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Kurzfassung

Der Gebäudesektor ist heute zu einem hohen Ausmaß verantwortlich für den Ver-
brauch von Primärenergie. Ziel ist es daher Energie in vorwiegend großen Gebäuden
einzusparen und gleichzeitig mehr Energie aus erneuerbaren Quellen zu nutzen. Ne-
ben diesen umwelttechnischen Anforderungen gibt es jedoch noch Vorgaben anderer
Interessensgruppen. Für Benützer darf dabei der Komfort (gesetzlich) nicht einge-
schränkt werden, für Gebäudebetreiber hingegen ist eine kostenminimierte Fahrweise
wünschenswert. Modellbasierte prädiktive Regelung (MPC) ist das ideale Werkzeug
für diese divergenten Zielvorstellungen unter Berücksichtigung technischer Einschrän-
kungen und externer (Stör-)Größen.

Basierend auf einem modularen, hierarchischen MPCKonzept für Mehrzonen-Gebäude
liegt der Kern dieser Arbeit in der Modellierung, der Reglerauslegung sowie -optimierung
für die Ebene der Energiebereitstellung. Komplexe Stränge beinhalten schaltende
Aggregate wie Wärmepumpen oder Kältemaschinen mit nachfolgenden Schichtspei-
chern. Die nichtlineare Dynamik dieser kontinuierlichen Systeme wird von den dis-
kreten Aggregatzuständen beeinflusst. Analytisch hergeleitete nichtlineare hybride
Modelle beschreiben das Gesamtsystem, das mit stückweise linearen Modellen ma-
thematisch approximiert wird. Ein dafür ausgelegter hybrider, gemischt-ganzzahliger
MPC (MI-MPC) optimiert nicht nur die Speicherbewirtschaftung sondern gleichzei-
tig auch die Aggregatschaltungen unter Einhaltung von Ein- und Ausschaltzeiten.
Die Implementierung des MI-MPCs beinhaltet einen auf das System zugeschnittenen
Branch and Bound Algorithmus, der technische Einschränkungen zur Reduktion der
Suchräume nutzt.

Das Ziel einer industriellen (Wieder-)Verwendbarkeit des Regelungskonzeptes konn-
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te mit einem modularen Design von individuell für die einzelnen Energieversor-
gungsstränge zugeordneten MPCs erreicht werden. Das resultierende modulare MPC-
Schema (MPCC) bevorzugt die Verwendung von erneuerbaren Energien wie freie
Kühlung oder Geothermie und gewährleistet die Bereitstellung eines vorgegebenen
Energiebedarfs der Nutzungsebene zu minimalen Kosten unter Berücksichtigung tech-
nischer Restriktionen sowie Einbeziehung der Wettervorhersagen. Darüber hinaus
können zeitlich variierende Kosten pro Energiequelle in die Zielfunktion eingehen,
was eine Integration in ein intelligentes Netz ermöglicht. Das MPCC ist daher we-
sentlicher Baustein für eine nachhaltige Gebäudeautomatisierung.

Die vorliegende Dissertation und die darin enthaltenen Veröffentlichungen sind im
Laufe eines Forschungsprojektes am Institut für Mechanik und Mechatronik (Ab-
teilung für Regelungstechnik und Prozessautomatisierung) in Kooperation mit dem
Forschungspartner FH Joanneum, Institut für Industriewirtschaft, und dem Indus-
triepartner evon GmbH entstanden. Das Projekt wurde von der Österreichischen
Forschungsförderungsgesellschaft (FFG Nr. 832103) gefördert.
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Abstract

Buildings are responsible for a large proportion of primary energy consumption.
Thus, the aim is to reduce the energy demand of buildings and to increase the amount
of energy taken from renewable sources. However, these environmental demands are
supplemented with (legal) requirements regarding user comfort or a cost-efficient
building operation. Model predictive control (MPC) is an effective means to gain
optimal solutions for these conflicting goals with respect to technical constraints and
external disturbances.

Based on a modular hierarchic MPC concept for multi-zone buildings main part of
this work is modeling, control design and optimization for the energy supply system.
Complex supply circuits include switching aggregates such as heat pumps or chillers
with stratifies storage tanks. The nonlinear dynamics of the continuous process are
influenced by the state of the corresponding aggregate. The resulting analytically
derived nonlinear hybrid model is approximated by a piecewise affine system. The
dedicated hybrid mixed-integer MPC (MI-MPC) is simultaneously capable to opti-
mize the stratified storage management and the switching states of the aggregate
considering minimum up and down times by solving a mixed-integer problem. The
implementation of the MI-MPC includes a branch and bound algorithm using tech-
nical constraints to reduce the remaining search space.

The aim to develop an industrially (re)utilizable MPC-concept has been achieved
by modularizing the control scheme such that each energy supply circuit is indi-
vidually controlled by a dedicated MPC. The resulting modular predictive control
concept (MPCC) prefers the usage of renewable energy sources such as free cooling or
geothermal source. It its furhter capable to accurately provide the energy demanded
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by the user (energy consumption) level while minimizing the costs with respect to
technical constraints incorporating weather forecasts. Additionally, the concept can
cope wih time-varying energy costs allowing an integration into smart grids. Thus,
the MPCC is an ideal tool for sustainable building automation.

The present thesis and the papers within this work have originated in a course of a
research project at the Institute of Mechanics und Mechatronics (Division of Control
and Process Automation) in cooperation with the research partner FH Joanneum,
Institute of Industrial Management, and the industrial partner evon GmbH. The
project has been funded by the Austrian Research Promotion Agency (FFG Nr.
832103).
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Chapter 1

Introduction

1.1 Motivation

Buildings are responsible for about 40 % of the total energy consumption in Europe,
[1]. Various approaches in the fields of building architecture, physics, and develop-
ment of new materials have improved the building construction and provided the
basis for more sustainable building operation, [2]. Nevertheless, building automation
plays a central role in the operation phase since it is responsible for controlling all
thermal comfort influencing subsystems such as heating, cooling, or air condition-
ing systems. Operating buildings energy efficiently thus means an optimization of
closed-loop control systems such that the energy demand is minimized without com-
promising the user comfort. However, modern large buildings are complex systems
not only because of their thermodynamic principles but also due to various energy
sources and supply systems. Furthermore, several external parameters such as am-
bient temperature, radiance, or occupancy influence the thermal condition of the
individual building zones to different extends, [3, 4]. However, conventional building
control systems based on proportional -integral -deviation- and rule based controllers
are more difficult to integrate in an optimization scheme and lack the integrability
of weather or occupancy forecasts into their control decisions.
Model based predictive control (MPC) though is ideal for the application in building
automation system since it is capable of solving predefined optimization tasks in real
time. The MPC uses an underlying building model, the technical constraints, and
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the overall objective function, [5]. Furthermore, its predictive character incorporates
disturbances such as ambient temperature, radiance, and occupancy. However, due to
basic thermodynamical principles the system model is highly nonlinear with couplings
between manipulated variables and system states resulting in veritable challenges for
the corresponding modeling and control task. Figure 1.1 shows the overall schematic
closed loop system. The desired thermal user comfort, ϑref

indoor, is the reference for the
nonlinear MPC (NMPC) structure which is computing an optimal strategy in order
to guarantee user comfort with as little energy demand as possible.

ϑref
indoor

NMPC structure Building

ϑact
indoor

Figure 1.1: Schematic closed-loop system for energy efficient building heating
and cooling control.

The NMPC structure consists of two hierarchically coupled NMPCs - one cooperative
fuzzy MPC and one modular MPC concept including an mixed-integer MPC, see 1.2.
The focus of this thesis lies on the mixed-integer MPC and the modular MPC concept
for the control of the building energy supply system.

1.2 Project SmartMSR

The content of the present thesis has been developed within the project ’SmartMSR’
which was conducted by the research partners Vienna University of Technology and
the FH Joanneum University of Applied Sciences and the industry partner evon
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GmbH. The three and a half years project (November 2011 - June 2015) funded by
the Austrian Research Promotion Agency FFG was basis for two doctoral theses.
Scope of the project was the development of a tool chain enabling an industrial ap-
plication of model based predictive control in buildings. Thus, the tool chain consists
of three major links: modeling and system identification, integration of disturbances,
nonlinear MPC design and control optimization. The concept was planned to be de-
veloped an tested on a large modern demonstration building, the University Salzburg
Nonntal.
The overall building control task including the maximization of the user comfort, the
minimization of energy demand and respective costs can bee seen as the optimization
of two underlying systems with different time constants, disturbances, and mathe-
matical demands: the user level where energy is consumed and the energy supply level
connecting the energy sources with the supply systems. Although most approaches
have considered the entire building for modeling and control, [6, 7], decoupling of
these two levels has turned out to be an advantageous approach. In [8] a distributed
MPC was presented distinguishing these two levels. However, a hierarchical control
concept further naturally splits the overall optimization task into two smaller sub-
jects, allowing independent identification of the two differently characterized systems,
with customized dedicated control designs. Figure 1.2 shows the overall hierarchical
control concept consisting of two predictive controllers for the energy supply system
and the building, as well as the underlying systems. The energy demand of the user
(energy consumption) level couples the two controllers.
Hence, the focus of the two doctoral theses has naturally been put on the two almost
independent, hierarchically connected control tasks. Dr. Michaela Killian has been
working on the tool chain for the user level whereas the content for the present
thesis is modeling, control design and optimization for the energy supply level such
as marked with green frames in Figure 1.2. The coupling and testing phase has been
conducted together.
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_

ϑref
indoor ϑact

indoor

hierarchical MPCs

supply
supply
model

building
model

plants

building

UL-MPC
Q̇ref Q̇act

ESL-MPC

Figure 1.2: Hierarchical control structure with the user level (UL) MPC and
the energy supply level (ESL) MPC. Green blocks show the sub-
ject of the present thesis.

1.3 Goals

The main goal for the corresponding project was the development of a tool chain
incorporating model based predictive control techniques for an industrial applica-
tion in building automation. Since the overall task could be split into two subjects,
see green marked frames in Figure 1.2, the goals for the present thesis have been
broken down to i) modeling of the underlying heating and cooling supplies and stor-
ages and ii) development, implementation, and optimization of a dedicated nonlinear
MPC taking disturbances into account. As a result the controller has been designed
to minimize the energy costs and to maximize the use of renewable energies while
accurately delivering the (already minimized) energy demand of the user level.
The controlled process is the energy supply circuits connecting the energy sources
with the corresponding energy supply systems. Each circuit consists of a specific
set of aggregates such as heat exchangers, free cooling towers, chillers, heat pumps
and stratified storage tanks determining different characteristics. Chillers and heat
pumps are aggregates either switched on or off usually connected with stratified
storage tanks which are operated in a charging or discharging mode depending on
the state of the aggregate and the mass flows to and from the storage tank. The aim
was to optimize the continuous mass flows of pumps and supply temperatures with
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respect to discrete states (on and off times) of the switching aggregates. For that
reason a mixed-integer MPC based on the hybrid model approximating the heating
and cooling process in all storage modes has been developed.

1.4 Methodology

In this work focus is firstly put on appropriately combining existing modeling and
system identification techniques for the application in MPC, see Sections 2.1 and
2.2. Secondly, the design and development of a dedicated nonlinear MPC (NMPC)
structure for the building heating and cooling supply is presented, see 2.1 and 2.2.
Furthermore, potential analyzes are conducted, see Sections 2.2 and 2.3.

1.4.1 Modeling

Modeling the heating and cooling energy supply process for the industrial tool chain
faces the challenge of finding an appropriate balance of model detail, depth, and
accuracy in order to operate a powerful MPC with a manageable effort for modeling
respective system identification. It is thus a crucial part for building predictive
control, [9]. The common base for all models are energy balance equations (1.1),
resulting in a set of first order differential equations.

Q̇ = ∆T · ṁ · cp = (Ts − Tr) · ṁ · cp (1.1)

The first principle models therefore cover the most important variables: the control
variable heating respective cooling powers Q̇, the manipulated variables mass flow
ṁ, supply temperature Ts, and the disturbance return temperature Tr.
In order to reutilize the models a modular control concept has been developed where
each supply circuit is initially considered separately, see Section 1.4.3. Thus, complex
circuits incorporating switching aggregates and storage are distinguished from basic
circuits with heat exchangers and pumps only.
Basic circuits, see Figure 1.3, for e.g. district heat are approximated by static models
using (1.1), where ṁs = ṁ. In contrast, those supply circuits with switching aggre-
gates such as chillers or heat pumps and a stratified storage tank, see Figure 1.4,
require a dynamic model depicting the energy state of the system. These are the
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temperature of the hot or cold water in the storage tank, Tst, and the position of the
thermocline, z, which are respected in the nonlinear dynamic state space model.

Heat Exchanger
Ts

Tr

ṁ ṁs

Figure 1.3: Basic supply circuit.

Ts

Tr

Switching
aggregate

Tst
ṁa

ṁs

z

Figure 1.4: Complex supply circuit.

The stratified storage can be operated in three distinct modes which is illustrated by
Figure 1.5: (a) charging, if the aggregate is switched on (δa = 1) and the mass flow
from the aggregate to the storage, ṁa, is higher than the one from the storage to the
supply system, ṁs; (b) discharging, if the if the aggregate is switched on (δa = 1)
and the mass flow from the aggregate to the storage, ṁa, is lower than the one from
the storage to the supply system, ṁs; (c) discharging, if the aggregate is switched
off (δa = 0), hence the mass flow from the aggregate to the storage, ṁa, is zero and
consequently lower than ṁs. δi for i = 1, 2, 3 indicate whether the corresponding
mode is active. Note that only one mode is active at each time; hence ∑3

i=0 δi = 1.

z

δ1 = 1ṁa

ṁs

(a) ṁa > ṁs, ż > 0

z

δ2 = 1ṁa

ṁs

(b) ṁa ≤ ṁs, ż ≤ 0

z

δ3 = 1ṁa

ṁs

(c) 0 ≤ ṁs, ż ≤ 0

Figure 1.5: The three operation modes of the stratified storage tank depend-
ing on the state of the switching aggregate and the mass flows to
and from the storage.

Depending on the operation mode of the stratified storage tank the water supply
temperature, Ts, is differently defined, see Equation (1.2). The state z, the height
of the water in the stratified storage below (in case of cooling) or above (in case of
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heating) the thermocline, is denoted by Equation (1.3), where r denotes the radius
of the tank and ρ the density of the water inside the tank.

