1, 1, 2, 2, 3, and 4. Boolean variables use indicate
whether a subevent se is active or not, meaning whether any times have been assigned
to it. Additional constraints are imposed to ensure that only the correct combinations
of subevents may be used. The XHSTT constraints, along with other variables, are
defined by using these variables as basic building blocks. A solution to the instance is an
assignment of values to the xse,t,er,r variables. We direct the interested reader to [KSS15]
for full details about the modeling.

2event resources correspond to the role resource requirement, described in Section 2.

32

3.6. Hybrid Approaches

3.6 Hybrid Approaches

Metaheuristic and complete approaches both have distinct advantages and disadvantages.
Metaheuristics can produce good solution in low amount of time, but only consider a
subset of the search space. Complete (or exact) algorithms, on the other extreme, search
through the complete search space and are guaranteed to find the best possible solution,
but are likely to take significantly more time. Therefore, a natural idea is to combine the
two extremes into something that can offer the best of both worlds. This is what hybrid
algorithm aim for.

All of the algorithms presented in this category share a common theme: fix the values
of a subset of variables and use integer programming to optimize for the remaining
variables. This process is done iteratively. The variables are fixed with respect to a
neighborhood and the best solution found so far. In this case, a neighborhood typically
consists of a number of elements (e.g. two teachers) and all variables that are not related
to those elements are fixed according to their values in the best solution found so far,
leaving the complete algorithm to determine the best assignments for the remaining
variables. Afterwards, based on the obtained solution, parameters are adjusted (e.g. the
neighborhood size is increased). The algorithms differ in the way the high level heuristic
chooses to fix the subset of variables (the neighborhood generation). An outline is given
in Algorithm 3.5.

Algorithm 3.5: Generic Hybrid Algorithm for XHSTT
input: Initial solution sinitial, problem formulation P , variables X
output: Optimized solution sbest

1 begin
2 sbest ←− sinitial

3 while there is time left do
4 n←− generateNeighborhood()
5 X ′ ←− fixV ariables(sbest, n)
6 snew ←− solveF ixed(P,X ′)
7 if cost(snew) < cost(sbest) then
8 sbest ←− snew

9 end
10 adjustParameters()
11 end
12 return sbest

13 end

3.6.1 Matheuristic

This approach is an adaptive large neighborhood search (ALNS) algorithm, whose
structure resembles Lectio [SKS], the second placed algorithm from ITC 2011. It has

33

3. State-of-the-Art for XHSTT

been experimentally shown that better results can be obtained than with a pure integer
programming approach, if one considers shorter running times. An initial solution is
constructed according to a greedy algorithm. In each iteration, a neighborhood is chosen.
The neighborhood choice is biased towards neighborhoods that have previously performed
well. The neighborhood is used to determine which variables are to be fixed. The IP
solver then optimizes the solution with the remaining unfixed variable. Afterwards, the
neighborhood size for the next iteration is adjusted according to the IP gap calculated: if
the IP gap is smaller (greater) than gmin (gmax) the size of the neighborhood is increased
(decreased).

There are four different neighborhood types to chose from, each applying to a certain
set of elements (events, resources, times, or time groups). Once a neighborhood type is
selected, a neighborhood is computed using in a semi-randomized procedure which is
as follows. Initially the neighborhood consists of a randomly selected element (e.g. an
event selected at random). New elements are added from the remaining set of elements
iteratively, one by one, based on a measure of their relatedness to the previously selected
elements for the neighborhood. The size of the neighborhood determines the number of
elements to be chosen. Once a neighborhood S is computed, all the values of decision
values not related to S are fixed with respect to the currently best solution found so far,
and the IP solver is called to optimize with the remaining variables. The relatedness
measure depends on the element in question.

• Event: let R(e) be the set of resources that could possibly be assigned to event e.
The relatedness of a particular event e and the set of previously selected events E
is given as |R(e) ∩ (∪j∈ER(j))|.

• Resource: similar as for events (above), except E(r) is considered, where E(r) is
the set of events to which resource r could possibly be assigned to.

• Time: only the next time (chronologically speaking) is considered related. Therefore,
if n is the size of the neighborhood, n consecutive times are selected in the end.

• Time Group: the number of times shared with the previously selected time groups.

To conclude for this algorithm describe, we note that it is important to establish a notion
of relatedness between the decision variables that are selected for the neighborhood, as
this makes it more likely that a better solution may be found.

3.6.2 Variable Neighborhood Search and Integer Programming

Further improvements to the VNS approach [FS14] presented in Section 3.1.2 are done
by hybridizing the approach with IP. Therefore, the algorithm relies on the IP model for
XHSTT [KSS15], presented in Section 3.5.

One tenth of the computational time is allocated to the VNS algorithm and the rest is
improved by a matheuristic using IP. The best solution obtained by the VNS algorithm is

34

3.6. Hybrid Approaches

used as a starting point. The matheuristic randomly selects n resources as its neighbor-
hood. The value of n changes during the algorithm execution, depending on how many
times the algorithm managed to compute local optimality (optimality with respect to the
selected neighborhood) in the previous iterations. The assignments of variables related
to the resources in neighborhood are set free, while the others are fixed with respect to
the best solution found so far, and an IP solver is used to calculate the local optimum.
This is repeated until a timeout is reached.

3.6.3 Fix-and-Optimize

The fix-and-optimize approach is a large neighborhood search algorithm that is based on
integer programming. It is applied to the class-teacher timetabling problem with com-
pactness requirements problem, which when translated into XHSTT corresponds to the
Brazilian instances (see [ITC]). Therefore, it deals with a subset of XHSTT. Nevertheless,
we mention it in this section as the algorithm was able to produce good results for the
instances it considers. The approach shares similarities with the previously mentioned
hybrid approaches, but differs in a number of ways. Its initial solution is generated
using an IP solver by generating a solution that satisfied all of the hard constraints (soft
constraints are ignored). It then goes through different neighborhoods, allocating a fixed
amount of time for each neighborhood. It iteratively considers neighborhoods of k classes
until no improvements can be made, and then does the same with k teachers. Initially
the parameter k is set to two and increases each time all options for that parameter are
exhausted and no progress has been made. It is interesting to note that neighborhoods
which considered days where deemed less efficient than the teacher or class neighborhoods
in [DdAB14], but have proven to be very effective in our large neighborhood search
algorithm (see Chapter 6).

3.6.4 Summary

We discussed various approaches that have shown to be effective on existing benchmarks
for XHSTT. Nevertheless, more efficient computation of solutions and optimality proofs
in terms of lower bounds are still active research topics. In the following chapters we
show work in this direction by introducing new paradigms and methods for XHSTT,
based on propositional logic and related approaches. Each chapter represents a distinct
approach to XHSTT.

35

CHAPTER 4
Modeling High School

Timetabling as Partial Weighted
maxSAT

Existing algorithms for XHSTT are mostly based on heuristic (incomplete) techniques, as
discussed in Chapter 3, with the only exception being the integer programming approach
[KSS15]. These incomplete algorithms aim to provide upper bounds to the problem by
searching through only a limited part of the search space. In this chapter, we consider
a new complete (or exact) approach which, contrary to the aforementioned heuristic
algorithms, exhaustively explores the whole search space.

In general, the first step in devising a complete algorithm is to precisely capture the
problem definition using some mathematical formalism. We model the complex formalism
of XHSTT using Boolean variables and basic logical connectives only. Hard constraints are
translated into propositional Boolean formulas (SAT). To account for the soft constraints,
the model is extended with the use of Partial Weighted maxSAT. By using our modeling,
any solution of cost c for the Partial Weighted maxSAT formula can be directly translated
into a XHSTT solution with cost c.

However, there are several additional difficulties. Apart from precisely modeling the
problem using the primitive language of propositional logic, one needs to take care of
important special cases in order to significantly simplify the encoding in practice, as well
as consider different modeling options in the form of cardinality constraints. In addition,
there are many different maxSAT solvers, each with their own solving techniques.

To experimentally evaluate our approach, we took all relevant XHSTT-instances (see
Section 4.3.1) and out of the pool of 39 instances we were able to model 27 of them. The
remaining 12 instances were not modeled because our developed maxSAT formulation in
general does not support resource assignment. We have a specific modeling for resource

37

4. Modeling High School Timetabling as Partial Weighted maxSAT

assignments (Assign Resource Constraints and related constraints) for two instances, but
our current model is not practical for the other remaining instances.

We empirically evaluate different cardinality constraint modelings and solvers, in order
to determine the best modeling for XHSTT. We show that competitive results can be
obtained by modeling XHSTT as Partial Weighted maxSAT. Our method is compared to
the state-of-the-art complete approach based on integer programming, and computational
results demonstrate that we outperform IP on many of the used benchmarks. We are
able to obtain even better results by combining several maxSAT solvers. Furthermore,
we have experimented with an SMT approach, in which soft constraints are gradually
added throughout the search.

It is important to note that the competing IP approach relies on using Gurobi, a highly
engineered piece of software, while we use publicly available (and in some cases open
source) maxSAT solvers that are not as heavily engineered and still provide good results.
In addition, the maxSAT model presented here plays a crucial role in the our large
neighborhood search algorithm (see Chapter 6).

It is worth mentioning that in [AN14] a SAT encoding is studied for a related, albeit
different, problem, namely, the Curriculum-based course timetabling (CTT) problem.
Unfortunately, many important constraints of the general HSTT problem cannot be
formulated as CTT. For example, limit idle times constraints, which typically restrict the
number of idle times between lessons that a teacher may have, are extremely important
constraints in XHSTT and cannot be modeled in CTT. Many CTT constraints are special
cases of XHSTT ones or can be adapted for XHSTT. All of the constraints in CTT but
one can be modeled by XHSTT. The translation of CTT into XHSTT has been studied
in [FSCS]. Due to this fact, new and more generalized encodings must be explored in
order to model XHSTT.

The rest of the chapter is organized as follows: a brief description of the satisfiability
problem (SAT) and its extension maxSAT, together with our maxSAT modeling of
XHSTT is given in Section 4.1. Afterwards, we describe our SMT approach in Section
4.2. Detailed experimental results are given in Section 4.3, where several important
questions are answered. Finally, in Section 4.4 we summarize the results of this chapter
and conclude.

4.1 Modeling XHSTT as maxSAT
We model XHSTT with Partial Weighted maxSAT. Once a XHSTT-instance has been
modeled as maxSAT, any satisfiable assignment of cost c for the maxSAT formulation
directly corresponds to a XHSTT solution of cost c.

We use two approaches for solving XHSTT. The first one is to model all constraints
as maxSAT and give the resulting formula to a maxSAT solver to calculate a solution.
The second approach is an iterative one in which we start with a relaxed version of the
original problem by omitting all soft constraints and iteratively add them during the

38

4.1. Modeling XHSTT as maxSAT

solution process. This second approach corresponds to an SMT approach described in
Section 4.2. As is shown in Section 4.3, the first approach is more successful than the
second one.

We now give a description of the maxSAT problem, the modeling of XHSTT as maxSAT,
and give more details on the SMT approach.

4.1.1 SAT and maxSAT

The Satisfiability problem (SAT) is a decision problem where it is asked if there exists
an assignment of truth values to variables such that a propositional logic formula is true
(that is, the formula is satisfied). A propositional logic formula is built from Boolean
variables using logic operators (such as ∧ AND, ∨ OR, and ¬ NOT) and parentheses.
The formula is usually given as a conjunction of clauses (in Conjunctive Normal Form).
A clause is a disjunction of literals, where a literal is a variable or its negation. For
example, the formula (X1 ∨X2) ∧ (¬X1 ∨ ¬X3) has three variables (X1, X2, and X3),
two clauses, and is said to be satisfiable because there exists an assignment, namely
(X1, X2, X3) = (true, false, false), which satisfies the formula. However, had we inserted
the clause (¬X1 ∨X2 ∨X3) the same assignment would no longer satisfy the formula.
Instead of writing ¬X1 it is common to write X1 and this is the notation used in this
work.

The extension of SAT considered in this work is Partial Weighted maxSAT, in which
clauses are partitioned into two types: hard and soft clauses. Each soft clause is given a
weight. The goal is to find an assignment which satisfies the hard clauses and minimizes
the sum of the weights of the unsatisfied soft clauses. For more information about SAT
and maxSAT, the interested reader is referred to [BHvMW09].

4.1.2 Cardinality Constraints

Cardinality constraints impose limits on the truth values assigned to a set of literals.
These are atLeast_k[xi : xi ∈ X], atMost_k[xi : xi ∈ X] and exactly_k[xi : xi ∈ X],
which constraint that at least, at most or exactly k literals out of the specified ones must
or may be assigned to true. For example, atMost_2{x1, x2, x3, x4} would enforce that
at most two of the given literals may be assigned true, which would make the assignment
(x1, x2, x3, x4) = (1, 0, 1, 1) infeasible and (x1, x2, x3, x4) = (1, 0, 0, 0) feasible. Cardinality
constraints are used frequently when modeling XHSTT as maxSAT.

We differentiate between hard and soft cardinality constraints. Hard cardinality con-
straints are the traditional ones which strictly forbid certain assignments of truth
values to literals. Soft cardinality constraints are similar to hard ones, except that
instead of forbidding certain assignments they penalize them and are added to the
cost function. In our case, the penalty is greater depending on the severity of the
violation. For example, for the soft cardinality constraint atMost_2{x1, x2, x3, x4},
the assignment (x1, x2, x3, x4) = (1, 0, 0, 0) would incur no penalty, while assignments

39

4. Modeling High School Timetabling as Partial Weighted maxSAT

(x1, x2, x3, x4) = (1, 0, 1, 1) and (x1, x2, x3, x4) = (1, 1, 1, 1) would incur a penalty of 1
and 2.

Many different encodings for cardinality constraints exist (e.g. see [Sin], [ANOR]), each
typically requiring a different amount of auxiliary variables and clauses. In the following
we describe the ones used in our implementation in more detail.

Combinatorial Encoding

One way to encode the cardinality constraints is to forbid all undesired assignments.
We refer to this as the combinatorial encoding. In our instances in most cases the
exponential growth of clauses is acceptable, but to avoid cases where it would blow
up we use an alternative encoding (details given later on in the experimental phases).
For example, for atMost_2{x1, x2, x3, x4} we forbid every possible combination of three
literals simultaneously being set to true, giving the following clauses: (x1 ∨ x2 ∨ x3),
(x1 ∨ x2 ∨ x4), (x1 ∨ x3 ∨ x4) and (x2 ∨ x3 ∨ x4).

Bit Adders

The idea is to regard each literal as a 1-bit number and take the sum of all the chosen
literals by using a series of adders which sum a binary number and a 1-bit number. The
end result is a binary representation of the number of literals set. Appropriate clauses
would then be created to forbid specified outputs, which influences which inputs are
feasible. For example, for atMost_1{x1, x2, x3} we encode two adders. The first adder
computes the sum of x1 and x2 and outputs two bits (auxiliary variables) which represent
the result of the addition as a binary number (e.g. for (x2, x1) = (1, 1), the output will
be (a12, a11) = (1, 0)). The second adders takes this sum and adds it with x3 and the
result is stored in auxiliary variables a22 and a21, which represent the final sum as a
binary number. Now, in order to encode atMost_1, we add the following clauses which
forbid the final result to obtain values 2 and 3 in binary form: (a22 ∨ a21) and (a22 ∨ a21).
Therefore, whenever two or more literals are assigned values true one of the two clauses
will be unsatisfied, which enforces the constraint atMost_1 as desired. The number of
clauses and auxiliary variables is O(nlog(n)). We note this encoding does not use unit
propagation to set unassigned literals to false after kmax literals are set to true as some
other encodings and is not optimal with respect to its size, but we wanted to evaluate
how well it would perform in practice.

Sequential Encoding

This encoding was given in [Sin] for the atMost_k case. For completeness, we describe
the encoding here with slightly lower number of auxiliary variables as well as include
atLeast_k case in the encoding. The sequential encoding [Sin] is closely related to unary
numbers. The unary number representation for an integer n as given in [BBa] is:

40

4.1. Modeling XHSTT as maxSAT

∧
i∈[1,n−1]

(ui ⇒ ui−1). (4.1)

The interpretation is that the value assigned with this representation is equal to i, where
i is the largest number such that ui = >. For example, if we wish to encode a variable
that can receive values from the interval [0, 5], we need to create five auxiliary variables
ai. If the variable is assigned value 3, then the first three auxiliary variables will be set
to true, while the rest will be false: (a1, a2, a3, a4, a5) = (1, 1, 1, 0, 0).

We now continue with the sequential encoding as given in [Sin]. Given a set of literals
{xi : i ∈ [1..n]} for which we wish to encode a cardinality constraint, the main idea of the
encoding is to calculate the sum of all literals, similar as in the Bit Adder encoding, but this
time using the unary number representation instead of a binary number representation, as
addition with unary numbers is simple. This is done by encoding n unary numbers where
the i-th unary number represents the i-th partial sum of the literals. We then forbid
specified assignments of values to the unary numbers to enforce the desired encoding.

For example, for atMost_1{x1, x2, x3}, we require three unary numbers to store three
partial sums. For the assignment (x1, x2, x3) = (1, 0, 1), the unary numbers representing
partial sums will take values 1, 1 and 2: (u11, u12, u13) = (1, 0, 0), (u21, u22, u23) =
(1, 0, 0) and (u31, u32, u33) = (1, 1, 0). Because we are encoding atMost_1, we add
clauses which forbid the last partial sum to obtain the value 2 and greater, making the
previous assignment infeasible. However, if the assignment was (x1, x2, x3) = (0, 0, 1),
then the partial sums would be (u11, u12, u13) = (0, 0, 0), (u21, u22, u23) = (0, 0, 0) and
(u31, u32, u33) = (1, 0, 0), which is a feasible assignment.

Taking into consideration the presented idea and after doing some optimization to remove
redundant clauses, we arrive at the following:

We denote kmax and kmin to be the maximum and minimum number of literals which may
be set to true and with Si,j we denote the j-th variable of the i-th unary number. Note
that the i-th unary number representing the i-th partial sum we need min(i+ 1, kmax)
auxiliary variables (e.g. for the 1st unary number, which represents the partial sum of
the first two literals, there is no need to use more than two auxiliary variables, as the
partial sum can be at most two). This fact will also be used in the encoding indicies.
Since we are constraining that at most kmax can be set, therefore each partial sum only
needs to represent a number in the interval [0, kmax] (meaning kmax auxiliary variables
are needed), rather than the complete partial sum which ranges from [0, n].

If the i-th partial sum was greater or equal than m, then (i + 1)-th partial sum must
also be greater or equal than m:

∧
i∈[0..n)

j∈[0..,kmax)
(i+1≥kmax∨j≤i)

(Si,j ⇒ S(i+1),j) (4.2)

41

4. Modeling High School Timetabling as Partial Weighted maxSAT

If the i-th literal is set to true, then the i-th partial sum should be at least greater than
the (i− 1)-th partial sum:

∧
i∈[1..n)

j∈[1..,kmax)
(i+1≥kmax∨j≤i)

(xi ∧ S(i−1),(j−1) ⇒ S1,j) (4.3)

If the i-th literal is set to true, the corresponding i-th partial sum must be equal to
at least one (without this constraint, having all partial sums equal to zero would be
considered a valid solution):

∧
i∈[0..n)

(xi ⇒ Si,0) (4.4)

The difference between the (i+ 1)-th and the i-th partial sum cannot be greater than 1:

∧
i∈[0..n)

j∈[0..,kmax−1)
(i+1≥kmax∨j≤i)

(Si,j ⇒ S(i+1),(j+1)) (4.5)

If the difference between the (i+ 1)-th and the i-th partial sum is at least equal to one,
this must be because the (i+ 1)-th literal is true:

Corner cases: ∧
j∈[0..,kmax)

(Si,j ⇒ xi) (4.6)

General cases: ∧
i∈[0..n−1)

j∈[0..,kmax)
(i+1≥kmax∨j≤i)

(Si,j ∧ S(i+1),j ⇒ xi+1) (4.7)

The previous constraints were to ensure that the partial sums are calculated correctly.
Note that it is not always necessary that the partial sums are calculated correctly, it is
enough to make sure that their values do not exceed the desired value. Because of this,
if we only wish to encode atMost_k, we can remove 4.6, since e.g. if kmax = 3 and we
only have one literal set to true, having the partial sums being set to the value three will
still be a valid solution, even though they are not correct partial sum. A similar situation
holds if only atLeast_k is required, where we can ignore 4.5. Note that if we wish to
encode both atMost_kmax and atLeast_kmin using the same partial sums (auxiliary
variables), then all of the encodings must be included. In our implementation, both
equations are always used, as explained in the soft version of this encoding.

Now, in order to encode atLeast_kmin (with kmin 6= 0) or atMost_kmax (with kmax 6= n),
we encode the following:

42

4.1. Modeling XHSTT as maxSAT

The last partial sum must be at least equal to kmin and the following unit clause enforces
this:

(Sn−1,kmin−1) (4.8)

If a partial sum has reached the maximum value kmax, then its appropriate variable must
be set to false: ∧

i∈[kmax−1..n)
(xi ∨ S(i−1),(kmax−1)) (4.9)

Note that as soon as kmax literals are set to true, the remaining unassigned literals will
all be forced by unit propagation to be set to false by 4.9.

This encoding requires O(nk − k2) auxiliary variables and O(kn) clauses.

Cardinality Networks

Cardinality networks are described in [ANOR]. The main idea is to create two types
of encodings: one that sorts a set of literals and one that merges two sorted arrays of
literals. For sorting and merging, new auxiliary variables are created which capture the
results. To increase clarity we give some examples.

For sorting, if an assignment for literals is (x1, x2, x3, x4) = (0, 0, 1, 0), an encoding is
create which forces the new auxiliary variables to be (a1, a2, a3, a4) = (1, 0, 0, 0). If the
initial assignment was (x1, x2, x3, x4) = (1, 0, 0, 1), then the auxiliary variables are set to
(a1, a2, a3, a4) = (1, 1, 0, 0).

For merging, if two sets of sorted literals are assigned the following truth values:
(x1, x2, x3) = (1, 1, 0) and (y1, y2, y3) = (1, 0, 0), the output auxiliary variables will
be forced to the assignments (a1, a2, a3, a4, a5, a6) = (1, 1, 1, 0, 0, 0). One could also view
sorted literals as a unary number and their merge as an addition between two unary
numbers.

The idea of cardinality networks is to sort the given set of literals and then forbid certain
outputs. For example, if wish to enforce atMost_k, we first sort the literals and then
forbid the (k + 1)-th output, meaning that there cannot be more than (k + 1) literals set
to true. For atLeast_k, the k-th output is forced to be true, meaning that at least k
literals must be set to true. This sorting is performed in a recursive fashion, in similar
way to which mergesort sorts integers: the set of literals are split into two equal sets,
each set is sorted recursively, and then are merged together.

There are a number of intricate details which we do not describe here, but rather direct
the interested reader to the original paper [ANOR]. The number of auxiliary variables
and clauses required for this encoding is O(nlog2k).

