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Abstract

The current Extended CreditRisk+-model has a rather rudimentary methodology
to consider guarantees, which, for example, does not take any dependence between
guarantors into account. This drastically limits its applicability on the market.

This thesis proposes several possible approaches how to incorporate guarantees
– be it credit guarantees, reinsurance contracts or government subsidies – into the
Extended CreditRisk+ framework.

We first adapt the current notation of the model to allow for the securitisation
of the exposure. Subsequently we propose three different methods to include the
additional information in the computation of the potential portfolio loss. Finally
we apply all these approaches to several exemplary portfolios and benchmark them
agains known reference distributions.

Additionally we give a short presentation of a software library developed to model
various distributions and in particular used to implement the proposed methods.
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1. Original model

Since this paper presents further extensions to the ECR+-model1 a short review of
the existing results is necessary. This will also allow us to introduce the simplified
notation used in this paper.

1.1. Input data
The model requires the following data:

• The number m of obligors,

• the number C of non-idiosyncratic default causes,

• the number K of independent risk factors,

• the parameters specifying the gamma distributions of the independent risk
factors R1, . . . , RK ,

• a non-empty finite set J of dependence scenarios,

• a probability distribution on the set J of dependence scenarios,

• for each dependence scenario j ∈ J a matrix Aj = (ajc,k)c∈{0,...,C},k∈{0,...,K} of
size (C + 1)× (K + 1) with non-negative entries, where

aj0,k = 0 for all j ∈ J and k ∈ {1, . . . ,K},

• the collection G of nonempty subsets of all obligors {1, . . . ,m}, called the risk
groups, which are subject to joint defaults.

For every group we need

• the default probability pg ∈ [0, 1]

and then, for every dependence scenario j ∈ J,

• the susceptibility w0,g,j ∈ [0, 1] to idiosyncratic default,

• the susceptibility wc,g,j ∈ [0, 1] to default causes c ∈ {1, . . . , C},
1This entire chapter is based on [8].
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1. Original model

• the multivariate probability distributions Qc,g,j = (qc,g,j,µ)µ∈Ng0 describing the
stochastic losses of all the obligors i ∈ g in case the risk group g defaults due
to cause c ∈ {0, . . . , C}.

The original lecture notes are still evolving – in this paper we use the basic model
structure from autumn 2014. The most important difference to the currently pub-
lished model is that only a single time step is considered here.

1.2. Results
We begin with a reduction of the given multivariate loss distribution into a univariate
distribution.

Definition 1.1 (Distribution of univariate group loss, [8, Equation 6.8]).
Let Qsc,g,j = (qsc,g,j,ν)ν∈N0 denote the distribution of the total loss of a group g ∈ G
due to the default cause c ∈ {0, . . . , C} in the scenario j ∈ J, then

qsc,g,j,ν =
∑

µ=(µi)i∈g∈Ng0∑
i∈g µi=ν

qc,g,j,µ

describes the loss in terms of the underlying multivariate loss.

The corresponding random variable is defined in a natural fashion.

Definition 1.2 (Univariate group loss, [8, Remark 6.17]). Let Lc,g,j,n denote the
random variable representing the total loss of a group g ∈ G due to the default cause
c ∈ {0, . . . , C} in the scenario j ∈ J, then

P
[
Lc,g,j,n = ν

]
= qsc,g,j,ν

for all ν ∈ N.

One of the strongest assumptions in this model is the independence of group losses.

Assumption 1.3 (Independence of group losses, [8, Assumption 6.16]). The se-
quence of N0-valued random group losses (Lc,g,j,n)n∈N is i.i.d. and independent of all
other random variables. (This means all other sequences of loss vectors, the scenario
J , the default numbers (Nc,g)c∈{0,...,C},g∈G and the risk factors R1, . . . , RK .)

Since the underlying idea of the model is a Poisson approximation, an intensity
is needed:

Definition 1.4 (Default intensity [8, Section 6.2.3]). Several choices for the Poisson
intensity λg for defaults of group g ∈ G are possible, such as λg = pg(1 − pg) or
λg = − log(1− pg). We set

λg = pg,

because with this choice the expected value of the model corresponds to the expected
value of the data.

2



1.3. Notation

Further default causes are defined, which creates a dependence structure between
the defaults of groups.

Definition 1.5 (Default causes, [8, Assumption 6.26]). For each c ∈ {0, . . . , C} let

Λc = aJc,0 +
K∑
k=1

aJc,kRk.

be the default cause intensity of the default cause c.

The random variables Nc,g,j – the number of defaults of risk group g due to the
default cause c, given a scenario j – are the main source of randomness and carry
the dependence structure within this model.

Definition 1.6 (Default numbers, [8, Assumption 6.29]). Let c ∈ {0, . . . , C}, g ∈ G,
j ∈ J and Nc,g,j such that

L
(
Nc,g,j

∣∣ J,R1, . . . , RK
)

= Poisson(λgwc,g,JΛc)

then Nc,g,j describes the number of defaults of risk group g due to the default cause
c, given a scenario j.

Similarly to the group losses, default numbers are assumed to be independent:

Assumption 1.7 (Independence of default numbers, [8, Assumption 6.30]).
Conditionally on J,R1, . . . , RK the family{

Nc,g

∣∣ c ∈ {0, . . . , C}, g ∈ G}
of default numbers is independent.

With all necessary pieces in place, we can define the main quantity of the model:

Definition 1.8 (Portfolio loss, [8, Equations 6.15, 6.17, 6.18 and 6.19]).
The random variable

L =
∑
j∈J

1{J=j}
∑
g∈G

C∑
c=0

Nc,g,j∑
n=1

Lc,g,j,n.

describes the random loss of the entire portfolio.

For a complete introduction to the notation used within the model see [8, Chap-
ter 6].

1.3. Notation
In order to discuss the additions to the model more efficiently we propose a slightly
modified, condensed notation.

3



1. Original model

1.3.1. Scenario
The distribution of the dependence scenarios has not received a name, but as it will
be used more frequently, we shall write

πj ..= P[J = j], j ∈ J.

The outermost sum in the definition of the portfolio loss shows us that L is a
mixture distribution with component-weight pairs (Lj , πj)j∈J. The computation of
the mixture takes place at the very last moment of the algorithm (cf. last paragraph
above [8, Exercise 6.53]), which allows for an individual consideration of each sce-
nario j ∈ J. Since all statements about the loss Lj for an arbitrary j ∈ J will
hold for all dependence scenarios j ∈ J, the random variable J shall be set for the
remainder of this paper to an arbitrary, but fixed value j ∈ J, unless otherwise
noted.

The fixing of the the scenario J = j affords us to omit the sub- or superscript j
within the variables. As a consequence we will also call

L =
∑
g∈G

C∑
c=0

Nc,g∑
n=1

Lc,g,n (1.9)

the loss and refer to

L̂ =
∑
j∈J

1{J=j}
∑
g∈G

C∑
c=0

Nc,g,j∑
n=1

Lc,g,j,n

as the portfolio loss.

1.3.2. Groups
The input data allows each risk group to default due to several default causes and
the proportion of the default intensity of a risk group g ∈ G due to the default cause
c ∈ {0, . . . , C} is the susceptibility wc,g. Assumption 1.3, however, stipulates that
all loss distributions Lc,g be independent.

Instead of considering each group and then, within the group, each possible default
cause, it is possible to consider the actual risk group / default cause pairs as single
entities. Not only will this reduce the number of empty summands in sums of
the type ∑g∈G

∑C
c=0, but also allow us to eliminate the susceptibility constants

altogether.

Definition 1.10. Let ĝ ..= (g, c) be a pair consisting of a risk group g ∈ G and a
default cause c ∈ {0, . . . , C}. Let

cgcĝ
..= c

denote the pair’s default cause and

oĝ
..= g

4



1.3. Notation

denote the pair’s set of obligors. Further let all set related operations and relations
on ĝ pertain to oĝ = g, so that for example∑

i∈ĝ

Li ..=
∑
i∈g

Li.

The pair ĝ shall be called a portfolio group or just group.
The set of all groups shall be Ĝ:

Ĝ =
{
ĝ = (g, c)

∣∣ g ∈ G, c ∈ {0, . . . , C}, wc,g > 0
}
⊆ G× {0, . . . , C}.

Remark 1.11. It is important to note that the definition of Ĝ depends on the
current scenario j ∈ J, because the susceptibility can be defined differently for each
scenario.

Whenever a variable references both a risk group g and a default cause c, this
reference can now be replaced with a single reference to a group ĝ, e.g.

Lĝ,n
..= Lc,g,n, Nĝ

..= Nc,g.

By extending the notation of the probability of default and the default cause as

pĝ
..= pgwc,g and Λĝ ..= Λc

ĝ

and following the same logic with the derived parameters as in [8], so that e.g.
λĝ = pĝ, the conditional distribution of the number of defaults of a portfolio group
Nĝ from definition (1.6) can be rewritten as

L
(
Nĝ

∣∣R1, . . . , RK
)

= Poisson
(
λĝΛĝ)

and the definition of the total loss L in Equation (1.9) as

L =
∑
ĝ∈Ĝ

N
ĝ∑

n=1
Lĝ,n.

Nowhere in the rephrased equations is the original set of risk groups G used; this
allows the “hat” from Ĝ to be dropped subsequently and write g ∈ G for “a portfolio
group”.

1.3.3. Dependence matrix

The description of the input data has a constraint on the dependence matrix which
stipulates for each scenario j ∈ J, that

aj0,k = 0 ∀k ∈ {1, . . . ,K}.

5



1. Original model

The reason for this condition is to guarantee the existence of a purely idiosyncratic
default cause. An examination of the ensuing arguments in [8] reveals, however,
that the existence of such a default cause is not necessary. It is, indeed, considered
with special cases throughout the computation, but the algorithm also goes to great
lengths to ensure its validity under degenerate risk factors – that is risk factors,
whose variance σ2

k is 0. (See [8, Equation 6.94] or [8, Equation 6.100].) With these
safeguards in place it is easy to generate an arbitrary number (including none!) of
purely idiosyncratic default causes:

Example 1.12 (Custom idiosyncratic default cause, not Λ0). LetRκ, κ ∈ {1, . . . ,K}
be a degenerate risk factor, i.e. σ2

κ = 0. Further set for some c ∈ {1, . . . , C}

ac,k = 1{k=κ} ∀k ∈ {1, . . . ,K}.

Then

Λc = aJc,0 +
K∑
k=1

aJc,kRk = Rκ ≡ eκ

behaves exactly like the idiosyncratic default cause Λ0.

Therefore it is in fact possible to further generalise the input data by omitting
any particular condition for the scenario matrix and explicitly allowing degenerate
distributions for the risk factors.

1.3.4. Revised notation for the input data
Summarising all the proposed simplifications and rephrasing the requirement for the
input data of the ECR+-model: (Here we deliberately specify the sub- or superscript
j denoting the scenario, because we deal with a complete model.)

The model itself contains these pieces of information which are shared across all
scenarios:

• The set O = {0, . . . ,m} of all obligors,

• the independent risk factors R1, . . . , RK which are gamma distributed with
expectation ek and variance σ2

k (the degenerate case of σ2
k = 0 is explicitly

allowed!),

• a non-empty finite set J of dependence scenarios and

• the probability distribution (πj)j∈J of the scenarios.

A single scenario contains

• the dependence matrix, a C × K matrix Aj = (ajc,k)c∈{1,...,C},k∈{1,...,K} with
non-negative entries and

• a set Gj of portfolio groups;

6



1.3. Notation

whereas each group g ∈ Gj contains

• a set og ⊆ O of obligors,

• its probability of default pg ∈ [0, 1],

• its default cause cg ∈ {1, . . . , C} and

• a multivariate probability distribution Qg = (qg,µ)µ∈Ng0 describing the stochas-
tic losses of all the obligors i ∈ g in case the portfolio group g defaults.

With this input data the building blocks of the model, as defined in section 1.2,
can also be rewritten.

Each default cause intensity Λc, c ∈ {1, . . . , C} can be written as

Λc =
K∑
k=1

aJc,kRk,

or even simpler, if we consider the vectors Λ = (Λ1, . . . ,ΛC) and R = (R1, . . . , RK),
as

Λ = AJ ·R.

The number of default causes Ng,j has the conditional distribution

L
(
Ng

∣∣ J,R1, . . . , RK
)

= Poisson(λgΛg)

and the portfolio loss can be written as

L̂ =
∑
j∈J

1{J=j}
∑
g∈Gj

Ng∑
n=1

Lg,n. (1.13)

1.3.5. Aggregated groups

The transformation of the multivariate group loss Qg into the univariate group
loss Qsg is one of the first steps performed in the model. If only the portfolio loss
distribution and its properties are of interest, but not the additional results of the
model, such as obligor contributions, this offers a further possibility to reduce the
input data.

The model works equally as well when each group is defined with a single obligor
and a corresponding univariate loss distribution Qg. This removes the need to
compute Qsg, which in some situations – such as a large, comonotonic group – may
be computationally expensive.

7



1. Original model

1.3.6. Computation
While Equation (1.13) is the definition of the portfolio loss, a direct computation
thereof usually will be prohibitively expensive (in terms of computational power and
time), but [8] shows that the computation can be reduced to a recursive algorithm
based on the Panjer-recursion.

Definition 1.14 (Mixture distribution). Let (Xi)i∈I be a family of random vari-
ables and let (wi)i∈I ∈ [0, 1]I be a family of corresponding weights such that∑
i∈Iwi = 1.
We say that the random variable M is distributed according to a mixture of

(Xi)i∈I with weights (wi)i∈I if

L(M) =
∑
i∈I

wiL(Xi).

In this case we can also write ⊕
i∈I

wi ·Xi
..= M

whenever we need this mixture of (Xi)i∈I without explicitly defining M .

Definition 1.15 (Non-Zero transformation). Let X be a discrete random variable
with domain N such that P(X = 0) < 1.

We call X+ the non-zero transformation of X, which is a random variable such
that

P[X+ = x] =

0 if x = 0 and
P[X=x]

1−P[X=0] otherwise.

If P[X = 0] = 0 then X+ is equal to X.

8



1.3. Notation

The portfolio loss can be computed with the following steps2:

λj,k,g ..=
λga

j
cg ,k∑

g′∈Gj λg′a
j
cg′ ,k

Yj,k ..=
(⊕
g∈Gj

λj,k,g ·Qsg

)+

λj,k ..=
∑
g∈Gj

λga
j
cg ,k

(1− qsg,0) pj,k ..= λj,kσ
2
k

ek + λj,kσ
2
k

Mj,k ∼
{

Log(pj,k), p > 0
Dirac(1), p = 0

Sj,k ..=
Mj,k∑
n=1

Yj,k,n

c(p) ..=
{
− log(1−p)

p , p ∈ (0, 1)
1, p = 0

λ̃j,k ..= λj,ke
2
k

ek + λj,kσ
2
k

c(pj,k) (1.16)

λj ..=
K∑
k=1

λ̃j,k Yj ..=
K⊕
k=1

λ̃j,k
λj
· Sj,k

Mj ∼ Poi(λj) Sj ..=
Mj∑
n=1

Yj,n

L =
⊕
j∈J

πj · Sj

or in summary

L =
⊕
j∈J

πj ·
Poi(λj)∑
n=1

K⊕
k=1

λ̃j,k
λj
·
Mj,k∑
m=1

(⊕
g∈Gj

λj,k,g ·Qsg

)+

.

2This is a half-page summary of a 45 page long [8, Chapter 6]. It only contains the essential results
and omits any explanations or considerations of special cases.
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2. Guarantees

Risk reducing arrangements play an important role in the economy. Not only do
they act as a kind of shock-absorber spreading the strain of a default, they also allow
smaller market participants to combine their resources and take on bigger positions
than they could on their own.

2.1. Definitions
This paper is not a legal text, nor is the author a lawyer; therefore simplified, albeit
adequate definitions of some common terms will be used:

Definition 2.1. An exposure is a cash flow triggered by the default of an obligor.

In the the ECR+-model we represent the exposures of the obligors in a group as
the random variables Lg,i, or of the whole group as Lg

Definition 2.2. A guarantee is an arrangement whereby obligation to settle an
exposure is passed from one obligor to another when the former defaults.

The receiving obligor is called a guarantor.

We thus disregard any legal subtleties such as the distinction between a contingent
guarantee, a surety or an aval, since apart from their legal differences, their influence
is equal from the lender’s point of view. In fact, what we call a guarantee in this
paper does not have to be a credit guarantee; it can be a reinsurance contract or a
government subsidy – generally speaking anything which reduces the exposure.

An important property of guarantors is their ability to default, which we have to
model.

Definition 2.3. We assign to each guarantor s

• a1 Bernoulli random variable Ds indicating the default of the guarantor s such
that P[Ds = 1] =.. πs and

• the guarantor’s default cause cs ∈ {1, . . . , C}.

In analogy to groups we set

Λs ..= Λcs , s ∈ S

as the default cause intensity of the guarantor s.
1Section 3.3 provides an explicit construction of these random variables.
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2. Guarantees

Definition 2.4. Let S = {1, . . . , s} be a set representing guarantors. Using the
individual default indicators of the guarantors we can construct composite events.

Let S ⊆ S be a subset of S.
The event

DS
..=
{ ∏
s∈S

Ds = 1
}

describes the situation that all of the guarantors of the set S have defaulted, with
the corresponding probability

πS ..= P(DS).

Further let

US
..=
{∑
s∈S

Ds = 0
}

be the event that none of the guarantors of the set S have defaulted, with the
probability

ρS ..= P(US).

Combining the two events, we define

DS
S

..= DS ∩ US\S =
{ ∏
s∈S

Ds = 1,
∑

s∈S\S
Ds = 0

}

as the event that from the set S exactly the guarantors from S default. Correspond-
ingly we set

πSS
..= P

(
DS

S

)
to be the probability of this event.

Remark 2.5 (Independence of guarantors). If we assume that all guarantors are
independent, the probabilities of the S-events can be computed by elementary means
as

πS =
∏
s∈S

πs, ρS =
∏
s∈S

(1− πs) and πSS = πS · ρS\S.

In order to strengthen the security of a guarantee multiple guarantors may take
part in a guarantee. In this case we assume that the guarantors have a defined order
– it has to be known who has to shoulder the liability in case of a default.

Definition 2.6. A sequence (sr)r=1,...,R of guarantors of a guarantee is called the
chain of guarantors. The index r of a guarantor sr is called his rank.

The order of this list shall be such, that in case of a default of the underlying
obligor the sequence will be traversed sequentially starting from r = 1 and the first
guarantor not in default shall take on the liability. If no such guarantor can be found
the guarantee (and its underlying exposure) will be considered in default.

The guarantor with the rank 1 is therefore called primary.

12



2.1. Definitions

Assumption 2.7. A guarantor can not appear in a chain of guarantors more than
once.

Since we model the order of guarantors when the preceding ones default, it is
pointless to insert a guarantor who is defaulted already again with a higher rank.

Assumption 2.8. All chains of guarantors are finite.

Since repeating guarantors have already been ruled out an infinite guarantor chain
would require an infinite number of unique guarantors – a scenario our current
understanding of physics does not allow.

A guarantee exposure and its chain of guarantors are inextricably connected:

Definition 2.9. A tuple h ..=
(
L, sh,0, (sh,r)r=1,...,Rh

)
of a univariate loss distribu-

tion L (the exposure), its obligor sh,0 and its corresponding chain of guarantors
(sh,r)r=1,...,Rh is called a guarantee block.

Remark 2.10. The definition of a guarantee block also encompasses unsecured
exposures, i.e. exposures without any guarantors: for such a block h we set Rh = 0.

The guarantee blocks do not make any assumptions about the joint distribution
of their exposures. This can be used to represent even complex guarantee struc-
tures containing multiple guarantors with unequal covers. In fact, pretty much any
customary guarantee, which does not depend on any external factors (such as the
outcome of an other guarantee), can be represented with guarantee blocks.

The structure of a guarantee block allows them to be compared and – to some
extent – to be combined.

Definition 2.11. Two guarantee blocks are called reducible if they have the same
obligor and chain of guarantors. A set of blocks is called irreducible if it does not
contain any reducible pairs of guarantee blocks.

Let
(
L, o, (sr)r=1,...,R

)
and

(
M,o, (sr)r=1,...,R

)
be two reducible guarantee blocks.

They can be represented as a single guarantee block by
(
L+M,o, (sr)r=1,...,R

)
.

Assumption 2.12. All sets of guarantee blocks encountered in this paper will be
assumed to be irreducible.

Since we will not only deal with single guarantors, but entire sets of them, some
notational shortcuts will prove useful:

Definition 2.13. Let h be a guarantee block, then let

Sh ..=
⋃

r={1,...,Rh}
{sh,r}

be the set of all guarantors within the block h. This can be extended naturally to
any set of guarantees H by

SH ..=
⋃
h∈H

Sh.
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2. Guarantees

It is also important to know which guarantees will default if a certain set of guar-
antors defaults. This is described by the set

HS
H

..= {h ∈ H : Sh ⊆ S},

where H is the set of guarantees to consider and S is the set of defaulted guarantors.

2.2. Example
Let us consider the following situation:

Company A receives a loan of e 100,000 from the bank K. In order to
receive this loan company A has secured a guarantee from the bank L
for e 70,000. Further there is a credit insurance for e 50,000 provided
by the insurer S.

On the assumption that the bank guarantee from L takes precedence over the
credit insurance S, there are essentially three ways to distribute the guarantees and
thus build the guarantee blocks from K’s point of view: (cf. Figure 2.1)

(a) The insurer’s guarantee covers only a sum already covered by the guaranteeing
bank. In this case the blocks are

• h1 =
(
e 50,000, A, (L, S)

)
• h2 =

(
e 20,000, A, (L)

)
• h3 =

(
e 30,000, A, ()

)
(b) The insurer’s guarantee overlaps with the bank’s guarantee, but also leaves a

part of the underlying uncovered. In this case the blocks could be
• h1 =

(
e 40,000, A, (L)

)
• h2 =

(
e 30,000, A, (L, S)

)
• h3 =

(
e 20,000, A, (S)

)
• h4 =

(
e 10,000, A, ()

)
(c) The insurer’s guarantee overlaps with the bank’s guarantee and both cover the

entire underlying. In this case the blocks are
• h1 =

(
e 50,000, A, (L)

)
• h2 =

(
e 20,000, A, (L, S)

)
• h3 =

(
e 30,000, A, (S)

)
Which of these to set up in the model can only be determined by the language of

the guarantees’ contracts.
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2.3. Input data

A

L

S
h1 h2 h3

(a)
A

L

S
h1 h2 h3 h4

(b)

A

L

S
h1 h2 h3

(c)

Figure 2.1.: Possible block configurations

2.3. Input data
The current input data does not contain any information on guarantees and has to
be amended accordingly.

To the global data of the model will be added

• the set S ..= {1, . . . , s} representing the guarantors and

• for each guarantor s ∈ S
– a Bernoulli random variable Ds indicating the guarantor’s default such

that P[Ds = 1] =.. πs and
– the guarantor’s default cause cs ∈ {1, . . . , C}.

Within each group g ∈ G a set Hg = {(Lg,h, sh,0, (sh,r)r∈{1,...,Rh})} of guarantee
blocks has to be stated. On the other hand the loss distribution Qg of the group
does not have to be given any more, as all of the proposed approaches will compute
it on their own.

