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Abstract

The concept of abstraction is the foundation of the evolution of computer science. Complex
concepts and techniques are composed to a level of abstraction on which new techniques can be
built. The evolution of programming languages is no exception. The assembly language was an
abstraction of binary machine code instructions, making them interpretable by humans. Up to
the nineties, many programming languages required the user to manually allocate and deallocate
memory—a task that is carried out by all modern languages without the knowledge of the user.
Model-driven engineering (MDE) is a software development methodology that introduces mod-
els as the central element, raising the level of abstraction beyond programming languages. Soft-
ware systems described by the means of modeling languages have certain advantages: they are
easier to understand, better to maintain as the described system changes over time, and they can
be translated to be used on different target platforms. The latter is carried out by model transfor-
mations and code generators.
UML is a standardized modeling language that is widely used to express the structure and be-
havior of systems. The transformation of systems described by means of UML concepts into
executable code has been a tedious task for many years. This is because of the lack of formal se-
mantics, which specify how models that conform to the abstract syntax of the modeling language
have to be interpreted, which required the developers of code generators to rely on individual
interpretations of the meaning of the modeling concepts. This circumstance was addressed with
the fUML standard published in 2011. It covers the formal specification of the semantics of a
subset of UML consisting of class modeling, activity modeling and action language concepts.
Along with the standard, a conforming virtual machine was introduced that allows the user to ex-
ecute fUML compliant models. However, up until today, no code generator compliant to fUML
has been develped impeding the automated generation of implementation artifacts from fUML
models for different target platforms.

The first goal of this thesis is to elaborate and implement a code generation approach that
generates executable code from fUML compliant models. The main requirement of the generator
is to produce code that, when executed, behaves equivalent to the fUML model from which it was
generated. The second goal of this thesis is to develop a component that verifies the correctness
of the code generated from an input model by comparing its execution to the execution of the
model carried out by the fUML virtual machine. Both goals aim to provide support for one of the
key features of MDE for fUML: the automated transformation from a higher level of abstraction
to a lower level. Thereby, an increase in productivity and efficiency for users of fUML shall be
achieved.
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Kurzfassung

Das Konzept der Abstraktion ist das Fundament der Weiterentwicklung in der Informatik. Kom-
plexe Konzepte und Techniken werden auf einer Abstraktionsebene zusammengefasst, auf der
aufbauend weitere Techniken entstehen können. Die Geschichte der Programmiersprachen ist
dabei keine Ausnahme. Die Assemblersprache ist eine Abstraktion binärer Maschinenbefeh-
le, wodurch diese für den Menschen einfacher interpretierbar werden. Bis in die Neunziger
mussten Benutzern Speicher manuell bereitstellen und wieder freigeben—eine Aufgabe die mo-
derne Sprachen automatisch bewerkstelligen. Modellgetriebene Softwareentwicklung, englisch
Model-Driven Engineering (MDE), ist eine Methodik der Softwareentwicklung, in der Modelle
das zentrale Element darstellen und das Abstraktionslevel über jenes von Programmiersprachen
heben. Softwaresysteme, die mittels Modellen beschrieben werden, haben gewisse Vorteile: sie
sind einfacher zu verstehen, sind wenn sich das zugrunde liegende System ändert leichter zu
warten und können übersetzt werden, um anschließend auf verschieden Plattformen eingesetzt
zu werden. Letztere Aufgabe wird mittels Modelltransformationen und Codegeneratoren durch-
geführt.
UML ist eine weit verbreitete, standardisierte Modellierungssprache. Sie wird genutzt um die
Struktur und das Verhalten von Systemen zu beschreiben. Die Transformation von Systemen,
die mittels UML beschrieben sind, zu ausführbarem Code, war lange eine mühselige Aufgabe.
Das Fehlen einer formalen Semantik für UML, die angibt wie UML Modell zu interpretieren
sind, erforderte es von Entwickler von Codegeneratoren eine individuellen Interpretationen der
Bedeutung von Modellierungskonzepten vorzunehmen. Dieser Umstand änderte sich mit der
Veröffentlich des fUML-Standards im Jahr 2011. Dieser Standard definiert die formale Seman-
tik für einer Teilmenge von UML, bestehend aus Konzepten von Klassen- und Aktivitätsdia-
grammen, sowie der UML Action Language. Gemeinsam mit dem fUML Standard wurde eine
virtuelle Maschine eingeführt, mit der Benutzer fUML-konforme Modelle ausführen können.
Das erste Ziel dieser Diplomarbeit ist die Erarbeitung und Implementierung eines Codegene-
rators, der aus fUML-konformen Modellen ausführbaren Code erzeugt. Die wichtigste Anfor-
derung ist dabei, dass sich die Ausführung des erzeugten Codes äquivalent zum fUML Modell
verhält, von dem er generiert wurde. Das zweite Ziel ist die Entwicklung einer Komponente, die
die Korrektheit des generierten Codes verifiziert. Dies soll durch einen Vergleich der Ausfüh-
rung des generierten Codes mit der Ausführung des ursprünglichen Modells durch die virtuelle
Maschine erfolgen. Beide Ziele streben an, eine wichtige Funktionalität von MDE für fUML
bereitzustellen: das automatische Transformieren von einer höheren Abstraktionsstufe zu einer
niedrigeren. Dadurch soll eine höhere Produktivität und Effizienz beim Arbeiten mit fUML er-
reicht werden.
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CHAPTER 1
Introduction

1.1 Motivation

One could argue that every concept in computing is an abstraction of a much more complex
concept underneath. The key press on a computer keyboard is an abstraction of the transfer
of ones and zeros on a bus, which is an abstraction of electrons travelling on an electric wire.
Simple mathematical instructions like add or subtract are an abstractions of sets of logic gates,
which again are an abstraction of electronic switches and so on. Models are the same: they are
used to express information in a more abstract way in order to learn, understand or simulate
the subject the model represents. But first and foremost, models are a simplified or partial
abstractions of reality. By that, models implement at least two roles [4]:

• Reduction feature: models focus on a certain detail while hiding details, which are not
relevant in a certain purpose, and

• Mapping feature: models are based on an original individual, which is abstracted and
generalized to a model.

In the simplest case, models, in form of sketches, act as drafts in order to communicate ideas
and alternatives. But in the last decades, models played an increasingly important and more
sophisticated role in the domain of software engineering [4].

The benefit of systematically utilizing models in the field of software development has been
known for a long time: For instance, in the late seventies, Computer-Aided Software Engi-
neering (CASE) was used to support the complex development of the Ballistic Missile Defense
systems by the US Air Force [1]. The requirements document for such systems often contained
thousands of requirements. Checking every requirement against all others was concluded to be
such an enormous task that automation was desperately needed. By the introduction of an auto-
mated requirements engineering system, models, in form of Abstract System Semantic Models
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(ASSM), acted as guidelines in the implementation process and exceeded their purpose of draft-
ing tools. The developed solutions in the field of CASE, however, did not find overwhelming
acceptance [53]. The quality of general-purpose graphical modeling languages and their map-
ping to underlying operating systems was inadequate. The amount and complexity of generated
code, which was needed to compensate for the lack of the underlying platform support, was
beyond the capabilities of translation technologies available at the time. This resulted in CASE
tools being hard to develop, debug and evolve and in CASE itself having a relatively little impact
in commercial software. During the eighties and nineties, procedural programming language
were replaced by more expressive, object-oriented language like C++, JAVA and C#. The in-
troduction of these language constituted another elevation in the level of abstraction. Equipped
with high numbers of reusable functionality, provided by user generated libraries and language
frameworks, the necessity of rewriting common and domain-specific services decreased dras-
tically [53]. However, the enormous number of different libraries and frameworks as well as
their ongoing development made it impossible for software developers to become familiar with
next-generation technology in a decent timespan.

Model-driven engineering (MDE) aims to find remedy for the described complexity problems
by introducing models as the central element in the software development process [53]. MDE
describes the principle of elevating the level of abstraction beyond programming languages. In
place of low-level programming languages, modeling languages are used to describe the re-
quirements, the structure and the behavior of a systems to be built in form of models, which
act as basis for the transformation into various target software artifacts (source code, database
schemata, etc.) on a variety of platforms [13, 53]. This task is carried out by code generators,
which play a crucial role in MDE: they drastically increase the productivity while shielding the
user of potential peculiarities of a target platform.

1.2 Problem Statement

The Unified Modeling Language (UML) [44] is a general-purpose modeling language and be-
came the industry-standard for software modeling. Despite its broad adoption and tool support,
there exist today no standardized or broadly adopted code generators for UML due to ambiguities
in UML’s semantics. In order to translate a model into a target language in a consistent manner,
a code generator not only needs to know the concepts of the modeling language, but also how to
correctly interpret them, i.e. the meaning of a given element must be known unambiguously. A
modeling language’s concepts and the relationships between them are defined by the language’s
syntax. The meaning of the concepts are defined by the semantics. Having that in mind, the
development of code generators for UML used to be a challenging task: the semantics of many
modeling concepts were defined vaguely and ambiguously or just did not exist in version 1.5
of UML. In response to this criticism, the Object Management Group (OMG), which adopted
and maintains UML, cleaned up with most of the ambiguities in the UML 2.0 standard [39].
The remaining ambiguities were encapsulated into semantic variation points, which preserve a
certain degree of flexibility in using UML in different applications scenarios. For instance, the
semantics of a certain concept may be defined loosely when used for documentation purposes,
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or very strict when used for code generation. Thus, previous code generation approaches [6,14]
had to take this factor into account.
However, the semantics were still not defined precisely enough. Many specifications were inter-
preted ambigiously which resulted in UML tools being incompatible. The desire for a standard-
ization of a precise semantics prompted the OMG to propose and later released the Semantics
of a Foundational Subset for Executable UML Models (fUML) standard [47], which defines
the precise execution semantics for a subset of UML. The motivation for the fUML standard is
to precisely specify the foundational core of UML and provide the behavioral semantics of this
core in a consistent manner. By that, OMG aims to address the mentioned difficulties and bundle
innovations in the field of executable models. The semantics of fUML are defined operationally
in terms of a virtual machine, which enables the execution of models compliant to fUML. To
model the structure of a system with fUML, concepts from UML class diagrams are used, and
concepts of UML activity diagrams are used to model the behavior of systems. Equipped with
execution semantics specified in the fUML standard, it is possible to implement code generators
that do not need to fall back on an individual interpretation of the semantics of UML, but can
rely instead on the standardized behavioral semantics. However, to the best of our knowledge,
no code generator for fUML exists to this day. The challenge in the implementation of a code
generator for fUML is that the generator needs to guarantee to provide code that behaves in the
same way as the execution of the model by the fUML virtual machine.

1.3 Aim of the Work

The goal of this thesis is to elaborate and implement a code generation approach that trans-
forms fUML compliant models into executable Java code reflecting the semantics specified in
the fUML standard. The code generator shall be complete, testable, and flexible wrt. the target
language as discussed in the following.

Completeness. The focus of this work lies on the translation of behavioral UML concepts,
because for the structural concepts mature code generators for various target languages already
exist. Thus, the presented approach aims to support only a minimum set of UML class diagram
concepts but to provide a complete support for all UML activity diagram concepts.

Testability. The code generator should generate code for fUML models that behaves equiva-
lent to the fUML models, i.e., the execution of the generated Java code should behave equivalent
to the execution of the fUML model carried out by the fUML virtual machine. The result of the
generation process must be tested for its validity in a simple (preferably automatic) manner.
Automated test suites should be employed to continually verify the validity of the implemented
mappings between fUML and Java.

Flexibility wrt. target language. The code generator implemented in the course of this thesis
produces Java source code. However, interoperability between different kinds of target systems
is a key benefit of MDE [2]. Therefore, the code generator must be designed in a way that the
target language can be quickly replaced by another language. This requirement is addressed by
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using state-of-the-art template languages for the development of the code generator as well as a
loosely coupled architecture.

1.4 Methodology

The focus of this thesis is on the development of two software artifacts, in particular, a code
generator and a code verification framework. Hence, the design science methodology (DS) [60]
was chosen as methodological paradigm for carrying out this thesis. DS is constructed for the
discipline of information systems research. In the scope of this methodology the term design
describes the research process as a set of expert activities that produces design artifacts. In
accordance with the goals of this work outlined in Section 1.3, the following artifacts have been
developed in the course of this thesis:

1. Code generator

a) Conceptual mapping between fUML and Java

b) Generic code generation templates for processing fUML models independent of the
target language

c) Java-specific code generation templates for generating Java code from fUML models

2. Code verification framework

a) Monitoring component for collecting runtime information about the execution of
generated Java code

b) Trace comparison component for comparing the runtime information collected for
the generated Java code and for the original fUML model code

The artifacts have been designed following the activities of the DS methodology defined by
Pfeffers et.al. [48]. These activities have been implemented in this thesis as discussed in the
following.

Problem identification and motivation. UML is currently by far the most widely used mod-
eling language. A lot of research in the field of CASE and MDE lead to a new way of software
development which propagates the idea that modeling languages excel classic programming lan-
guage in developing, and maintaining software systems. The translation of systems described
by a model into a classic third-generation language like Java is performed automatically by a
code generator. To achieve this for UML, the execution semantics for every supported UML
concept needs to be specified precisely in order to generate code in a consistent manner. This
precondition was not met until the release of the fUML standard in 2011. Despite the emer-
gence of fUML, code generators for UML compliant to fUML do not exist yet. Thus, the aim
of this thesis is to elaborate and implement a code generation approach that transforms fUML
compliant models into Java code reflecting the semantics specified in the fUML standard.
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Analysis. After the identification of the problem addressed by this work, the first step consisted
of an extensive elaboration of the current state of the art of code generation methods for fUML
as well as Executable UML, and other behavioral modeling techniques. This also resulted in
a better understanding of the fUML standard as well as the functionality of the fUML virtual
machine.
The code generator is based on functionality provided by the Moliz1 project, which provides an
extension of the reference implementation of the fUML virtual machine based on the work of
the Business Informatics Group of TU Wien. Therefore, a detailed study of the fUML virtual
machine, and the Moliz extension was necessary to to start with the design and development
phase of the thesis.

Design and development. The developed software solution can be roughly separated into two
autonomous components: the first component is the code generator, which is based on the work
of Benjamin Bosters. It is concerned with the processing of fUML models and mapping all
model elements into Java expressions. Additionally to the mapping task, the generator pro-
cesses the control flows and object flows of input models in order to generate code in the correct
sequence, selects the correct data- and list-types corresponding to the source model elements
and provides libraries for primitive data type functions. The second component verifies the
generated code. It monitors the execution of the generated code and stores information about
the execution. The correctness of the generated code is evaluated by comparing the runtime
information captured about the execution of the generated code with the runtime information
captured by the fUML virtual machine about the execution of the corresponding fUML model.
The two components are used by a test suite, which tests the correct processing of all supported
fUML concepts.
The starting point for elaborating the mapping from fUML to Java was the list of 27 predefined
actions for which the fUML standard specifies precise execution semantics. The mappings are
based on the Section Annex A: Java to UML ActivityMapping from the fUML specification [47],
as well as the Section 11: Actions from the UML Superstructure specification [42]. Another
important reference for the mapping was the source code of the implementations of the fUML
virtual machine, which helped to overcome ambiguities in the implementation details of the
generator. For each mapping, input models were designed that cover possible generation re-
sults before implementing the respective mapping. The exemplary input models served as test
cases and enabled a test-driven development of the mappings and the continuous integration of
additional mappings.

Evaluation. The developed code generator has been evaluated by automatically comparing
the execution of generated code with the execution of the input fUML model carried out by the
fUML virtual machine. During the development of the fUML to Java mappings, a test suite was
elaborated, defining a library of test cases that execute different scenarios of sample input mod-
els. This allows the evaluation of each supported fUML action under different conditions. To
test the correctness and reliability of the code generation on a broader scope, a comprehensive
case study was conducted in addition.
1Moliz, http://www.modelexecution.org/
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The evaluation process is similar for every tested fUML model: the runtime information about
the execution of an fUML models is collected by leveraging the Moliz extensions of the fUML
virtual machine. The runtime information about the execution of the generated code is collected
by means of aspect-orientated programming techniques. After both execution traces have been
collected, they are both transformed into a common format and then compared using the model
comparison framework EMF Compare [5]. All deviations between the two executions are doc-
umented in a standardized manner.

1.5 Structure of the Work

The remainder of this thesis is structured as followed:

• Chapter 2: State of the Art
This chapter is concerned with state of the art methods of code generation. Generators for
different kinds of UML behavior diagrams like activity diagrams and state machines are
discussed in this section.

• Chapter 3: Background
This chapter gives an overview of the Unified Modeling Language, the history of model
driven development and executable models, and an introduction to the fUML standard.

• Chapter 4: Code Generation
This chapter describes the developed code generation approach. After an introduction
to the general requirements, the developed code generation procedure is describes thor-
oughly. Finally, the detailed mappings of fUML concepts to Java constructs are presented
and demonstrated based on examples.

• Chapter 5: Code Verification
This chapter is concerned with the verification of code generated with the developed
fUML code generator. The first part of the chapter gives a brief overview of the con-
ditions for a generation result to be valid. The system responsible for monitoring the
execution of generated code is introduced in the next part. The last part of this chapter
is concerned with a detailed discussion of the method of verifying the equivalence of the
runtime behavior of the generated code and the fUML model.

• Chapter 6: Evaluation
This chapter describes the process with which the correctness of the generated code was
evaluated. Furthermore, the results of the conducted case study and the developed test
suite are presented.

• Chapter 7: Conclusion and Future Work
In this chapter, the contributions of this thesis are summarized. After that, possible im-
provements and future work are discussed.
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CHAPTER 2
State of the Art

The fUML standard was published in 2011 and lots of research activities are ongoing around
fUML. Nonetheless, no implementation of a code generator for fUML models is available at the
current date. However, lots of efforts were made in the domain of code generation based on other
behavioral models, even UML activity diagrams conforming to a subset of UML overlapping
with fUML. In the following, we give an overview of code generation approaches for UML
activity diagrams and other UML and non-UML behavior diagrams.

2.1 Code Generation for UML Activity Diagrams

Gessenharter and Rauscher [12] describe an approach for code generation for UML activities
preceded by model transformations. The presented code generator is able to generate code from
the structural parts of a model, i.e., class diagrams, as well as code from sequences of actions.
The implemented token flow concept supports the generation of code for actions with multiple
return values resulting in a sequence of statements. Control nodes and guards, two concepts to
control the token flow in sequences of actions, are also supported. The use of control nodes in
the token flow increases the complexity of an activity. Especially the existence of more than one
control node and cycles between two actions increase the complexity for the code generation
dramatically and were not implemented in the prototype. Therefore, the generator is designed
for activities with at most one control node between every of its actions. However, the paper
also introduces a transformation method to simplify a model’s activities to simple subsequences
in order to successfully transform them to code. Every sequence of actions is translated into a
sequence of Java methods. As sequences can be executed concurrently (e.g. as a result of a fork
node), they are implemented as dedicated threads. The concept of InterruptibleActivityRegions
(i.e. sequences, which leave the region on an edge that is interrupting the region) is realized by
thread groups that can be aborted.
The model of the transportation system of an imaginary city was used to verify the presented
code generation approach. The runtime characteristics of the generated code were compared to
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those of two other activity interpreters that were results of previous works of the authors as well
as to the runtime behavior of the fUML virtual machine. While this approach for generating
code from UML diagrams is well elaborated, it does not fully comply with fUML. In particular,
the token flow formalization by Sarsted [52], on which the presented approach is based, is not
compliant with fUML. However, conducted tests show that the behavior of the generated code
is equal to that of the fUML virtual machine.

The Fujaba (From Java and Back) project [35, 36, 61], developed by Nickel et al. since 1997,
aims to provide visual programming languages by integrating UML class diagrams and a set
of UML behavior diagrams. It’s a software engineering tool that uses a combination of class
diagrams, collaboration diagrams, state machines, and activity diagrams to provide round-trip
engineering support for UML and Java. That means that Fujaba supports Java code generation
from the diagrams as well as recovering the diagrams from the code. The structural part of a
system is specified by class models. Activity diagrams and state machines are used to specify
the behavior of a system. Any activity diagram or state machine can reference a collaboration
model, which is used to describes the behavior of the activities. The collaboration diagrams
act as notation for the graph rewriting rules, which are used to perform the code generation.
With reverse engineering, Fujaba is equipped with a comprehensive tool to evaluate the code
generation process. By comparing the source model with the reverse engineered model of the
generated code, the correctness of the generated code can be verified. Compared to the code
generator developed in this thesis, the behavior of the activity nodes defined in an activity di-
agram is modeled by the means of collaboration diagrams. Furthermore, the presented code
generator only supports a limited subset of UML defined by Köhler et al. [22], for which precise
semantics were available at the time.

Usman et al. [57] present a code generation tool, namely UJECTOR, that generates executable
Java code from UML class diagrams, sequence diagrams and activity diagrams. The presented
code generation approach first transforms class diagrams into Java code skeletons. Sequence
diagrams are used to represent the flows of messages, which are translated into class methods.
The sequence diagrams reference activity diagrams, in which behavioral actions are utilized to
model object manipulations and user interactions. The generator maps the UML actions to Java
code and places the result within the class methods. A case study is conducted in which the
generation result of the presented tool is evaluated against the results of similar tools. The pur-
sued goal of the UJECTOR project is very similar to the one presented in this thesis. However,
the code generator in this thesis solely utilizes UML activity diagrams to model the behavior of
a system. Furthermore, the fUML to Java mappings elaborated in this thesis are based to the
formal semantics definition of the fUML standard, which was released in 2011. UJECTOR was
presented in 2008 and therefore relies on the informal descriptions of UML’s semantics given in
the UML superstructure specification for the implementation of the mappings from UML actions
to Java code.
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2.2 Code Generation for Behavioral UML Diagrams other than
Activity Diagrams

Ciccozzi et al. [7, 8] present a code generation approach that utilizes UML component dia-
grams, UML state machines, Alf code and, additionally, an intermediate model representation to
produce code for a certain target language. Component diagrams are used to specify the struc-
tural aspects, and state machines and the Action Language for Foundational UML (Alf) [43] to
describe the behavior of a system. The execution semantics of Alf, which is a textual representa-
tion for UML modeling elements, is given by mapping the Alf syntax to the syntax of fUML. In
the presented code generation approach, it is used to enrich the behavioral description in order
to reach the expressive power to produce executable code. No other action code in terms of
code directly written in the target language is used to describe the behavior of the system. Alf
defines three syntactical conformance levels, whereby the presented approach conforms to the
minimal level. This decision is justified by the fact that concepts provided by the minimal set
reflect the concepts found in the target languages. The use of an intermediate model representa-
tion, which is defined in Ecore, promotes the generic goals of the presented approach. While the
presented code generator transforms the source model into C++ code, the intermediate model
approach allows the reusability of model-to-text transformations for other target language. The
code generation process is separated into two major steps: the transformation of the source
model, consisting of a UML component diagram, a UML state machine and Alf code into the
intermediate model and the actual generation of target code based on the intermediate model.
The transformation of the behavior, defined in terms of Alf action code, into the intermediate
model is carried out with QVT Operational [23], an OMG standard language that provides an
intuitive way to specify model transformations. The transformation of the intermediate model
into the target language is performed with Xpand [10]. The correctness of the generation results
were validated against two comprehensive, industrial case studies.
The main difference between this approach and the approach presented in this thesis is the fash-
ion in which the behavior of a system is defined in the source model and how the model is
transformed into executable code. In this thesis, it is assumed that the behavior of a system is
defined by means of fUML conform UML activity diagrams, while the approach presented by
Ciccozzi et al. utilizes UML state machines with embedded Alf code. To provide a high level
of flexibility in regard to the generated target language, Ciccozzi et al. propose the use of an
intermediate model representation, while the approach presented in this thesis aims to provide
such flexibility by separating the code generator implementation and the actual target language
code.