4.1.3 Soft Cardinality Constraints

Soft cardinality constraints are similar to the previous ones, except that penalize violations
of the constraint rather than forbidding it.

43

4. Modeling High School Timetabling as Partial Weighted maxSAT

Combinatorial Encoding

We present the encoding for the soft cardinality constraint atLeast_k[xi : xi ∈ X], while
atMost_k[xi : xi ∈ X] is done in a similar fashion:

∧
j∈P

(Aj → atLeast_j[xi : xi ∈ X]) ∧
∧

j∈P

(w(j)(Aj)) (4.10)

Where Ai are new auxiliary variables, P is a set of integers in the interval [1, k] and
w(j) is a weight function which depends on j, while the atLeast is encoded by a basic
encoding. The second equation is a series of soft unit clauses containing Aj and its
weights are w(j). The auxiliary variables serve as selector variables, which effectively
allow or forbid certain assignments, depending on their truth value.

For example, for the encoding of atLeast_2{x1, x2, x3}, we obtain the following clauses:
(a1 ∨ x1 ∨ x2 ∨ x3), (a2 ∨ x1 ∨ x2 ∨ x3), (a2 ∨ x1 ∨ x2 ∨ x3), (a2 ∨ x1 ∨ x2 ∨ x3), (w a1),
(w a2). The last two clauses are soft clauses with weights w.

Similar to the case before, an alternative encoding is used to avoid blow ups (details
given later on in the experimental phases).

Bit Adders

We use bit adder encoding described previously, but instead of forbidding certain outputs,
we penalize their assignments. Note that the weights may be assigned to each undesired
output completely independently, unlike in the combinatorial encoding.

Sequential Encoding

The original version of the sequential encoding [Sin] was designed for standard cardinality
constraints, not soft ones. We build upon the main idea and extend the encoding for soft
cardinality constraints as well.

The main idea is similar as before: calculate the sum of all literals, representing all partial
sums as unary numbers. However, in the case of soft cardinality constraints, the values
of the partial sums can exceed kmax, rather than being capped at kmax. This leads to
an increase in auxiliary variables and clauses used from O(nk − k2) to O(n2). This also
reflects in the equations for calculating partial sums, which are the same ones used in
the standard cardinality constraint except that we use n instead of kmax.

The difference comes in the equations which encode atLeast_kmin and atMost_kmax

(4.8 and 4.9). Instead, we penalize certain assignments for the last partial sum (which
contains the complete sum).

In our instances, we use two different cost functions: linear and quadratic. Each of
them penalize assignments to variables based on how distant they are from the interval
[kmin, kmax]. For example, for kmin = 2 and kmax = 4, if no literals are set to true, then

44

4.1. Modeling XHSTT as maxSAT

the penalties for linear and quadratic cost functions are 2 and 22, respectively. If 7 literals
are set true, then the penalties are 3 and 32. However, if the number of set literals are
which in the interval [2, 4], then no penalty incurs. To model these cost functions for
the atLeast_kmin case, we use the following encodings (a similar encoding is used for
atMost_kmax):

∧
i∈[1..kmin)

(wi(S(n−1),(i−1))) (4.11)

Where w(i) is the associated cost function with the unit clause. For the linear cost
function, it is simply a constant w(i) = c, while for the quadratic case it is w(i) =
(kmin − (i− 1))2 − (kmin − i)2. In principle, any nonlinear cost function can be modeled
by the following way:

(w0(S(n−1),0)) (4.12)

∧
i∈[1..kmin]

(wi(S(n−1),(i−1) ∨ S(n−1),i)) (4.13)

Cardinality Networks

Cardinality networks [ANOR] can be used to model soft constraints and this has been
done in [AN14]. However, when doing so, since every output must be penalized1, they
require more auxiliary variables and degenerate into Sorting Networks [ES06] from which
they offer improvements, meaning the number of auxiliary variables and clauses goes up
to O(nlog2n).

4.1.4 Special Cases For Cardinality Constraints

There are a number of special cases for the encodings which may occur.

A very important special case for atLeast_k[xi : xi ∈ X] is when k = |X| (a similar case
for atMost_k[xi : xi ∈ X] occurs when k = 0) and the weight function w(j) is of the
form w(j) = c ∗ j, where c is some constant. In this case, instead of using any of the
previously described encodings, we encode the following soft unit clauses:

∧
xi∈X

((c)(xi)) (4.14)

1Note that a similar situation happened in the soft version of the sequential encoding. In the hard
version, the partial sums could not exceed value k, while in the soft version they could, which led to an
increase in variables and clauses required.

45

4. Modeling High School Timetabling as Partial Weighted maxSAT

A simple case is when kmin = 1, in which a single clause which consists of the disjunction
of literals in question is required.

Note that atLeast_kmin is equivalent to atMost_(n− kmin) of the negated literals. For
example, atLeast_2{x1, x2, x3} is equivalent to atMost_1{x1, x2, x3}. In our implemen-
tation for the combinatorial encoding, we choose to do this conversion if k > n/2. This
kind of conversion only makes sense for hard cardinality constraints. To clarify this, note
that for atLeast_kmin and atMost_kmax we create encodings atLeasti and atMost_kj

where i ∈ [0, kmin] and j ∈ [kmax + 1, n]. Switching from atLeast to atMost does not
reduce the number of encodings required in the soft case as we need to appropriately
penalize all undesired assignments (we assign different penalties to assignments depending
on the number of literals assigned to true), while in the hard case we could simply forbid
undesired assignments without distinguishing any costs between undesired assignments.

For cases where we use intervals of allowed values (sequential and cardinality networks)
it is frequently required that atLeast_kmin and atMost_kmax are encoded on the same
literals, and we can perform both the encoding using the same auxiliary variables as
described previously. Note that for the combinatorial encoding two independent encodings
must be made as there is no sharing of variables or clauses. The number of auxiliary
variables and clauses depends on kmax, if n− kmin < kmax we perform the cardinality
encoding on the negated literals with kmin′new = n − kkmax and kmax′new = n − kmin.
Once again, this kind of conversion only applies for hard cardinality constraints for similar
reasons as before.

4.1.5 XHSTT constraints as maxSAT

In practice, some constraints are never used as soft constraints (e.g. a student cannot
attend two lessons at the same time). Because of this, we only give the encodings for
soft constraint where it is appropriate in order to avoid unnecessary technicalities.

We simplify the objective function by not tracking the infeasibility value, rather regarding
it was zero or nonzero. That is, we encode hard constraints of XHSTT as hard clauses
and we do not distinguish between two different infeasible solution in terms of quality.
By doing so we simplify the computation, possibly offering a faster algorithm.

As noted in Section 2.2.3, each constraint applies to a subset of events, resources, times,
and other XHSTT entities. These will be denoted by the index spec, e.g. Espec, Tspec,
Rspec. We now give the modeling of constraints described in 2 as Partial Weighted
maxSAT.

Assign Time Constraints

We define decision variables Ye,t and other constraints rely on them heavily. For each
e ∈ E and t ∈ T , variable Ye,t indicates whether event e is taking place at time t. Each
event must take place for a number of times equal to its duration d:

46

4.1. Modeling XHSTT as maxSAT

∧
e∈E

(exactly_d[Ye,t : t ∈ T]) (4.15)

Avoid Clashes Constraint

We introduce variables Ye,t,r which indicate whether event e at time t is using resource r.
If an event is using a resource at a time, that means that the event must also be taking
place at the same time:

∧
e∈E
t∈T
r∈R

(Ye,t,r ⇒ Ye,t) (4.16)

Let E(r) be the set of events which require resource r. The constraint is encoded as
follows:

∧
r∈Rspec

t∈T

(at_Most_1[Ye,t,r : e ∈ E(r)]) (4.17)

Avoid Unavailable Times Constraints

In order to keep track whether a resource r is busy at time t, we introduce auxiliary
variables Xt,r for each resource. They are defined as:

∧
r∈R
t∈T

(Xt,r ⇔
∨

e∈E(r)
Ye,t,r) (4.18)

We now encode the previously described constraint by forbidding assignments at specified
times:

∧
r∈Rspec

(atMost_0[Xt,r : t ∈ Tspec]) (4.19)

If this constraint is used as a soft constraint, the soft cardinality constraint is used
instead.

Split Events Constraints

In the formal specification of XHSTT, any time can be defined as a starting time as
events can be split into multiple subevents. One could regard a starting point as a time
t where a lecture takes place, but has not took place at t − 1. However, while this is
true, this is not the only case when a time would be regarded as a starting time, since
e.g. time t = 5 and t = 6 might be interpreted as last time of Monday and first time

47

4. Modeling High School Timetabling as Partial Weighted maxSAT

of Tuesday and an event could be scheduled on both of these times, but we may regard
both times as starting times. It is also worthy to note that we can also regard that as
a double (block) lecture, even though it spans over two days (this was the case in the
previous version of the Brazilian instances). Such a double lecture is not the ideal double
lecture, but is still better than splitting the lecture into two lectures and assigning them
in another fashion. Therefore, any time can in general be regarded as a starting time.
Other constraints give more control over these kind of assignments.

For each event e, variable Se,t indicates whether event e has started taking place at time
t. For example, if event e had a duration of two and its corresponding Ye,t were assigned
at times t and t + 1, then Se,t = true, Se,(t+1) = false. Formalities that are tied to
starting times with regard to the specification are expressed as follows:

Event e starts at time t if e is taking place at time t and it is not taking place at time
(t− 1): ∧

e∈Espec
t∈T

(Ye,t ∧ Y e,(t−1) ⇒ Se,t) (4.20)

Note that the other side of the implication does not hold (see first paragraph on this
section). If a starting time for event e has been assigned at time t, then the corresponding
event must also take place at that time:∧

e∈E
t∈T

(Se,t ⇒ Ye,t) (4.21)

This constraint specifies the minimum Amin and maximum Amax amount of starting
times for the specified events:

∧
e∈Espec

(atLeast_Amin[Se,t : t ∈ T] ∧ atMost_Amax[Se,t : t ∈ T]) (4.22)

In addition, this constraint also imposes the minimum dmin and maximum dmax duration
for each subevent. For each specified event e ∈ Espec, and duration d, variable Ke,t,d

indicates that event e has a starting time at time t of duration d. Formally:

If time t has been set as a starting time, associate a duration with it2:

∧
e∈Espec

t∈T

(Se,t ⇒
∨

dmin≤d≤dmax

Ke,t,d) (4.23)

When Ke,t,d is set, the event in question must take place during this specified time (where
set D is the set of integers from the interval [dmin, dmax]):

2Remark: We could have encoded that exactly one of the right hand sides literals must be chosen,
but this is handled in the later parts of this encoding in Equation 4.25.

48

4.1. Modeling XHSTT as maxSAT

∧
e∈Espec

t∈T
d∈D

Ke,t,d ⇒
∧

i∈[0,d−1]
Ye,(t+i) (4.24)

If a duration has been specified for time t, make sure that other appropriate Ke,t,d

variables must be false:

∧
e∈Espec

t∈T
d∈D

(Ke,t,d ⇒
∧

dmin≤g≤dmax

∧
i∈[0,d−1]
g 6=d∧i 6=0

Ke,t+i,g) (4.25)

If a subevent of duration d has been assigned and immediately after the event is still
taking place, then assign that time as a starting time:

∧
e∈Espec

dmin≤d≤dmax
t∈T∧t+d<|T |

Ke,t,d ∧ Ye,t+d ⇒ Se,t+d (4.26)

Prefer Times Constraints

The constraint is encoded as:

∧
e∈Espec

(atMost_0[? : t ∈ T \ Tspec]) (4.27)

where ? is either Se,t or Ke,t,d, depending on whether the optional parameter d is given.
Note that this constraint is not the same in general when the optional parameter is not
given and when d = 1.

Distribute Split Events Constraint

There must be at least Amin starting times with given duration d:

∧
e∈Espec

(atLeast_Amin[Ke,t,d : t ∈ T]) (4.28)

There must be at most Amax starting times with given duration d:

∧
e∈Espec

(atMost_Amax[Ke,t,d : t ∈ T]) (4.29)

Similar as with Se,t, for the last d− 1 times, Ke,t,d are set to false and can be removed
from the equations.

49

4. Modeling High School Timetabling as Partial Weighted maxSAT

Spread Events Constraints

First, we introduce auxiliary variables Zeg,t.

An event group eg is a set of events. Variable Zeg,t indicates that an event from event
group eg has a starting time at time t. Formally,

∧
eg∈EGspec

t∈T

(Zeg,t ⇔
∨

e∈eg

Se,t) (4.30)

This constraint specifies event groups and time groups to which it applies. For each such
time group the minimum and maximum number of starting times an event must have
within times of that time group. Note that an event group may consist of a single event
and that it is not the same to have two event groups with one event or one event group
with two events. Continuing with the constraint encoding, let TGspec denote the set of
sets of times:

There must be at least dmin
i starting times within the given time groups (min is a

subscript, not exponentiation):

∧
tgi∈T Gspec
eg∈EGspec

(atLeast_dmin
i [Zeg,t : t ∈ tgi]) (4.31)

There must be at most dmax
i starting times within the given time groups:

∧
tgi∈T Gspec
eg∈EGspec

(atMost_dmax
i [Zeg,t : t ∈ tgi]) (4.32)

If this constraint is used as a soft constraint, the soft cardinality constraint is used
instead. We note that if two events from the same event group are taking place at the
same time, the above encoding will not be properly capture the constraint. However,
given the nature of the constraint, all events within the same event group are likely to
share a resource and Avoid Clashes Constraint will make sure that they do not take place
at the same time. This is the case with every instance in XHSTT.

Limit Busy Times Constraints

We define the auxiliary variables Btg,r, which indicate whether resouce r is busy within
time group tg. A resource is busy at a time group tg iff it is busy in at least one of the
times of tg. Let TGspec denote the specified set of time groups. We define the variables
Btg,r as:

∧
r∈R

tg∈T Gspec

(Btg,r ⇔
∨

t∈tg

Xt,r) (4.33)

50

4.1. Modeling XHSTT as maxSAT

If a resource r is busy during a time group, it must be busy for at least bmin and at most
bmax times during that time group. The constraint is encoded as:

∧
tg∈T Gspec

r∈Rspec

(Btg,r ⇒ atLeast_bmin[Xt,r : t ∈ tg] ∧ atMost_bmax[Xt,r : t ∈ tg]) (4.34)

If this constraint is used as a soft constraint, the soft cardinality constraint is used
instead.

Cluster Busy Times Constraints

Recall the auxiliary variables Btg,r defined in the previous constraint. Specified resources
must have at least bmin

tg busy time groups:

∧
r∈Rspec

(atLeast_bmin
tg [Btg,r : tg ∈ TGspec]) (4.35)

There must be at most bmax
tg busy time groups:

∧
r∈Rspec

(atMost_btg
max[Btg,r : tg ∈ TGspec]) (4.36)

If this constraint is used as a soft constraint, the soft cardinality constraint is used
instead.

Limit Idle Times Constraints

To encode the constraint, three different types of auxiliary variables are used.

Variables Gtg
t,r and Htg

t,r indicate that a resource is being used strictly before or strictly
after the t− th time in time group tg, where a time group tg is viewed as an ordered list.
Formally:

∧
tg∈T Gspec

t∈tg
r∈Rspec

(Gtg
t,r ⇔

∨
i<t ∧ i∈tg

Xi,r) (4.37)

∧
tg∈T Gspec

t∈tg
r∈Rspec

(Htg
t,r ⇔

∨
i>t ∧ i∈tg

Xi,r) (4.38)

The first and last time within a group can never have their appropriate Gtg
t,r and Htg

t,r be
set to true, respectively, and can be excluded from the above equation.

51

4. Modeling High School Timetabling as Partial Weighted maxSAT

Variables Itg
t,r indicates that a resource is idle at time t with respect to time group tg (an

ordered list of times) iff it is not busy at time t, but is busy at an early time and at a
later time of the time group tg. For example, if a teacher teaches classes Wednesdays
at Wed2 and Wed5, he or she is idle at Wed3 and Wed4, but is not idle at Wed1 and
Wed6. Formally,

∧
tg∈T Gspec

t∈tg
r∈Rspec

(Itg
t,r ⇔ Xt,r ∧Gtg

t,r ∧H
tg
t,r) (4.39)

We now encode the constraint:

There must be at least idlemin idle times during a time group:∧
tg∈T Gspec

r∈R

(atLeast_idlemin[Itg
t,r : t ∈ tg]) (4.40)

There must be at most idlemax idle times during a time group:∧
tg∈T Gspec

r∈R

(atMost_idlemax[Itg
t,r : t ∈ tg]) (4.41)

If this constraint is used as a soft constraint, the soft cardinality constraint is used
instead.

Order Events Constraints

If the first event in a pair is taking place at time t, then the second event cannot take
place at time t nor at any previous times (E2

spec is the set of pairs of events given in the
constraint):

∧
(e1,e2)∈E2

spec
t∈Tspec

(Ye1,t ⇒
∧

i∈[0,t]
Y e2,i) (4.42)

If the first event in a pair is taking place at time t, then the second event cannot take
place in the next Bmin times:

∧
(e1,e2)∈E2

spec
t∈Tspec

(Ye1,t ⇒
∧

j∈[t+1,t+Bmin]
Y e2,j) (4.43)

If the first event in a pair is taking place at time t, then the second event must take place
within the next (Bmax + 1) times:

52

4.1. Modeling XHSTT as maxSAT

∧
(e1,e2)∈E2

spec
t∈Tspec

(Ye1,t ⇒
∧

k∈[t+1,t+Bmax+1]
Ye2,k) (4.44)

Link Events Constraints

This constraint specifies a certain number of event groups and imposes that all events
within an event group must be held simultaneously. Let EGspec denote this set of sets of
events:

All events within an event group must be held at the same times:

∧
eg∈EGspec

t∈T
ej ,ek∈eg

(Yej ,t ⇔ Yek,t) (4.45)

If the constraint is declared a soft one, we may apply a similar technique that was
presented when soft cardinality constraint were shown: create an auxiliary variable which
implies every clause and insert a soft unit clause containing that auxiliary variable along
with the appropriate weight. However, with this encoding only the sum of deviations
cost function can be encoded, which is the only cost function used in the instances for
this constraint.

Preassign Resource Constraints

We define decision variables which indicate whether an event is using a resource at a
time. If an event is using a resource at some time, the event must take place at that time
(Rspec(e) is the set of resources preassigned for event e):

∧
e∈Espec

t∈T
r∈Rspec(e)

(Ye,t ⇒ Ye,t,r) (4.46)

In the specification of the general XHSTT, this constraint is given when events are
defined, rather than a separate constraint.

Preassign Time Constraints

Similar to Preassign Resource Constraints, certain events have a fixed schedule. For
example, an external professor is available only on Monday from 8:00-10:00.

This consist of adding a series of unit clauses of the appropriate Ye,t.

53

4. Modeling High School Timetabling as Partial Weighted maxSAT

Assign Resource Constraints

Each event requires a certain amount of resources in order to be scheduled. These
resources can be teachers, classes, rooms, etc. For example, in order for a math lesson to
take place a math teacher, a room, and a projector are needed. It might also be the case
that two teachers are needed, e.g. one lecturer and one as an assistant. This has been
implemented into the general HSTT specification as follows:

Each event has a number of roles. To each of these roles exactly one resource of a
specific resource type must be assigned. The role names within an event must be unique,
but different events may have the same roles requiring different types of resources. For
example, an event might require the following roles with the appropriate resource types
given in parenthesis: ’Teacher’ (teacher), ’Assistant’ (teacher), ’Class’ (class), ’Seminar
room’ (room). This constraint merely requires that a resource of a given type must be
assigned. For the given role, a variable M role

e,t,r is created, which indicates whether event e
at time t is using resource r to fulfill the given role. The constraint is encoded as follows:

If an event is taking place, it’s specified role must be fulfilled:∧
e∈Espec

t∈T

(Ye,t → exactly_1[M role
e,t,r : r ∈ Rspec_resource_type]) (4.47)

If a resource has been chosen to fulfill an event’s role at some time, mark that resource
as used by the event at that time: ∧

e∈Espec
t∈T

r∈Rspec_resource_type

(M role
e,t,r → Ye,t,r) (4.48)

The previous two encodings hold individually for each Assign Resource Constraint. The
next encoding is done after all constraints of type Assign Resource Constraints and is in
a sense a global constraint:

Avoid Split Assignments Constraint

This constraint applies to the specified role and to a specified resource type. We create
auxiliary variables V role

e,r which indicate whether an event e is using a resource r to fulfill
its role at some point in time:

∧
e∈Espec

Rspec_resource_type
t∈T

(M role
e,t,r → V role

e,r) (4.49)

The constraint is now encoded as:

54

4.1. Modeling XHSTT as maxSAT

∧
e∈Espec

(atMost_1[V role
e,r : r ∈ Rspec_resource_type]) (4.50)

If this constraint is used as a soft constraint, the soft cardinality constraint is used
instead.

Prefer Resources Constraints

Similar to before, this constraint applies for a specified role. The encoding relies on
auxiliary variables created in assign resource constraints:

∧
e∈Espec

t∈T

(atLeast_1[M role
e,t,r : r ∈ R \Rspec]) (4.51)

Limit Workload Constraints

We do not provide the general formulation, but rather focus on an important special
case which is used in the instances. For each resource assigned to a subevent (solution
resource sr), we calculate it’s workload as:

Workload(sr) = Dur(subevent) ∗Workload(subevent)/Dur(event) (4.52)

Where the workload of a subevent is a constraint that is by default set to be equal to
the duration of the event, but can be specified differently in the definition of the event.
If events all have their default values for their workload (workload(e) = duration(e))
(which is the case in the instances), then the encoding can be significantly simplified.
The observation here is that the formula simplifies to the case where every unit of time
in which a resource is busy counts as one workload unit, if the resource does not have
a preassigned workload in which case it is preassigned to the event. However, for the
purpose of encoding, we may treat all resources as not having preassigned workloads,
but subtract from the given minimum and maximum workload by the constraint by an
amount equal to the preassigned workload minus one and do so for each event in which
the resource has a preassigned workload. The constraint is now simply encoded as:

∧
r∈Rspec

(atLeast_Workmin[Xt,r : t ∈ T] ∧ atLeast_Workmax[Xt,r : t ∈ T]) (4.53)

Special Cases For Constraints

In this section we look into important special cases which may simplify the encodings
significantly.

55

4. Modeling High School Timetabling as Partial Weighted maxSAT

If an Assign Resource Constraint is given and all of the resources it references behave
the same, then instead of encoding Assign Resource and Avoid Clashes Constraints for
those resources, we may use the following encoding:

∧
t∈T

(atMost_h[Ye,t : e ∈ Espec]) (4.54)

Where Espec are events that require the mentioned resources and h is number of resources
of the described kind. This case arises in EnglandStPaul and FinArtificialSchool instance
and allows us to encode these two instances, even though we do not model Assign
Resource Constraints in general.

If there is only one role per resource type specified in the requirements of an event, then
the encoding of the auxiliary variables in Assign Resource Constraints may be avoided.