Ts =


Ta if ṁa > ṁs, δa = 1 ⇔ δ1 = 1
Taṁa−Tstṁst

ṁs
if ṁa ≤ ṁs, δa = 1 ⇔ δ2 = 1

Tst if ṁa ≤ ṁs, δa = 0 ⇔ δ3 = 1

(1.2)

z = ma −ms

r2πρ
(1.3)

The derivative of state Tst is derived from the heat flow balance

Q̇ = Q̇in − Q̇out

and the respective case of Equation (1.2).
The set of equations can be rewritten as a compact representation by a mixed logical
dynamical (MLD) System, [10], of the form:

x(t+ 1) = Atx(t) +B1tu(t) +B2tδ(t) +B3tz(t), (1.4a)

y(t) = Ctx(t) +D1tu(t) +D2tδ(t) +D3tz(t), (1.4b)

E2tδ(t) + E3tz(t) ≤ E1tu(t) + E4tx(t) + E5t, (1.4c)

using the states x, the continuous and discrete manipulated variables u = {uc, ud}
and the control variable y. z-variables are auxiliary continuous representatives of
the state modes and the δ variables are auxiliary discrete variables representing the
hybrid modes at each time step t. The inequality system in (1.4c) is a compact
form of the logical conditions arising due to the discrete modes and possible switches
between them. This modeling approach has been applied on the heating circuits, see
Publication A, Section 2.1.
For the cooling circuits an additional system identification routine has become nec-
essary, since it includes a cooling tower which is a complex energy supply aggregate
with discrete stages of fan speed. Modeling it analytically aims at detailed complex
models with nonlinear dynamics of high order impractical for MPC. Thus, linear re-
gression models have been used, [11], to identify a linear model for each stage based
on the historic measured data of the automation system of the University in Salzburg.
For more detail see Publication B, Section 2.2.
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1.4.2 Hybrid model predictive control

Optimizing the hybrid system with continuous as well as discrete manipulated vari-
ables results in a nonlinear mixed-integer problem which has to be solved in each
optimization step by the MPC. The control of such a hybrid system has been solved
with different approaches. In [12] a dual stage optimization is used where firstly the
tank operation mode is chosen and secondly, the problem is recast to a nonlinear
program with a fixed tank operation mode profile, whereas in [13] a suboptimal it-
erative approach has been applied by varying operating points. Within this work
a dedicated branch and bound algorithm is presented. For the development of the
mixed-integer MPC (MI-MPC) four steps have been crucial:

1. Dealing with the non-linearity of the hybrid model.

2. Formulating the objective function.

3. Identifying and quantifying all relevant technical constraints.

4. Inclusion of an appropriate algorithm to cope with the mixed-integer problem.

Linearization
The hybrid model, first formulated as a nonlinear piecewise affine system such as
denoted in a simplified form in equation (1.2) has firstly been linearized around the
operating point and has secondly been reformulated resulting in a closed MLD state
space system, (1.4), with an inequality system which covers the possible conditions
for the transitions from one affine system to another. Hence, outcome of step one is
a linear approximation of the nonlinear hybrid model, see Publication A, Section 2.1.

Objective function
The objective target, minimizing the energy costs while minimizing the deviation
of the delivered power Q̇act

i of supply system i ∈ {TABS,FC} from the respective
energy demand of the user level Q̇ref

i , has been formulated as a quadratic function
including all future time instances t + k within the prediction horizon Np resulting
in a mixed-integer quadratic problem (MIQP) to be solved each step:
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J? = min
∆u∈U

Np−1∑
k=0

(1− α)
∥∥∥∆Q̇ref

i (t+ k)−∆Q̇act
i (t+ k)

∥∥∥2

Qy
+ α ‖∆u(t+ k)‖2

Qu
(1.5)

Note that the ∆-formulation does denote the deviation from the actual value to
the respective operation point and u = {uc, ud} are continuous as well as discrete
manipulated variables. The parameter α ∈ [0, 1] allows to put more weight on the
minimization of the energy costs or on the deviation of the delivered power to the
given reference. In Publication A, see Section 2.1, the effect of a variation of α is
given. Further weighting factors respective matrices are Qy and Qu.

Constraints
The constraints include technical limitations of pumps, aggregates, and stratified
storage tanks given by minima and maxima of the corresponding manipulated vari-
ables and states.

ui,min ≤ ui ≤ ui,max

xi,min ≤ xi ≤ xi,max (1.6)

For the storage tank management the maximal volume of the tank is important.
Whereas pumps are respected with minimal and maximal mass flows, aggregates
such as chillers and heat pumps require minimal up and down times and a certain
interval for the supply temperature.

Branch and Bound Algorithm
In the first controller design the mixed-integer problem has been solved by an ex-
ternal solver called Gurobi [14], see Publication A, Section 2.1. However, for an
industrial application a more cost-effective solution is frequently desired. Therefore,
a dedicated branch and bound algorithm, generally motivated and presented e.g. in
[15], has been designed and implemented resulting in a suboptimal but very effective
method to solve the mixed-integer problem by relaxing the integrality constraints
of the discrete variables. This means that they are allowed to span over the whole
continuous interval. The respective problem is therefore represented by a specific
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tree structure, see Figure 1.6, where each theoretical solution of the optimization
problem is represented by a branch (path from the root to one leave). In order to
reduce the search space to accelerate the optimization routine a preprocessing step
has been developed eliminating those branches which would violate constraints over
the optimization horizon Np given at the respective optimization step t (see branch
ending with x in Figure 1.6). Especially the limitation of storage volume, the corre-
sponding stored energy, and the minimal up and down times of the chiller or the heat
pump are key parameters for the preprocessing step. For more detail see Publication
B, Section 2.2.

root

δ1(t+1) = 1

δ1(t+2) = 1

...

δ2(t+2) = 1

...

δ3(t+2) = 1

...

δ2(t+1) = 1

× δ2(t+2) = 1

...

δ3(t+2) = 1

...

δ3(t+1) = 1

δ1(t+2) = 1

...

δ2(t+2) = 1

...

δ3(t+2) = 1

...

k = Np− 1

...

k = 2

k = 1

k = 0

Figure 1.6: The binary tree for the hybrid system optimization with branch
and bound.

1.4.3 Modular model predictive control concept

Given the MI-MPC, the overall control concept has been redesigned by assigning
one MPC to one energy supply circuit in order to use the best suited MPC. The
advantage of the gained modularity lies firstly in the industrial usage, since the
modeling, implementation, parametrization and commissioning can be done inde-
pendently. Secondly, the task for each MPC is less complex, because each hybrid
system (circuits with switching aggregates and connected storage) is controlled by a
MI-MPC, while for each simple circuit an LMPC is chosen using a static, linearized
form of Equation (1.1).
The overall resulting control system for the heating and cooling supply of the demon-
stration building is depicted in Figure 1.7.
Since the hierarchic control task had been split into the two layers, for the user level
any predictive controller is assumed delivering a trajectory for the energy demand of
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LMPC

LMPC
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MI-MPC
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ṁCH
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ṁG

Tamb T -
FCr

ϑG

T +
FCr

U
L-

M
P

C

U
L-

B
ui

ld
in

g

Figure 1.7: Modular control structure for FC and TABS embedded into a
hierarchical building control structure. Blue feedback loops in-
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each energy supply system of building. However, the overall NMPC building control
structure proposes an CFMPC for the multizone user level given in Publication D,
Section 2.4. Regarding the supply system a distinction is made for heating and
cooling supply for the fan coil (FC), Q̇FCref,+ and Q̇FCref,- respectively, as well as for
the thermally activated building system (TABS). This becomes important because
the user level controller optimizes the energy demand with respect to different time
constants of the energy supply systems which is an information the energy supply
level does not have. Hence, it plays an important role whether the heating or cooling
energy is provided for the system with the slow dynamics (TABS) or the system with
the fast dynamics (FC).
In this particular case, the cooling circuits of the free cooling tower and the chiller
are connected since the free cooling tower is cooling down the water of the secondary
circuit of the chiller. Hence, if the chiller is switched on free cooling is exclusively
used for this purpose meaning that either the one or the other cooling circuit is
active for the supply of the FC system. Nevertheless, two controllers are working
simultaneously - one for each circuit, but the supply of the free cooling is forced
whenever technically possible. The restrictions are the ambient temperature Tamb,
since free cooling is only active if Tamb < 18◦C and the chiller has not to be activated
for charging the stratified storage tank. However, given these rules and the MI-MPC
which is managing the storage efficiently, the MPCC is capable of maximizing the
usage of the free cooling tower for direct cooling supply. The corresponding simulation
results given in Publication B, Section 2.2, and [16] show promising figures in terms
of active free cooling hours and the amount of cooling power supplied within this
time compared to a rule-based controller.
Further potential analyzes of the developed MPCC are conducted in Publication C,
Section 2.3. Closed loop simulations of the overall hierarchic control structure in-
cluding the CFMC as well as the MPCC show promising results in terms of user
satisfaction, energy efficiency, and minimization of costs in comparison to the con-
ventional control concept implemented in the demonstration building. The NMPC
structure thus enables sustainable building automation.
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1.5 Summary of Scientific Approaches

The Publications A-C, see Section 2.1-2.3, show the results chronologically. Publica-
tion A, Section 2.1, covers the first principle modeling of the hybrid system on the
example of the heating supply of the demonstration building and the basic control
design of the mixed-integer MPC (MI-MPC). An appropriate objective function and
corresponding constraints including minimal up and down times for the heat pump
are given. Furthermore, it contains the results of a robustness analysis of the MI-
MPC regarding disturbances of the heat load prediction. Therefore an approximated
Pareto front has been computed for a fixed set of weights and varying parameter α,
putting more emphasis either on the mean error or on the energy costs for different
lengths of Np.

Publication B, see Section 2.2, demonstrates the methodology of modeling the cool-
ing circuits in a modular way combining analytical hybrid modeling for the chiller
circuit and system identification routine for the cooling tower circuit and shows the
results of the validation for each model. Furthermore, the optimized control design
based on the developed branch and bound approach is explained in detail. Simula-
tion results show the performance of the new MI-MPC separately for the transition
and the cooling period in terms of estimated monetary savings, number of active
free cooling hours, and number of switching cycles of the chiller. The figures are
compared to a conventional proportional –integral –derivative (PID) controller with
additional rules. The proposed MPC structure reduces the costs by about 50 %,
increases the usage of renewable energy source by at least 50 %, and manages the
chiller and storage tank in a way that the transitions of the chiller from state off to
on are reduces by about 70 %.

Publication C, see Section 2.3, focuses the effect of MPC on the sustainability of
buildings. Therefore, the interaction of building automation, including MPC in gen-
eral and hybrid MPC in special, with users, operators, the environment, and the
smart grid are discussed. Each group is affected by building automation influencing
cost, energy, and user comfort aspects. Simulation results show that MPC is an ideal
tool to enable sustainable building automation.
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Publication D, see 2.4, presents the CFMPC developed for multizone heating and
cooling control using TS-fuzzy models. The concept is developed for the user level of
a specific demonstration building within a hierarchical control scheme. The CFMPC
achieves significantly higher control performance with slightly less energy consump-
tion in contrast to state-of-the-art controllers and MPCs in building.

1.6 Scientific Contribution

The hierarchic control concept consisting of two nonlinear MPCs leads to two opti-
mization problems with different time constants. The developed control concept for
the energy supply level is flexible towards more energy supply circuits and sources
since the basic modeling approach can be used and the control structure easily ex-
tended according to the distinction in basic and complex circuits. The mixed-integer
MPC is the core development within the modular predictive control concept. It is
capable to manage the stratified storage tank operation depending on the switching
sequences while guaranteeing the energy demand of the user level and minimizing
the energy costs. The capability of maximal usage of renewable energy sources is
only one indicator that the developed control concept can make a contribution for
sustainable building automation. The scientific contributions of this work are all
applicable in industry.
The scientific contributions of this work and can be summarized:

• Hierarchical control concept

– Decoupling of conflicting optimization problems.

– Easy to implement and the possibility to use individual MPCs, instead of
the overall hierarchy.

– For the specific building the flexibility for adding new building zones or
supply sources is given.

– The preparation for future integration in Smart Grids and for flexible
pricing is given and can be easily added in the specific MPCs.
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• Modeling and system identification

– Development of analytically derived hybrid model based on energy balance
equation.

– Linearization of first order differential equation.

– Black box model identification for cooling tower.

– Model validation is given.

• Development of hybrid mixed-integer MPC (MI-MPC)

– Design, formulation, and implementation of dedicated MI-MPC using hy-
brid model.

– Respecting latency times for minimal up and down times for switching
aggregates (unit commitment problem).

– Managing the stratified storage tank operation depending on the switching
sequences.

– Capability to cope with time-variant prices of (electric) energy.

– Robustness analysis is given.

– Development of dedicated branch and bound algorithm solving MIQP on-
line with search space reduction to accelerate optimization.

• Design of flexible modular predictive control concept

– Combining LMPCs and MI-MPCs for flexible control of varying amount
of energy supply circuits and sources of basic or complex type.

– Perfect for industrial application due to modularity.

– Potential analyzes comparing MPCC to a PID and rule-based control
concept in simulation.
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a b s t r a c t

In this paper a mixed-integer model predictive controller for hybrid energy supply systems in buildings is
presented. This approach is based on a hierarchical building control concept where the energy supply
level is coupled to the energy consumption level only by the heat load. The supply level is characterized
by non-linear dynamics due to a stratified water storage tank and a switched heat pump with minimum
on/off times. The mixed-integer model predictive controller optimizes the unit commitment problem at
minimum costs while satisfying the consumption level’s predicted heat load. The hybrid system is
formulated as a piecewise affine model comprising continuous and discrete system inputs. Moreover,
the proposed controller is able to manage the stratified storage tank including switching sequences of
the heat pump with respect to energy price forecasts. The effectiveness of this approach is shown by a
comparison to a model predictive controller with an a priori fixed operation mode profile, where the heat
pump is only operating at night, and discussing the effect of the variation of the stratified storage tank
size. The proposed concept is able to flexibly manage all sizes of stratified storage tanks with better
performance than the reference control strategy, which is only effective for larger tanks. Additionally,
a robustness analyses demonstrates that the mixed-integer model predictive controller can handle errors
in the heat load prediction from the consumption level. Both analyses show promising results for the
practical use of the proposed controller within the hierarchical control concept or as a control module
in a similar but more general application.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

According to the statistics of the International Energy Agency
the building sector consumes up to 40% of the total final energy
consumption, [1]. In order to achieve significant reductions in pri-
mary energy consumption passive measures like improved insula-
tion are taken, but also renewable energy sources are being
considered, which are highly dependent on weather conditions.
Therefore, the periods of efficient energy production do usually
not coincide with the energy demand of buildings. That is why
appropriate thermal energy storages become necessary, [2]. They
are realized either by thermally activated building systems
(TABS), where massive concrete structures are thermally activated,
or by dedicated thermal storage such as stratified tanks. The usage
of an increasing number of energy sources, the combination of
continuous and switching heat sources, together with the

management of storage requires new control strategies.
Regarding management of the energy production level, the points
of view differ considerably and range from peak load shifting
approaches, [3], to integrated storage management with building
automation systems, [4].

Model-based predictive control (MPC) has been proven as a
promising technology for building control, [5]. Most of the pre-
sented approaches of recent years focus on the control of the entire
building comprising the buildings’ zone control as well as the
energy supply optimization within one model and controller. In
[6] building modeling approaches are discussed, whereas [7]
presents how to include forecasts into the MPC strategy.
However, a building can be seen as a two-layer structure, the
High Level (HiLe) energy-consuming layer and the Low Level
(LoLe) energy providing layer, [8]. This paper is based on the
fundamental concept presented in [8]: (i) A HiLe-MPC optimizes
the heat load for maximum comfort and minimum energy con-
sumption, (ii) the LoLe-MPC provides the requested heat load with
minimum monetary costs. As the two layers exhibit different non-
linear system dynamics and optimization targets an hierarchical
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approach is reasonable, splitting one modeling and control problem
into two optimization tasks. The resulting modularity in imple-
mentation and operation is an important advantage for industrial
implementation.

Focusing on the LoLe, the presence of possibly numerous switch-
ing aggregates such as heat pumps requires the management of on/
off times which consequently influences the operation modes of the
stratified storage tanks at each time step. Furthermore, this unit
commitment problem involves constraints on the minimum on/
off times, which are considered due to constraints on the aggre-
gates’ actuators and the aim to reduce maintenance costs over the
whole lifecycle. The resulting system is a hybrid system, [9], where
each operation mode requires a dedicated, generally non-linear,
model. The combination of continuous and discrete decision vari-
ables leads to a mixed-integer non-linear optimization problem
(MINP), for which there is no exact solution technique. However,
by approximating the dedicated models by piecewise linear mod-
els, mixed-integer linear programming (MILP) can be used to solve
the optimization problem, yielding suboptimal solutions.