Note that no requirements on the dependencies between two losses of guarantee
blocks or defaults of guarantors have been put forward. This is because the following
approaches will either impose their own assumptions on the dependence structure,
or accept any dependence structure.
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3. Conditioning
While considering the guarantees of a portfolio we will encounter questions like
“What does the portfolio look like, if a given guarantor defaults?” Since the defaults
of guarantors are driven by the same default causes as the default of groups, they
are dependent. This, in turn, allows us – or even forces us – to update the risk
factors to accommodate the additional information of the default or non-default of
guarantors.

3.1. Gamma distribution
The risk factors of the ECR+-model as it is discussed in this paper are independent
and gamma distributed. This section therefore gives the basic properties and some
results on the gamma distribution.
Definition 3.1. We denote the non-negative real numbers with R+ ..= [0,∞). Sim-
ilarly we denote the positive real numbers with R∗+ ..= (0,∞).
Definition 3.2 (Gamma function). For any number s ∈ R+ we call

Γ(s) ..=
∫ ∞

0
ts−1 e−t dt.

the gamma function at s.
Lemma 3.3. The gamma function satisfies the relation

Γ(x+ 1) = xΓ(x),

which for natural numbers n ∈ N implies

Γ(n+ 1) = n!,

making the gamma function an extension of the factorial function to real positive
numbers.
Proof. The first statement follows by integrating the defining integral of the gamma
function by parts, while the second statement follows by induction, starting with
Γ(1) = 1. �

Definition 3.4 (Gamma distribution). Let α ∈ R+ be the shape and β ∈ R+ the
rate of a gamma distribution, then its density is given by

f(x) ..= βα

Γ(α)x
α−1 e−βx, x > 0.

The gamma distribution is denoted by Γ(α, β).
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3. Conditioning

Lemma 3.5. Let X ∼ Γ(α, β). Its cumulative distribution function is

P(X ≤ x) = 1
Γ(α)γ(α, βx), x > 0

where
γ(s, x) ..=

∫ x

0
ts−1 e−t dt, s, t > 0

is the lower incomplete gamma function.

Proof. The result follows from a direct integration of the density and a substitution:

P(X ≤ x) =
∫ x

0
f(t) dt =

∫ x

0

βα

Γ(α) t
α−1 e−βt dt

= 1
Γ(α)

∫ x

0
β(βt)α−1 e−βt dt,

substituting u = βt yields

= 1
Γ(α)

∫ βx

0
uα−1 e−u du

= 1
Γ(α)γ(α, βx).

�

Both the regular as well as the exponential moments of a gamma distribution can
be computed.

Lemma 3.6 ([8, Section 4.3.1]). Let X ∼ Γ(α, β) be a random variable.
For r ∈ (−α,∞) and s ∈ (−∞, β)

E
[
Xr esX

]
= E

[
Xr] · E[ esX

]
= Γ(α+ r)

βrΓ(α) ·
(

1− s

β

)−(α+r)
.

Proof. The expression can be computed directly using the distribution’s density:

E
[
Xr esX

]
=
∫ ∞

0
xr esx βα

Γ(α)x
α−1 e−βx dx

=
∫ ∞

0

βα

Γ(α)x
α+r−1 e−(β−s)x dx.

By expanding the fractions and moving some parts out of the integral we get

E
[
Xr esX

]
= Γ(α+ r)

Γ(α) · βα

(β − s)α+r

∫ ∞
0

(β − s)α+r

Γ(α+ r) xα+r−1 e−(β−s)x dx

The term inside the integral is a density of the Γ(α+ r, β− s) distribution, therefore
the integral itself is 1. Expanding the second fraction with βr and rearranging the
terms yields the proposition. �
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3.1. Gamma distribution

Remark 3.7. Setting either s = 0 or r = 0 in the expression above yields the known
expressions for the moments and exponential moments of the gamma distribution:

E
[
Xr] = Γ(α+ r)

βrΓ(α) , r ∈ (−α,∞),

and
E
[

esX
]

=
(

1− s

β

)−α
= βα

(β − s)α , s ∈ (−∞, β).

Definition 3.8 (Biased probability measure – [8, Definition 2.10]).
Let X be a [0,∞)-valued random variable on a probability space (Ω,F,P) such that
0 < E[X] <∞. Then the X-biased probability measure PX on (Ω,F) is defined by

PX [A] ..=
E
[
X1A

]
E[X] , A ∈ F.

Theorem 3.9 (cf. [8, Lemma 4.23]). Let X ∼ Γ(α, β) be a random variable,
r ∈ (−α,∞) and s ∈ (−β,∞). Then

PXr e−sXX
−1 = Γ(α+ r, β + s),

which means that the distribution of X under the Xr e−sX-biased probability measure
is the Γ(α+ r, β + s) distribution.

Proof. A density of the biased probability measure can be computed directly using
the definition and lemma above:

dPXr e−sX

dP = βrΓ(α)
Γ(α+ r)

(
1 + s

β

)α+r
Xr e−sX = (β + s)α+r

βα
· Γ(α)

Γ(α+ r)X
r e−sX .

For the distribution of X under the biased measure, we will use the Radon–Nikodym
chain rule. To that end, let λ be the Lebesgue measure on R and f a probability
density of X, then for λ-almost all x > 0

d
(
PXr e−sXX

−1)
dλ (x) =

d
(
PXr e−sXX

−1)
d(PX−1) (x) · d(PX−1)

dλ (x)

= (β + s)α+r

βα
· Γ(α)

Γ(α+ r)x
r e−sx f(x)

= (β + s)α+r

Γ(α+ r) xα+r−1 e−(β+s)x .

This, in turn, is a density of a Γ(α+ r, β+ s) distribution, proving the theorem. �

Definition 3.10. Let µ and ν be probability measures defined on a σ-algebra A.
Then

dTV(µ, ν) ..= sup
A∈A

∣∣µ(A)− ν(A)
∣∣

defines the total variation distance between µ and ν.
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3. Conditioning

Lemma 3.11 ([8, Lemma 3.18 and Exercise 3.19]). Let µ and ν be probability
measures defined on a σ-algebra A and let λ be a non-negative σ-finite measure
such that µ � λ and ν � λ. There exist corresponding Radon-Nikodym densities
f ..= dµ/ dλ and g ..= dν/dλ and

dTV(µ, ν) = 1
2‖f − g‖L1(λ).

Definition 3.12 ([4, Chapter 9.3]). Let (Ω,A,P) be a probability space and let
(Pn)n∈N be a sequence of probability measures. We say that Pn → P in total
variation if dTV(Pn, P )→ 0 as n→∞.

Lemma 3.13. Let X ∼ Γ(α, β) be a random variable and s ∈ (0,∞). The (1−e−sX)-
biased moment generating function of X is

E(1−e−sX)
[
etX

]
=
βα(β + s)α

(
(β − t)−α − (β + s− t)−α

)
(β + s)α − βα , t ∈ (−∞, β).

For s↘ 0 the distributions of the biased random variable converge in total variation
to the Γ(α+ 1, β) distribution.

Proof. The moment generating function can be computed directly:

E(1−e−sX)
[
etX

]
=

E
[
(1− e−sX) etX

]
E
[
1− e−sX

] =
E
[
etX

]
− E

[
e(t−s)X ]

1− E
[
e−sX

] .

Applying Lemma 3.6 and Remark 3.7 the expected values can be solved, thus

E(1−e−sX)
[
etX

]
=

βα

(β−t)α −
βα

(β−t+s)α

1− βα

(β+s)α
.

Rearranging the terms yields the desired expression.
To prove the convergence to the limit we use Lemma 3.11. First we note that

Γ(α + 1, β) is the X-biased distribution of X – see Theorem 3.9. We apply the
lemma with the following mappings:

λ = ν = PXX−1 and µ = P 1−e−sX
sX

X−1.

Thus
f = dµ

dλ = sE[X]
E
[
1− e−sX

] · 1− e−sX
sX

, g = dν
dλ = 1

and
dTV(µ, ν) = 1

2 Ẽ
[∣∣∣∣ sE[X]
E
[
1− e−sX

] · 1− e−sX
sX

− 1
∣∣∣∣], (3.14)

where Ẽ denotes the X-biased expectation.
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3.2. Conditioned risk factors

Let us consider the function h : R→ R+

h(a) ..= 1− e−a
a

By comparing the derivatives of the numerator and denominator we can see (by
l’Hôpital’s rule) that lima→0 h(a) = 1 and that h is strictly monotonically falling.

The first fraction in Equation (3.14) can be rewitten as

sE[X]
E
[
1− e−sX

] =
(
E
[
X

E[X] ·
1− e−sX
sX

])−1

=
(
Ẽ
[1− e−sX

sX

])−1
=
(
Ẽ
[
h(sX)

])−1
.

(3.15)

Since for non-negative values h(·) is bounded from above by 1, the dominated con-
vergence theorem allows the computation of the limit as

lim
s↘0

sE[X]
E
[
1− e−sX

] =
(
Ẽ
[

lim
s↘0

h(sX)
])−1

= 1.

If we consider only s up to a fixed point, e.g. s < 1, then the entire expression in
Equation (3.15) is also bounded. Combined with the upper bound of 1 for h(sX)
dominated convergence can also be used in Equation (3.14), which yields

lim
s↘0

dTV(µ, ν) = 1
2 Ẽ
[
|1 · 1− 1|

]
= 0.

�

3.2. Conditioned risk factors
With all prerequisites in place we can compute the conditional distribution of risk
factors given the default of guarantors.

3.2.1. Single risk factor
Theorem 3.16. Let R ∼ Γ(α, β) be a risk factor, Λ ..= R a default cause intensity
consisting only of R, π ∈ [0, 1] a parameter of default and N the number of defaults
of a guarantor with default cause intensity Λ such that L(N |R) = Poisson(πΛ).

(a) Conditioned on {N = 0} the distribution of R is an e−πR-biased distribution
of the unconditioned R:

L(R | N = 0) = Pe−πRR
−1 = Γ(α, β + π)

(b) If π > 0, then conditioned on {N ≥ 1} the distribution of R is an
(
1− e−πR

)
-

biased distribution of the unconditioned R:

L(R | N ≥ 1) = P(1−e−πR)R
−1
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3. Conditioning

= 1
P(N ≥ 1)L(R)− P(N = 0)

P(N ≥ 1)L(R | N = 0) (3.17)

= L(R) + P(N = 0)
P(N ≥ 1)

(
L(R)−L(R | N = 0)

)
. (3.18)

Remark 3.19. While Equation (3.17) is the expression which should be used for
the actual computation of values, since each underlying distribution is evaluated
only once, Equation (3.18) will prove itself useful for some theoretical results.

Proof. First we have to determine the probability of the terms we are conditioning
on:

P(N = 0) = E
[
P(N = 0 | R)

]
= E

[
e−πR

]
and

P(N ≥ 1) = 1− P(N = 0).
In order to determine the conditional distribution, consider h : R→ C a bounded

and measurable function1. By the law of iterated expectations (cf. [4, Theorem
10.1.3]) we can write

E
[
h(R) | N = 0

]
=

E
[
h(R)1{N=0}

]
P(N = 0) =

E
[
E
[
h(R)1{N=0} | R

]]
P(N = 0) .

Since h(R) is R-measurable it can be taken out of the inner expectation. Using
further that E

[
1A
]

= P(A) and the conditional distribution of N , we get

E
[
h(R) | N = 0

]
=

E
[
h(R)P(N = 0 |R)

]
P(N = 0) =

E
[
h(R) e−πR

]
E
[
e−πR

] .

According to Definition 3.8 this is the e−πR-biased expectation of h(R). Substituting
h(R) with indicator functions of Borel-measurable sets yields the conditioned distri-
bution of R and Theorem 3.9 supplies an explicit representation of this distribution.

Since for π = 0 the number of defaults N has a degenerate Poisson distribution
with P(N = 0) = 1, making the event {N ≥ 1} impossible, we only consider the
case π > 0. As above, let h : R→ C be a bounded and measurable function.

E
[
h(R) | N ≥ 1

]
=

E
[
h(R)1{N≥1}

]
P(N ≥ 1) =

E
[
h(R)

(
1− 1{N=0}

)]
P(N ≥ 1) . (3.20)

Conditioning the right parenthesis of the expectation on R – h(R) is R-measurable
– and substitution the probabilities yields

E
[
h(R) | N ≥ 1

]
=

E
[
h(R)

(
1− P(N = 0 |R)

)]
P(N ≥ 1) =

E
[
h(R)

(
1− e−πR

)]
E
[
1− e−πR

] .

1It can be helpful to think of h as either R 7→ e±tR, or R 7→ e±itR for some t ∈ R – which results
in some kind of characteristic function – or simply R 7→ 1A(R) for some measurable set A –
which gives the measure itself.
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3.2. Conditioned risk factors

Instead of conditioning on R we can simply expand the product in Equation (3.20),
which gives us the desired expression:

E
[
h(R) | N ≥ 1

]
= 1

P(N ≥ 1) E
[
h(R)

]
− P(N = 0)

P(N ≥ 1) ·
E
[
h(R)1{N=0}

]
P(N = 0)

= 1
P(N ≥ 1) E

[
h(R)

]
− P(N = 0)

P(N ≥ 1) E
[
h(R) | N = 0

]
Using the same arguments as for the event {N = 0} the result for the event {N ≥ 1}
follows immediately. Equation (3.18) follows from the decomposition of 1 as

1 = P(N ≥ 1) + P(N = 0). �

Remark 3.21. Lemma 3.13 provides an explicit representation of the moment gen-
erating function of L(R | N ≥ 1) as well as the limit for π ↘ 0.

Definition 3.22 (Stochastic dominance – cf. [5, Section 2.4]). Let µ and ν be two
probability measures on R. We say that µ is dominated stochastically by ν, or
µ ≤st ν, if Fµ(x) ≥ Fν(x) for all x ∈ R.

Lemma 3.23. Let R, N and π be defined as in Theorem 3.16, then

(a) It holds that
L(R | N = 0) ≤st L(R)

with equality if and only if π = 0.

(b) If π > 0, then2

L(R) <st L(R | N ≥ 1).

Here equality can not be achieved.

Proof. (a) Due to Theorem 3.16 it has to be shown that

Γ(α, β + π) ≤st Γ(α, β).

This can be directly seen from the distributions’ cumulative functions for r ∈ R+:

FR | {N=0}(r) = 1
Γ(α)γ(α, (β + π)r) = 1

Γ(α)

∫ (β+π)r

0
tα−1 e−t dt

≥ 1
Γ(α)

∫ βr

0
tα−1 e−t dt = 1

Γ(α)γ(α, βr) = FR(r).

Obviously only for π = 0 both distributions are equal.
2Since we compare two distributions with same support, we require for strict stochastic dominance
µ <st ν ⇔ Fµ(x) > Fν(x) for all x in the interior of supp(Fµ) = supp(Fν).
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3. Conditioning

(b) For π > 0 we know from Equation (3.18) that

FR | {N≥1}(r) = FR(r) + P(N = 0)
P(N ≥ 1)

(
FR(r)− FR | {N=0}(r)

)
, r ∈ R.

The fraction of probabilities is certainly positive and the first part of this lemma
shows that the difference in the parentheses is negative. Therefore the second sum-
mand of the expression above is negative; thus for all r ∈ R∗+

FR | {N≥1}(r) < FR(r) and L(R | N ≥ 1) >st L(R).

For both distributions to be equal the second summand would have to be zero, which
is equivalent to either

P(N = 0) = 0 or FR(r)− FR | {N=0}(r) = 0 ∀r ∈ R∗+,

neither of which is possible. �

Corollary 3.24. For π > 0 the expected values of the conditioned and unconditioned
risk factor follow a natural ordering:

E[R | N = 0] < E[R] < E[R | N ≥ 1].

Proof. This follows immediately from the lemma above by considering that for any
non-negative random variable X it holds that E[X] =

∫∞
0
(
1− FX(t)

)
dt. �

Having discussed the distribution of risk factors conditioned on the default of
a guarantor, who depends on a single risk factor, the next theorem expands the
proposition for an arbitrary number of risk factors.

3.2.2. Single condition

Theorem 3.25. Let R ..= (R1, . . . , RK) be a random vector of independent risk
factors with Rk ∼ Γ(αk, βk) and for k = 1, . . . ,K let wk ∈ R∗+ be some weight. Let
R0 ∈ R+ be the3 idiosyncratic risk factor and w0 ∈ R+ its weight. Further define
Λ = ∑K

k=0wkRk as a default cause intensity, π ∈ [0, 1] as the default parameter of a
guarantor and N with L(N | R1, . . . , RK) = Poisson(πΛ) as the number of defaults
of the guarantor.

(a) For each k ∈ {1, . . . ,K}

L(Rk | N = 0) = Pe−πwkRkR
−1
k = Γ(αk, βk + πwk)

and the risk factors remain independent when conditioned on {N = 0}.
3If there are multiple degenerate risk factors their respective values and weights can be combined

by summation.
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3.2. Conditioned risk factors

(b) If π > 0, then the joint distribution of the risk factors conditioned on the event
{N ≥ 1} is given by

L(R | N ≥ 1) = P(1−e−πΛ)R
−1

= 1
P(N ≥ 1) L(R)− P(N = 0)

P(N ≥ 1) L(R | N = 0).
(3.26)

Proof. Using the conditional distribution of N we can write

P(N = 0 | R) = e−πΛ = e−π
∑K

k=0 wkRk =
K∏
k=0

e−πwkRk (3.27)

and thus, with the independence of the risk factors,

P(N = 0) = E
[
P(N = 0 | R)

]
= e−πw0R0

K∏
k=1

E
[
e−πwkRk

]
. (3.28)

Obviously
P(N ≥ 1) = 1− P(N = 0).

Let hk : R → C be a bounded and measurable function for every k = 1, . . . ,K.
Define h : RK → C as h(x1, . . . , xK) = ∏K

k=1 hk(xk). As a product of bounded and
measurable functions the function h is itself bounded and measurable.

For the joint distribution of the conditioned risk factors we compute again the
conditional expectation of h(R).

E
[
h(R) | N = 0

]
=

E
[
h(R)1{N=0}

]
P(N = 0) =

E
[
h(R)P(N = 0 | R)]

P(N = 0)

Applying Equations (3.27) and (3.28) and using the independence of the risk factors
yields (the factors for R0 cancel out)

E
[
h(R) | N = 0

]
=

E
[∏K

k=1 hk(Rk)
∏K
k=0 e−πwkRk

]
∏K
k=0 E

[
e−πwkRk

] =
K∏
k=1

E
[
hk(Rk) e−πwkRk

]
E
[
e−πwkRk

] .

Utilising the same arguments as in the proof of Theorem 3.16 we can see that each
factor represents a biased distribution and the representation of the joint distribution
as a product of marginal distributions proves their independence.

For the event {N ≥ 1} we follow – ceteris paribus – the final part of the proof of
the sibling Theorem 3.16.

E
[
h(R) | N ≥ 1

]
=

E
[
h(R)1{N≥1}

]
P(N ≥ 1)

=
E
[
h(R)

(
1− 1{N=0}

)]
P(N ≥ 1) =

E
[
h(R)

(
1− e−πΛ )]

E
[
1− e−πΛ ]
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= 1
P(N ≥ 1) E

[
h(R)

]
− P(N = 0)

P(N ≥ 1) ·
E
[
h(R)1{N=0}

]
P(N = 0)

= 1
P(N ≥ 1) E

[
h(R)

]
− P(N = 0)

P(N ≥ 1) E
[
h(R) | N = 0

]
.

�

The difference in Equation (3.26) means that conditioned on the event {N ≥ 1}
the risk factors are not independent anymore. They can, however, still be used for
the computation of the ECR+-model.

Lemma 3.29. Let L be the portfolio loss of an extended ECR+-model as described
in Chapter 1 with independent risk factors and some default cause intensity as in
Theorem 3.25.

(a) The loss distribution L(L | N = 0) can be computed as described in [8] by
substituting the risk factors with their conditioned counterparts.

(b) The loss distribution L(L | N ≥ 1) can be computed in two steps as

L(L | N ≥ 1) = 1
P(N ≥ 1) L(L)− P(N = 0)

P(N ≥ 1) L(L | N = 0).

Proof. In both cases it is important to note that the conditioned distributions of
the risk factors are biased distributions of the unconditioned risk factors. Since
the respective bias is only a function of the risk factors themselves, their biased
counterparts inherit any independence towards other random variables.

(a) The case {N = 0} is straightforward since the updated risk factors are again
gamma-distributed and independent and thus comply with the model’s as-
sumptions.

(b) For the case {N ≥ 1} it is important to note, that the distribution itself
is computed via its probability generating function E

[
sL
]
. When computing

the expected value over the risk factors – [8, Equation 6.89] – we can use the
linearity of the Lebesgue–Stieltjes integral with respect to the integrator. After
computing the distribution for the original risk factors and the risk factors
conditioned on the event {N = 0}, the portfolio loss conditioned on {N ≥ 1}
will be the weighted difference of these two distributions with the weights
1/P(N ≥ 1) and P(N = 0)/P(N ≥ 1) respectively. �

3.2.3. Homogeneous conditions

Definition 3.30. Let N be a set of random variables. We define two events

{N = 0} ..=
⋂
N∈N

{N = 0} and {N ≥ 1} ..=
⋂
N∈N

{N ≥ 1}.

Since ⋂∅ = Ω, it follows that for N = ∅ we get {N = 0} = {N ≥ 1} = Ω.
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3.2. Conditioned risk factors

Theorem 3.31. Let R ..= (R1, . . . , RK) be a random vector of independent risk
factors with Rk ∼ Γ(αk, βk). Let R0 ∈ R+ be the idiosyncratic risk factor. Further
let G be a finite set of guarantors. For each g ∈ G and each k = 0, . . . ,K let
wg,k ∈ R+ be some weight, while for each g ∈ G let Λg ..= ∑K

k=0wg,kRk be the
default cause intensity, πg ∈ [0, 1] the default parameter, and Ng the number of
defaults of the guarantor g such that L(Ng |R) = Poisson(πgΛg). Furthermore let
the numbers of default be independent of each other when conditioned on R. Let
NG

..= ⋃
g∈G{Ng} for any G⊆ G and let N ..= NG.

(a) For each k = 1, . . . ,K

L(Rk |N = 0) = Γ
(
αk, βk +

∑
g∈G

πgwg,k
)

and the risk factors remain independent when conditioned on {N = 0}.

(b) If P(N ≥ 1) > 0, then the joint conditional distribution of the risk factors is
given by

L(R | N ≥ 1) =
|G|∑
n=0

(−1)n
∑
G⊆G
|G|=n

P(NG = 0)
P(N ≥ 1) L(R | NG = 0).

Proof.
(a) For G = ∅ trivially P(N∅ = 0) = 1 and L(Rk | N = 0) = L(Rk).

Consider a G 6= ∅. Since the support of the Poisson distribution are the (non-
negative) natural numbers,

{NG = 0} =
{∑
g∈G

Ng = 0
}
. (3.32)

Conditioned on R the distribution of this sum is a single Poisson distribution

L
(∑
g∈G

Ng

∣∣∣R) = Poisson
(∑
g∈G

πg

K∑
k=0

wg,kRk
)
.