If the resources specified in Assign Resource Constraints are not subjected to Limit Idle
Constraints and assigning more than one resource to an event may be feasible, then a
simpler encoding may be used for ARC, in which atLeast_1 is used instead of using
exactly_1. This case happens typically in instances which require the assignment of
rooms. If two rooms are assigned to an event, in the solution we would simply pick only
one. However, this cannot be applied in general e.g to teachers.

Another problem with ARC is that certain symmetries may arise, increasing the solution
time. For example, if we have two ARCs, each with their specified role. If these two
roles both use the same resource type and no further constraints are imposed on these
resources, then we may swap their assignments of resources and still obtain the same
in(feasible) solution, which is undesirable. Therefore, encoding a sorting is very useful
and can be done efficiently since the unary representation is used.

In some cases, by knowing the semantics of each constraint, simpler encodings can be
produced. This is encountered in SpainInstance in which a large amount of Spread Events
Constraints are encoded which state that lessons can have at most one starting point
in two consecutive days. However, this is not trivial to specify in the general HSTT
specification and will produce a large number of clauses, which could be avoid if a special
encoding for such a constraint is encoded.

Another interesting case is the encoding of Ke,t,d. These are created in order to comply
with the formal specification of XHSTT. In some cases, it suffices to encode Ke,t,d as (i
is an integer):

Ke,t,d ↔ (
∧

i∈[0..d−1]
Ye,t+i) ∧ Y e,t+d (4.55)

In preliminary experiments this encoding showed to be effective for some instances instead
of the general encoding of Ke,t,d. If this encoding is used, other constraints might be
affected, such as Split Events Constraint and need to be changed accordingly. In order

56

4.2. SMT approach

to comply with the requirements of XHSTT, we have continued further with the general
encoding of Ke,t,d (as given in Section 4.1.5 under Split Events Constraints) and have
not performed detailed experiments for this special case.

4.1.6 Additional Remark

We recommend keeping the weights for soft clauses as low as possible. For example, if we
would multiply the weights of the constraints in XHSTT by 100, this would not change
the set of feasible solutions, but may have a negative impact on the performance of
maxSAT solvers. However, this depends on the maxSAT technique used. For example, a
linear upper bounding algorithm for maxSAT would see a significant drop in performance
because very large cardinality constraints would be generated, but core-guided are likely
to see no difference.

4.2 SMT approach
We investigate an SMT approach with maxSAT, where we start with a relaxed version
of a XHSTT-instance by omitting the soft constraints. After a solution has been found
for this simplified problem, it is examined with respect to the original problem and soft
constraint violations as detected. These violated constraints are encoded as maxSAT and
are inserted into the relaxed formula and the solution process is initiated again. This
is done iteratively until a solution is found such that all constraints that have not been
added are satisfied. In this case, the solution found is optimal. The idea is that perhaps
not all constraints from the original XHSTT-instance are needed in order to find the
optimal solution, but only a subset of them, and that it will be able to find the solution
faster with less constraints.

All of the constraints are encoded as described in the previous section, except for the
soft cardinality constraints. In the beginning, soft constraints are encoded atLeast_0 or
atMost_n (where n is the number of literals in that constraint), making them trivially
satisfiable. When it is concluded that the original constraint is violated, the degree of the
cardinality constraint is changed by one step (e.g. atLeast_i will become atLeast_(i+1)
and atMost_j will become atMost_(j + 1)). This change is performed by inserting the
appropriate clauses. Therefore, if the constraint is violated in enough iterations, the
complete cardinality encoding will be inserted.

There are some exceptions to the above. When the constraint atMost_0 is violated and
the cost function linear with respect to the number of violating literals, we insert unit
clauses (w xi) for each violating literal, where w is the constraint weight and xi is the
violating literal.

The other exceptions are the Prefer Times Constraint and Limit Idle Times Constraint.
These constraints typically employ atMost_0 cardinality constraints and when a violation
is detected, we not only insert clauses as described above, but also insert clauses for each
literal that lies within the same day of the violation.

57

4. Modeling High School Timetabling as Partial Weighted maxSAT

4.2.1 Technical details

We developed an SMT algorithm which is based on an upper bounding maxSAT algorithm.
In order to explain our approach, we first explain the linear algorithm for maxSAT.

With regard to the traditional decision problem, the problem of solving a SAT instance
while fixing certain variables is known as “solving under assumptions”. This can be done
by having the solver first “branch” on the fixed variables and then continue doing a regular
SAT search. However, this kind of technique cannot be directly used for maxSAT because
the underlying formula is being changed during the solution process. We elaborate on
this further below.

We use the the Linear maxSAT algorithm (Algorithm 6.1) [LBP10] which makes repeated
calls to a SAT solver and after each call adds constraints which ask for a better solution
than the previous one. The optimal solution is obtained when the SAT solver returns
false. We opted to use the linear algorithm as it was one of the algorithms that had
good performance for XHSTT (see Section 4.3).

Algorithm 4.1: Linear Algorithm for maxSAT
1 begin
2 P ←− maxSAT formula
3 c =∞
4 bestAssignment = ∅
5 while isSatisfiable(P) do
6 bestAssignment = satisfiableAssignment(P)
7 c←− cost(P, bestAssignment)
8 P = P ∪ (

∑
i∈K softConstraint(i) < c)

9 end
10 end

The original maxSAT formula is changed because bounds are added at each iteration, in
addition to learned clauses which are added to direct the search (see [SLM09] for clause
learning). It is not straightforward to remove the added clauses at later stages of the
algorithm, because clauses are learned with respect to other clauses (including other
learned clauses) and removing some clauses may therefore invalidate previously learned
clauses. To the best of our knowledge, no maxSAT solver supports this kind of search. An
alternative is to restart the solver after each call, losing possibly valuable learned clauses
and bounds. This motivated us to investigate a different approach: instead of restarting
between calls, we keep the modified formula intact. Thus, each call to the solver depends
on all previous calls due to the bounds and learned clauses. When querying the solver
with a new set of assumptions, it will attempt to report the best possible solution, but
only if it is better than all of the previously computed solutions. To this end, we modified
the linear algorithm in the open-source maxSAT solver Open-WBO [MML]. A different
approach related to ours is presented in [MJML] for lower bounding maxSAT algorithms.

58

4.2. SMT approach

In our SMT approach, each time a new optimal solution with respect to the currently
considered soft constraints is found it is examined and new soft constraints are inserted,
meaning that the sum of the weights of soft constraints changes and the previously
inserted clauses regarding the cardinality constraints (third line in the while loop of
6.1.2) should be invalidated. In order to invalidate them, we performed the following:
when inserting the clauses, we add them as usually, but add a negative literal b to each
clause. During the current iteration, this literal is treated as an assumption which assigns
it false (b = true). When the cardinality constraints inserted need to be invalidated,
this is simply done by inserting a hard unit clause (b), which forces the assignment
of b = false, making all the clauses added as cardinality constraints for the previous
iteration satisfiable (effectively invalidating them).

We summarized the above in Algorithm 4.2 and 4.3. With ub and lb we denote the upper
and lower bound respectively, with maxSATcost the cost of the solution with respect to
the maxSAT problem currently analyzed, while XHSTTcost is the cost with respect to
all constraints of the problem. Note that when a solution of cost c is found for a relaxed
version of a XHSTT-instance, c is a lower bound for the original XHSTT problem.

Algorithm 4.2: SMT for XHSTT Algorithm Outline
1 begin
2 Irelax ←− encodeHardConstraints(Ioriginal)
3 ub =∞
4 lb = 0
5 bestAssignment = ∅
6 globally_solved = false
7 while globally_solved = false do
8 v ←− createNewV ar()
9 a = modifiedMaxSATsolve(Irelax, v)

10 cla = encodeV iolationsNotEncoded(a)
11 if lb < maxSATcost(a) then
12 lb = cost(a)
13 end
14 if ub > XHSTTcost(a) then
15 ub = XHSTTcost(a)
16 end
17 if cla = ∅ ∨ lb = ub then
18 globally_solved = true
19 else
20 Irelax = Irelax ∪ cla
21 end
22 Irelax = Irelax ∪ (v)
23 end
24 end

59

4. Modeling High School Timetabling as Partial Weighted maxSAT

Algorithm 4.3: Modified Linear Algorithm for SMT (using v as an input variable)
1 begin
2 v ←− input variable given as parameter
3 P ←− maxSAT formula
4 c =∞
5 bestAssignment = ∅
6 while isSatisfiableUnderAssumption(P, v) do
7 bestAssignment = satisfiableAssignmentUnderAssumption(P, v)
8 c←− cost(P, bestAssignment)
9 cla = encodeAsClauses(

∑
i∈K softConstraint(i) < c)

10 i = 0
11 while i < |cla| do
12 cla[i] = cla[i] ∨ v
13 i+ +
14 end
15 P = P ∪ cla
16 end
17 end

4.3 Computational Results
We have set several goals in order to evaluate the maxSAT approach for XHSTT and
they are as follows:

• Compare the performance of different maxSAT solvers on XHSTT-instances.

• Compare different cardinality constraint encodings for XHSTT.

• Compare maxSAT with Integer Programming for XHSTT.

• Compare maxSAT with the SMT approach (Section 4.2).

• Investigate how well our maxSAT approach would do if it was used in the Interna-
tional Timetabling Competition 2011.

4.3.1 Benchmark instances and Computing Environment

We evaluated our approach on XHSTT benchmark instances which can be found in the
repository of the International Timetabling Competition 2011 (ITC 2011) 3. We used
the XHSTT-2014 benchmark set, which contains instances that were careful selected by
the ITC 2011 over the years and are meant to be interesting test beds for researchers.

3http://www.utwente.nl/ctit/hstt/itc2011/welcome/

60

4.3. Computational Results

Additionally, we included every instance used in the competition (these two sets of
instances overlap). This way we took into consideration all relevant XHSTT-instances,
to the best of our knowledge.

In total we can model efficiently with maxSAT 27 out of 39 (70%) instances. We
have a specific modeling for resource assignments (Assign Resource Constraints and
related constraints) for two cases (FinArtificialSchool, EnglandStPaul, see Section 4.1.5),
but for other instances with resource assignments our current model is not practical.
Unfortunately, in this case the number of produced variables and clauses is very large,
and until now we could not come up with a more efficient encoding for these constraints.
Thus, for the remaining 12 instances, we currently do not have an appropriate model
and could not have experimented with them.

In the instances, the number of times ranges from 25 to 125, number of resources from
8 to 99, number of events from 21 to 809 with total event duration from 75 to 1912.
These numbers vary heavily from instance to instance. We direct the interested reader to
[PAD+12, PKA+14] for more details regarding the instances.

We have submitted XHSTT maxSAT instances to the maxSAT competition 2014 and
they have been used since. Over the few years they have proven to be challenging
instances for maxSAT solvers. Note that since the submission to the competition, some
XHSTT-instances have been slightly changed. The maxSAT encodings of the newer
instances (used in this paper) can be found here: (www.dbai.tuwien.ac.at/user/
demir/xHSTTtoSAT_instances.tar.gz).

MaxSAT experiments were done on a benchmark server with a AMD Opteron Processor
6272 2.1GHz with two processors. Each processor has each eight physical cores and each
core puts at disposal two logical cores (per hyperthreading). The machine has a total
of 224 GB of RAM (14 x 16GB). When experimenting we initiated the solving of 16
instances in parallel.

IP experiments were performed on a machine with an Intel Core i5-4210U Processor with
2.7 GHz and 4 GB of RAM. The experiments were performed on different machines as
the solvers require different operating systems. When experimenting we solved a single
instance at a time. For both IP and maxSAT each solver was run with a single thread.

ITC 2011 issued a benchmark tool which is designed to test how fast a machine performs
operations relevant for timetabling. The tool estimates how long a XHSTT solver should
run on the machine at hand in order for it to be equivalent to 1000 seconds on ITC’s
computer (the computational time limit for ITC’s second phase of the competition).
The intent is to provide grounds for determining some normalized time across different
platforms. The suggested times for our maxSAT benchmark server and the IP computer
were 1250 and 690 seconds, respectively. Given that both solvers are exact solvers, we
decided to allocated roughly ten times more time, for a total of four hours and 2.2 hours.

61

www.dbai.tuwien.ac.at/user/demir/xHSTTtoSAT_instances.tar.gz
www.dbai.tuwien.ac.at/user/demir/xHSTTtoSAT_instances.tar.gz

4. Modeling High School Timetabling as Partial Weighted maxSAT

4.3.2 Notation

In tables we shall note the cost function for instances as (x, y), where x is the infeasibility
value (sum of the cost functions of hard constraints) and y is the objective value (sum of
the cost functions of soft constraints). For example, (3, 35) denotes that the infeasibility
value is 3 and the objective value is 35. If the infeasible value is equal to zero, we say
that the solution is feasible, otherwise it is infeasible.

4.3.3 Solvers

We chose to experiment with maxSAT solvers WPM3 [ADG], Open-WBO [MML], and
Optiriss (a combination of the Riss framework [KKMS15] and Open-WBO [MML]). The
first two solvers were selected because they were the best solvers for timetabling instances
in the Industrial Weighted Partial maxSAT category in the maxSAT Competition 2016,
and since Open-WBO was used in Optiriss we decided to include it as well.

Both Optiriss and Open-WBO allows its users to configure the solvers by selecting
among several maxSAT algorithms and parameters. We used the default configuration
for Open-WBO and the two configurations of Optiriss (Optiriss-def and Optiriss-inc)
that were used in the maxSAT Competition 2016. In addition to this, we used the same
configuration but have set the solvers to use the Linear maxSAT algorithm [LBP10]
(see Algorithm 6.1) because this algorithm already previously showed good performance
for XHSTT in [DM] (this can be done by adding the parameter -algorithm=1 to either
solver). Therefore, if we consider different configuration of solvers as stand alone solvers
themselves, we experimented with a total of seven solvers.

4.3.4 Evaluation of different maxSAT solvers

We compare the performance of different maxSAT solvers on XHSTT-instances. In order
to do so, we used a similar ranking system as the ITC 2011. We run all solvers on each
instance for four hours and record the solution. For each instance we compute the rank
for each solver. The rank is a number between one and seven and it represents how
well the solver did relative to other solvers. For a given instance, the best solver has
rank one, the second best has rank two, etc. Solvers can share the same rank in case of
ties. In Table 4.1 and Table 4.2 we show the results and the ranking of solvers for this
comparison.

Based on these results, we conclude that the default configuration of Open-WBO has
the best average rank. However, the average rank of 2.16 indicates that there is no
clear winner as the results are not uniform across instances. While overall Open-WBO
performs the best on average, we can see that for a number of instances it is outperformed
by other solvers. Therefore, we decided to select k solvers with complement each other
instead of determining a single winner. In other words, we wish to select k solvers such
that if we run them in parallel and take the best result, we obtain good results across all
benchmarks. Formally, we would like select k solvers in order to minimize the combined

62

4.3. Computational Results

rank
∑

i∈I
min(rank(s,i):s∈S)

|I| , where I is the set of instances, S is the set of selected solvers
with |S| = k, and rank(i, s) is the rank of solver s on instance i.

In order to determine which solver to chose and how many (the parameter k) we modeled
the described problem as a maxSAT optimization problem and used Open-WBO to
compute the optimum solution for every k. We show the optimum combined rank for
every choice of k as a pair (k, rank): (1, 2.2), (2, 1.4), (3, 1.2), (4, 1.1), (5, 1), (6, 1), (7,
1). Based on these results, we chose k = 4 in order to keep the combined rank close to
one. One solution for k = 4 is Open-WBO (def), Open-WBO (lin), Optiriss (inc), and
Optiriss (default-linear). These four solvers are the best maxSAT solvers for XHSTT
according to our criteria. Each of them have their own strengths and weaknesses and
they will be used for further experimentation. We note that there are other combinations
of four solvers which achieve the same combined rank, but we have arbitrarily chosen
this combination among these ones.

4.3.5 Evaluation of (Soft) Cardinality constraint encodings

We experiment with different (soft) cardinality constraint encodings and investigate their
impact on the solution. During our initial experiments we noticed that changing Assign
Time Constraints encoding independently from other constraints had significant impact
during the search (using a ”bad” encoding for ATC leads to noticeably worse solutions)
and because of this we chose to give it special treatment in the encoding selection phase.
We believe this is because the encoding of this constraint is very important due to the
fact that it is a very fundamental one for timetabling and has (arguably) the most impact
on other constraints. Therefore, selecting the best encoding for it is crucial.

We denote the encoding configuration used for an instance as a pair X-Y: X is used for
Assign Time Constraints, and Y for other constraints. In the case of the combinatorial
encoding, the bit adder encoding would be used instead in situations when the encoding
would produce too many clauses and variables (n ≥ 50 ∨ (n ≥ 42 ∧ k ≥ 5), where n is
the number of literals and k is the cardinality of the constraint. The selected encodings
are used to encode both hard and soft cardinality constraints. We experimented with
four different encoding configurations (abbreviations: CN - cardinality networks, C -
combinatorial, and S - sequential): S-C, CN-C, S-S, and CN-CN. The last two encodings
can further be abbreviated with simply S and CN, respectively. The first configuration
was initially submitted to the maxSAT competition 2014 and was used in Section 4.3.4.

We run the best solvers (determined in Section 4.3.4) with the same time limit of four
hours on each instance with each encoding configuration. We consider each pair of solver
and encoding configuration as a single solver and rank them for each instance as in
Section 4.3.4. We present the results and rankings in Table 4.3 and 4.4.

As in Section 4.3.4 we wish to select the k pairs of solvers and encoding configurations
which complement each other the most. We show the optimum combined rank for every
choice of k as a pair (k, rank): (1, 4.23), (2, 2.52), (3, 1.92), (4, 1.6), (5, 1.3), (6, 1.2),

63

4. Modeling High School Timetabling as Partial Weighted maxSAT

(7, 1.12), (8, 1.04), (n ≥ 9, 1). Based on these results, we chose k = 4 as before. One
solution for k = 4 is Open-WBO (lin) and (def) with CN, Open-WBO (def) with CN-C,
and Optiriss (incremental) with SS. These pairs are the best combinations of maxSAT
solvers and cardinality constraint encodings for XHSTT according to our criteria.

4.3.6 Evaluation of a maxSAT approach versus an Integer
Programming approach

We compare our maxSAT approach with an existing Integer Programming approach
[KSS15]. For comparison purposes we used the best k pairs of solvers and encoding
configurations determined in Section 4.3.5. These comparisons are performed as in
previous section. The results and rankings are given in Table 4.5 and 4.6. We included
the comparison with the combined maxSAT solutions as well.

Based on the results, we conclude that maxSAT is competitive with IP for the instances
that we could model with our maxSAT approach. In particular, when comparing the
maxSAT configurations individually with IP, two of them (Optiriss(inc)-S and Open-
WBO-CN) achieve a better average ranking than IP. When we consider the combined
rank, maxSAT outperforms IP in all but five cases.

An interesting point for maxSAT which we would like to emphasize is that maxSAT solvers
are constantly being developed, are in some cases open source (e.g. Open-WBO), and are
not so heavily engineered as the commercial IP solver Gurobi in [KSS15]. Nevertheless,
maxSAT still manages to provide competitive results.

4.3.7 Evaluation of a pure maxSAT approach versus an SMT
approach

We have implemented the SMT approach described in Section 4.2 by modifying the
maxSAT solver openWBO. The implementation was done for a subset of instances. In
this section, we give a comparison of results of this SMT approach with a pure maxSAT
approach using the same maxSAT solver. We compared with Open-WBO(lin)-S-C as it
was the closest maxSAT formulation to our SMT approach described in Section 4.2. We
have run the solvers for four hours and the results obtained are given in Tables 4.7 and
4.8. Overall the pure maxSAT approach shows better results, although the average ranks
do not differ by a large amount.

Based on the experiments, we conclude that the SMT approach is competitive with the
pure maxSAT approach. The results indicate that it might be worthwhile to further
develop the SMT approach.

4.3.8 Evaluation of maxSAT approach on ITC 2011

In this section we compare with the results obtained during the second phase of the
International Timetabling Competition 2011. During this round the time limit was set

64

4.4. Summary

to 1000 seconds. We run our approach with a normalized amount of time (see Section
4.3.1 and show the results in Tables 4.9 and 4.10.

Our approach provides competitive results with the heuristics solvers used in the competi-
tion. Any individual maxSAT configuration would rank second. If we would consider the
combined rank of maxSAT solver, then a clear first place would be achieved. However,
in the comparison we have only included instances which we were able to model with
maxSAT (see Section 4.3.1), leaving out five instances.

4.4 Summary

We have demonstrated that XHSTT can be modeled as Weighted Partial maxSAT despite
the fact that XHSTT is very general and has many different constraints, including both
hard and soft ones. All constraints are included in their general formulations, with the
exception of resource assignment constraints. Important alternative encodings for special
cases were discussed, which included a special case of resource assignments as well.

We investigated empirically the performance of our model using 27 out of 39 instances
from the Third International Timetabling Competition 2011 benchmark repository. We
compared different maxSAT solvers and cardinality constraint encodings to determine the
most appropriate combinations, compared to the state-of-the-art integer programming
approach, and showed how well our maxSAT approach would perform if it was submitted
to the International Timetabling Competition 2011. In addition, we evaluated a maxSAT-
based SMT approach.

Based on the results we conclude that our developed maxSAT approach is competitive
for XHSTT, outperforming the state-of-the-art complete approach based on integer
programming on many benchmarks. Experimenting with different cardinality constraints
and maxSAT solvers proved to be important. Out of all of the tested combinations, we
were able to isolate a few, which not only performed well, but successfully complemented
each other. When compared to the state-of-the-art integer programming approach,
the results are in favor for maxSAT, with the solver open-WBO and the cardinality
network encoding performing better on most benchmarks. After combining several
solvers, significantly better results were achieved, due to the complementary nature of
the solvers and encodings. When comparing to ITC 2011, our approach would rank
first or second, depending on whether or not we combine different maxSAT solvers. It
is important to note that all other ITC solvers are based on metaheuristics and are
expected to perform better in such large problems given limited computational time.
The mentioned comparisons with integer programming and ITC’s competitors considered
only those instances that we can model with maxSAT. The pure maxSAT approach was
overall more efficient than our developed SMT approach, although the obtained results
indicated that further research in the SMT direction might be fruitful.

65

4. Modeling High School Timetabling as Partial Weighted maxSAT

Lastly, our generated maxSAT instances based on XHSTT problems were submitted
to the maxSAT Competition 2014 and have been used since. They have proven to be
challenging benchmarks for maxSAT solvers.