Summarizing, the main challenges for the LoLe control are (i)
the hybrid energy supply system including continuous as well as
discrete control variables for switching aggregates with minimum
on/off times, (ii) the mixed-integer MPC formulation (with time
variant cost structure) and (iii) the coupling to the HiLe controller
with uncertain load prediction.

Using MPC requires accurate but rather simple models.
Therefore, appropriate assumptions on the system have to be
made. Refs. [10,11] have presented hybrid system formulations
for cooling systems including different operation modes. In [10] a
two-layered stratified storage tank was considered with constant
tank temperatures as well as fixed return temperatures from the
building. Ref. [11] generalizes the stratified storage tank manage-
ment for an arbitrary number of stratification layers, energy
sources and consumers. Nevertheless, both [10,11] assume two
tank operation modes, charging and discharging, specified by an
a priori fixed operation plan. Subsequently, chillers are only
switched on at night, in order to charge the stratified storage tank,
and switched off during day, when the tank is discharged. In con-
trast to the aforementioned building control references, this paper
focuses on the model-based predictive control of the buildings’
heating supply (LoLe) covering the unit commitment problem
and introduces the hybrid mixed-integer MPC (MI-MPC) approach;
a method which has not yet been applied to building heating con-
trol. The energy supply system includes a geothermal heat pump, a
stratified two-layered water storage tank, and a TABS system.
District heat supply is considered as an additional heating circuit
providing energy for the Fan Coils (FC) in the indoor rooms.
While [12] shows first experimental results on MPC for building
heating control, in [7] focus is put on the comparison of different
MPC concepts. However, both use bi-linear models to describe
the overall system, whereas this paper introduces a hybrid
mixed-integer formulation including discrete decision variables
for aggregate switching times as well as constraints on minimum
on/off times. The resulting unit commitment and MILP problem
has also been theoretically introduced in the field of microgrid
operation optimization, [13]. The feasibility and effectiveness of
this approach has been experimentally proven in [14], where the
method was applied to a microgrid in Athens, Greece. Although
the fundamental problem formulation is similar, the model depth
for the microgrid is lower than needed for building energy supply,
where pumps must be controlled individually. In contrast to
[13,14], the modeling approach utilized here is based on analyti-
cally derived first order non-linear differential equations, approxi-
mated by piecewise linear models. The hybrid mixed-integer
problem formulation is carried out as introduced in [9] resulting
in a piecewise affine (PWA) system.

The simulation results of the proposed decoupled LoLe mixed-
integer MPC are compared to those with an a priori fixed tank
operation mode profile in terms of mean error, (monetary) costs
and coefficient of performance (COP) of the energy supply of the
TABS system. Additionally, the effect of varying the tank size on
the controller’s decision and the resulting costs are discussed.
Since recent work show that the impact of forecasting accuracy
on the predictive control strategy is high, [15], an analysis of the
MI-MPCs robustness is given with respect to the uncertainty of
the heat load prediction from the HiLe. For simulating this error
the deterministic reference trajectory is disturbed with a fixed bias
and a randomly generated white noise over the entire simulation
period.

The paper is structured as follows: The problem is formulated in
Section 2, followed by introduction of the model of the energy sup-
ply hybrid system, Section 3. The mixed-integer MPC formulation
is given in Section 4 and the simulation results discussed in
Section 5. Finally, conclusions are drawn in Section 6.

2. Building control

In this Section the fundamental approach, the concept of
hierarchical building control, the energy supply system, and the
problem formulation are given.

2.1. Fundamental approach

Large building heating control necessarily includes the whole
building, the High Level (HiLe), where the building indoor rooms
are conditioned, as well as the Low Level (LoLe), where heating is
provided. In recent years, most of the MPC approaches have
focused on the control of both layers in one controller, [7,6].
Therefore, one model including both systems’ dynamics has to be
taken into account. The complexity for modeling and control is
high as both systems are inherently non-linear and the time con-
stants and optimization targets are completely different. The
approach presented in [8] splits this optimization problem by
defining a dedicated MPC for each of the two levels, which interact
via the predicted heat load from the HiLe _Q ref

i and the actual deliv-

ered heat from the LoLe _Qi, where i denotes different heating sup-
ply circuits. The maximization of the users’ comfort is the central
objective for the HiLe-MPC, considering stochastic disturbances
ambient temperature, radiance and occupancy. In contrast, the
LoLe controller optimizes the operation of the switching aggregate
and consequently the number of available energy sources used to
meet the HiLe requirement by minimizing the costs. This is a clas-
sical unit commitment problem (when to optimally switch an
aggregate on/off), but additionally the stratified storage tank’s
operation and the usage of electric energy with time-varying pric-
ing is optimized. Note that the relevant dynamics in the higher
level is comparatively slow (from hours to several days), whereas
in the lower level it is faster (from minutes to several hours). In
[8], this hierarchically decoupled approach was presented, which
is briefly explained in Section 2.2 since it defines the requirement
for control of the energy supply system Section 2.3 and in [16] the
HiLe-MPC was further developed.

2.2. Hierarchic building control

Fig. 1 shows a schematic diagram of the two building layers and
the single coupling point between the controllers. The HiLe
optimizes the user comfort by minimizing the deviation of the
indoor temperature from the consumer preference. _Q ref

i , for
i ¼ fTABS; FCg, depicts the energy demand of the HiLe to fulfill
the optimization target, which constitutes the control variables
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of the HiLe-MPC at the same time. As each building zone j can be
controlled individually by a separate MPC, the sum of these control

variables
P

j
_Q ref

i;j is the reference value for the energy supply of the
LoLe-MPC. However, the important fact is the decoupling of the
optimization problems. Stochastic disturbances such as weather
and occupancy information only affect the HiLe-MPC, [7], Fig. 1.
Decoupling is useful due to the fact that (i) the dynamic behavior
is significantly different in HiLe-MPC and LoLe-MPC, (ii) the mod-
eling and optimization problem is split into two tasks, and (iii)
the possibility of modular application is given. Minimum up- and
down-times and operation modes of the stratified storage tank
are the reason for the dynamics in LoLe, whereas the dynamics
in the HiLe differ not least due to large time constants. Global opti-
mal solutions may not be reached with a decoupled method, but
two local optimal solutions are more likely to be feasible and easier
in operation due to the resulting real time capability. Industrially
motivated, system identification of the HiLe may be data-driven,
[17], while LoLe can be modeled by an analytical approach.
Additionally, the optimization targets of the two layers differ
fundamentally, so that large benefits arise with an hierarchically
decoupled approach that allows modular application in industry.

2.3. Energy supply system

In the following the variables, parameters and subscriptions
given in Tables 1 and 2, respectively, will be used.

Due to the different temperature levels, the heating supply sys-
tem consists of two separated supply circuits, see Fig. 2, one
responsible for the Fan Coil (FC) system in the indoor rooms and
the other one for the TABS system implemented as activated con-
crete in two office floors.

District heating is the source of the first circuit, directly fed
through to the distributor for the office floors, whereas the TABS
system is provided by a geothermal-based heat pump and a

subsequent stratified water storage tank. The water-glycol mixture
fed by the geothermal pipes varies between 12 �C and 16 �C
depending on the season and ambient temperature. The TABS sys-
tem has a minimum supply temperature constraint which depends
on the insulation of the pipe system. Therefore, it is reasonable to
operate a stratified storage tank in order to compensate the tem-
perature gap. This also enables an energy saving management
since the heat pump can be switched off regularly. As in [11,10],
the assumption is that the warm water enters the storage tank at
the top and is also drawn from there, whereas the cold return
water from the building is supplied to the bottom. The storage tank
can operate in two basic operation modes: charging and discharg-
ing. These operation modes depend on the status of the heat pump
(on/off) and on the difference of the mass flows to, _mHP, and from,
_mTABS the storage tank. As the supply systems are located in the

basement of the building, the ambient temperature Tamb is
assumed to be constant with 20 �C. The water return temperatures
TTABS;r and TFC;r are also assumed to have a constant level of 22 �C
and 30 �C. This assumption is plausible, because the HiLe-MPC
optimizes the energy amount needed to guarantee user comfort.
Since the LoLe controller is designed to meet these requirements,
the resulting return temperatures are almost constant.

2.4. Control problem statement

For the energy supply system outlined in Section 2.3 a control
design should be performed which guarantees that the actual heat
supply _Q i tracks the desired heat load _Q ref

i with optimal perfor-
mance (meaning both minimum error and minimum costs).
Available variables for that task are heat pump, supply pumps,
and supply temperature. Moreover, the management of the strati-
fied storage tank should utilize the storage capacity as effectively
as possible. As a model based control scheme is to be used, the fol-
lowing Section focuses on the modeling of the energy supply
system.

HiLe

LoLe

Q̇ref
TABS

Q̇ref
FC

Q̇TABS

Q̇FC

Fig. 1. Concept of hierarchic building control.

Table 1
Definition of variables and parameters.

Variables Description

z Height of stratified water storage tank [m]
T Temperature of the water ½�C�
_m Mass flow rate [kg/s]
_Q Heat flow from LoLe to HiLe [W]

cp Specific heat capacity of water [J/kg K]
q Density of water [g/cm3]
r Radius of tank [m]
k Coefficient of thermal conductivity of the storage tank [W/m �C]
v Volume of the stratified water storage tank [m3]
d Discrete variable

Table 2
Definition of subscripts.

Subscripts Description

‘h’ Hot water above thermocline
‘c’ Cold water below thermocline
‘s’ Supply water to the building
‘r’ Return water from the building
‘TABS’ TABS system
‘FC’ Fan Coils system
‘HP’ Heat pump
‘DH’ District heat
‘amb’ Ambient
‘in’ Indoor

District heat

Geothermal

FC

TABS

Heat pump
zh

Stratified storage tank

ṁHP ṁTABS

ṁFC

Fig. 2. Heating circuits for FC and TABS.

472 B. Mayer et al. / Energy Conversion and Management 98 (2015) 470–483

2.1 Publication A 21



3. Energy supply system model

In this Section the models for both heating circuits are derived
analytically. The non-linear equations are given and the lineariza-
tion is outlined.

3.1. FC supply model

The FC supply model is determined as a static first order non-

linear differential equation with the control output _QFC and the
manipulated variables _mFC and TFC;s:

_Q FC ¼ _mFC � ðTFC;s � TFC;rÞ � cp; ð1Þ

with TFC;s ¼ TDH and _mFC as the system’s inputs. Linearizing the

model at the operating point O ¼ To
FC;s; _mo

FC

n o
, results in:

D _Q FC ¼ c1 � cp � DTFC;s þ c2 � cp � D _mFC; ð2Þ

with DTFC;s ¼ TFC;s � To
FC;s and D _mFC ¼ _mFC � _mo

FC. The coefficients c1

and c2 are provided in Appendix A.

3.2. TABS supply model

For the TABS supply model, the water storage tank is modeled
as a two-layer stratified storage tank with one perfectly separating
thermocline as in [10]. As the tank is within a closed hydraulic sys-
tem, the water level in the storage tank is assumed to be constant
with z ¼ zh þ zc at each time. Nevertheless, as the focus of this
work is placed on heating control, only the height and volume of
water above the thermocline zh and vh, respectively, are of impor-
tance in the following. On the hot generation side, the tank is sup-
plied by the mass inflow _mHP with water from the heat pump,
whereas on the consumption side, the mass outflow _mTABS deter-
mines the amount of hot water provided for the TABS system,
see Fig. 2. Consequently, the status of the heat pump determines
the mass flow rate _mHP. In order to make the controller decide
whether the heat pump is switched on or off, the discrete variable
dHP 2 0;1f g is introduced, which affects the mass flow rate _mHP and
its constraints, see Section 4.2. If the heat pump is switched on, it
operates between 30% and 70% of its nominal power, whereas
there is no mass flow at all if the pump is switched off.
Therefore, the stratified storage tank’s operation mode depends
on the controller’s decision, on the difference of the two mass
flows, and on the status of the heat pump, see Fig. 3.

The water supply temperature TTABS;s depends on the active
operation mode. Each mode is represented by one dedicated
model. The hybrid system’s dynamics are given by the change in
zh and the temperature of the hot water in the stratified storage
tank Th over time. Thus, these two variables form the states of
the system. The manipulated variables are given by the mass flows
_mHP and _mTABS and by the temperature of the water supply from the

heat pump THP to the stratified storage tank. The control outputs
_Q TABS and TTABS are expressed by the two states and the manipu-

lated variables in each case.

3.2.1. Continuous non-linear model
The TABS supply model is determined as a set of non-stationary

first order non-linear differential equations based on heat and
mass flow balances:

dQhðmh; ThÞ
dt

¼ _Q in
h � _Qout

h ; ð3Þ

_mh ¼ _min
h � _mout

h ¼ _mHP � _mTABS: ð4Þ

For all operation modes, mh is the mass of hot water in the stratified
storage tank above the thermocline, r denotes the radius of the tank
and q the density of the hot water:

mh ¼ zh � r2pq: ð5Þ

Hence, the derivative of the height of stratified water storage tank
above the thermocline _zh can be derived from Eqs. (4) and (5)
independently from the operation mode:

dzh

dt
¼ gð _mHP; _mTABSÞ ¼

_mHP � _mTABS

r2pq
: ð6Þ

The heat flow based on the heat balance Eq. (3) is expressed by the
following total differential, where the derivative of the temperature
_Th is denoted by the losses to the ambiance:

dQ h

dt
ðmh; ThÞ ¼ _mh � Th � cpþmh � _Th � cp ¼ ð _mHP � _mTABSÞ �

Th � cp� 2rp � k � zh � ðTh � TambÞ: ð7Þ

Charging: _mHP > _mTABS and dHP ¼ 1
The mass flow rate of the heat pump is higher than the mass

flow needed for the TABS system. Therefore, the energy content
rises and zh increases as the thermocline lowers, see Fig. 3(a).
This operation mode is only feasible if the heat pump is active. In
this case the temperature Th can approximated by THP and Eq. (7)
can be written as:

_mh � Th � cpþmh � _Th � cp ¼ ð _mHP � _mTABSÞ � THP � cp� 2rp�
k � zh � ðTh � TambÞ ð8Þ

The time derivative of the temperature of the hot water in the
stratified storage tank _Th can therefore be expressed by utilizing
Eq. (8) where mh is substituted by Eq. (5) and _mh is substituted by
Eq. (4):

_Th ¼
ð _mHP � _mTABSÞ � ðTHP � ThÞ � cp� 2rp � k � zh � ðTh � TambÞ

zh � r2pq � cp
: ð9Þ

As the mass flow to the storage tank is higher than the mass flow to
the TABS system, the temperature of the water supply for the TABS
system, TTABS;s, is assumed to be the temperature of the water sup-
ply from the heat pump (direct feed through). Hence, the heat flow
to the TABS system is derived from this assumption and the non-
stationary heat balance (3):