Language embedding [9] is a method that allows the implementation of a language in terms
of an existing language. Dévai et al. [9] present an implementation prototype of a modeling lan-
guage, namely txtUML, which stands for textual, executable, translatable UML, that uses Java
as host language to develop, execute and debug a system described in txtUML and transform it
into different target languages. The host language provides an API that offers the features and
construct of txtUML. Model visualization is provided for Papyrus [24]. In its current version,
txtUML supports classes to define the structure and state machines and Java code, that acts as
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action code, to describe the behavior of a system. The model, since defined by the means of the
provided Java API, can then be compiled, executed and debugged like a regular Java program.
The execution semantics are based on xtUML [62], an extension to UML based on the Shlaer-
Mellor Method of MDA [54, 55] and extended by UML 2 abstractions. Abstractions covered
by other specification like fUML [47] and PSCS [46] are adopted. Unavailable executions se-
mantics for e.g. state machines are substituted by informal semantics provided by the UML 2
standard. The approach provides a model compiler that facilitates the transformation of a model
into a specific target language. A prerequisite for this is that the model is in a queryable form.
Java reflections and AspectJ are used to build an Ecore-based representation of the model, which
then serves as basis for the code generation (and other features like visualization). The current
prototype supports the generation of C++ code.
The virtual machine, provided by the fUML standard [47], is related to the presented approach
in the sense that is uses Java as a host language to execute models defined in an embedded lan-
guage and, by that, provides the execution semantics in an operational fashion. However, since
the proposed method utilizes UML state machines and a restricted subset of Java to describe the
behavior of a model, no direct relation to fUML is given.

The HUGO project [21], introduced by Knapp and Merz in 2002, is a project that provides
a code generator that produces Java code that behaves as prescribed by the state machine of an
input UML model, as well as a model checking mechanism that verifies the consistency of UML
state machines against specifications expressed as collaboration or sequence diagrams. The gen-
erator transforms every state of the state machine into a separate instance of generic class that
provides the standard runtime component state for UML state machines. The objects of these
classes provide methods for activation, deactivation, initialization, and event handling and are
complemented by the generated code that is specific to the given model, in a next step. For every
UML class in the input UML model that contains a method body, a separate Java class is gen-
erated. Furthermore, the generator produces an event queue and an event dispatcher for every
state machine. The transition from one state to another is implemented by a greedy algorithm
as proposed by the UML standard. Except time and change events, all features of UML state
machines are supported by the presented code generator approach.
The focus of the model checking component of the HUGO project is to verify the consistency of
UML state machines against given interaction diagrams (collaboration and sequence diagrams),
that describe a single system run. In total, three different approaches are presented; the first
and second approach are based on the model checking tool SPIN [26]: The first implemen-
tation of the model checking back end compiles collaborations into observer automata, which
synchronize on messages transferred within an interaction. This reduces the feasibility of the in-
teraction to a reachability problem for the observer automaton whereby a successful run results
in a counter example. This approach, however, showed itself inefficient although it promised
well in regard to the validity of the analysis. With a variety of optimization measures applied,
more than half a million states and transitions where generated for a small sample model taking
SPIN more than a minute to analyse. The second implementation addressed the performance
issues by replacing the generic translation process from the UML state machine model into the
input language of the SPIN model checker by a translation processes tailored to a given model.
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These measures, based on the ideas presented by Lilius and Porres [27], reduced the duration
of the analysis to under a second. The third approach utilizes UPPAAL [25], a tool to model,
simulate and verify real-time systems, which made the analysis of models involving real-time
constraints possible. In its strive to adhere to the UML semantics, the HUGO project is very
similar to the approach presented in this thesis. In order to conform to the UML semantics, the
HUGO project uses a standard runtime component state, consisting of classes that are organized
along the UML metamodel, while the generator presented in this thesis addresses this require-
ment by employing the fUML semantics. Furthermore, HUGO does not provide support for
UML activity diagrams.

The code generation approach by Chauvel and Jézéquel [6] presented in 2005, uses UML
state machines to describe the behavior of systems and is also concerned with the fuzziness of
the UML semantics at the time. The authors describe a code generation approach that utilises the
concept of semantic variation points. Semantic variation points constitute an intentional degree
of freedom for the interpretation of the modeling language’s semantics. The paper focuses on
three aspects of UML state machines, which make use of semantic variation points: time man-
agement (synchronous vs. asynchronous), event selection policy, and transition selection policy.
It would be conceivable that, for example, in terms of time management, a library business ap-
plication modelled with a state machine is expected to behave differently from a CD-player in a
real-time system modelled in terms of a state machine. Semantic variations in these aspects are
expressed in form of semantic metamodels, which act as objectification of the part of the seman-
tics that is subject to variability. Object-orientated features like inheritance and delegation are
used to model the variabilities. The paper also presents an approach to model non-functional im-
plementation variations, such as memory footprint, flexibility and maintainability. Together with
a source UML model, they form the platform for the generation, which, in the sense of MDA,
can be seen as a platform independent model. By applying the defined semantic variations and
the defined implementation variations on the source model, the code generator generates a target
model where all semantic and implementation choices are made explicit. However, rather than
introducing a code generator for a specific target language, the presented approach presents a
way to uncouple implementation choices and semantics issues from the code generation task.

In 2005, Long et al. [29] presented a code generation approach, in which the code genera-
tor produces class skeletons and method signatures from class diagrams and the method bodies
from sequence diagrams. In a UML based development process, different kinds of UML dia-
grams are used to represent the artefacts created in a certain phase of the development process.
This provides different views on the modelled system, whereby every view focuses on different
aspects of the system. These models, however, are confronted with the problem of consistency
among the different views of the whole system. The consistency checking problem, on which
the paper focuses, emerged from the fact that the syntax and semantics of UML was defined
informally and imprecisely at the time. As described in Section 3.3, the fUML standard, which
covers the formal specification of the semantics for a subset of UML, was not released until
2008. To provide consistent code generation, the code generated from a model of the system
should include optional modeling features like role names in class diagrams or object names in
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sequence diagrams. In the approach by Long et al., this requirement is addressed by the usage
of the object orientated language Relational Calculus of Object Systems (rCOS). It is equipped
with an observation-oriented semantics and a refinement calculus. After a formal definition of
the programming language and the definition of consistency requirements, the paper investi-
gates how to formalize class diagrams and sequence diagrams and how they are transferred into
rCOS code. An algorithm to check the consistency of sequence diagrams and class diagrams is
presented in detail. If both models are found to be well-formed, the presented code generation
approach translates the input models into rCOS code by traversing through the sequence dia-
gram. The semantics of the generated code, defined by Yang et al. [63], is proven to formally
comply to the semantics of UML models by Lui et al. [28].

Engels et al. [11] proposed a code generator for extended UML collaboration diagrams that
is not only able to generate class definitions and operation signatures but also to generate the
procedural flow within the operations. The goal of the generator is to transform the functional
behavior of a system into executable code fragments. In collaboration diagrams, messages be-
tween instances of classes are used to describe the structural context and the behavior of inter-
actions. They can be deployed in a variety of different scenarios and project phases. In early
phases, collaboration diagrams can be used to describe the functionality of an operation defined
in use cases on a high level of abstraction. In a method-orientated usage, collaboration diagrams
can be employed to describe the functionality of an operation of a system on an abstract level.
In the scope of the presented generation approach, one collaboration diagram serves as source
for exactly one target method.
The authors explicitly favour collaboration diagrams over sequence diagrams as source models
for the transformation process, since they inherently hold important information for the genera-
tion of code, e.g. how objects can be accessed and how they are transported between methods.
Because of the purely object-orientated nature and the support for concurrent programming,
Java was selected as target language of the transformation. A set of pragmatic guidelines and
constraints are introduced as extensions to UML 2 collaboration diagrams to ensure that the
translation into the corresponding Java code can be performed automatically. Input models that
follow the guidelines are considered well-formed. Before a well-formed source model is pro-
cessed by the generator, it is transformed into a model conforming to a refined UML metamodel.
To reflect the required assumptions and constraints for a well-defined model, certain metamodel
elements have been added, while others have been modified or removed. The generator is based
on a pattern-based transformation algorithm and uses sets of rule schemata and patterns to per-
form the actual generation of Java code. The approach is based on a compiler construction
method known as two-level grammar [58], which allows the separation of a certain collabora-
tion diagram and the generated code.
The paper shows that UML collaboration diagrams are potentially suitable to describe the behav-
ior of a system. However, the lack of support for operations on primitive data types or predefined
enumerations prevents them from being used as a visual programming language. A possibility
to verify the correctness of the generated code in regard to the source model is not presented in
scope of the paper.
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Moreira et al. [34] and Vidal et al. [59] propose automatic source code generation in the do-
main of embedded systems. Their presented approaches translate UML models into the Very
High Speed Integrated Circuit Hardware Description Language (VHDL) [49]. Embedded sys-
tems are computing systems that are designed to perform only a few dedicated tasks. They
usually consist of a hardware component upon which software application programs execute.
The approach present in [34] allows the modeling and verification of VHDL code of an embed-
ded system before synthesis tools translate them into real hardware. In the fist step, functional
and non-functional requirements of the system are identified. In the second step UML class
diagrams are used to specify the structure and sequence diagrams to define the method behavior
of the functional requirements. To deal with the ambiguities of UML semantics, the specifica-
tions of the input models are translated into the Distributed Embedded Compact Specification
(DERCS). In the last step, the generation process is completed by mapping DERCS elements
to corresponding code fragments in VHDL. The approach presented in [59] uses UML class
diagrams, state machines and a subset of C++ as action language to define an application model,
which specifies the behavior and functional architecture of a system. Together with a platform
model and an allocation model, the system is described on the Detailed Modeling Level (DML)
on which the automatic generation of VHDL code is performed.

2.3 Code Generators Provided by Commercial UML Tools

A wide range of commercial products for the generation of Java code from structural and be-
havioral UML diagrams are available. A selection of these is described briefly below. Many of
them support code engineering from a variety of input modeling languages into different target
languages. However, the described features below are limited to code generation from UML
models into Java code and reverse engineering UML models to Java code.

MagicDraw [37] by No Magic, Inc. is a visual modeling tool that supports round-trip engi-
neering between UML class diagrams and Java code. Not every feature of the Java language can
be directly mapped to UML elements. In order to cover missing Java features, MagicDraw uses
UML stereotypes and self specified properties. The creation of Code Engineering Sets allows
the user to associate a UML class diagram with a Java file whereby every modification in the
diagram is immediately reflected in the Java file and vice versa. The translation of behavioral
diagrams into executable Java code is not possible. However, a visualisation feature supports the
creation of sequence diagrams based on Java methods.

Like MagicDraw, Rational Rhapsody [16] by IBM R© provides roundtrip engineering in the
sense that the source model is always in sync with the generated code. It does support code
generation from behavioral models. Sequence diagrams are used to model the data exchange
between objects while UML state machines are used to model the lifecyle of objects. However,
Rhapsody does not provide an own action language to describe the actual behavior performed in
a certain state. In order to do that, the target language (i.e. Java, C, C++) is used. This results in
a tight coupling between the platform-independent and the platform-dependant model.

Rational Software Architect (RSA) [17,18] by IBM R© is a suite of software design, modeling
and development applications, which are built on the Eclipse Platform. RSA supports the code
generation from UML package and class diagrams to Java code. Additionally, the UML action
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language (UAL) can be utilized in OpaqueBehaviors, OpaqueActions and OpaqueExpressions.
This allows the definition of executable models in a platform-independent fashion. Marking
models then provide the components to transform system models into a specific target language.
UAL is based on the fUML standard [43] but it does not support all concepts.

Enterprise Architect (EA) [56] is a comprehensive modeling tool that provides Java code
generation from UML class diagrams. Besides that, the code generation from three UML be-
havioral diagrams, including activity diagrams, is possible. To do so, all behavioral constructs
have to be contained within a class. Before code from activity diagrams is generated, the input
model is validated by a graph optimizer that analyses the model and transforms it into constructs
from which Java code is generated. Due to missing documentation, it could not be verified
whether the code generator for UML activity diagrams is conform to fUML.

2.4 Code Generation for Process Models

In the field of process modeling, Roser et al. [50] presented a code generator in 2007 that trans-
forms models into executable workflow code. The presented solution provides a modeling lan-
guage, a modeling tool and a code generator that allows the definition of domain specific lan-
guages (DSL) for process-orientated applications. The goal of the approach is to enable users
with little experience about code generation to generate workflow code from abstract models.
In order to optimize solutions in the Enterprise Resource Planning (ERP) domain, the authors
identify the flow of services, rather than the services themselves, as targets of necessary im-
provement measures. Hence, they seek to provide an option that enables enterprises to design
components in a loosely coupled fashion, like service-orientated architecture (SOA). The pre-
sented tool, namely AgilePro, is based on SOA and allows users to model their business pro-
cesses, and preview and execute them on a process engine. The processes are modelled as
domain-specific models (DSM), which conform to a DSL. The metamodel of AgilePro extends
the UML 2 metamodel for activity diagrams with information about responsibilities and func-
tions. Model templates, which conform to the extended metamodel, are used to provide reusable
modeling concepts for domain-specific modelling for ERP, Customer Relationship Management
(CRM) and other fields of applications. In order to generate code from DSM the models are
transformed into the Business Process Execution Language (BPEL) [38], an executable busi-
ness process language. As a block-structured language, BPEL, however, does not support all
concepts used by the higher-level process graphs. Therefore, model analysing and restructuring
are necessary to map the graph to BPEL code. The presented model and code generation frame-
work solve these challenges with a domain specific Adapter for DSL Process Models, which
creates a representation of the input model in the common process model format, and the do-
main independent Process Transformer and Optimizer and Process Visitor, which restructure the
process model into a BPEL conform block structure. In the last step, the domain specific Code
and Model Generation Template is executed. The paper presents two case studies that illustrate
the code generation process in detail but does not elaborate on how the validity of the generation
result in regard to the semantics of BPEL is ensured.
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2.5 Summary

As can be seen from Table 2.1, all 16 approaches generate code from UML diagrams, five of
which support the code generation from activity diagrams. Nine of the presented approaches
generate Java code, the commercial tools [16, 17, 37, 56] provide the widest range of target
languages while four approaches [29, 34, 50, 59] are concerned with the generation of code in
domain specific languages. However, none of these approaches is compliant to fUML. Only one
exising code generation approach is related to the fUML standard, namely the one by Ciccozzi
et al. [7, 8]. However, Cicozzi et al. did not build a code generator for fUML as targeted
in this thesis, but for the textual surface notation of fUML defined in the Alf standard [43].
Furthermore, they generate C++ code and do not define a mapping to Java. In contrast, one
main goal of this thesis was to elaborate a code generation approach for fUML that is flexible
with respect to the target language.

Approach Input lang. / diagrams Act. lang. Target lang. fUML compl.

Gessenh. et al. [12] CD, AD - Java1 no

Fujaba [35, 36, 61] CD, AD, SM, CLD - Java1 no

UJECTOR [57] CD, AD, SQD - Java no

Ciccozzi et al. [7, 8] CD, CPD, SM Alf C++ yes

Dévai et al. [9] CD, SM Java C++ no

HUGO [21] CD, SM, SQD, CLD - Java no

Chauvel et al. [6] SM - -1 no

Long et al. [29] CD, SQD - rCOS no

Engels et al. [11] CLD - Java no

Moreira et al. [34] CD, SQD - VHDL no

Vidal et al. [59] CD, SM C++ VHDL no

MagicDraw [37] CD - Java i.a.1 no

Rat. Rhapsody [16] SM, SQD - Java i.a.1 no

RSA [17] CD, PD Alf Java i.a.1 no

EA [56] CD, AD, SM, SQD - Java i.a.1 no

Roser et al. [50] CD, AD - BPEL no
1 Flexible wrt. target language

AD: Activity Diagram, CD: Class Diagram, CPD: Component Diagram, CLD: Collaboration Diagram, PD:
Package Diagram, SM: State Machine, SQD: Sequence Diagram

Table 2.1: Overview of state-of-the-art code generation approaches for UML
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CHAPTER 3
Background

This chapter gives an overview of the central technologies and design approaches this work
is based on. The Unified Modeling Language and how it became the by far most widely use
modeling language is briefly described in the first part. The efforts of gaining more value from
high-level models in the software development process, which coined the term Model Driven
Development (MDA), is described in the second part. Finally, an introduction to the executable
subset of UML, referred to as Foundational UML or fUML, is given in the third part.

3.1 Unified Modeling Language

The Unified Modeling Language (UML) [44] is a standardized modeling language that is widely
used to express the structure and behavior of systems. The Object Management Group (OMG),
an international technology standards consortium, adopted the specification in 1997 and is re-
sponsible for its further development since then. The first version of the language emerged in
1995 from the object-oriented method Booch method by Grady Booch [3], the Object-Modeling
Technique by James Rumbaugh and the design patter Object-oriented Software Engineering by
Ivar Jacobson. The aim of the specification was the unification of the best practices in the
fields of modeling language design, object oriented programming and architectural description
languages. The standardisation facilitated the exchange of models between different tools and
programs. It can be used to specify, design and maintain systems in every field of application
domain.

James Rumbaugh et al. [51] identify several reasons why the Unified Modeling Language can
be considered to be unified:

• Historical methods and notations: UML combines well recognized object-oriented meth-
ods and provides a clear definition, notation and terminology for each concept.
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• Development lifecycle: UML supports modeling concepts for every stage of the devel-
opment process beginning with the Requirements Diagram to the Deployment Diagram.
which is the cornerstone for iterative, incremental deployment.

• Application domain: The UML was not devolved for a specific purpose, it is supposed to
be used in every application domain. The systems might be large, complex, real-time, or
distributed. Although UML does not claim to be the perfect language for every purpose,
it is intended to be the best general-purpose language for a wide application area.

• The UML is intended to be used for systems implemented (or to be developed) in various
kinds of programming languages and deployed on different target systems.

• Development processes: Just like a general-purpose programming language supports var-
ious kinds of programming styles, UML supports and underlies different development
processes rather than describing a specific development process.

• Internal concepts: The introduction of UML’s metamodel led to the discovery and repre-
sentation of internal relationships among various concepts.

One of UML’s most important objectives is the ability to exchange models between various
modeling tools. This requires a formal definition of the semantics of modeling languages and
notation. The UML standard meets this requirement by providing a formal definition of the
abstract syntax of the modeling concepts, their attributes and relationships, an explanation of the
semantics of every modeling concept as well as specifications of the notation elements.

Structure of the Specification

The UML specification itself is defined in a metamodeling approach. That means that a meta-
model is used to describe how models conforming to UML have to be structured. Since the
version 2.0, the UML specification is split in two complementary volumes1: The UML Infras-
tructur [41] and the UML Superstructur [42], which is based on the metamodel defined in the
Infrastructur.

Infrastructur

The Infrastructur specification contains fundamental language concepts and is represented by
the packages InfrastructureLibrary and PrimitiveTypes, that contains a set of predefined, prim-
itive types that are commonly used. The InfrastructurLibrary contains the packages Core and
Profiles. The Core package is a complete metamodel. It is either imported or specialized by
other metamodels on the same metalevel. The package can be considered to be the kernel of
Model Driven Architecture since it represents a common core for all descendants. It also pro-
vides a minimal, class-based modeling language, intended to be used by the Meta-Object Facility
(MOF), to create metamodels for the description of more complex languages.

1In an attempt to simplify the specification, the UML Infrastructure and UML Superstructure have been merged into
one document in the specification of UML version 2.5, which was released during the writing of this thesis.
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The package Profiles defines mechanisms to customize metamodels for the use in a specific
application domain or platform.

Superstructur

The Superstructure contains the user level constructs of the UML. The specification is divided
into the parts Structure, Behavior and Supplement. The Structure section contains concepts
to describe the structure of systems. The Behavior section contains concepts related to the
behavior of systems and the interaction of its components. While the concepts of the Behavior
section gives answers to the question, how something is interacting with each other over time,
the concepts of the Structural section defines what is interacting. Therefor the concepts of the
Structural section are the basis on which all behavioral concepts build upon.

Compliance Levels and Language Units

The broad scope of UML led to the introduction of the concepts of compliance levels 2. Certain
domains may require a specific set of UML features while the rest of the modeling concepts
is not required. To address this requirement, UML was designed in a modular way. Language
units wrap up related modeling concepts and are used to express and describe aspects of systems
from a certain viewpoint. These language units are divided into layers called compliance levels.
Every layers depends on the previous one and contains additional modeling concepts.

The UML defines four compliance levels. In the Infrastructure part of the specification, the
number of compliance levels is reduced to two: The Level 0 and the Metamodel Contructs. The
Level 0 comprises a class-based language that serves as basis for modeling common object-
based systems. The Levels 1 - 3 are condensed to the Metamodel Contructs level, which adds
a language to define metamodels. Being compliant to a certain compliance level implies the
realization of all language units that are defined in that compliance level and the levels below
since they build upon one another.

In the Superstructure [44] part of the specification, all language units are assigned to a cer-
tain compliance level. The tables 3.1, 3.2 and 3.3 give an overview about the content of the
compliance levels.