66

4.4. Summary

in
st
an

ce
/s
ol
ve
r

W
B
O
(li
n)

W
B
O
(d
ef
)

W
PM

3
O
pt
iri
ss

(in
c)

O
pt
iri
ss

(d
ef
)

O
pt
iri
ss

(d
ef
-li
ne
ar
)

O
pt
iri
ss

(in
c-
lin

ea
r)

It
al
y1

12
12

12
12

12
46

46
It
al
y4

78
09

77
7

12
70

77
9

77
9

98
99

98
99

K
os
ov
a

29
94
6

11
03

11
17

23
37
4

23
37
4

25
53
0

25
53
0

SA
w
oo

dl
an

ds
25
1

79
0

40
30

-
-

-
-

SA
Le

w
itt

34
9

0
0

39
39

44
6

44
6

B
ra
zi
l1

41
79

70
75

75
41

41
B
ra
zi
l2

29
30

28
33

33
27

27
B
ra
zi
l3

39
10
2

11
0

10
5

10
5

40
40

B
ra
zi
l4

15
7

15
5

15
4

16
1

16
1

17
1

17
1

B
ra
zi
l5

16
0

12
5

13
7

12
1

12
1

15
2

15
2

B
ra
zi
l6

24
8

19
2

19
4

19
6

19
6

24
5

24
5

B
ra
zi
l7

47
0

26
9

25
4

26
0

26
0

53
1

53
1

Fi
nA

rt
ifi
ci
al

9
96

40
06

26
7

26
7

14
14

Fi
nC

ol
le
ge

10
56

20
7

40
7

18
6

18
6

15
64

15
64

Fi
nE

le
m
en
ta
ry
Sc
ho

ol
3

3
3

3
3

3
3

Fi
nH

ig
hS

ch
oo

l
18
3

12
3

13
1

12
8

12
8

26
8

26
8

Fi
nS

ec
on

da
ry
Sc
ho

ol
33
6

62
2

78
1

63
3

63
3

41
1

41
1

Fi
nS

ec
on

da
ry
Sc
ho

ol
2

24
64

17
9

41
5

18
1

18
1

27
42

27
42

G
re
ec
eA

ig
io

20
33

23
03

23
20

14
19

14
19

33
00

33
00

G
re
ec
eH

ig
hS

ch
oo

l1
0

0
0

0
0

0
0

G
re
ec
eP

at
ra
s

88
8

0
10
73

23
0

23
0

12
41

12
41

G
re
ec
eP

re
ve
za

97
4

10
51

10
40

18
7

18
7

11
84

11
84

G
re
ec
eU

ni
3

89
25
1

18
5

30
8

30
8

10
8

10
8

G
re
ec
eU

ni
4

14
3

34
4

34
4

32
7

32
7

13
9

13
9

G
re
ec
eU

ni
5

0
0

0
0

0
0

0

Ta
bl
e
4.
1:

C
om

pa
ris

on
of

m
ax

SA
T

so
lv
er
s.

67

4. Modeling High School Timetabling as Partial Weighted maxSAT

instance/solver
W

B
O
(lin)

W
B
O
(def)

W
PM

3
O
ptiriss

(inc)
O
ptiriss

(def)
O
ptiriss

(def-linear)
O
ptiriss

(inc-linear)
Italy1

1
1

1
1

1
2

2
Italy4

4
1

3
2

2
5

5
K
osova

5
1

2
3

3
4

4
SAw

oodlands
1

2
3

4
4

4
4

SA
Lew

itt
3

1
1

2
2

4
4

B
razil1

1
4

2
3

3
1

1
B
razil2

3
4

2
5

5
1

1
B
razil3

1
3

5
4

4
2

2
B
razil4

3
2

1
4

4
5

5
B
razil5

5
2

3
1

1
4

4
B
razil6

5
1

2
3

3
4

4
B
razil7

4
3

1
2

2
5

5
FinA

rtificial
1

3
5

4
4

2
2

FinC
ollege

4
2

3
1

1
5

5
FinElem

entarySchool
1

1
1

1
1

1
1

FinH
ighSchool

4
1

3
2

2
5

5
FinSecondarySchool

1
3

5
4

4
2

2
FinSecondarySchool2

4
1

3
2

2
5

5
G
reeceA

igio
2

3
4

1
1

5
5

G
reeceH

ighSchool1
1

1
1

1
1

1
1

G
reecePatras

3
1

4
2

2
5

5
G
reecePreveza

2
4

3
1

1
5

5
G
reeceU

ni3
1

4
3

5
5

2
2

G
reeceU

ni4
2

4
4

3
3

1
1

G
reeceU

ni5
1

1
1

1
1

1
1

average
2.52

2.16
2.64

2.48
2.48

3.24
3.24

Table
4.2:

R
anking

ofm
axSAT

solvers.

68

4.4. Summary

in
st
an

ce
/s
ol
ve
r-
en
co
di
ng

α
-S

α
-C

N
-C

α
-C

N
α
-S
-C

β
-S

β
-C

N
-C

β
-C

N
β
-S
-C

θ-
S

θ-
C
N
-C

θ-
C
N

θ-
S-
C

γ
-S

γ
-C

N
-C

γ
-C

N
γ
-S
-C

It
al
y1

12
12

12
12

12
12

12
12

12
12

12
12

12
29

12
46

It
al
y4

11
02
8

73
85

14
26
4

78
09

53
5

86
1

52
7

77
7

57
9

70
2

53
8

77
9

12
48
5

82
47

12
87
9

98
99

K
os
ov
a

26
32
1

29
33
0

29
97
3

29
94
6

11
09

11
19

10
91

11
03

11
01

11
55

10
56

23
37
4

27
19
1

32
43
2

32
13
3

25
53
0

SA
w
oo

dl
an

ds
81
6

24
8

26
5

25
1

-
0

82
3

79
0

-
-

-
-

-
-

-
-

SA
Le

w
itt

46
5

21
3

33
6

34
9

61
0

66
0

44
0

55
39

16
96

27
7

33
4

44
6

B
ra
zi
l1

41
41

41
41

59
79

69
79

56
86

52
75

41
41

41
41

B
ra
zi
l2

38
49

43
29

16
84

75
30

13
34

27
33

34
50

52
27

B
ra
zi
l3

28
40

49
39

75
11
7

66
10
2

68
11
9

70
10
5

50
63

63
40

B
ra
zi
l4

16
0

18
2

19
5

15
7

14
0

16
8

13
8

15
5

22
8

15
2

14
3

16
1

18
1

19
0

21
1

17
1

B
ra
zi
l5

16
6

17
6

17
5

16
0

11
6

15
0

12
2

12
5

12
4

13
6

12
6

12
1

18
3

17
5

18
8

15
2

B
ra
zi
l6

27
6

26
2

27
9

24
8

16
2

18
4

16
0

19
2

13
8

21
1

16
5

19
6

25
2

28
9

29
5

24
5

B
ra
zi
l7

54
6

60
5

58
1

47
0

25
4

25
8

22
6

26
9

22
9

26
2

23
1

26
0

52
4

59
1

61
4

53
1

Fi
nA

rt
ifi
ci
al

10
16

8
9

8
14
8

15
96

8
26
3

19
26
7

8
14

17
14

Fi
nC

ol
le
ge

64
4

47
9

55
6

10
56

23
3

22
2

17
3

20
7

20
4

17
2

18
2

18
6

59
3

58
7

59
1

15
64

Fi
nE

le
m
en
ta
ry
Sc
ho

ol
3

3
3

3
3

3
3

3
3

3
3

3
3

3
3

3
Fi
nH

ig
hS

ch
oo

l
13
0

14
9

13
2

18
3

35
40

30
12
3

31
39

26
12
8

17
9

16
2

14
9

26
8

Fi
nS

ec
on

da
ry
Sc
ho

ol
30
7

29
0

25
6

33
6

64
8

65
7

59
3

62
2

62
2

62
3

62
3

63
3

32
2

28
9

28
1

41
1

Fi
nS

ec
on

da
ry
Sc
ho

ol
2

97
1

81
9

96
5

24
64

19
5

53
18
1

17
9

16
8

16
5

18
0

18
1

12
12

11
53

14
08

27
42

G
re
ec
eA

ig
io

22
11

22
81

22
07

20
33

20
36

23
18

76
7

23
03

-
69
4

-
14
19

-
31
64

-
33
00

G
re
ec
eH

ig
hS

ch
oo

l1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
G
re
ec
eP

at
ra
s

87
9

88
5

94
9

88
8

0
0

12
5

0
17
63

19
9

-
23
0

22
58

13
07

-
12
41

G
re
ec
eP

re
ve
za

74
4

93
2

10
82

97
4

17
1

10
84

15
8

10
51

23
92

14
3

23
20

18
7

24
94

12
27

-
11
84

G
re
ec
eU

ni
3

84
10
9

97
89

18
1

22
0

23
1

25
1

19
3

32
6

19
4

30
8

89
11
6

10
0

10
8

G
re
ec
eU

ni
4

14
6

14
2

14
1

14
3

19
8

33
4

21
8

34
4

21
5

29
5

21
7

32
7

14
9

13
8

13
2

13
9

G
re
ec
eU

ni
5

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

Ta
bl
e
4.
3:

C
om

pa
ris

on
of

se
le
ct
ed

so
lv
er
s
w
ith

di
ffe

re
nt

ca
rd
in
al
ity

co
ns
tr
ai
nt
s.

A
bb

re
vi
at
io
ns
:
α
=

O
pe

n-
W

B
O
(li
n)
,β

=
O
pe

n-
W

B
O
(d
ef
),
θ
=

O
pt
iri
ss
(in

c)
,γ

=
O
pt
iri
ss
(in

c-
lin

)

69

4. Modeling High School Timetabling as Partial Weighted maxSAT

instance/solver-encoding
α-S

α-C
N
-C

α-C
N

α-S-C
β-S

β-C
N
-C

β-C
N

β-S-C
θ-S

θ-C
N
-C

θ-C
N

θ-S-C
γ-S

γ-C
N
-C

γ-C
N

γ-S-C
Italy1

1
1

1
1

1
1

1
1

1
1

1
1

1
2

1
3

Italy4
13

9
16

10
2

8
1

6
4

5
3

7
14

11
15

12
K
osova

10
12

14
13

5
6

2
4

3
7

1
8

11
16

15
9

SAw
oodlands

6
2

4
3

8
1

7
5

8
8

8
8

8
8

8
8

SA
Lew

itt
13

7
10

11
5

1
6

1
3

1
4

2
14

8
9

12
B
razil1

1
1

1
1

4
7

5
7

3
8

2
6

1
1

1
1

B
razil2

8
10

9
4

2
14

13
5

1
7

3
6

7
11

12
3

B
razil3

1
3

4
2

10
13

7
11

8
14

9
12

5
6

6
3

B
razil4

7
12

14
6

2
9

1
5

16
4

3
8

11
13

15
10

B
razil5

11
13

12
10

1
8

3
5

4
7

6
2

14
12

15
9

B
razil6

13
12

14
10

3
5

2
6

1
8

4
7

11
15

16
9

B
razil7

12
15

13
9

4
5

1
8

2
7

3
6

10
14

16
11

FinA
rtificial

3
6

1
2

1
10

5
9

1
11

8
12

1
4

7
4

FinC
ollege

14
9

10
15

8
7

2
6

5
1

3
4

13
11

12
16

FinElem
entarySchool

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

FinH
ighSchool

9
11

10
14

4
6

2
7

3
5

1
8

13
12

11
15

FinSecondarySchool
5

4
1

7
13

14
9

10
10

11
11

12
6

3
2

8
FinSecondarySchool2

10
8

9
14

7
1

6
4

3
2

5
6

12
11

13
15

G
reeceA

igio
7

8
6

4
5

10
2

9
13

1
13

3
13

11
13

12
G
reeceH

ighSchool1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
G
reecePatras

5
6

8
7

1
1

2
1

11
3

13
4

12
10

13
9

G
reecePreveza

5
6

9
7

3
10

2
8

14
1

13
4

15
12

16
11

G
reeceU

ni3
1

6
3

2
8

11
12

13
9

15
10

14
2

7
4

5
G
reeceU

ni4
7

5
4

6
9

15
12

16
10

13
11

14
8

2
1

3
G
reeceU

ni5
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
average

6.60
6.76

7.04
6.44

4.36
6.64

4.23
6.00

5.44
5.72

5.52
6.28

8.20
8.12

8.96
7.64

Table
4.4:

R
anking

of
selected

solvers
w
ith

different
cardinality

constraints.
A
bbreviations:

α
=

O
pen-W

B
O
(lin),

β
=

O
pen-W

B
O
(def),

θ
=

O
ptiriss(inc),

γ
=

O
ptiriss(inc-lin)

70

4.4. Summary

in
st
an

ce
/s
ol
ve
r

W
B
O
(li
n)
-C

N
W

B
O
(d
ef
)-
C
N
-C

W
B
O
-C

N
O
pt
iri
ss
(in

c)
-S

be
st
-m

ax
SA

T
IP

It
al
y1

12
12

12
12

12
15

It
al
y4

14
26
4

86
1

52
7

57
9

52
7

86
86

K
os
ov
a

29
97
3

11
19

10
91

11
01

10
91

(2
74
6,

15
44
38
)

SA
Le

w
itt

33
6

0
66

44
0

0
SA

w
oo

dl
an

ds
26
5

0
82
3

-
0

(3
90
,3

43
)

B
ra
zi
l1

41
79

69
56

41
41

B
ra
zi
l2

43
84

75
13

13
19

B
ra
zi
l3

49
11
7

66
68

49
27

B
ra
zi
l4

19
5

16
8

13
8

22
8

13
8

22
5

B
ra
zi
l5

17
5

15
0

12
2

12
4

12
2

13
1

B
ra
zi
l6

27
9

18
4

16
0

13
8

13
8

24
0

B
ra
zi
l7

58
1

25
8

22
6

22
9

22
6

30
4

Fi
nA

rt
ifi
ci
al

8
14
8

15
8

8
(2
5,

71
)

Fi
nC

ol
le
ge

55
6

22
2

17
3

20
4

17
3

(2
01
,1

39
4)

Fi
nE

le
m
en
ta
ry
Sc
ho

ol
3

3
3

3
3

3
Fi
nH

ig
hS

ch
oo

l
13
2

40
30

31
30

15
5

Fi
nS

ec
on

da
ry
Sc
ho

ol
25
6

65
7

59
3

62
2

25
6

15
7

Fi
nS

ec
on

da
ry
Sc
ho

ol
2

96
5

53
18
1

16
8

53
23
60

G
re
ec
eA

ig
io

22
07

23
18

76
7

-
76
7

80
0

G
re
ec
eH

ig
hS

ch
oo

l1
0

0
0

0
0

0
G
re
ec
eP

at
ra
s

94
9

0
12
5

17
63

0
0

G
re
ec
eP

re
ve
za

10
82

10
84

15
8

23
92

15
8

17
G
re
ec
eU

ni
3

97
22
0

23
1

19
3

97
24

G
re
ec
eU

ni
4

14
1

33
4

21
8

21
5

14
1

25
G
re
ec
eU

ni
5

0
0

0
0

0
2

Ta
bl
e
4.
5:

C
om

pa
ris

on
of

m
ax

SA
T

so
lv
er
s
w
ith

in
te
ge
r
pr
og

ra
m
m
in
g.

71

4. Modeling High School Timetabling as Partial Weighted maxSAT
instance/solver

W
B
O
(lin)-C

N
W

B
O
(def)-C

N
-C

W
B
O
-C

N
O
ptiriss(inc)-S

best-m
axSAT

IP
Italy1

1
1

1
1

1
2

Italy4
5

3
1

2
1

4
K
osova

4
3

1
2

1
5

SA
Lew

itt
4

1
3

2
1

1
SAw

oodlands
2

1
3

4
1

5
B
razil1

1
4

3
2

1
1

B
razil2

3
5

4
1

1
2

B
razil3

2
5

3
4

2
1

B
razil4

3
2

1
5

1
4

B
razil5

5
4

1
2

1
3

B
razil6

5
3

2
1

1
4

B
razil7

5
3

1
2

1
4

FinA
rtificial

1
3

2
1

1
4

FinC
ollege

4
3

1
2

1
5

FinElem
entarySchool

1
1

1
1

1
1

FinH
ighSchool

4
3

1
2

1
5

FinSecondarySchool
2

5
3

4
2

1
FinSecondarySchool2

4
1

3
2

1
5

G
reeceA

igio
3

4
1

5
1

2
G
reeceH

ighSchool1
1

1
1

1
1

1
G
reecePatras

3
1

2
4

1
1

G
reecePreveza

3
4

2
5

2
1

G
reeceU

ni3
2

4
5

3
2

1
G
reeceU

ni4
2

5
4

3
2

1
G
reeceU

ni5
1

1
1

1
1

2
average

2.84
2.84

2.04
2.48

1.20
2.64

Table
4.6:

R
anking

ofm
axSAT

solvers
and

integer
program

m
ing.

72

4.4. Summary

instance/solver SMTmaxSAT WBO(lin)-S-C
Italy1 223 12
Brazil1 69 41
Brazil2 97 29
Brazil3 60 39
Brazil4 146 157
Brazil5 193 160
Brazil6 206 248
Brazil7 511 470

FinCollege 254 1056
FinHighSchool 136 183

FinSecondarySchool 742 336
FinSecondarySchool2 321 2464

Table 4.7: Comparison of maxSAT and the developed SMT approach (Section 4.2)

instance/solver SMTmaxSAT WBO(lin)-S-C
Italy1 2 1
Brazil1 2 1
Brazil2 2 1
Brazil3 2 1
Brazil4 1 2
Brazil5 2 1
Brazil6 1 2
Brazil7 2 1

FinCollege 1 2
FinHighSchool 1 2

FinSecondarySchool 2 1
FinSecondarySchool2 1 2

average 1.58 1.41

Table 4.8: Ranking of maxSAT and the developed SMT approach (Section 4.2)

73

4. Modeling High School Timetabling as Partial Weighted maxSAT

instance/solver
W

B
O
(lin)-C

N
W

B
O
(def)-C

N
-C

W
B
O
-C

N
O
ptiriss(inc)-S

best-m
axSAT

G
O
A
L

H
ySST

Lectio
H
FT

Italy4
1246

21549
22698

558
558

454
6926

651
2636379

B
razil2

96
75

78
88

75
(1,62)

(1,77)
38

(6,190)
B
razil3

114
81

46
86

46
124

118
152

(30,283)
B
razil4

167
235

-
261

235
(17,98)

(4,231)
(2,199)

(67,237)
B
razil6

189
427

163
170

163
(4,227)

(3,269)
230

(23,390)
FinElem

entarySchool
3

3
3

3
3

4
(1,4)

3
(30,73)

FinSecondarySchool2
441

1825
406

629
406

1
23

34
(31,1628)

G
reeceA

igio
4289

3197
-

1960
1960

13
(2,470)

1062
(50,3165)

G
reeceU

ni3
220

112
193

231
112

6
11

(30,2)
(15,190)

G
reeceU

ni4
334

155
215

218
155

7
21

(36,95)
(237,281)

G
reeceU

ni5
0

22
0

0
0

0
4

(4,19)
(11,158)

Table
4.9:

C
om

parison
ofm

axSAT
solvers

in
the

IT
C

2011
second

round.

74

4.4. Summary

in
st
an

ce
/s
ol
ve
r

W
B
O
(li
n)
-C

N
W

B
O
(d
ef
)-
C
N
-C

W
B
O
-C

N
O
pt
iri
ss
(in

c)
-S

be
st
-m

ax
SA

T
G
O
A
L

H
yS

ST
Le

ct
io

H
FT

It
al
y4

4
6

7
2

2
1

5
3

8
B
ra
zi
l2

5
2

3
4

2
6

7
1

8
B
ra
zi
l3

4
2

1
3

1
6

5
7

8
B
ra
zi
l4

1
2

8
3

2
6

5
4

7
B
ra
zi
l6

3
5

1
2

1
7

6
4

8
Fi
nE

le
m
en
ta
ry
Sc
ho

ol
1

1
1

1
1

2
3

1
4

Fi
nS

ec
on

da
ry
Sc
ho

ol
2

5
7

4
6

4
1

2
3

8
G
re
ec
eA

ig
io

5
4

7
3

3
1

6
2

8
G
re
ec
eU

ni
3

5
3

4
6

3
1

2
8

7
G
re
ec
eU

ni
4

6
3

4
5

3
1

2
7

8
G
re
ec
eU

ni
5

1
3

1
1

1
1

2
5

4
av
er
ag

e
3.
63

3.
45

3.
72

3.
27

2.
09

3.
00

4.
09

4.
09

7.
09

Ta
bl
e
4.
10

:
R
an

ki
ng

of
m
ax

SA
T

so
lv
er
s
in

th
e
IT

C
20

11
se
co
nd

ro
un

d.

75

CHAPTER 5
Modeling High School

Timetabling with Bitvectors

In this chapter, we describe our new modeling approach for high school timetabling
using bitvectors in which constraints are modeled as a series of bitvector operations. The
resulting model allows efficient computation of constraint costs for local search algorithms.
Additionally, it can be used to solve XHSTT with satisfiability modulo theory (SMT)
solvers that support bitvector theory. We evaluate the performance for our bitvector
modeling approach and compare it to the leading engine KHE for local search algorithms
such as hill climbing and simulated annealing. The experimental results show that our
approach can provide speed-ups for this problem. Furthermore, experimental results
using SMT are given on instances from the ITC 2011 benchmark repository.

When developing HSTT algorithms, modeling aspects are very important from a practical
point of view, as a good model will allow efficient implementations of the HSTT algorithms.
However, for a complex problem such as general HSTT, finding good models is a
challenging task because of the presence of a large number of different constraints.
Therefore, the problem is two-fold: one must research good algorithmic strategies, while
also having efficient data structures or models which will allow fast implementations. This
is what our bitvector model aims to solve. One of the key points of the bitvector modeling
is that modern processors have built-in support for bitvector operations, allowing us to
efficiently compute constraint violations. Additionally, most modern processors have
special operations for determining the number of bits set in an integer. These operations
are called population counts or hamming weight instructions and are extensively used in
the model. All of this, together with the compactness of the model, contribute to the
overall effectiveness of the modeling approach.

77

5. Modeling High School Timetabling with Bitvectors

The rest of the chapter is organized as follows. In the main Section 5.1, we describe
the modeling of XHSTT as bitvectors. In Section 5.2, we present computational results.
Lastly, a summary of the chapter is given in Section 5.3.

5.1 Modeling XHSTT with Bitvectors
In this section we propose a bitvector modeling for XHSTT. The main idea is to provide
a simple modeling approach that can be used in different solving techniques. All of
the constraint costs are obtained by using bitvector operations. We first introduce
basic bitvector definitions and operations used. Then, we define the variables used for
modeling XHSTT with bitvectors, followed by the description of XHSTT constraints
with bitvectors.

5.1.1 Basic Bitvector Definitions

A bitvector is a vector of bits. The size of the vector is arbitrary, but fixed. Standard
operations (e.g. addition, and, or operations on bitvectors) and predicates (e.g. equality)
are defined over bitvectors and an instance consists of a conjunction of predicates. We
use prefix notation, which is common for most SMT solvers, with the addition of brackets
and comas in order to ease reading. For example, in infix notation one would write
(a = b), while in prefix notation the same expression would be written as (= a b), while
we choose to write (= (a, b)).