TTABS;s ¼ THP; ð10aÞ
_QTABS ¼ _mTABS � ðTHP � TTABS;rÞ � cp: ð10bÞ

zh

charging ∧ δHP = 1

ṁHP ṁTABS

(a) ṁHP > ṁTABS, żh > 0

zh

discharging ∧ δHP = 1

ṁHP ṁTABS

(b) ṁHP ≤ ṁTABS, żh ≤ 0

zh

discharging ∧ δHP = 0

ṁHP ṁTABS

(c) 0 ≤ ṁTABS, żh ≤ 0

Fig. 3. The three operation modes of the stratified storage tank.
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Discharging: _mHP 6 _mTABS and dHP ¼ 1
If the mass flow rate produced by the heat pump is lower than

the mass flow needed for the TABS system, the stratified storage
tank is discharged, see Fig. 3(b). The time derivative of the tem-
perature of the hot water in the stratified storage tank _Th can be
directly expressed from Eq. (7):

dTh

dt
¼ �2rp � k � zh � ðTh � TambÞ

zh � r2pq � cp
: ð11Þ

If the heat pump is active the water supply temperature to the TABS
system, TTABS;s, is a mixture of the water supply temperature from
the heat pump and temperature of the hot water in the stratified
storage tank weighted by the corresponding mass flows. This also
causes a different formulation of the heat flow to the TABS system
than in the charging mode:

TTABS;s ¼
_mHP � THP � ð _mHP � _mTABSÞ � Th

_mTABS
; ð12aÞ

_Q TABS ¼ _mHP � ðTHP � ThÞ � cpþ _mTABS � ðTh � TTABS;rÞ � cp: ð12bÞ

Discharging: 0 6 _mTABS and dHP ¼ 0
If the mass flow rate produced by the heat pump is zero the

stratified storage tank is discharged, see Fig. 3(c). The deviation
of the temperature of the hot water in the stratified storage tank
_Th is equal to the corresponding formulation for charging while
the heat pump is on. The water supply temperature to the TABS
system TTABS;s is then equal to the temperature of the hot water
in the stratified storage tank:

TTABS;s ¼ Th; ð13aÞ
_Q TABS ¼ _mTABS � ðTh � TTABS;rÞ � cp: ð13bÞ

3.2.2. Continuous linearized model
In order to use the MI-MPC a piecewise linear model is required to

formally describe the hybrid system. For the linear approximation,
operating points for both states and all manipulated variables are
fixed, O ¼ zo

h; To
h; To

HP; _mo
HP; _mo

TABS

� �
. The linearized, continuous

system is given by the three sets of linear Eqs. (17)–(19) derived
from the respective non-linear part of the model (9)–(13). The
coefficients c3 � c19 are provided in Appendix A.

The method to derive the following linearized equations for
each operation mode is exemplarily demonstrated for one specific
model equation. For all operation modes _zh is given by Eq. (6).

The following D-variables define the deviation from the operat-
ing point: _zh ¼ D _zh; _mHP ¼ _mo

HP þ D _mHP and _mTABS ¼ _mo
TABS þ D _mTABS.

Consequently, Eq. (6) can be rewritten:

D _zh ¼ gð _mo
HP þ D _mHP; _mo

TABS þ D _mTABSÞ: ð14Þ

Developing Eq. (14) in a first-order Taylor series at the operating
point results in:

D _zh ¼ gð _mo
HP; _mo

TABSÞ þ
@gð _mHP; _mTABSÞ

@ _mHP
joD _mHP

þ @gð _mHP; _mTABSÞ
@ _mTABS

joD _mTABS: ð15Þ

With gð _mo
HP; _mo

TABSÞ ¼ 0 the linearized equation for D _zh is given by:

D _zh ¼
1

r2pq
D _mHP �

1
r2pq

D _mTABS: ð16Þ

Charging: _mHP > _mTABS and dHP ¼ 1

D _Th ¼ c3 � DTHP þ c4 � D _mHP þ c5 � D _mTABS þ c6 � Dzh þ c7 � DTh

DTTABS;s ¼ DTHP

D _Q TABS ¼ c8 � cp � DTHP þ c9 � cp � D _mTABS ð17Þ

Discharging: _mHP 6 _mTABS and dHP ¼ 1

D _Th ¼
�2k

rq � cp
DTh

DTTABS;s ¼ c10 � DTHP þ c11 � D _mHP þ c12 � D _mTABS þ c13 � DTh

D _QTABS ¼ c14 � cp � DTHP þ c15 � cp � D _mHP

þ c16 � cp � D _mTABS þ c17 � cp � DTh ð18Þ

Discharging: 0 6 _mTABS and dHP ¼ 0

D _Th ¼
�2k

rq � cp
DTh

DTTABS;s ¼ DTh

D _QTABS ¼ c18 � cp � DTh þ c19 � cp � D _mTABS ð19Þ

Summarized, the system manipulated D-variables, the state
D-variables, and the system output D-variables are given by:

Du ¼ ½DTHP;D _mHP;D _mTABS;DTFC;D _mFC�T ;
Dx ¼ ½Dzh;DTh�T ;

Dy ¼ ½D _Q TABS;DTTABS;s;D _Q FC�
T
: ð20Þ

3.3. Piecewise affine (PWA) model

The MI-MPC requires a model formulation in a linear state
space form. Therefore, the overall hybrid system introduced in
Sections 3.1 and 3.2 is transformed into a piecewise affine (PWA)
model. As motivated in Section 3 the hybrid system consists of
two continuous states, X ¼ Xc ¼ zh; Thf g 2 R2, five continuous
manipulated variables, Uc ¼ THP; _mHP; _mTABS; TFC; _mFCf g 2 R5, one

discrete input Ud ¼ dHP with U ¼ Uc

Ud

� �
2 R5 � 0;1f g and three

continuous outputs, Y ¼ Yc ¼ _QTABS; TTABS;s; _QFC

n o
2 R3.

The auxiliary logical variables dmðtÞ 2 0;1f g;8m ¼ 1; ::;3 are
introduced to denote the operation mode of the stratified storage
tank. As the system can only be in one mode at each time they
are satisfying

X3

m¼1

dmðtÞ ¼ 1 ð21Þ

as an additional constraint. In the following, the overall discrete-time
PWA system is considered, which is derived from (2), (17)–(19) with
a sampling time of ts ¼ 1 h:

xðt þ 1Þ ¼
A1xðtÞ þ B1uðtÞ; if d1ðtÞ ¼ 1

A2xðtÞ þ B2uðtÞ; if d2ðtÞ ¼ 1

A3xðtÞ þ B3uðtÞ; if d3ðtÞ ¼ 1;

8><
>:

yðtÞ ¼
C1xðtÞ þ D1uðtÞ; if d1ðtÞ ¼ 1

C2xðtÞ þ D2uðtÞ; if d2ðtÞ ¼ 1

C3xðtÞ þ D3uðtÞ; if d3ðtÞ ¼ 1;

8><
>:

ð22Þ

where the matrices Am 2 R2�2; Bm 2 R2�5; Cm 2 R3�2 and Dm 2 R3�5

are given in the Appendix. The auxiliary variables dm for m = 1,2,3
can be expressed by:

d1ðtÞ ¼ dchargeðtÞdHPðtÞ
d2ðtÞ ¼ ð1� dchargeðtÞÞdHPðtÞ
d3ðtÞ ¼ ð1� dchargeðtÞÞð1� dHPðtÞÞ; ð23Þ

with

dcharge ¼
1 if _mHP � _mTABS > 0
0 if _mHP � _mTABS 6 0:

�
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The non-linear model (22) and the logical expressions in (23) can be
transformed to a set of mixed integer linear inequalities as pre-
sented in [9].

4. Mixed-integer MPC formulation

The MI-MPC formulation consists of its objective function and a
set of constraints. In this section both parts are motivated and for-
mally described. The objective of the MI-MPC is to minimize both
the deviation to the head load prediction from the HiLe and the
costs while respecting constraints on control inputs, states and
minimum on/off times of the heat pump. The optimization proce-
dure is carried out as a moving horizon control strategy [18], at
time t an optimal solution for the manipulated variables

UH ¼ uH

tjt; � � � ;uH

tþNp�1jt

n o
is calculated for the complete horizon.

Only the first element uH

tjt is actually applied to the plant (22), then
the optimization problem is repeated at time t þ 1 with the
updated states xtþ1.

4.1. Objective function

For the LoLe optimization problem, minimum deviation to the
head load prediction from the HiLe, the minimum costs, and sus-
tainable management of the stratified tank are relevant.

Note that each D-variable in (24) denotes the respective
deviation from the fixed operating point: v ¼ vo þ Dv . The
corresponding D-vectors used are given in (20). The MI-MPC
optimization function is formulated over the prediction horizon
Np as follows:

JH ¼min
Du2U

XNp�1

k¼0

½ð1�aÞ � QðDyrefðtþ kÞ �Dyactðtþ kÞÞj jð

þ SðDxref �Dxactðtþ kÞÞj jÞ þ a � Rðtþ kÞðDuðtþ kÞ þ uoÞð
þ TðDuðtþ kÞ �Duðtþ k�1ÞÞj jÞ�; ð24Þ

where Dyref denotes the shifted reference output vector and Dxref

the shifted reference state vector. The objective function (24) con-
sists of four additive terms covering the four objectives. The first
addresses the three continuous outputs, whereas the second term
refers to the continuous states of the stratified storage tank. The
third covers the costs occurring due to the manipulated variables
and the fourth is limiting the change in control increments. Each
of these terms is penalized individually. The weights on the out-
put deviation to the reference heat load Q, the weights on the state
deviation S and the weights on control increments T are time-in-
variant. The weight on control inputs Rðt þ kÞ depends on the
fluctuating, possibly predicted energy prices and is therefore
time-variant. Since the linearized model is formulated in D-values
(see (2), (17)–(19)), all variables in the objective function (24) are
deviations to the operating point, e.g. Duact ¼ uact � uo . However,
in order to penalize the absolute costs, in the third term the
manipulated variables Duðt þ kÞ are re-shifted by their operating
points uo.

Apart from the primary weights Q ; S; T and Rðt þ kÞ;a 2 0;1f g is
an additional weight of the minimization criterion, which allows a
global balance between performance and cost variables,
respectively.

4.2. Constraints

The MI-MPC has to cope with several types of constraints, for
the overall optimization problem defined in Section 4.3. Firstly,
constraints on operation and capacities for control inputs and
states:

xi;min 6 xi 6 xi;max; ð25aÞ
ui;min 6 ui 6 ui;max: ð25bÞ

As the heat pump is a switching aggregate operating either between
30% and 70% of its nominal power or at zero level if it is switched
off, the constraint set for _mHP is disconnected. Therefore, the
corresponding constraint (25b) is modified:

_mHP;mindHP 6 _mHP 6 _mHP;maxdHP: ð26Þ

Constraints for minimum on/off times in each sampling time t þ k
for which the heat pump has to be kept on/off can be expressed
by the following mixed integer linear inequalities, as demonstrated
in [13]:

dHPðt þ kÞ � dHPðt þ k� 1Þ 6 dHPðxupÞ; ð27aÞ
dHPðt þ k� 1Þ � dHPðt þ kÞ 6 1� dHPðxdownÞ; ð27bÞ

with xup ¼ t þ k; t þ kþ 1; . . . ;minðt þ Np; t þ kþ Tup
HP � 1Þ and

xdown ¼ t þ k; t þ kþ 1; . . . ;minðt þ Np; t þ kþ Tdown
HP � 1Þ.

4.3. MPC optimization target by MILP

According to the predictive control theory with moving horizon
strategy, [18], the MPC is solving an MILP at each time step t þ k,
given initial storage states zh and Th and a prediction horizon Np,
but only the first sample of the input sequence is implemented.
The MPC solves an optimal finite-horizon control problem given
in (24).

subject to

– The PWA model (21) and (22) in terms of linear inequalities,
– the input and state constraints on operation and capacity (25)

and (26) with (30),
– the constraints for minimum on- and off times (27).

The controller for the comparison analysis is set up with the
same structure, substituting the discrete manipulative variable
dHP by the predefined operation mode profile.

5. Simulation results

In this Section the simulation results for the comparison of the
MI-MPC and the MPC with fixed operation mode profile are given.
Therefore the comparison metrics will be defined. For this analysis,
the volume of the stratified tank vh is varied in the simulation, see
Section 5.3. Hence, its maximum ranges from 30 m3 to 50 m3. In a
second analysis, the robustness of the MI-MPC with respect to
uncertain heat load predictions and depending on the length of
the prediction horizon is shown in Section 5.4 based on an approxi-
mated Pareto front.

5.1. Comparison metrics

The mean error (ME) is a critical value as the LoLe MI-MPC has
to provide the energy demanded by the HiLe. The costs are caused
by the electric costs to generate the mass flow rates and tempera-
tures and by the penalties on control increments:

ME ¼ 1
Np

XNp

i¼1

QðyrefðiÞ � yactðiÞÞj j þ Sðxref � xactðiÞÞj jð Þ; ð28Þ

costs ¼
XNp

i¼1

RðiÞðuðiÞ þ uoÞ þ TðuðiÞ � uði� 1ÞÞj jð Þ: ð29Þ

For the comparison analysis of the two controllers the coefficient of
performance (COP) of the TABS system is additionally defined as the
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ratio of the thermally generated energy Et:g: (for the usage in the
building) and the amount of electrical energy consumed Ee:c: by
the energy supply systems, [10]:

COP ¼ Et:g:=Ee:c:;

with

Et:g: ¼
XNp�1

i¼0

_mi
TABS � Ti

TABS;s � TTABS;r

� �
� Dt;

Ee:c: ¼
XNp�1

i¼0

k1 � _mi
HP þ k2 � _mi

TABS;s þ
_mi

HP � Ti
HP;s � Tc;s

� �
� cp

COPHP
:

The COPHP is approximated by a linear equation, as discussed in
[19]:

COPHP ¼ c0 þ c1 � Tc;s þ c2 � Th;s

with c0 ¼ 5:593; c1 ¼ 0:0569 K�1 and c2 ¼ �0:0661 K�1 constant.
Th;s denotes the temperature of the heat pump on the hot side
which is To

HP;s = 35, and the cold supply to the heat pump Tc;s is
assumed to be constant with 16 �C as the water is taken from the
geothermal pipes. The comparison of the ME, the costs, and the
COP for the two different control strategies is shown in
SubSection 5.3.

5.2. Simulation setup

The MI-MPC is implemented in the Matlab framework using
Yalmip, [20]. For the MILP task the Gurobi solver, [21], was added.
The hybrid system is formulated as a PWA system. The MPC for
comparison analysis is run with the same Yalmip implementation
exchanging the discrete manipulated variable dHP with the a priori
fixed storage tank operation mode profile.

The University of Salzburg, representing the demonstration
building, contains the energy heat supply circuits such as shown
in Fig. 2.