Rearranging the sums in the distribution’s parameter yields

L
(∑
g∈G

Ng

∣∣∣R) = Poisson
( K∑
k=0

Rk
∑
g∈G

πgwg,k
)
. (3.33)

The event {NG = 0} is equal to the event of the sum of Ng being 0; and since the
distribution conditioned on R of the sum is a Poisson distribution whose parameter
is a linear combination of the risk factors, it turns out that this case is equivalent
to the first statement of Theorem 3.25 with the weights of the linear combination∑
g∈Gπgwg,k instead of πwk.
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Therefore, with R̃k ∼ Γ
(
αk, βk +∑

g∈Gπgwg,k
)
,

E
[
h(R) | NG = 0

]
=

K∏
k=1

E
[
hk(R̃k)

]
for any function h : RK → C such that h(x1, . . . , xK) = ∏K

k=1 hk(xk), where for each
k = 1, . . . ,K the function hk : R→ C is bounded and measurable.

Like before, the product indicates the independence of each conditioned risk factor
and a judicious substitution of h yields the desired distributions.

(b) For the probability of all groups having at least one default we use the indepen-
dence of the conditioned numbers of default and the inclusion-exclusion principle.

P(N ≥ 1 | R) =
∏
g∈G

P(Ng ≥ 1 | R) =
∏
g∈G

(
1− P(Ng = 0 | R)

)

=
|G|∑
n=0

(−1)n
∑
G⊆G
|G|=n

∏
g∈G

P(Ng = 0 | R).

Using the conditional independence of the numbers of default, we get

P(N ≥ 1 | R) =
|G|∑
n=0

(−1)n
∑
G⊆G
|G|=n

P(NG = 0 | R).

The distribution of the risk factors can, as in the theorems before, be computed
via the conditional expectation of a transformation. Let h be a bounded and R-
measurable function.

E
[
h(R) | N ≥ 1

]
=

E
[
h(R)1{N≥1}

]
P(N ≥ 1) =

E
[
h(R)P(N ≥ 1 | R)]

P(N ≥ 1)

=
E
[
h(R)∑|G|n=0(−1)n∑ G⊆G

|G|=n
P(NG = 0 | R)

]
P(N ≥ 1)

=
|G|∑
n=0

(−1)n
∑
G⊆G
|G|=n

P(NG = 0)
P(N ≥ 1) ·

E
[
h(R)P(NG = 0 | R)

]
P(NG = 0) .

The second fraction is, of course, a conditional expectation again, therefore

E
[
h(R) | N ≥ 1

]
=
|G|∑
n=0

(−1)n
∑
G⊆G
|G|=n

P(NG = 0)
P(N ≥ 1) E

[
h(R) | NG = 0

]
.

Appropriate substitutions for h yield the stated result. �
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3.2.4. Mixed conditions

In this final theorem we combine both defaulted and non-defaulted guarantors and
consider the total information of both sets.

Theorem 3.34. Let R ..= (R1, . . . , RK) be a random vector of independent risk
factors with Rk ∼ Γ(αk, βk). Let R0 ∈ R+ be the idiosyncratic risk factor. Further
let G and H be disjoint finite sets of guarantors and for each g ∈ G∪H let wg,k ∈ R+
be some weight for each k = 0, . . . ,K; let Λg ..= ∑K

k=0wg,kRk be the default cause
intensity, πg the default probability and Ng the number of defaults of the guarantor
g such that L(Ng |R) = Poisson(πgΛg). Furthermore let the numbers of default be
independent of each other when conditioned on R. Let NG

..= ⋃
g∈G{Ng} for any

G⊆ G ∪H. If P(NG = 0, NH ≥ 1) > 0, then

L(R | NG = 0, NH ≥ 1) =
|H|∑
n=0

(−1)n
∑
H⊆H
|H|=n

P(NG∪H = 0)
P(NG = 0, NH ≥ 1) L(R | NG∪H = 0).

Proof. As before, we begin with the conditional probability of the event, which will
be conditioned on. Using the conditional independence of the numbers of default
and the arguments from the proof of Theorem 3.31 we get

P(NG = 0, NH ≥ 1 | R) = P(NG = 0 | R) · P(NH ≥ 1 | R)

= P(NG = 0 | R) ·
( |H|∑
n=0

(−1)n
∑
H⊆H
|H|=n

P(NH = 0 | R)
)

=
|H|∑
n=0

(−1)n
∑
H⊆H
|H|=n

P(NG∪H = 0 | R), (3.35)

where the last step again uses the conditional independence of the numbers of de-
fault.

Let hk : R → C be a bounded and measurable function for every k = 1, . . . ,K.
Define the function h : RK → C as h(x1, . . . , xK) = ∏K

k=1 hk(xk), so that as a
product of bounded and measurable functions the function itself is still bounded
and measurable.

E
[
h(R) | NG = 0, NH ≥ 1]

=
E
[
h(R)1{NG=0,NH≥1}

]
P(NG = 0, NH ≥ 1)

=
E
[
h(R)P(NG = 0, NH ≥ 1 | R)

]
P(NG = 0, NH ≥ 1)
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=
E
[
h(R)∑|H|n=0(−1)n∑H⊆H

|H|=n
P(NG∪H = 0 | R)

]
P(NG = 0, NH ≥ 1)

=
|H|∑
n=0

(−1)n
∑
H⊆H
|H|=n

P(NG∪H = 0)
P(NG = 0, NH ≥ 1) ·

E
[
h(R)P(NG∪H = 0 | R)

]
P(NG∪H = 0)

The second fraction is a conditional expectation, which simplifies the entire expres-
sion into

=
|H|∑
n=0

(−1)n
∑
H⊆H
|H|=n

P(NG∪H = 0)
P(NG = 0, NH ≥ 1) E

[
h(R) | NG∪H = 0

]
.

Applying this computation for h(x) = 1A(x) for all measurable Borel-sets in RK – or
at least all rectangles in RK – yields the desired statement on the joint distribution
of the conditioned risk factors. �

Remark 3.36 (Computation of probabilities). For the actual implementation of
Theorem 3.34 the mixed probabilities of defaults have to be computed. Taking the
expectation of Equation (3.35) yields

P(NG = 0, NH ≥ 1) =
|H|∑
n=0

(−1)n
∑
H⊆H
|H|=n

e
−R0

∑
g∈G∪H

πgwg,0 K∏
k=1

1 +

∑
g∈G∪H

πgwg,k

βk


−αk

.

3.3. Bernoulli default indicators
In all the pertinent theorems only the events {N = 0} and {N ≥ 1} were considered.
This lends itself to the construction of dependent default indicators for all defaultable
elements of an ECR+-portfolio.

In this section we use the notation defined in Chapters 1 and 2.

Definition 3.37. Let i be either a group or a guarantor with default probability pi
and default cause ci. Let ρi solve the equation

1− pi = E
[

e−ρi
∑K

k=1 aci,kRk
]

(3.38)

and let Bi be an indicator of i’s default such that

L(Bi |R) = Bern
(
1− e−ρi

∑K

k=1 aci,kRk
)
.

Finally let Bi be independent of all other random variables when conditioned on R.
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3.3. Bernoulli default indicators

Remark 3.39. The marginal distribution of a single Bi is consistent with the given
data in the sense that

P(Bi = 1) = pi and P(Bi = 0) = 1− pi,

but in connection with other indicators B· the dependence structures described with
the scenario matrix Aj is maintained.

Remark 3.40. If we consider Ni, the Poisson-based default indicator as used in
the model, but with default probability ρi, such that

L(Ni |R) = Poisson
(
ρi

K∑
k=1

aci,kRk
)
,

it is clear that

{Bi = 0} = {Ni = 0} and {Bi = 1} = {Ni ≥ 1},

which allows us to use the entire apparatus described in this chapter to compute
joint probabilities of the Bis.

Remark 3.41. The defining equation of ρi – Equation (3.38) – can be immediately
solved if only a single non-degenerate risk factor or exclusively degenerate risk factors
are involved. If Rk ∼ Γ(αk, βk) is this only non-degenerate risk factor, then

ρi = β

aci,k

((
1− pi

)−1/αk − 1
)
.

Otherwise let θ ..= ∑K
k=1 aci,kRk, where Rk ∈ R+ for all k = 1, . . . ,K. In this case

it holds that
ρi = − log(1− pi)

θ
.

In the general case we reorder the risk factors in such a way that for k = 1, . . . , L
all risk factors Rk are degenerate and for k = L + 1, . . . ,K all risk factors are
non-degenerate. Then ρi solves the equation

1− pi = e−ρi
∑L

k=1 aci,kRk
K∏

k=L+1

(
1 + ρiaci,k

βk

)−αk
,

which has to be solved numerically.

For guarantors these Bernoulli variables are in fact an explicit construction of the
variables Ds described in Definition 2.3.
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4.1. Layers of the model
The first assumption stipulated in this paper is the independence of the loss distribu-
tions of each group (Assumption 1.3). This assumption paired with the independence
of the number of defaults (Assumption 1.7) make it virtually impossible to model
the entire dependence structure of guarantees within a simple ECR+-model.

As soon as a guarantor guarantees two groups they should not be considered
independent. Therefore it would be necessary to combine all groups which share a
guarantor into one and model its loss distribution accordingly. Considering a realistic
portfolio of a bank or insurer and taking into account the fact that nowadays most
financial operations are interconnected, this would very easily lead to a portfolio
of a single group, where all individual losses have to be aggregated by the user –
negating the very point of this model.

Before we propose some approaches to solve this problem, let us take a look at
the ECR+-model. It can be roughly divided into three “layers”:

1. The groups: A group on its own has no (in)dependence assumptions, which
allows us to model the loss of a group however we see fit, as long as we stay
within its boundaries.

2. The scenarios: The loss of each group within a scenario as well as the number
of defaults of every group have to be independent from each other and any
other random variables of the scenario. This leaves the set of its groups itself
as the only modifiable parameter of a scenario.

3. The model: While the loss distributions of the scenarios are linked with each
other through the common risk factors, the construction of the portfolio loss as
a mixture distribution removes this dependence from the final result. Similar
to the scenarios this leaves the set of all scenarios as the only modifiable
parameter.

In line with the points above we will present three approaches – one for each layer
of the model – to incorporate guarantees into the model’s loss distribution.

After presenting all approaches we will provide numerical results underlying each
approach’s method and compare them with each other.

Throughout this chapter we will use the notation introduced in Sections 3.2
and 3.3. Thus for any defaultable object i – be it a group of a guarantor – Ni

denotes the Poisson-based number of defaults, whereas Bi is the Bernoulli-based
default indicator with the recalibrated probability of default ρi.
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4.2. Mixed group
We begin with the first level: the groups. From within a group we have no access
to data from other groups, let alone other scenarios. The eliminates any temptation
to create cross-dependent loss distributions which would rely on the results of other
groups or scenarios, thus violating the independence assumptions.

4.2.1. Algorithm
Using Definition 2.13 as a foundation we extend the notation for guarantees and
guarantors to groups.

Definition 4.1. Let g ∈ G be a group with its guarantees Hg. Let

Sg ..= SHg

be the set of all guarantors involved in guarantees of the group g.
In analogy to HS

H we define

HS
g

..=
{
h ∈ Hg : Sh ⊆ S

}
as those guarantees which default if the set S of guarantors defaults.

Since the default of a group does carry information on the underlying risk factors,
we take this information into account, by setting

πSg
..= P

( ⋂
s∈S

{
Bs = 1

}
∩

⋂
s∈Sg\S

{
Bs = 0

} ∣∣∣Ng ≥ 1
)

to be the probability that exactly the given subset S of the group’s guarantors will
default, given a default of the group g.

Approach 4.2 (Mixed group). Combining the notation from above the loss distri-
bution of a group g ∈ G can be set to

Qg ..=
∑

S⊆Sg
L
( ∑
h∈HS

g

Lg,h
)
· πSg . (4.3)

Lemma 4.4. Equation (4.3) represents a mixture distribution.

Proof. To make (4.3) a mixture distribution it has to be a convex combination of
probability distributions.

The terms L
(∑

h∈Hg
S
Lg,h

)
clearly represent probability distributions.

The term πgS represents the probability that all guarantors in the set S default,
while all the remaining guarantors from the set Sg do not. Since we iterate with
S over all possible subsets of Sg (including the empty set and the entire Sg), we
enumerate the entire probability space spanned by the guarantors’ default indicators.
Therefore the sum of all these probabilities adds up to the total probability of the
entire space, which is 1. �
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4.2.2. Further considerations

Computation

A simple implementation of (4.3) might iterate over all 2|Sg | subsets of Sg to calculate
the probability measure if Qg. This is, however, unnecessary since many terms of
the sum will either be 0 or equal to other terms of the sum.

Example 4.5. As the most extreme example consider a group containing a single
block which is secured by n ∈ N+ different guarantors. This group only produces
a loss if all the guarantors default, but a näıve implementation might check all 2n
possibilities for each computation.

If the implementation environment is capable of comparing distributions without
evaluation them in their entirety, a single pass through all candidates can determine
the loss distribution for each set of guarantors. The resulting distributions can then
be grouped and the corresponding probabilities added together to create a more
efficient mixture distribution.

4.2.3. Criticism

While this method does reduce the risk metrics of a portfolio in line with its guar-
antees, it does not take into account the interplay between guarantees. In contrast
to this approach’s assumptions two guarantees with the same guarantor but in two
different groups can not default independently, but only if their common guarantor
has defaulted. This leads to the mixture method underestimating the concentra-
tion risk of the portfolio and resulting in values for high-level quantiles of the loss
distribution which are too low.

4.3. Iterated group

We want all guarantees with the same primary guarantor to default simultaneously;
we also know that from within a model we can only guarantee a concurrent default
inside a group. Why not put all guarantees of a guarantor into an own group? This
is, in fact, the leading thought of the following method.

4.3.1. Algorithm

As always we consider a fixed scenario j ∈ J.

Definition 4.6. Define by

S1
h

..=
{
{sh,1} if Rh > 0,
∅ if Rh = 0,
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the primary guarantor of the guarantee block h, by

S1
g

..=
⋃
h∈Hg

S1
h

the set of all primary guarantors of the group g and by

S1 ..=
⋃
g∈Gj

S1
g

the set of all primary guarantors of the current scenario.
Further let

Hs
g

..= {h ∈ Hg |S1
h = s}

be the set of all guarantee blocks whose primary guarantor is s and finally let

Gs ..= {g ∈ Gj |Hs
g 6= ∅}

be the set of all groups having s as the primary guarantor on at least one block.

The following algorithm gathers all the guarantee blocks covered by a given guar-
antor and places them into a new ECR+-model. The loss distribution of this model
is then used as the loss distribution of a new group representing the risk associated
with the given guarantor.

Inside each guarantor’s sub-model the default of this guarantor is a given fact,
which should be used to recalibrate the risk factors accordingly. Theorem 3.25 gives
the distribution of the updated risk factors. It is, however, important to note that
the sub-model will have to be computed twice – as outlined in Lemma 3.29.

Algorithm 4.7 (Iterated groups for scenario j). Perform the following steps for
each primary guarantor s in S1:

1. Create a new scenario and set its dependence matrix to a normalised version
of the original scenario’s dependence matrix, such that each row sums up to 1.

2. For each group g in Gs:
a) Create a new group and set its probability of default and default cause

to those of the original group.
b) For each block h in Hs

g :
i. Remove the block from its original group.

ii. Remove the primary guarantor from the block, advancing any re-
maining guarantors.

iii. Add the block to the new group.
c) Add the new group to the new scenario.
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3. Define N as the number of defaults of the guarantor s, constructed as in
Theorem 3.25 using the guarantor’s default cause cs and probability of default
πs.

4. Create two new models m1 and m2, both consisting of only a copy of the new
scenario.

5. For m1 set the risk factors to a copy of the parent’s risk factors.

6. For m2 set the risk factors to their conditioned on {N = 0} – the non-default
of the guarantor s – counterparts of the parent’s risk factors, as described in
Theorem 3.25.

7. Apply this algorithm to each of the sub-models’ scenarios.

8. Create a new group g and set its probability of default and default cause to
those of the guarantor.

9. Set the loss distribution of the new group to a weighted difference of the loss
distributions of m1 and m2:

L(Lg) ..= 1
P(N ≥ 1) L(Lm1)− P(N = 0)

P(N ≥ 1) L(Lm2).

10. Add the new group to the original scenario.

This algorithm is a recursion (step 7). All guarantor chains are, however, finite
(Assumption 2.8) which ensures that the algorithm halts in finite time.

Remark 4.8. In step 5 it is necessary to give each sub-model a fresh copy of
risk guarantors in order to decouple them from their parent. Otherwise the loss
distribution of such a sub-model would not be independent “of all other random
variables”. (cf. Assumption 1.3)

After applying the algorithm neither the portfolio nor any of its sub-models will
contain any true guarantor block, which are blocks with a non-empty guarantor
chain. Further each scenario will contain two kinds of groups: either consisting of a
guarantee block without guarantors or containing a single sub-model.

4.3.2. Further considerations
Switching of combining algorithms

In order to improve tractability the proposed algorithm omits a major opportunity
of optimisation. As proposed a sub-model with all its overhead is created for each
guarantor regardless of the structure and number of guarantees dependent on the
guarantor. Any real-life implementation should take into account that the under-
lying Poisson-approximation only increases its accuracy with increasing number of
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summands, whereas any somewhat complex guarantee-structure is bound to gener-
ate sub-models with very few guarantee blocks. (Even up to single-block models!)

A possible solution is to define a certain threshold for the number of blocks a
sub-model has to contain and in case the threshold is undercut to fall back on
convolutions.

Order of guarantors

If a guarantee block has at least two guarantors which are dependent the result will
depend on the order of the guarantors.

Worst case number of sub-groups

An interesting question is the number of created sub-groups in the worst case.
For the worst case to happen all possible combinations in all possible permutations

of all available guarantors have to be present in the guarantor chains of the guarantor
blocks of each scenario.

A well known result of combinatorics is that the number of possible partial per-
mutations of k elements from a set of n elements is

P (n, k) = n!
(n− k)! .

We are interested in all partial permutations of all sizes except for the empty
permutation and our base set is the set S of all guarantors, therefore1

M̂ =
|S|∑
k=1

|S|!
(|S| − k)! =

|S|∑
k=1

|S|!
k! .

The sub-groups are created within each scenario, which means that for the final
result we have to multiply by the number of scenarios:

M = |J| M̂ = |J| · |S|!
|S|∑
k=1

1
k! .

4.3.3. Criticism
This approach does take into account the dependence between guarantees and forces
all guarantees with the same primary guarantor to default simultaneously. In ex-
change, however, it decouples the guarantees from their underlying exposures. This
in turn leads to an over estimation of the risk, since a disengaged guarantee may be
considered in default despite an upstanding underlying.

Further the computational overhead of multiple sub-models has to be taken into
account.

1The number M̂ is also called “the number of (nonnull) variations of n distinct objects” and the
sequence for increasing base sets can be found on OEIS.org under the index A007526.
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Finally, the higher the probabilities of default of the groups the more repeat-
defaults the Poisson-approximation of the model generates. Iterating the entire
model – and thus the Poisson-approximation – compounds these repeat-defaults
resulting in exaggerated loss numbers.

4.4. Scenarios

As it was already argued in the introduction to this chapter, the first two approaches
cannot possibly model the interconnecting nature of guarantees due to the assumed
independence of the group losses. Mixed groups bind the guarantees to their obligor,
but underestimate the concentration risk of a guarantor’s default, whereas iterated
groups correctly model a guarantor’s concentration risk for the initial guarantor, but
overestimate the guarantee’s overall risk, by decoupling it from its original obligor.

Therefore a third approach, which tries to unify the advantages of both approaches
described before, is proposed. Here – like in the mixed groups – the idea of mixture
distributions is used, but unlike the previous procedure, which mixed group losses,
entire dependence scenarios are to be mixed.

4.4.1. Algorithm

As it was already noted in section 1.3.1, the entire ECR+-model is a mixture distri-
bution of portfolio losses conditional on the selected scenario.

We expand on the idea of scenarios as components of a mixture distribution and
duplicate the existing scenarios while setting varying guarantors as defaulted or
standing.

For this approach the risk factors are not defined globally for the entire model
anymore, but rather assigned to each scenario. This does not change anything for
the computation, since each scenario is computed on its own, but it allows to assign
different risk factors for each scenario.

Algorithm 4.9 (Scenario approach). For each scenario j perform the following
steps:

1. Gather all guarantors relevant to the scenario j into the set Sj .

2. For each subset S ⊆ Sj :
a) Create a new scenario jS.
b) Set its probability to

πjS
..= πj · π

Sj
S .

c) Set its risk factors to their conditioned counterparts conditioned on the
default of all guarantors in S and non-default of all guarantors in Sj \S
according to Theorem 3.34.

39



4. Approaches

d) Set the dependence matrix identical to the original scenario,

AjS
..= Aj .

e) For each group g′ ∈ Gj add a group g to GjS with the same obligors,
probability of default and default cause,

og ..= og′ , pg ..= pg′ , cg ..= cg′

and the loss set to
Lg ..=

∑
h∈HS

g

Lh,

where – like in Section 4.2 – Hg
S is the set of all guarantor blocks which

default, when the set S of guarantors defaults.
f) Add the scenario jS to the model.

3. Remove the original scenario j.

Analogous to the mixed distributions approach no assumptions about the joint
distribution of the losses within each group are necessary.

4.4.2. Further considerations

Partial evaluation of overlapping scenarios

A näıve implementation of this approach might simply perform an entire ECR+-
calculation for the base model while only switching certain guarantors on and off
and combine the results in a convex sum with the corresponding probabilities of
guarantor defaults.

While mathematically correct such procedure will be usually quite inefficient. In a
realistic setting only a handful of groups is affected by the (non-)default of a certain
guarantor. Instead of recomputing each group for each sub-scenario, some form of
book-keeping should keep track of the groups which actually change, in order to
evaluate only those and to combine the final result afterwards.

4.4.3. Criticism

With this approach we have reached the limits of what can be done within the
constraints of the current ECR+-model. All guarantees of a given guarantor default
at the same time; the guarantees are still tied to their underlying exposure; and
guarantors can have an arbitrary dependence structure.

The biggest limitation of this approach is the number of scenarios created by it.
Since a sub-scenario is created for every subset of the guarantors, the number of sub-
scenarios doubles for each additional guarantor – resulting in an explosive growth
of |J | · 2|S| sub-scenarios.
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4.5. Hybrid approach
While all the proposed approaches achieve their goal, choosing one of them is a bal-
ance act between speed (“mixed groups”) and accuracy (“scenarios”). Each method
is designed to model the combined default of guarantees of a single guarantor (clus-
ter risk). In a portfolio of hundreds or even thousands of exposures and guarantees
the impact of a particular guarantor covering only two small guarantees will be mi-
nuscule, whereas the impact of a guarantor covering half of the guarantees at hand
will be tremendous.

We can, however, mix all three approaches to achieve a “good enough” result
while keeping the computational time reasonable.

One such possible mixture will be discussed here.

4.5.1. Algorithm

We want to divide all guarantors into three groups: the high-impact guarantors, the
low-impact guarantors and the rest. To do so we introduce a new coefficient for each
guarantor, which should measure the impact of said guarantor’s default on the final
loss distribution of the portfolio.

In order to compute an “impact-statistic” of each guarantor, we devise a weighted
number of guarantee block which depend on a given guarantor. To that end we use
the Bernoulli default indicators of groups (Bg) and guarantors (Bs) as defined in
Section 3.3.