Most operations are interpreted as usual and all bitvector operands are of the same
length. In the following we present some of the notations we use, in which bva and bvb

are bitvectors and k is a constant integer:

• inv(bva) – the bits of bva are inverted (e.g. inv(1011001) = 0100110).

• add(bva, bvb) – two bitvectors are added in the same way two unsigned integers
would be added (overflow might occur).

• or(bva, bvb) – bitwise or is performed on the operands. When applying or to each
bitvector bva from some set BV, we use the following notation:

∨
bva∈BV (bva)

• lshift(bva, k) – noncylic left shift by k is applied (e.g. lshift(10011, 2) = 01100).

• rshift(bva, k) – similar to lshift, but uses right shifting.

• extract(bva, k) – the k-th bit of bva is extracted.

Variables

For each event e (e.g. a lesson), we create a number of bitvectors all of length n, where n
is the number of times available in the instance. The vectors along with their meanings
are as follows:

78

5.1. Modeling XHSTT with Bitvectors

• Ye – the i-th bit is set (a bit is set if it has value 1) if the event is taking place at
time i and is not set otherwise. In XHSTT terminology, Ye covers all subevents of
event e. This implies that two subevents of the same event can never clash in this
representation.

• Se – the i-th bit is set if the i-th time is declared as a starting time for event e and
is not set otherwise.

• K(e,d) – the i-th bit is set if the i-th time is declared as a starting time of duration
d for event e and is not set otherwise.

As an example of the above variables, take the following bitvectors:

7 6 5 4 3 2 1 0 (time slot)
0 1 1 0 0 1 1 0 (Ye)
0 1 1 0 0 0 1 0 (Se)
0 1 1 0 0 0 0 0 (K(e,1))
0 0 0 0 0 0 1 0 (K(e,2))

(5.1)

From Ye, we see that event e (e.g. a Math lesson) is taking place at time 1, 2, 5, and 6,
because those bits are set within Ye. Similarly, times 1, 5, and 6 are labeled as starting
times from Se, meaning event e has been split into three subevents. Time 1 is labeled as a
double lesson by K(e,2), while times 5 and 6 as lessons of duration 1 by K(e,1). Note that
time 5 could have also been labeled as a double lesson instead of having two lessons of
duration 1. Reasons for choosing one possibility over the other is regulated by constraints.

In the formal specification of XHSTT, any time can be defined as a starting time because
events can be split into multiple subevents. One could regard a starting point as a time t
where a lecture takes place, but has not taken place at t− 1. However, while this is true,
this cannot be the only case when a time would be regarded as a starting time, since
e.g. time t = 5 and t = 6 might be interpreted as last time of Monday and first time of
Tuesday and an event could be scheduled at both of these times, but clearly we must
regard both times as starting times, since a double lecture does not extend over such
long periods of time. Therefore, any time can in general be regarded as a starting time.
It is of interest to note that the previous assignment, by the general formulation, could
also be treated as a double lesson for the purpose of constraints, even though it extends
over two days. Constraints give more control over these kind of assignments.

Note that our model, in order to capture the complete search space for the problem,
must account for all possible combinations of the number of subevents for each event.
For example, an event of duration 3 can be split into three different ways: one subevent
of duration three, two subevents of durations one and two, or three subevents of duration
one. Therefore, we cannot assign a bitvector for each subevent in advance because we do
not know before hand in how many subevents will a particular event be split into. Due

79

5. Modeling High School Timetabling with Bitvectors

to this we must take into account all possibilities. The equations model all these possible
combinations of (nonclashing) subevents.

Formalities that are tied to starting times with regard to the specification are expressed
as follows:

If a starting time for event e has been assigned at time t, then the corresponding event
must also take place at that time (the set E is the set of all events):

∧
e∈E

(= (or(Se, Ye), Ye)) (5.2)

When modeling with bitvectors it is common to have formulas of the form (= (bva, some logical expression)),
like the one above. This ensures that the bitvector bva is equal to the specified logical
expression. In Equation (5.2), we encode that Ye is equal to (or(Se, Ye)), meaning that
there are no bits set in Se which are not also set in Ye, but it can be that some bits in
Ye are set which are not set in Se. This is the behavior we want to capture, because if
some times are declared to be starting times (the bits set in Se), then surely the event in
question must take place at those times (hence asserting the bits set in Ye), but since
they can last longer than one time it can be the case that Ye has bits set in position
where Se does not.

Event e starts at time t if e is taking place at time t and it is not taking place at time
(t− 1): ∧

e∈E

(= (or(and(Ye, lshift(inv(Ye), 1)), Se), Se)) (5.3)

Note that the ordering of the application of inv and lshift is important. With the
application of exp1 = (and(Ye, lshift(inv(Ye))), we will obtain a bitvector which has its
i-th bit set iff Ye has its i-th bit set and its (i-1)-th bit is not set. Then, similarily to
Equation (5.2), with the application of = (or(exp1, Se), Se) we ensure that Se has bits set
at least in every position as in bitvector exp1, which is what we want to capture: every
time we have the situation that a (sub)event is taking place at time i, but has not taken
place at time (i− 1), we declare that time a starting time for said event (note that other
times can be starting times too).

If time t has been set as a starting time, associate a duration with it (D(e) is the set of
durations that subevent of event e can take):

∧
e∈E

(= ((
∨

d∈D(e)
K(e,d)), Se)) (5.4)

By setting a bit in position i in Se we ensure that at least one K(e,d) will have an i-th bit
set. Later on through Equation (5.8) we ensure that exactly one K(e,d) will have such bit
set.

80

5.1. Modeling XHSTT with Bitvectors

If a subevent of event e of duration d has been assigned a starting time at time t and
event e is also taking place at time t+ d, then assign time t+ d as a starting time (D(e)
is the set of possible durations subevents of e might take):

∧
e∈E

d∈D(e)

(= (or(and(lshift(K(e,d), d), Ye), Se), Se)) (5.5)

The formula exp = and(lshift(K(e,d), d), Ye) will result in a bitvector which has its i-th
bit set if event e is taking place at time i and event e has been declared to have a starting
point at i-d time of duration d. In other words, event e started at i-d and was declared
to last d times, but after d times event e is still taking place. Therefore, we want to
ensure that event e will also have a starting point at time i. This is then done in a similar
fashion to before: (= (or(exp, Se), Se)).

When a bit in K(e,d) is set, ensure that the event in question must take place for d
consecutive times during this specified time. In order to do this, we define a helper
bitvector Y d

e which will have its i-th bit set if starting from time i event e has d
consecutive bits set. For example, if Ye = (0, 0, 1, 1, 1, 0), then Y 3

e = (0, 0, 0, 0, 1, 0)
and Y 2

e = (0, 0, 0, 1, 1, 0) (recall that the right most bit represents time 0). Bitvector
Y d

e can be computed by taking the and of all of rshift(Ye, k) for k = 0..(d − 1) (with
rshift(Ye, 0) = Ye). We now proceed with the constraint encoding:

∧
e∈E

d∈D(e)

(= (or(K(e,d), and(Y d
e ,K(e,d))),K(e,d))) (5.6)

The expression exp = and(Y d
e ,K(e,d)) is a bitvector which has its i-th bit set if event e

has d consecutive bits set starting from time i and has a starting time of duration d at
time i. In order to ensure that when a bit in K(e,d) is set there must be d consecutive
bits set in Ye starting from time i, we encode: (= (or(exp,K(e,d)),K(e,d))).

If an event e has a subevent of duration d starting at time i (the i-th bit set in K(e,d)),
make sure that no other starting time can be set within the duration of that subevent.
In order to do this, we define a helper bitvector Kk

(e,d) as:

∧
e∈E
d∈D

(= (
∧

i=0..k

(inv(rshift(K(e,d), i))),Kk
(e,d))) (5.7)

Bitvector Kk
(e,d) will have its i-th bit set if there is no bit set at time i nor in any of the

next k times in K(e,d). We use this helper bitvector to encode the constraint:

∧
e∈E

d1∈D

(= (and(K(e,d1),
∧

d2∈D
d1 6=d2

(K(d1−1)
(e,d2))),K(e,d1))) (5.8)

81

5. Modeling High School Timetabling with Bitvectors

With exp =
∧

d2∈D(Kd1−1
(e,d2)) we compute a bitvector which has its i-th bitvector set if

there is no bit set at time i in any of the K(e,d2) (with d1 6= d2) nor in any of the
next d − 1 times. Therefore, only in K(e,d1) can bits in these times be set. Then,
(= (K(e,d1), and(K(e,d1), exp)) ensures that if K(e,d1) has a bit set at time i, it must be
the case that no other K(e,d2) (with d1 6= d2) has its bit at i nor in the next k − 1 times.

With this constraint, we conclude constraints regarding starting time definitions. We
now proceed with cardinality constraint encodings followed by high school timetabling
constraint encodings.

5.1.2 Cardinality Constraint Encodings

An important constraint that arises often is to determine the number of set bits in a
bitvector, as well as to impose penalties if the appropriate number of bits are not set. E.g.
if an event must take place for two hours, then exactly two bits in its Ye must be set.

Let us define a unary operation reduceBit(bva) = bva ∧ sub(bva, 1). When applied to bva,
as the name suggests, it produces a new bitvector which has one less bit set then bva (for
the special case bva = 0, it returns 0). For example:

∧ 1 1 0 1 0 0 (bva)
1 1 0 0 1 1 (sub(bva, 1))
1 1 0 0 0 0 (reduceBit(bva))

(5.9)

The original bitvector had three bits set, while the produced one has two bits set. The
reduceBit operations is an important part for defining cardinality constraints.

In order to ensure that at least k bits are set in a bitvector, we apply reduceBit k − 1
times and require that the resulting bitvector must be different from zero. For at most k,
we apply reduceBit k times and constrain that the resulting bitvector must be equal to
zero. For exactly k we encode at least k and at most k. For example, asserting that
at least 3 bits are set is done in the following way:

∧ 1 1 0 1 0 0 (bva)
1 1 0 0 1 1 (sub(bva, 1))

∧ 1 1 0 0 0 0 (reduceBit(bva))
1 0 1 1 1 1 (sub(reduceBit(bva)), 1)
1 0 0 0 0 0 (reduceBit(reduceBit(bva)))

(5.10)

Since the final bitvector, which we have obtained by applying reduceBit twice, is different
from the zero bitvector we conclude that at least 3 bits are set in bva.

It is important to note that when using the modeling for local search, bitvectors can
be implemented using binary integers and standard binary operations over bits can be
used. Additionally, most modern processors have special operations for determining
the number of bits set in an integer. These operations are called population counts or

82

5.1. Modeling XHSTT with Bitvectors

hamming weight instructions. We recommend using them if possible as they are more
efficient than repeatedly applying the defined reduce operation when implementing local
search algorithms with bitvectors.

Soft Cardinality Constraints

A similar technique to the one previously described is used for soft cardinality constraints.
For at least k, it is asserted before each application of reduceBit and after the last
application of reduceBit that the current bitvector is different from zero and is penalized
by some weight if it is not the case. For example, asserting that at least 2 bits are set is
done in the following way for the soft version:

∧ 0 1 0 0 0 0 (bva 6= 0→ no penalty)
0 0 1 1 1 1 (sub(bva, 1))
0 0 0 0 0 0 (reduceBit(bva) = 0→ assign penalty)

(5.11)

Note that we checked for penalties in two cases (for the initial bitvector bva and
reduceBit(bva)), but only one case was penalized in this particular case.

For at most k, a similar algorithm is used: reduceBit is applied k times as in the regular
cardinality constraint version and then bitReduce is applied n− k times to this bitvector
(n is the size of bva) and before each application it is asserted that the current bitvector
is zero and is penalized by some weight if it is not the case. Note that if we have some
hard constraint limiting the maximum number of bits that may be set in a bitvector to
some kmax, we do not perform the second part of the algorithm n− k times, but rather
just kmax − k times. This is used frequently while modeling for SMT.

The penalty weights depend on the cost function chosen and this is discussed in the next
section.

Cost Functions

The way the penalty weights are assigned depends on the constraint that is being modeled.
Following XHSTT, we use three different penalty schemes: Linear, Quadratic, and Step.
The Linear scheme penalizes linearly to its violation, the Quadratic scheme penalizes by
squaring it, and the Step scheme assigns a penalty of one if there is a violation (regardless
of how severe) and zero otherwise. These values are then multiplied by a weight w which
is given in the constraint that is being modeled.

For the example used in Equation (5.11), the linear scheme assigns a penalty of w to
each violation, the quadratic one would assign w to the first and 3 ∗ w to the second,
while step would assign w and 0.

5.1.3 Constraints

Each constraint has a set of points of application and each point generates a deviation.
The cost of the constraint is obtained by applying a cost function on each deviations,

83

5. Modeling High School Timetabling with Bitvectors

multiplying it by a weight, and then summing up all these values. There are three
different cost functions, as discussed in Section 5.1.2.

When modeling XHSTT as SMT, we simplify the objective function by not tracking the
infeasibility value, rather regarding it as zero or nonzero. By doing so we simplify the
computation for the SMT solver, possibly offering faster execution times. However, when
using the bitvector modelings for implementing local search algorithms, both hard and
soft costs are tracked.

E, T and R are sets of events, times and resources, respectively. Each constraint is
applied to some subset of those three, denoted by Espec, Tspec and Rspec. These subsets
are naturally in general different from constraint to constraint. Note that it is possible
to have several constraints of the same type, but with different subsets defined for them.

We present encodings used in the experimental results, in which we assume that all
resources are already assigned to events. We make this assumption as this eases the
modeling and readability of the constraints. Later on we provide a description on how
this limitation can be overcome.

Unless explicitly stated, soft constraints are implemented by using soft instead of hard
cardinality constraints for the key equations which encode the limitations enforced by
the constraint. In cases when this differs, we provide an explanation.

Assign Time Constraints

Every event must be assigned a given amount of time. For example, if a lecture lasts for
two hours, two times must be assigned to it.

Each event’s Ye vector must have exactly d bits set, where d is the duration of the event:

∧
e∈Espec

(exactly_d[Ye]) (5.12)

If the constraint is specified as soft, then instead of the equation above we would use
the soft cardinality encoding for atLeast_d and a hard cardinality constraint atMost_d
with Ye. Points of applications are events and the deviation for each event is calculated
as the number of times not assigned to the event.

Split Events Constraints

This constraint has two parts. The first part limits the number of starting times an event
may have in the solution. The second part limits the duration of the event for a single
subevent.

For example, if four times must be assigned to a Mathematics lecture, we may limit
that the minimum and maximum duration of a subevent is equal to 2, thus ensuring

84

5.1. Modeling XHSTT with Bitvectors

that the lecture will take place as two blocks of two hours, forbidding having the lecture
performed as one block of four hours.

This constraint specifies the minimum Amin and maximum Amax amount of starting
times for the specified events:

∧
e∈Espec

(atLeast_Amin[Se] ∧ atMost_Amax[Se]) (5.13)

In addition, this constraint also imposes the minimum dmin and maximum dmax duration
for each subevent:

∧
e∈Espec

d∈{i|i<dmin∨i>dmax}

(atMost_0[K(e,d)]) (5.14)

Distribute Split Events Constraint

This constraint specifies the minimum dmin and maximum dmax number of starting times
of a specified duration d. For example, if duration(e) = 10, we may impose that the
lecture should be split so that at least two starting times must have duration three. The
constraint is encoded as follows:

∧
e∈Espec

(atLeast_dmin[K(e,d)] ∧ atMost_dmax[K(e,d)]) (5.15)

Prefer Times Constraints

This constraint specifies that certain events should begin at certain times. If an optional
parameter d is given, then this constraint only applies to subevents with duration d. For
example, a lesson of duration 2 must be scheduled on Monday, excluding the last time
on Monday.

Let Pe be the bitvector in which the i-th bit is set iff i is a preferred time. We then
encode:

∧
e∈Espec

(atMost_0[and(?, inv(Pe))]) (5.16)

where ? is either Se or K(e,d), depending on whether the optional parameter d is given.

If the constraint is required to be soft and the optional parameter d is not given, then
the following formula is used instead (De is the set of duration event e can be subdivided
into):

85

5. Modeling High School Timetabling with Bitvectors

∧
e∈Espec

∧
k∈De

(k ∗ atMost_0[and(K(e,k), inv(Pe))]) (5.17)

If the optional parameter d is given, then instead of De we would use the singleton {d}.
The k in front of atMost_0 represents that when calculating the weights for violating the
constraint, one must consider the deviation k times larger than normally (the constraint
penalizes misplaced (sub)events of longer duration more).

Spread Events Constraints

Certain events must be spread across the timetable, e.g. in order to avoid situations in
which an event would completely be scheduled only in one day.

An event group eg is a set of events. Depending on these events, we propose two encodings
for this constraint. The first encoding is simpler, but requires that the events in the
specified event group cannot share any times. Formally, we require that:

∧
eg∈EGspec

∧
(ei,ej)∈eg2

ei 6=ej

(= (and(Yei , Yej), 0)) (5.18)

The previous equation holds in all of the instances considered in our work because events
in the event groups share a common resource and Avoid Clash Constraints prevents them
from having shared times. Therefore, we use the the simpler encoding for modeling. We
now proceed with this description and give the general case afterwards.

Let Zeg be a bitvector which has its i-th bit set iff an event e ∈ eg has a starting time at
time i. This is obtained by applying or to all of the appropriate Se vectors.

This constraint specifies event groups to which it applies, as well as a number of time
groups (sets of times) and for each such time group the minimum and maximum number
of starting times events from a given event group must have within times of that time
group. Let TGspec denote this set of sets of times and let masktg be the bitvector which
has its i-th bit set iff i is a time of time group tg. We define helper bitvectors C(tg,eg):

∧
tgi∈T Gspec
eg∈EGspec

(= (C(tg,eg), and(Zeg,masktg))) (5.19)

This constraint specifies the minimum dmin
i and maximum dmax

i amount of starting times
within a given time group tgi:

∧
tgi∈T Gspec
eg∈EGspec

(atLeast_dmin
i [C(tgi,eg)] ∧ atMost_dmax

i [C(tgi,eg)]) (5.20)

86

5.1. Modeling XHSTT with Bitvectors

If this constraint is used as a soft constraint, the soft cardinality constraint is used instead.
Points of application are event groups (not events) and deviations are calculated as the
number of set bits by which C(tgi,eg) falls short of the minimum or exceeds the maximum.

As discussed previously, the provided encoding holds only if Equation (5.18) holds.
Otherwise, the encoding given above will not be correct, because Zeg does not account
for more than one starting time at any time. Therefore, for each time t we would need to
count how many starting times (from the events in the event group) take place at that
time t. This can be done by using a helper bitvector Q(tg,eg) defined as:

∧
tgi∈T Gspec
eg∈EGspec

(= (Q(tgi,eg),
∨

ej∈eg

(lshift(extendBV (and(Se,masktgi), |T | ∗ j), |T | ∗ j))))

(5.21)

Here the indicies i and j represent the position of a time group or event within its time
group (i = 0..(|tgi| − 1) or event group j = 0..(|eg| − 1)). The function extendBV (bva, n)
extends the bitvector bva to the size of n by adding the appropriate number of zeros to the
end of bva. We use this function because otherwise lshift would remove all information
about the starting times due to the length of Se (which is equal to |T |). The resulting
bitvector Q(tg,eg) is of size |eg| ∗ |T | (number of events in eg multiplied by the number of
times in tg). The inner and operation ensures that only bits related to tgi are taken into
consideration and the lshift operations places the bits related to tg of the events from
eg one after the other in Q(tg,eg). We can now encode the constraint:

∧
tgi∈T Gspec
eg∈EGspec

(atLeast_dmin
i [Q(tgi,eg)] ∧ atMost_dmax

i [Q(tgi,eg)]) (5.22)

Link Events Constraints

Certain events must be held at the same time. For example, physical education lessons
for all classes of the same year must be held together. This constraint specifies a certain
number of event groups and imposes that all events within an event group must be held
simultaneously. Let EGspec denote this set of sets of events and Zeg be a bitvector which
has its i-th bit set iff an event e ∈ eg is taking place at time i.

We define a helper bitvector Leg whose i-th bit is set iff at time i at least one event is
taking place but not all the events of the specified event group:

∧
eg∈EGspec

(= (Leg,
∨

ei∈eg

and(Zeg, inv(Yei))) (5.23)

The constraint is now encoded as:

87

5. Modeling High School Timetabling with Bitvectors

∧
eg∈EGspec

(atMost_0[Leg]) (5.24)

Order Events Constraints

This constraint specifies pairs of events and constrains that there must be a certain
number of times in between the last time of the first event and the first time of the second
event. Parameters Bmin and Bmax are given which define the minimum and maximum
time separations between two events and are by default set to zero and the number of
times, respectively. The constraint specifies a set of pairs of events to which it applies.

In order to encode this constraint, we define helper bitvectors with the aim of tracking
the distance between the two events. The first type of helper bitvectors we define are
MAXe and MINe, which have its i− th bit set iff event e is taking place at time i but
not in any time after or before i, respectively:

∧
e∈Espec

(= (MAXe, and(Ye, inv(G(e,T))) ∧ (= (MINe, and(Ye, inv(H(e,T)))) (5.25)

Both MAXe and MINe have exactly one bit set. In the above equation T is the set of
all times, and G(e,T) and H(e,T) are as defined in Section 5.1.3 but with Ye being used
instead of Xr.

The next helper bitvector is MAX
′
e, which has the same bit set as MAXe but also

all bits to the right of it. Similar for MIN
′
e except all bits from the left are set. For

example, ifMAXei = (0, 0, 0, 1, 0) andMINej = (0, 1, 0, 0, 0) thenMAX
′
ei

= (0, 0, 0, 1, 1)
and MIN

′
ej

= (1, 1, 0, 0, 0). This is done for MAX
′
e by taking the or of all bitvectors

rshift(MAXe, i) with i = 0..(|T | − 1). For MIN
′
e, lshift(MINe, i) is used instead.

We now define a helper bitvector for a pair of events SEP(ei,ej), which has its i− th bit
set iff time i is between the last time of ei and the first time of ej :

∧
(ei,ej)∈E2

spec

(= (inv(or(MIN
′
ej
,MAX

′
ei

)), SEP(ei,ej))) (5.26)

Since MAX
′
ei

has all bits set until the last time of ei, and MIN
′
ej

has all bits set after
the first time of ej , by taking the or of these two vectors we would obtain a new bitvector
which has zeros only in position which are in between the last time of ei and first time of
ej . Therefore, performing an inverse of this would result in the desired bitvector S(ei,ej).
Note that the order in the pair is important (ei, ej): SEP(ei,ej) and SEP(ej ,ei) are two
different bitvectors (at least one of the two will be a zero bitvector).