Diagram Types

The diagram types supported by UML can be divided in structural and behavioral diagrams.
Structural diagrams are used to describe the static structure of objects in a system. They do not
change over time and do not contain details of the system’s behavior, but can, however, contain
connections to behavioral modeling concepts.
The behavioral diagrams are used to model the dynamic behavior of systems and how and based
on which events the systems changes. In its current version [44] UML supports seven structural
and seven behavioral diagram types which are briefly described in the following section.
2The concept of compliance levels has been removed with version 2.5 of the UML standard since they were not found
to be useful in practice.
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Language Unit Matamodel Packages

Actions Actions::BasicActios

Activities
Activities::FundamentalActivities

Activities::BasicActivities

Classes

Classes::Kernel

Classes::Dependencies

Classes::Interfaces

General Behavior
CommonBehaviors::BasicBehaviors

CommonBehaviors::Communications

Structures CompositeStructure::InternalStructures

Interactions Interactions::BasicInteractions

UseCases UseCases

Table 3.1: Content of UML Compliance Level 1

Language Unit Matamodel Packages

Action
Activities::StructuredActions
Activities::IntermediateActions

Components Components::BasicComponents

Deployments
Deployments::Artifacts
Deployments::Nodes

General Behavior CommonBehaviors::SimpleTime
Interactions Interactions::Fragments
Profiles AuxilliaryConstructs::Profiles

Structures
CompositeStructures::InvocationActions
CompositeStructures::Ports
CompositeStructures::StructuredClasses

State Machines StateMachines::BehaviorStateMachines

Table 3.2: Content of UML Compliance Level 2
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Language Unit Matamodel Packages
Action Actions::CompleteActions

Activities
Activities::CompleteActivities
Activities::CompleteStructuredActivities
Activities::ExtraStructuredActivities

Classes
Classes::AssociationClasses
Classes::PowerTypes

Components Components::PackagingComponents
Deployments Deployments::ComponentDeployments
Information Flows AuxilliaryConstructs::InformationFlows
Models AuxilliaryConstructs::Models
State Machines StateMachines::ProtocolStateMachines

Structures
CompositeStructures::Collaborations
CompositeStructures::StructuredActivities

Templates AuxilliaryConstructs::Templates

Table 3.3: Content of UML Compliance Level 3

Structural Diagrams

The different diagram types depicted in 3.1 are described below briefly:

• Class Diagram:
Class diagrams are static structure diagrams that are used to describe the abstract model
scheme of a system by showing its classes and their relationships. Classes are modeled as
rectangles which are divided into three sections. The first section is reserved for the name
and general properties (e.g. polymorphism and stereotype keywords), the second and
third section are reserved for attribute and operation definitions, respectively. Attributes
consist of a name, an optional visibility keyword (’+’ for public, ’-’ for private and ’#’
for protected) and an optional type (e.g. ’String’, ’int’, ..). Additionally, multiplicity
properties indicate how many occurrences of the attribute can exist in an instances of the
class. Operations also consist of a name, an optional visibility keyword and an optional
return type. A list of parameters is used to define inputs and results of the operation. It is
important to mention that the behavior of operations can not be modeled within the scope
of class diagrams. Classes can be connected with associations to model the relationships
between them. Usually, associations connect two classes (binary associations), although
the number of classes being part of an association is not limited. Directed association
edges, cardinality indicators, association classes and other modeling concepts are used to
increase the expressiveness of associations [15].

• Object Diagram
Object diagrams are suitable to give an exemplary instantiation of a system. They illustrate
the instantiation of class diagram at a certain moment. The diagram elements usually

21



Diagram

Structural Behavioral

Class Diagram

Object Diagram

Package Diagram

Component Diagram

Profile Diagram

Composite Strcuture Diagram

Deployment Diagram

Activity Diagram

Use Case Diagram

State Machine

Interaction Diagrams

Sequence Diagram

Timing Diagram

Communication Diagram

Interaction Overview Diagram

Figure 3.1: UML 2.4.1 diagram overview

contain information about the classifier, the instance name and the attribute values of the
objects.

• Package Diagrams
Packages are used to organize model elements into groups. They provide two important
relation concepts which are used to implement the modular characteristic of the UML:
Package import and Package merge. Package Diagrams usually come to use when systems
exceed a certain size and need to be organized in several smaller ones.

• Profile Diagram
Profile diagrams are used to create profiles on a metamodel level and provide a simple way
to describe extensions of UML by using the stereotype class. The stereotype describes
how an existing class is extended. This functionality can be used to create platform- and
domain-specific terminology and notations.
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• Component Diagram
Component diagrams are mostly used to provide a physical view on a system, rather than
a logical. They don’t describe the functionality of a system but the components that are
used to provide those functionalities. Component diagrams are usually deployed during
the implementation and development phase of a project. A component itself is a structured
class that represents a modular part of a system with encapsulated content.

• Composite Structure Diagram
Composite structure diagrams are used to describe the internal structure of a class. Parts
are used to illustrate the parts a class consists of. Ports and Connectors illustrate the
connections of the parts and other elements within the class.

• Deployment Diagram
Deployment diagrams model the physical environment of a system. Artifacts are used to
represents a physical information element and Nodes depict physical devices and execu-
tion environments (like the operation system).

Behavioral Diagrams

• Activity Diagram
Activity diagrams are used to model workflows and detailed behavior using activities and
actions. Actions are elements which represent an atomic step within an activity. The
sequence of process steps is determined by connecting actions via directed edges. Every
action can have a set of incoming and outgoing edges that specify the control flow or,
if objects are passed, the data flow. After an action is completed, its successor is being
processed. If an action has more than one incoming edge, all edges need to be satisfied
before the action is executed. Decision nodes are used to guide the flow in one direction
or the other. To model a conditional behavior, outgoing edges of a decision node are
equipped with guards. Merge nodes are used to combine multiple incoming edges. To
model concurrent behavior, join and fork nodes are used to split and join the control and
object flows.

• Use Case Diagram
Use case diagrams are very suitable to clarify and define the requirements for software
in early development stages and get a high level view of a system. The main modeling
elements are Actors and Use Cases. The relationship between these elements are used to
illustrates which groups of users make use of which sets of functions of a system. Include
and Extend associations depict the kind of relations between the use cases within a system.

• State Machine
State machines are used to illustrate the behavior of systems in event-based way. The
system is modeled as graph, whereas the nodes of the graph are represented by States
and the edges by Transitions. States are defined as a condition in which an object exists.
They can be source and target of any number of transitions. Simple States are the central
modeling concept. By definition, they have no further sub states. Every state can have
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a set of activities that are performed at its entry or exit, or while the system is in this
state. Transition between states are used to describe state transitions of a system. They
model how a system reacts (i.e. changes in it’s state) to the occurrence of certain events.
Pseudostates are used to realize complex state transition paths. Examples are initial and
terminal states but also join and conditional fork states, which are used to split and merge
transitions.

• Sequence Diagram
Sequence diagrams are used to model the interactions between systems or parts of a sys-
tem. The focus of the diagram lies on the sequence of messages between processes to
show how they operate with each other and in which order.

• Timing Diagram
Timing diagrams are used to model the behavior of individual classifiers and interactions
of classifiers throughout a given period of time. The focus of the models lies on the timing
of events that cause changes in the conditions of lifelines. Lifelines represent individual
participants and changes in a participant’s condition or state is represented by the steps in
its lifeline.

• Communication Diagram
Communication diagrams are used to model interactions between objects or parts. Life-
lines represent individual participant in the interaction. Lines are used to model messages
between lifelines while an arrow above a message indicates the direction of the commu-
nication.

• Interaction Overview Diagram
Interaction overview diagrams are used to model the control flow of the interactions on a
high level of abstraction. They are a form of activity diagram. The nodes of the diagram
represent interaction diagrams, which can include sequence, communication, timing dia-
grams or again interaction overview diagrams.
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3.2 Model Driven Architecture

The Object Management Group (OMG) adopted UML and the Meta-Object Facility (MOF) in
1997. The uncontrolled growth of specialized middleware solutions lead to the development
of a MOF-based framework that is supposed to remain fixed while the infrastructure landscape
around it changes over time. The result was MDA R© [45], a framework that prescribes the devel-
opment of applications based on a platform-independent model (PIM) of the application. This
guideline leads to applications that usually consists of a PIM, plus one or more platform-specific
models (PSMs) and complete implementations, one on each platform that the application devel-
oper decides to support. PIMs are used to describe the structure and the behavior of a system
in a formal and platform-independent manner and are through the use of PSMs automatically
transformed into software artefacts like scripts and source code on different platforms.
Model Driven Architecture follows the idea that modeling is a better foundation for develop-
ing and maintaining systems than writing code directly [32]. Following this central principle,
MDA aims to provide support for every step in the life cycle of systems beginning from the
specification of requirements to business modeling to actual implementations.

Basic Concepts

In this context, the term system can refer to all kinds of systems: a hardware compound, software,
a company, a business process etc. The characteristic they all have in common is that they consist
of components which are in certain relationship to accomplish some purpose.

A model is abstracted information that selectively represents some aspects of a system. The
model is related to the system by an explicit or implicit mapping [45]. The information a model
may represent can be of any kind of nature: software, hardware, and other domain-specific
aspects of a system. These models can be expressed using any kind of UML diagram listed in
Section 3.1 or any other modeling language.

The Value of Models

The essential goal of MDA is to derive benefits from models and modeling that help dealing with
the complexity and interdependence of systems. Models provide a whole variety of benefits, the
most important benefits in regard to this thesis are the following.

• Eased communication
One of the most important benefits of models is their capability to help individuals to come
to a common understanding of a subject or problem area. These models then can be used
for the production of documentation, technology artifacts and executable systems [45].

For instance, UML class diagrams are used to specify the structural features of a system
and activity diagrams to define the behavior of the system. This is a big advantage for
project stakeholders who often struggle to contribute with their important domain knowl-
edge during the planing and development phase of an information system due to its very
technical environment. By using these two basic UML diagram types, users without tech-
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nical knowledge or even programming skills are able to participate in the early develop-
ment stages of information systems.

• Simulation and execution
MDA also promotes the idea to execute and simulate models. Models as data can drive
simulation engines that can assist in both analysis and execution of the designs captured
in models. Simulation assists in the human understanding of how a modeled system will
function and is a way to validate that models are correct [45].

Together with the fUML standard, a virtual machine was introduced, that lets users run
and analyze fUML compliant UML models.

• Automated transformation
Another important value of models is the possibility to fully or partially automate the
derivation of artifacts and implementations from models. Such automated processes re-
duce time and cost to realize and maintain a systems and guarantee consistency across
different target platforms [45].

To our best knowledge, there is no code generation approach for fUML available to this
date. This thesis aims to close this gap and provide an approach for automated transfor-
mation of fUML models to executable Java code.

Model transformation and execution are the two primary approaches described in MDA
to automate the path from models to executable systems. Model transformations use models
as input and transform them into artifacts, such as executable code, by using a transformation
pattern. For example, a UML sequence diagram could be transformed into Python code, a
BPMN model into an executable shell script. Model execution on the other hand uses model
execution engines that accept models as input and directly executes them.

Both methods provide an important step. They enhance a model from a descriptive to a
prescriptive information representation. What was specified in model form becomes usable as an
executable system. However, for the transformation to be performed successfully, the models are
required to be sufficiently detailed and accurate such that fully functional code can be generated
for the software systems expressed in the models.

3.3 Foundational Unified Modeling Language

The continuous development in the field of MDA and executable models and the desire to use
UML as a programming language led to the development of an OMG standard that defines
execution semantics for a selected subset of the UML 2 metamodel and acts as a foundation for
higher-level UML modeling concepts. This subset is referred to as Foundational UML or fUML.

Until the release of the version 1.5 of UML in 2005, the support for the expression of the
behavior of a system by means of UML was very limited. However, with the adoption of action
semantics in the version 1.5, an important tool to provide support for basic MDA principles like
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model-based simulation and verification of system specifications and code generation was intro-
duced. Based on action semantics, Stephan Mellor proposed the development method xUML,
which describes the behavior of systems with executable models detailed enough to transform
them into source code [33]. In xUML, UML state machines and a separately developed action
semantics were used to describe the behavior of a system.
The description of the semantics of the elements of UML was incomplete, inaccurate and dis-
persed throughout the specification which lead to a simplification of the specification in the
version 2.5 [44]. However, the biggest difficulty for users and tool developers was the lack
of formalized semantics; many concepts of the UML are defined informally in English, lead-
ing to ambigious interpretations which result in incompatibility of UML tools. As as result of
this critisims and in the response to the desire for a standardization of a precise semantics for
UML, the proposal for the Semantics of a Foundational Subset for Executeable UML Models
was requested in 2005. In 2008, the first version of the standard was adopted by the OMG and
published in 2011. The fUML standard [47] covers the formal specification of the semantics of
a subset of UML consisting of class modeling, activity modeling and action language concepts.

Boundaries of the Subset

The fundamental purpose of fUML is to serve as an adapter between the UML elements used
for modeling and a target language on a specific platform. The definition of the fUML subset
was performed with regard to three basic premises:

• Compactness. The extent of the subset should be as small as possible to easily facilitate
the definition of a complete semantics and development of execution tools.

• Ease of translation. The transition from surface UML elements to fUML and from fUML
to target platform languages should be as straightforward as possible.

• Action functionality. The specification only specifies the execution semantics for UML
actions as they are currently defined with primitive functionality.

In many cases the premises Compactness and Ease of translation contradict each other and
are the sources of tension. Features that are available in surface UML might have a correspond-
ing feature in a specific target language. To ease the translation, it would be tempting to directly
translate the UML feature into the corresponding target platform feature. However, for the sake
of compactness, the feature might be removed from the intermediary fUML layer. In this case
the feature needs to be translated into a set of coordinated UML actions that produce the same
result as the removed surface feature. Furthermore the fUML-to-platform translation need to
recognize the set of actions to map the desired feature.

Under consideration of this conjuncture, the specification resolves the choice between com-
pactness and ease of translation based on judgements about which functionality between UML
actions and platform features are used more widely than others. The features are separated into
three groups:

• Functionality that is widely used both in UML and target platforms are supposed to have
a one-to-one translation to the intermediary fUML subset. An example for that would be
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classes with properties and operations that are essential elements also in surface UML and
object oriented target languages.

• Moderately used features are not supported in the fUML subset directly but still should
have straightforward translation support. Examples for that group are composite structures
and simple state machines.

• Less used functionality that is in common of UML and platforms, which may have a
complex transformation, are not included in the fUML subset.

The fUML standard contains the foundational core consisting of UML class modeling con-
cepts to define the structure, and UML activity concepts, to define the behavior of systems. Thus,
the abstract syntax definition of fUML corresponds to a strict subset of the UML metamodel.

fUML Subset

The fUML specification covers a subset of the UML metamodel to define the structure and
the behavior of a system. The subset, depicted in Figure 3.2, contains the structural kernel of
UML, which contains the UML package Classes, the behavioral kernel of UML, consisting of
the UML package CommonBehaviors, a subset of the UML package Activities and a subset
of UML’s action language (package Actions). Thus, to describe a system within fUML, class
modeling concepts are used to describe the structural features, and activity modeling concepts
to describe the behavioral features.

Structure

As depicted in Figure 3.2, the central modeling elements provided by UML and included in
the fUML subset to describe the structure of a system is a class (metaclass Class). Classes
can own attributes (metaclass Property), which are of a certain type and multiplicity, and Op-
erations (metaclass Operation), which can specify a set of parameters (metaclass Parameter).
Relationships between classes are described with associations (metaclass Association). With In-
teger, String, Boolean and UnlimitedNatural, a set of primitive types (metaclass PrimitiveType)
is provided.

Behavior

Concepts of UML activity modeling available in fUML due to the inclusion of the package Com-
monBehaviors, are used to model the behavior of a system. An excerpt of the metamodel of this
package is depicted in Figure 3.3. Activities (metaclass Activity) constitute the central model-
ing element. They contain sets of activity nodes (metaclass ActivityNode) and sets of activity
edges (metaclass ActivityEdge). Activity nodes can be divided into three types: Object nodes
(metaclass ObjectNode), control nodes (metaclass ControlNode) and actions (metaclass Action).
Object nodes are used to specify the input and output of activities and actions. They define
parameter nodes (metaclass ActivityParameterNode), and input pins (metaclass InputPin) and
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Figure 3.2: Excerpt of the fUML metamodel used to describe the structure of a system [30]

output pins (metaclass OutputPin). Control nodes are used to split (ForkNode, DecisionNode)
and join (JoinNode, MergeNode) the flow of executions and define the start and end of activities.

Actions are the fundamental and smallest possible unit of executable behavior in fUML.
The UML action language specifies a predefined set of 27 actions, that is contained in fUML.
They can be divided into five different types. Object actions are used to create and destroy
objects and perform specific tasks on instances of objects. Structural feature actions are used
to add and remove properties of objects as well as perform read and write operations on object
properties. Link actions are used to handle relations between objects. Communication actions
are used for invoking activities. Structured activity nodes provide basic control statements like
loops (metaclass LoopNode) and conditional expressions (metaclass ConditionalNode).

Semantics

The execution semantics of fUML are defined within the fUML execution model in an opera-
tional manner. The model itself is written in base UML (bUML), a subset of fUML, and defines
a virtual machine which is able to interpret and execute fUML models. The behavior of the vir-
tual machine is represented in Java whereby an translation into bUML is provided. The Process
Specification Language (PSL) [19] is used to describe the semantics of bUML in a translational
way. A reference implementation of the virtual machine, implemented in Java by Model Driven
Solutions on account of the Lockheed Martin Corporation, is available under the Academic Free
License. In general, the intention of the implementation of the virtual machine is to provide a
tool to evaluate the conformance to the fUML standard, and by that, encourage potential con-
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Figure 3.3: Excerpt of the fUML metamodel used to describe the behavior of a system [30]

tributors to use the fUML standard. In the context of this work, this reference implementation is
used to verify the correctness of generated code in regard to a given input model as discussed in
Chapter 4.

The execution semantics of fUML concepts are defined using a visitor pattern. Every metaclass
of the fUML metamodel has a corresponding semantic visitor class that specifies its behavior.
The execution model uses three types of semantic visitor classes. Evaluation visitor classes are
used to define how values are created from a value specification. The evaluation visitor class for
e.g. the type Integer defines how the specification of an Integer value (metaclass LiteralInteger)
is evaluated to an Integer value (semantic visitor class IntegerValue). To define the semantics
of activity nodes, Activation visitor classes are used. For instance, the activation visitor class
AddStructuralFeatureValueActionActivation, specifies the semantics of the add structural fea-
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ture value action (metaclass AddStructuralFeatureValueAction). Execution visitor classes are
used to specify how instances of the meta class Behavior, i.e. activities, are executed. The defi-
nition is given operationally by the implementation of the execute() method of the visitor class.

The execution environment, which is also provided by the fUML virtual machine, is concerned
with the execution of an fUML model. The Executor class is used to execute fUML models and
servers as an interface for the fUML virtual machine. It provides operations to synchronously
(operation execute()) and asynchronously (operation start()) start the execution of a behavior, as
well as an operation to evaluate a value specification and return it’s resulting value (operation
evaluate()).
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CHAPTER 4
Code Generation

This chapter first describes the requirements imposed on the fUML code generator developed in
this thesis, then elaborates the technologies used for the implementation of the code generator,
and finally describes the functionality of the code generator with code samples and example
models. The description of the developed code generator is devided into three parts: code gener-
ation for class diagrams, code generation for activity diagrams, and code generation for actions.
The developed software artefacts are available online. Further information about the public
repository are provided in Appendix A.

4.1 Requirements

A code generator’s task, in general, is the translation of a system described in an abstract, in-
termediate representation, into a target language, that can be executed by a machine. The code
generator’s task, in the scope of this thesis, is to translate fUML compliant models into exe-
cutable Java code. fUML models consist of class diagrams which are describing the structure
of the system, and activity diagrams, which model the behavior of the operations defined in
the class diagrams. First and foremost, the code generator needs to generate code that behaves
equivalent to the execution carried out by the fUML virtual machine. Besides that, the code
generator shall be complete, testable and flexible wrt. the target language.
The requirement Completeness is addressed by aiming to provide an fUML to Java mapping
for every of the 27 predefined fUML actions. Not all features provided by fUML are available
in the specific target languages. For example, the fUML action ReadExtent is an action that,
per definition, retrieves all current instances of a classifier. Java does not contain a functionality
that provides this behavior innately. While it is not too complex to provide functionality for this
specific missing action, the example reveals the challenges of implementing an fUML code gen-
erator since it is not possible to translate fUML actions to Java one-to-one. All supported actions
and their mapping to Java code are presented in Section 4.5. In this section, also limitations and
actions with limited support are described as well as unsupported actions.
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The requirement Testability is addressed by two measures: Firstly, the fUML to Java mappings
are developed in a test-driven approach. Before a mapping is implemented, a model is designed
that contains the fUML action for which the mapping is implemented. Test models usually con-
tain multiple test activities to cover different conditions under which the fUML action can be
executed. Secondly, a test suite not only evaluates the correctness of the last implemented map-
ping but all previous mappings by re-generating the Java code for all test models and evaluating
their execution against the execution carried out by the virtual machine.
Flexibility wrt. the target language is achieved by utilizing state of the art model-to-text tech-
nologies that provide a clean separation of the code of the code generator and the target language
code. This allows the elaborated code generator implementations to be reused in order to elabo-
rate mappings for a target language other than Java.

4.2 Model to Text Transformations

Regular programming language are not intended for the purpose of generating code. Dynamic
and static code gets mixed up, functionality is hard to reuse and complex string concatenations
often result in incorrect and improperly formatted outputs. Model to text transformations are
used to transform MOF-based models into text. They utilize templates to express these trans-
formations. Templates consist of text fragments and embedded meta-markers, which act as
place-holders that are evaluated during runtime by querying the input model. By this, static
code, in form of text fragments, and dynamic code, in form of meta-markers, are separated.
MOF Model to Text Language (MOFM2T) [40] is an OMG specification that can be used to
transform MOF-based models into text. Acceleo1, JET2 and Xpand3 are a few of the more pop-
ular implementations of the MOFM2T standard.
The code generator for fUML developed in this thesis is written with Xtend4. Xtend is a stati-
cally typed, high-level programming language for the Java Virtual Machine. Besides a number
of useful features like Lamda expressions, active annotations, dispatch methods and operator
overloading, Xtend fully supports the template engine Xpand since 2011. Xpand is a language
specialized on code generation. It enables to define code templates where expressions can be
used to assign values to placeholders within the templates. Features like multi-line support and
white-space handling contribute in facilitating the code generation process.