Definition 4.10 (Weighted number of guarantees of a guarantor). Let s ∈ S be a
guarantor. For each guarantee block h let

Rsh
..=
{

argr∈{1,...,Rh} sh,r = s, if s ∈ Sh,
0, else.

be the rank of the guarantor s in the block h. (We do not use arg min or arg max,
since each guarantor can occur in a guarantor chain only once – see Assumption 2.7.)

Let

δs ..=
∑
j∈J

πj
∑
g∈Gj

∑
h∈Hg
Rsh>0

P
(
{Bg = 1} ∩

Rsh−1⋂
r=1
{Bsh,r = 1}

)

be the weighted number of guarantees of guarantor s.

For guarantees, where the guarantor s is the primary guarantor, δs adds a 1
and weights it with the probabilities of its containing group and scenario. For all
other guarantees containing s the 1 is further weighted with the probability that the
guarantor s will have to cover the guarantee – i.e. the probability that all preceding
guarantors default.

With these coefficients for each guarantor at hand we proceed as follows:
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1. Sort all guarantors in S according to their expected number of guarantees in
descending order. Break ties according to the raw (unweighted) number of
guarantees or any other appropriate measure.

2. Select the top t guarantors and set them aside as the high-impact guarantors.

3. For each scenario j ∈ J

a) Select those guarantors, who do not cover guarantees across different
groups and set them aside as the low-impact guarantors.

b) Apply the “iterated group”-method for the scenario j and the remaining
guarantors.

4. Apply the “scenarios”-method for the high-impact guarantors.

5. Apply the “mixed group”-method for the remaining low-impact guarantors.

4.5.2. Further considerations

Number of high-impact guarantors

For the number of high-impact guarantors t either 3 or 4 is recommended, since each
additional high-impact guarantor doubles the number of computed scenarios.

Portfolio dependence

It is important to note that both the algorithm above as well as the criterion of
expected number of guarantees are just examples of an entire possible family of
hybrid approaches. Depending on the portfolio and its dependence structure other
choices may be better suited.

4.6. Reference model
All the approaches above are in the end just approximations of the “true” loss
distribution of the model. Thanks to the Bernoulli default indicators of both groups
and guarantors, we can, however, write down and in some cases even compute the
exact loss distribution.

4.6.1. Algorithm

The driving factors of this model are the defaults of groups and guarantors. Once
these are fixed, all there is left to do is to add up the corresponding losses.

Let
LS
g

..=
∑
h∈HS

g

Lh

denote the loss of group g when the set S of guarantors defaults.
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By writing ⊕ for a mixture distribution as defined in Definition 1.14, the portfolio
loss can be written as

L =
⊕
j∈J

πj ·
⊕
G⊆Gj
S⊆S

P
( ⋂
g∈G∪S

{Bg = 1} ∩
⋂

g∈(G∪S)C
{Bg = 0}

)
·
∑
g∈G

LS
g , (4.11)

with the complement taken over the set Gj ∪ S. Since the loss of each group is
independent (Assumption 1.3) the last sum is a convolution.

4.6.2. Further considerations

Computation

Similar to the mixed group approach, the reference model iterates over all possible
combinations of groups and guarantors. In a realistic portfolio this will lead to many
unnecessary steps: Consider a simple portfolio with one group – g1 – containing only
unsecured exposures and another – g2 – with many guarantors. A direct implemen-
tation of Equation (4.11) will at one point consider the default of the single group
{g1} ⊆ Gj and iterate over all possible constellations of guarantor-defaults despite
the group g1 is not being affected by them.

A better implementation should therefore try to predict which combinations of
group- and guarantor-defaults will have an impact on the final result.

4.6.3. Criticism

Even though this method provides the best results in terms of accuracy, its appeal
is mostly limited to minuscule portfolios and theoretical considerations, due to its
calculating time: For each scenario j there are 2|Gj∪S| convolutions of varying com-
plexity to compute and the computation of the probability of each group/guarantor-
combination is also non-trivial.

4.7. Expected value

The original Extended CreditRisk+ framework goes to great lengths to ensure a
consistent expectation of the loss distribution. By introducing guarantees, however,
this desirable property is generally lost due to the fact that each approach uses
a different combination of Poisson-distributed numbers of default and Bernoulli-
distributed default indicators. On their own they are both calibrated to yield the
same expected value – cf. Remark 3.39. In a general portfolio, however, they will
be used together and due to their dependence on mutual risk factors the expected
value of the entire distribution will be skewed.

Only if the guarantors induce no dependence in the portfolio – i.e. no guarantor
has guarantees in more than one group and each guarantor depends on a set of risk
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factors disjoint for all the other groups’ and guarantors’ sets – can the expected
value be written as

E
[
L̂
]

=
∑
j∈J

πj
∑
g∈Gj

λgE
[
Lg
]

=
∑
j∈J

πj
∑
g∈Gj

λg
∑
h∈Hg

πShE
[
Lh
]
.
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5.1. Preliminaries
In order to visualise the different approaches I have implemented each of them in
Java using a stochastics library which I have developed. (See Appendix A for a
description of the library.)

Several portfolios of increasing complexity will be proposed, with each highlighting
a different aspect of the computation. In order to benchmark each approach we will
also calculate a reference distribution as described in Section 4.6. In some cases we
will even be able to provide an explicit formula for the loss.

Throughout this chapter we make the following simplifying assumption:

The guarantee blocks within each group default comonotonously.

This allows us to compute the loss distribution of a group without providing
any additional information regarding the dependence structure within the group’s
guarantee blocks.

5.1.1. Wasserstein distance

In order to quantify how “good” any of the discussed methods is, we will compare
each of them to a reference distribution representing the “true” distribution of the
portfolio loss. This comparison is done by taking the Wasserstein distance between
the two distributions.

For continuous distributions we follow the definition of the Wasserstein distance
by [4, Section 11.8], but restrict ourselves to the real-valued case, as it is the only
one we will use.

Definition 5.1 (Wasserstein distance). Let M denote the set of all probability
measures on R such that∫

R
|x| dµ(x) <∞ for each µ ∈M

and let P and Q be measures from M. Further let C(P,Q) be the set of all couplings
of P andQ, that is the set of all laws on R2 with marginals P andQ. The Wasserstein
distance dW(P,Q) is defined by

dW(P,Q) ..= inf
µ∈C(P,Q)

∫
R2
|x− y|dµ(x, y).
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The infimum over the entire set of couplings may prove cumbersome, but the
following theorem allows us to replace the search over probability measures with a
search over a class of functions.
Definition 5.2 (Lipschitz continuity). We call a function f Lipschitz continuous
with constant c if

‖f‖L ..= sup
x,y∈R
x6=y

|f(x)− f(y)|
|x− y|

≤ c.

With FW we denote the set of Lipschitz continuous functions with constant at most 1.
Theorem 5.3 (Kantorovich–Rubinstein). For any two laws P,Q ∈M it holds that

dW(P,Q) = sup
f∈FW

∣∣∣∣∫
R
f d(P −Q)

∣∣∣∣ = sup
f∈FW

∫
R
f dP −

∫
R
f dQ

and there exists a law S in C(P,Q) such that∫
|x− y|dS(x, y) = dW(P,Q)

so that the infimum in Definition 5.1 is attained.
Proof. The absolute value can be omitted, because for every f ∈ FW also −f ∈ FW.

For the proof of the theorem proper see [4, Section 11.8]. �

If the distributions which are compared are discrete, the metric is also known as
the Earth Mover’s Distance (EMD) – see [7] for a proof of equivalence.

We only encounter non-negative discrete distributions and for those the EMD can
be explicitly written down:
Theorem 5.4 (Earth Mover’s Distance). Let X and Y be two random variables
with domain N. Then

EMD
(
L(X),L(Y )

)
=
∞∑
i=0

∣∣P(X ≤ i)− P(Y ≤ i)
∣∣

computes the Earth Mover’s Distance between the laws of the two variables.
Proof. See [3, Section 4.3.2]. �

Remark 5.5. The EMD can also be computed recursively using the probabilities of
the random variables X and Y without using the cumulative distribution function:
Step -1

Set EMD−1 ..= 0.

Step i = 0, . . .
Set EMDi = EMDi−1 +P[X = i]− P[Y = i].
Break if both variables’ support is below i or if the desired accuracy has been
reached.

Finalize
Set EMD

(
L(X),L(Y )

)
= ∑

i=0,... |EMDi |.
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5.1.2. Computed values
Each presented portfolio will be computed in four ways: the “true” reference model,
the mixture approach, the iterated groups approach and the scenario approach.

For each of the resulting distributions the following values will be calculated:

• the expected value,

• the probability mass function at the points x = 0, . . . , 49,

• the value at risk (quantile) at levels 0.95 to 0.999 in steps of 0.001,

• the expected shortfall at levels 0.95 to 0.999 in steps of 0.001 and

• the Wasserstein distance between all distributions.

The computed quantities allow us to grasp the overall shape of the loss distribution
and to perform some qualitative comparisons between the various approaches.
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5.2. Portfolios

The portfolios presented here can be divided into two parts. In the first half –
Sections 5.2.1 to 5.2.6 – none of the portfolios uses stochastic risk factors. Here
the point is to gradually create more and more complex portfolios and to compare
the approaches. The second half uses the same portfolios, but adds one or more
stochastic risk factors. This allows us to study the effects of stochastic risk factors
in comparison to the deterministic portfolios.

All portfolios discussed have only one scenario, because all the desired effects
manifest themselves using a single scenario already and adding further scenarios
would only interfere with them.

Each portfolio also has only one common obligor – this will not be explicitly
mentioned with each portfolio.

In each portfolio we will call Lr, Lm, Lg and Ls the loss of the reference, mixture,
group and scenario model respectively.

5.2.1. Minimal portfolio

Structure
Number of guarantors 1 Number of groups 2
s πs 10% g1 pg 4%

cs idiosync. cg idiosync.
h1 Exposure Dirac(1)

Guarantor s
h2 Exposure Dirac(1)

Guarantor —

The minimal portfolio which illustrates the differences between the guarantor ap-
proaches consists of two groups such that one group has a partial cover from the
guarantor, whereas the other is fully covered.

The second group is necessary, because with only one group the mixture method
is equivalent to the scenario method.

The uncovered guarantee block is necessary to distinguish between the group
method and the scenario method.

Reference distribution

For this portfolio the reference distribution can be determined explicitly:
1 <EmpiricalDistribution >
2 <value index ="0" >9.6e -1;50 </ value >
3 <value index ="1" >3.6e -2;50 </ value >
4 <value index ="2" >4e -3;50 </ value >
5 </ EmpiricalDistribution >

Listing 5.1: Minimal portfolio – reference distribution
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A minimal portfolio is wont to have a minimal reference distribution. In this case
we only consider three cases: no defaults, only the group defaults, and both the
group and the guarantor default.

To illustrate how the three approaches to guarantees work we discuss the generated
loss distributions for this portfolio.

Mixture method

1 <CompoundDistribution >
2 <summand >
3 <EmpiricalDistribution >
4 <value index ="1" >9e -1;51 </ value >
5 <value index ="2" >1e -1;51 </ value >
6 </ EmpiricalDistribution >
7 </summand >
8 <number >
9 <PoissonDistribution >

10 <lambda >4e -2;50 </ lambda >
11 </ PoissonDistribution >
12 </number >
13 </ CompoundDistribution >

Listing 5.2: Minimal portfolio – mixture method

The compound Poisson-distribution corresponds to the random variable Sj in (1.16)
and the NonZeroDistribution to Yj,k.

The two innermost mixture distributions (ZeroSwitch is also a mixture distribu-
tion) are the result of this approach’s method: the guarantor has a default proba-
bility of 10%; with this probability the higher loss occurs and the lower loss with
the counter-probability.

Group method

1 <CompoundDistribution >
2 <summand >
3 <NonZeroDistribution >
4 <MixtureDistribution >
5 <p>
6 <number >7.14285714285714285714285714285714285714285714285714285e

-1;50 </ number >
7 <number >2.85714285714285714285714285714285714285714285714285714e

-1;50 </ number >
8 </p>
9 <v>

10 <PoissonDistribution >
11 <lambda >4e -2;50 </ lambda >
12 </ PoissonDistribution >
13 <DiracDistribution >1 </ DiracDistribution >
14 </v>
15 </ MixtureDistribution >
16 </ NonZeroDistribution >
17 </summand >
18 <number >
19 <PoissonDistribution >
20 <lambda >4.3921056084767679056078930867675411397202790628208343e -2;50 </

lambda >
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21 </ PoissonDistribution >
22 </number >
23 </ CompoundDistribution >

Listing 5.3: Minimal portfolio – group method

Here we find, like in the mixture method, a compound Poisson as the outermost
distribution, which again corresponds to Sj .

The inner compound distribution is in fact the inner sub-model generated for the
guarantor s and contains the two guarantees with values 2 and 5. To increase the
efficiency during computation the mixture distribution representing Yj,k of the inner
model has been replaced with an EmpiricalDistribution.
Scenario method

1 <MixtureDistribution >
2 <p>
3 <number >9e -1;51 </ number >
4 <number >1e -1;51 </ number >
5 </p>
6 <v>
7 <PoissonDistribution >
8 <lambda >4e -2;50 </ lambda >
9 </ PoissonDistribution >

10 <LatticeDistribution step ="2" >
11 <PoissonDistribution >
12 <lambda >4e -2;50 </ lambda >
13 </ PoissonDistribution >
14 </ LatticeDistribution >
15 </v>
16 </ MixtureDistribution >

Listing 5.4: Minimal portfolio – scenario method

Here we see the outer mixture distribution corresponding to the two default outcomes
of the guarantor mixing entire CreditRisk+ models. The second one – related to the
case where the guarantor does not default – has again been optimised. In this case
only the first group generates a loss of constant value 2. Instead of computing
the more expensive Panjer-recursion for the comound Poisson distribution with a
constant summand of 2, we simply stretch the Poisson distribution by a factor of 2.

Numerical results

All four methods return (as expected) the same expected value of 0.108. This is the
correct value, because

(2 + 2 · 10%) · 4% + 5 · 10% · 4% = 0.108.

The next pages contain the raw results of each distribution.

50



5.2.
Portfolios

x P[Lm = x] P[Lg = x] P[Ls = x] P[Lr = x] q VaRm
q VaRg

q VaRs
q VaRr

q ESm
q ESg

q ESs
q ESr

q

0 0.9607894 0.9570295 0.960789 0.96 0.950 0 0 0 0 0.88 0.88 0.88 0.88
1 0.0345884 0.0419592 0.034588 0.036 0.951 0 0 0 0 0.897959 0.897959 0.897959 0.897959
2 0.0044657 9.934E-04 0.004535 0.004 0.952 0 0 0 0 0.916667 0.916667 0.916667 0.916667
3 1.458E-04 1.765E-05 9.224E-06 0 0.953 0 0 0 0 0.93617 0.93617 0.93617 0.93617
4 1.024E-05 2.737E-07 7.696E-05 0 0.954 0 0 0 0 0.956522 0.956522 0.956522 0.956522
5 3.071E-07 3.976E-09 7.379E-10 0 0.955 0 0 0 0 0.977778 0.977778 0.977778 0.977778
6 1.550E-08 5.528E-11 1.025E-06 0 0.956 0 0 0 0 1.0 1.0 1.0 1.0
7 4.307E-10 7.379E-13 2.811E-14 0 0.957 0 0 0 0 1.023256 1.023256 1.023256 1.023256
8 1.744E-11 9.478E-15 1.025E-08 0 0.958 0 1 0 0 1.047619 1.024512 1.047619 1.047619
9 4.526E-13 1.177E-16 6.247E-19 0 0.959 0 1 0 0 1.073171 1.02511 1.073171 1.073171

10 1.558E-14 1.422E-18 8.199E-11 0 0.960 0 1 0 0 1.1 1.025738 1.1 1.1
11 3.801E-16 1.677E-20 9.086E-24 0 0.961 1 1 1 1 1.122806 1.026398 1.122806 1.102564
12 1.153E-17 1.936E-22 5.466E-13 0 0.962 1 1 1 1 1.126038 1.027092 1.126038 1.105263
13 2.658E-19 2.193E-24 9.319E-29 0 0.963 1 1 1 1 1.129444 1.027824 1.129444 1.108108
14 7.271E-21 2.440E-26 3.123E-15 0 0.964 1 1 1 1 1.13304 1.028597 1.13304 1.111111
15 1.592E-22 2.672E-28 7.100E-34 0 0.965 1 1 1 1 1.136841 1.029414 1.136841 1.114286
16 3.994E-24 2.882E-30 1.562E-17 0 0.966 1 1 1 1 1.140866 1.03028 1.140866 1.117647
17 8.339E-26 3.067E-32 4.177E-39 0 0.967 1 1 1 1 1.145135 1.031197 1.145135 1.121212
18 1.942E-27 3.221E-34 6.941E-20 0 0.968 1 1 1 1 1.14967 1.032172 1.14967 1.125
19 3.879E-29 3.344E-36 1.954E-44 0 0.969 1 1 1 1 1.154498 1.03321 1.154498 1.129032
20 8.465E-31 3.432E-38 2.776E-22 0 0.970 1 1 1 1 1.159648 1.034317 1.159648 1.133333
21 1.623E-32 3.486E-40 7.444E-50 0 0.971 1 1 1 1 1.165153 1.0355 1.165153 1.137931
22 3.344E-34 3.506E-42 1.010E-24 0 0.972 1 1 1 1 1.171051 1.036768 1.171051 1.142857
23 6.168E-36 3.493E-44 0 0 0.973 1 1 1 1 1.177387 1.03813 1.177387 1.148148
24 1.207E-37 3.449E-46 3.365E-27 0 0.974 1 1 1 1 1.184209 1.039596 1.184209 1.153846
25 2.148E-39 3.376E-48 0 0 0.975 1 1 1 1 1.191578 1.04118 1.191578 1.16
26 4.012E-41 3.279E-50 1.035E-29 0 0.976 1 1 1 1 1.19956 1.042896 1.19956 1.166667
27 6.898E-43 0 0 0 0.977 1 1 1 1 1.208236 1.044761 1.208236 1.173913
28 1.235E-44 0 2.958E-32 0 0.978 1 1 1 1 1.217702 1.046796 1.217702 1.181818
29 2.056E-46 0 0 0 0.979 1 1 1 1 1.228069 1.049024 1.228069 1.190476
30 3.540E-48 0 7.889E-35 0 0.980 1 1 1 1 1.239472 1.051475 1.239472 1.2
31 5.718E-50 0 0 0 0.981 1 1 1 1 1.252076 1.054185 1.252076 1.210526
32 0 0 1.972E-37 0 0.982 1 1 1 1 1.26608 1.057195 1.26608 1.222222
33 0 0 0 0 0.983 1 1 1 1 1.281732 1.060559 1.281732 1.235294
34 0 0 4.641E-40 0 0.984 1 1 1 1 1.29934 1.064344 1.29934 1.25
35 0 0 0 0 0.985 1 1 1 1 1.319296 1.068634 1.319296 1.266667
36 0 0 1.031E-42 0 0.986 1 1 1 1 1.342103 1.073536 1.342103 1.285714
37 0 0 0 0 0.987 1 1 1 1 1.368418 1.079193 1.368418 1.307692
38 0 0 2.171E-45 0 0.988 1 1 1 1 1.39912 1.085792 1.39912 1.333333
39 0 0 0 0 0.989 1 1 1 1 1.435404 1.093591 1.435404 1.363636
40 0 0 4.342E-48 0 0.990 1 1 1 1 1.478944 1.102951 1.478944 1.4
41 0 0 0 0 0.991 1 1 1 1 1.53216 1.11439 1.53216 1.444444
42 0 0 0 0 0.992 1 1 1 1 1.59868 1.128688 1.59868 1.5
43 0 0 0 0 0.993 1 1 1 1 1.684206 1.147072 1.684206 1.571429
44 0 0 0 0 0.994 1 1 1 1 1.79824 1.171584 1.79824 1.666667
45 0 0 0 0 0.995 1 1 1 1 1.957888 1.205901 1.957888 1.8
46 0 0 0 0 0.996 2 1 2 1 2.041825 1.257377 2.041825 2.0
47 0 0 0 0 0.997 2 1 2 2 2.055766 1.343169 2.055766 2.0
48 0 0 0 0 0.998 2 1 2 2 2.083649 1.514753 2.083649 2.0
49 0 0 0 0 0.999 2 2 2 2 2.167298 2.018208 2.167298 2.0

Table 5.1.: Some probabilistic values of the minimal portfolio51
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Figure 5.1.: Value-at-Risk of the minimal portfolio
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Figure 5.2.: Expected shortfall of the minimal portfolio

mixture group scenario
0.001568 0.005977 0.001499

Table 5.2.: Wasserstein distances of the minimal portfolio
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5.2. Portfolios

As we can see the group method has by far the worst result.
The main culprit are – as already mentioned in the criticism of the group approach

in Section 4.3.3 – the decoupling of the guarantees from their main exposure and the
ECR+-model’s possibility of repeat defaults. This inflates the tail of the distribution
in comparison to the target distribution. Evidence of this is the inflated expected
shortfall in the highest quantiles. As soon as the quantiles reach the ends of the
reference distribution – which is around the 0.995 level – the expected shortfall
(which measures the mass of the tail) increases markedly.

The same phenomenon can be observed for the scenario distribution, but here the
heavier tail is compensated by more accurate values within the true range of the
loss.

5.2.2. Multiple groups
Structure

Number of guarantors 1 Number of groups 10
s πs 10% g1,...,5 pg 4%

cs idiosync. cg idiosync.
h1 Exposure Dirac(2)

Guarantor s
h2 Exposure Dirac(1)

Guarantor —
g6,...,10 pg 4%

cg idiosync.
h1 Exposure Dirac(2)

Guarantor s

This portfolio is very similar to the minimal example, but increases the number of
groups. This allows us to observe the influence of the number of groups on the
quality of the ECR+-model.

Numerical results

The expected value all four methods return is 0.32:

5 · (1 + 2 · 10%) · 4% + 5 · 2 · 4% · 10% = 0.28.