88

5.1. Modeling XHSTT with Bitvectors

The above statements for SEP(ei,ej) hold only if the last time of ei is before the first
time of ej . Therefore, the constraint is encoded as follows, given the specified minimum
dmin and maximum dmax times in between events:

∧
(ei,ej)∈E2

spec

(atLeast_dmin[SEP(ei,ej)]) ∧ (atMost_dmax[SEP(ei,ej)]) (5.27)

∧
(ei,ej)∈E2

spec

(< (MAXei ,MINej)) (5.28)

If the constraint is specified as a soft constraint, additional modifications and equations
are required. We do not discuss the encoding in detail and briefly sketch it instead. The
main idea is to consider three cases: when the last time of ei is before the first time of ej ,
when the last time of ei is exactly first time of ej , and when the last time of ei is after
the first time of ej . For each of these cases, we would encode constraints which penalize
the objective function only if the given case is satisfied. In order to determine each case,
equations similar to Equation (5.28) would be encoded, but with <, =, and > operators.
The penalty equations for the first case would correspond to the same as Equation (5.27)
but with soft cardinality encodings, for the second case a fixed penalty would suffice,
while for the third case an equation similar to Equation (5.27) with SEP(ej ,ei) and soft
cardinality encodings would be used.

Avoid Unavailable Times Constraints

Specified resources are unavailable at certain times. For example, a teacher might be
unable to work on Friday.

Let UAT be the bitvector which has its i-th bit set if i is unavailable time. We encode
the constraint as follows:

∧
r∈Rspec
e∈E(r)

(atMost_0[and(Ye,UAT)]) (5.29)

Avoid Clashes Constraints

Specified resources can only be used at most by one event at a time. For example, a
student may attend at most one lecture at any given time.

Let E(r) be the set of events which require resource r. For each resource r, each time i
and each combination of two Ye vectors of events from E(r) at most one bit at the i-th
location may be set:

∧
r∈R

e1,e2∈E(r)
e1 6=e2

(= (and(Ye1 , Ye2), 0)) (5.30)

89

5. Modeling High School Timetabling with Bitvectors

If the constraint is specified as a soft constraint, a different encoding should be used.
Points of application are resources and deviations are calculated as follows: for each time
in which the resource is used by two or more events, compute the number of events which
require the resource minus one. Then, the sum of all these numbers is the deviation for a
single resource.

We give equations which can be used if the cost function is linear, which we have used in
our local search bitvector implementation. To do so, first we recursively define auxiliary
variables f(r,i) (the index i goes from zero):

∧
r∈R

(= (0, f(r,−1))) (5.31)

∧
r∈R

ei∈E(r)

(= (or(Yei , f(r,i−1))), f(r,i))) (5.32)

The constraint cost for the linear case is then encoded as:

∧
r∈R

ei∈E(r)

(atMost_0[and(f(r,i−1), Yei)]) (5.33)

Limit Idle Times Constraints

This constraint specifies the minimum and maximum number of times in which a resource
can be idle during the times in specified time groups. For example, a typical constraint
is to impose that teachers must not have any idle times.

A time t is idle with respect to time group tg (set of times) iff it is not busy at time t,
but is busy at an earlier time and at a later time of the time group tg. For example, if a
teacher teaches classes Wednesdays at Wed2 and Wed5, he or she is idle at Wed3 and
Wed4, but is not idle at Wed1 and Wed6. This constraint places limits on the number
of idle times for each resource.

To ease the encoding of this constraint, we define a helper bitvector Xr for each resource,
such that its i-th bit is set if resource r is busy at the i-th time:

∧
r∈R

(= (Xr,
∨

e∈E(r)
(Ye))) (5.34)

We define two other helper bitvectors: G(r,tg) and H(r,tg). For G(r,tg), the i-th bit is set
if resource r is busy at some time within time group tg that takes place after i. For
H(r,tg), it is similar except it considers times happening before i. For G(r,tg), these can
be computed by taking or of bitvectors rshift(and(Xr,masktg), k) where k = 1..n and
n is the number of times in time group tg. For H(e,tg) it is similar, except using lshift

90

5.1. Modeling XHSTT with Bitvectors

instead of rshift. Before finalizing the encoding for this constraint, we define another
auxiliary variable.

∧
r∈Rspec

tg∈T Gspec

(= (W(r,tg), and(inv(Xr), and(H(r,tg), G(r,tg))))) (5.35)

If for a resource r the i-th bit in Gr,tg and Hr,tg is set but not in Xr, then the i-th bit in
W(r,tg) will be set indicating an idle time. We now encode the constraint.

∧
r∈Rspec

(atMost_idlemax[
∨

tg∈T Gspec

(W(r,tg))]) (5.36)

A similar encoding to the one above is also used, but with atLeast_idlemin.

Cluster Busy Times Constraints

This constraint specifies the minimum and maximum number of specified time groups in
which a specified resource can be busy. For example, we may specify that a teacher must
fulfill all of his or her duties in at most three days of the week.

We define a helper bitvector Br for each resource, in which the i-th bit is set iff the
resource is busy at the i-th time group. Let us denote with tgi the i-th time group, and
with Br(i) and Xr(i) the i-th bits of Br and Xr

1, respectively. We can then encode this
constraint as follows:

∧
tgi∈T G

(= (Br(i),
∨

t∈tgi

Xr(t))) (5.37)

This constraint specifies the minimum bmin
tg and maximum bmax

tg busy time groups:

∧
r∈Rspec

(atLeast_bmin
tg [Br]) ∧ (atMost_bmax

tg [Br]) (5.38)

Limit Busy Times Constraints

This constraint imposes limits on the number of times a resource can become busy within
certain a time group, if the resource is busy at all during that time group. For example, if
a teacher teaches on Monday, he or she must teach at least for three hours. This is useful
in preventing situations in which teachers or students would need to come to school only
to have a lesson or two.

A resource is busy at a time group tg iff it is busy in at least one of the times of the tg.
We create a helper bitvector Xr which represents a bitvector which has its i-th bit set

1As defined by Equation (5.34).

91

5. Modeling High School Timetabling with Bitvectors

if resource r is busy at time i. This can be done by taking the or of Ye for all events
which require resource r. With TGspec we denote the set of sets of times given by the
constraint and encode the constraint as follows:

∧
r∈Rspec

tg∈T Gspec

(or(atLeast_bmin[and(Xr,masktg)], (= (and(Xr,masktg)), 0))) (5.39)

The formula exp = (= (and(Xr,masktg)), 0) will return true if resource r is not busy
within time group tg. Therefore, in this case the constraint given above will be satisfied.
Otherwise, we force the atLeast constraint to be satisfied, limiting the minimum number
of times r must be busy during that time group. With this, we capture the behavior we
would like: if the resource is not busy during the day do not make any further constraints,
but if it is busy make sure the resource works for at least bmin times. A similar encoding
to the one above is also used, but with atMost_bmax. Note that in this case or represents
logical or, rather than bitvector or.

If this constraint is used as a soft constraint, the soft cardinality constraint is used instead,
although special care must be given as this is a conditional cardinality constraint: if the
calculated vector is different from zero then the cardinality constraints need to be fulfilled.
Points of application are resources and for each resource its deviation is calculated as
the sum of number by which the events group falls short of the minimum or exceeds the
maximum for each time group.

Extending the Model

As mentioned in the beginning, we made the assumption that all resources have been
assigned to events, as it is easier to model, implement, and present the formulation. This
is a reasonable assumption, as most instances are of this form. Still, a significant part
of the instances require assignments of resource to events. Our model can be extended
with these requirements by introducing new bitvectors: for each event e and resource
r, a bitvector is created in which the i-th bit is set iff resource r has been assigned to
event e at time i. With these bitvectors, the other resource assigning constraints (we
direct interested readers to [PKA+14]) can be encoded in a similar fashion as the ones
already presented, along with certain modifications that need to be made to Avoid Clash
Constraints. In the general case, this would lead to a significant increase in bitvectors
and in turn might lead to longer solutions times, which is why particular cases rather
than general ones should be considered (see next paragraph).

Special care needs to be given when doing so with concrete instances, as requirements for
resource assignments can be diverse. For example, in instance SpainInstance given in
the ITC repository, assignments consist of assigning one gym room out of two available.
For instance EnglandStPaul, rooms need to be assigned and many symmetries appear
because all rooms are identical. Hence, it might be a better idea to restrict the number
of events at each time to the number of rooms, rather than assigning rooms directly to

92

5.2. Computational Results

events. A similar situation arises in FinlandArtificialSchool, where there are many
rooms, but only three different types and a counting strategy like the one described for
EnglandStPaul would be more appropriate.

In addition, it may be of interest to simplify the K(e,d) and Se encodings. The general
formulation allows a variety of situations to be encoded, but in most instances times are
partitioned into days, events do not span over more than one day, and an event has at
most one starting time per day. With this in mind, we could simplify the encoding of
K(e,d) and Se from Section 5.1.1. One way to do so would be to forbid the appropriate
K(e,t) variables so that events cannot span over multiple days and simply state that if an
event has n consecutive times followed by an unset bit in a day that it has a starting
time with duration n (the corner case being when the event ends at the last time of the
day). This would lead to simpler encodings which would be potentially easier to solve
than the general formulation.

When using the described model for implementing local search algorithms, one must
decide whether to allow situations in which an event may clash with itself. For example,
we may split a Mathematics lesson of four hours into two lessons of two hours. When
scheduling this event, we schedule the first and second subevent to take place on the
first or second time. However, since both subevents are of length two, the event will
clash with itself. If such a situation is considered legal, then certain modifications to the
present modeling need to be taken care of, as individual subevents need to be tracked
and used in some constraints. For example, if an event is self clashing, when calculating
its Spread Events Constraints one must check each of its subevents rather than using Ye,
since it may be the case that two subevents are scheduled to take place at the same time.
In our local search implementation, we allowed self clashing events, since the KHE engine
and state-of-the-art algorithms for XHSTT define this as a legal solution, although we
note that forbidding self clashes significantly simplifies the implementation.

We note that our model cannot be directly used by constructive local search algorithms
which would start from a solution with no assignments and construct a solution according
to some heuristic. The reason is that when calculating the deviations for each constraint,
it is assumed that all events are assigned the appropriate amount of times by Assign
Times Constraint. Therefore, if one wishes to use our model with such an algorithm this
needs to be taken into consideration and appropriate modifications should be performed
when calculating deviations for constraints which are affected.

5.2 Computational Results

In this section we evaluated our bitvector model by using simple implementations of
local search algorithms such as hill climbing and simulated annealing, as well as solving
XHSTT with SMT. All tests were performed on (Intel Core i3-2120 CPU @ 3.30GHz with
4 GB RAM) and each instance was given a single core. We restricted the computational
time per instance to 10 minutes for local search experiments and 24 hours for SMT

93

5. Modeling High School Timetabling with Bitvectors

experiments. All produced solutions were verified using HSEval2 and are available online3.
We evaluated our approach we used the same instances as described in Section 4.3.1.

5.2.1 Bitvectors and Local Search

We have implemented basic variants of hill climbing and simulated annealing local search
solvers for XHSTT using the presented bitvector approach to model XHSTT and calculate
constraint violations. For comparison purposes, we have implemented the exact same
algorithms using the engine KHE for calculating the constraint costs.

Brief Discussion on the Implementation

In KHE the solution consists of a number of subevents and their assigned times. It is
important to note that subevents of the same event are allowed to clash with each other
(constraints like Avoid Clash Constraints will penalize such solutions). We now discuss
this particular situation in more detail, first by giving an example in KHE and then
viewing the same situation with our model.

In KHE, for example, a math lesson of duration four hours can be split to two subevents
with duration of two hours. If the first and second subevents are scheduled to take place
at Monday 9 am and Monday 10 am (respectively), we will notice that there is an
overlap at Monday 10 am, because the second subevents starts while the first subevent
is still taking place. Therefore, we have a clash of subevents. This is treated as any other
clash and the appropriate constraints such as Avoid Clash Constraints apply.

However, in our general bitvector model we cannot have this situation as clashing
subevents of the same event is not possible. Instead, for the previous example, the exact
same solution using our model could be modeled such that one subevent of duration
two starts at Monday 9 am, another subevent of duration one starts at Monday 11 am,
and the event would have one hour of lessons unassigned. In this scenario Assign Time
Constraints would penalize such an assignment rather than Avoid Clash Constraints as
in KHE.

For the local search implementation we modified our model to take into account subevents.
This is done by assigning a bitvector to each subevent. The number of subevents for
each event is obtained after generating an initial solution. This modification introduces
difficulties when checking some constraints, as in some cases one needs to check for an
event whether it has multiple subevents starting at the same time, but this is done to
make our implementation more similar to KHE.

We note that we believe the way our general model treats clashing subevents is more
natural and appropriate, apart from it being simpler to calculate for our model when
compared to the modification described above. For example, we find it unintuitive to
allow a lesson to take place in the same time more than once, and that one can avoid

2http://sydney.edu.au/engineering/it/~jeff/hseval.cgi
3http://www.dbai.tuwien.ac.at/user/demir/XHSTT_SMT.tar.gz

94

http://sydney.edu.au/engineering/it/~jeff/hseval.cgi
http://www.dbai.tuwien.ac.at/user/demir/XHSTT_SMT.tar.gz

5.2. Computational Results

violating Assign Time Constraints by creating a new subevent and assigning it a time
in which another subevent of the same event is taking place, thus shifting the violation
towards Avoid Clashes Constraint. A possible approach would be to encode subevents as
separate events and modify the appropriate constraints to accommodate for this (e.g.
Spread Events Constraint), but this would not eliminate our first concern. However, we
agree that this is somewhat debatable and do not pursue further discussion on this in
the following text.

Comparison of KHE and Bitvectors

KHE is the leading open source software library for the general high school timetabling.
It offers users a lot of useful functionality when implementing XHSTT algorithms and
has its own solvers as well.

The reason we chose simulated annealing and hill climbing is because they are closely
related techniques to GOAL (the winner of the ITC 2011 [BFT+12a]), as well as the
improvements made later on [FSC16b, FS14]. GOAL has been implemented using KHE,
which is why we chose to compare our approach with KHE. We also use KHE to generate
an initial solution.

Events are split into one or more subevents. Regarding the local search algorithms, two
local search moves are considered: moving a randomly selected subevent to a new random
time and swapping the assigned times of two randomly selected subevents. These moves
are chosen because they have been used in [BFT+12a] and [FS14]. The algorithm by
itself is a simplified version of the mentioned state-of-the-art algorithms. We deliberately
keep the algorithm as simple as possible because the aim is to compare our modeling
approach with KHE regarding the number of iterations.The algorithm implemented is
described in Algorithm 5.1, which is a basic simulated annealing algorithm (one obtains
a variant of hill climbing by omitting the second or part of the outer if statement).

In experiments, the following parameters were used: Tinitial = 0.1, Tmin = 0.01, α = 0.99,
max_no_improvement = 10000. The cost difference ∆ was calculated as follows (taken
from GOAL):

∆ = (hardCost(snew)− hardCost(scur)) ∗ 10000.0 +

+ softCost(snew)− softCost(scur)
hardCost(sbest) ∗ 10000.0 + softCost(sbest)

(5.40)

As a measure for comparison between KHE and our bitvector approach, we compare
how many algorithm iterations could be performed in 10 minutes. In Table 5.1, we
present both the objective value and number of iterations performed. We note that the
running times for simulated annealing and hill climbing were very similar, therefore we
only present one table.

95

5. Modeling High School Timetabling with Bitvectors

Algorithm 5.1: Simulated Annealing
1 begin
2 sbest ←− sinitial

3 while enough time do
4 scur ←− sbest

5 T ←− Tinitial

6 while T > Tmin ∧ counter_no_improvement < max_no_improvement
do

7 snew ←− localMove(scur)
8 ∆ = cost(snew)− cost(scur)
9 if (∆ < 0) ∨ e−∆/Tcur > random(0, 1) then

10 scur ←− snew

11 if cost(scur) < cost(sbest) then
12 counter_no_improvement = 0
13 sbest = scur

14 end
15 else
16 counter_no_improvement←− counter_no_improvement+ 1
17 end
18 T ←− T ∗ α
19 end
20 end
21 end

In each example our implementation managed to produce more iterations, with the
results being mostly better. In some cases less iterations turned out better because of the
stochasticity of the algorithms used. We excluded the instance NetherGEPRO because
the generation of initial solution took more than the allowed computational time.

We used simplified variants of hill climbling and simulated annealing, because we wanted to
show that the bitvector implementation can be used effectively in local search techniques
and that it is possible to model the whole problem with the bitvector approach. As we
experiment with very simple local search techniques the results are not competitive, but
we can see that in each example our implementations produces more iterations.

We believe the improvements come from the data structures used, as they are very compact
and simply consist of bitvectors. This makes certain constraints easy to calculate, but
more importantly for simulated annealing it allows the solver to efficiently restart from
another solution by copying the bitvector data structure which can be done very fast.

When calculating the cost function after performing a local move, KHE and our approach
both recalculate costs for the affected resources and events, but the main difference
is that KHE recalculates only part of the constraint, while we calculate the complete

96

5.2. Computational Results

Name BV(obj) BV(iter) KHE(obj) KHE(iter)
Brazil2 (1, 69) 233m (1, 69) 36m
Brazil4 (22, 90) 212m (22, 102) 15m
Brazil6 (5, 270) 226m (4, 270) 11m

GreecePatras10 (6, 224) 39m (10, 91) 3m
GreeceUni4 32 62m 32 10m

GreeceHSchool 0 34m 0 2.7m
Italy4 2047 85m (2, 2927) 1.1m

FinlandHSchool (0, 43) 98m (0, 88) 12m
FinlandCollege (9, 115) 93m (14, 150) 1.6m
FinlandSSchool (2, 147) 77m (2, 154) 5m
KosovaInst 290 92m (254, 17509) 0.15m
Brazil1 78 284m 78 53m
Brazil3 156 247m 171 31m
Brazil5 (8, 156) 236m (10, 192) 13m
Brazil7 (1, 322) 208m (10, 314) 5.4m
Italy1 36 181m 43 44m

FinlandSSchool2 50 65m 78 2.5m
FinlandESchool (2, 4) 109m (2, 6) 3m
GreecePreveza (2, 334) 51m (4, 169) 3.7m
GreeceUni3 17 85m 16 17.4m
GreeceUni5 10 90m (1, 11) 18m
GreeceAigio (2, 447) 26m (0, 271) 1.1m

Table 5.1: Comparison of the bitvector approach and KHE for basic simulated annealing
and hill climbing.

constraint cost. In our bitvector implementation, in some cases considering only a part
of the constraint would not make a difference (e.g. Avoid Unavailable Times Constraint),
but other constraints might benefit from it, although this has so far not been explored.

Although our implementation for simulated annealing and hill climbing as a whole
currently shows better results than when using KHE, we cannot make a general claim
that our modeling is better than the approach used by KHE. Indeed, it could be that
KHE is more efficient in particular solution components, but this is hard to evaluate as
it is difficult to view algorithm components isolated. Nevertheless, our results show that
our modeling approach is a useful modeling approach for XHSTT and can be used as it
is by local search techniques and SMT.

5.2.2 Bitvectors for SMT

We evaluated modeling HSTT with bitvectors for Satisfiability Modulo Theories (SMT).
The developed bitvector modeling is suitable to be used for solving XHSTT with SMT

97

5. Modeling High School Timetabling with Bitvectors

solvers which provide tools for reasoning over bitvectors. To test our approach we used
the same instances as described in Section 4.3.1.

We experimented with the SMT solver Z3 (v4.4.2) [DMB08] with optimization support
[BP] using the wmax optimization engine. We chose this solver because, to the best of
our knowledge, it is the only active solver that supports optimization over bitvectors.
When modeling we used the encoding for cardinality constraints as described in Section
5.1.2 rather than population count instructions (mentioned in 5.1.2). The reason for
doing so was because there is no support for cardinality constraints in the solver.

We restricted the computational time to 24 hours with one core. The time to convert
an instance from XHSTT to an SMT instance is negligible when compared to the SMT
solution process.

The comparison of SMT solutions and best known results can be found in Table 5.2. For
each instance we display only the soft constraint cost if the hard constraint cost part is
zero. Otherwise, we use a dash to indicate that no feasible solution has been calculated.
Our model differentiates only between feasible or not feasible (hard constraints equal to
zero or not), that is, it does not give the hard costs. For ItalyInstance4, (0, x) means
that an initial solution was computed but no optimization could be performed. The
instances in the upper part of the table (separated by the hold horizontal line) represent
instances that were used in the final phase of ITC 2011, while the other instances were
used in previous phases. The table only displays instances which we could model with
our approach.

In all of the instances (except KosovaInstance and NetherGEPRO), the SMT solver
managed to compute an initial solution within a few minutes and do some optimization.
For three instances (Brazil1, GreeceHighSchool, and FinlandESchool) optimal solutions
were found. However, overall when compared to the best existing results, the SMT
method is not competitive, although one must consider that the best known results were
obtained without any time or resource limitations.

Therefore, given the current state, it would be best to use our approach to generate an
initial solution for a local search, as local search algorithms can struggle in some cases to
find a feasible solution (e.g. see Table 2 in [FS14]). Finally, SMT solvers are continuously
being improved and future developments of SMT optimization will directly improve our
results.

5.3 Summary

We presented a new bitvector modeling of the general high school timetabling problem
(XHSTT). We modeled all constraints, except for those that deal with resource assign-
ments. With our approach, we could model 23 out of 39 used instances. We considered
instances that were used in the International Timetabling Competition 2011 (ITC 2011)
and ones which were carefully selected by ITC 2011 after the competition.

98

5.3. Summary

Name SMT Best
Brazil2 54 5
Brazil4 166 51
Brazil6 226 35

GreecePatras10 883 0
GreeceUni4 163 3

GreeceHSchool 0 0
Italy4 (0, x) 27

FinlandHSchool 371 1
FinlandCollege 2311 0
FinlandSSchool 3502 77
KosovaInst - 0
Brazil1 41 41
Brazil3 72 24
Brazil5 177 19
Brazil7 452 53
Italy1 532 12

FinlandSSchool2 3343 0
FinlandESchool 3 3
GreecePreveza 1080 0
GreeceUni3 120 5
GreeceUni5 94 0
GreeceAigio 1790 0

NetherGEPRO - (1, 566)

Table 5.2: Comparison of SMT and best known results . Bold values indicate optimal
solutions.

The main use of our bitvector model is as a data structure which efficiently represents
XHSTT for local search algorithms such as hill climbing and simulated annealing. We
provided an experimental evaluation of the bitvector approach by comparing it to the
leading engine KHE on simple hill climbing and simulated annealing algorithms. The
bitvector approach demonstrated excellent results on the mentioned algorithms.

Additionally, the model was used to encode XHSTT as a Satisfiability Modulo Theory
(SMT) problem and use Z3, an SMT solver, to provide timetabling solutions. Although
this complete approach was able to provide optimal solutions for three instances, we note
that overall the presented maxSAT approach in Chapter 4 is more effective.

99

CHAPTER 6
MaxSAT-Based Large

Neighborhood Search for High
School Timetabling

In this chapter, we describe our new algorithm for XHSTT which combines local search
with a novel maxSAT-based large neighborhood search. A local search algorithm is
used to drive an initial solution into a local optimum and then more powerful large
neighborhood search (LNS) techniques based on maxSAT are used to further improve
the solution. We proved the effectiveness of our approach with experimental results
on instances described in Section 4.3.1, by comparing our algorithm to other XHSTT
state-of-the-art solvers. For the instances that could be modeled with maxSAT, our
algorithm shows good performance and for several instances new best known upper
bounds have been computed. We also present several variants of the algorithm, in order
to illustrate the importance of each component.