Xtend comes with a dynamic dispatch feature that allows the call of the same method for objects
of a common super class. The decision of the invocation of the appropriate (i.e. the most spe-
cific) method is performed at runtime rather than compile time. This feature is heavily used by

1The documentation of Acceleo is available online at https://wiki.eclipse.org/Acceleo, accessed 10-
02-2017
2The documentation of JET is available online at http://www.eclipse.org/modeling/m2t/?project=
jet, accessed 10-12-2016
3The reference for the Xpand syntax is available online at http://git.eclipse.org/c/m2t/org.
eclipse.xpand.git/plain/doc/org.eclipse.xpand.doc/manual/xpand_reference.pdf,
accessed 10-12-2016
4The documentation of Xtend is available online at https://eclipse.org/xtend/documentation/
index.html, accessed 10-02-2017
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the code generator developed as part of this thesis. It comprises a set of generate dispatch meth-
ods, one for each supported fUML action. In each method, the template expression feature is
used to provide readable string concatenation. Template expression are enclosed by triple single
quotation and contain the Java code templates. The templates usually contain interpolated meta
markers, enclosed with guillemots, which are replaced with variable values.
Listing 4.2 displays the simplified generate method for the action CreateObjectAction. The
unique variable name for the newly generated object is added to the collection vars, subse-
quently the static code templates are completed with values from the expressions. Finally, the
generation process continues by invoking the method handleOutgoing.

// Global map of variables and generated variable literals
var HashMap<String, String> vars;

// Global variable to provide unique variable names
var varCount = 0

// Generate method for the action CreateObjectAction
def dispatch String generate(CreateObjectAction a) {

varCount = varCount + 1
vars.put(a.name, "var"+varCount)

’’’
// Generation of the Java code
«a.classifier.name» var«varCount» = new «a.classifier.name»();

// Continue code generation for action’s outgoing edges
«a.handleOutgoing»

’’’
}

Listing 4.1: Xtend-code of the (simplified) generation method for the CreateObjectAction

4.3 Code Generation for Class Diagrams

The code generation process can basically be separated into two phases. In the first step, the
generator translates all elements that represent the structural features of the system, i.e. the class
diagrams of an fUML model. In the second phase, all elements that describe the behavior of
the system, i.e. the activity diagrams of an fUML model, are translated into executable code. In
this chapter, we look at the first step of the process, which is the code generation for structural
features defined in UML class diagrams.
The structural features of an fUML model are defined by elements of the types Class, Property,
Operation and Association. The generator first processes all elements of the type Class and
creates a Java-File with the same name as the class element. Polymorphism and nested classes
are not supported, thereby only a simple class stub is being generated in the class file.
In the next step all property elements owned by the class element are processed. The type of a
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not unique unique

not ordered ArrayList HashSet

ordered ArrayList ArrayList

Table 4.1: UML collection types

property is directly translated into the generated code. Ever property has a set of attributes, some
of which are relevant for the code generation:

• The upper attribute is one of the two multiplicity elements that allows the user to define
the cardinality of an element. If the upper property is set unequal to one (which is the
default value), it indicates that more than one value can be assigned to the property.

• If the property is multivalued, the attribute isOrdered specifies whether the values are
sequentially ordered or not. The default value is false.

• The attribute isUnique specifies whether the property allows duplicate values. If the prop-
erty is not multivalued, this attribute is obsolete. The default value is false.

If the value of the upper attribute is greater than zero, the generated property is declared in
form of a collection. The values of the isOrdered and isUnique attributes determine the type
of collection used for the property. As displayed in Table 4.1, ArrayLists, which are ordered,
provide random access and allow duplicates, are used in most of the cases. Since the generated
code never relies on a collection to be unordered, it is used for both not ordered and ordered lists
that allow duplicates. Since the Java Collection Framework does not contain an implementation
of a unique collection that allows inserting and removing from a specified index, ArrayLists
are also used for multivalued properties with isOrdered and isUnique set to true, whereby the
uniqueness of the collection is ensured by checking if the list does contain the element to be
added.
After all properties owned by the class elements are processed, the properties defined within
Associations are processed. Every association can potentially connect an unlimited number of
classes, which is expressed by one property for each connected class referred to as member
ends. The code generator, however, only support binary associations, i.e. associations with
two member ends. Every member end has the attribute isNavigable which indicates whether
it can be accessed from instances at the other end. If a member end is set to navigable, the
generator creates the code for the property on the other end of the association and thereby grants
accessibility at compile time.
For every generated property, getter and setter methods are provided. The type, multiplicity,
visibility and parameters of these methods are generated conform to the encapsulated property.
In the generated code, properties are always accessed or modified via their getter and setter
methods.
The last step of the translation of a class diagram is the translation of operations to method
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stubs. Every operation can contain a set of parameters. For every parameter that has the direction
attribute set to in, the code generator creates a parameter in the method signature. If the operation
contains a parameter with the attribute direction set to return, the return type of the generated
method is set accordingly. In fUML, additional parameter directions, namely out and in out,
are available, which are not supported by the code generator. Lastly, the attribute visibility
determines whether the access level of the generated method is private or public (the visibility
types package and protected are not supported).

ClassA

- PropertyA: String

ClassB
+List_ClassA

0..* + start(): void

Figure 4.1: Sample fUML class diagram for illustrating the code generation

To illustrate the translation of the structural model, Listing 4.2 shows the generated code
for the model shown in Figure 4.1. The diagram in Figure 4.1 shows a simple class diagram
consisting of the classes ClassA and ClassB. ClassA owns the string property PropertyA. The
two classes are connected with an association. The multiplicity attribute of the association end
List_ClassA is set to 0..* indicating that one instance of ClassB is associated with zero or more
instances of ClassB. The arrow models the navigable member end, in this case the property
List_ClassA of the type ClassA. The multiplicity of property PropertyA is not set and therefore
the default value 1 applies.

public class ClassA {

private String PropertyA;

public String getPropertyA() {
return PropertyA;

}

public void setPropertyA (string PropertyA) {
this.PropertyA = PropertyA;

}
}

public class ClassB {

public Collection<ClassA> List_ClassA = new ArrayList<ClassA>();

public Collection<ClassA> getList_ClassA() {
return List_ClassA;

}

public void setList_ClassA(Collection<ClassA> List_ClassA) {
this.List_ClassA = List_ClassA;

}
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public void start() {
}

}

Listing 4.2: Code generation result for the activity shown in Figure 4.1

As a result of the code generation, the classes with correctly typed properties and operation stubs
are created as can be seen in Listing 4.2. Getter and setter methods are generated for both private
and public defined properties.

4.4 Code Generation for Activity Diagrams

In the second phase, the empty operation stubs are filled with code corresponding to the activities
associated with the respective operation. Every operation is associated with one activity and
every activity can only be associated with one operation.
In the first step, the generator creates a collection of nodes that are processed initially. The list
contains elements of the type InitialNode, ActivityParamterNode and nodes with no incoming
edges. For every item in the collection the generate method is called. Every node can have
multiple outgoing edges that connect the node to its successor nodes. The generator processes
the model by recursively calling the generate method of the successor nodes (and their successor
nodes and so on). This process is repeated until there is no element in the list of initial nodes left.
For every UML element supported by the generator, a generate method exists. A more detailed
documentation of all supported elements can be found in Section 4.5.

Final node

var1: ClassA

CreateObject

Figure 4.2: Sample fUML activity diagram for illustrating the code generation

Figure 4.2 shows an activity diagram consisting of three elements: A CreateObjectAction, a
ControlFlow and an ActivityFinalNode. The generation process starts with the CreateObjectAc-
tion since it’s the only one without incoming edges. After the code of the CreateObjectAction
action was generated, the generate method of every outgoing element is called; in this case the
generation method for the ControlFlow, which does not generate any code but calls the generate
method of its target element. As a consequence, the last element, ActivityFinalNode is trans-
lated into code, namely into a return statement. Since there are no more outgoing edges left and
the collection of elements to be generated initially is emptied, the generation process is finished.
The result can be seen in Listing 4.3.

ClassA var1 = new ClassA();
return;

Listing 4.3: Code generation result for the activity shown in Figure 4.2

Listing 4.4 contains the simplified method of code generation of the activity diagram in
pseudo code. The generations process starts by determine all initial nodes and assigning them
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to a collection (line 3). Initial nodes are all nodes of the action that are of the type InitialNode,
ActivityParameterNode or Action without incoming edges. The collection is then iterated (line
5), and then, depending on the type of the processes node, the correct generation method called
(line 6).

1 function generateActivity(Activity a)
2 {
3 List nodesToProcess = a.getInitialNodes();
4
5 while nodesToProcess.hasNext() {
6 generate(nodesToProcess.getNext());
7 }
8 }

Listing 4.4: Function generateActivity of the code generator

A generate function, as shown in Listing 4.5, exists for every supported node of the
generator. Xtend’s dynamic dispatch feature invokes the appropriate generate function based on
the type of the parameter n. If all incoming edges of the node have been registered by the Join
Manager, the actual code generation (line 5), which is not shown in this sample, is conducted and
the code generation continues by calling the function handleOutgoing (line 7). If the Join
Manager is not ready, the current incoming activity edge is registered (line 10) and the process
continues without any code being generated.

1 function generate(ActivityNode n)
2 {
3 if JoinManager(n).isReady() {
4
5 // <-- Code generation of node ’n’
6
7 handleOutgoing(n);
8 }
9 else

10 JoinManager(n).registeredIncoming++;
11 }

Listing 4.5: Generic generate function of the code generator

The function handleOutgoing, as shown in Listing 4.6, iterates over all outgoing edges
(line 3) and all output pins (line 7) of the activity node n, and calls the corresponding generate
function (lines 4, 8). By that, the code generation is continued along all outgoing edges of the
node n.
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1 function handleOutgoing(ActivityNode n)
2 {
3 while n.outgoings.hasNext() {
4 generate(n.outgoings.next());
5 }
6
7 while n.outputs.hasNext() {
8 generate(n.outputs.next());
9 }

10 }

Listing 4.6: Function handleOutgoing of the code generator

Control Flows and Object Flows

As described in Chapter 3.1, activity diagrams distinguish between two types of connections
between nodes: ObjectFlows and ControlFlows. Control flows are used to direct the flow of
control between activity nodes. The code generator simply iterates over all outgoing control
flows of an activity node and calls the generate method of the control flow’s target element.

Object flows, on the other hand, are connections between two activity nodes that transfer a
value of a specified type. To transfer a value from one action to another, the value is placed on
the output pin of the source action. The value is then transferred over the object flow and put on
the input pin of the target action.

ActionA: ClassA

CreateObject

OutputPinA

ActionB

InputPinB

ObjectFlow1

Figure 4.3: Sample fUML activity diagram illustrating the code generation for object flows

The code generator provides this functionality by keeping an internal list of variables (VARS)
for every activity. Every time a value is being created or transferred between two nodes in the
process of the code generation, a corresponding entry in VARS is added. The entry consists of
the name of the node as key and the name of the generated variable as value. To avoid duplicate
key entries, the node’s name and its parent name are concatenated to form the key value if the
node is an input or output pin. By looking up the value of the entry with the key of the source
node’s name, the access to the variable at the target of an object flow is given.

Figure 4.3 shows the transfer of an object from ActionA to ActionB. Since ActionB is not
further specified, the generated code is equal to the code shown in Listing 4.3. Additionally to
the generated code, an entry with the action’s name ActionA as key and the generated variable
name var1 as value is added to the list of variables. The next node OutputPinA looks up the
name of the variable in VARS using the name of its previously processed node ActionA and
creates a new entry with its own name ActionA_OutputPinA and the looked up value var1.
In the same manner, the next node InputPin adds an entry to VARS with the key ActionB_-

InputBinP and the value var1. The target action ActionB can eventually access the transferred
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object by looking up the name of the generated variable using the the name of its input pin. If
an action is processed multiple times due to, e.g. a loop node, potentially pre-existing values in
the VARS list, which were added by previous processing of the action, are overwritten, which
ensures that the subsequently processed node can only access the updated value. Listing 4.7
shows all key-value-pairs added to the VARS list for the example depicted in Figure 4.3.

ActionA: var1
ActionA_OutputPinA: var1
ObjectFlow1: var1
ActionC_InputPinC_1: var1

Listing 4.7: Key-value-pairs inserted in the variables list for the activity shown in Figure 4.3

The names of the generated variables are composed of the constant string var and an automati-
cally incremented index.

Join Manager

Every action may have a set of incoming and outgoing control and object flows. The execution
of the action won’t start before all incoming edges are satisfied. According to the definition of
token flow semantics of Petri nets, the action executes when there are sufficient tokens in all of
it’s incoming control and object flows. While every input pin can potentially require more than
one token to be provided, the code generator doesn’t support values other than 1.
The code generator needs to check whether there are more than one incoming edge, before
processing the action. This task is carried out by the code generator’s Join Manager. Instead
of directly generating the code of a target element, it is checked for every input pin as well as
every incoming control flow whether the sum of incoming control flows and object flows of
the target node is greater than one. If this is the case, a Join Manager for the target action is
initialized and the generation halted. The Join Manager keeps a list of all incoming edges of the
element it was created for. Every incoming edge of the target registers itself at the Join Manager
before it checks whether the Join Manager allows the continuation of the generation. Only if
every incoming edge registered itself at the Join Manager at least once, the Join Manager’s public
method isReady() returns true and the code generation continues.

Figure 4.4 shows a model which requires a Join Manager for its processing sequence to be
correct. The generator first processes all initial nodes; in this example ActionA and ActionB
since they don’t have any incoming edges. After ActionA was processed, all succeeding nodes
(OutputPinA, ObjectFlow1, InputPinC_1) are processed. At the processing of In-
putPinC_1, the generator calculates the number of incoming edges of the action ActionC.
Since the the number of incoming edges is two, a Join Manager is initialized for ActionC. The
node InputPinC_1 is registered on the Join Manager’s list and the generation is suspended
since only one of the two incoming edges was registered.
The generation continues with ActionB, the next node of the list of initial nodes. ActionB
and all its successors are processed until InputPinC_2 is reached. Again, the generator
checks whether the number of incoming edges of ActionC is greater than one. A Join Manager
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ActionA: ClassA

CreateObject

OutputPinA

ActionB

ValueSpecification

OutputPinB

ActionC

AddStructuralFeatureValue
InputPinC_1

InputPinC_2

ObjectFlow1

ObjectFlow2

Figure 4.4: Sample fUML activity diagram illustrating the code generation for actions with
multiple incoming object flows

for ActionC was already established and InputPinC_2 registers itself as an incoming edge
of ActionC. At this point, all incoming edges are satisfied and the generation can be continued
with the generation of ActionC.

Control Nodes

Control nodes are activity nodes that are used to direct the flows between nodes. Control nodes,
for which Java code is generated, are described below in a common format: An illustration of
the node gives an overview of all incoming and outgoing flows. After that, a list of all properties
processed by the code generator and a brief textual description of the node are given. Finally,
different scenarios and their resulting Java code are used to exemplify different characteristic of
the presented node.

ForkNode

Figure 4.5: ForkNode

Processed Properties

• Incoming: ActivityEdge[0..1]

• Outgoing: ActivityEdge[0..*]

Description
Fork nodes are used to spit a flow into multiple concurrent flows. In the case of object flows,
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the incoming token is provided to the target nodes of all outgoing edges by adding an entry to
the internal list of variables for each outgoing edge. In order to generate concurrently executing
code for the concurrent branches, Java Threads would have to be introduced. This feature is,
however, not supported in the current version of the generator. Instead, the concurrent branches
are processed sequentially, leading to sequentially executing code.

JoinNode

Figure 4.6: JoinNode

Processed Properties

• Incoming: ActivityEdge[0..*]

• Outgoing: ActivityEdge[0..1]

Description
Join nodes are used to combine multiple incoming flows into a single outgoing flow. The code
generator therefore has to halt the generation until all incoming edges are satisfied. This behavior
is provided by the code generator’s JoinManager, which is also used for every action with more
than one incoming edge.

DecisionNode

DecisionInput

[Guard]

[Guard]

[Guard]

Figure 4.7: DecisionNode
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Processed Properties

• DecisionInput: Behavior[0..1]

• DecisionInputFlow: ActivityEdge[0..1]

• Incoming: ActivityEdge[0..1]

• Outgoing: ActivityEdge[0..1]

Description
Decision nodes are used to direct the object flow or control flow depending on certain conditions.
An optional DecisionInput, which can be an activity or opaque behavior, is used to process a
value provided on the DecisionInputFlow. A decision node defines multiple outgoing edges.
Every outgoing edge defines a guard which is compared to the result of the DecisionInput. If
no DecisionInput is defined, the equal method is used to evaluate the incoming value against
the values specified for the guards. If a DecisionInputFlow is defined without an DecisionInput
behavior, the value of the the DecisionInputFlow is compared to the values of the guards while
the value of the regular incoming edge is put on the outgoing edges. The generator translates
this behavior into an if-statement whereby every outgoing control or object flow corresponds to
an if-condition.

• Scenario 1: The decision node is provided with one incoming object flow. Since no
decision input is defined, the value of the incoming object flow is directly compared to the
value of the guards of the outgoing edges.

Incoming: true:Boolean
Outgoing 1: true:Boolean
Outgoing 2: false:Boolean

if (new Boolean(true).equals(new Boolean(true))) {

}
else if (new Boolean(false).equals(new Boolean(false))) {

}

• Scenario 2: The decision node is provided with an incoming object flow, an decision
input in form of an opaque behavior, and a decision input flow. Both incoming values are
handed over to the opaque behavior. The result of the behavior is then evaluated against
the values of the guards of every outgoing edge.

DecisionInput: IntegerModulo:OpaqueBehavior
DecisionInputFlow: 3:Integer
Incoming: 1234:Integer
Outgoing 1: 0:Integer
Outgoing 2: 1:Integer
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if ((new Integer(1234) % new Integer(3))
== new Integer(0)) {

}
else if ((new Integer(1234) % new Integer(3))

== new Integer(1)) {

}

MergeNode

Figure 4.8: MergeNode

Processed Properties

• Incoming: ActivityEdge[0..*]

• Outgoing: ActivityEdge[0..1]

Description
Merge node are used to bring together alternative incoming flows into a single outgoing flow.
The execution continues without waiting for other incoming edges. However, if the incoming
flow is a result of the generation of a decision node, the generation of the outgoing nodes is
suspended, because the merge node has multiple incoming edges, which causes the generated
code of the following actions to be placed outside of the if-clause. Additionally, if multiple
decision nodes are the only nodes that flow into one merge node, the conditions of the decision
nodes are combined into one if-statement. This provides better code readability and prevents the
outgoing edges of the merge node to be processes multiple times by the generator.
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• Scenario 1

A

B C

D1 M1

[x == true]

[x == false]

IP1

obj1

Figure 4.9: Combination of MergeNode and DecisionNode

The execution flow depicted in Figure 4.9 splits up at the DecisionNode D1. When the
model is executed by the virtual machine, depending on the value of x, Action A or Action
B is executed and thereafter Action C once. Since the code generator has to create the
whole decision tree rather than one path through the tree, it has to process both outgoing
edges of the DecisionNode D1.

if (x == true) {
A();
C();

}
else if (x == false) {

B();
C(); // <-- ERROR

}

Listing 4.8: Naive code generation for merge node

Listing 4.8 shows the result of the generation of the model depicted in Figure 4.9 without
halting the generation at MergeNode M1. The generator first generated the code for con-
dition x == true, for Action A and then processes the outgoing edges of MergeNode
M1 immediately. Action C is generated for the first time, consuming the object provided
at InputPin P1 and the object provided from the MergeNode M1. After the generation of
Action C, its JoinManager is reset. In the next step, the condition x == false, Acion
B is generated. The generator then tries to generated the code for Action C a second time.
Since the token on InputPin P1 was already consumed, the generator can not process Ac-
tion C.
To counteract this problem, the generation process is, in contrary to the behavior of the
fUML virutal machine, halted at the MergeNode M1. Thus, Action C is processed only
once by the generator and its code is placed outside the if-statements as shown in Listing
4.9.

if (x == true) {
A();
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}
else if (x == false) {

B();
}
C();

Listing 4.9: Improved code generation for merge node

4.5 Mapping of fUML Actions to Java Code

This section details the code generation for the action language of fUML, i.e., the actions for
which the code generator provides a translation to executable Java code. Every action is de-
scribed in a common format: First, an illustration of the action gives an overview of all incoming
and outgoing control flows and object flows and of the action. After that, a list of all properties
processed by the code generator and a brief textual description of the action are given. Finally,
different scenarios and their resulting Java code are used to exemplify different characteristic of
the presented action.

Object Actions

CreateObject

CreateObject
Result

Figure 4.10: CreateObject

Processed Properties

• Classifier: Classifier

Description
This action is used to create a new instance of the provided classifier. The code generator gener-
ates code that instantiates the class generated for the given classifier and declares and initializes
a new variable of the provided type. The name of the newly created variable is set automatically
and added to the internal list of variables to make it available in further actions. If the provided
classifier is used as parameter in a ReadExtent action in any activity in the model, the variable is
also added to a static collection of the class generated for the classifier.

• Scenario 1: The provided classifier is of the type ClassA.

Classifier: ClassA

ClassA var1 = new ClassA();
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• Scenario 2: The provided classifier is of the type ClassB. Additionally, an operation in
model contains a ReadExtent action for the same classifier.

Classifier: ClassB

ClassB var1 = new ClassB();
ClassB.addInstance(var1);

DestroyObject

DestroyObjectObject

Figure 4.11: DestroyObject

Processed Properties

• IsDestroyLinks: Boolean

• IsDestroyOwnedObjects: Boolean

Description
This action is used to destroy a provided object. Since Java does not provide any functionality
to explicitly destroy objects, no code is generated for this action. However, if the provided
classifier is used as parameter for a ReadExtent action, the object is removed from the collection
of classifier instances. If the property IsDestroyOwnedObjects is set to true, all elements owned
by the provided object are removed. This is performed by calling the clear-methods of the
generated collections, if the provided object is multivalued.
If the property IsDestroyLinks is set to true, all links that participate in an association with the
provided object are destroyed as well. If the property IsDestroyOwnedObjects is set to true, all
objects owned by the object are destroyed as well. The functionality for these properties is not
supported in the current version of the code generator.

• Scenario 1: The provided objects’s classifier contains a ReadExtent action.