The next pages contain the raw results of each distribution.
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5.
C

om
parison

x P[Lm = x] P[Lg = x] P[Ls = x] P[Lr = x] q VaRm
q VaRg

q VaRs
q VaRr

q ESm
q ESg

q ESs
q ESr

q

0 0.8025188 0.7921789 0.80389 0.800319 0.950 2 1 1 1 2.58982 2.443579 2.677794 2.606374
1 0.1444534 0.1584358 0.147372 0.152882 0.951 2 2 1 1 2.601857 2.465176 2.712034 2.639157
2 0.0290512 0.0370841 0.028144 0.026591 0.952 2 2 2 1 2.614395 2.474867 2.73231 2.673306
3 0.0197195 0.0053043 0.014389 0.014382 0.953 2 2 2 1 2.627468 2.484971 2.747891 2.708908
4 0.0033447 0.0050105 0.00139 0.001165 0.954 2 2 2 2 2.641108 2.495514 2.76415 2.728691
5 6.268E-04 9.370E-04 0.002683 0.002886 0.955 2 2 2 2 2.655355 2.506525 2.781131 2.744884
6 2.383E-04 7.750E-04 0.00143 0.001202 0.956 2 2 2 2 2.67025 2.518037 2.798884 2.761813
7 3.838E-05 1.427E-04 2.681E-04 2.405E-04 0.957 2 2 2 2 2.685837 2.530085 2.817463 2.779529
8 6.756E-06 9.872E-05 2.726E-04 2.415E-04 0.958 2 2 2 2 2.702166 2.542706 2.836926 2.79809
9 1.894E-06 1.788E-05 1.073E-04 5.811E-05 0.959 2 2 2 2 2.719292 2.555942 2.857339 2.817555

10 2.914E-07 1.135E-05 2.699E-05 2.005E-05 0.960 2 2 2 2 2.737274 2.569841 2.878773 2.837994
11 4.851E-08 2.037E-06 1.877E-05 1.023E-05 0.961 2 2 2 2 2.756179 2.584452 2.901305 2.859481
12 1.117E-08 1.256E-06 6.262E-06 1.837E-06 0.962 2 2 2 2 2.776078 2.599833 2.925024 2.882099
13 1.649E-09 2.246E-07 1.823E-06 8.367E-07 0.963 2 2 2 2 2.797054 2.616044 2.950024 2.90594
14 2.610E-10 1.372E-07 9.833E-07 2.261E-07 0.964 2 2 2 2 2.819194 2.633157 2.976414 2.931105
15 5.221E-11 2.451E-08 2.991E-07 4.314E-08 0.965 2 2 2 2 2.842599 2.651247 3.004311 2.957708
16 7.423E-12 1.480E-08 9.296E-08 1.754E-08 0.966 2 2 2 2 2.867382 2.670401 3.03385 2.985875
17 1.123E-12 2.640E-09 4.174E-08 2.464E-09 0.967 2 2 2 2 2.893666 2.690716 3.065179 3.01575
18 2.018E-13 1.567E-09 1.204E-08 7.248E-10 0.968 2 2 2 2 2.921593 2.712301 3.098466 3.047493
19 2.772E-14 2.790E-10 3.814E-09 1.510E-10 0.969 2 2 2 2 2.951322 2.735279 3.1339 3.081283
20 4.021E-15 1.626E-10 1.493E-09 1.510E-11 0.970 2 2 2 2 2.983033 2.759788 3.171697 3.117325
21 6.637E-16 2.889E-11 4.165E-10 6.040E-12 0.971 2 2 2 2 3.01693 2.785988 3.2121 3.155854
22 8.833E-17 1.657E-11 1.312E-10 1.258E-13 0.972 2 2 2 2 3.053249 2.814059 3.255389 3.197134
23 1.233E-17 2.938E-12 4.619E-11 1.258E-13 0.973 2 2 2 2 3.092259 2.844209 3.301885 3.241473
24 1.899E-18 1.662E-12 1.260E-11 0 0.974 2 2 2 2 3.134268 2.876678 3.351958 3.289222
25 2.454E-19 2.943E-13 3.887E-12 1.049E-15 0.975 2 2 2 2 3.179639 2.911746 3.406036 3.340791
26 3.308E-20 1.646E-13 1.260E-12 0 0.976 2 2 2 2 3.228791 2.949735 3.464621 3.396657
27 4.804E-21 2.910E-14 3.376E-13 0 0.977 3 2 2 2 3.239754 2.991028 3.5283 3.457381
28 6.040E-22 1.610E-14 1.013E-13 0 0.978 3 2 2 2 3.250652 3.036074 3.597768 3.523626
29 7.883E-23 2.842E-15 3.072E-14 0 0.979 3 2 2 2 3.262588 3.085411 3.673852 3.596179
30 1.089E-23 1.556E-15 8.102E-15 0 0.980 3 2 3 3 3.275717 3.139682 3.727784 3.665586
31 1.334E-24 2.744E-16 2.357E-15 0 0.981 3 2 3 3 3.290229 3.199665 3.766088 3.700617
32 1.689E-25 1.488E-16 6.773E-16 0 0.982 3 2 3 3 3.306352 3.266313 3.808648 3.73954
33 2.233E-26 2.620E-17 1.759E-16 0 0.983 3 2 3 3 3.324373 3.340802 3.856216 3.783042
34 2.671E-27 1.408E-17 4.956E-17 0 0.984 3 2 3 3 3.344646 3.424602 3.90973 3.831982
35 3.288E-28 2.476E-18 1.362E-17 0 0.985 3 2 3 3 3.367623 3.519576 3.970378 3.887448
36 4.183E-29 1.319E-18 3.482E-18 0 0.986 3 2 3 3 3.393882 3.628117 4.039691 3.950837
37 4.890E-30 2.317E-19 9.509E-19 0 0.987 3 2 3 3 3.42418 3.753357 4.119667 4.023978
38 5.864E-31 1.225E-19 2.517E-19 0 0.988 3 3 3 3 3.459528 3.874372 4.212973 4.10931
39 7.208E-32 2.149E-20 6.332E-20 0 0.989 3 3 3 3 3.501304 3.95386 4.323243 4.210156
40 8.246E-33 1.127E-20 1.678E-20 0 0.990 3 3 3 3 3.551434 4.049247 4.455567 4.331171
41 9.647E-34 1.976E-21 4.302E-21 0 0.991 3 3 3 3 3.612705 4.165829 4.617297 4.479079
42 1.150E-34 1.029E-21 1.064E-21 0 0.992 3 3 3 3 3.689293 4.311558 4.819459 4.663964
43 1.288E-35 1.802E-22 2.742E-22 0 0.993 3 3 3 3 3.787763 4.498924 5.079382 4.901673
44 1.473E-36 9.322E-23 6.833E-23 0 0.994 3 4 4 3 3.919057 4.582606 5.391554 5.218619
45 1.706E-37 1.631E-23 1.663E-23 0 0.995 3 4 4 4 4.102868 4.699128 5.669865 5.497037
46 1.875E-38 8.381E-24 4.170E-24 0 0.996 4 4 5 5 4.314299 4.873909 5.883184 5.705985
47 2.097E-39 1.465E-24 1.014E-24 0 0.997 4 4 5 5 4.419065 5.165213 6.177579 5.941314
48 2.368E-40 7.481E-25 2.426E-25 0 0.998 4 4 6 5 4.628598 5.747819 6.699698 6.41197
49 2.555E-41 1.307E-25 5.934E-26 0 0.999 4 6 6 6 5.257196 6.459968 7.399396 7.048346

Table 5.3.: Some probabilistic values of the multiple groups portfolio
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5.2. Portfolios
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Figure 5.3.: Value-at-Risk of the multiple groups portfolio
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Figure 5.4.: Expected shortfall of the multiple groups portfolio

mixture group scenario
0.019995 0.023793 0.007142

Table 5.4.: Wasserstein distances of the multiple groups portfolio
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5. Comparison

It turns out that the problems we have seen in the minimal example vanish when
we increase the number groups we consider. The group method, while still inferior
to the scenario method, closes its gap to the mixture method.

A look on the quantile graphs underscores the initial criticism of the mixture
method that it greatly underestimates the risk of clustering. At higher levels the
expected shortfall of the mixture loss is almost a third smaller than the expected
shortfall of the reference loss.

5.2.3. Multiple guarantors
Structure

Number of guarantors 5 Number of groups 10
si=1,...,5 πs i% gi=1,...,5 pg 4%

cs idiosync. cg idiosync.
h1 Exposure Dirac(2)

Guarantor si
h2 Exposure Dirac(1)

Guarantor —
g6,...,10 pg 4%

cg idiosync.
h1 Exposure Dirac(3)

Guarantor —

The first two examined examples have only used a single guarantor. In this portfolio
each group with a guarantee has its own independent guarantor.

Numerical results

The expected value all four methods return is 0.812:

5 · 3 · 4% +
5∑
i=1

(1 + 2 · i%) · 4% = 0.812.

The next pages contain the raw results of each distribution.
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5.2.
Portfolios

x P[Lm = x] P[Lg = x] P[Ls = x] P[Lr = x] q VaRm
q VaRg

q VaRs
q VaRr

q ESm
q ESg

q ESs
q ESr

q

0 0.67032 0.666389 0.67032 0.664833 0.950 3 3 3 3 4.913168 4.897844 4.914718 4.721212
1 0.130042 0.133278 0.130042 0.134352 0.951 3 3 3 3 4.952212 4.936575 4.953794 4.756339
2 0.012614 0.017169 0.012692 0.01086 0.952 4 4 4 3 4.990339 4.972147 4.993861 4.792929
3 0.138902 0.134935 0.138916 0.143101 0.953 4 4 4 3 5.01141 4.992831 5.015007 4.831077
4 0.026828 0.026865 0.026675 0.028672 0.954 4 4 4 4 5.033397 5.014414 5.037072 4.852287
5 0.0026 0.003458 0.002589 0.002303 0.955 4 4 4 4 5.056361 5.036957 5.060118 4.871227
6 0.014391 0.013663 0.014469 0.01251 0.956 4 4 4 4 5.080369 5.060524 5.084212 4.891028
7 0.002767 0.002708 0.002748 0.002476 0.957 4 4 4 4 5.105494 5.085187 5.109426 4.911749
8 2.680E-04 3.483E-04 2.650E-04 1.971E-04 0.958 4 4 4 4 5.131816 5.111025 5.135841 4.933457
9 9.940E-04 9.224E-04 0.001011 5.630E-04 0.959 4 4 4 4 5.159421 5.138123 5.163544 4.956225

10 1.903E-04 1.820E-04 1.897E-04 1.093E-04 0.960 4 4 4 4 5.188406 5.166577 5.192633 4.98013
11 1.841E-05 2.339E-05 1.816E-05 8.576E-06 0.961 4 4 4 4 5.218878 5.196489 5.223213 5.005262
12 5.149E-05 4.671E-05 5.332E-05 1.353E-05 0.962 4 4 4 4 5.250954 5.227975 5.255403 5.031716
13 9.815E-06 9.173E-06 9.876E-06 2.539E-06 0.963 4 4 4 4 5.284764 5.261164 5.289333 5.0596
14 9.487E-07 1.178E-06 9.378E-07 1.941E-07 0.964 4 4 4 4 5.320452 5.296196 5.325147 5.089034
15 2.134E-06 1.892E-06 2.268E-06 1.608E-07 0.965 4 4 4 4 5.358179 5.33323 5.363009 5.120149
16 4.050E-07 3.699E-07 4.142E-07 2.803E-08 0.966 4 4 4 4 5.398125 5.372443 5.403097 5.153094
17 3.911E-08 4.750E-08 3.896E-08 2.016E-09 0.967 4 4 4 4 5.440493 5.414032 5.445615 5.188037
18 7.367E-08 6.390E-08 8.114E-08 7.498E-10 0.968 4 4 4 4 5.485508 5.458221 5.490791 5.225163
19 1.392E-08 1.243E-08 1.459E-08 1.044E-10 0.969 4 4 4 4 5.533428 5.50526 5.538881 5.264684
20 1.344E-09 1.595E-09 1.358E-09 5.884E-12 0.970 4 4 4 4 5.584542 5.555435 5.590177 5.30684
21 2.180E-09 1.850E-09 2.513E-09 1.548E-12 0.971 4 4 4 4 5.639181 5.609071 5.645011 5.351904
22 4.104E-10 3.583E-10 4.445E-10 1.648E-13 0.972 4 4 4 4 5.697723 5.666538 5.703761 5.400186
23 3.956E-11 4.594E-11 4.086E-11 6.351E-15 0.973 4 4 4 4 5.760602 5.728262 5.766863 5.452045
24 5.647E-11 4.685E-11 6.887E-11 1.525E-15 0.974 4 4 4 4 5.828318 5.794733 5.83482 5.507893
25 1.058E-11 9.034E-12 1.196E-11 1.139E-16 0.975 4 4 4 4 5.90145 5.866522 5.908212 5.568208
26 1.019E-12 1.158E-12 1.085E-12 2.246E-18 0.976 4 4 4 4 5.980677 5.944294 5.987721 5.63355
27 1.300E-12 1.055E-12 1.699E-12 7.046E-19 0.977 4 4 4 4 6.066794 6.028829 6.074144 5.704574
28 2.426E-13 2.025E-13 2.894E-13 2.810E-20 0.978 4 4 4 4 6.160739 6.121048 6.168423 5.782055
29 2.335E-14 2.593E-14 2.585E-14 0 0.979 5 5 5 4 6.249636 6.204698 6.254727 5.866915
30 2.693E-14 2.139E-14 3.822E-14 1.258E-22 0.980 5 5 5 4 6.312117 6.264933 6.317464 5.960261
31 5.005E-15 4.085E-15 6.376E-15 0 0.981 5 5 5 4 6.381176 6.331508 6.386804 6.063432
32 4.812E-16 5.230E-16 5.602E-16 0 0.982 6 5 6 5 6.41936 6.405481 6.421229 6.167862
33 5.071E-16 3.941E-16 7.932E-16 0 0.983 6 6 6 5 6.444028 6.434859 6.446007 6.236559
34 9.386E-17 7.494E-17 1.294E-16 0 0.984 6 6 6 5 6.47178 6.462038 6.473882 6.313844
35 9.017E-18 9.588E-18 1.116E-17 0 0.985 6 6 6 6 6.503231 6.49284 6.505474 6.342743
36 8.754E-18 6.659E-18 1.532E-17 0 0.986 6 6 6 6 6.539177 6.528043 6.54158 6.367224
37 1.614E-18 1.260E-18 2.441E-18 0 0.987 6 6 6 6 6.580652 6.568662 6.58324 6.395472
38 1.549E-19 1.612E-19 2.064E-19 0 0.988 6 6 6 6 6.629039 6.61605 6.631843 6.428428
39 1.395E-19 1.039E-19 2.777E-19 0 0.989 6 6 6 6 6.686225 6.672055 6.689283 6.467376
40 2.561E-20 1.957E-20 4.314E-20 0 0.990 6 6 6 6 6.754847 6.73926 6.758212 6.514114
41 2.456E-21 2.501E-21 3.570E-21 0 0.991 6 6 6 6 6.838719 6.8214 6.842457 6.571238
42 2.064E-21 1.505E-21 4.752E-21 0 0.992 6 6 6 6 6.943559 6.924075 6.947765 6.642643
43 3.773E-22 2.821E-22 7.189E-22 0 0.993 6 6 6 6 7.078353 7.056086 7.08316 6.734449
44 3.616E-23 3.604E-23 5.816E-23 0 0.994 6 6 6 6 7.258079 7.232101 7.263686 6.856857
45 2.850E-23 2.034E-23 7.722E-23 0 0.995 6 6 6 6 7.509694 7.478521 7.516423 7.028228
46 5.190E-24 3.797E-24 1.136E-23 0 0.996 7 7 7 6 7.811384 7.787314 7.820971 7.285285
47 4.968E-25 4.848E-25 8.972E-25 0 0.997 7 7 7 7 8.081845 8.049752 8.094627 7.590338
48 3.689E-25 2.579E-25 1.197E-24 0 0.998 7 7 7 7 8.622768 8.574629 8.641941 7.885507
49 6.691E-26 4.791E-26 1.711E-25 0 0.999 9 9 9 7 9.442391 9.426536 9.447883 8.771015

Table 5.5.: Some probabilistic values of the multiple guarantors portfolio57



5. Comparison
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Figure 5.5.: Value-at-Risk of the multiple guarantors portfolio
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Figure 5.6.: Expected shortfall of the multiple guarantors portfolio

mixture group scenario
0.019196 0.017663 0.019351

Table 5.6.: Wasserstein distances of the multiple guarantors portfolio
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5.2. Portfolios

This portfolio is interesting, because here the group method turns out to be the
best approximation.

While it is not as much better compared to the others as it was worse in the
other examples, it is nevertheless – according to the Wasserstein distance – the most
accurate approximation.

Here the scenario approach has the same problem as the groups approach: it binds
unrelated guarantees in repeat defaults. Since the scenario model operates “from
outside” the model the assumptions which guarantor has defaulted and which is
standing are fixed once a scenario is chosen. Thus in a scenario with a high number
of defaulted guarantors any repeat default will be forced to generate the higher loss
again.

At first it might seem that this portfolio should be perfect for the mixture method,
since all the guarantees are independent. The group approach is better here, how-
ever, because the defaults of the guarantees are modelled by two Poisson distribu-
tions.

We know that for each group the Poisson intensity λg is chosen such that the
expected value of the entire model agrees with the natural expected value of the
data, i.e. λg = pg. Since Λg ≡ 1 in this portfolio, because the only default cause in
use is the idiosyncratic one, we get

P[Ng = 0] = (λgΛg)0 e−λgΛg

(λgΛg)!
= e−λg > 1− λg.

Both the mixture model and the group model have a compound Poisson sum driving
the defaults of the groups, but in the group approach the number of defaults of each
guarantor is Poisson(λs), while in the mixture approach it is Bern(λs). In case of a
repeat default of the outer compound sum the probability that no loss is generated
is higher in the group approach than in the mixture approach. As a result the tail of
the group model is lighter than the tail of the mixture model and since the reference
distribution does not have any tail at all a lighter tail is a better match.

This phenomenon, however, only manifests itself in portfolios with low dependence
between groups. This particular portfolio is in fact an extereme example of such a
portfolio, because there is no dependence at all between all the groups.
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5. Comparison

5.2.4. High dependence
Structure
Number of guarantors 7 Number of groups 301
si=0,...,6 πs 10% gk=1,...,301 pg 3%

cs idiosync. cg idiosync.
hi=1,...,7 Exposure Dirac(i)

Guarantor s(i+k) mod 7
h8 Exposure Dirac(1)

Guarantor —

This portfolio can be seen as the opposite construction of the previous one.
Here we have 7 guarantors and their guarantees are spread over the entire portfolio

and each guarantor has a guarantee in every group.

Numerical results

The expected value all four methods return is 34.314:

301 · (3% · (1 + 7 · 8
2 · 10%)) = 34.314

The next pages contain the raw results of each distribution.
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5.2.
Portfolios

x P[Lm = x] P[Lg = x] P[Ls = x] P[Lr = x] q VaRm
q VaRg

q VaRs
q VaRr

q ESm
q ESg

q ESs
q ESr

q

0 1.198E-04 5.948E-05 1.198E-04 1.043E-04 0.950 62 99 99 99 71.506362 122.934592 126.526217 126.031397
1 5.173E-04 5.371E-04 5.173E-04 4.644E-04 0.951 63 99 99 99 71.681953 123.423053 127.087976 126.583058
2 0.0011745 0.002425 0.002393 0.002206 0.952 63 100 100 100 71.862828 123.922227 127.656327 127.147425
3 0.0019138 0.0072994 0.007087 0.006693 0.953 63 100 101 100 72.051398 124.431211 128.240635 127.72503
4 0.0025983 0.0164789 0.01597 0.015393 0.954 63 101 101 101 72.248168 124.94934 128.832823 128.308684
5 0.0032345 0.0297623 0.028798 0.028238 0.955 64 101 102 102 72.451482 125.481548 129.436967 128.908376
6 0.0039208 0.0447959 0.043331 0.043071 0.956 64 102 103 102 72.643561 126.019852 130.057827 129.51993
7 0.0047585 0.0577941 0.055909 0.056151 0.957 64 103 103 103 72.844574 126.577099 130.687078 130.141524
8 0.0058141 0.0652494 0.063173 0.063879 0.958 64 103 104 104 73.055159 127.138458 131.33073 130.780158
9 0.0070681 0.0654926 0.063438 0.064371 0.959 64 104 105 104 73.276017 127.717879 131.992208 131.433332

10 0.0084105 0.059183 0.057488 0.058322 0.960 65 104 105 105 73.490334 128.310826 132.667013 132.097384
11 0.0097305 0.0486531 0.047394 0.047912 0.961 65 105 106 106 73.708035 128.914519 133.35527 132.779896
12 0.010998 0.0367174 0.036025 0.036153 0.962 65 106 107 107 73.937194 129.53831 134.062958 133.481634
13 0.012254 0.0256602 0.025461 0.02528 0.963 65 106 108 107 74.17874 130.17448 134.790138 134.197354
14 0.013546 0.0167724 0.017021 0.01666 0.964 66 107 108 108 74.414612 130.826223 135.534309 134.930555
15 0.014888 0.0104029 0.01097 0.010565 0.965 66 108 109 109 74.655029 131.499284 136.29598 135.685207
16 0.01625 0.0062827 0.007119 0.006743 0.966 66 108 110 110 74.909589 132.19044 137.079771 136.46171
17 0.017581 0.0038784 0.004864 0.004561 0.967 67 109 111 111 75.178839 132.896794 137.886968 137.261239
18 0.018835 0.0026427 0.003814 0.003574 0.968 67 110 112 111 75.434427 133.626533 138.718231 138.081903
19 0.019992 0.0021369 0.003341 0.003161 0.969 67 111 113 112 75.706506 134.380274 139.575131 138.925911
20 0.021058 0.002059 0.003362 0.003214 0.970 67 112 114 113 75.996723 135.158775 140.458738 139.797302
21 0.022044 0.0022226 0.003525 0.003404 0.971 68 112 115 114 76.283207 135.957354 141.371035 140.697422
22 0.022948 0.0025225 0.003877 0.003765 0.972 68 113 115 115 76.579036 136.783062 142.312857 141.628454
23 0.023759 0.0029028 0.004215 0.004115 0.973 68 114 116 116 76.896778 137.638152 143.288185 142.592348
24 0.02446 0.0033344 0.004657 0.004559 0.974 69 115 118 117 77.213737 138.524315 144.299476 143.591958
25 0.025038 0.0038017 0.005027 0.004941 0.975 69 116 119 118 77.542286 139.443579 145.348349 144.630038
26 0.025491 0.004295 0.005516 0.005432 0.976 69 117 120 119 77.898215 140.398381 146.438861 145.710371
27 0.025822 0.0048069 0.005886 0.005814 0.977 70 118 121 120 78.245845 141.391647 147.575431 146.836889
28 0.026039 0.0053305 0.006366 0.0063 0.978 70 119 122 122 78.620657 142.426911 148.762704 148.010961
29 0.026144 0.0058591 0.006714 0.006663 0.979 71 120 123 123 79.011771 143.508448 150.006826 149.236869
30 0.026139 0.006386 0.007177 0.007133 0.980 71 122 125 124 79.41236 144.640713 151.310203 150.524509
31 0.026027 0.0069042 0.007503 0.007477 0.981 72 123 126 125 79.847287 145.821075 152.676153 151.88236
32 0.025811 0.007407 0.007936 0.007919 0.982 72 124 127 127 80.283247 147.06428 154.122186 153.304158
33 0.025498 0.0078877 0.008218 0.00822 0.983 73 125 129 128 80.76416 148.379688 155.642724 154.81524
34 0.025095 0.0083401 0.008613 0.008624 0.984 73 127 131 130 81.24942 149.760066 157.262323 156.410522
35 0.024612 0.0087585 0.008834 0.008864 0.985 74 129 132 132 81.781653 151.233763 158.982047 158.114155
36 0.024057 0.0091379 0.00919 0.009228 0.986 74 130 134 134 82.337485 152.793336 160.820865 159.937114
37 0.023436 0.009474 0.009335 0.009391 0.987 75 132 136 135 82.932193 154.465109 162.798249 161.893945
38 0.022759 0.0097633 0.009616 0.00968 0.988 76 134 138 138 83.583804 156.263378 164.93609 164.00686
39 0.022032 0.0100034 0.009693 0.009773 0.989 76 136 141 140 84.27324 158.207876 167.263513 166.303478
40 0.021263 0.0101924 0.009907 0.009993 0.990 77 138 143 142 85.023475 160.32738 169.806974 168.826005
41 0.020462 0.0103297 0.009913 0.010013 0.991 78 141 146 145 85.85201 162.659965 172.624109 171.610643
42 0.019635 0.0104154 0.010058 0.010161 0.992 79 143 149 148 86.772578 165.248301 175.773909 174.727469
43 0.01879 0.0104505 0.009983 0.010098 0.993 80 146 153 152 87.808431 168.166677 179.348931 178.259278
44 0.017933 0.0104367 0.010075 0.010189 0.994 81 150 157 156 89.000119 171.509621 183.471228 182.335949
45 0.017071 0.0103764 0.009937 0.01006 0.995 83 154 162 161 90.382488 175.438401 188.346474 187.154642
46 0.016208 0.0102727 0.009966 0.010086 0.996 85 159 168 167 92.069713 180.208906 194.296887 193.033592
47 0.015351 0.0101292 0.009765 0.00989 0.997 87 165 175 174 94.194891 186.301762 201.946224 200.583786
48 0.014505 0.0099497 0.009736 0.009854 0.998 90 174 186 185 97.148193 194.779398 212.658484 211.148685
49 0.013673 0.0097385 0.009489 0.009611 0.999 95 189 205 203 102.069895 208.9965 230.800975 229.027756

Table 5.7.: Some probabilistic values of the high dependence portfolio61
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0.950 0.955 0.960 0.965 0.970 0.975 0.980 0.985 0.990 0.995 1.000
50

100

150

200

mixture group scenario reference

Figure 5.7.: Value-at-Risk of the high dependence portfolio
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Figure 5.8.: Expected shortfall of the high dependence portfolio

mixture group scenario
13.458131 0.654849 0.099850

Table 5.8.: Wasserstein distances of the high dependence portfolio
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5.2. Portfolios

Unsurprisingly this is a portfolio where the scenario method can showcase its
strengths. It fits the reference distribution almost perfectly both in the quantiles
and in the expected shortfall.