The rest of the chapter is organized as follows. The main section is Section 6.1, where
we describe our algorithm. Afterwards, Section 6.2 provides experimental results on
benchmarks instances. Lastly, a summary is given in Section 6.3.

6.1 Algorithm Description

We introduce a new algorithm for the XHSTT problem, which combines local search and
maxSAT-based large neighborhood search (LNS). LNS is a technique first introduced
by Shaw [Sha] and has been used for many problems, including related timetabling
problems [MO], but never in a combination with maxSAT. The LNS algorithm is the
main contribution of this paper and consists of two main components: destroy and
insertion operations. The destroy operator unschedules certain subevents. Insertion is

101

6. MaxSAT-Based Large Neighborhood Search for High School Timetabling

the opposite: it assigns times to the previously unscheduled subevents. We proceed by
explaining in detail the destroy operator, the insertion technique with maxSAT, the
initial solution generation by local search, and finally we give a complete overview of the
algorithm.

6.1.1 Destroy operator

The destroy operator selects a neighborhood from one of the two neighborhood vectors and
destroys the solution with respect to the selected neighborhood. The two neighborhood
vectors are based on resources and days. We first introduce these vectors and then explain
how a neighborhood is selected from them.

Neighborhood vector based on resources. This vector consists of all possible combinations
of two resources (e.g. rooms, teachers, etc). When a neighborhood from this vector
is used, every subevent which uses at least one of these two resources is unscheduled
(unassigned from each time unit), as well as every subevent which is linked to any of
the unassigned subevents via Link Event Constraints. A similar idea of unscheduling
resources has been presented in [Kin12].

Using events that share one of the selected resources and linked events are both important
for the insertion step. For example, students in HSTT have compact schedules and
attempting to assign a subevent which requires class C to a new time without previously
unassigning other subevents which also require class C will most likely result in a clash.
Since linked events should take place simultaneously, unassigning one subevent requires
that its linked subevents are also unassigned in order to be able to schedule all of the
subevents at a different time.

Neighborhood vector based on days. This vector consists of all possible combinations of
days. For example, if we are considering a timetable with three days {Mon, Tu, Wed}, the
corresponding day vector would be: { {Mon}, {Tu}, {Wed}, {Mon, Tu}, {Mon, Wed},
{Tu, We}, {Mon, Tu, Wed} }. When a neighborhood from this vector is used, subevents
assigned to times pertaining to the days of the selected neighborhood are unscheduled.

This neighborhood vector is used to make better rearrangements within each individual
day (e.g. for Limit Idle Times Constraint), as well as to be able to move, merge, or split
subevent throughout different days (e.g. for Spread and Cluster Events Constraints).

Neighborhood selection. Only one of the two neighborhood vectors is considered active
and neighborhoods are selected from the active one. The other neighborhood vector
will become active after either a timeout occurs (equal to half of the total running
time) or if all neighborhoods from the active vector have been visited exactly twice. A
neighborhood can be visited a second time only after all other neighborhoods in the
vector have been visited once, and no neighborhood will be visited more than twice
within a single activation of its neighborhood vector.

After using a neighborhood to destroy the solution and applying the insertion operator
based on a maxSAT solver, we record the objective value and whether the insertion

102

6.1. Algorithm Description

operator has successfully exhaustively explored the neighborhood. If the maxSAT solver
did not show progress within a certain amount of time (did not find a better solution
nor proved that one does not exist), we stop further exploration, label the attempt
unsuccessful, and move on to the next neighborhood. Initially we set the objective value
of a neighborhood to be a large number and label it as if an insertion operation has
successfully terminated. Note that if the recorded objective value for a neighborhood is
the same as the current upper bound then it means that the solution has not changed
since the last time the neighborhood was visited.

The order of the neighborhoods in a neighborhood vector are reset randomly when a
neighborhood vector becomes active or when all of its members have been visited once.
Neighborhoods are then visited in order, with the exception of the day neighborhood
vector where smaller neighborhoods are visited first before proceeding to larger ones (e.g.
single-day neighborhoods are visited before two-day neighborhoods).

In some cases a neighborhood will be skipped rather than examined. This is done
in order to avoid having the solver spend time with neighborhoods that are likely to
be unsuccessful. A neighborhood is skipped if its recorded objective value (previously
explained in this section) is equal to the current upper bound, and any of the following
conditions hold:

• Its previous insertion attempt was successful. The neighborhood is surely of no use
as it has already been thoroughly explored.

• It is being visited for the second time since the current neighborhood vector has
been set active. In this case we heuristically choose to skip the neighborhood,
because it has already been unsuccessfully explored, so the chances are that it will
be unsuccessful again with the same amount of time. It is better to allocate time
to other neighborhoods.

• The neighborhood is an element of the day neighborhood vector, and since the
last time the neighborhood vector became active, another neighborhood which
is a subset of the currently considered one has not successfully been explored.
For example, the three-day neighborhood {Mon, Tu, Wed} will be skipped if the
single-day neighborhood {Mon} has been labeled unsuccessful.

Each neighborhood will be allocated a specified amount of time. For each subsequent run
on a neighborhood that has not successfully terminated, more time is allocated. After
successfully terminating, the next run on that neighborhood will be given the default
amount of time.

We now further comment on our motivation for choosing this neighborhood selection
strategy. Our strategy was devised through heuristic reasoning and experimentation,
leaving the possibility that we might have missed other better strategies. Nevertheless,

103

6. MaxSAT-Based Large Neighborhood Search for High School Timetabling

experiments in Section 6.2 show that our approach is effective. The two main reasons
are as follows:

First, the idea is to examine smaller neighborhoods before going on to larger ones.
Accordingly, local search (see Section 6.1.3) takes place before the LNS algorithm,
resource based neighborhoods precede the day neighborhood vector, and smaller day
neighborhoods are examined before larger ones. The reason is that smaller neighborhoods
are much easier to explore and often provide improvements quickly. Once they are no
longer usable, we go to larger ones, which will now be searched faster because of the
clauses learned and bounds obtained (see Section 6.1.2) in the process of solving smaller
neighborhoods (as variant LNS.v2 confirms, Section 6.7).

Second, we want to thoroughly examine all neighborhoods in the hope of finding good
ones. We wish to avoid situations where a useful neighborhood is overlooked because
other neighborhoods are selected repeatedly. Therefore, we introduce fairness where a
neighborhood will be examined a second time only after all other neighborhoods have
been examined at least once. We chose to explore every neighborhood exactly twice
before moving on to the other neighborhood vector. Considering the same neighborhood
again after a series of other neighborhoods have been examined might be useful, but we
opted to not examine it more than twice in order to escape from a search space which
consumes too much time. The neighborhood skipping mechanism directs the search by
filtering out neighborhood which are unlikely to contain better solutions.

6.1.2 Insert operation

The insertion operation repairs the solution by trying to find the best possible insertion
for the unscheduled events using an exhaustive search based on a maxSAT formulation.
The idea is to call a maxSAT solver to solve the maxSAT formula which represents a
XHSTT-instance, while fixing the assignments of all subevents which were not unassigned
in the destroying phase. We use the maxSAT formulation described in Chapter 4. Recall
that the formulation relies heavily on the usage of Boolean variables Ye,t, which are true
iff a subevent of event e is taking place at time t (not just starting at t). In principle,
any exhaustive search technique could be used for the insertion operator. In Section 6.2.5
we provide a comparison of maxSAT with Integer Programming and further elaborate on
our decision to choose maxSAT.

With regard to the traditional decision problem, the problem of solving a SAT instance
while fixing certain variables is known as “solving under assumptions”. This can be done
by having the solver first “branch” on the fixed variables and then continue doing a regular
SAT search. However, this kind of technique cannot be directly used for maxSAT because
the underlying formula is being changed during the solution process. We elaborate on
this further below.

We use the Linear maxSAT algorithm (Algorithm 6.1) [LBP10] which makes repeated
calls to a SAT solver and after each call adds constraints which ask for a better solution

104

6.1. Algorithm Description

than the previous one (in Algorithm 6.1 K is the set of soft constraints). The optimal
solution is obtained when the SAT solver returns false.

Another maxSAT algorithm is based on unsatisfiable cores. An unsatisfiable core is
a set of clauses whose conjuction is unsatisfiable. Initially one may consider all soft
clauses as hard and then attempt to solve the formula. If the solver reports the formula
is unsatisfiable (not all soft clauses can be satisfied), an unsatisfiable core is computed
and used to relax the SAT formula and the process is repeated iteratively.

Algorithm 6.1: Linear Algorithm for maxSAT
1 begin
2 P ←− maxSAT formula
3 c =∞
4 bestAssignment = ∅
5 while isSatisfiable(P) do
6 bestAssignment = satisfiableAssignment(P)
7 c←− cost(P, bestAssignment)
8 P = P ∪ (

∑
i∈K softConstraint(i) < c)

9 end
10 end

We opted to use the linear algorithm as it was one of the algorithms that had good
performance for XHSTT (see Section 4.3). In this algorithm, the original maxSAT
formula is changed because bounds are added at each iteration, in addition to learned
clauses which are added to direct the search (see [SLM09] for clause learning). It is not
straightforward to remove the added clauses at later stages of the algorithm, because
clauses are learned with respect to other clauses (including other learned clauses) and
removing some clauses may therefore invalidate previously learned clauses. To the best
of our knowledge, no maxSAT solver supports this kind of search. An alternative is to
restart the solver after each call, losing possibly valuable learned clauses and bounds.
This motivated us to investigate a different approach: instead of restarting between
calls, we keep the modified formula intact. Thus, each call to the solver depends on all
previous calls due to the bounds and learned clauses. When querying the solver with a
new set of assumptions, it will attempt to report the best solution possible, but only if
it is better than all of the previously computed solutions. To this end, we modified the
linear algorithm in the open-source maxSAT solver Open-WBO [MML]. Keeping the
solver state between runs proved to be important and this is discussed in more detail in
Section 6.2.6. A different related approach related to ours is presented in [MJML] for
lower bounding maxSAT algorithms.

6.1.3 Initial solution

We use two approaches for generating an initial solution. The first approach is to use
the KHE14 algorithm [Kinb] to obtain an initial solution. We chose KHE14 because it

105

6. MaxSAT-Based Large Neighborhood Search for High School Timetabling

is a publicly available state-of-the-art solver designed to produce high quality solutions
very quickly. If KHE14 does not succeed in generating a feasible solution, we generate an
initial solution by ignoring all soft constraints and solving the corresponding XHSTT as
a pure SAT instance, with the exception of Split Events Constraints which are treated
as hard constraints even if they are given as soft ones. This solution is then improved
with a local search procedure. Split Events Constraints are treated as hard constraints
because the following local search algorithm does not split or merge subevents, making it
very difficult to find a good solution if the constraint is not satisfied initially. The local
search procedure is based on simulated annealing (SA) and it uses two neighborhoods:
swap (exchange the times of two subevents) and block-swap (similar to a swap, with the
exception that if a swap move causes two subevents to overlap, assign an appropriate time
to the second one so that they appear one after the other). Similar neighborhoods were
previously used in [FS14]. In our algorithm we only apply feasible moves to subevents
which share resources. The importance of using subevents with shared resources has been
discussed in Section 6.1.1. The following parameter values are used in the SA: the initial
temperature Tinitial is set to 0.1 and the temperature is multiplied by α = 0.99 every 10
iteration. If the last five improvements are made at the initial temperature, then the
algorithm starts accepting only improving moves. The probabilities of selecting the swap
or block-swap neighborhoods at each iteration are set to 2/3 and 1/3, respectively. When
a neighborhood is selected, two subevents are randomly selected until they both share a
resource (this is attempted 100000 times). The goal is to quickly improve the solution
simple moves leaving more complicated moves to LNS. We note that the initial solution
generation part of our algorithm takes only a small amount of time when compared to
the maxSAT-based LNS part. However, it is still important and we discuss in Section
6.2.6 the impact of using a non optimized initial solution (c.f., LNS.v1 variant).

6.1.4 Algorithm summary

The pseudo-code in Algorithm 6.2 summarizes our problem-solving approach. An initial
solution is generated and improved with SA, after which the LNS provides further
improvements. LNS consists of two parts: the destroy operator which unschedules
subevents based on a neighborhood chosen using either the resource or day vector
(described in Section 6.1.1), and the insertion operator which reschedules the previously
selected subevents and records the performance of the chosen neighborhood. The
algorithm iterates until a timeout occurs (in our experiments, 1000 seconds).

6.2 Experimental Results

In this section we introduce problem instances, experimentally evaluate our algorithm
including different variants, and compare with existing state-of-the-art solutions.

106

6.2. Experimental Results

Algorithm 6.2: Large Neighborhood Search XHSTT Algorithm
1 begin
2 S ←− initialSolutionAndLocalSearch()
3 tcurrent ←− current time; tvec ←− tcurrent

4 tdefault ←− 30 secs; tmax_active ←− 500 secs
5 (Vr, Vd) = generateNeighborhoodV ectors()
6 active(Vr)←− true; active(Vd)←− false
7 while there is time left do
8 if condition for vector switch satisfied then
9 switch active vector

10 tvec ←− tcurrent

11 randomize orderings of active vector

12 end
// Section 6.1.1

13 N ←− selectNeighborhood()
14 Sdestroyed ←− destroy(S,N)
15 Sold ←− S
16 S ←− insert(Sdestroyed, allocatedT ime(N))
17 if insertion was successful then

// Used for selection
18 previouslySuccessful(N)←− true

// Used for selection
19 cost(N)←− cost(S); allocatedT ime(N)←− tdefault

20 else
// Used for selection

21 previouslySuccessful(N)←− false
22 allocatedT ime(N)←− allocatedT ime(N) + 10
23 S ←− Sold

24 end
25 end
26 end

107

6. MaxSAT-Based Large Neighborhood Search for High School Timetabling

6.2.1 Computer Specification, Computational Time Limit, and
Instances

All tests were performed on an Intel Core i3-2120 CPU @ 3.30GHz with 4 GB RAM and
each instance was given a single core. To determine the computational time we used
the ITC’s benchmark tool which is designed to test how fast a machine is at performing
operations relevant for timetabling. The tool suggested a computational time 1007
seconds, which is a similar computational time used in the second round of ITC 2011
(1000 seconds). We evaluated our approach on the same instances as described in Section
4.3.1.

6.2.2 Solvers

We compared our approach (abbreviated by LNS) with VNS [FS14], KHE14 [Kinb],
Matheuristic [SS, Sør13b], and a pure maxSAT approach, all using the time limit of
1000 seconds. Additionally, we ran our solver for longer running times and compared its
results to the best known upper bounds.

VNS [FS14] was developed by the winners of ITC 2011 after the competition. KHE14
[Kinb] is a competitive solver also used in our approach for the initial solution, as
described in Section 6.1.3. Matheuristic [SS, Sør13b] is an Integer Programming-based
LNS algorithm. These solvers were chosen because they are state-of-the-art XHSTT
algorithms which can generate good solutions in the time limit set by the competition.
The pure maxSAT approach runs the maxSAT solver used in our algorithm (open-WBO)
on the same maxSAT model of a XHSTT-instance as LNS, but without using any of our
LNS techniques.

6.2.3 Results

The algorithms were run for the same amount of time (1000 seconds) on the same machine,
except Matheuristic because it is not available to the public. In this case, we compare
with the results reported in [SS, Sør13b]. We believe the comparison is fair because the
authors used the same benchmarking tool as we did to determine the computational time.
When no result was reported with Matheuristic for a given instances, we put ’-’ in the
table. Since KHE14 was designed to run for shorter durations, we ran the algorithm
multiple times during the time limit and present the best solution found.

We denote the objective function cost as a pair (x, y), where x and y are the hard and soft
constraint costs. If the hard cost is zero, we only present the soft cost. The algorithms
include some forms of randomness during their execution and we present the average
values of five runs. For BrazilInstance5, we included the best solution computed out of
the five runs, since the solution represents the best solution known for this instance so
far.

108

6.2. Experimental Results

The comparison is given in Table 6.1. Instances noted above the bold horizontal line are
part of the XHSTT-2014 benchmark set, while the ones below are not but have been
used in the competition.

Name LNS VNS KHE14 maxSAT Math.
Brazil2 5.4∗ (1, 44.4) 14 57 6
Brazil4 61.4 (17.2, 94.8) −c 214 58
Brazil6 50.6 (4, 223.6) 124 352 57

GreecePatras10 0∗ 0∗ 0∗ 2329m -
GreeceUni4 5 6.2 8 141 12

GreeceHSchool 0∗ 0∗ 0∗ 0∗ -
Italy4 35 178 40 16979m 48

SAfricaWood 1.2∗ (2, 6.2) (3, 0) 0∗ (2, 429)
SAfricaLewitt −m 8 −c 1039m -
FinlandHSchool 9.8 36.6 29 812 -
FinlandCollege 54.6 (2.8, 25) 20 1309 -
FinlandSSchool 95.2 (0.4, 93) 90 504 -
KosovaInst −m 14 (8 , 6) 29946m (9, 23525)
EngStPaul - (92, 1739.4) (26, 764) −m -
Brazil1 39 52.2 54 39 -
Brazil3 23∗ 107.8 116 75 -
Brazil5 19.4 (17) (4, 138.4) (1, 179) 224 -
Brazil7 136.2 (11.6, 234.6) 179 603 -
Italy1 12p 21.2 31 12p -

FinlandSSchool2 0.2∗ 0.2∗ 2 3523 6
FinlandESchool 3p 3 4 3p 3
FinlandASchool 0∗ (5.4, 4.2) (4, 6) 12 -
GreecePreveza 38.2 2∗ 2 5617 -
GreeceUni3 7 5 7 7 6
GreeceUni5 0∗ 0∗ 0∗ 0∗ 0∗
GreeceAigio 368 (0.2, 6.2) 6 4582 180

NetherGEPRO −m (3, 7518) −c −m -

Table 6.1: Comparison of results with solvers with the time limit of 1000 seconds. The
best results are in bold. Legend: ∗ optimality was found within the five runs; m ’out of
memory’; p proof of optimality; c program crash (a bug); and ”− ” solution has not been
produced within the time limit .

Our approach outperforms the VNS solver for 16 instances out of 27, while in five cases
gives the same result. For KHE14, we obtain better results in 15 cases and remain equal
in four cases. When compared to the pure maxSAT approach, our algorithm has a clear
advantage given the computational limit. As for the Matheuristic algorithm, we perform
better in five out of nine instances and are tied in one instance based on the published
results. Overall, our solver is better or equal than any other solver in 16 cases. We note
that we evaluated our results with respect to the recent hyper-heuristic approach [KK16]

109

6. MaxSAT-Based Large Neighborhood Search for High School Timetabling

as well. For every instance in Table 6.1 our approach produced better results compared
to the results given in [KK16].

We note that a new best known upper bound has been computed for BrazilInstance5
within the time limit. Moreover, in two cases our solver found and proved optimality
within the time limit, while other solvers are not able to generate proofs of optimality.
Our method is able to prove optimality for these instances because larger and larger
neighborhoods are explored over time until the whole problem is solved (the complete
solution is destroyed and optimally reassigned). Further improvements to the best known
solutions with other time limits are discussed in Section 6.2.4.

Overall, the results obtained are very encouraging, as our approach outperformed the
state-of-the-art solvers on many instances that were modeled with our maxSAT approach.

6.2.4 Longer runs and additional improvements to the best known
solutions

With more computational time, it was possible to produce three new best known solutions
(in addition to the ones from the previous section). For the KosovaInstance, we ran our
algorithm using the previous best known solution as a starting point. In Table 6.2, we
present the results in column LNS(time) together with the time used in brackets, but
only when it was possible to produce better solutions with longer running times. In
column ′Best′ we give the previously best known solution values. The other instances
(including the ones that we have previously computed optimally) are marked with ′−′. We
note that after providing our results for the Brazilian instances to ITC 2011’s repository,
the instance modelers decided to slightly modify the instances. After reviewing our
solution, they decided to make Prefer Times Constraints hard instead of soft constraints.
Nevertheless, we provide these results as no other method could compute these solutions.

6.2.5 maxSAT vs Integer Programming

We now provide a comparison of maxSAT with Integer Programming and further elaborate
on our decision to choose maxSAT for the insertion operator.

We compared Integer Programming1 [KSS15] and pure maxSAT for XHSTT. Both solvers
were run for 30 seconds (the initial time used in this paper for each neighborhood) and 600
seconds using a single thread and the results are given in Table 6.3. In most instances the
pure maxSAT approach gave better results. The maxSAT results can easily be reproduced
by running our maxSAT instances 2 with open-WBO (parameter: -algorithm=1). Based
on the results, we believe that maxSAT is an appropriate exact method to be used as
part of LNS.

In addition to the above, we note two other very important points for our maxSAT choice:
this is the first time, to the best of our knowledge, that maxSAT has been used in a

1We thank the authors for providing their solver
2http://www.dbai.tuwien.ac.at/user/demir/WCNF_SNA.rar

110

6.2. Experimental Results

Name LNS(1000s) LNS(time) Best LNS.v1 LNS.v2 LNS.v3(R) LNS.v3(D)
Brazil2 5 - 5 5.4 5 12.6 5
Brazil4 61.4 53 (4000) 51 60.6 69 91 88.2
Brazil6 50.6 34 (27000) 35 99 75 56.8 74.6

GreecePatras10 0 - 0 57.8 6 0.5 0
GreeceUni4 5 - 5 38.8 6 13 5

GreeceHSchool 0 - 0 0 0 0 0
Italy4 35 35 (3500) 34 −m 52 48 55

SAfricaWood 1.2 - 0 1.2 0.4 27.8 0
SAfricaLewitt - - 0 - - - -
FinlandHSchool 9.8 8 (3200) 1 37.2 15.8 14.6 23.2
FinlandCollege 54.6 23 (4000) 0 43.4 84.8 50 643.8
FinlandSSchool 95.2 82 (9000) 77 92.2 104 117 126
KosovaInst - 0 (300) 3 - - - -

Brazil1 39 38 (10000) 38 38.6 38 41.8 38.8
Brazil3 23 - 23 23.6 23 61 23.2
Brazil5 19.4 17 (20000) 20 23.4 27.6 43.6 27.6
Brazil7 136.2 57 (14000) 67 282 176 114.4 217.6

GreecePreveza 38.2 0 (1200) 0 39.6 69 168.8 5.5
GreeceUni3 7 - 5 8 6 10 7.2
GreeceUni5 0 - 0 0 0 1.2 0
GreeceAigio 368 97 (5300) 0 −m 442 461.2 200

Italy1 12 - 12 12.2 12.2 14 12
FinlandSSchool2 0.2 - 0 76.8 1 5 0
FinlandESchool 3 - 3 3 3 3 3
FinlandASchool 0 - 0 0 0 30 0

Table 6.2: Comparisons of results for longer running times, variants of our algorithm,
and previously best known upper bounds. The best known upper bounds computed are
in bold.