Object: var1:ClassB

ClassB.removeInstance(var1);
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ValueSpecification

ValueSpecification
Value

Figure 4.12: ValueSpecification

Processed Properties

• ValueSpecification: ValueSpecification

Description
This action is used to specify values. For this action, the code generator creates an variable
initialized with the value provided and adds it to the internal list of variables to make it acces-
sible for further actions. In its current version, the code generator supports the specification
of primitive types String, Boolean, Integer and UnlimitedNatural. The type InstanceValue is not
supported.

ReadSelf

ReadSelf
Object

Figure 4.13: ReadSelf

Processed Properties

• none

Description
This action is used to read the context object of the activity containing the action. The context
object of an activity is the object for which the operation associated with the activity has been
called. In Java, the context of a method, in which the action is executed, is the current object
instance, which can always be referenced using the keyword this. For this action, no code is
generated, however, together with the action’s name, the keyword this is placed in the internal
list of variables to be accessible in subsequent actions.

49



TestIdentity

TestIdentity

Object

Object
Result

Figure 4.14: TestIdentity

Processed Properties

• none

Description
This action is used to test if the two provided values are identical. The values are compared with
the regular equality operator if they are of primitive types. If the values are of complex types,
i.e., instances of classes, the code generator calls the equals method of the first object with the
second object as parameter. The result of the comparison is assigned to a new boolean variable.

• Scenario 1: The provided objects are of primitive types. They are compared with the
equality operator. The result of the comparison is assigned to the new variable var3.

Boolean var3 = var1 == var2;

• Scenario 2: The provided objects are of complex types. The equal-Method of the first ob-
ject var1 is called with the parameter var2, the second object. The result of the comparison
is assigned to the new variable var3.

Boolean var3 = var1.equals(var2);

ReclassifyObject

ReclassifyObjectObject

Figure 4.15: ReclassifyObject

Processed Properties

• OldClassifier: Classifier

• NewClassifier: Classifier

• IsReplaceAll: Boolean
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Description
This action is used to change the type of a provided object. The generator translates this behav-
ior into the creation of a new variable of the provided NewClassifier. The provided objects gets
explicitly casted to new NewClassifier and assigned to the new variable. The parameter OldClas-
sifier and NewClassifier are potentionally multivalued, however, since Java only casts to exactly
one new type, only the first entry of the NewClassifier is considered. While the there is no re-
striction regarding the new type in fUML, the cast will result in a compile error in the generated
code if the new type is not a sub or super type of the old type. The parameter OldClassifier and
IsReplaceAll are obsolete.

• Scenario 1: The provided object var1 is of type ClassA and the first value of the NewClas-
sifier collection is ClassB.

ClassB var2 = (ClassB)var1;

ReadIsClassifiedObject

ReadIsClassifiedObject
Object Result

Figure 4.16: ReadIsClassifiedObject

Processed Properties

• Classifier: Classifier

• IsDirect: Boolean

Description
This action is used to check whether an provided object is of a certain type. If the object is
classified by the given classifier, the result is true. If the parameter IsDirect is set to equals
false, the test returns true if the object is classified by the parameter Classifier or one of its
subclasses. If IsDirect equals true, the provided classifier’s subclasses are not considered for
the test. The result of the test is provided as output of the action.

• Scenario 1: For the provided object var1 it is tested whether it is of type ClassA or one of
its subclasses.
Classifier: ClassA
IsDirect: false

Boolean var2 = (var1 instanceof ClassA);

51



• Scenario 2: For the provided object var1 it is tested whether if it is of type ClassA but non
of ClassA’s subclasses.
Classifier: ClassA
IsDirect: true

Boolean var2 = (var1.getClass() == ClassA.getClass());

ReadExtent

ReadExtent
Object

Figure 4.17: ReadExtent

Processed Properties

• Classifier: Classifier

Description
This action is used to retrieve all instances of the provided classifier. Java does not inherently
provide such a functionality. Therefore, every classifier that is used as parameter in a ReadExtent
action is extended by a static collection of its own type that holds all its instances. For the
collection to be consistent, it’s necessary that newly created instances are added to the collection
in CreateObject actions and removed in DestroyObject actions.

• Scenario 1a: The classifier ClassA is used as parameter in a ReadExtent action in the
model. The static collection of instances and add and remove methods are added to the
Java class generated for ClassA.

private static java.util.Collection<ClassA> instances
= new java.util.HashSet<ClassA>();

public static java.util.Collection<ClassA> allInstances() {
return instances;

}

public static void addInstance(ClassA instance) {
instances.add(instance);

}

public static void removeInstance(ClassA instance) {
instances.remove(instance);

}
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• Scenario 1b: An action ReadExtent with the classifier set to ClassA is defined. All in-
stances of ClassA are retrieved by calling its static allInstances method. The result is
assigned to a new collection.
Classifier: ClassA

java.util.Collection<ClassA> var1 = ClassA.allInstances();

Reduce

ReduceObjects Result

Figure 4.18: Reduce

Processed Properties

• Reducer: Behavior

• IsOrdered: Boolean

Description
This action is used to reduced a collection of objects to a single value. The specified Reducer
is a behavior which is executed for every object of the incoming object. The code generator
translates this behavior into a while loop that iterates over the provided input collection. In
the first iteration, the Reducer behavior is called for the first two objects in the collection. In
the second iteration it is called for the result of the previous call and the third element, and so
on. Since the order of the method calls is determined by the collection’s iterator, the parameter
IsOrdered is not considered but always assumed to be true.

• Scenario 1: The provided collection var1 is of the type string. The Reducer method
expects two parameters and returns them concatenated.
Collection: var1: String{0..*}
Reducer: concat(String:var1, String:var2)

String var2 = null;
if (!var1.isEmpty()) {

java.util.Iterator<String> i = var1.iterator();
var2 = i.next();

while (i.hasNext()) {
var2 = concat(var2, i.next());

}
}
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Structural Feature Actions

AddStructuralFeatureValue

AddStructuralFeature
InsertAt

Result
Object

Value

Figure 4.19: AddStructuralFeatureValue

Processed Properties

• StructuralFeature: StructuralFeature

• IsReplaceAll: Boolean

Description
This action is used to add values to structural features of objects. The code generator translates
this behavior into code which modifies the values of the specified properties. The generated code
depends on the multiplicity of the feature, if the feature is ordered and if the old values should
be replaced beforehand.

• Scenario 1: In the simplest case, the structural feature is single valued and a call of the
setter method for the specified property is being generated. In this scenario, neither the
input value InsertAt nor the property IsReplaceAll have to be considered.

Object: var1:ClassA
Value: ’test1’:String
StructuralFeature: StringProperty:String of ClassA

var1.setStringProperty("test1");

Object: var1:ClassB
Value: var2:ClassA
StructuralFeature: ClassAProperty:ClassA of ClassB

var1.setClassAProperty(var2);

• Scenario 2: When the structural feature is multivalued, the collection is first accessed by
calling the Getter-method. If the property IsReplace is set to true, the collection is emptied
before the new values is added.

Object: var1:ClassB
Value: var2:ClassA
StructuralFeature: ClassCollection:ClassA[0..*]

var1.getClassCollection().add(var2);
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Object: var1:ClassB
Value: var2:ClassA
StructuralFeature: ClassAProperty:ClassA[0..*]
IsReplaceAll: true

var1.getClassCollection().clear();
var1.getClassCollection().add(var2);

• Scenario 3: If the structured feature is multivalued and ordered, the user can specify on
which position of the collection the object shall be inserted. The collection is therefore
explicitly cast to a list of the type LinkedList which provides an add-Method that inserts
the provided object at the a specified position in this list. The item would be inserted in
the first position, if no InsertAt parameter was provided.

Object: var1:ClassB
Value: var2:ClassA
StructuralFeature: ClassCollection:ClassA[0..*], isOrdered: true
InputAt: 3

((java.util.LinkedList)var1.getClassACollection())
.add(2, var2);

ReadStructuralFeature

ReadStructuralFeature
ResultObject

Figure 4.20: ReadStructuralFeature

Processed Properties

• StructuralFeature: StructuralFeature

Description
This action is used to read the values of a specified feature of a provided object. The generator
creates a new variable of the type of the corresponding feature and assigns the value of the
variable to the value defined by the input object for the defined property. The newly created
variable is also added to the internal list of variables to be accessible for further actions.

• Scenario 1: The type of the structural feature StringProperty, and therefore the type of the
newly created variable, is String. The value is obtained by calling the Getter-Method of
the incoming object generated for the defined structural feature.

Object: var1:ClassA
StructuralFeature: StringProperty:String
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String var2 = var1.getStringProperty();

• Scenario 2: The structural feature is multivalued, hence, the type of the new variable is a
collection. The value itself is again obtained by calling the Getter method.

Object: var1:ClassA
StructuralFeature: ClassBCollection:ClassB[0..*]

java.util.Collection<ClassB> var2 = var1.getClassBCollection();

RemoveStructuralFeatureValue

RemoveStructuralFeature
RemoveAt

Result
Object

Value

Figure 4.21: RemoveStructuralFeature

Processed Properties

• StructuralFeature: StructuralFeature

• IsRemoveDuplicates:Boolean

Description
This action is used to remove values from structural features of objects. The code generator
translates this behavior into code which removes the values of the specified property. The gen-
erated code depends on the multiplicity of the structural feature, if duplicate entries shall be
removed and if the incoming RemoveAt parameter is provided.

• Scenario 1: If the structural feature is not multivalued, the structural feature is set to a
default value depending on its type. The incoming Value parameter and the RemoveAt
parameter are not processed.

Object: var1:ClassA
StructuralFeature: StringProperty:String of ClassA

var1.setStringProperty(null);

Object: var1:ClassA
StructuralFeature: IntegerProperty:Integer of ClassA

var1.setIntegerProperty(0);

Object: var1:ClassA
StructuralFeature: BooleanProperty:Boolean of ClassA
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var1.setBooleanProperty(false);

Object: var1:ClassA
StructuralFeature: RealProperty:Real of ClassA

var1.setFloatProperty(0.0f);

• Scenario 2: If the structural feature is multivalued, IsRemoveDuplicates is set to false and
the RemoveAt parameter is provided, the collection is explicitly converted to a LinkedList,
which provides an index based remove method. The incoming parameter Value is not
processed.

Object: var1:ClassA
Value: var2:Integer
StructuralFeature: IntegerCollection:Integer[0..*]
RemoveAt: 2

((java.util.LinkedList)var1.getIntegerCollection).remove(2);

• Scenario 3: If the structural feature is multivalued, IsRemoveDuplicates is set to false and
no RemoveAt parameter is provided, the Remove-Method of the collection with the value
as parameter is called. This removes the first occurrence of the specified value from the
list.

Object: var1:ClassB
Value: var2:ClassA
StructuralFeature: ClassACollection:ClassA[0..*]

var1.getClassACollection.remove(var2);

Object: var1:ClassA
Value: var2:Integer
StructuralFeature: IntegerCollection:Integer[0..*]

var1.getIntegerCollection.remove(new Integer(var2));

• Scenario 4: If the structural feature is multivalued and IsRemoveDuplicates is set to true,
the call of the Remove-Method is nested in a loop in order to remove all occurrences of the
given value. The loop exits after all occurrences are removed since the Remove-Method
returns false if the provided object is not present. The RemoveAt parameter is obsolete.

Object: var1:ClassA
Value: var2:Integer
StructuralFeature: IntegerCollection:Integer[0..*]
IsRemoveDuplicates: true

while(var1.getIntegerCollection.remove(new Integer(var2)));
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ClearStructuralFeature

ClearStructuralFeature
ResultObject

Figure 4.22: ClearStructuralFeature

Processed Properties

• StructuralFeature: StructuralFeature

Description
This action is used to remove all values of a specified feature of a provided object. The generated
code depends on the multiplicity of the structural feature.

• Scenario 1: If the structural feature is not multivalued and not of a primitive type, the
Setter-Method with null as parameter is called. If the structural feature is primitive typed,
it is assigned the default value of the type.

Object: var1:ClassA
StructuralFeature: StringProperty:String

var1.setStringProperty(null);

• Scenario 2: If the structural feature is multivalued, the clear method of the collection
generated for the structural feature is called, which removes all elements.

Object: var1:ClassA
StructuralFeature: StringList:String[0..*]

var1.getStringList().clear();

Link Actions

CreateLink

CreateLinkObjects

Figure 4.23: CreateLink

Processed Properties
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• LinkEnd: LinkEndCreationData[0..*]

– End: Property

– Value: InputPin

– InsertAt: Integer

– IsReplaceAll: Boolean

Description
This action is used to create a new link between a set of provided input object according to
the specified link creation data. The code generator translates this behavior into assigning the
properties corresponding to the navigable end of an association to the association value. While
the number of potential incoming link ends is unlimited, only binary associations are supported.
The generated code depends on the multiplicity of the association ends, if they are navigable and
ordered, and if existing links shall be removed. If the association end is navigable and single
valued, its value is assigned by calling the setter method of the corresponding property. If an
association end is navigable and multivalued, the reference is established by calling the getter
method of the generated property and then add the association end value to the collection.

• Scenario 1: As depicted in Figure 4.24, the provided link ends are part of an association.
Both association ends ends are navigable and one of the association ends is multivalued.

ClassA

- ClassBList: ClassB [0..*]

ClassB

- ClassAProperty: ClassA [0..1]

0..*0..1

Figure 4.24: Class diagram for Scenario 1 of CreateLink

Link End 1
End: ClassAProperty:ClassA[0..1], navigable: true
Value: var2:ClassA

Link End 2
End: ClassBList:ClassB[0..*], navigable: true
Value: var2:ClassB

var1.getClassBList.add(var2);
var2.setClassAProperty(var1);

• Scenario 2: As depicted in Figure 4.25, the provided link ends are part of an association,
but only one of the association ends is navigable. The generator creates a link between the
navigable end and the value.
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ClassA

- ClassBProperty: ClassB [0..1]

ClassB

- ClassAProperty: ClassA [0..1]

0..10..1

Figure 4.25: Class diagram for Scenario 2 of CreateLink

Link End 1
End: ClassAProperty:ClassA[0..1], navigable: true
Value: var1:ClassA

Link End 2
End: ClassBProperty:ClassB[0..1], navigable: false
Value: var2:ClassB

var1.setClassBProperty(var2);

• Scenario 3a: As depicted in Figure 4.26, the provided link ends are part of an association
but only one of them is navigable. One of the association ends is multivalued and ordered.
The position, at where the link shall be added to the collection, is provided by the InsertAt
property.

ClassA

- ClassBList: ClassB [0..*]

ClassB

- ClassAProperty: ClassA [0..1]

0..*0..1

Figure 4.26: Class diagram for Scenario 3a and 3b of CreateLink

Link End 1
End: ClassAProperty:ClassA[0..1], navigable: false
Value: var1:ClassA

Link End 2
End: ClassBList:ClassB[0..*], navigable: true
Value: var1
InsertAt: 3

((java.util.LinkedList)var1.getClassBList()).add(2, var2);

• Scenario 3a: As depicted in Figure 4.26, the provided link ends are part of an association
but only one of them is navigable. One of the association ends is multivalued but not
ordered. The property ReplaceAll is set to true.

Link End 1
End: ClassAProperty:ClassA[0..1], navigable: false
Value: var1:ClassA
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Link End 2
End: ClassBList:ClassB[0..*], navigable: true
Value: var1
IsReplaceAll: true

var1.getClassBList.clear();
var1.getClassBList().add(var2);

ReadLink

ReadLinkObjects Result

Figure 4.27: ReadLink

Processed Properties

• LinkEnd: LinkEndData[0..*]

– End: Property

– Value: InputPin

Description
This action is used to read the value at one end of a link given the other linked objects provided
as input. While the number of incoming objects is potentially unlimited, the code generator only
supports binary associations, i.e. one object has to be provided as input and the other linked
object is provided as output of a ReadLink action. To specify which end of the link shall be
returned, one of the link ends is defined as target end. The code generator creates a new variable
depending on the type and multiplicity of the target end and adds the variable to the internal
variable list.

• Scenario 1: Two link ends are provided but only for Link End 1, a value is provided.
Therefore, the other end of the association ClassBProperty is returned and assigned to the
new variable var3.

ClassA

- ClassBProperty: ClassB [0..1]

ClassB

- ClassAProperty: ClassA [0..1]

0..10..1

Figure 4.28: Class diagram for Scenario 1 of ReadLink
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Link End 1
End: ClassAProperty:ClassA[0..1]
Value: var1:ClassA

Link End 2
End: ClassBProperty:ClassB[0..1]
Value: var2:ClassB

ClassB var3 = var1.getClassBProperty();

• Scenario 2: Again, two link ends are provided and only for Link End 1, a value input pin
is assigned. The other end of the association ClassBList is multivalued. Therefore, the new
variable var3 is declared as a collection.

ClassA

- ClassBList: ClassB [0..*]

ClassB

- ClassAProperty: ClassA [0..1]

0..*0..1

Figure 4.29: Class diagram for Scenario 2 of ReadLink

Link End 1
End: ClassAProperty:ClassA[0..1]
Value: var1:ClassA

Link End 2
End: ClassBList:ClassB[0..*]
Value: var1

java.util.Collection<ClassB> var3 = var1.getClassBList();

DestroyLink

DestroyLinkObjects Result

Figure 4.30: DestroyLink

Processed Properties

• LinkEnd: LinkEndDestructionData[0..*]

– End: Property
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– Value: InputPin

– DestroyAt: Integer

– IsDestroyDuplicates: Boolean

Description
This action is used to destroy links between the provided input objects according to the speci-
fied link end destruction data. While the number of incoming objects is potentially unlimited,
the code code generator only supports binary associations, i.e. two link ends. The generated
code depends on the multiplicity of the member ends. If the end is multivalued, the genera-
tion additionally depends on whether the link is ordered and whether duplicate vales shall be
removed.

• Scenario 1: The two provided link ends are part of an association, but only one of the
association ends is navigable. Since the link ends are not multivalued, the link is destroyed
by assigning null to the navigable link end.

ClassA

- ClassBProperty: ClassB [0..1]

ClassB

- ClassAProperty: ClassA [0..1]

0..10..1

Figure 4.31: Class diagram for Scenario 1 of DestroyLink

Link End 1
End: ClassAProperty:ClassA[0..1], navigable: true
Value: var1:ClassA

Link End 2
End: ClassBProperty:ClassB[0..1], navigable: false
Value: var2:ClassB

var2.setClassAProperty(null);

• Scenario 2: The two provided link ends are part of an association. Both association ends
are navigable and one of the association ends is multivalued. The properties DestroyAt and
IsDestroyDuplicates are not provided.

ClassA

- ClassBList: ClassB [0..*]

ClassB

- ClassAProperty: ClassA [0..1]

0..*0..1

Figure 4.32: Class diagram for Scenarios 2, 3 and 4 of DestroyLink

Link End 1
End: ClassAProperty:ClassA[0..1], navigable: true
Value: var1:ClassA
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Link End 2
End: ClassBList:ClassB[0..*], navigable: true
Value: var2:ClassB

var1.getClassBList.remove(var2);
var2.setClassAProperty(null);

• Scenario 3: The two provided link ends are part of an association. Both association ends
are navigable and one of the association ends is multivalued. Additionally, the property
IsDestroyDuplicates on the multivalued link end is set to true;

Link End 1
End: ClassAProperty:ClassA[0..1], navigable: true
Value: var1:ClassA

Link End 2
End: ClassBList:ClassB[0..*], navigable: true
Value: ClassB: var2
IsDestroyDuplicates: true

while(var1.getClassBlist().contains(var2)) {
var1.getClassBList.remove(var2);

}
var2.setClassAProperty(null);

• Scenario 4: Two link ends are provided. One of the association ends is multivalued and
ordered. The position, at which the link shall be destroyed, is provided by the DestroyAt
property. The property IsDestroyDuplicates is not provided.

Link End 1
End: ClassAProperty:ClassA[0..1], navigable: true
Value: var1:ClassA

Link End 2
End: ClassBList:ClassB[0..*], navigable: true
Value: var2:ClassB
DestroyAt: 3

if (((java.util.LinkedList)var1.getClassBList())
.get(3).equals(var2)) {
((java.util.LinkedList)var1.getClassBList()).remove(3);

}
var2.setClassAProperty(null);
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Communication Actions

CallBehavior

CallBehaviorArguments Results

Figure 4.33: CallBehavior

Processed Properties

• Behavior: Behavior

Description
This action is used to directly invoke a specified behavior. If the behavior is an activity, a call
to the operation associated with the activity is generated. If the specified behavior is of the type
OpaqueBehavior, code implementing the behavior of this opaque behavior is generated. While
the number of outgoing values, according to the fUML specification, is unlimited, only zero or
one return values are supported.

• Scenario 1: The activity validate is called with one argument pin.

Behavior: Activity of validate:Operation
Argument: pin:Type

validate(pin);

• Scenario 2: The opaque behavior IntegerTimes is called with the arguments 4 and 3. The
result of the behavior is assigned to a newly created variable.

Behavior: IntegerTimes:OpaqueBehavior
Argument 1: 3:Integer
Argument 2: 4:Integer

Integer var1 = new Integer(3) * new Integer(4);

OpaqueBehaviors are behaviors for which no semantics are defined in the UML standard.
They are used to perform primitive operations on primitive data types defined in the fUML
specification [47] and expect sets of input parameter values and output parameter values.
The execution of OpaqueBehaviors depends solely on the input values and does not inter-
fere with structural features or link values of their containing elements. Their behavior
is, per definition, completely self contained. The code generator maps the name of an
OpaqueBehavior to a specific code template. The template contains meta-markers which
are replaced with the passed parameter values. The behavior is then evaluated during run-
time.
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The following list contains all OpaqueBehaviors supported by the current version of the
code generator:

– IntegerLess
– IntegerLessOrEqual
– IntegerGreater
– IntegerGreaterOrEqual
– IntegerPlus
– IntegerMinus
– IntegerTimes
– IntegerModule
– BooleanAnd
– BooleanOr

CallOperation

CallOperation
Arguments

Results
Target

Figure 4.34: CallOperation

Processed Properties

• Operation Operation

Description
This action is used to invoke a specified operation for the provided target object. The code
generator translates this behavior into a method call on the specified object. The generated code
depends on the provided arguments and the return type of the specified operation. An operation
is limited to one return result, while the number of outgoing values, according to the fUML
specification, is unlimited. The code generator, however, only supports an unlimited number of
incoming arguments and zero or one return values.

• Scenario 1: The operation toUpper is called with the argument value on the object var1.
The result of the method is assigned to the newly created variable var2.