The only important coupling point between the HiLe and the
LoLe is the heat demand of the HiLe and the effectively realized
amount of energy provided by the LoLe, as depicted in Fig. 1. The
corresponding picture of the building shows the modern
27.000 m2 building in the center of Salzburg, Austria. It has five
floors above ground containing several large and numerous smaller
meeting rooms, offices and lecture rooms. There are six atrium
within the modern building complex. For this study, the second
and third floor of the building is considered, comprised of about
500 rooms, almost all used as offices, and about 13.000 m2. The
corresponding characteristics of the heat supply circuit as admissi-
ble ranges, see (30), for pumps and the heat pump are derived from
the characteristic curves and technical data sheets. The operation
constraints and admissible ranges for this work are therefore given
by:

THP 2 20;60½ �½�C�

_mHP 2 0f g [ 6;15½ �½kg=s�

_mTABS 2 6;15½ �½kg=s�

TFC 2 20;70½ �½�C�

_mFC 2 7;18½ �½kg=s�

Th 2 0;60½ �½�C�

zh 2 0:1;2½ �½m�: ð30Þ

The operating points are chosen as given in Table 3 for linearizing
the non-linear models:

The radius of the stratified storage tank r is varied from 2:03 m
to 2:8 m in order to study the effects on an increase in volume vh.
The coefficient of thermal conductivity k amounts 0:01 W=m2 �C
and the ambient temperature in the basement, Tamb, is assumed
to be constant with 20 �C. The minimum on/off-times for the heat

pump for this work are given by Tup
HP ¼ Tdown

HP = 1 h.
The energy costs used for the simulation runs are given in

Table 4. The assumption comprises a low night rate and a high
day rate in the morning for electric energy. In the afternoon, the
costs change every two hours between the low night and the high
day tariff. The costs for the district heat are assumed to be
constant.

The prediction horizon is 24 h, and the simulation is presented
for three days, the sampling time is one hour. The desired energy

from the HiLe for the TABS as well as for the FC system, _Q ref
i , is a

snapshot of historic data from the demonstration building. This
output reference is firstly interpreted deterministically. In a further
simulation study, robustness is shown. The desired heat demand
trajectory is overlaid by a low pass filtered sinus as a bias and a
random white noise in order to simulate error of the heat load pre-
diction from the HiLe.

5.3. Analysis of simulation results

For the comparison analysis, the weighting parameter a is kept
constant with 0.1 and the initial states vhð0Þ and Thð0Þ are chosen
at their operating points, such that the stratified storage tank is
half full with hot water. The stratified storage tank is assumed to
have a volume of 30 m3 for the first comparison analysis. Figs. 4
and 5 show the simulation results of the MI-MPC and the MPC with
fixed operation mode profile, respectively. The first subplots (a)
show the output and the reference trajectories for both circuits.
In subplot (b) one can see the manipulated temperatures from
the heat pump, the district heat and the temperature of the hot
water in the stratified storage tank. The third subplot (c) depicts
the manipulated mass flows to and from the tank to the building
for the TABS system as well as the mass flow to the fan coil system,
whereas subplot (d) shows the trajectories of the states vh and Th.
The last subplot (e) in Fig. 4 shows the decision on dHP, whereas in
Fig. 5 the corresponding line represents the fixed operating mode

Table 3
Operating points of input and state variables.

Variables Operating point Unit

zo
h 1 [m]

To
h 30 [�C]

To
HP 35 [�C]

_mo
HP 9 [kg/s]

_mo
TABS 7 [kg/s]

To
FC 70 [�C]

_mo
FC 12 [kg/s]

Table 4
Energy costs [€/kW h].

Time slots Electric energy District heat

08:00–12:00 €0.12 €0.09
12:00–14:00 €0.06 €0.09
14:00–16:00 €0.12 €0.09
16:00–18:00 €0.06 €0.09
18:00–20:00 €0.12 €0.09
20:00–08:00 €0.06 €0.09
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profile. It should be noted, that both controllers are not able to pro-
vide the heat load demanded for the FC at all times, because both
manipulated variables _mFC and TFC;s are at their upper bounds and
the saturation level is reached, see Figs. 4 and 5 at simulation time
10–12 h and 22–30 h, respectively. In Fig. 5 (d) the volume reaches
the lower constraint at the end of the first and third discharging
period, whereas the MI-MPC is able to operate the stratified stor-
age tank more efficiently. The actual storage tank volume used
by the two controllers differs considerably. The MI-MPC uses an
actual volume of 11:22 m3 for its optimal management strategy,

whereas the MPC with fixed operation mode profile needs an
actual volume of 27:22 m3.

The comparison according to the metrics introduced in
Section 5.1 is given in Table 5. For this analysis the radius of the
stratified storage tank r is increased from 2:03 m to 2:8 m, so that
the maximum volume is increased from 26 m3 up to 49:4 m3. The
simulation results show that for a stratified storage tank volume
below 32:5 m3 there is no feasible solution for the MPC with fixed
operation mode profile, as long as the stratified storage tank is sup-
posed to be half full with hot water at the start of the simulation.
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Fig. 5. MPC with fixed operation mode profile. Bold rectangles mark sections where the output of hot water volume in the tank remains in its lower constraint. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Table 5
Performance comparison for different levels of the storage tank volume vmax

h .

vmax
h ¼ 26 m3 vmax

h ¼ 36:4 m3 vmax
h ¼ 49:4 m3

Metrics MI-MPC MPC MI-MPC MPC MI-MPC MPC

ME 60.93 – 55.64 82.71 55.78 84.95

Costs ½104� 0.01 – 2.90 2.88 2.90 2.88

Costs on elec. energy [€] 611.36 – 598.41 413.99 640.27 414.46

Energy therm. gen. ½104 kW h] 3.95 – 3.76 3.28 3.98 3.29

Energy elec. cons. ½103 kW h] 8.53 – 7.81 6.90 8.36 6.91

COP 4.63 – 4.81 4.75 4.76 4.76
Volume spread [m3] 24.57 – 14.2 33.72 16.03 46.72
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Fig. 6. Comparison of operation mode profile for MI-MPC and different storage tank volume levels.
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For a stratified storage tank full with hot water, the minimum
volume for achieving a feasible solution is 20:8 m3. The MI-MPC
yields better results in terms of the mean error which is an
essential requirement with regard to the user comfort because
the HiLe-MPC already makes use of the temperature tolerance
band at minimal energy demand. Therefore, deviations to the
requested energy amount result most likely in a user comfort band
violation.

Variation of the stratified storage tank volume results in two
major outcomes: Firstly, only the MI-MPC achieves feasible solu-
tions for small tank volumes and secondly, the change in the strat-
egy for the stratified storage tank management differs for small to
middle size in different decisions for dHP, whereas for middle to big
volume only the decision for the operation mode changes, see
Fig. 6(a)–(c).

Figs. 7 and 8 show a cutout of a simulation for the heating
period from December 2013 until March 2014 for the TABS
system. The heat demand has characteristics from strongly
variant to almost stationary, so that the difference of the
controllers’ strategies becomes apparent. The controller with
the fixed operation mode profile runs a cyclically recurring
strategy, which is successful in terms of ME if the reference
trajectory is quite stationary. When the heat demand becomes
higher in frequency the MI-MPC benefits from its flexibility in

operation. The difference of the controllers strategies lie as well
in the management of the storage tank as well as in the usage
of different temperature levels. Important to mention is, that
with the given set of constraints for operation and capacities
for control inputs, the MPC with the fixed operation mode profile
only yields feasible optimization results for very large storage
tanks, whereas the MI-MPC is implementable also for small sizes.
Table 6 show the results for the whole period regarding the
comparison metrics. The effects on the gap between the ME as
well as the costs and the volume spread of the short run analysis
are intensified over the long period, meaning that the more
weight is put on the comfort the more beneficial is the
implementation of the MI-MPC.

5.4. Robustness analysis

In order to prove robustness of the MI-MPC with respect to
disturbances of the heat load prediction (which has been
assumed deterministic in the optimization problem in
Section 4.3), some unknown bias and random noise is added
to the deterministic heat load prediction. The closed-loop
performance is then evaluated for different levels of this
stochastic disturbance.

For the robustness analysis an approximated Pareto front is
computed for a fixed set of weights Q ;Rðt þ kÞ; S; T , as introduced
in Section 4.1 and varying a between ½0;1�. Fig. 9(a)–(d) shows
the approximated Pareto fronts and the convex hulls for different
lengths of Np. For all simulation runs a stratified storage tank vol-
ume of 39 m3 is chosen.

Since the MI-MPC optimization problem is generally non-con-
vex, [22], the approximation of the Pareto front is not necessarily
convex either. Furthermore, this approximated Pareto front is only
one among a family of curves, each corresponding to a certain set of
fixed weights, nevertheless not yielding the effective Pareto front.
Identifying the global Pareto front is a global optimization prob-
lem; its solution would be available by e.g. executing a genetic
algorithm to find the optimal set of weights. Initially a set of ran-
domly chosen genomes would have to be evaluated according to
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ṁHP
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Table 6
Performance comparison for long term simulation for vmax

h ¼ 260 m3.

Metrics MI-MPC MPC

ME 18.37 59.95

Costs ½104� 116.56 115.79

Costs on elec. energy ½104 €] 3.05 1.97

Energy therm. gen. ½104 kW h] 190.41 162.90

Energy elec. cons. ½103 kW h] 406.56 328.39

COP 4.69 4.96
Volume spread [m3] 11.89 106.68
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their fitness, i.e. their contribution to the optimal Pareto front. In
an iterative process, the successive ones would have to be modified
and again evaluated in order to achieve the best combination of
weights.

Secondly, the deterministic output reference ydet
ref is overlaid

with a fixed bias over the entire simulation period and a randomly
generated white noise in order to get a disturbed reference trajec-
tory ydist

ref . The bias is given by the sine of the low pass filtered refer-

ence trajectory ylpf
ref , while the white noise is randomly generated

offline for each step over the prediction horizon Np with an ampli-
tude of one tenth of the standard deviation r of the deterministic
standard trajectory ydet

ref :

ydist
ref ðt þ kÞ ¼ ydet

ref ðt þ kÞ þ k � sinðylpf
refðt þ kÞÞ þ r=10 � fðt þ kÞ; ð31Þ

where f is a random number 2 ½0;1�. In order to show the
MI-MPCs robustness, the deterministic reference trajectory is sub-
stituted by the disturbed one ydist

ref . The amplitude of the sinus is
successively increased in each simulation run by increasing the
parameter k from 1 to 8 at four given levels of a. Fig. 10(a)–(d)
shows the results compared to the ones without bias and noise.
The symbols, stars, circles, squares and diamonds represent the
results for the same level of a. For low a the distances from the
disturbed results to the optimal ones on the approximated
Pareto front regarding both axes are less than the distances for
higher a. In Fig. 10(a)–(c) the results for higher a are widely
scattered.

The utilized robustness measure s is the mean sum of the
weighted distances to the corresponding optimal result on the

approximated Pareto front in terms of ME and costs. It allows the
direct comparison of the results for different prediction horizons
Np. si is given by:

si ¼
1
N

XN

j¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� aiÞ � ðMEdist

i;j �MEdet
i Þ

2
þ ai � ðcostsdist

i;j � costsdet
i Þ

2
r

:

ð32Þ

Fig. 11 shows the results for s for the four different prediction
horizons as in Figs. 9 and 10. As the robustness analysis is done
for k 2 1;2; . . . ;8f g eight results with increasing white noise are
compared to the optimal result. According to the definition of s
in Eq. (32), the MI-MPC becomes the more robust the smaller s
is. It is shown that for a large prediction horizon the MI-MPC
shows less distance to the corresponding optimal result on the
approximated Pareto front than for smaller prediction horizons.
However, if the weighting parameter a is in the interval from
0.1 to 0.45 the MI-MPC is robust even for smaller horizons. If
one considers also the absolute costs and the ME as demonstrated
in Fig. 10, an a of around 0.1 can be recommended for the given
application.

The results considering the system’s COP are given in Table 7 in
terms of mean value and standard deviation. The two statistical
parameters are calculated over the 8 different values of k at each
level of a and different prediction horizons. The highest COP mean
value is reached for a ¼ 0:172 for all prediction horizons. The sys-
tem’s COP standard deviation is small throughout all simulation
runs, although with the variation of k up to 8 very high disturbance
is caused.
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Fig. 9. Approximated Pareto fronts for Np = 8, Np = 12, Np = 16 and Np = 24.
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6. Conclusion

In this paper a mixed-integer MPC (MI-MPC) has been presented
for building heating management with a stratified storage tank. In
contrast to other studies in this field, this approach covers the unit
commitment problem with switching aggregate, as well as taking
their minimum up- and down times into account. The considered
stratified storage tank operates in three operation modes,
depending on the state of the heat pump. Therefore, the resulting
hybrid PWA model, based on first order differential equations,
includes discrete and continuous manipulated variables. A
validation of the model is currently not possible due to a lack of
measurements on the stratified storage tank in the demonstration
building. However, for future work the implementation of an
appropriate observer is planned in order to substitute the missing
plant data. The control strategies are shown in comparison to
MPC formulations with a fixed operation tank profile. The
simulation results are evaluated according to the mean error, the
costs and the system’s COP value depending on the volume of
the stratified tank. One can see that for small tanks, the MPC with
an a priori operation mode profile runs into an infeasible problem,
whereas the MI-MPC delivers optimal solutions. Additionally, a
robustness analysis has been performed and the approximated
Pareto front of the MILP given. For this analysis the originally
deterministic heat load reference trajectory has been disturbed.
The considered parameter of this analysis was a, putting
more emphasis either on the ME or on the costs. Simulation
studies with larger prediction horizons have proved beneficial.
However, for small a = 0.1 robustness is achieved even for small
Np yielding less computational burden than for larger prediction
horizons.
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Fig. 10. Robustness analysis for Np = 8, Np = 12, Np = 16 and Np = 24.

Table 7
COP statistics for robustness analysis.

Np Metrics a1 = 0.103 a2 = 0.172 a3 = 0.655 a4 = 0.862

8 Mean value 4.8377 4.8422 4.7491 4.7492
Standard deviation 0.0306 0.0111 0.0220 0.0245

12 Mean value 4.7783 4.8222 4.7530 4.7623
Standard deviation 0.0271 0.0285 0.0410 0.0392

16 Mean value 4.7378 4.7635 4.7003 4.6376
Standard deviation 0.0192 0.0238 0.0275 0.0450

a1 = 0.103 a2 = 0.172 a3 = 0.414
24 Mean value 4.7328 4.7356 4.6931

Standard deviation 0.0365 0.0159 0.0075

COP statistics for robustness analysis at different levels of the weighting
parameter a.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
20

30

40

50

60

70

80

90

100

α

τ

Np =8

Np =12

Np =16

Np =24

Fig. 11. Robustness metrics for MI-MPC with Np = 8, Np = 12, Np = 16, Np = 24.
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Appendix A

The coefficients for the linear system models in (2), (17)–(19) in
Sections 3.1 and 3.2 are given in Table A.8.

For the time-continuous linear PWA model (22), the system
matrices are derived from the linearized physical first order model,
(2), (17)–(19) in SubSections 3.1 and 3.2 where the coefficients in
Table A.8 give the matrix entries.

A1;c ¼
0 0

c6 c7

 !