The mixture approach on the other hand is completely out of its depth providing
no usable results other than the correct expected value, since it does not take into
account the dependence structure of this portfolio at all.

To see how bad the approximation of the mixture approach is, let us plot the
probabilities for loss sizes 0 to 50:
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6
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Figure 5.9.: Probabilities of the high dependence portfolio

The results of the group approach on the other hand are quite good. While not as
accurate as the scenario method, we have to consider that in contrast to the scenario
approach the group method does not increase the time of computation exponentially.

This portfolio is therefore a nice example why a hybrid approach combining the
accuracy of the scenario approach with the speed of the group approach should be
considered.
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5. Comparison

5.2.5. Massive guarantors
Structure

Number of guarantors 7 Number of groups 7000
s1,...,7 πs 10% gi=1,...,7000 pg 3%

cs idiosync. cg idiosync.
h1 Exposure Dirac(1)

Guarantor sdi/1000e
h2 Exposure Dirac(1)

Guarantor —

This portfolio is similar to the previous one since it has a high degree of dependence
between the guarantees, but instead of having multiple guarantors in each group we
have a substantial amount of groups being guaranteed by single guarantors.

Numerical results

The expected value all four methods return is 231.

7000 · 3% · (1 + 1 · 10%) = 231.

The next pages contain the raw results of each distribution.
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5.2.
Portfolios

q VaRm
q VaRg

q VaRs
q VaRr

q ESm
q ESg

q ESs
q ESr

q

0.950 259 286 285 285 265.814954 304.347751 302.632103 302.322029
0.951 259 286 285 285 265.954034 304.722195 302.991942 302.675539
0.952 259 286 286 285 266.09891 305.11224 303.359738 303.04378
0.953 259 287 286 286 266.249951 305.504593 303.729094 303.411034
0.954 259 287 286 286 266.407558 305.906867 304.114509 303.789535
0.955 259 288 287 287 266.572171 306.319025 304.49626 304.176138
0.956 260 288 287 287 266.732437 306.735366 304.893903 304.566505
0.957 260 289 288 288 266.889006 307.167586 305.295264 304.972619
0.958 260 289 288 288 267.05303 307.600147 305.707057 305.376729
0.959 260 290 289 288 267.225055 308.052859 306.128363 305.800551
0.960 260 290 289 289 267.405681 308.50418 306.556572 306.222733
0.961 261 291 290 289 267.586849 308.978044 306.998356 306.664341
0.962 261 291 290 290 267.760187 309.451151 307.445681 307.107655
0.963 261 292 291 290 267.942894 309.947128 307.90873 307.570024
0.964 261 292 291 291 268.135753 310.44566 308.378417 308.035415
0.965 261 293 292 291 268.339631 310.965108 308.863856 308.522141
0.966 262 293 292 292 268.535866 311.493493 309.359852 309.01094
0.967 262 294 293 293 268.733922 312.038298 309.869251 309.524102
0.968 262 294 293 293 268.944357 312.601994 310.396415 310.040481
0.969 262 295 294 294 269.168369 313.174756 310.93195 310.579404
0.970 263 296 295 294 269.391761 313.772054 311.492325 311.13205
0.971 263 296 295 295 269.612166 314.384884 312.061026 311.699638
0.972 263 297 296 296 269.848315 315.015067 312.651618 312.292903
0.973 263 298 297 296 270.101956 315.671371 313.268223 312.896344
0.974 264 298 297 297 270.34813 316.351039 313.893924 313.523909
0.975 264 299 298 298 270.602055 317.048364 314.547501 314.179122
0.976 264 300 299 298 270.87714 317.775143 315.229672 314.853252
0.977 265 301 299 299 271.161469 318.532533 315.93531 315.552207
0.978 265 302 300 300 271.441536 319.322037 316.665855 316.282852
0.979 265 303 301 301 271.748276 320.145574 317.430154 317.046647
0.980 266 303 302 302 272.068605 321.002852 318.230178 317.845475
0.981 266 304 303 302 272.388005 321.900608 319.06845 318.679447
0.982 266 305 304 303 272.742895 322.844298 319.948191 319.552962
0.983 267 306 305 304 273.099423 323.839172 320.873522 320.473786
0.984 267 308 306 305 273.480637 324.885481 321.849743 321.447403
0.985 268 309 307 307 273.890822 325.99428 322.883724 322.478063
0.986 268 310 308 308 274.311595 327.176412 323.984454 323.570199
0.987 269 311 309 309 274.777802 328.445813 325.163861 324.738796
0.988 269 313 311 310 275.259285 329.80089 326.426621 325.999404
0.989 270 314 312 312 275.789757 331.27547 327.789157 327.35542
0.990 270 316 314 313 276.368733 332.872916 329.275048 328.836228
0.991 271 318 316 315 276.98501 334.63391 330.909915 330.453432
0.992 272 320 317 317 277.680391 336.591525 332.714755 332.250452
0.993 273 322 320 319 278.463073 338.800435 334.742875 334.27089
0.994 274 325 322 322 279.350028 341.326218 337.057376 336.578818
0.995 275 328 325 325 280.375448 344.29415 339.767464 339.277257
0.996 276 332 328 328 281.611862 347.89225 343.046956 342.525564
0.997 278 337 333 332 283.179946 352.47659 347.188454 346.65754
0.998 280 343 339 338 285.324965 358.826188 352.913982 352.352359
0.999 284 354 349 348 288.85315 369.426966 362.410032 361.79443

Table 5.9.: Some quantile values of the massive guarantors portfolio65



5. Comparison

0.950 0.955 0.960 0.965 0.970 0.975 0.980 0.985 0.990 0.995 1.000

260

280

300

320

340

360

mixture group scenario reference

Figure 5.10.: Value-at-Risk of the massive guarantors portfolio
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Figure 5.11.: Expected shortfall of the massive guarantors portfolio

mixture group scenario
10.014764 0.319311 0.105173

Table 5.10.: Wasserstein distances of the massive guarantors portfolio
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5.2. Portfolios

Once again we see how ill-suited the mixture approach is for interdependent guar-
antees.

Similar to the previous portfolio the scenario distribution has the best fit, but here
the group distribution is even closer than in the high dependence portfolio, because
there is no dependence between the guarantors through shared groups anymore.

5.2.6. Complex portfolio with guarantor chains
Structure
Number of guarantors 3 Number of groups 5
s1 πs 2% gi=1,...,5 pg i%

cs idiosync. cg idiosync.
s2 πs 3% hk=1,...,15 Exposure Dirac(k)

cs idiosync. Guarantor S(i, k)
s3 πs 5%

cs idiosync.

where S(i, k) returns the following sequence1:(
s11{15(i−1)+k≡0 (2)}, s21{k≡0 (3)}, s31{k≡0 (5)}

)
(5.6)

This portfolio contains many different combinations of exposures, guarantors and
even guarantor chains. It aims to simulate a somewhat more realistic, albeit still
small portfolio.

The construction of S(i, k) guarantees that every possible combination of the
guarantors is present in the portfolio.

Numerical results

The expected value all four methods return is 4.770756.
The next pages contain the raw results of each distribution.

1Here we use the shorthand notation of parentheses for the modulo-operation.
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5.
C

om
parison

x P[Lm = x] P[Lg = x] P[Ls = x] P[Lr = x] q VaRm
q VaRg

q VaRs
q VaRr

q ESm
q ESg

q ESs
q ESr

q

0 0.860708 0.848545 0.860708 0.858278 0.950 32 32 32 32 41.999167 38.833187 41.999167 40.561927
1 0 0 0 0 0.951 32 32 32 32 42.203231 38.97264 42.203231 40.73666
2 0 0 0 0 0.952 32 32 32 32 42.415799 39.117903 42.415799 40.918674
3 0 0 0 0 0.953 32 32 32 32 42.637411 39.269348 42.637411 41.108433
4 0 0 0 0 0.954 32 32 32 32 42.86866 39.427377 42.86866 41.306442
5 0 0.003324 0 0 0.955 32 32 32 32 43.110185 39.59243 43.110185 41.513252
6 0 0 0 0 0.956 32 32 32 32 43.36269 39.764985 43.36269 41.729462
7 0 0 0 0 0.957 32 32 32 32 43.626938 39.945566 43.626938 41.955729
8 0 0 0 0 0.958 32 32 32 32 43.90377 40.134746 43.90377 42.19277
9 0 0 0 0 0.959 32 32 32 32 44.194106 40.333155 44.194106 42.441374

10 0 0.002403 0 0 0.960 32 32 32 32 44.498958 40.541483 44.498958 42.702409
11 0 0 0 0 0.961 32 32 32 32 44.819445 40.760496 44.819445 42.976829
12 0 0.001986 0 0 0.962 32 32 32 32 45.156798 40.991035 45.156798 43.265693
13 0 0 0 0 0.963 32 32 32 32 45.512388 41.234036 45.512388 43.570171
14 0 0 0 0 0.964 32 32 32 32 45.887732 41.490537 45.887732 43.891565
15 0 3.053E-04 0 0 0.965 32 32 32 32 46.284524 41.761695 46.284524 44.231324
16 0 0 0 0 0.966 32 32 32 32 46.704657 42.048804 46.704657 44.591069
17 0 7.836E-06 0 0 0.967 32 32 32 32 47.150253 42.353313 47.150253 44.972616
18 0 0.001342 0 0 0.968 32 32 32 32 47.623698 42.676854 47.623698 45.378011
19 0 0 0 0 0.969 32 32 32 32 48.127688 43.021269 48.127688 45.809559
20 0 8.201E-05 0 0 0.970 32 32 32 32 48.665278 43.388645 48.665278 46.269878
21 0 0 0 0 0.971 32 32 32 32 49.239943 43.781356 49.239943 46.761943
22 0 5.711E-06 0 0 0.972 32 32 32 32 49.855655 44.202119 49.855655 47.289155
23 0 5.345E-06 0 0 0.973 32 32 32 32 50.516975 44.65405 50.516975 47.85542
24 0 9.137E-05 0 0 0.974 32 32 32 32 51.229167 45.140744 51.229167 48.465244
25 0 7.516E-06 0 0 0.975 32 32 32 32 51.998334 45.666374 51.998334 49.123854
26 0 0 0 0 0.976 32 32 32 32 52.831597 46.235806 52.831597 49.837348
27 0 8.860E-06 0 0 0.977 32 32 32 32 53.737319 46.854754 53.737319 50.612884
28 0.046637 0.052217 0.046637 0.048113 0.978 37 32 37 32 54.566267 47.52997 54.566267 51.458925
29 0 3.598E-07 0 0 0.979 37 32 37 37 55.402756 48.269492 55.402756 52.382151
30 0 1.292E-04 0 0 0.980 37 32 37 37 56.322894 49.082967 56.322894 53.151259
31 0 0 0 0 0.981 38 32 38 37 57.338929 49.98207 57.338929 54.001325
32 0.069955 0.077236 0.069955 0.072595 0.982 38 32 38 37 58.413314 50.981074 58.413314 54.945843
33 0 2.139E-04 0 0 0.983 38 32 38 38 59.614097 52.097608 59.614097 55.990101
34 0 2.616E-07 0 0 0.984 44 32 44 38 60.7536 53.353709 60.7536 57.114482
35 0 6.908E-07 0 0 0.985 44 32 44 38 61.870507 54.777289 61.870507 58.388781
36 0 4.475E-05 0 0 0.986 46 32 46 44 63.089813 56.404238 63.089813 59.561761
37 0.003682 3.048E-04 0.003682 0.003821 0.987 46 32 46 44 64.404414 58.281488 64.404414 60.758819
38 0.002455 1.531E-04 0.002455 0.002532 0.988 56 37 56 46 65.140001 60.42006 65.140001 62.086058
39 0 4.175E-07 0 0 0.989 60 46 60 46 65.746061 62.245042 65.795376 63.548426
40 0 1.246E-04 0 0 0.990 60 56 60 60 66.320667 63.039133 66.374913 64.299114
41 0 1.795E-07 0 0 0.991 60 60 60 60 67.022964 63.78288 67.083237 64.776793
42 0 2.283E-04 0 0 0.992 60 60 60 60 67.900834 64.25574 67.968642 65.373893
43 0 1.926E-05 0 0 0.993 60 60 60 60 69.029525 64.863702 69.107019 66.141592
44 0.002164 1.821E-04 0.002164 0.002245 0.994 60 60 60 60 70.534445 65.67432 70.624855 67.16519
45 0 1.208E-06 0 0 0.995 64 60 60 60 72.28258 66.809183 72.749826 68.598228
46 0.001442 8.575E-05 0.001442 0.001488 0.996 64 64 64 60 74.353225 68.272543 75.0313 70.747785
47 0 2.811E-05 0 0 0.997 64 64 64 64 77.8043 69.696724 78.7084 74.035982
48 0 9.569E-06 0 0 0.998 69 64 64 64 84.075637 72.545086 86.062601 79.053973
49 0 7.291E-07 0 0 0.999 84 64 88 75 94.717647 81.090173 100.481119 92.15438

Table 5.11.: Some probabilistic values of the complex portfolio
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Figure 5.12.: Value-at-Risk of the complex portfolio
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Figure 5.13.: Expected shortfall of the complex portfolio

mixture group scenario
0.149157 0.213156 0.143724

Table 5.12.: Wasserstein distances of the complex portfolio
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5. Comparison

Here we see again the tendency of the group approach to generate losses with
values which according to the structure of the portfolio are impossible. However,
due to the size of the portfolio – 75 blocks – this is compensated by a lighter tail.

The scenario approximation is again the best approximation of the actual distri-
bution according to the Wasserstein distance, but we can see in Figure 5.12 and
Figure 5.13 that both the mixture method and the scenario method tend to overes-
timate the Value-at-Risk and even more so the expected shortfall.

5.2.7. Stochastic minimal portfolio

Until this point all portfolios discussed did not use any non-degenerate risk factors
and thus were deterministic. We begin our foray into stochastic portfolios with a
minimal viable portfolio, which has been pared down even in comparison to the
minimal portfolio discussed before.

Structure
Number of guarantors 1 Number of groups 1
s πs 10% g pg 4%

cs R cg R
h1 Exposure Dirac(1)

Number of risk factors 1 Guarantor s

R E[R] 1 h2 Exposure Dirac(1)
V[R] 1/4 Guarantor —

Expected value

The simplicity of this portfolio allows us to find an explicit expression for the ex-
pected values for some approaches and thus to show that each approach yields a
slightly different expected value.

To calculate the expected value of this portfolio we will use the notation of Sec-
tion 3.3. Thus Ng and Ns are the Poisson-distributed numbers of default, whereas
Bg and Bs are the Bernoulli-distributed default indicators.

Definition 5.7. Let M be the stochastic minimal portfolio – an ECR+-model with

• a single scenario,

• a single risk factor R ∼ Γ(α, β),

• a single default cause c,

• a trivial dependency matrix A = (ac,1) = (1),

• a single guarantor s with probability of default ps,
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5.2. Portfolios

• a single group g with probability of default pg, some obligor o and two guar-
antee blocks

(
Dirac(1), o, ()

)
and

(
Dirac(1), o, (s)

)
.

We define the Bernoulli parameters of default ρg and ρs as in Section 3.3.

Lemma 5.8. If E[R] = 1, then in the scenario approach the stochastic minimal
portfolio M has expected value

E[Ls] = pg
(
2− (1− ps)

α+1
α

)
. (5.9)

Proof. In the scenario approach the default intensities of guarantors are set to the
Bernoulli parameters ρs, but the groups are modelled with the full Poisson distri-
bution. Therefore the loss can be written as

L = Ng
(
1 + 1{Ns≥1}

)
.

Taking the expectation we get

E[L] = E[Ng] + E
[
Ng1{Ns≥1}

]
Conditioning on R and using the conditional independence of Ng and Ns

= pg + E
[
E[Ng |R]P(Ns ≥ 1 |R)

]
Applying the conditional distributions

= pg + E
[
pgR

(
1− e−ρsR

)]
= pg + pgE[R]− pgE

[
R e−ρsR

]
Using Lemma 3.6 and that E[R] = α

β = 1

= 2pg − pg
(

1 + ρs
β

)−(α+1)
.

Since by Remark 3.41 (1 + ρs
β )α = 1

1−ps , the result (5.9) follows. �

Lemma 5.10. In the reference model the stochastic minimal portfolio M has ex-
pected value

E[L] = 2pg − (1− ps) +
(
(1− ps)−

1/α + (1− pg)−
1/α − 1

)−α
. (5.11)

Proof. In the reference model the default intensities of both the groups and the
guarantors are set to the Bernoulli parameters and the loss can be expressed with
default indicators as

L = 1{Ng≥1}
(
1 + 1{Ns≥1}

)
.

71



5. Comparison

Taking the expectation yields

E[L] = P(Ng ≥ 1) + P(Ng ≥ 1, Ns ≥ 1)

Conditioning on R and using the conditional independence of Ng and Ns

= P(Ng ≥ 1) + E
[
P(Ng ≥ 1 |R)P(Ns ≥ 1 |R)

]
Using the conditional distribution of Ng and Ns

= 1− E
[

e−ρgR
]

+ E
[(

1− e−ρgR
)(

1− e−ρsR
)]

= 2 ·
(
1− E

[
e−ρgR

])
− E

[
e−ρsR

]
+ E

[
e−(ρg+ρs)R

]
Substituting the definition of pg and ps, and applying Lemma 3.6

= 2pg − (1− ps) +
(

1 + ρg + ρs
β

)−α
.

Using the explicit representation of ρg and ρs from Remark 3.41 allows to eliminate
the variable β and yields the stated result. �

Applying these lemmata to the parameters of this portfolio yields

E[Ls] = 0.0449359 and E[Lr] = 0.0449128,

which are exactly the values the implementation provides.
Since the mixture approach and group approach update the risk factors within

their groups, the expected loss of these models can be written down, but it is far less
succinct than the two presented. At the same time the two Equations (5.9) and (5.11)
already demonstrate that each approach will return a different expectation, as each
approach conditions the default numbers differently.

The expected values of the remaining two approaches are

E[Lm] = 0.0449134 and E[Lg] = 0.0449398,

Numerical results

The next pages contain the raw results of each distribution.
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Portfolios

x P[Lm = x] P[Lg = x] P[Ls = x] P[Lr = x] q VaRm
q VaRg

q VaRs
q VaRr

q ESm
q ESg

q ESs
q ESr

q

0 0.96098 0.95643 0.96098 0.96 0.950 0 0 0 0 0.88 0.898796 0.898717 0.898257
1 0.034253 0.042238 0.033405 0.035087 0.951 0 0 0 0 0.897959 0.917138 0.917058 0.916588
2 0.004569 0.001295 0.005459 0.004913 0.952 0 0 0 0 0.916667 0.936245 0.936164 0.935684
3 1.832E-04 3.583E-05 1.554E-05 0 0.953 0 0 0 0 0.93617 0.956165 0.956082 0.955592
4 1.417E-05 9.653E-07 1.367E-04 0 0.954 0 0 0 0 0.956522 0.976952 0.976867 0.976366
5 6.009E-07 2.570E-08 4.049E-09 0 0.955 0 0 0 0 0.977778 0.998662 0.998575 0.998063
6 3.608E-08 6.745E-10 3.113E-06 0 0.956 0 0 0 0 1.0 1.021359 1.02127 1.020746
7 1.564E-09 1.741E-11 8.073E-13 0 0.957 0 1 0 0 1.023256 1.031855 1.04502 1.044484
8 8.169E-11 4.424E-13 6.087E-08 0 0.958 0 1 0 0 1.047619 1.032614 1.069902 1.069353
9 3.552E-12 1.108E-14 1.377E-16 0 0.959 0 1 0 0 1.073171 1.033409 1.095997 1.095435