Target: var1:ClassA
Operation: toUpper:String
Argument: value:String

String var2 = var1.toUpper(value);
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• Scenario 2: The operation getZipCodes is called on the object var1 without arguments.
Since the return type of the operation is multivalued, the result of the method is assigned
to the newly created string collection var2.

Target: var1:ClassA
Operation: getZipCodes:String[0..*]

java.util.Collection<String> var2 = var1.getZipCodes();

Structured Activity Nodes

ExpansionRegion

ExpansionRegionExpansion Nodes Expansion Nodes

Figure 4.35: ExpansionRegion

Processed Properties

• Input Element: ExpansionNode[0..*]

• Output Element: ExpansionNode[0..*]

Description
ExpansionRegions are actions that processes an unlimited number of incoming and outgoing
collections provided by Expansion Nodes. An expansion node is either defined as input, output
or input and output node of an expansion region. The region is executed multiple times corre-
sponding to the number of objects in the first input expansion node. For every output expansion
node, a new collection is initialized. Based on the length of the first incoming expansion node,
the code generator creates a for loop in which the objects of the input collections are iterated
and provided to the elements defined in the body of the expansion region successively. After the
code for all nodes within the expansion region is generated, all objects collected as output for
the output expansion nodes are added to the result collections and this way provided to be used
outside the region.

• Scenario 1: The expansion defines two incoming expansion nodes and one outgoing ex-
pansion node. For the outgoing expansion node, a new variable is created, added to the
internal VARS list, and assigned to a new collection. The incoming nodes are accessed
inside the iteration and thus assigned to new variables. By that, the elements defined
within the expansion region are provided with the individual elements of the incoming
collections. At this point, the code generator proceeds with the generation of the code for
the nodes defined within the region. After that, all objects associated with an outgoing

67



expansion node are added to their corresponding collection, making them accessible for
succeeding actions.

ExpansionRegion

ClassA

String

ClassACollection

AddStructuralFeatureValue
Object

Value
Result

ClassACollection

StringCollection

Figure 4.36: Expansion Region for Scenario 1

Expansion Node 1 (in): var4:ClassA[0..*]
Expansion Node 2 (in): var5:String[0..*]
Expansion Node 3 (out): var6:ClassA[0..*]

java.util.Collection<ClassA> var6 =
new java.util.ArrayList<ClassA>();

for(int i = 0; i < var4.size(); i++) {
ClassA ER1_var1 = ((java.util.ArrayList<ClassA>)var4).get(i);
String ER1_var2 = ((java.util.ArrayList<String>)var5).get(i);

ER1_var1.setName(ER1_var2);
var6.add(ER1_var1);

}
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4.6 Limitations

Limited Support

The following list contains fUML actions and other fUML elements that are processed by the
code generator but only partly supported or have certain limitations in regard to their specifica-
tion.

• Class Diagrams

– Sub and super classes
Generalizations between classes are not supported.

– Visibility
The visibility types Protected and Package of properties are not supported.

– Parameter direction
Operations can contain unlimited in parameters and zero or one return parameter
while the parameter directions out and in out are not supported.

– Associations
Only binary associations, i.e. associations with exactly two member ends, are sup-
ported.

• Activity Diagrams

– Token flow
The UML specifications allows unlimited tokens to be required at an node’s input
pin for the node to be executed. The code generator does not support other values
than 1.

– Object Actions

∗ DestroyObject
The property IsDestroyLinks, which, if set to true, deletes all objects that partic-
ipate in an associations with the input object, is not supported.
The property IsDestroyOwnedObject, which, if set to true, destroys all objects
that are owned by the deleted object, is not supported.
∗ ValueSpecification

The type InstanceValue is not supported.
∗ ReclassifyObject

fUML allows the unrestricted reclassification of objects. This behavior is not
supported by the code generator since Java only allows objects to be converted
to sub or super types of their current type.

– Link Actions
All supported link actions (CreateLink, ReadLink and DestroyLink) are limited
to binary associations.
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– Communication Actions
CallBehavior actions and CallOperation actions may contain unlimited in param-
eters and zero or one return parameters. Parameters with the direction out and in out
are not supported.

Unsupported Actions

The following list contains fUML actions that are not supported by the current version of the
code generator.

• Communction Actions

– StartClassifierBehavior
This action accepts an object and starts a behavior defined as Classifier Behavior of
the classifier of the object. To provide such functionality, Java constructors could be
used. However, similar functionality can be achieved with CallBehavior or CallOp-
eration actions.

– StartObjectBehavior
This action is used to start the behavior of a provided object. If the provided object
is an instance of a behavior, this behavior is executed. Java does not support func-
tion objects, however, interfaces with anonymous inner classes that implement the
interface or the lambda expression features in Java 8 could provide such behavior.
If the provided object is not an instance of a behavior, the classifier behavior of the
provided object’s type is started.

– SendSignal
This action is used to create an instance of a signal and send it to a target object
asynchronously. A possibility to provide such functionality would be the generation
of an observer pattern. To provide a truly asynchronous behavior in Java, multiple
threads would have to be set up.

– AcceptEvent
This action waits for the occurrence of specific events. Triggers are used specify the
type of accepted events. To provide such functionality, event listener in form of Java
ActionListeners could be generated.

• Link Actions

– ClearAssociation
This action accepts an object and destroys all links of the association in which the
object participates. To provide this functionality, the generator would have to keep
track of all references between objects and destroy them by setting the referenced
objects to null.
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• Structured Activity Nodes

– ConditionalNode
This node consists of clauses, whereby every clause consists of a test section and a
body section. If a test section yields true, its corresponding body section is executed.
However, similar functionality can be achieved by the use of DecisionNodes.

– LoopNode
This node consists of three sections; a setup section is used to initializes values or
perform computations for the loop, a test section is used to compute a Boolean value
and a body section contains the repetitive computation and is executed as long as
the test section yields true. To provide such a functionality, a compound Java do-
while-statement could be used.
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CHAPTER 5
Code Verification

This chapter describes the process of verifying the correctness of code generated with the de-
veloped fUML code generator. After an overview of the requirements on the developed code
verification component is given, the execution event tracing (EET) metamodel that is used to
capture runtime information about the execution of an fUML model and the execution of the
Java code generated for the fUML model is presented. After that, extensions of the fUML vir-
tual machine that provide events during execution of a model are presented and it is shown how
the events captured by the fUML virtual machine are transformed into a model conforming to
the EET metamodel. Then, an overview of AspectJ is given and it is shown how AspectJ is
used for monitoring and tracing the execution of Java code and the transformation of AspectJ
events into the EET metamodel is given. Finally, the method for comparing two instances of the
EET metamodels is presented. The developed software artefacts are available online. Further
information about the public repository are provided in Appendix A.

5.1 Overview

After an fUML model was transformed into Java code, the Java code’s correctness must be
ensured. This task is carried out by the implementation of a code verification approach. To
verify the correctness of the generation of the static model parts, it must be verified that all
structural features of the fUML model, such as classes, properties, etc. are reflected in the
generated code. For the dynamic part of the model to be correct, is must be verified that the
execution of the generated code behaves equivalent to the execution of the model carried out
by the fUML virtual machine. To do so, both executions have to be monitored closely; every
creation and modification of an object is captured and stored in a comparable form, which is then
checked for equality. The result of the comparison contains the differences of both executions;
if no differences are found, the execution of the generated code is considered to be equivalent to
the execution carried out by the fUML virtual machine.

In the following, we give a detailed overview of the developed code verification approach.
The verification process is illustrated in Figure 5.1. An fUML model (1) is handed over to the
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Figure 5.1: Overview of the code verification process

code generator (2) which transforms the model into Java code (3) as described in Chapter 4.
The input fUML model is then handed over to the fUML virtual machine and executed (4).
The event model, presented in Section 5.3, of the fUML virtual machine is used to capture all
relevant events that occur during the execution process in the so-called reference storage (5),
which is a model conforming to the execution event tracing metamodel that will be explained
in Section 5.2. The Java code, which was generated from the same input fUML model, is then
executed (6). Every object creation and object modification is captured through AspectJ point
cuts as described in Section 5.4. The captured events are also stored in a model conforming
to the execution event tracing metamodel called comparator storage (7). This is decribed in
Section 5.4. After both executions are completed, the two instances of the execution event
tracing metamodel are handed over to the Model Matcher (8, 9) where every element of the
Reference Storage and the Comparator Storage are matched using the algorithm described in
Section 5.5. This matching is done with EMFCompare [5]. The result of the matching process
is stored in an output model. If a match is found for every element, the code generation is
considered to be correct, i.e., the Java code is considered to be equivalent to the original fUML
model.
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5.2 Execution Event Tracing Metamodel

The Execution Event Tracing metamodel (EET), depicted in Figure 5.2, is used to capture and
later on compare runtime information about the executions of fUML models and Java code
generated for them. The metamodel’s root element Storage contains two collections: the collec-
tion ObjectStore, consisting of ObjectStoreItems, which are elements created during
the execution, and the collection EventStore, consisting of ExtensionalValueEvents
and FeatureValueEvents, which monitor every creation of objects and modifications of
objects that are stored in the collection ObjectStore. ObjectStoreItems point to Ex-
tensionalValues with an additional property hashValue, which is necessary to identify
captured objects during the execution. The remaining referenced model elements are elements
contained by the fUML execution model as well as the UML metamodel: ExtensionalVal-
ues are objects or links created during the execution of an fUML model or the generated code.
FeatureValues represent the values of the objects’ properties. Every property of an object
is represented by one FeatureValue. The feature reference of a FeatureValue references
the associated UML property and the values containment reference contains the feature’s val-
ues. If the feature, however, is a member end of an association and not a property owned by
a class, the feature values represent the references to the linked objects.

5.3 Tracing the Execution of fUML Models

The fUML virtual machine executes a specified activity defined within a provided fUML model.
After the activity is executed, the output parameter values are provided as result. With the fUML
virtual machine and its implementation of the standardized behavioral semantics, UML was
enhanced to an executable modeling language. As described in Section 3.2, the biggest potentials
for executable models lies in their ability to be easily tested, and to be analysed and debugged
at runtime. Important features like the observation, analysis and control of the execution of a
model, are not supported by the fUML virtual machine. To overcome this limitation and form a
basis for model analyses, an event model, a trace model, and a command API were introduced
in the fUML virtual machine [31]. In this work, we made use of the introduced event model to
capture the runtime information necessary to verify the correctness of the code generation for
fUML models.

The essence of the event model is to capture every change in the runtime state of an ex-
ecuting fUML model and trigger a corresponding event. An excerpt of the event metamodel
is depicted in Figure 5.3. Events of the type ExtensionalValueEvent capture the cre-
ation, modification an destruction of objects, while FeatureValueEvents notify about the
modification of the feature values of an extensional value (i.e. the modification of the property
values of an object). By implementing the ExecutionEventListener interface, the devel-
oped code verification component is able to receive all events which occur during the execution.
Every captured ExtensionalValueEvent and FeatureValueEvent is passed to the
StorageFactory and transformed to the EET metamodel.
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StorageObjectStoreItem

- hashValue: int

FeatureValueEvent
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Figure 5.2: Execution Event Tracing metamodel

Creation of Event Storages

In order to compare the information captured for the execution of an fUML model with the
information captured for the execution of the code generated for the fUML model, the gathered
information is transformed into the EET metamodel depicted in Figure 5.2. This task is carried
out by the StorageFactory, which contains two instances of the metamodel’s root element
Storage; one for elements captured by the events triggered by the fUML virtual machine, the
ReferenceStorage, and one captured by AspectJ point cuts, the ComparatorStorage.
The StorageFactory provides a set of public methods to transform the captured events
into new objects of the EET metamodel. The StorageFactory, which is implemented as
a singleton, is initialized with a reference to the fUML model resource file. Before any events
are captured, every UML class in the resource is stored with its name as key, and every UML
property is stored with its name and its parental class name as key. This allows the captured
events to establish the references to the fUML model elements during the event storing process.
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Figure 4: Event metamodel

tener uses the nextStep command to instruct the context
to perform the next execution step. This triggers the exe-
cution of the New student node that calls the activity Ac-
tivity2. Accordingly the context delivers an ActivityNode-

EntryEvent informing about the start of the execution of the
activity node New student, an ActivityEntryEvent inform-
ing about the start of execution of the activity Activity2,
as well as a SuspendEvent informing about the suspension
of the execution and the new enabled node Create student.
Again the listener uses the command nextStep resulting
in the execution of the enabled node Create student. An
ActivityNodeEntryEvent tells the listener that the execu-
tion of this node started, the ActivityNodeExitEvent in-
forms about the completion of the execution of this node,
and the SuspendEvent indicates the completion of the execu-
tion step. After the ActivityEntryEvent, an Extensional-

ValueEvent is issued, which informs the listener about the
creation of a new object of the type Student.

5. VALIDATION
In this section, we report on our investigations concerning
the feasibility and sufficiency of the proposed trace model,
event model, and command API for fUML. In particular, we
aim at answering the following research questions.

1. Feasibility: Is it feasible to obtain the necessary infor-
mation from the fUML reference implementation for cre-
ating the trace model and the event model, and is it pos-
sible to extend the fUML reference implementation for
realizing the presented set of commands for controlling
the execution of UML activities?

2. Trace model: Is the information provided by the trace
model a sufficient basis for reasoning about the runtime
and for identifying the steps that lead to a specific exe-
cution state of a UML activity?

3. Event model: Are the provided events and the informa-
tion they carry sufficient for observing the state changes
thoroughly during the execution of a UML activity?

4. Command framework: Is the set of commands suffi-
cient for controlling the activity execution flexibly?

e)}

node = Create student
executionID = 185244352

location = Create student
newEnabledNodes = {Set name}
executionID = 185244352. . .

NodeExitEvent

SuspendEvent

Figure 5: Example of an event/command sequence

Research Question 1. We assessed the feasibility by cre-
ating a prototypical implementation of the proposed trace
model, event model, and command API based on the ref-
erence implementation of the standardized fUML virtual
machine. Although the reference implementation offers a
complete virtual machine for fUML-conforming activities, it
currently neither provides the means for accessing the run-
time information during the execution of a UML activity nor
does it allow for controlling the execution. To establish the
basis for this functionality, we had to extend the reference
implementation. We used AspectJ to weave the necessary
extensions into the original code without altering it. Nev-
ertheless, by leveraging these extensions, we succeeded in
realizing the means for building the trace model, for issuing
events whenever a state change of the runtime model oc-
curred, and for step-wise execution. The source code of our
implementation is available at our project website3.

Research Questions 2–4. The application domains of run-
time models are very diverse. As a consequence, it may
depend on the specific application whether runtime models
may be considered sufficient or not. However, one applica-
tion domain that demands for very precise runtime informa-
tion, that depends heavily on event notifications during the
runtime, and that requires a powerful mechanism for con-
trolling the execution is debugging. Thus, we chose to assess
the sufficiency of the proposed artifacts by implementing
a debugger for UML models based on our extended fUML
virtual machine. This implementation, which is available
on our project website, is integrated with the Eclipse Debug
framework4 and allows debugging activities created with the
Papyrus diagramming editor5.
A debugger usually depicts the state of the program being
debugged in terms of threads, stack frames, and variables.
A thread is a sequence of actions that may execute in parallel

3http://www.modelexecution.org
4http://www.eclipse.org/eclipse/debug
5http://www.papyrusuml.org

Figure 5.3: fUML event metamodel for fUML [31]

After the fUML resource is processed, the StorageFactory is ready to process events issued
by the fUML virtual machine as well as from the AspectJ point cuts as described in Section 5.4.

Transformation of Trace Events

The events captured by the fUML virtual machine are added to the ReferenceStorage
rather straightforwardly; in the case of an ExtensionalValueEvent being captured, a new
ObjectStoreItem element with a reference to the ExtensionalValue is added to the
ObjectStore. Every FeatureValue of the ExtensionalValue referenced by the Ex-
tensionalValueEvent is added to the ExtensionalValue of the new ObjectStor-
eItem and linked with the corresponding property from the fUML model.

Properties owned by Associations

The concept of associations as a relationship between objects only exists in UML class diagrams
but not in Java, and therefore as a valid entity in the static part of fUML models, but not in the
Java code generated for the fUML model. To overcome this mismatch, associations in fUML
models are resolved into properties as described in Section 4.3 in the code generation process.
This needs to be taken under consideration for the events captured from the execution of the
model by the fUML virtual machine: when an ExtensionalValueEvent is captured, the
ExtensionalValue’s type only contains the properties that it owns as defined in the class
diagram. However, as shown in Figure 5.4, properties can not only be owned by classes but
also by associations. If the model contains associations with owned member ends (i.e. it ownes
and defines the associated property), the Java class may contain additional properties in the
generated code, that are not contained in the captured ExtensionalValue. To ensure that
the ExtensionalValue’s type captured by the fUML virtual machine contains all properties

77



as if it was translated into Java code, all associations are processed and missing properties are
added manually to the ExtensionalValue when it is initially added to the ObjectStore.

Class Property Association
ownedAttributes

*

class

0..1 ownedEnd

*

owningAssociation

0..1

memberEnd

2..*

association

0..1

Figure 5.4: Metamodel for UML classes, properties and associations

Resolving Linked Objects

The modification of member end values of an association during execution of the model with the
fUML virtual machine caused by e.g. a CreateLinkAction, will also result in an Exten-
sionalValueEvent, whereby the ExtensionalValue of the event is the Link object
itself. During code generation, the CreateLinkAction is resolved into the modification of
all navigable properties as described in Section 4.5, which then result in a set of FeatureVal-
ueEvents captured by AspectJ during the generated code’s execution. In order to provide com-
parability between the two captured sets of events, ExtensionalValueEvents with Ex-
tensionalValues of the type Link are resolved into FeatureValueEvents for each
navigable member end of the association.

Example. To illustrate this functionality, we consider the execution of the activity depicted in
Figure 5.5. The two classes Student and Lecture are connected with an association. The two
association ends student and favouriteLecture are not owned by the classes but by the association.
The code generator, as described in Section 4.3, resolves the association and adds the property
favouriteLecture to the generated Java class Student. For the other association end student, no
property is generated since it is not navigable. The generated code for the depicted activity is
shown in Listing 5.1.
When executed, AspectJ captures three events: the creation of two objects of the type Student
and Lecture and the modification of the feature favouriteLecture on the object var1. This results in

Classifier
= Student

CreateObject

Classifier
= Lecture

CreateObject

LinkEnd1 = 
favouriteLecture

CreateLink

Student

Lecture

favouriteLecture 0..1

student 0..1

LinkEnd2 = 
student

Figure 5.5: Sample fUML class and activity diagrams illustrating the creation of links
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the creation of two ExtensionalValueEvents and one FeatureValueEvent, which
are added to the ObjectStore. It is important to note, that the created ExtensionalValue
for the Student object contains a FeatureValue for the property favouriteLecture, since it was
added to the Java class by the code generator.
When executed by the fUML virutal machine, the ExtensionalValue of the captured Ex-
tensionalValueEvent caused by the execution of the CreateObjectAction does not contain
the FeatureValue favouriteLecture, since it is not owned by the class but the association.
The FeatureValue owned by the association is therefore added to the Extensional-
Value. The execution of the CreateLinkAction by the fUML virtual machine results in
an ExtensionalValueEvent with the link as ExtensionalValue. Such event, since
associations in this form do not exist in Java code, can impossibly emit from the execution of
generated code. To provide comparability, the ExtensionalValueEvent is therefore trans-
formed into an FeatureValueEvent that is equal to the FeatureValueEvent captured
from the execution of the generated code.

Student var1 = new Student();
Lecture var2 = new Lecture();
var1.setFavouriteLecture(var2);

Listing 5.1: Code generation result for the activity shown in Figure 5.5

5.4 Tracing the Execution of the Generated Java Code

To monitor the execution of Java code generated for an fUML model, AspectJ1 is used. AspectJ
is an programming language that extends Java to provide the application of the aspect-orientated
programming (AOP) paradigm. AOP addresses crosscutting requirements that span over mul-
tiple classes and by that oppose the hierarchically modularized approach of object-orientated
programming (OOP).
OOP is based on a few essential techniques; Ecapsulation describes the idea of making objects
responsible for a certain objective. OOP languages structure programs into classes, which in-
clude properties that hold data, and methods that modify the data. By instantiating a class, a
new self-contained object is created. Inheritance allows objects to inherit features from other
objects by defining subclasses which share characteristics from parental classes. Polymorphism
describes the technique of objects sharing a common interface but being of different types at
runtime. All these design features are targeted at providing functionality through hierarchically
modularized programs. However, particular concerns may result in situations that do not align
well with the modular OOP approach, i.e. they cross-cut the system’s modularization.
AspectJ addresses this demand providing a set of AOP concepts; Pointcuts allow cross-cutting
the primary modularization. They pick out Join Points, which are well-defined points in the ex-
ecution of a program. Advices are used to combine a pointcut and a block of code, which can be
executed before, after or around specified join points. Different kinds of point cuts (method call,

1The AspectJ Documentation and Resources are available at http://www.eclipse.org/aspectj/doc/
released/index.html, accessed 18-02-1017
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field set, object initialization, ..) are use to point to certain events [20]. These different concepts
are then combined into Aspects to serve a specific AOP purpose.
In the scope of the code verification, the AOP purpose is to monitor the creation and modifica-
tion of every object during the execution of the generated Java code. When a specified point cut
occurs during the execution, a method of the StorageFactory with values of the execution
context is called to add a new event to the StorageFactory. To monitor the execution of the
generated code, the following point cuts where established:

1. ObjectInitialized
The initialisation of every type of object is covered by this point cut. A reference to the
created object is passed to the StorageFactory. The keyword new(..) is used to
filter out the initialisation event of the hosting class of the method, whose execution is
being monitored.

pointcut ObjectInitialized(): initialization (new(..));

2. SimpleObjectModified
This point cut fires whenever the value of a primitive property of an object was modified.
The method SimpleType() returns true if the type of the affected property is of one of the
eight primitive Java types. A reference to the object and the name of the modified property
are passed to the StorageFactory, where the value is obtained via reflection.

pointcut SimpleObjectModified(): set(* *) && SimpleType();

3. ObjectModified
The modification of every object field, that is not of a primitive type and not of a collection
type is monitored by this point cut. A reference to the object, the name of the affected
property, as well as a reference to the object which is the new value of the modified
property are passed to the StorageFactory.

pointcut ObjectModiefied():
set(* *) && !SimpleType() && !CollectionType()

4. ObjectAddedToCollection
Every time an object is added to a collection, this point cut fires. The object representing
the collection as well as the reference to the added object are passed to the Storage-
Factory. If the type of the collection is non-unique, an additional parameter, the index
where the new object shall be inserted, is passed to the StorageFactory.

pointcut ObjectAddedToCollection():
call(* java.util.Collection.add*(..))