B1;c ¼
0 1

r2pq � 1
r2pq 0 0

c3 c4 c5 0 0

0
@

1
A

C1;c ¼

D1;c ¼

c8 � cp 0 c9 � cp 0 0

1 0 0 0 0

0 0 0 c1 � cp c2 � cp

0
BBB@

1
CCCA

A2;c ¼
0 0

0 �2k
rq�cp

0
@

1
A

B2;c ¼
0 1

r2pq � 1
r2pq 0 0

0 0 0 0 0

0
@

1
A

C2;c ¼

0 c17 � cp

0 c13

0 0

0
BBB@

1
CCCA

D2;c ¼

c14 � cp c15 � cp c16 � cp 0 0

c10 c11 c12 0 0

0 0 0 c1 � cp c2 � cp

0
BBB@

1
CCCA

A3;c ¼
0 0

0 �2k
rq�cp

0
@

1
A

B3;c ¼
0 1

r2pq � 1
r2pq 0 0

0 0 0 0 0

0
@

1
A

C3;c ¼

0 c18 � cp

0 1

0 0

0
BBB@

1
CCCA

D3;c ¼

0 0 c19 � cp 0 0

0 0 0 0 0

0 0 0 c1 � cp c2 � cp

0
BBB@

1
CCCA

The matrices for the time-discrete system are derived by Laplace
transformation for ts ¼ 1:

Ai ¼ eAi;c ts ; ðA:1Þ

Bi ¼
Z ts

0
eAi;cfBi;cdf ¼ WB; ðA:2Þ

with ðA:3Þ
W ¼ A�1

i;c ðeAi;c ts � IÞ; ðA:4Þ
Ci ¼ Ci;c; ðA:5Þ
Di ¼ Di;c: ðA:6Þ
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In this  article  a branch  and  bound  approach  for hybrid  model  predictive  control  of  a building  cooling
supply  is presented.  This  specific  algorithm  is the  core part  of  a mixed-integer  model  predictive  controller
(MI-MPC)  for  energy  efficient  management  of  a cooling  supply  incorporating  active  storage  connected
to  a switching  chiller.  The  MI-MPC  is  applied  to the model  of the cooling  system  of  a large office  building
in  Salzburg,  Austria.  An  efficient  modelling  strategy  combines  data-driven  black-box  identification  and
analytically  derived  white-box  modelling  for  the purpose  of  predictive  control.  The validation  of  the
resulting  linear  and hybrid  energy  supply  models  is done  by an  open  loop  simulation.  Simulation  results  of
the proposed  control  structure  show  excellent  performance  compared  to the  implemented  conventional
control  strategy  resulting  in  an  increased  usage  of  at least  50%  of  renewable  energy  sources,  a cut in
energy costs  of  about  50%,  and  an  optimised  operation  of  the  active  storage  while  accurately  delivering
the  prescribed  cooling  power  trajectory.  The  approach  is  thus  promising  for industrial  application.

©  2016  Elsevier  B.V.  All  rights  reserved.

1. Introduction

The building sector is responsible for about 40% of the final
energy consumption in the EU since 2004 [1]. It is therefore
economically, politically and environmentally important to save
energy in buildings. Focus has been put on the building physical
structure such as passive heating and cooling systems. However,
saving fossil energy additionally requires maximising the usage of
renewable energy sources such as free cooling systems, geothermal
sourcing or photovoltaic systems. Usually, the amount of energy
and the respective availability highly depend on weather condi-
tions and do not coincide with the energy demand of the building.
This is why energy storage becomes necessary. Thermal energy
storage is either realised as thermally activated building systems
(TABS) or by active storage such as stratified water storage tanks.
This paper focuses on the control of the cooling supply for two
cooling systems, a TABS and a fan coil system (FC) in a large office
building supplied by several energy sources. These two cooling sys-
tems are supplied by three cooling circuits comprising free cooling,
geothermal sources and a chiller with a stratified storage tank.

∗ Corresponding author. Tel.: +43 386233600 6347.
E-mail addresses: barbara.mayer@fh-joanneum.at (B. Mayer),

michaela.killian@tuwien.ac.at (M.  Killian), martin.kozek@tuwien.ac.at (M.  Kozek).

Conventional building energy management usually relies on
proportional–integral–derivative (PID) and rule-based controllers
[2]. In contrast, model predictive control (MPC) has been proven as
a promising technology for such building systems in recent years
[3] with first application results, e.g. [4]. A model predictive control
structure with three parallel MPCs, two  linear MPCs (LMPC) and one
mixed-integer MPC  (MI-MPC), is presented for the LoLe. The con-
strained MPCs’ goal is to maximise the usage of renewable energy
sources limited by disturbances such as the ambient temperature,
to minimise the energy costs while minimising the deviation to
the energy demand of the building. The management of the strat-
ified storage tank is an additional task for the corresponding MPC
[5]. Fig. 1 gives an overview of the proposed control structure for
the supply of the two  cooling systems TABS and FC. Q̇ ref

i
and Q̇ act

i
denote the reference cooling demand and the actual cooling sup-
ply for supply i ∈ {TABS,FC}. The disturbances ϑG, Tamb and TFCr are
the difference of the supply to the return water temperature for the
geothermal source, the ambient temperature and the return water
temperature of the FC system.

Switching aggregates such as chillers require additional con-
straints such as minimum up- and down times. Furthermore, they
directly influence the operation of the active storage, such that
the optimisation problem contains both discrete and continu-
ous variables. The resulting constrained mixed-integer quadratic
problem (MIQP) and the dedicated hybrid model representing the
corresponding supply circuit form the elementary parts of the

http://dx.doi.org/10.1016/j.enbuild.2016.07.027
0378-7788/© 2016 Elsevier B.V. All rights reserved.
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Fig. 1. Simplified control structure for the supply for TABS and FC cooling system.

introduced MI-MPC [6]. In [7] a review of optimisation techniques
for active thermal storage is presented including branch and bound
as well as metaheuristic methods, respectively.

Predictive control concepts for optimising the energy manage-
ment in buildings and micro grids have been developed in the last
years. [8] has given an overview of the performance of MPC  com-
pared to other control approaches for general heating, ventilation,
and air conditioning (HVAC) systems, whereas [9] has discussed
state-of-the-art control strategies for the integration of thermal
storage in buildings. Another approach is to consider the under-
lying process as hybrid control system which are systems that
involve both continuous and discrete dynamics and continuous
and discrete controls. The continuous dynamics of such a system
is usually modelled by a continuous or discrete-time state space
system [10]. [11,5] have presented hybrid system formulations for
cooling systems including two different operation modes (charg-
ing, discharging) assuming that these two modes are scheduled by
an a priori fixed operation plan. In [12] a hierarchical control struc-
ture has been presented decomposing slow passive and fast active
thermal storage, whereby the discrete variables for the storage’s
operation mode are substituted by the continuous duration of one
mode with a piori fixed successions of operation modes. In [13] a
two-stage optimisation algorithm is presented to obtain an opti-
mal  scheduling for a building energy management system within a
smart grid by solving mixed integer linear programs (MILP). Several
model predictive control concepts with mixed integer non-linear
program (MINLP) have also been developed for micro grids, e.g.
[14], thermal storage connected with buildings within a grid [15]
or buildings including the unit commitment problem [6]. Neverthe-
less, solving a MIQP, which is a special category of MINLP for online
control purposes, either means enumerating all possible combi-
nations of integer variables in order to solve individual quadratic
problems (QPs) or to utilise complex commercial solvers as used
in e.g. [14,6]. However, branch and bound is a method that can
solve MIQP more efficiently than a total enumeration without the
necessity of commercial solvers.

Branch and bound algorithms have already been proposed for
hybrid systems as well as for unit commitment problems. In [16] a
branch and bound algorithm is introduced for the control of hybrid
systems based on the proposition that firstly binary variables are
associated with conditions on continuous states and secondly that
switches are rare and a priori known. This behaviour is used for
a specific tree exploration strategy where those QPs are solved
first where the number of switches is limited. In [17] a suboptimal
branch and bound approach is presented for explicit hybrid MPC.
For solving unit commitment problems, early papers of [18,19] have
shown how to build up the search tree and to define the fathoming
and search strategy. Nevertheless, the algorithm of [18] is restricted
by the assumption that the units will only switch their mode once

Fig. 2. The building studied – the University in the centre of Salzburg, Austria.

in a 24-h horizon. More recently, [20] has introduced a merged
approach of logic programming and the efficient and flexible search
technique of branch and bound.

However, none of these approaches has focused on the unit com-
mitment problem with hybrid systems. This paper combines some
approaches introduced in [21], within the basic idea of [20]. Firstly,
the search space is reduced by applying physically motivated con-
straints on aggregates and storage, and secondly, the hybrid search
tree is efficiently solved by a fathoming and search strategy.

Modelling of building systems is a crucial part for predictive
building control [22]. Models for real time predictive controllers
should be as simple and yet as accurate as possible. Basically,
there exist three fundamental modelling approaches for cooling
systems: (i) analytically derived modelling based on thermody-
namical principles as in [11,5] or on resistance capacitance (RC)
networks [23] (ii) grey-box or (iii) black-box identification. [24,22]
give an overview and analysis of different identification tools,
most importantly deterministic-physical modelling or probabilistic
semi-physical modelling. [25,26] show a fuzzy black-box method
for the identification of local linear networks.

In this work both analytically derived modelling and black-
box identification based on historic data with a linear regression
method are used exclusively for the formulation of the LoLe models
representing the cooling supply circuits, see Fig. 1, without respec-
ting the comfort zones in the HiLe.

Model identification and building modelling, respectively, as
well as the performance of the proposed predictive control struc-
ture are shown on a representative modern large office building
comprising both active and passive storage supplied by several
energy sources.

The remainder of this paper is structured as follows: Section 2
gives a description of the building studied and its cooling system.
In Section 3 the three models, one for each dedicated MPC, are for-
mally described and the model validation is shown. The overall
control structure and the controllers are introduced in Section 4.
The simulation results for the building studied are shown in Sec-
tion 5 and finally, a conclusion is drawn in Section 6.

2. Case study description

2.1. Building features

The building studied is the University of Salzburg comprising
27,000 m2 in the centre of Salzburg, Austria, see Fig. 2. This repre-
sentative modern building has five floors above ground containing
several large and numerous smaller meeting rooms, offices and lec-
ture rooms. For this study, the energy demand of the second and
third floor of the building is considered. The two floors comprise
about 500 rooms of some 13,000 m2, almost all used as offices. Its
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Fig. 3. The plan view of the office floors.

Fig. 4. Cooling supply systems for FC and TABS.

gross volume heated is about 40,000 m3 which is about a third of
the overall building’s heated volume. The plan view for the two
almost identical floors is given in Fig. 3.

For the study of this energy consumption zone only the con-
trol of room temperature is considered. The air exchange rate for
office rooms is fixed and air conditioning is not used for heating nor
cooling the building. The two floors considered are supplied both
by TABS and FC system, whereas the two cooling systems are con-
nected to different energy sources: a chiller with stratified storage
tank, a free cooling tower and geothermal source. The correspond-
ing cooling supply systems are shown in Fig. 4. This building is
representative for demonstrating the proposed predicitve control
concept as it is a modern large office building comprising active
and passive storage and various energy sources. Since each supply
circuit is considered separately the resulting modular MPC  concept
is applicable to new buildings as well as for retrofitting.

2.2. Overall cooling system

The considered cooling system is represented by two  indepen-
dent energy supply systems, the slow TABS and the fast FC system
with time constants of 36 h and 4 h respectively. The TABS supply
is directly provided by the geothermal source, whereas the cool-
ing energy for the FC system is either generated by the chiller or
by the free cooling system. Note that free cooling by definition is

Table 1
Definition of variables for all models.

Variables Type Model

ṁG Input Geothermal model
ϑG Disturbance Geothermal model
Q̇TABS Output Geothermal model
TCH Continuous input Hybrid chiller model
ṁCH Continuous input Hybrid chiller model
ṁST Continuous input Hybrid chiller model
chon Discrete input Hybrid chiller model
zc Continuous state Hybrid chiller model
Tc Continuous state Hybrid chiller model
Q̇FC Continuous output Hybrid chiller model
ṁCT Input Free cooling model
f j
CT Input Free cooling model

Tamb Disturbance Free cooling model
TFCr disturbance Free cooling model
rHamb Disturbance Free cooling model
Q̇FC Output Free cooling model

an approach to lowering the air temperature in a building by using
natural cool air or water instead of mechanical refrigeration. For
this building the evaporation of water in ambient air inside the
cooling tower is a source of cooling energy. Fig. 4 shows the three
supply circuits and the two decoupled supply systems delivering
the cooling energy for the building.

The chiller delivers cold water with temperature TCH and mass
flow ṁCH to the stratified storage tank. However, the cooling energy
is provided for the FC system with mass flow ṁST and respective
water supply temperature Tc. Depending on the difference of the
two mass flow rates the stratified storage tank’s operation mode
changes which affects the cold water temperature Tc and the posi-
tion of the thermocline zc. In Section 3.3 the corresponding model is
formally explained in detail. The cooling tower either supplies the
chiller’s secondary circuit (chiller active) or runs the free cooling
system. Associated with the free cooling circuit are the fan speed
of the cooling tower fCT at stage j ∈ {1, 2}, the mass flow ṁCT from
the cooling tower to the heat exchanger and the return water tem-
perature TFCr from the building. The geothermal circuit contains a
pump delivering mass flow ṁG and a heat exchanger. ϑG denotes
the difference of the supply to the return water temperature from
and to the geothermal source.

The corresponding simplified models for predictive control pur-
poses are formulated in the subsequent sections. Table 1 lists all
variables associated with the three models. A model validation is
given in Section 5.2.2.

3. Cooling models

3.1. Geothermal model

The geothermal source provides water only for the cooling sup-
ply of the TABS which is entirely decoupled from the FC system.
The corresponding nonlinear static model in Eq. (1) is based on
thermodynamic principles directly implemented in Matlab. Hence,
modelling is done in a generic way, not using a specific buidling
modelling tool. Only the coefficient of performance (COP) of the
heat exchanger was identified from historic data, its definition is
given in Appendix B, Eq. (B.2). The constant specific heat capacity
of water is cp and ϑG = TTABSs − TTABSr.

Q̇TABS = COP︸︷︷︸
const.

· ϑG · ṁG · cp︸︷︷︸
const.

(1)

In order to utilise a linear MPC  the model is linearised in Eq. (2):

�Q̇TABS = COP · cp︸  ︷︷  ︸
const.

· (ṁG|o · �ϑG + ϑG|o · �ṁG) (2)
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Fig. 5. Inputs and output for the specific black-box model for free cooling.

The �-variables denote the deviation of the variables to the
operating point listed in Appendix A.

3.2. Free cooling model

As depicted in Fig. 4 free cooling is based on the cooling tower.
Free cooling is exclusively used if the chiller is inactive. The ambi-
ent temperature, Tamb, constrains the cooling tower’s operation for
free cooling. Within the cooling tower the return water is sprin-
kled over a specific PVC-packing which is ventilated by the fan in
order to use the evaporation heat to cool down the supply water.
The fan can be run in two speed stages j ∈ {1, 2} providing dif-
ferent levels of cooling power. Main disturbances are given by the
ambient temperature Tamb and the return water temperature TFCr.
Another disturbance for the free cooling system is relative outdoor
air humidity rHamb. Modelling cooling towers analytically aims at
detailed complex models with non-linear dynamics of high order
which are not suitable for the usage within MPCs. Hence, black-
box identification is expedient if historic data of the cooling tower
in operation is available. Data for identification of the cooling tower
covering six months of operation have been taken from the building
management system. For the black-box identification linear regres-
sion models are used to explain the inputs to output behaviour
shown in Fig. 5. The system can be approximated by two linear
static models, one for each fan speed j. The formal description is
given in Eq. (3).

Q̇FC(j) = cj,1 · Tamb + cj,2 · TFCr + cj,3 · ṁCT + cj,4 · rHamb + cj,5 (3)

Within the identification routine the parameters cj,i have to be
estimated using historic data of the free cooling system in opera-
tion. Note that the model in Eq. (3) is linear in the parameters ci,j,
thus least squares methods can be employed for optimal parameter
estimation [27]. If measurements of individual input variables are
not available due to a lack of sensors, the corresponding coefficients
are set to zero and the output has to be explained by the remaining
inputs. Note that in terms of control all model inputs are either dis-
turbances (Tamb, TFCr, and rHamb) or manipulated variables (ṁCT).
There are no feedback loops implemented for air conditioning of the
building studied. Therefore, it is not equipped with sensors for the
relative humidity and the coefficients cj,4 have to be set to zero. All
model coefficients for the models identified for the building studied
are given in Appendix A.