10 1.706E-13 2.743E-16 1.071E-09 0 0.960 0 1 0 0 1.1 1.034244 1.123397 1.122821
11 7.369E-15 6.721E-18 2.120E-20 0 0.961 1 1 1 1 1.127701 1.035122 1.151698 1.12597
12 3.354E-16 1.632E-19 1.746E-11 0 0.962 1 1 1 1 1.131062 1.036047 1.15569 1.129285
13 1.434E-17 3.934E-21 3.035E-24 0 0.963 1 1 1 1 1.134604 1.037021 1.159898 1.132779
14 6.295E-19 9.418E-23 2.683E-13 0 0.964 1 1 1 1 1.138343 1.038049 1.164339 1.136468
15 2.661E-20 2.240E-24 4.115E-28 0 0.965 1 1 1 1 1.142296 1.039136 1.169035 1.140367
16 1.139E-21 5.299E-26 3.935E-15 0 0.966 1 1 1 1 1.146481 1.040287 1.174006 1.144495
17 4.758E-23 1.247E-27 5.349E-32 0 0.967 1 1 1 1 1.15092 1.041508 1.179279 1.148874
18 1.998E-24 2.921E-29 5.559E-17 0 0.968 1 1 1 1 1.155636 1.042805 1.184882 1.153526
19 8.261E-26 6.811E-31 6.723E-36 0 0.969 1 1 1 1 1.160656 1.044186 1.190845 1.158478
20 3.418E-27 1.582E-32 7.611E-19 0 0.970 1 1 1 1 1.166011 1.045659 1.197207 1.163761
21 1.400E-28 3.661E-34 8.222E-40 0 0.971 1 1 1 1 1.171736 1.047233 1.204007 1.169408
22 5.724E-30 8.443E-36 1.015E-20 0 0.972 1 1 1 1 1.177869 1.04892 1.211293 1.175458
23 2.324E-31 1.941E-37 9.828E-44 0 0.973 1 1 1 1 1.184457 1.050732 1.219119 1.181957
24 9.414E-33 4.448E-39 1.324E-22 0 0.974 1 1 1 1 1.191552 1.052683 1.227547 1.188955
25 3.793E-34 1.017E-40 1.152E-47 0 0.975 1 1 1 1 1.199214 1.054791 1.236648 1.196513
26 1.524E-35 2.317E-42 1.694E-24 0 0.976 1 1 1 1 1.207514 1.057074 1.246509 1.204701
27 6.099E-37 5.269E-44 0 0 0.977 1 1 1 1 1.216537 1.059555 1.257227 1.213601
28 2.434E-38 1.195E-45 2.130E-26 0 0.978 1 1 1 1 1.226379 1.062262 1.268919 1.223311
29 9.681E-40 2.706E-47 0 0 0.979 1 1 1 1 1.237159 1.065227 1.281724 1.233944
30 3.841E-41 0 2.639E-28 0 0.980 1 1 1 1 1.249017 1.068488 1.29581 1.245642
31 1.519E-42 0 0 0 0.981 1 1 1 1 1.262123 1.072093 1.311379 1.25857
32 5.997E-44 0 3.228E-30 0 0.982 1 1 1 1 1.276686 1.076098 1.328678 1.272935
33 2.361E-45 0 0 0 0.983 1 1 1 1 1.292961 1.080575 1.348012 1.28899
34 9.275E-47 0 3.901E-32 0 0.984 1 1 1 1 1.311272 1.08561 1.369763 1.307052
35 3.635E-48 0 0 0 0.985 1 1 1 1 1.332023 1.091318 1.394414 1.327522
36 1.422E-49 0 4.665E-34 0 0.986 1 1 1 1 1.355739 1.097841 1.422586 1.350917
37 0 0 0 0 0.987 1 1 1 1 1.383103 1.105367 1.455093 1.37791
38 0 0 5.526E-36 0 0.988 1 1 1 1 1.415029 1.114147 1.493017 1.409403
39 0 0 0 0 0.989 1 1 1 1 1.452759 1.124524 1.537837 1.446621
40 0 0 6.489E-38 0 0.990 1 1 1 1 1.498034 1.136977 1.591621 1.491283
41 0 0 0 0 0.991 1 1 1 1 1.553372 1.152196 1.657357 1.54587
42 0 0 7.560E-40 0 0.992 1 1 1 1 1.622543 1.171221 1.739526 1.614104
43 0 0 0 0 0.993 1 1 1 1 1.711478 1.195681 1.845173 1.701833
44 0 0 8.744E-42 0 0.994 1 1 1 1 1.830057 1.228295 1.986035 1.818805
45 0 0 0 0 0.995 1 1 2 1 1.996069 1.273954 2.060369 1.982567
46 0 0 1.005E-43 0 0.996 2 1 2 2 2.053363 1.342442 2.075461 2.0
47 0 0 0 0 0.997 2 1 2 2 2.071151 1.456589 2.100615 2.0
48 0 0 1.147E-45 0 0.998 2 1 2 2 2.106727 1.684884 2.150922 2.0
49 0 0 0 0 0.999 2 2 2 2 2.213454 2.037841 2.301844 2.0

Table 5.13.: Some probabilistic values of the stochastic minimal portfolio73
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Figure 5.14.: Value-at-Risk of the stochastic minimal portfolio
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Figure 5.15.: Expected shortfall of the stochastic minimal portfolio

mixture group scenario
0.001940 0.007188 0.001837

Table 5.14.: Wasserstein distances of the stochastic minimal portfolio
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5.2. Portfolios

Similar to the deterministic minimal portfolio, the group approach struggles with
such a simplistic portfolio. It models the single guarantee with two Poisson-approximations
in series, which only exacerbates the model error due to repeat defaults.

The fact that the mixture approach is nearer to the reference distribution than
the scenario approach is again due to the fact that repeat defaults in the scenario
approach are forced to repeat their losses, thus increasing the chances of more ex-
pensive losses due to repeat defaults.

5.2.8. Stochastic multiple guarantors
We skip a “stochastic multiple groups” portfolio, since the differences to the deter-
ministic portfolio would be too minuscule to warrant a separate paragraph.

Instead we proceed immediately to multiple guarantors in multiple groups.

Structure
Number of guarantors 5 Number of groups 10
si=1,...,5 πs i% gi=1,...,5 pg 4%

cs R cg R
h1 Exposure Dirac(2)

Number of risk factors 1 Guarantor si
R E[R] 1 h2 Exposure Dirac(1)

V[R] v Guarantor —
g6,...,10 pg 4%

cg R
h1 Exposure Dirac(3)

Guarantor —

Simply replacing the idiosyncratic risk factor with a stochastic one merely varies the
resulting distribution, but does not affect to overall shape of the loss distribution.

Therefore we do not reproduce all possible distributions with all their results.
Instead we evaluate the group model (as it had the best results in the deterministic
model) with various levels for the risk factor’s variance.
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5.
C

om
parison

P V[R] = 1 V[R] = 1/2 V[R] = 1/4 V[R] = 1/8 V[R] = 1/50 V[R] = 0 ESq V[R] = 1 V[R] = 1/2 V[R] = 1/4 V[R] = 1/8 V[R] = 1/50 V[R] = 0

0 0.7086527 0.6895073 0.6785313 0.672619 0.667409 0.666389 0.950 6.04938 5.492506 5.211723 5.071943 4.931126 4.897844
1 0.1004377 0.1145086 0.1231664 0.128018 0.132407 0.133278 0.951 6.091204 5.522965 5.236452 5.09382 4.970537 4.936575
2 0.0195087 0.0189838 0.0183058 0.017807 0.017282 0.017169 0.952 6.134771 5.554693 5.262212 5.116607 4.995157 4.972147
3 0.1039501 0.1172638 0.1254177 0.129983 0.134114 0.134935 0.953 6.180191 5.587772 5.289067 5.140365 5.01633 4.992831
4 0.0294123 0.0290922 0.0283262 0.027702 0.027015 0.026865 0.954 6.227587 5.622289 5.31709 5.165156 5.038424 5.014414
5 0.0077496 0.0060105 0.0048429 0.004177 0.003577 0.003458 0.955 6.277089 5.65834 5.346359 5.191048 5.0615 5.036957
6 0.0160735 0.0153310 0.0146542 0.014205 0.013757 0.013663 0.956 6.328841 5.696029 5.376958 5.218117 5.085625 5.060524
7 0.0065504 0.0049578 0.0039191 0.003334 0.002811 0.002708 0.957 6.383 5.735472 5.40898 5.246446 5.110873 5.085187
8 0.0021699 0.0012211 7.560E-04 5.412E-04 3.773E-04 3.483E-04 0.958 6.439738 5.776792 5.442527 5.276123 5.137322 5.111025
9 0.0026386 0.0018328 0.0013871 0.001156 9.600E-04 9.224E-04 0.959 6.499244 5.820129 5.477711 5.307248 5.165061 5.138123

10 0.0013260 7.107E-04 4.233E-04 2.947E-04 1.988E-04 1.820E-04 0.960 6.561725 5.865632 5.514654 5.339929 5.194188 5.166577
11 5.167E-04 2.018E-04 9.065E-05 5.117E-05 2.705E-05 2.339E-05 0.961 6.62741 5.913469 5.553491 5.374286 5.224808 5.196489
12 4.584E-04 2.116E-04 1.164E-04 7.813E-05 5.126E-05 4.671E-05 0.962 6.695543 5.963823 5.594372 5.410452 5.25704 5.227975
13 2.580E-04 9.270E-05 3.936E-05 2.135E-05 1.074E-05 9.173E-06 0.963 6.741368 6.0169 5.637464 5.448572 5.291014 5.261164
14 1.138E-04 2.956E-05 9.232E-06 3.942E-06 1.481E-06 1.178E-06 0.964 6.78974 6.072925 5.682949 5.48881 5.326876 5.296196
15 8.330E-05 2.410E-05 9.055E-06 4.635E-06 2.233E-06 1.892E-06 0.965 6.840875 6.132151 5.731033 5.531347 5.364786 5.33323
16 4.944E-05 1.142E-05 3.310E-06 1.343E-06 4.732E-07 3.699E-07 0.966 6.895018 6.194861 5.781946 5.576387 5.404927 5.372443
17 2.388E-05 4.000E-06 8.405E-07 2.624E-07 6.610E-08 4.750E-08 0.967 6.952443 6.261372 5.835944 5.624156 5.447501 5.414032
18 1.562E-05 2.735E-06 6.689E-07 2.497E-07 8.261E-08 6.390E-08 0.968 7.013457 6.33204 5.893317 5.674911 5.492735 5.458221
19 9.440E-06 1.357E-06 2.590E-07 7.601E-08 1.769E-08 1.243E-08 0.969 7.078407 6.407267 5.954392 5.728941 5.540888 5.50526
20 4.863E-06 5.126E-07 7.048E-08 1.563E-08 2.503E-09 1.595E-09 0.970 7.138061 6.466034 6.019538 5.786572 5.592251 5.555435
21 2.985E-06 3.100E-07 4.764E-08 1.249E-08 2.670E-09 1.850E-09 0.971 7.177304 6.516587 6.089178 5.848178 5.647156 5.609071
22 1.805E-06 1.574E-07 1.922E-08 3.958E-09 5.773E-10 3.583E-10 0.972 7.219351 6.57075 6.163791 5.914184 5.705983 5.666538
23 9.719E-07 6.315E-08 5.553E-09 8.529E-10 8.265E-11 4.594E-11 0.973 7.264512 6.628926 6.243932 5.98508 5.769167 5.728262
24 5.767E-07 3.510E-08 3.301E-09 5.890E-10 7.691E-11 4.685E-11 0.974 7.313147 6.691577 6.320525 6.061429 5.837212 5.794733
25 3.463E-07 1.795E-08 1.369E-09 1.928E-10 1.677E-11 9.034E-12 0.975 7.365673 6.75924 6.373347 6.143886 5.910701 5.866522
26 1.920E-07 7.553E-09 4.164E-10 4.337E-11 2.430E-12 1.158E-12 0.976 7.422576 6.806134 6.430569 6.233215 5.990313 5.944294
27 1.120E-07 3.967E-09 2.239E-10 2.648E-11 2.006E-12 1.055E-12 0.977 7.484427 6.841184 6.492768 6.292464 6.076849 6.028829
28 6.667E-08 2.026E-09 9.439E-11 8.889E-12 4.409E-13 2.025E-13 0.978 7.551901 6.879419 6.560621 6.351212 6.171251 6.121048
29 3.767E-08 8.837E-10 3.002E-11 2.079E-12 6.461E-14 2.593E-14 0.979 7.625801 6.921297 6.615433 6.415556 6.237806 6.204698
30 2.181E-08 4.469E-10 1.492E-11 1.144E-12 4.792E-14 2.139E-14 0.980 7.707091 6.967361 6.646204 6.486334 6.299697 6.264933
31 1.288E-08 2.267E-10 6.344E-12 3.915E-13 1.061E-14 4.085E-15 0.981 7.796938 7.018275 6.680215 6.528073 6.368102 6.331508
32 7.358E-09 1.017E-10 2.096E-12 9.490E-14 1.572E-15 5.230E-16 0.982 7.896768 7.074846 6.718005 6.55741 6.433172 6.405481
33 4.248E-09 5.016E-11 9.798E-13 4.780E-14 1.059E-15 3.941E-16 0.983 8.008342 7.138072 6.760241 6.590199 6.458653 6.434859
34 2.493E-09 2.522E-11 4.175E-13 1.659E-14 2.360E-16 7.494E-17 0.984 8.133864 7.209202 6.807756 6.627086 6.487319 6.462038
35 1.434E-09 1.154E-11 1.424E-13 4.152E-15 3.535E-17 9.588E-18 0.985 8.276121 7.289815 6.861606 6.668892 6.519807 6.49284
36 8.275E-10 5.606E-12 6.352E-14 1.940E-15 2.184E-17 6.659E-18 0.986 8.42332 7.381945 6.923149 6.71667 6.556936 6.528043
37 4.833E-10 2.792E-12 2.701E-14 6.798E-16 4.893E-18 1.260E-18 0.987 8.532806 7.488248 6.994161 6.771798 6.599777 6.568662
38 2.792E-10 1.296E-12 9.464E-15 1.752E-16 7.406E-19 1.612E-19 0.988 8.660539 7.612269 7.077007 6.836115 6.649759 6.61605
39 1.612E-10 6.237E-13 4.070E-15 7.681E-17 4.228E-19 1.039E-19 0.989 8.811498 7.758839 7.174917 6.912125 6.708828 6.672055
40 9.383E-11 3.080E-13 1.722E-15 2.707E-17 9.518E-20 1.957E-20 0.990 8.992647 7.934723 7.292409 7.003338 6.77971 6.73926
41 5.430E-11 1.444E-13 6.170E-16 7.160E-18 1.455E-20 2.501E-21 0.991 9.214053 8.11605 7.43601 7.11482 6.866345 6.8214
42 3.137E-11 6.909E-14 2.581E-16 2.974E-18 7.729E-21 1.505E-21 0.992 9.490809 8.255556 7.615511 7.254172 6.974638 6.924075
43 1.823E-11 3.385E-14 1.085E-16 1.051E-18 1.747E-21 2.821E-22 0.993 9.751648 8.434922 7.846298 7.43334 7.113872 7.056086
44 1.056E-11 1.598E-14 3.957E-17 2.846E-19 2.698E-22 3.604E-23 0.994 10.04359 8.674075 8.02812 7.67223 7.299517 7.232101
45 6.106E-12 7.622E-15 1.621E-17 1.129E-19 1.340E-22 2.034E-23 0.995 10.3513 9.00889 8.233743 7.909083 7.559421 7.478521
46 3.543E-12 3.710E-15 6.758E-18 3.991E-20 3.041E-23 3.797E-24 0.996 10.689125 9.424873 8.542179 8.136354 7.839223 7.787314
47 2.053E-12 1.759E-15 2.503E-18 1.104E-20 4.740E-24 4.848E-25 0.997 11.252167 9.858553 9.056239 8.515138 8.118964 8.049752
48 1.188E-12 8.375E-16 1.009E-18 4.213E-21 2.215E-24 2.579E-25 0.998 11.94501 10.287829 9.626024 9.195891 8.678445 8.574629
49 6.889E-13 4.054E-16 4.172E-19 1.486E-21 5.039E-25 4.791E-26 0.999 13.32556 11.284637 10.252049 9.779339 9.47522 9.426536

Table 5.15.: Probabilities and expected shortfall for various variances
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Figure 5.16.: Probability of default for various variances
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Figure 5.17.: Expected shortfall for various variances

V[R] = 1 V[R] = 1/2 V[R] = 1/4 V[R] = 1/8 V[R] = 1/50 V[R] = 0
1.07799 1.08517 1.08550 1.08441 1.08265 1.08221

Table 5.16.: The entropy of the loss distribution for various variances
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5. Comparison

The main pattern is clearly visible: the higher the variance, the higher the prob-
ability of repeat defaults and thus a fatter tail of the loss distribution, as evidenced
by a markedly higher expected shortfall. To compensate this, the probability of
no loss increases alongside the variance. Further the entropy2 of the distribution
decreases with increasing variance. This means that as the risk factor becomes more
unpredictable, the guarantors and groups, which depend on it, have a higher chance
of clustering.

5.2.9. Stochastic high dependence
Structure
Number of guarantors 7 Number of groups 301
si=0,...,6 πs 10% gk=1,...,301 pg 3%

cs idiosync. cg idiosync.
hi=1,...,7 Exposure Dirac(i)

Number of risk factors 1 Guarantor s(i+k) mod 7

R E[R] 1 h8 Exposure Dirac(1)
V[R] 1/4 Guarantor —

This portfolio is the stochastic counterpart to Section 5.2.4.

Numerical results

As discussed above, the expected value depends on the method of the computation:

reference mixture scenario groups
39.906931 40.122733 40.254331 40.229603

The next pages contain the raw results of each distribution.

2See Definition A.3
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Portfolios

x P[Lm = x] P[Lg = x] P[Ls = x] P[Lr = x] q VaRm
q VaRg

q VaRs
q VaRr

q ESm
q ESg

q ESs
q ESr

q

0 0.008881 0.0072079 0.008881 0.008427 0.950 91 137 147 145 111.090519 178.978279 216.022621 209.697568
1 0.0104855 0.0189669 0.018628 0.017941 0.951 92 138 148 147 111.484316 179.83107 217.422115 210.999769
2 0.0089962 0.0311962 0.031262 0.030422 0.952 92 139 149 148 111.890239 180.70078 218.854036 212.327187
3 0.007684 0.0410536 0.04075 0.040041 0.953 93 140 151 149 112.303843 181.587989 220.315622 213.684667
4 0.0074179 0.0472814 0.046875 0.046443 0.954 93 140 152 151 112.723492 182.492076 221.81176 215.072853
5 0.0078888 0.0498005 0.049317 0.049222 0.955 94 141 154 152 113.157136 183.415413 223.343796 216.489446
6 0.0089189 0.0491963 0.048795 0.048983 0.956 94 142 155 153 113.592526 184.358846 224.910709 217.94112
7 0.0102599 0.0463153 0.046084 0.046482 0.957 95 143 157 155 114.04662 185.323261 226.518284 219.424683
8 0.0119331 0.0420075 0.042109 0.042601 0.958 95 144 158 156 114.500111 186.309641 228.163788 220.945404
9 0.0125723 0.0369958 0.036742 0.037291 0.959 96 145 160 158 114.975286 187.319074 229.853252 222.502022

10 0.0127869 0.031829 0.032107 0.032593 0.960 96 147 161 159 115.449668 188.351765 231.586848 224.09979
11 0.0130027 0.0268836 0.027267 0.027678 0.961 97 148 163 161 115.946832 189.408757 233.366178 225.735822
12 0.013455 0.0223893 0.023114 0.023407 0.962 97 149 165 163 116.445433 190.492209 235.196291 227.417173
13 0.013995 0.0184623 0.01938 0.019576 0.963 98 150 166 164 116.965856 191.603745 237.078759 229.143905
14 0.014599 0.015138 0.016313 0.016399 0.964 98 151 168 166 117.492686 192.745182 239.014229 230.916959
15 0.015075 0.0123983 0.013688 0.013703 0.965 99 152 170 168 118.038105 193.918553 241.008668 232.741697
16 0.015446 0.0101939 0.011655 0.011593 0.966 99 154 172 170 118.598049 195.124335 243.065282 234.620633
17 0.01571 0.0084599 0.009909 0.009814 0.967 100 155 174 172 119.17082 196.362043 245.18769 236.55662
18 0.015924 0.0071266 0.008848 0.00871 0.968 101 156 176 174 119.767805 197.638499 247.379995 238.552883
19 0.016143 0.0061266 0.007773 0.007626 0.969 101 158 178 176 120.373218 198.955744 249.646892 240.613096
20 0.016346 0.0053979 0.00716 0.007 0.970 102 159 180 178 121.001926 200.310239 251.993792 242.74148
21 0.016517 0.0048863 0.006585 0.006433 0.971 103 160 183 180 121.656215 201.713308 254.425066 244.942943
22 0.01665 0.0045453 0.006296 0.006146 0.972 103 162 185 182 122.322509 203.160042 256.946591 247.223215
23 0.016735 0.0043364 0.005994 0.005862 0.973 104 163 187 185 123.015525 204.661769 259.568745 249.587698
24 0.016776 0.004228 0.005906 0.005782 0.974 105 165 190 187 123.7369 206.213333 262.294614 252.040101
25 0.016785 0.0041949 0.005728 0.005626 0.975 105 167 193 190 124.486376 207.826935 265.137785 254.592761
26 0.016768 0.004217 0.005812 0.005718 0.976 106 168 195 192 125.257857 209.505037 268.103595 257.247417
27 0.016727 0.0042783 0.005717 0.005642 0.977 107 170 198 195 126.062909 211.248655 271.204764 260.017101
28 0.016659 0.0043667 0.005813 0.005747 0.978 108 172 201 198 126.903508 213.068379 274.454293 262.910801
29 0.016564 0.0044725 0.005747 0.005699 0.979 109 174 204 201 127.782125 214.970473 277.866746 265.939055
30 0.016444 0.0045884 0.005847 0.005808 0.980 110 176 208 204 128.701842 216.962651 281.456481 269.115012
31 0.016301 0.0047088 0.005803 0.005779 0.981 111 178 211 207 129.66651 219.054458 285.244696 272.45497
32 0.016137 0.0048296 0.005907 0.00589 0.982 112 181 215 211 130.680956 221.255586 289.252272 275.97294
33 0.015955 0.0049475 0.005859 0.005856 0.983 113 183 219 215 131.751267 223.57582 293.505981 279.692323
34 0.015755 0.0050603 0.005965 0.005967 0.984 114 186 223 219 132.885179 226.03732 298.036313 283.633657
35 0.01554 0.0051663 0.005905 0.005919 0.985 115 188 228 223 134.092619 228.647603 302.88066 287.824525
36 0.01531 0.0052643 0.006014 0.006031 0.986 117 191 233 227 135.370648 231.434664 308.08329 292.301556
37 0.015066 0.0053534 0.005932 0.00596 0.987 118 194 238 232 136.745208 234.422917 313.696482 297.099702
38 0.014811 0.0054331 0.006011 0.006041 0.988 120 197 243 238 138.225667 237.645581 319.792557 302.269478
39 0.014546 0.0055031 0.005919 0.005959 0.989 121 201 250 244 139.833149 241.135894 326.453221 307.873557
40 0.014271 0.0055634 0.005981 0.006022 0.990 123 205 257 250 141.581922 244.9525 333.792858 313.984178
41 0.013989 0.0056138 0.005878 0.005928 0.991 125 209 264 257 143.512156 249.161428 341.955216 320.704007
42 0.013699 0.0056547 0.005923 0.005974 0.992 127 214 273 265 145.666196 253.851424 351.14008 328.161976
43 0.013404 0.0056862 0.005799 0.005857 0.993 130 220 283 274 148.08922 259.155785 361.629606 336.533825
44 0.013105 0.0057085 0.005841 0.005899 0.994 133 226 294 285 150.880996 265.252801 373.833094 346.072415
45 0.012801 0.005722 0.005715 0.005781 0.995 136 233 308 297 154.1661 272.438098 388.393465 357.143105
46 0.012495 0.0057272 0.005743 0.005807 0.996 140 242 325 312 158.165653 281.193543 406.394146 370.331987
47 0.012187 0.0057243 0.005609 0.005679 0.997 146 254 348 331 163.289053 292.424178 429.88161 386.637418
48 0.011878 0.0057139 0.005622 0.00569 0.998 153 270 380 358 170.440229 308.141212 463.50301 408.010338
49 0.011568 0.0056963 0.005488 0.005561 0.999 165 297 436 400 182.528559 334.747092 522.336013 439.253144

Table 5.17.: Some probabilistic values of the stochastic high dependence portfolio79



5. Comparison
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Figure 5.18.: Value-at-Risk of the stochastic high dependence portfolio
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Figure 5.19.: Expected shortfall of the stochastic high dependence portfolio

mixture group scenario
17.181829 3.699885 0.430873

Table 5.18.: Wasserstein distances of the stochastic high dependence portfolio
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5.2. Portfolios

The most notable difference to the idiosyncratic version of this portfolio is the
nearly fivefold increase of the Wasserstein distance between the best approach -
the scenarios – and the reference distribution. The added risk factor creates a
dependence between the guarantors and groups, thus increasing the clustering of
the loss.