5. ObjectRemovedFromCollection
Every time an object is removed from a collection, this point cut fires. The object rep-
resenting the collection as well as the reference to the removed object are passed to the
StorageFactory. If the type of the collection is non-unique, the index from where
the object was removed, is passed to the StorageFactory.
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pointcut ObjectRemovedFromCollection():
(call(* java.util.Collection.remove*(..))

Transformation of AspectJ Events

During the execution of the generated code, every creation and modification of objects is cap-
tured by the described AspectJ point cuts. Along with context data, the affected object is passed
to the StorageFactory, where, depending on the type of the event, new elements are added
to the ObjectStore and EventStore of the ComparatorStorage.

The creation of a new object, captured by the AspectJ pointcut ObjectInitialized, results in
the creation of a new ObjectStoreItem as well as new ExtensionalValueEvent by
passing the object to the StorageFactory. Since the name of the created object is not
derivable from the creation context, its hash value is stored in the new ObjectStoreItem
to be able to identify and reference it later on. In the next step, a new ExtensionalValue
is created. The type of the ExtensionalValue is set by looking up the UML class from
the fUML model with the class name of the passed object. The object is further examined
by iterating over all its declared fields in the next step. For every field of the object, a new
FeatureValue is added to the ExtensionalValue. The corresponding UML property is
looked up in the fUML model from the properties list and referenced by the feature reference.

After the new item was added to the ObjectStore, a new ExtensionalValueEvent
with the type CREATION and a reference to the newly created ExtensionalValue are added
to the EventStore.

When an object is modified, which is detected by the poitcuts SimpleObjectModified, ObjectModi-
fied and ObjectAddedToCollection, a new FeatureValueEvent is added to the EventStore.
The ExtensionalValue corresponds to the modified object, which is represented by an
ExtensionalValue created before and looked up with its internal hash code. The mod-
ified feature is set to the corresponding UML property. If the value is of a primitive type, a
new PrimitiveValue is created, casted to the correct data type (Boolean, Integer, String or
UnlimitedNaturalValue) and set to the passed value using reflection, since the declared fields of
the object are not known at compile time. If the value, however, is not of a primitive type, a
new Referece with the referent set to the ExtensionalValue of the referenced object is
created. The type of the FeatureValueEvent is set to VALUE_ADDED.

5.5 Comparing Executions

Model comparison, in general, is an important task in order to obtain the benefits of MDE.
Being able to track the evolution of a model through its life-cycle helps understanding a system’s
evolution. The EMF Compare project [5] has been initiated in 2006 with the goal to provide a
simple support for model comparison and model merging. It is designed in a modular way,
making all components replaceable and customizable. The EMF Compare model comparison
process is separated into two phases; the matching phase, performed by a match engine, and the
diffing phase, performed by a diff engine. During the match phase, elements from one model are
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Student

- name: String

Lecture

- title: String

0..1

favoriteLecture

Figure 5.6: Sample fUML class diagram illustrating the comparison of executions

matched with elements from the other model. By matching one element to another, the system
is being told that specific elements in two models correspond to each other and that, during the
diffing phase, discovered differences between those are significant and worthy to report. The
default match engine, provided by EMF Compare, tries to match an element by traversing the
other model until a match was found. Two elements are matched through their identifier (if they
have one) and through a distance algorithm for all elements without identifier 2.
While this comprehensive, generic matching method is suitable for most use cases, it is not
optimal for the comparison of the captured execution event tracing models. Therefore, a custom
match engine, which replaces the default EMF Compare match engine, was developed. Its
functionality is described in the following.
After its completion, the result of the matching phase is refined in the diffing phase. By iterating
over all matching elements, the differences among them are computed. If only one side of a
match element has an object assigned (i.e. it is unmatched), it is determined that an element has
been added or deleted from one model in comparison to the other.

Custom Match Engine

There are different strategies to verify whether two programs are executed equally. A naive
approach would check whether the properties of all created objects have the same values after
the end of the execution. This, however, leaves too much space for uncertainty and the chances
to miss significant differences between the two executions are high. Another strategy would
be to compare every single event of the execution and raise an error if the two events are not
equal. Since there are, however, scenarios where the execution order of actions is irrelevant, as
for instance in models with multiple candidates for initial nodes, the method would result in a
lot of false positive errors.

The strategy of the custom match engine is based on the latter method but instead of di-
rectly comparing all events, the FeatureValueEvents of each execution are assigned to
their corresponding ExtensionalValue in a first step. This results in groups of Exten-
sionalValueEvents, i.e, ExtensionalValues with a list of events that represent all
modifications performed on them in their chronological order, which is the basis for the further
matching process.
In the first step, the match engine matches the ObjectStoreItems and their child elements.
Two ObjectStoreItems do match if their type property references the same UML class and
both contain the same Features with all of them referencing the same UML property. The
order of the FeatureValue items within the ExtensionalValue is not relevant, nor is the

2https://www.eclipse.org/emf/compare/documentation/latest/developer/
developer-guide.html#Match_2
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classifier = Student

CreateObject

value = 'Lisa'

ValueSpecification structuralFeature = 
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AddStructuralFeatureValue
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Figure 5.7: Sample fUML activity diagram illustrating the comparison of executions

order of ObjectStoreItems within the ObjectStore. Under the assumption that for ev-
ery item from the ObjectStore of the Reference Storage (i.e., of the execution of the fUML
model), a matching item in the Comparator Storage (i.e., of the execution of the generated code)
can be found, this step verifies that the code generator correctly generated all properties defined
by the class diagram in the static part of the fUML model.

In a second step, the match engine matches all FeatureValueEvents of each Exten-
sionalValue. Since the order of FeatureValueEvents is substantial, it is tried to es-
tablish a match between the first event of an ExtensionalValue of the Reference Storage
and the first event of the matching ExtensionalValue captured in the Comparator Storage,
the second event to the second event and so on. Two FeatureValueEvents are equivalent
if they reference the same Feature and have the same ExtensionalValueEventType.
If two FeatureValueEvents are equal, a match is established between them. If, however,
the two FeatureValueEvents are not equal, only one side of the match element can be set,
which will be reported as an added or removed item in the diffing phase.
In the next step, all FeatureValues of the matched FeatureValueEvents are matched;
two FeaturesValues match if they reference the same UML property and their values
and their position elements match, i.e. if the have the same values and position. A Fea-
tureValueEvents is considered to be equal if a match for every FeatureValue and their
Values is found.
By checking the equality of the corresponding events, it is assured that in both models, all Ex-
tensionalValues are equally modified from their creation until the end of execution.

Example 1

Figure 5.7 shows a simple activity diagram; an object of the type Student is created (1), the
value Lisa is specified (2) and assigned to the property Name (5). A second object of the type
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Lecture is created (3), the value ModelEngineering specified (4) and assigned to the property
Title (6). Finally, the property FavouriteLecture of the student object is set to the
lecture object (7).

There are various different orders in which the fUML virtual machine or the code generator
can process the actions. In regard to the condition, that all incoming pins of an action need input
values before the action can be executed, the only restrictions are that (1) and (2) are processed
before (5), (3) and (4) are processed before (6), and (5) and (6) are processed before (7).

Let the execution order of the fUML machine be

O1 = {1→ 2→ 5→ 3→ 4→ 6→ 7}

and the processing order of the code generator be

O2 = {4→ 3→ 2→ 1→ 6→ 5→ 7}

The generated code for the order O2 is shown in Listing 5.2

4: // No code generated
3: Lecture l1 = new Lecture();
2: // No code generated
1: Student s1 = new Student();
6: l1.setTitle("ModelEngineering");
5: s1.setName("Lisa");
7: s1.setFavouriteLecture(l1);

Listing 5.2: Code generation result for the activity shown in Figure 5.7 executed in order O2

The left part of Table 5.1 contains the events caused by the execution of the model with the
fUML virtual machine in the order O1. The right side of the table contains the events caused by
the execution of the generated code in Listing 5.2.

Step O1 Events O2 Events
1 1 EVE s1:Student 4 -
2 2 - 3 EVE l1:Lecture
3 5 FVE s1.Name = Lisa 2 -
4 3 EVE l1:Lecture 1 EVE s1:Student
5 4 - 6 FVE l1.Title = ’Model Eng.’
6 6 FVE l1.Title = ’Model Eng.’ 5 FVE s1.Name = Lisa
7 7 FVE s1.FavouriteLec. = l1 7 FVE s1.FavouriteLec. = l1

Table 5.1: Extensional value events (EVE) and feature value events (FVE) caused by execution
of the activity shown in Figure 5.7 in order O1 and O2

In the first iteration, the custom match engine tries to match all ExtensionalValues.
Every created object on the left side (Student and Lecture) exists on the right side and no object
on the right side remains. For this example, it’s assumed that the FeatureValue elements of
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Step Events

1 EVE s1:Student
3 FVE s1.Name = Lisa
7 FVE s1.FavouriteLec. = l1

4 EVE l1:Lecture
6 FVE l1.Title = ’Model Eng.’

Step Events

4 EVE s1:Student
5 FVE s1.Name = Lisa
6 FVE s1.FavouriteLec. = l1

3 EVE l1:Lecture
7 FVE l1.Title = ’Model Eng.’

Table 5.2: Extensional value events (EVE) and feature value events (FVE) caused by execution
of the activity shown in Figure 5.6 in order O1 and O2 grouped by their extensional values.

both objects are equal by which it is verified that the structural part of the model was generated
correctly.

In the next step, all events with the same ExtensionalValues are grouped together
(i.e. all FeatureValueEvents are grouped by their corresponding ExtensionalVal-
ueEvents). The result of grouping the events is showin in Table 5.2. The events are then
matched based on their index. When all matched pairs are equal, which is the case in this exam-
ple, the generated code behaved equivalently as the fUML model although the actions were not
processed in the same order.

Example 2

In this example, the code generator processes the actions of Figure 5.7 in the order

O3 = {4→ 3→ 2→ 1→ 6→ 7→ 5}

which is an invalid order, since (7) is processed before (5). The generated code for the order O3
is shown in Listing 5.3.

4: // No code generated
3: Lecture l1 = new Lecture();
2: // No code generated
1: Student s1 = new Student();
6: l1.setTitle("ModelEngineering");
7: s1.setFavouriteLecture(l1);
5: s1.setName("Lisa");

Listing 5.3: Code generation result for the activity shown in Figure 5.7 executed in order O3

Table 5.3 contains the events caused by execution of the activity shown in Figure 5.7 in order
O1 and O3.

After assigning the FeatureValueEvents to their corresponding ExtensionalValue
(see Table 5.3), the pairwise comparison shows that the events on position 2 and 3 are not equiva-
lent. The two executions are therefore unequal and the result of the code generation is considered
invalid.
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Step O1 Events O3 Events
1 1 EVE s1:Student 4 -
2 2 - 3 EVE l1:Lecture
3 5 FVE s1.Name = Lisa 2 -
4 3 EVE l1:Lecture 1 EVE s1:Student
5 4 - 6 FVE l1.Title = ’Model Eng.’
6 6 FVE l1.Title = ’Model Eng.’ 7 FVE s1.FavouriteLec. = l1
7 7 FVE s1.FavouriteLec. = l1 5 FVE s1.Name = Lisa

Table 5.3: ExtensionalValueEvents (EVE) and FeatureValueEvents (FVE) caused by execution
of the activity shown in Figure 5.7 in order O1 and O3

Step Events

1 EVE s1:Student
3 FVE s1.Name = Lisa
7 FVE s1.FavouriteLec. = l1

4 EVE l1:Lecture
6 FVE l1.Title = ’Model Eng.’

Step Events

4 EVE s1:Student
6 FVE s1.FavouriteLec. = l1
5 FVE s1.Name = Lisa

3 EVE l1:Lecture
7 FVE l1.Title = ’Model Eng.’

Table 5.4: ExtensionalValueEvents (EVE) and FeatureValueEvents (FVE) caused by execution
of the activity shown in Figure 5.6 in order O1 and O3 grouped by their extensional values

Alternative Equivalence Criteria

The presented code verification approach is based on the comparison of feature modifications
of matched objects captured in instances of the EET metamodel. However, various alternative
equivalence criteria exist that can be used to verify the correctness of the generated code in a
different way. In EMF Compare, different compare strategies can be easily realized by imple-
menting custom match engines like the one presented in this section.

A possible alternative equivalence criteria could be to require that all actions of a UML ac-
tivity have to be executed in the same order in the generated Java code. The event model of the
fUML virtual machine [31] provides such information by emitting an ActivityNodeEntryEvent
when the execution of a node is started and an ActivityNodeExitEvent, when the execution of
the node is completed. Many fUML actions, e.g., the ValueSpecificationAction or the Read-
SelfAction, provide values for successive nodes but do not directly result in any Java code being
created when processed by the code generator. The generated code would therefore have to be
extended by a kind of meta data that indicates the beginning and the end of an action, which
enables the monitoring component to capture and provide corresponding events. Additionally,
the developed EET metamodel would have to be extended accordingly in order to be able to
store such events. This approach would allow very detailed investigations of the runtime behav-
ior and could be utilized if the evaluation of the correctness of the chronological order of node
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executions is of high importance.
A different equivalence criteria would be to require that the Java code generated for any UML
activity produces the same output as the execution of the activity by the fUML virtual machine.
The class Input and Output and ParamterInput and ParameterOutput of the trace model of the
fUML virtual machine [31] provide such information. In order to gain similar information of
execution of the generated code, the monitoring component could be easily extended to capture
the input and return values of methods, which could then be matched to the inputs and outputs
of activities. However, to capture the inputs and output of activity nodes, the generated code
would have to be enriched by such meta data since the input out output values of activity nodes
are often not directly reflected in the generated code. The EET metamodel would also have to
be extended to provide the means to store such additional information. This equivalence criteria
could be valuable in situations where the analysis and evaluation of the generated object flow is
of high importance.
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CHAPTER 6
Evaluation

The aim of this thesis was do develop a code generation approach that generates Java code from
an input fUML model, which, when executed, behaves equally as the execution of the input
model carried out by the fUML virtual machine. The developed code generation approach was
presented in Chapter 4. In Chapter 5, a process to verify the correctness of code generated with
the developed fUML code generator is presented. This chapter is concerned with the evaluation
of the developed code generator. In the evaluation, the verification process introduced in Chapter
5 has been applied. In this chapter, we first introduce the evaluation method and then describe
the conducted evaluation in detail. The developed test models, the case study and the evaluation
results are available online. Further information about the public repository are provided in
Appendix A.

6.1 Overview

The goal of the evaluation carried out as part of this thesis was to answer the following two
research questions:

• Does the developed code generator transform an fUML input model into Java code that
behaves equally when executed as the execution of the input model carried out by the
fUML virtual machine?

• If inequalities are found, what are the reasons for differences between the executions and
which modifications of the generator would have to be made for the executions to behave
equally?

To answer these questions, a comprehensive test suite with fUML models testing different
scenarios has been built and a case study on a larger fUML model was conducted. In the test
suite, a wide set of sample input models was used to test the correctness of individual fUML
actions supported by the fUML code generation. The sample input models consist of minimal
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class and activity diagrams, in which different test scenarios are used to set up isolated testing
conditions for a certain fUML action. All test models are compiled into a test suite. The detailed
set up of the test suite and the results of the tests are described in Chapter 6.2. In the case study, a
comprehensive fUML model modeling an online store, consisting of 13 classes and 25 activities
is used to validate the correctness of the code generator against a more real-world sized model.
A detailed introduction to the used input model as well as the results of the evaluation of its
generated code are presented in Chapter 6.3.

6.2 Test Suite

The test suite consists of a sets of tests for every fUML action supported by the code generator.
Every test case tests the correctness of a specific fUML action under certain settings and given
input values. The following list contains a brief description of all tests conducted. If the test
failed, i.e. the execution of the generated code and the execution performed by the fUML virtual
machine were not equal, an explanation for the differences is given.

Object Actions

CreateObject

Test case Description Test result

Test 1 Creates an object of a certain type passed

DestroyObject

Test case Description Test result

Test 1 Creates an object of a certain type and immediately destroys it
afterwards

failed

The virtual machine emits an extension value event of the type DESTRUCTION when an
objects is destroyed by the DestroyObject action. Since Java does not support object de-
construction, no corresponding event can be captured from the execution of the generated
code.

Test 2 Creates two objects, adds the second object as value to a multi-
valued, complex typed feature of the first object and destroys the
added object

failed

The generated code correctly removes all items from the multivalued feature, however, since
no events are captured for object destructions as described in Test 1, the event models differ.
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ValueSpecification

Test case Description Test result

Test 1 Specifies a string literal and sets it as value of an feature of a
created object

passed

ReadSelf

Test case Description Test result

Test 1 Creates an object, calls an operation on itself and modifies a fea-
ture value it owns

passed

TestIdentity

Test case Description Test result

Test 1 Specifies two primitive values, tests whether the to values are
identical and assigns the result to a Boolean property

passed

Test 2 Creates two objects, test whether they are identical and assigns
the result to a Boolean property

passed

ReclassifyObject

Test case Description Test result

Test 1 Creates an object of a subtype and casts it to its super type failed
In fUML, every object is characterized by a set of types. When an object gets reclassified, two
extensional value events are emitted; one notifying about the removed types and one about
the added types. The code generator explicitly casts the provide object and assigns it to new
variable of the new type. This triggers the ObjectInitialized point cut, resulting in a single
extensional value event.
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ReadIsClassifiedObject

Test case Description Test result

Test 1 Creates one object of a type X and a second object of a type Y,
which is a subtype of X and checks whether the second object is
of type X

passed

Test 2 Creates one object of a type X and a second object of a type Y,
which is a subtype of X and checks whether the second object is
directly of type X

passed

ReadExtent

Test case Description Test result

Test 1 Creates two object of a type X, retrieves them using a ReadExten-
tAction and modifies a certain feature value of all of them

passed

Reduce

Test case Description Test result

Test 1 Creates an object, adds two integer values to a multivalued prop-
erty, calls a reduce operation on these values and assigns the result
to an integer property

passed
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Structural Feature Actions

AddStructuralFeatureValue

Test case Description Test result

Test 1 Creates an object and sets the value of a primitive typed feature
of the object

passed

Test 2 Creates two objects and sets the value of a complex typed feature
of the first object to a reference to the second object

passed

Test 3 Creates two objects and adds the second object as value to a mul-
tivalued, complex typed feature of the first object

passed

Test 4 Creates an object and adds two primitive values at a certain posi-
tion to a multivalued feature of the object

passed

Test 5 Creates an object and adds two objects at a certain position to a
multivalued, complex typed feature of the object

passed

ReadStructuralFeature

Test case Description Test result

Test 1 Creates an object and sets the value of a primitive typed feature of
the object. Creates a second object, reads the value of the feature
of the first object and assigns it to one of its own features

passed

Test 2 Creates an object and adds multiple complex values to a multi-
valued feature of the object. Creates a second object, reads the
values of the feature of the first object and assigns it to one of its
own features

passed
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RemoveStructuralFeature

Test case Description Test result

Test 1 Creates an object, sets the value of a primitive typed feature of
the object and removes the value of the feature

failed

The generated code removes the value by setting it to null. Since the storage factory can
not distinguish between the removal of a value and an intentional null-value assignment, a
feature value event of the type VALUE_ADDED is added to the comparator storage. The
fUML virtual machine, however, emits a VALUE_REMOVED event when it removes a feature
value, which results in the executions to be different.

Test 2 Creates two objects, sets the value of a complex typed, single-
values feature of the first object to a reference to the second object
and removes the second object as value from the feature

failed

See Test 1

Test 3 Creates two objects, adds the second object as value to a multi-
valued, complex typed feature of the first object and removes the
second object from the feature

passed

Test 4 Creates two objects, adds the second object as value to a ordered,
multivalued, complex typed feature of the first object and removes
the second object from the feature at a specified position

passed

ClearStructuralFeature

Test case Description Test result

Test 1 Creates an object, sets the value of a primitive typed, single-
valued feature of the object and clears the same feature

failed

See Test 1 of RemoveStructuralFeature

Test 2 Creates two objects, sets the value of a complex typed, single-
valued feature of the first object to a reference to the second object
and clears the feature

failed

See Test 1 of RemoveStructuralFeature

Test 3 Creates two objects, adds the second object as value to a multi-
valued, complex typed feature of the first object and clears the
feature

passed
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Link Actions

CreateLink

Test case Description Test result

Test 1 Creates two objects and creates a link between the objects. Since
both link ends are navigable, a reference to the respective other
object is assigned to a feature of both objects

passed

Test 2 Creates two objects and creates a link between the objects. Both
link ends are navigable, one of the link ends is multivalued.

passed

Test 3 Creates two objects and creates a link between the objects. Both
link ends X and Y are navigable and link end Y is multivalued.
An insertAt value is provided for link end Y. The object is there-
fore inserted at a specific index of the referenced collection. Ad-
ditionally, the isReplaceAll property of link end Y is set to true,
resulting in all objects of the collection to be destroyed before the
new object is added.

passed

ReadLink

Test case Description Test result

Test 1 Creates two objects, creates a link between the two objects, reads
the created link and assigns the retrieved value to a new specific
property

passed
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DestroyLink

Test case Description Test result

Test 1 Creates two objects, creates a link between the objects and de-
stroys the link. Both link ends are navigable, therefore both fea-
ture values to which the references were assigned are removed

passed

Test 2 Creates two objects, creates a link between the objects and de-
stroys the link. Both link ends are navigable but one of the link
ends is multivalued. The reference of the multivalued link end is
therefore added to a collection.

passed

Test 3 Creates two objects, creates a link between the objects and de-
stroys the link. Link end X and Y are navigable and link end Y
is multivalued. An insertAt value is provided for link end Y. The
object is therefore first inserted and then destroyed at a specific
index of the referenced collection.

passed

Communication Actions

CallBehavior

Test case Description Test result

Test 1 Creates an objects, creates two Integer values and calls a behavior,
which performs an operation on the Integer values. The result of
the behavior is assigned to a specific property.

passed

CallOperation

Test case Description Test result

Test 1 Creates an object, creates a string value and calls an operation on
the object. The result of the operation is assigned to a property of
the object.

passed
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Control Nodes

ForkNode

Test case Description Test result

Test 1 Creates an objects and passes the object to a fork node, which
duplicates the object for all outgoing edges. One property of the
object is modified by each action connected to the outgoing edges
of the fork node.

passed

JoinNode

Test case Description Test result

Test1 Creates an object and an Integer value. The JoinNode waits for
both actions to be performed and then assigns the Integer value to
a property of the object.

passed

DecisionNode

Test case Description Test result

Test 1 Creates a boolean value, passes the boolean value to a decision
node and creates an object depending on the boolean value.

passed

Test 2 Creates an integer value and passes the value as input to an
opaque behavior defined as decision input of the decision node.
Creates an object depending on the result of the decision node.

passed
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MergeNode

Test case Description Test result

Test 1 Creates an integer value, forks the value to two decision nodes
and merges the outgoing control flows into a single flow. Modifies
the incoming value depending on the execution of the decision
node.

passed

Test 2 Creates an integer value, forks the value to two decision nodes
and merges three outgoing control flows into a single flow. Mod-
ifies the incoming value depending on the execution of the deci-
sion node.

passed

Test 3 Creates an integer value, forks the value to two decision nodes
with overlapping conditions and an else condition. Merges four
outgoing control flows into a single flow. Modifies the incoming
value depending on the execution of the decision node.

passed

Structured Activity Nodes

ExpansionRegion

Test case Description Test result

Test 1 Creates two objects and assigns two string values to a structural
features of each object. Both objects are passed to an expansion
region. The region processes both objects and assigns the string
values to a different structural feature of the objects.

passed

Summary

The results of the test suite show that the majority of fUML actions could be mapped to equally
behaving Java code. Out of 41 tested scenarios, seven failed. All of the seven failed tests were a
result of incorrect event reporting by the monitoring component of the Java code. In particular,
for the test case testing the ReclassifyObject action, only a single event with the newly assigned
type is sent to the storage factory while the fUML virtual machine reports both the old and
new type of the reclassified object. The actions DestroyObject, RemoveStructuralFeature and
ClearStructuralFeature have in common that they explicitly remove an object or a value from
an object, which is reported as such to the storage factory. Java does not provide a possibility
to deconstruct objects and values. The code generator translates these actions into a null-value
assignment (or the assignment of a default value, if the affected property is of a primitive type),
which is reported as value assignments to the storage factory. Given the implemented equiva-
lence criteria, this results in the executions being reported unequal. However, a more detailed
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examination of the failed tests has shown that despite the utilized equivalence criteria not being
met, no differences in the behahivor of the executions were observed.