3.3. Hybrid chiller model

The chiller is a switching aggregate with latency times, such
that minimum up and down times have to be respected. Once the
chiller is on, the mass flow ṁCH from the chiller to the stratified
storage tank is variable between 30% and 70% of the pump’s
maximum capacity, while it is zero otherwise. Furthermore,
the storage tank can operate in two basic modes: charging and
discharging. These operation modes depend on the status of the
chiller (on/off), chon, and on the difference of the mass flows to,
ṁCH, and from, ṁST, the storage tank [6]. These two  mass flows
together with the supply temperature from the chiller, TCH form

the continuous manipulated variables to the system while the
status of the chiller, chon, is a discrete input variable. This system
can be expressed by a hybrid system state-space formulation with
discrete as well as continuous inputs. General results on hybrid
system representations are given in [21]. See also [6] for the devel-
opment of the analytically derived nonlinear dynamic system,
the linearisation, and the formulation as a piecewise affine (PWA)
system. Eq. (4a)-(4b) is an equivalent compact representation of
the PWA  system with time-variant matrices [21].

x(t + 1) = Atx(t) + B1tu(t) + B2tı(t) + B3tz(t), (4a)

y(t) = Ctx(t) + D1tu(t) + D2tı(t) + D3tz(t), (4b)

subject to

E2tı(t) + E3tz(t) ≤ E1tu(t) + E4tx(t) + E5t . (4c)

The model contains continuous states, x(t) =
{zc(t), Tc(t), Q̇FC(t)}, three continuous manipulated variables,
uc(t) = {TCH(t), ṁCH(t), ṁST(t)}, one discrete input, ud(t) = {chon(t)},
and one continuous output y(t) = {Q̇FC(t)}. All inputs together are
summarised in u(t) with u(t) = {uc(t), ud(t)}

The ı-variables are auxiliary discrete variables representing the
hybrid modes, charging or discharging – with active or inactive
chiller:

ı1 = 1 ↔ chon = 1 ∧ ṁCH > ṁST

ı2 = 1 ↔ chon = 1 ∧ ṁCH ≤ ṁST

ı3 = 1 ↔ chon = 0 ∧ ṁCH ≤ ṁST

(5)

The z-variables are auxiliary continuous representatives of the
states at each mode, denoted by zi(t) = ıi(t)x(t) for i = 1, 2, 3, which
encapsulate the non-linearity.

The logical conditions arising with the discrete modes and the
resulting hybrid system can be collected in a compact form as
mixed-integer linear inequalities [21]. E1t, E2t, E3t, E4t, E5t in Eq. (4c)
are matrices which represent these inequalities in compact form.
Most important matrices are listed in Appendix A.

4. Control structure

4.1. Complete control structure

The complete control structure is split into two independent
parts. One closed loop consisting of only one LMPC is responsible
for the TABS, while the control of the FC system is alternatively
provided by an LMPC or an MI-MPC. Fig. 6 gives an overview
over the complete control structure embedded into an hierarchical
building control concept. ϑref

B and ϑref
B denote the required respec-

tively actual building zone indoor temperature. Here, this proposed
structure is embedded into an overall hierarchical predictive build-
ing control concept designed for industrial application, introduced
in [25,28], where the energy supply level, the low level (LoLe),
is decoupled from the building’s energy consuming level in the
comfort zones, high level (HiLe). For this study we assume only
proper operation of any HiLe controller providing a prediction of
the required cooling power (see e.g. [29]). This proposed structure
is limited by the suboptimality resulting due to the hierarchy but it
allows to easily include additional circuits and energy sources, since
each supply circuit is considered separately resulting in a modular
MPC  concept, which is ideal for industrial application.

The reference trajectories for the cooling demand of the TABS,
Q̇ ref

TABS, and the FC system, Q̇ ref
FC , are predetermined over the complete

prediction horizon by the predictive controller of the buildings’
comfort area (HiLe) [25,6]. The LMPC for the TABS controls the
geothermal system. The only manipulated variable is the mass flow
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Fig. 6. Overall control structure for cooling circuits supplying FC and TABS.

from the geothermal pipes, ṁG, to the heat exchanger. The only
disturbance is the difference of the supply and return water tem-
perature ϑG. The closed loop for the FC system consists of two
alternatively working MPCs, the LMPC controlling the free cool-
ing circuit and the MI-MPC is responsible for the chiller circuit.
Both have the same controlled variable, Q̇FC, but only one may  be
active at a given time. Fan speed f j

CT and the mass flow from the
cooling tower, ṁCT, act on the free cooling circuit as well as the
disturbances ambient temperature, Tamb, and return water tem-
perature, TFCr. Due to the fact that the two controllers act with
different manipulated variables bump-less switching between the
controllers is ensured as long as the change of MI-MPC’s states is
consistently performed.

4.2. Linear MPC

MPC  control methods are designed for complex multivariable
control problems. At each sampling time, starting at the current
state, an open-loop optimal control problem is solved over a finite
horizon. An explicit model is used to predict the future outputs. At
the next time step, the minimisation of the objective function is
repeated starting from the new state and over a shifted horizon,
leading to a receding horizon strategy. Various MPC  methods differ
in the model used to represent the plant, the cost function to be
minimised and the disturbances to take into account [30]. Linear
MPCs rely on a linear (dynamic) model, and can explicitly consider
constraints in all variables. The two LMPCs for this work have a
quadratic optimisation target, similar to the objective of the MI-
MPC, see Eq. (6). They only differ in the model they rely on. The FC
model for free cooling, Eq. (3), uses a linear model with absolute
inputs, whereas the TABS geothermal model, Eq. (2), is a linearised
model with �-variables which denote the deviation from the cor-
responding operating point. Within the MPC  optimisation routine
these models are constraints to the optimisation task. The inputs to
the models are disturbances or manipulated variables, whereas the
models’ outputs denote the controlled variables of the controller.
Note that manipulated variables are those variables the controller
is free to choose at each time instance in order to optimise the
controlled variable.

4.3. MI-MPC with branch and bound

The four subsequent Sections introduce the MI-MPC formu-
lation, give basic notions on the branch and bound method and
present the branch and bound algorithm for the hybrid system and
the unit commitment problem motivated in Section 3.3.

4.3.1. MI-MPC formulation
In Section 3.3 a linear hybrid system with discrete and continu-

ous inputs was obtained which is used within the MI-MPC. The goal
of the MI-MPC, Eq. (6), is the minimisation of the error to the given
reference trajectory Q̇ ref

FC , while minimising the energy costs arising
due to the manipulated variables. According to the a moving hori-
zon control strategy [30], at time t + 0 an optimal solution for the
manipulated variables U� = {u�

t|t , . . .,  u�
t+Np−1|t} is calculated for the

complete horizon Np.  Only the first element u�
t|t is actually applied

to the plant, then the optimisation problem is repeated at time t + 1
with the updated states xt+1. This implies an efficient management
of the stratified storage tank and a solution of the unit commitment
problem, arising due to the switching chiller with its minimal up
and down times, resulting in the following optimisation problem:

J� = min
�u ∈ U

Np−1∑

k=0

∥∥�Q̇ ref
FC (t + k) − �Q̇ act

FC (t + k)
∥∥2

Qy

+ min
�u ∈ U

Np−1∑

k=0

∥∥�u(t + k)
∥∥2

Qu
(6)

subject to:
model and inequalities in Eq. (4),

ıi(t + k) ∈ {0, 1}, (7a)
∑

i

ıi(t + k) = 1, (7b)

umin ≤ u(t + k) ≤ umax, (7c)

xmin ≤ x(t + k) ≤ xmax, (7d)

chon(t + k) − chon(t + k − 1) ≤ chon(ωup), (7e)

chon(t + k − 1) − chon(t + k) ≤ 1 − chon(ωdown), (7f)

where umin and umax, respectively xmin and xmax, denote the the
capacity limits of the manipulated variables and the physical
bounds of the stratified storage. The constraints on latency times
with minimum up and down times are given in Eq. (7e) and Eq.
(7f) with ωup = t + k, t + k + 1, . . .,  min(t + Np, t + k + Tup

HP − 1)
and ωdown = t + k, t + k + 1, . . .,  min(t + Np, t + k + Tdown

HP − 1). Eq.
(7b) denotes that at each time only one hybrid mode can be active.
Due to the quadratic cost function this optimisation problem aims
at solving a mixed-inter quadratic problem (MIQP) each time step
t + k. The weighting matrices Qy and Qu are penalising the deviation
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Fig. 7. The binary tree for the hybrid chiller system optimisation with branch and bound.

to the reference and the energy costs caused by the inputs. All �-
variables denote the deviation from the corresponding operating
point.

4.3.2. Branch and bound basic notions
The branch and bound method is based on the relaxation of the

integrality constraint Eq. (7a), i.e. integer and particularly binary
variables are allowed to span over the whole continuous inter-
val. The relaxed MIQP can be represented as a problem specific
tree structure such as Fig. 7 for the introduced predictive optimi-
sation target. A tree consists of nodes and branches. The first node
is called the root node, which is the only node of the tree without
parent. All other nodes have one unique parent, but a parent can
have n ≥ 0 subsequent nodes, called its children. Taking one node
with all its children and deleting the branch to its father is called
subtree. Fig. 7 shows the tree related to the specific problem formu-
lation in Section 4.3.1. The first node represents the root node and
nodes without children are marked as leaves, represented as grey
circles at the end of the tree. The depth k of a node is its number of
predecessors up to the root. The maximum depth over all nodes rep-
resents the length of the tree, which is Np − 1 for the corresponding
predictive optimisation problem. In this example the fourth branch
is terminated at depth 2, such that no further children are searched.

4.3.3. Search space reduction
According to the hybrid model structure the decision tree con-

sists of three branches at each time step which corresponds to one
layer in depth of the tree, leading to a maximum number of 3Np

leaves for a prediction horizon Np.  In order to reduce this large
number of branches to be searched, a modified forward check-
ing method of [20] has been developed. For the reduction of the
search space for the branch and bound algorithm three additional
equations correlating with the minimum up and down times of the
chiller, the physical constraints balances of the stratified storage
tank, and the total amount of theoretically supplied energy from
the storage are checked while building up the search tree level by
level.

minimum up- and down-times, Eqs. (7e) and (7f), (8)

ṁmax
CH · con(t + k) − ṁmin

ST · coff(t + k) + vc(t + 0) < vmax
c , (9)

ṁmin
CH · con(t + k) − ṁmax

ST · coff(t + k) + vc(t + 0) > vmin
c , (10)

Q̇ ref
FC (t + k) − Q̇ max

ST ≤ emax
FC , (11)

where con(t + k), respectively coff(t + k), is the number of hours the
chiller has been active, respectively inactive, up to time t + k. Q̇ max

ST
denotes the maximum energy that can be provided by the storage
tank with Tc at the operating point and emax

FC the maximum error
tolerated for the FC energy supply. If inequality (11) is not fulfilled,
the storage tank has not enough cooling energy without the activa-
tion of the chiller at time t + k. Therefore, the branch with inactive
chiller is not added as a child branch to the parent node at level
t + k − 1.

4.3.4. Branch and bound approach
MIQP can be solved by commercial solvers, e.g. [14,6]. However,

for industrial applications a method without the need of expensive
solvers is desirable. The above problem differs from a QP through
the integrality constraints Eq. (7a). One approach to get rid of the
integer variables is to enumerate all possible combinations of inte-
ger variables. A more effective method is the branch and bound
algorithm which relaxes the original problem by replacing integral-
ity constraints with simple bounds, as ıi ∈ [0, 1] in the binary case.
If the solution to a relaxed subproblem is not integral, but has a cost
worse than the best MILP solution found so far, that branch can be
terminated, or “fathomed”, as further branching will only increase
the cost. Then the corresponding node is marked, such as exem-
plarily shown in Fig. 7. The search terminates when all branches
have been searched. Note that the longer the prediction horizon Np
is and the shorter the minimum up and down times are, the greater
the length of the tree and the more branches have to be searched.
For more information on the principles of the branch and bound
method, see e.g. [31,32].

Fig. 8 shows the developed branch and bound algorithm for the
corresponding MIQP including the unit commitment problem and
explained as follows:

1. Init: The MIQP (model, objective and constraints) is defined.
Initialise list of problems to be solved by QPlist =∅. Relax all
integrality constraints (ud ∈ [0, 1] instead of ud ∈ {0, 1}). Set
J� =∞, u� = [∞,  . . .,  ∞]. Add the root node to the list of problems:
QPlist = [root].

2. Reduce search space: Take the root node and apply the search
space reduction routine, see Section 4.3.3 by using forward
checking implying the constraint check. The feasible tree is set
up with depth Np and sampling time Ts = 1 h. A second tree is set
up similarly with a larger sample time Ts > 1 h and depth Np/Ts
to calculate the minimum upper bound Jub

min for the optimisation
problem by enumerating all subtrees. Only the first tree is used
within the further algorithm.

3. Check QP list: If the list of problems QPlist is empty then stop.
The output is given by J� and u�. Else go to 4.

4. Solve QP: Remove first QP from the list of problems and solve the
QP by setting the already determined binary variables and leav-
ing the relaxation of the integrality constraints to the unknown
binary variables.

5. Check if solution is feasible: If the solution is feasible and the
solution is better than the best upper bound Jub

min, store solu-
tion J̃ = J, ũ = u, else the node is fathomed and the subtree is not
expanded; go to 3.

6. Check integrality constraint: If the binary variables satisfy ud ∈
0, 1 go to 7, else go to 8.

7. Set best solution: Set J� = J̃  and u� = ũ  and go to 3.
8. Expand tree: Expand the tree by adding the children of the cur-

rent node. Add the QPs to the list of QPs and go to 3.
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Fig. 8. Branch and bound algorithm for hybrid MI-MPC and unit commitment prob-
lem.

5. Simulation results

5.1. Model validation

In this section a validation of the models, Eqs. (2)–(4), is given.
For this open loop analysis, the measured input data and distur-
bances obtained from the historic data base of the studied building’s
control system are used to generate the corresponding simulated
cooling supply, which is compared to the measured output Q̇ meas

i
.

Fig. 9 depicts the corresponding workflow: Firstly, the measured
data from the realised implementation is taken. Secondly, the open
loop simulation is conducted where the measured supply variables
denote the input to the model. Thirdly, the simulated cooling supply
is compared to the historically measured cooling supply. In Fig. 10
the measured and predicted outputs are shown for the geothermal,
the free cooling and the chiller model introduced in Section 3. The
validation period is chosen differently for all the models such that
the corresponding model is active over the whole period. The qual-
ity of the models is measured with the mean percentage fit (MPF)
from the predicted to the measured output:

MPFm = 1 − 1
N

N∑

n=1

|Q̇ meas
i

− Q̇ pred
i,m

|
|Q̇ meas

i
|

,  (12)

Fig. 9. Setup and workflow for the open loop model validation.

Table 2
The mean percentage error for validation of the three models and the corresponding
period.

MPFgeothermal MPFfree cooling MPFchiller

92.12% 92.59% 80.41%

for i ∈ {FC,TABS} and m ∈ {geothermal, free cooling, chiller} and N
the length of the validation period in hours. The mean percentage
fit for validation of the three models and the corresponding period
is given in Table 2.