LNS algorithm. Second, Gurobi (the Integer Programming solver used in [KSS15]) is a
commercial highly engineered piece of software, while open-WBO (the maxSAT solver
we modified) is open source and not so heavily engineered, but still provides competitive
results.

111

6. MaxSAT-Based Large Neighborhood Search for High School Timetabling

Name maxSAT(30s) IP(30s) maxSAT (600s) IP (600s)
Brazil2 98 (16, 293) 55 87
Brazil4 261 (55, 266) 199 241
Brazil6 505 (162, 580) 341 609

GreecePatras 3219 - 3219 25
GreeceUni4 186 193 141 55

Italy4 18671 (2387, 26756) 18671 21228
SAWoodlands 4028 - 811 -
SALewitt 1189 - 1189 802

FinlandHSchool 1231 (331, 981) 501 351
FinlandCollege 1056 - 1056 (546, 1185)
FinlandSSchool 765 (30, 1053) 575 166

Brazil1 44 59 41 41
Brazil3 171 (77, 407) 65 93
Brazil5 406 (118, 487) 225 585
Brazil7 819 (240, 887) 771 (157, 908)
Italy1 2039 141 27 17

FinlandSSchool2 2464 - 2464 (279, 3483)
FinlandESchool 3 - 3 4
FinlandASchool 4004 (416, 125) 43 (202, 111)
GreecePreveza 5617 - 5617 (18, 3145)
GreeceUni3 161 183 122 37
GreeceUni5 100 52 32 37
GreeceAigio 4582 - 4582 (6609, 195)

Table 6.3: Comparison of Integer Programming [KSS15] and pure maxSAT for XHSTT.
The hypen in the table indicates that the solver was not able to produce a solution within
the specified time limit.

6.2.6 Variants of the algorithm

We experimented with three variants of our algorithm and compared them with our
standard algorithm (’LNS’ column), still using 1000 seconds of computational time. The
results of all three variants are given in Table 6.2. Each variant is aimed at testing a
certain aspect of our algorithm.

112

6.3. Summary

Variant LNS.v1 is similar to our standard algorithm, except that it uses an unoptimized
initial solution as a starting point, generated by ignoring all soft constrains and solving the
problem as a SAT problem. Based on the results, we conclude that using optimized initial
solutions is better overall, since local search quickly eliminates simple improvements,
leaving more time for the maxSAT solver to deal with the more challenging ones.

The second variant LNS.v2 consists of restarting the maxSAT solver between different
calls. In the original version, the maxSAT solver is not restarted from scratch, thus
all learned clauses and previous bounds are kept (see Section 6.1.2). The lower quality
of results indicate that restarting the maxSAT solver after every insertion operation is
detrimental. We note that the total time required for restarting the solver was not very
significant (typically under 50 seconds).

The third variant LNS.v3(R) and LNS.v3(D) consists of using only one of the two
proposed neighborhood sets (resource or day vector), in order to analyze whether the
combination of neighborhoods is beneficial. Overall these variants seem to be worse than
the standard version. We believe that the resource neighborhood vector can provide quick
improvements and let the more complicated ones be performed by the day neighborhood
vector. Thus, both neighborhoods complement each other.

6.3 Summary

We presented a new large neighborhood search algorithm which exploits maxSAT to solve
XHSTT. We proposed a destroy operator with two neighborhood vectors and a novel
insertion approach, for which we modified the open-source maxSAT solver Open-WBO
[MML] to support our exhaustive insertion strategy. The overall algorithm combines
local search and large neighborhood search to solve XHSTT-instances which we modeled
by maxSAT.

We experimentally compared our algorithm to other approaches in the literature on 27
out of 39 instances. Our approach outperformed the state-of-the-art solvers on many
instances which we modeled by maxSAT. Using our algorithm, we managed to compute
four new best known upper bounds. In addition, in contrast to pure metaheuristic
approaches, our algorithm was able to prove optimality for two instances with nonzero
solutions. The presented approach is a novel contribution to the state-of-the-art for
XHSTT. Furthermore, to the best of our knowledge, the first time maxSAT is used within
a large neighborhood search scheme.

In addition, to demonstrate the importance of each component and gain further insight
into the inner workings of our algorithm, we experimented with four different variants.
The experiments reveal several important lessons. Optimizing the initial solution by
inexpensive local search techniques has proven to be valuable, as the powerful maxSAT
techniques are saved for more challenging problems. Keeping the solver state in between
successive maxSAT calls improves the overall performance, as the kept learned clauses

113

6. MaxSAT-Based Large Neighborhood Search for High School Timetabling

aid the maxSAT search algorithm. Lastly, combining both neighborhood vectors yields
better results than using any of them individually.

114

CHAPTER 7
Conclusion

In the previous chapters, we described the general high school timetabling problem,
introduced a formal definition, as well two different modeling approaches, SAT- and
bitvector-based. By modeling XHSTT with maxSAT and bitvectors, we were able to
take advantage of existing solvers to generate timetabling solutions. We have done
extensive experiments with the maxSAT formulation in order to determine the best
modeling choices (for cardinality constraints and important special cases) and maxSAT
solvers. The results proved that our maxSAT approach is state-of-the-art for XHSTT,
outperforming the state-of-the-art complete approach based on integer programming
in many instances. Our bitvector modeling performed well for local search algorithms.
Lastly, our maxSAT-based large neighborhood search algorithm has demonstrated to be
state-of-the-art as well, excelling in producing quality solutions in limited computational
time. Each of the described methods are vastly different from each other and represent
distinct ways to tackle XHSTT.

Our work shows that SAT-based approaches are promising for very complex problems
such as the general high school timetabling problem. This implies that investigating its
application for other timetabling problems is a promising research direction. Moreover,
the hybridization of maxSAT and large neighborhood search is able to provide significantly
better solutions than a pure maxSAT approach within short computational times. To
the best of our knowledge, this was the first time that a large neighborhood search
algorithm was used with maxSAT, hinting that a similar approach might be useful for
other problems, but also for maxSAT itself. In addition, the modelings can be useful as
concise and compact representations of the problem at hand, serving as efficient data
structures for local search algorithms.

The formulation of XHSTT into a propositional logic formula is a challenging process,
since precisely stating the problem in the low-level language of propositional logic can be
difficult. Many symmetries may be present in the problem, which can severely hinder the
solution process if they are not given special attention. As our work has shown, it is very

115

7. Conclusion

important to consider different modeling options and solution techniques. In our case,
even after extensive experimentation, there was no clear winner among the modeling
and solver choices. There were a number of good options, with each modeling or solving
method having its own advantages depending on the instance. This should not be seen
in a bad light, as having multiple complementary choices can lead to better and more
robust solution approaches.

From our empirical results with variants of our maxSAT-based large neighborhood search
algorithm, we concluded that starting from a good initial solution is important, as well
as using multiple different neighborhoods. In addition, it was very beneficial for the
algorithm to learn about the search space at run-time. In our example, we did so by
keeping the learned clauses during the search in between solver calls and performing
book-keeping to avoid using nonpromising neighborhoods.

Overall, this thesis introduced several novel approaches for XHSTT and gave contributions
to the state-of-the-art for XHSTT. There has been tremendous progress since the ITC
2011, but we do not consider XHSTT to be solved. It still remains a challenging problem
to find and prove optimal solutions in reasonable time in many instances. There are a
number of open issues left, both in general for XHSTT and our algorithms. We highlight
some of the issues in the next section.

7.1 Future Work
An important topic for future work would be to consider a portfolio-based algorithm
selection approach. Such approaches analyze a given instance and select the most
appropriate algorithm for it based on the instances’ features. Two issues are to be
explored. The first is to decide which cardinality constraint encoding to use given a
set of variables, the cardinality value k, and constraint in question. This is suitable for
a portfolio-based algorithm approach, as we can view different modeling strategies as
different algorithms to choose from. We have partially addressed this problem in our
experiments. However, instead of using one cardinality constraint encoding for a wide
range of constraints, it might be worthwhile to use several different ones, depending on
the characteristics of the cardinality constraint. The second issue is to determine which
maxSAT solver to use given a XHSTT instance. From our experiments (Chapter 4), it
can be seen that better results can be obtained if different maxSAT solvers are considered.
Taking this methodology further, we believe it would be advantageous to unite all of the
XHSTT solvers, in order to exploit their diversity. We believe studying XHSTT instance
features, which is necessary for a portfolio approach to be successful, will additionally
result in a deeper understanding of the challenges XHSTT algorithms face.

Our large neighborhood search approach (Chapter 6) proved that combining domain-
specific knowledge and maxSAT can lead to a very efficient algorithm. Therefore, we
believe a good research direction would be to investigate whether XHSTT knowledge can
be integrated directly within a maxSAT solver. This may concern information about the
constraints (e.g. domain-specific propagation) or special procedures to handle cardinality

116

7.1. Future Work

constraints natively. As pointed out in [AN14], the pigeon hole problem might arise
during the search in timetabling problems, which involves proving that n pigeons cannot
fit into n-1 holes, assuming no hole can be occupied by more than one pigeon. In the
context of XHSTT, an equivalent situation would be to state that n events with total
duration d, all of which share a common resource, cannot be placed in d-1 times. For
SAT this is a problem because there is no polynomial-size proof of its unsatisfiability
[Hak95], even though it is obvious when posed in natural language. Thus, developing
specialized SAT techniques for XHSTT might be very beneficial.

In addition to the above, another important issue is the modeling of resource assignments.
We have provided a model for a specific case, but not for the general case. If this is done
in a straightforward manner, apart from possibly drastically increasing the number of
variables in our model, symmetries may easily be introduced, negatively impacting the
solution process. Therefore, innovative modeling approaches are to be studied to address
these concerns.

117

List of Tables

4.1 Comparison of maxSAT solvers. 67
4.2 Ranking of maxSAT solvers. 68
4.3 Comparison of selected solvers with different cardinality constraints. Abbrevi-

ations: α = Open-WBO(lin), β = Open-WBO(def), θ = Optiriss(inc), γ =
Optiriss(inc-lin) . 69

4.4 Ranking of selected solvers with different cardinality constraints. Abbrevi-
ations: α = Open-WBO(lin), β = Open-WBO(def), θ = Optiriss(inc), γ =
Optiriss(inc-lin) . 70

4.5 Comparison of maxSAT solvers with integer programming. 71
4.6 Ranking of maxSAT solvers and integer programming. 72
4.7 Comparison of maxSAT and the developed SMT approach (Section 4.2) . . . 73
4.8 Ranking of maxSAT and the developed SMT approach (Section 4.2) 73
4.9 Comparison of maxSAT solvers in the ITC 2011 second round. 74
4.10 Ranking of maxSAT solvers in the ITC 2011 second round. 75

5.1 Comparison of the bitvector approach and KHE for basic simulated annealing
and hill climbing. 97

5.2 Comparison of SMT and best known results . Bold values indicate optimal
solutions. 99

6.1 Comparison of results with solvers with the time limit of 1000 seconds. The
best results are in bold. Legend: ∗ optimality was found within the five runs;
m ’out of memory’; p proof of optimality; c program crash (a bug); and ”− ”
solution has not been produced within the time limit 109

6.2 Comparisons of results for longer running times, variants of our algorithm,
and previously best known upper bounds. The best known upper bounds
computed are in bold. 111

6.3 Comparison of Integer Programming [KSS15] and pure maxSAT for XHSTT.
The hypen in the table indicates that the solver was not able to produce a
solution within the specified time limit. 112

119

List of Algorithms

3.1 Simulated Annealing for XHSTT . 23

3.2 Iterated Local Search for XHSTT . 24

3.3 Basic Variable Neighborhood Search Algorithm for XHSTT 25

3.4 Stagnation-Free Late Acceptance Hill Climbing for XHSTT 28

3.5 Generic Hybrid Algorithm for XHSTT . 33

4.1 Linear Algorithm for maxSAT . 58

4.2 SMT for XHSTT Algorithm Outline . 59

4.3 Modified Linear Algorithm for SMT (using v as an input variable) 60

5.1 Simulated Annealing . 96

6.1 Linear Algorithm for maxSAT . 105

6.2 Large Neighborhood Search XHSTT Algorithm 107

121

Bibliography

[ADG] Carlos Ansótegui, Frédéric Didier, and Joel Gabàs. Exploiting the structure
of unsatisfiable cores in maxSAT. In Proceedings of IJCAI-15, pages
283–289.

[AN14] Roberto Javier Asín Achá and Robert Nieuwenhuis. Curriculum-based
course timetabling with SAT and maxSAT. Annals of Operations Research,
218(1):71–91, 2014.

[ANOR] Roberto Asín, Robert Nieuwenhuis, Albert Oliveras, and Enric Rodríguez-
Carbonell. Cardinality networks and their applications. In Proceedings of
SAT-09, pages 167–180.

[AÖK15] Leena N. Ahmed, Ender Özcan, and Ahmed Kheiri. Solving high school
timetabling problems worldwide using selection hyper-heuristics. Expert
Systems with Applications, 42(13):5463–5471, 2015.

[BBa] Olivier Bailleux and Yacine Boufkhad. Efficient CNF encoding of boolean
cardinality constraints. In Proceedings of CP-03, pages 108–122.

[BBb] Edmund K Burke and Yuri Bykov. A late acceptance strategy in hill-
climbing for exam timetabling problems. In Proceedings of PATAT-16.

[BFT+12a] Samuel S. Brito, George H. G. Fonseca, Túlio A. M. Toffolo, Haroldo G.
Santos, and Marcone J. F. Souza. A SA-ILS approach for the high school
timetabling problem. Electronic Notes in Discrete Mathematics, 39:169–176,
2012.

[BFT+12b] Samuel S. Brito, George H. G. Fonseca, Túlio A. M. Toffolo, Haroldo G.
Santos, and Marcone J. F. Souza. A SA-VNS approach for the high school
timetabling problem. Electronic Notes in Discrete Mathematics, 39:169–176,
2012.

[BHvMW09] Armin Biere, Marijn Heule, Hans van Maaren, and Toby Walsh, editors.
Handbook of Satisfiability, volume 185 of Frontiers in Artificial Intelligence
and Applications. IOS Press, 2009.

123

[BP] Nikolaj Bjørner and Anh-Dung Phan. νZ-Maximal Satisfaction with Z3.
In Proceedings of SCSS-14.

[DdAB14] Árton P. Dorneles, Olinto César Bassi de Araujo, and Luciana S. Bu-
riol. A fix-and-optimize heuristic for the high school timetabling problem.
Computers & Operations Research, 52:29–38, 2014.

[dFST+16] George Henrique Godim da Fonseca, Haroldo Gambini Santos, Túlio Ân-
gelo Machado Toffolo, Samuel Souza Brito, and Marcone Jamilson Freitas
Souza. GOAL solver: a hybrid local search based solver for high school
timetabling. Annals of Operations Research, 239(1):77–97, 2016.

[DM] Emir Demirović and Nysret Musliu. Modeling high school timetabling as
partial weighted maxSAT. LaSh 2014: The 4th Workshop on Logic and
Search (a SAT / ICLP workshop at FLoC 2014).

[DMB08] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient SMT solver. In
Tools and Algorithms for the Construction and Analysis of Systems, pages
337–340. Springer, 2008.

[EIS75] Shimon Even, Alon Itai, and Adi Shamir. On the complexity of time table
and multi-commodity flow problems. In Proceedings of the 16th Annual
Symposium on Foundations of Computer Science, pages 184–193, 1975.

[ES06] Niklas Eén and Niklas Sörensson. Translating pseudo-boolean constraints
into SAT. Journal on Satisfiability, Boolean Modeling and Computation,
2(1-4):1–26, 2006.

[FS14] George H. G. Fonseca and Haroldo G. Santos. Variable neighborhood search
based algorithms for high school timetabling. Computers & Operations
Research, 52:203–208, 2014.

[FSC16a] George H. G. Fonseca, Haroldo G. Santos, and Eduardo G. Carrano. In-
tegrating matheuristics and metaheuristics for timetabling. Computers &
Operations Research, 74:108–117, 2016.

[FSC16b] George H. G. Fonseca, Haroldo G. Santos, and Eduardo G. Carrano. Late
acceptance hill-climbing for high school timetabling. Journal of Scheduling,
19(4):453–465, 2016.

[FSCS] George HG Fonseca, Haroldo G Santos, Eduardo G Carrano, and
Thomas JR Stidsen. Modelling and solving university course timetabling
problems through XHSTT. In Proceedings of PATAT-16, pages 127–138.

[Hak95] Armin Haken. Counting bottlenecks to show monotone P <=> NP. In
36th Annual Symposium on Foundations of Computer Science, pages 36–40,
1995.

124

[ITC] International timetabling competition 2011.
http://www.utwente.nl/ctit/hstt/itc2011/welcome/. Accessed: 9-12-2016.

[kina] The KHE high school timetabling engine.
http://sydney.edu.au/engineering/it/Accessed: 06-12-16.

[Kinb] Jeffrey Kingston. KHE14: An algorithm for high school timetabling. In
Proceedings of PATAT-14, pages 498–501.

[Kinc] Jeffrey H. Kingston. Hierarchical timetable construction. In Proceedings of
PATAT-06, Revised Selected Papers, pages 294–307.

[Kin12] Jeffrey H Kingston. Timetable construction: the algorithms and complexity
perspective. Annals of Operations Research, pages 1–11, 2012.

[Kir84] Scott Kirkpatrick. Optimization by simulated annealing: Quantitative
studies. Journal of Statistical Physics, 34(5-6):975–986, 1984.

[KK16] Ahmed Kheiri and Ed Keedwell. A hidden markov model approach to the
problem of heuristic selection in hyper-heuristics with a case study in high
school timetabling problems. Evolutionary Computation, 2016.

[KKMS15] Lucas Kahlert, Franziska Krüger, Norbert Manthey, and Aaron Stephan.
Riss solver framework v5. 05. SAT-Race, 2015.

[KOP] Ahmed Kheiri, Ender Ozcan, and Andrew J Parkes. HySST: hyper-heuristic
search strategies and timetabling. In Proceedings of PATAT-12, pages 497–
499.

[KSS15] Simon Kristiansen, Matias Sørensen, and Thomas R. Stidsen. Integer
programming for the generalized high school timetabling problem. Journal
of Scheduling, 18(4):377–392, 2015.

[LBP10] Daniel Le Berre and Anne Parrain. The Sat4j library, release 2.2 system
description. Journal on Satisfiability, Boolean Modeling and Computation,
7:59–64, 2010.

[LMS03] Helena R Lourenço, Olivier C Martin, and Thomas Stützle. Iterated local
search. In Handbook of metaheuristics, pages 320–353. Springer, 2003.

[MH97] Nenad Mladenović and Pierre Hansen. Variable neighborhood search.
Computers & Operations Research, 24(11):1097–1100, 1997.

[MJML] Ruben Martins, Saurabh Joshi, Vasco M. Manquinho, and Inês Lynce.
Incremental cardinality constraints for maxSAT. In Proceedings of CP-14,
pages 531–548.

[MML] Ruben Martins, Vasco Manquinho, and Inês Lynce. Open-WBO: a modular
maxSAT solver. In Proceedings of SAT-14, pages 438–445.

125

[MO] Carol Meyers and James B Orlin. Very large-scale neighborhood search
techniques in timetabling problems. In Proceedings of PATAT-06, Revised
Selected Papers, pages 24–39. Springer.

[PAD+12] Gerhard Post, Samad Ahmadi, Sophia Daskalaki, JeffreyH. Kingston, Jari
Kyngas, Cimmo Nurmi, and David Ranson. An XML format for benchmarks
in high school timetabling. Annals of Operations Research, 194(1):385–397,
2012.

[PDGK+13] Gerhard Post, Luca Di Gaspero, JeffreyH. Kingston, Barry McCollum, and
Andrea Schaerf. The third international timetabling competition. Annals
of Operations Research, pages 1–7, 2013.

[Pil14] Nelishia Pillay. A survey of school timetabling research. Annals of Opera-
tions Research, 218(1):261–293, 2014.

[PKA+14] Gerhard Post, Jeffrey H. Kingston, Samad Ahmadi, Sophia Daskalaki,
Christos Gogos, Jari Kyngäs, Cimmo Nurmi, Nysret Musliu, Nelishia Pillay,
Haroldo Santos, and Andrea Schaerf. XHSTT: an XML archive for high
school timetabling problems in different countries. Annals of Operations
Research, 218(1):295–301, 2014.

[Sch99] Andrea Schaerf. A survey of automated timetabling. Artificial Intelligence
Review, 13(2):87–127, 1999.

[SD14] Matias Sørensen and Florian H. W. Dahms. A two-stage decomposition
of high school timetabling applied to cases in denmark. Computers &
Operations Research, 43:36–49, 2014.

[Sha] Paul Shaw. Using constraint programming and local search methods to
solve vehicle routing problems. In Proceedings of CP-98, pages 417–431.
Springer.

[Sin] Carsten Sinz. Towards an optimal CNF encoding of boolean cardinality
constraints. In Proceedings of CP-05, pages 827–831. Springer.

[SKS] Matias Sørensen, Simon Kristiansen, and Thomas R Stidsen. International
timetabling competition 2011: An adaptive large neighborhood search
algorithm. In Proceedings of PATAT-12.

[SLM09] João P. Marques Silva, Inês Lynce, and Sharad Malik. Conflict-driven
clause learning SAT solvers. In Biere et al. [BHvMW09], pages 131–153.

[Sør13a] Matias Sørensen. Decomposing the generalized high school timetabling
problem. In Timetabling at High Schools, PhD thesis, pages 119–136.
Department of Management Engineering, Technical University of Denmark,
2013.

126

[Sør13b] Matias Sørensen. A matheuristic for high school timetabling. In Timetabling
at High Schools, PhD thesis, pages 137–153. Department of Management
Engineering, Technical University of Denmark, 2013.

[SS] Matias Sørensen and Thomas R Stidsen. Hybridizing integer programming
and metaheuristics for solving high school timetabling. In Proceedings of
PATAT-14, pages 557–560.

127

	Personal Note
	Abstract
	Contents
	Introduction
	Motivation and Problem Statement
	Goal of the Thesis
	Main Contributions
	Publications
	Structure of This Work

	Problem Description
	Informal Description
	Formal Description

	State-of-the-Art for XHSTT
	Simulated Annealing and Variable Neighborhood Search
	Hyper Heuristics
	KHE
	Decomposition
	Integer Programming
	Hybrid Approaches

	Modeling High School Timetabling as Partial Weighted maxSAT
	Modeling XHSTT as maxSAT
	SMT approach
	Computational Results
	Summary

	Modeling High School Timetabling with Bitvectors
	Modeling XHSTT with Bitvectors
	Computational Results
	Summary

	MaxSAT-Based Large Neighborhood Search for High School Timetabling
	Algorithm Description
	Experimental Results
	Summary

	Conclusion
	Future Work

	List of Tables
	List of Algorithms
	Bibliography