6.3 Online Store Case Study

After the isolated evaluation of the supported fUML actions, a case study was conducted that
tested the code generator’s abilities in an more realistic environment. While the test suite pro-
vides valuable information about the translation of single fUML actions and enabled the code
generator to be developed in a test-driven way, it is not suited to evaluate the correctness of the
code generator in a wider scope. In the following, a description of the fUML model and the test
scenarios, which were used to conduct the case study, is given.

Model Description

The investigated PetStore.uml model describes the structure and behavior of an online store sys-
tem in which a users can perform various tasks like login, find products and create orders. The
model, developed by the Business Informatics Group at the TU Wien, was originally created to
serve as case study for the extension of the fUML virtual machine [31].
The structural model, depicted in Figure 6.1, consists of 13 classes. The entities processed by
the online store are described by the classes below the dashed line while classes that offer ser-
vices to control the behavior of the system are shown above the line. A session (class Session)
is identified by a unique id and is associated with a customer (class Customer). A customer has a
shopping cart (class Cart) in which the customer can add cart items (class CartItem) by choosing
items from the offered products (classes Item and Product). When a user checks out, an order
(class Order) is created, that holds an order line (class OrderLine) for every item purchased.
The behavior of the system is described by the activities defined in the classes CustomerService,
CatalogService, OrderService, EntityManager and ApplicationController. The ApplicationController
provides all services that manage user interactions, the CatalogService provides methods with
which items and products from the product catalog can be found. To authenticate a customer,
services from the CustomerService are used. To find and persist entities, services by the Enti-
tyManager are used. To give an impression about the size and complexity of the activities, the
activity getCartItem of the class OrderService and the generated code for this activity are shown
in Figure 6.2 and Listing 6.1 respectively.
The Application Host (class AppHost, not depicted in Figure 6.1) contains a set of test scenarios.
The scenarios simulate typical user stories of the online store like logging into the store, adding
items to the cart and ordering items. These scenarios are use to conduct the case study. Each
scenario is executed by the fUML virtual machine and compared with the execution of the gen-
erated code. The following list contains a brief description of the scenarios executed with the
results of the compared executions. The tables below the descriptions summarize the numbers
of objects created and modified during each execution.
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Customer

- email: String
- firstname: String
- lastname: String
- login: String
- password: String

Product

- description: String
- name: String

Item

+ description: String
- name: String
- unitCost: int

OrderLine

- quantity: int

CartItem

- quantity: int

CartOrder

- orderDate: String

Session

- sessionId: int

ApplicationController

- lastSessionId: int

+ addItemToCart(sessionId: int, item: Item)
+ confirmOrder(sessionId: int): Order
- createSession(customer: Customer): int
- createSessionId(): int
+ findItem(name: String): Item
- getCustomer(sessionId: int): Customer
+ login(login: String, password: String): int
+ removeItemFromCart(sessionId: int, item: Item)
- setFoundCustomer(customer: Customer): void

CustomerService

+ login(login: String, password: String): Customer

CatalogService

+ findAllItems(): Item [0..*]
+ findAllProducts(): Product [0..*]
+ findItem(name: String): Item

OrderService

+ addItemToCart(customer: Customer, item: Item)
+ confirmOrder(customer: Customer): Order
+ createOrderLine(item: Item, quantity: Quantity): OrderLine
- createOrderLine(cartItem: cartItem): OrderLine
- getCart(customer: Customer): Cart
- getCartItem(cart: Cart, item: Item): CartItem
+ removeItemFromCart(customer: Customer, item: Item)
- setFoundCartItem(cartItem: CartItem)

EntityManager

- checkCredentials(customer: Customer, login: String, password): bool
+ delete(object: Object)
+ findAllItems(): Item [1..*]
+ findAllProducts(): Product [0..*]
+ findCustomer(login: String, password: String): Customer
+ persist(object: Object)

- item

1

- foundCartItem 0..1

+ customer

0..1

- item

1

+ sessions 0..*

- foundCustomer
0..1

- product

1

+ items

0..*

- customer

1

+customerService 1

+entityManager 1

+ catalogService

1

- orderLines
0..*

+orderService

1

+entityManager

1

- cartItems

0..*

1

- cart

0..1

- customer

1

1

1

1

111

1

*

*

1

Figure 6.1: Class diagram of the online store case study
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In order to get an impression of the size and complexity of the activity diagrams considered by
the case study, the number of activity nodes, activity edges and actions that were processed by
the code generator are listed below.

Activities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.228

Average number of nodes per activity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Edges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364

Object flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326

Control flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Control nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Object actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

StructuralFeature actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

Link actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -

Communication actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

Test Scenarios

Scenario 1 - Successful login

A user tries to login to the online store. The provided password and username are correct and
the user can be successfully logged in. A new sessionId is returned by the login method of the
ApplicationController and assigned to a property.

fUML virtual machine Generated code

Activities executed 16 -

Nodes executed 97 -

Objects created 8 8

Object modifications 18 17*

Differences

* The virtual machine emits an additional event when removing the value of a primitive
feature. As described in Section 6.2, no such event can be captured from the generated
code. Apart from this, the executions are equal.
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Scenario 2 - Unsuccessful login

A user tries to login to the online store. Since a wrong password is provided, the user can not be
logged in to the system. The login method of the ApplicationController returns -1.

fUML virtual machine Generated code

Activities executed 14 -

Nodes executed 74 -

Objects created 7 7

Object modifications 11 12*

Differences

* In the generated code, the result of the method, that looks up the requested customer ob-
ject, is assigned to a structural feature, regardless of its value (in this scenario null).
During the execution carried out by the virtual machine, the AddStructuralFeatureValue
action that assigns the value of the corresponding activity is not executed since the re-
quired token is missing. Both executions, however, correctly return the Integer value -1.

Scenario 3 - Search for existing item in catalog

Passes a search expression to the catalog service and returns the first item with a name equal to
the search expression. The catalog service in this scenario finds and returns an item.

fUML virtual machine Generated code

Activities executed 12 -

Nodes executed 53 -

Objects created 8 8

Object modifications 10 10

Differences
none

Scenario 4 - Search for non-existing item in catalog

Passes a search expression to the catalog service and returns the first item with a name equal to
the search expression. The catalog service does not find a matching item in this scenario and
therefore, does not return a value.
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fUML virtual machine Generated code

Activities executed 12 -

Nodes executed 53 -

Objects created 8 8

Object modifications 10 10

Differences
none

Scenario 5 - Add items to cart

The user logs in to the system and adds three items to the shopping cart. When an item is added,
that already exists in the cart, which is the case in this scenario, the quantity property of the
respective item object is increased.

fUML virtual machine Generated code

Activities executed 72 -

Nodes executed 396 -

Objects created 14 14

Object modifications 50 48*

Differences

* Besides minor differences in how values are removed from features, the executions are
equal. One notable difference was found in the creation of a link between two object.
While the fUML standard recommends the use of the CreateLink action, the fUML virtual
machine as well as the code generator also support the AddStructuralFeatureValue action
to create a link between two features. The virtual machine sets the reference from the
link source to the target and vice versa, which results in the reporting of two FeatureVal-
ueEvents. The code generator, however, only sets the references to the navigable link ends,
which, in the case of this scenario, results in the reporting of a single FeatureValueEvent.

6.4 Summary

In this chapter, a test suite and a case study to evaluate the correctness of the developed code gen-
eration approach have been presented. The elaborated code verification framework introduced
in Chapter 5 automatically invokes the code generation, the execution of the fUML model, the
execution of the generated Java code and the comparison of the execution event tracing models,
which allowed an efficient implementation of the test suite and the case study. This indicates
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that the code generator’s Testability requirement has been fully archived. The results of the
test suite show that the majority of the supported fUML actions can be directly translated into
equally behaving Java code. The deviations between the events captured during the execution
carried out by the fUML virtual machine and the events captured during the execution of the
generated code were caused by differences in the way object modifications are reported to the
storage factory and were found to not impact the bahvior the executions. The results of the test
suite also show that the code generator’s Completeness requirement to provide complete support
of all UML activity concepts has almost been achieved. fUML actions for which over the course
of this thesis no Java mapping was elaborated or for which only limited support is provided are
discussed in Chapter 4.6. The code generator was developed using state of the art model-to-text
technologies. This allows the code generator to be easily extended in order to provide support
for the missing fUML actions in the future. It also provides means to elaborate mappings for
fUML actions for target languages other Java. Thereby, the code generator’s requirement for
Flexible wrt. the target language has been met.
The conducted case studies show that the code generator for fUML models works in a reli-
able manner. All detected differences between the executions of the generated code and the
executions carried out the fUML virtual machine can be traced back to different approaches
in reporting the removing of feature values and different assumptions for undefined executions
semantics (e.g. create links with AddStructuralFeatureValueAction). It further confirmed that
the developed code validation framework works as intended. However, the interpretation of the
results of complex activities with a very high number of actions turned out to be rather diffi-
cult. fUML models containing actions that cannot be directly mapped to a corresponding Java
code fragment (identified by the failed tests in the test suite) ultimately result in the compar-
ison component to report the executions as being non-equal. The identification of the cause
of the inequality often required extensive manual investigation. Possible improvements to this
circumstance are discussed in Section 7.2.
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Figure 6.2: Activity diagram getCartItem of the online store case study
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private CartItem getCartItem(Cart cart, Item item) {

...

while (it_var1.hasNext()) {
CartItem find_cart_item_var1 = it_var1.next();
Item var5 = find_cart_item_var1.getItem();
Boolean var6 = equals(var5, item);
if (var6.equals(new Boolean(true))) {

var4.add(find_cart_item_var1);
}

}

Boolean var7 = equals(var3, new Integer(0));
CartItem var8 = var4.size() > new Integer(0)

? ((java.util.ArrayList<CartItem>)var4).get(new Integer(0))
: null;

this._setFoundCartItem(var8);
CartItem var9 = this.getFoundCartItem();
Integer var10 = var9 instanceof java.util.Collection<?>

? ((java.util.Collection<?>) var9).size()
: (var9 == null ? 0 : 1);

Boolean var11 = var10 < new Integer(1);

if (var11.equals(new Boolean(false))) {
CartItem var12 = this.getFoundCartItem();
this.setFoundCartItem(null);
cartItem = var12;

}

if (var11.equals(new Boolean(true)) || var7.equals(new
Boolean(true))) {
CartItem var13 = new CartItem();
var13.setItem(item);
var13.setQuantity(new Integer(0));
cartItem = var13;
cart.getCartItems().add(var13);

}

return cartItem;
}

Listing 6.1: Code generation result for the activity getCartItem of the online store case study
depicted in Figure 6.1
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CHAPTER 7
Conclusion and Future Work

7.1 Conclusion

In this thesis, we presented a code generation approach that translates fUML models into ex-
ecutable Java code. To gain detailed information about the execution of the generated code,
a component was introduced that is concerned with monitoring the execution of the generated
code. To evaluate the correctness of the generated code, a code verification component was pre-
sented, that compares the information provided by the monitoring component and the execution
monitoring of the fUML virtual machine. The presented components aim to contribute to an es-
sential feature of MDE, the automatic code generation, for fUML. The contributions compiled
in the course of this thesis are summarized in the following.

Code Generator for fUML

Code generation in general is an important part for MDE as it enables the necessary transforma-
tion from a high level of abstraction to a lower level. The transformation from UML models,
that describe executable systems, into an executable target language, has been particularly te-
dious for many years due to the lack of well defined execution semantics for behavioral UML
modeling concepts. An important requirement for the code generator is to not rely on individual
interpretations of a language specifications.
With the publication of the fUML standard, which defines execution semantics for a subset of
UML, the basis for accurate transformations, like the code generator presented in this thesis, was
created. The semantics of the language are defined operationally in terms of a virtual machine,
which enables the execution of models compliant to fUML. However, the presented code gen-
erator has no dependencies to an implementation of the fUML virtual machine, but instead can
operate independently, i.e. the target code can the produced without the fUML virtual machine
to interpret the fUML model during the transformation.
The code generator presented in this thesis produces Java code, however, the components were
designed in an easily extensible form so that the currently supported target language can be ex-
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changed quite easily. The generator supports all fUML language concepts except a few actions
listed in Chapter 4.6. By that, support for one of the key features of MDE, the automated trans-
formation from a higher level of abstraction to a lower level, is enabled for fUML. Thereby, an
increase in productivity and efficiency for users of fUML can be achieved.

Code Monitoring

To evaluate the correctness of the generated code, a monitoring component was introduced that
records the creation and modification of objects during the execution of the generated code. The
monitoring component was designed in such a form that it provides the necessary information
even after a modification or extension of the current code generator component. The implemen-
tation of code monitoring component is tightly coupled to the utilised target language, in the
case of this thesis Java. However, the developed components can be easily adapted for a differ-
ent target language.
The behavior of the fUML virtual machine was used as a reference for checking the correctness
of all generated code artefacts. To access runtime information about the processing of fUML
models, an extension of the fUML virtual machine [31], in form of an event model, was used.
The event model is based on an abstract representation of the execution of an fUML model.
Changes in the runtime state trigger corresponding events, which provided the basis for the eval-
uation of the generated code. However, certain language concepts of fUML (e.g. creation of link
objects) may not be available in the utilized target language. It was therefore necessary to intro-
duce a target platform specific component that acts as adapter between the runtime information
captured by the code monitoring component and the event model provided by the fUML virtual
machine. The component developed over the course of this thesis addresses this necessity by
transforming the events provided by the fUML event model in such a way that they are directly
comparable to the events captured during the execution of the generated Java code.

Comparison Engine

The developed comparison component processes the runtime information gathered from the ex-
ecution of the generated code and the execution of the corresponding fUML model, represented
as instances of an execution event tracing metamodel. The goal of the utilized comparison strat-
egy is to compare two executions as detailed as possible, while avoiding too many false positive
errors. It has been shown that fUML models that define no control flow may be processed in
a very different execution order while behaving equally. Therefore, a one-by-one comparison
between two executions has proven to be not effective. Instead, the modifications of matching
features of every object created during runtime are compared pair-wise. If every feature modifi-
cation of the first execution event tracing model can be matched to a feature modification of the
second model, two executions are considered to be equal.
The comparison engine is implemented as custom EMF Compare match engine. A great ad-
vantage of this solution is that the component can be easily integrated into the EMF ecosystem.
Also, the match engine can be easily adapted to apply different equivalence criteria to determine
whether two executions are equal.
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Evaluation Results

The results of the tests conducted during the evaluation of the developed code generator show
that for most of the supported fUML actions, equally behaving Java code could be generated. A
test suite, which contains a variety of test scenarios in which the supported fUML actions were
tested with different inputs and under different conditions, served as basis for the evaluation
process. The test scenarios revealed a few fUML actions, for which the generated code behaved
differently than the execution carried out by the fUML virtual machine. Investigations showed
that the failed tests were caused by differences in the way object modifications are reported to the
storage factory. The conducted case study has shown that the code generator also works reliably
for comprehensive, more real-world sized fUML models. Detected differences in the result of
the case study could be traced back to different approaches in reporting the removing of feature
values and different assumptions for undefined executions semantics. The differences, however,
were found to not impact the bahvior of the execution. It was also shown that the developed
code validation framework works as intended.

7.2 Future Work

In the following, possible improvements to the presented components are discussed. Most of the
suggestions are concerned with the capabilities of the presented components, such as support
for additional target languages. The suggestions arose partly during the development of the
components, and partly from the results of the case studies carried out.

Provide better support for complex transformations

The basic architecture of the code generator is simple yet very effective. When an input model
is processed, a set of potential starting nodes is identified and processed recursively. Depending
on the type of the processed node, a corresponding generation method is invoked that adds the
generated code to the result. In its current state, the generation method for each action is com-
pletely self-sufficient and unaware of its context. It has only access to the currently processed
node but has no information about the nodes that caused its invocation. These limitations have
been found to be a hindrance in many cases. Ad hoc solutions helped to overcome these limi-
tations, however, in order to provide support for more advanced transformations that depend on
information beyond the currently processed node, it might be necessary to fundamentally revise
the basic operation principles of the code generator.

Separation of code generator and target language

The code generator for fUML developed in this thesis is written with the M2T language Xtend1.
It fully supports the template engine Xpand2 that allows a clean separation between templates

1The Xtend documentation is available online at http://help.eclipse.org/kepler/index.jsp?
topic=%2Forg.eclipse.xtend.doc%2Fcontents%2FXtend.html, accessed 10-12-2016
2The reference for the Xpand syntax is available online at http://git.eclipse.org/c/m2t/org.
eclipse.xpand.git/plain/doc/org.eclipse.xpand.doc/manual/xpand_reference.pdf,
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of the target language code and code from the code generator and provides good readability. As
described above, every supported fUML action has a corresponding generation method within
the generator. In its current version, the templates of the code of the target language are directly
located within the generation methods.
It would be desirable to provide an even cleaner separation of the generation methods and the
target language code, and thereby simplify the extension of the code generator for additional tar-
get languages. One possibility would be to insert an abstraction layer between the generator and
the target language code templates and outsource the actual code blocks of the target language
to, for example, Java ResourceBundles3. The code generator could then load the selected target
language at runtime and access the required code templates.

Separation of monitoring component and event storage

In its current state, the monitoring component is tightly coupled to the storage factory, which
processes the captured events from the code execution and converts them into an instance of
the execution event tracing metamodel. To provide the functionality of the storage factory to
monitoring components that capture execution events of different target languages, it would
be necessary to convert the storage factory into a service that exposes methods that enable the
user to add entries to the execution event tracing. The service could then be used by other
aspect-orientated programming languages like AspectC4 for the language C++ or PostSharp5

for languages like C# and Visual Basic.

Eliminate differences between generated code and fUML model

As described in Chapter 4.5, it was not always possible to directly map an fUML action to a
corresponding Java code fragment. For instance, fUML allows the deconstruction of objects, a
concept that is not provided by Java. Therefore, a model containing an action that destroys an
object will report a corresponding destroy event when executed by the fUML virtual machine,
but not when its generated code is executed. This will ultimately result in the comparison com-
ponent to report the executions as being non-equal, although the behavior of both executions is
equal. During the evaluation of the case study, such differences were manually taken into ac-
count and investigated in detail. However, it has been shown that it becomes very cumbersome
to manually investigate such events from the comparison result, when the number of actions of
the input models is high. It would therefore be desirable to remove events from an event model
captured for the fUML model, which are known to not have a corresponding match in the event
model captured for the execution of the generated code and, at the same time, have no effect on
the comparison of the event models.

accessed 10-12-2016
3The documentation for Java ResourceBundles is available online at https://docs.oracle.com/javase/
7/docs/api/java/util/ResourceBundle.html, accessed 10-12-2016
4The documentation for AspectC is available online at http://www.aspectc.org/doc/
ac-languageref.pdf, accessed 10-12-2016
5The documentation for PostSharp is available online at http://doc.postsharp.net, accessed 10-12-2016
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Support for missing fUML Actions

One of the code generator’s requirements was to provide a complete support for all fUML ac-
tions. This goal has almost been achieved. Section 4.6 lists all fUML actions that are not
supported or for which only limited support is provided at this time. Section 4.6 also briefly dis-
cusses approaches for how the missing fUML actions could be supported in the future. Various
fUML actions were identified for which no corresponding Java language features are available.
To produce equally behaving Java code for these actions, more complex Java language con-
structs would have to be elaborated. However, the code generator was developed in such a way
that Java mappings for missing fUML actions can be easily added so that a complete support
can be provided in the future.
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APPENDIX A
Implementations

All developed software artefact as well as resources designed for testing purposes are openly
available in a public repository1. The repository consists of the following projects:

• org.modelexecution.fuml.codegen
This package contains the developed code generation approach, the AspectJ implementa-
tions of the monitoring component and an execution component that dynamically invokes
the generated code. The input fUML models are located in the models directory and the
corresponding Java code in the src-gen directory.

• org.modelexecution.fuml.codegen.comparison
This package contains the implementations of the developed custom match engine, which
is used to compare two EET models.

• org.modelexecution.fuml.codegen.comparison.test
This package contains the test suite and a component to invoke the EMF compare process
and persist its results.

• org.modelexecution.fuml.codegen.eventstorage
This package contains the elaborated EET metamodel and the storage factory which trans-
forms the captured runtime events into EET models.

1The repository is available online at https://bitbucket.org/eulbot/master-thesis
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