The two charts above illustrate again the tendency of the scenario approach to
overestimate high quantiles because of the high-valued repeat defaults. The group
approach’s quicker decline of accuracy highlights again the pitfalls of removing the
guarantees from their respective groups, whereas the mixture approach is still com-
pletely unable to capture the structure of the loss.

In order to compare with the idiosyncratic case we also include a chart of the
probability mass functions of each loss distribution:

0 5 10 15 20 25 30 35 40 45 50
0

1

2
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4

5

·10−2

mixture group scenario reference

Figure 5.20.: Probabilities of the stochastic high dependence portfolio
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5. Comparison

5.2.10. Stochastic complex portfolio
Structure

For our final portfolio we expand the previous “complex portfolio” by adding multiple
risk factors.

Number of guarantors 3 Number of groups 5
s1 πs 2% gi=1,...,5 pg i%

cs 6 cg i
s2 πs 3% hk=1,...,15 Exposure Dirac(k)

cs 7 Guarantor S(i, k)
s3 πs 5%

cs 8

Number of risk factors 3 Scenario-Matrix A
R1 Expected value 1 c R1 R2 R3

Variance 1/2 1 1/2 1/2 0
R2 Expected value 1 2 1/2 0 1/2

Variance 1/3 3 0 1/2 1/2
R3 Expected value 1 4 1/3 1/3 1/3

Variance 1/4 5 1/2 1/3 1/6
6 1 0 0
7 0 1 0
8 0 0 1

The function S(i, k) is defined as in Equation (5.6).

Numerical results

As described before, the computed expected value depends on the choice of method:

reference mixture scenario groups
4.79776 4.79777 4.79838 4.79839

The next pages contain the raw results of each distribution.
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5.2.
Portfolios

x P[Lm = x] P[Lg = x] P[Ls = x] P[Lr = x] q VaRm
q VaRg

q VaRs
q VaRr

q ESm
q ESg

q ESs
q ESr

q

0 0.8610686 0.8477453 0.861069 0.859139 0.950 32 32 32 32 42.714838 39.165621 42.732399 41.565218
1 0 0 0 0 0.951 32 32 32 32 42.933508 39.311858 42.951427 41.760427
2 0 0 0 0 0.952 32 32 32 32 43.161289 39.464189 43.179582 41.963769
3 0 0 0 0 0.953 32 32 32 32 43.398764 39.623001 43.417446 42.175764
4 0 0 0 0 0.954 32 32 32 32 43.646563 39.788719 43.665651 42.396976
5 0 0.0034707 0 0 0.955 32 32 32 32 43.905375 39.961801 43.924888 42.62802
6 0 0 0 0 0.956 32 32 32 32 44.175952 40.142751 44.195908 42.869566
7 0 0 0 0 0.957 32 32 32 32 44.459114 40.332118 44.479534 43.122347
8 0 0 0 0 0.958 32 32 32 32 44.755759 40.530501 44.776665 43.387164
9 0 0 0 0 0.959 32 32 32 32 45.066875 40.738562 45.088291 43.6649

10 0 0.002604 0 0 0.960 32 32 32 32 45.393547 40.957026 45.415499 43.956523
11 0 0 0 0 0.961 32 32 32 32 45.736971 41.186694 45.759486 44.2631
12 0 0.0021982 0 0 0.962 32 32 32 32 46.098471 41.428449 46.121578 44.585813
13 0 0 0 0 0.963 32 32 32 32 46.47951 41.683272 46.503242 44.92597
14 0 0 0 0 0.964 32 32 32 32 46.881719 41.952252 46.90611 45.285025
15 0 3.515E-04 0 0 0.965 32 32 32 32 47.306911 42.236602 47.331998 45.664597
16 0 0 0 0 0.966 32 32 32 32 47.757114 42.537678 47.78294 46.066497
17 0 9.084E-06 0 0 0.967 32 32 32 32 48.234603 42.857002 48.26121 46.492755
18 0 0.0014124 0 0 0.968 32 32 32 32 48.741934 43.196283 48.769373 46.945653
19 0 0 0 0 0.969 32 32 32 32 49.281996 43.557454 49.310321 47.427771
20 0 1.039E-04 0 0 0.970 32 32 32 32 49.858063 43.942702 49.887332 47.94203
21 0 0 0 0 0.971 32 32 32 32 50.473858 44.354519 50.504136 48.491755
22 0 6.876E-06 0 0 0.972 32 32 32 32 51.133639 44.795752 51.164998 49.080747
23 0 5.911E-06 0 0 0.973 32 32 32 32 51.842292 45.269669 51.874813 49.713367
24 0 1.207E-04 0 0 0.974 32 32 32 32 52.605457 45.780041 52.639229 50.39465
25 0 1.017E-05 0 0 0.975 32 32 32 32 53.429675 46.331242 53.464798 51.130436
26 0 0 0 0 0.976 37 32 37 32 54.285164 46.928377 54.356655 51.927538
27 0 1.154E-05 0 0 0.977 37 32 37 32 55.036692 47.577437 55.111292 52.793952
28 0.045943 0.0521034 0.04601 0.047016 0.978 37 32 37 37 55.856542 48.285503 55.934533 53.568451
29 0 4.980E-07 0 0 0.979 37 32 37 37 56.754473 49.061003 56.836177 54.357425
30 0 1.552E-04 0 0 0.980 38 32 38 37 57.726169 49.914053 57.818678 55.225297
31 0 0 0 0 0.981 38 32 38 37 58.764388 50.856898 58.861767 56.184523
32 0.068809 0.0768142 0.068909 0.071094 0.982 38 32 38 38 59.917965 51.904503 60.020754 57.205809
33 0 2.254E-04 0 0 0.983 44 32 44 38 60.972865 53.075356 61.121587 58.335562
34 0 3.763E-07 0 0 0.984 44 32 44 44 62.033669 54.392566 62.191686 59.566675
35 0 9.472E-07 0 0 0.985 46 32 46 44 63.20304 55.885404 63.382978 60.604453
36 0 5.588E-05 0 0 0.986 46 32 46 44 64.431829 57.591504 64.62462 61.790485
37 0.003859 3.178E-04 0.003826 0.00395 0.987 56 32 56 46 65.29544 59.560081 65.553555 63.060638
38 0.002656 1.672E-04 0.002635 0.002695 0.988 60 40 60 56 65.96468 61.530631 66.313295 64.400514
39 0 6.527E-07 0 0 0.989 60 56 60 60 66.506924 62.841108 66.887231 65.054224
40 0 1.384E-04 0 0 0.990 60 56 60 60 67.157616 63.525219 67.575954 65.559646
41 0 2.372E-07 0 0 0.991 60 60 60 60 67.952907 64.187159 68.417727 66.177385
42 0 2.495E-04 0 0 0.992 60 60 60 60 68.94702 64.710553 69.469943 66.949558
43 0 2.236E-05 0 0 0.993 60 60 60 60 70.225166 65.38349 70.822791 67.942352
44 0.002418 2.011E-04 0.00239 0.002467 0.994 60 60 60 60 71.92936 66.280738 72.62659 69.266077
45 0 1.655E-06 0 0 0.995 64 60 64 60 73.602992 67.536885 74.882319 71.119292
46 0.001526 9.120E-05 0.001506 0.001541 0.996 64 64 64 60 76.00374 68.872836 77.602899 73.899115
47 0 3.238E-05 0 0 0.997 64 64 64 64 80.004986 70.497115 82.137198 77.61983
48 0 1.280E-05 0 0 0.998 70 64 64 64 86.554677 73.745672 91.205797 84.429745
49 0 8.485E-07 0 0 0.999 88 64 88 75 96.33958 83.491344 104.891108 99.182248

Table 5.19.: Some probabilistic values of the stochastic complex portfolio83



5. Comparison
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Figure 5.21.: Value-at-Risk of the stochastic complex portfolio
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Figure 5.22.: Expected shortfall of the stochastic complex portfolio

mixture group scenario
0.124676 0.280103 0.116095

Table 5.20.: Wasserstein distances of the stochastic complex portfolio
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5.3. Conclusions

5.3. Conclusions
Multiple portfolios have been presented, discussed and compared.

Each portfolio tried to underscore either a specific aspect of one of the approaches
introduced in this paper or some general characteristics common to many actual
credit portfolios. (Such as guarantors who guarantee a significant portion of the
portfolio or having multiple guarantor covering a single exposure.)

With the exception of the multiple guarantor portfolio the scenario method proved
to be the best approximation throughout, which given the construction of each
approach is hardly surprising. None of the portfolios was able to throw it off entirely.
This does not, however, mean that the scenario method is the be-all and end-all
of guarantor-computing methods. As good as it is – its exponentially increasing
runtime renders it prohibitively slow for any portfolio of realistic dimensions with a
non-negligible number of guarantors.

The group method has proven to be a good contender. While certainly off from the
reference distribution more often than not and even underperforming the mixture
method several times in these examples, it never suffered such terrible runaway
results as the mixture approach. Therefore this approach would be advisable if
there are too many guarantors for the scenario approach and they are too connected
to use the mixture method. Usually at least the order of magnitude of the quantiles
should be correct.

Finally we examine the mixture method. As long as the guarantors and their guar-
antees are not too much interconnected this method provides fairly good results, but
it falls completely flat as soon as the dependence structure becomes more complex
and especially when the structure becomes more intertwined. (See Figure 5.20 for
an illustration of such an outlier of result.) In realistic portfolios – especially when
the actual dependence structure of the guarantees is not clear – this approach should
only be used as a last resort.

All these results only reinforce the point made in Section 4.5 about the importance
of the hybrid approach. Only by combining the strengths of each of the approaches
to compensate for the weaknesses of the other will a method of computing a good
approximation of the loss distribution emerge. Unfortunately the decision regarding
which guarantors or groups to compute with which method is far from a trivial
question and in fact still a topic of research.
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6. Outlook

As already noted in the previous section, the biggest open topic in the area of
guarantees within the CreditRisk+ framework is the sensible automated choice of a
hybrid approach to the computation.

Possible solutions range from more sophisticated indices of interdependence of
guarantors (e.g. expected volume of loss to cover per guarantor) to novel measures on
distributions for the quantification of the approximation error to iterative methods
trying to improve the approximation with each pass.

Further the computation of each of the approaches can be optimised. In each
section introducing one of the methods is a subsection with further considerations.
Some of them – such as the merging of equal distributions in the mixture distribu-
tions of the mixture and scenario approach – are already implemented in the current
stochastics library, but other still remain open.

Finally we have to acknowledge that the proposed methods of computing an
ECR+-model with guarantors were developed under the self-imposed constraint of
maintaining the current model and trying to solve the problem with the current
tools at hand. Perhaps another extension of the model – as was the case with the
introduction of the scenarios – will allow a much more succinct and precise modelling
of guarantors and guarantees.
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A. The stochastics library

In the course of a joint project of the TU Vienna and the Oesterreichische Kontroll-
bank AG I was tasked with the reimplementation of the the current CreditRisk+

model. Having the opportunity of a clean slate I decided against a direct implemen-
tation of the ECR+algorithm as set laid out in Section 1.3.6, but instead to develop a
general framework to manipulate discrete distributions. With such a library at hand
the implementation of the ECR+algorithm itself is reduced to the correct application
of the objects and methods of the library. (Correct data-sourcing notwithstanding.)

This appendix gives a short overview over the main aspects of the library, some
optimisations employed and its data interface, which is also used in this paper.

A.1. APFloat

In order to simplify the numerical part of the library I have decided to use an open
source library allowing computations with arbitrary precision. (In fact the precision
can be infinite as long as one stays within the rational numbers!) The library I have
chosen is called APFloat1 and is maintained by Mikko Tommila2. This library uses
a modified version of the official APFloat library, which has been extended with
some convenience methods and is hosted on GitHub3.

A.2. Power Series

The fundamental idea of this library is to represent all distributions as their prob-
ability generating functions. Since we are dealing here with discrete distributions
whose domain is (a subset of) N, these pgf-s can be represented as power series.

A simple approach to store a power series – assuming it is finite – are arrays or any
kind of list with the indices corresponding to n ∈ N and their value corresponding
to P[X = n]. While certainly feasible even preliminary tests with industry-provided
data showed that the loss distributions encountered in reality are far from being
dense. As a result during all computations a lot of computing power would be
wasted on summing zeroes and multiplying ones.

A far more sensible approach is to store the power series in a map4 with each key
corresponding to a n an its value to its probability. For those numbers without an

1http://www.apfloat.org
2Mikko.Tommila@apfloat.org
3https://github.com/TriangularIT/extended-apfloat
4also known as a dictionary
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A. The stochastics library

entry in the map a probability of 0 will be implicitly assumed.
Not only does this save memory, it also allows to perform operation over the

support of the probability generating function without constant filtering of zeroes.
This is especially helpful for such manipulations as convolutions.

A power series does not have to be known in advance – some, like infinite ones,
even can not – therefore the library also provides lazy power series. These are
power series whose coefficients are only computed when needed but then cached for
future reference. Combined with the ability to iterate over the support of the power
series (if appropriately declared) allows the library to efficiently compute powers and
convolutions of infinite power series and to evaluate them up to arbitrary precision.

A.3. Distributions

The centre-piece of the library are, of course, the implementations of various discrete
and a handful of continuous distributions.

Currently the following distributions are implemented:

• Binomial

• Dirac

• Empirical

• Logarithmic

• Negative binomial

• Poisson

• Exponential

• Gamma

• Uniform

These distributions are fully parametrised and often accept even degenerated pa-
rameters.

While these distributions are nice as they are, there is only so much that can be
done with single distributions. Therefore several operations on discrete distributions
have been implemented:

Comonotonic sum
Represents the distribution of the sum of other distributions under the as-
sumption that all summands are comonotonic.
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A.3. Distributions

Compound sum
Accepts two distributions N and X and models the distribution of a random
sum S such that

S =
N∑
n=1

Xn,

where N ∼ N and Xn ∼X are all independent of each other.
Currently the following distributions are supported for N :

• Dirac,
• Poisson,
• Logarithmic and
• Negative binomial.

Compressed distribution
Performs stochastic rounding5 on a distribution. This may be considered the
counterpart of a lattice distribution.

Convolution
Represents the distribution of the sum of other distributions under the as-
sumption that all summands are independent.
The library provides a way to iterate over the support of a convolution without
computing the entire convolution beforehand.

Lattice distribution
This distribution is a scaled and shifted transformation of some other distri-
bution. If X and Y are random variables then the distribution of Y is a lattice
distribution of X if

Y = max{aX + b, 0}, for a ∈ N+, b ∈ Z

such that P(aX + b ≥ 0) > 0.

Mixture distribution
A distribution where the distribution function is a convex sum of afinite num-
ber of other distribution functions.
See Definition 1.14.

Non-Zero distribution
A distribution conditioned not to attain the value 0.
See Definition 1.15. Can only be applied to distributions, which do not con-
centrate their entire mass on 0.

5See [8, Section 6.2.2].
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A. The stochastics library

Every transformation returns again a discrete distributions, which allows to use
the result in further computations.

All distributions and transformations are based on lazy power series. Therefore
arbitrary combinations of distributions and transformations can be quickly defined
without any evaluation of the underlying values. Evaluation happens only if, when
and just as far as necessary.

Every distribution itself has the following operations:

• Probability of a point n ∈ N

• Entire probability generating function as power series

• Cumulative distribution at a point n ∈ N

• Quantile at a level q ∈ [0, 1]

• Expected shortfall at a level q ∈ [0, 1]

• Expected value

These quantities are computed using the APFloat library which means that they
can be computed to an arbitrary precision.

A.4. Random generator
In order to facilitate the implementation of a Monte Carlo simulation every distri-
bution – including the continuous and transformed ones – has the ability to generate
random values according to the given distribution.

To this end the uniform distribution implements the fairly new xoroshiro128+
generator developed by Sebastiano Vigna in collaboration with David Blackman –
[9]. The generator returns a random 64-bit number which is then transformed into
a positive APRational. As the APFloat library provides arbitrary precision we can
even use the sign bit in the creation of the random number.

For the gamma distribution two different generators are used depending on the
shape parameter α > 0:

• if α < 1 Algorithm RGS by D. J. Best ([1]) is used;

• if α = 1 the random generator for the exponential distribution is used;

• if α > 1 Algorithm GB by R. C. H. Cheng ([2]) is used.

The exponential distribution generates its random number by the simple and
efficient method of inversion:

Theorem A.1. Let U ∼ U(0, 1). Set

X = − log(U)/λ,

then X ∼ Exp(λ).
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A.5. Divergences
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Figure A.1.: KS-tests of random generators

Proof. This follows directly from the fact that f(x) = − log(x)/λ is the inverse
compound distribution function of an Exp(λ)-distribution and that for U ∼ U(0, 1)
the transformed 1− U is as well U(0, 1). �

All other distributions generate their random values via the inversion method as
well using their provided quantile function.

The quality of both the uniform random generator as well as of the gamma dis-
tribution generators has been tested with iterated Kolmogorov–Smirnov tests as
described by Knuth in [6, Section 3.3.1.B]. Figures A.1a and A.1b show exemplary
results of a single iteration of a KS-test with sample size 1000. The dashed lines mark
the point where the maximal difference between the empirical and expected cdf hap-
pens. The corresponding statistics and p-values of the tests are (0.020283, 0.8052)
and (0.019764, 0.8296).

A.5. Divergences

Apart from distributions and transformations thereon the library also provides sev-
eral divergences and metrics to measure differences between distributions.

Currently these three are implemented:

Kullback–Leibler divergence
Also known as information divergence or relative entropy this divergence mea-
sures the expectation of the logarithmic difference between two probabilities
P and Q.

Definition A.2. Let P and Q be discrete probability distributions such that

P � Q, that is P (n) = 0 ⇒ Q(n) = 0 ∀n ∈ N,
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A. The stochastics library

then define
dKL(P,Q) ..=

∑
n∈N

P (n) log P (n)
Q(n)

as the Kullback–Leibler divergence from Q to P .

The algorithm used to compute the Kullback–Leibler divergence can also be
used to calculate a related quantity – the entropy.

Definition A.3. Let P be a discrete probability distribution, then

H(P ) ..= −
∑
n∈N

P (n) logP (n)

is called the entropy of P .

Total variation distance
See Definition 3.10.
Since all considered distributions are discrete and N is countable, the library
uses a simplified method to compute the distance.

Theorem A.4 ([8, Lemma 3.18]). Let S 6= ∅ be a finite or countably infinite
set. Then for all probability measures P and Q on (S,P(S))

dTV(P,Q) = 1
2
∑
s∈S
|P (s)−Q(s)|.

Proof. We denote with es ..= P (s)−Q(s) the difference between P and Q for
every s ∈ S. Then for A ⊆ S

1
2
∑
s∈S
|es| ≥

1
2
∑
s∈A

es −
1
2
∑

s∈S\A
es =

∑
s∈A

es −
1
2
∑
s∈S

es︸ ︷︷ ︸
=0

= P (A)−Q(A).

The inequality becomes an equality if and only if |es| = es for every s ∈ A and
|es| = −es for every s ∈ S \A. �

Wasserstein distance
See Section 5.1.1.

A.6. XML-Interface
In order to facilitate the use of the library it is not necessary to define the desired
distributions and transformations programmatically in Java. The library provides
a graphical interface which allows to load an XML-file describing the desired distri-
bution and to select which computations to perform. Figure A.2 shows a screenshot
of the user interface after calculating one of the example portfolios.

94



A.6. XML-Interface

Figure A.2.: A screenshot of the graphical user interface of the library
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Each distribution from this library and its parameters can be represented as an
XML tag and through combination of these tags further distributions can be created.

This XML notation is also used in this paper to describe the loss distributions of
some portfolios.

The following list contains a short description of the XML tag for each distribution
and transformation available. For most only an XML example is provided, since the
names of the parameters are self-explanatory.

number
1 <number >3.14159265358979323846264338327950 </ number >
2 <number >1/3 </ number >
3 <number ><sqrt >2 </ sqrt ></ number >

Represents a numerical value. This can be either a plain number, a fraction
or one of several functions:

• add: sum of two values
• sum: difference of two values
• div: quotient of two values
• mul: product of two values
• pow: one value raised to the other
• abs: absolute value
• acos: inverse cosine
• acosh: inverse hyperbolic cosine
• asin: inverse sine
• asinh: inverse hyperbolic sine
• atan: inverse tangent
• atanh: inverse hyperb. tangent
• cbrt: cube root
• ceil: ceiling function
• cos: cosine

• cosh: hyperbolic cosine
• exp: exponent function
• floor: floor function
• frac: fractional part
• log: natural logarithm
• negate: negative value
• sin: sine
• sinh: hyperbolic sine
• sqrt: square root
• tan: tangent
• tanh: hyperbolic tangent
• toDegrees: radians to degrees
• toRadians: degrees to radians
• truncate: truncate fraction
• w: Lambert W function

BinomialDistribution
1 <BinomialDistribution >
2 <p >{ APFloat∈[0 ,1]} </p>
3 <m >{ integer >0} </m>
4 </ BinomialDistribution >

ComonotonicSum
1 <ComonotonicSum >
2 { distribution }
3 { distribution }
4 ...
5 </ ComonotonicSum >
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CompoundDistribution
1 <CompoundDistribution >
2 <size >{ distribution }</size >
3 <number >{ distribution }</ number >
4 </ CompoundDistribution >

A compound distribution with N ∼<number/> and Xn ∼<size/>.

CompressedDistribution
1 <CompressedDistribution step="{integer >0}">
2 { distribution }
3 </ CompressedDistribution >

Convolution
1 <Convolution >
2 { distribution }
3 { distribution }
4 ...
5 </ Convolution >

DiracDistribution
1 <DiracDistribution >{ integer≥0} </ DiracDistribution >

EmpiricalDistribution
1 <EmpiricalDistribution >
2 <value >{ APFloat∈[0 ,1]} </ value >
3 <value index ="{ integer }">{ APFloat∈[0 ,1]} </ value >
4 <value >{ APFloat∈[0 ,1]} </ value >
5 ...
6 </ EmpiricalDistribution >

Each <value/> describes the probability of its index value. If no index is
given, the previous index is increased by 1. The first element has the implied
index 0.
Naturally all values have to add up to 1.

LatticeDistribution
1 <LatticeDistribution step="{integer >0}" lag="{ integer }">
2 { distribution }
3 </ LatticeDistribution >

LogDistribution
1 <LogDistribution >
2 <p >{ APFloat∈(0 ,1)}</p>
3 </ LogDistribution >

MixtureDistribution
1 <MixtureDistribution >
2 <p>
3 { APFloat∈[0 ,1]}
4 { APFloat∈[0 ,1]}
5 ...
6 </p>
7 <v>
8 { distribution }
9 { distribution }

10 ...
11 </v>
12 </ MixtureDistribution >
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A mixture distribution with weights <p/> and components <v/>. The weights
have to add up to 1.

NegBinomialDistribution
1 <NegBinomialDistribution >
2 <number >{ APFloat >0} </ number >
3 <success >{ APFloat∈(0 ,1)}</ success >
4 </ NegBinomialDistribution >

NonZeroDistribution
1 <NonZeroDistribution >
2 { distribution }
3 </ NonZeroDistribution >

PoissonDistribution
1 <PoissonDistribution >
2 <lambda >{ APFloat >0} </ lambda >
3 </ PoissonDistribution >
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