Note that the MPF  defined in (12) can only reach 100% for both
a perfect model and noise-free measurements. In the presence of
inevitable measurement noise the results for MPF will be smaller
than 100% even for perfect models. Thus, the results presented
in Table 2 are excellent for geothermal and free cooling models,
respectively. It also provides a justification to omit the relative
Humidity rHamb in the freecooling model. The result for the chiller
model is slightly worse. However, this is also caused by the poor
data quality available. For the usage within the closed loop predic-
tive control structure the accuracy of the models is only important
for the length of the prediction horizon Np = 12 h, since in each opti-
misation step, the prediction starts with the actual plant data. The
results for the proposed control structure with a prediction hori-
zon of 12 h presented in Section 5.2.2 are promising, such that the
balance between accuracy and simplicity is obtained.

5.2. Closed loop simulations

This section contains simulation results for the closed loop sys-
tem, i.e. the models described in Section 3 are used within the
MI-MPC given in Section 4. The closed loop simulations are pre-
sented for two intervals: May  2014 and June–August 2014.

5.2.1. Simulation setup
The simulation setup for the closed loop simulation is simi-

lar to the setup of the open loop analysis, Section 5.1. The setup
and workflow is shown in Fig. 11. Firstly, the measured data from
the implemented realisation is taken. Secondly, the closed loop
simulation is conducted. The measured cooling supply denotes
the reference to the predictive controllers (LMPCs and MI-MPC).
Thirdly, the simulated data is compared to the historic measured
data. The closed loop system is simulated based on the models
and equations presented in Section 3. The reference to the predic-
tive controller structure is the measured cooling supply, Q̇ ref

i
, taken

from the historic data base. The closed loop simulation results, sim-
ulated cooling supply Q̇ sim

i
, and the simulated cooling variables for

the MPCs are compared to the corresponding measured data.
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Fig. 10. Validation of the geothermal, the free cooling and the chiller model.

Fig. 11. Setup and workflow for the closed loop simulation.

The corresponding admissible operating margins of the cooling
supply circuit, see Eq. (7c), for pumps and the chiller are given by:

TCH ∈ [2,  10][◦C]

ṁCH ∈ {0} ∪ [30, 39][kg/s]

ṁST ∈ [24, 60][kg/s]

Tc ∈ [0,  20][◦C]

zc ∈ [0.1, 2][m].

The coefficient of thermal conductivity k is 0.01 W/m2 ◦C and the
ambient temperature in the basement is assumed to be constant at
20 ◦C. The minimum on/off-times for the heat pump for this work
are given by Tup

CH = Tdown
CH = 1 h. The prediction horizon is 12 h and the

sampling time is 1 h. The cooling energy demand of the building for
the FC system, Q̇FC, and the TABS, Q̇FC, as well as the disturbances
and inputs for the conventional controller results are taken from
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Fig. 12. Ambient temperature from 1st of May  2014 midnight with the upper bound of 18 ◦C for free cooling denoted by the dashed grey line.

historic data archived by the distributed automation system of the
building studied.

The performance of the proposed control structure is compared
to the conventional, currently implemented control strategy. This
concept is based on several PID-controllers and logic within the
programmable logic controller (PLC) ensuring that no technical
constraint is violated. The supply water temperatures TFCs and
TTABSs as well the cooling tower’s pump ṁCT are controlled by a
PID-controller. The management of the stratified storage tank and
the operation of the chiller are simply done by an additional con-
straint on the temperature of the cool water in the tank, Tc. If Tc is
higher than 16 ◦C, the chiller is activated and if it is lower than 6 ◦C
the chiller is switched off.

5.2.2. Transition period: spring
The month of May  represents the transition period with widely

varying ambient temperature (see Fig. 12) and cooling energy
demand.

Fig. 13 shows the performance of the proposed predictive
control structure for the corresponding simulation run. The first
subplot in Fig. 13 shows the cooling power trajectories Q̇FC and

Q̇TABS. The proposed control structure is able to deliver the required
power for little as well as for high energy demand. However, the
TABS supply meets the reference even better than the FC supply
does. The second subplot shows the continous supply input vari-
ables of the chiller introduced in Section 3.3, whereas the third
subplot shows the mass flow of free cooling which is the only
manipulated variable of the free cooling system, Eq. (3), for the cor-
responding LMPC. The fourth subplot shows the geothermal supply
with the disturbance ϑG and manipulated variable ṁG introduced
in Eq. (2). The vertical lines represent midnight. Note that an aggre-
gate is not active if the corresponding mass flow is zero and active
if greater than zero. The chiller and free cooling are alternately
operating. While minimising the deviation to the required cool-
ing energy the predictive controllers’ second aim is to minimise
the energy costs. Hence, free cooling is used whenever possible.
The limiting factor for its usage is the ambient temperature, Fig. 12,
since free cooling is disabled for Tamb > 18 ◦C.

5.2.3. Cooling period: summer
The biggest advantage of the proposed control structure arises

for operation during summer. Figs. 14 and 15 show the first 600 h

Fig. 13. Closed loop result of proposed control structure starting from 1st of May  2014.
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Fig. 14. First 600 h snapshot of the closed loop result of proposed control structure for simulation of June–August 2014.

Fig. 15. First 600 h snapshot of the closed loop of conventional control strategy for simulation of June–August 2014.
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Fig. 16. Comparison of the simulation results (conventional controller = 100%) for May  and June–August for free cooling (fc) hours, the cooling energy via free cooling, and
costs  in percent.

of the simulation run. The structure of the plots is the same as in
Fig. 13.

The first subplot in Figs. 14 and 15 shows again the cooling
power trajectories Q̇FC and Q̇TABS. The MPC  structure is clearly
able to deliver the required cooling power. Comparing the second
subplots showing the activity of the chiller, the proposed control
requires far less switching operations than the conventional con-
trol. Moreover, ṁCH and ṁST are operated synchronously, while
for conventional control they showed decoupled behaviour with a
temporarily much higher mass flow ṁST. This means that the pro-
posed controller keeps the thermocline constant by balancing the
mass flow to and from the storage.

The third subplot shows the mass flow of free cooling. The pro-
posed concept uses a fine amplitude discretisation optimised for
the respective system state, while the conventional control only
uses three amplitude values (0, 18, 26 kg/s).

The fourth subplot shows geothermal supply. The main pic-
ture is the same for both control concepts. However, the proposed
control structure varies the mass flow during on-time while the
conventional structure supplies a fixed value. Since ϑG is an exter-
nal disturbance to the geothermal system the two curves are
identical.

5.3. Estimation of savings

A quantitative estimation of possible savings by the proposed
control concept focuses on two main indicators: (1) increase in
free cooling hours, and (2) number of chiller transitions. The first
indicator can be related to additional cooling energy supplied by
the ambience and the consequent monetary savings. The second
indicator is related to maintenance costs, as chiller wear is mainly
caused by on/off cycles.

The following results are taken from the closed loop simula-
tions presented in Section 5.2. The proposed control strategy leads
to an increased number of free cooling hours in comparison to
the conventional controller shown in the first column and row of
Table 3.

The proposed controller increases the resulting number of active
free cooling hours by more than 50% and as an effective conse-
quence, less power is required from the pumps of the chiller circuit
and the chiller itself. The amount of cooling energy via free cool-
ing in May  varies considerably, and the costs for electric energy

Table 3
Comparison of the predictive and the conventional control strategy in terms of
number of free cooling (fc) hours, the cooling energy via free cooling, and costs.

May  June–August

MPC  CC MPC  CC

fc hours 760 485 729 120
Cooling energy via fc in [kWh] 406.97 284.95 365.85 62.21
Costs in 103 [D ] 11.48 28.03 23.67 42.17

for cooling can be reduced by about 50% for this period. The costs
are calculated with a price of D 0.12 for a kWh  of electric energy.
The amount of electric energy Eel. consumed by the pumps and the
chiller are given by:

Eel. =
N∑

n=1

k1 · ṁG(n) + k2 · ṁCT(n) + k3 · ṁST(n)

+
N∑

n=1

ṁCH(n) · (TCT − TCH(n)) · cp
COPCH

,

where COPCH is the coefficient of performance of the chiller, which
is calculated from historic data with 3.9 based on the definition of
Eq. (B.1). The water supply temperature from the cooling tower to
the chiller TCT is assumed to be constant at 12 ◦C and the coefficients
k1, k2 and k3 are derived from the characteristic curves of the
pumps. The coefficients are given in Appendix A.

Fig. 16 shows the results for the MPC  structure given in Table 3
relatively to the conventional controller, meaning that 100% repre-
sent the respective historic result for the two  simulation periods. In
the left plot free cooling hours, retrieved energy from free cooling,
and in the right plot related costs are shown.

In Table 4 and Fig. 17 the decrease of chiller transitions is
presented for the two  simulation periods. Note that the MI-MPC
reduces the number of transitions from the chiller state off to the
state on between 73% and 79% depending on the simulation period
compared to the implemented rule based controller.

It should be noted that the related cost reduction is difficult
to assess, as wear and maintenance costs vary strongly between
individual implementations.
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Table 4
Comparison of the predictive and the conventional control strategy in terms of
number of chiller transitions.

May June–August

MPC CC MPC CC

Nr. transitions 41 152 70 327

Fig. 17. Comparison of the simulation results (conventional controller = 100%) for
May  and June–August for number of transitions from chiller state in percent.

Summarised, the two control strategies deviate from each other
in three points: (i) free cooling is used more frequently by the
MPC  concept and its supply energy is increased (ii) the energy
costs of the proposed controller structure are lower than the cur-
rent expenses and (iii) the management of the chiller circuit and
the stratified storage tank are more efficient as the number of
transitions of the chiller states can be reduced by the MI-MPC.
Table 3 shows the comparison results based on these three crite-
ria. Furthermore, the predictive controllers are characterised by
a high flexibility with respect to additional optimisation targets
and constraints, as was shown by the technical constraint on the
heat exchanger. For instance, maintenance costs represented by
start-up and shut-down costs of aggregates can easily be added
to the optimisation function as well as time-varying prices for
electric energy are applicable in time-varying penalty matrices
Qu(t + k).

6. Conclusion

This paper has presented an efficient energy management con-
trol concept for cooling supply systems in large office buildings
comprising active and passive storage such as stratified stor-
age tanks. The corresponding switching aggregates with different
charging modes are the key elements for hybrid cooling systems
consisting of continuous and integer variables.

The contribution of the study is a dedicated flexible predictive
control structure with a core MI-MPC, which is capable of gain-
ing optimal solutions for conflicting goals: accurate delivery of a
prescribed cooling power trajectory at maximum usage of renew-
able energy resources and minimum costs. The considered costs
for the resulting effective storage tank management can reflect
life cycle or maintenance costs etc. caused by pumps and switch-
ing aggregates. The controller’s predictive character is furthermore

advantageous for potentially variable electricity prices and there-
fore beneficial for a building’s smart grid integration. Additionally,
the proposed specifical branch and bound algorithm is introduced
to solve the corresponding constrained mixed-integer quadratic
optimisation problem on-line without the need of commercial
solvers.

The main outcomes of the simulations show excellent perfor-
mance compared to the implemented conventional control for a
large office building in Salzburg, Austria. The proposed MPC  struc-
ture increases the usage of renewable energy sources by at least
50% and cuts energy costs by about 50%. Furthermore, a reduc-
tion of the number of switching cycles of the chiller of about 70%
can be achieved by an optimised operation of the stratified storage
tank.

Simulation results of the proposed predictive control structure
are very promising for the future implementation in the building
studied. Even more, it is quite likely that future building man-
agement systems will be based on hybrid system models within
MI-MPC realisations, as the potential for cost saving and integra-
tion of renewables is high. The proposed control concept including
the algorithm is universally applicable for new buildings as well as
for retrofitting. The correct parametrization is the only part which
has to be adapted for a specific building. However, as the hybrid
character is inherent for any energy system with various energy
sources and switching aggregates with storage, this study forms
a promising basis for the application of a MI-MPC structure for a
wider field of energy systems. Future work is likely to be invested
on further development of appropriate branching rules and search
space reduction for the branch and bound algorithm, since in the
worst case, the computational effort increases exponentially with
the problem size.
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Appendix A. Coefficients and matrices of cooling system
models

The coefficients for the linear system models in Eq. (3) are
given in Table A.5. The operating points for the linearisation of the
geothermal model, Eq. (2), and the hybrid chiller model, Eq. (4), are
given in Table A.6. For the time-discrete linear hybrid chiller model

Table A.5
Coefficients of the free cooling model.

c1,1 c1,2 c1,3 c1,4 c1,5

2.36 3.49 −97.38 0 −5000

c2,1 c2,2 c2,3 c2,4 c2,5

5 −50 −110 0 −5500

Table A.6
Operating points for the geothermal and the hybrid chiller model.

Geothermal model

ṁG|o ϑG|o
46 [kg/s] −0.1 [◦C]

Hybrid chiller model

TCHs|o ṁCH|o ṁST|o zc|o Tc|o
8 [◦C] 36 [kg/s] 35 [kg/s] 1 [m] 9 [◦C]
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in the compact form of Eq. (4), the system matrices are derived from
the linearised physical first order model [6], and discretised with
sampling time Ts = 1:

A = 03,3 ∈ R
3×3

B1 = 03,4 ∈ R
3×4

B2 = 03,4 ∈ R
3×4

B3 =
[

I3,3 I3,3 I3,3
]

∈ R
3×9

C =
[

0 0 1
]

∈ R
1×3

D1 = 01,4 ∈ R
1×4

D2 = 01,4 ∈ R
1×4

D3 = 01,9 ∈ R
1×9

E1 ∈ R
50×4

E2 ∈ R
50×4

E3 ∈ R
50×9

E4 ∈ R
50×3

E5 ∈ R
50×1

The coefficients of the pumps k1, k2, and k3 are given by:

k1 = 0.022
k2 = 0.135
k3 = 0.029

Appendix B. Definition of COPs and technical specification

The definition of the coefficient of performance (COP) for the
chiller is given by the ratio between the usable cooling power Q̇ u

c
and the electric power Pel. added:

COPCH = Q̇ u
c

Pel.
(B.1)

The definition of the coefficient of performance (COP) for a heat
exchanger is given by the ratio between the usable cooling power
Q̇ u

c and the cooling power from the energy supply Q̇ s
c :

COPHE = Q̇ u
c

Q̇ s
c

(B.2)

In Table B.7 the technical specification of aggregates and pumps
of the building studies are given.

Table B.7
Technical specifications of aggregates and pumps.

Aggregate Type Operating
point

Connected load

Chiller Water-cooled,
screw
compressor

6 ◦C supply
temp.

1.145 kW
cooling
capacity

Free cooling tower CT with two
speed fan

1500/750 r.p.m. 540 kW cooling
capacity

Geothermal source 56 probes
200 m deep

Water–glycol-
mix
34%

Pump CT (ṁCT) Block pump 102 m3/h 7.5 kW
Pump CH (ṁCH) Inline pump 171 m3/h 3.0 kW
Pump ST (ṁST) Inline pump 172 m3/h 7.5 kW
Pump G (ṁG) Inline pump 166 m3/h 3.0 kW
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Abstract: A hierarchical model predictive controller (HMPC) is proposed for flexible and sustainable
building automation. The implications of a building automation system for sustainability are
defined, and model predictive control is introduced as an ideal tool to cover all requirements.
The HMPC is presented as a development suitable for the optimization of modern buildings, as
well as retrofitting. The performance and flexibility of the HMPC is demonstrated by simulation
studies of a modern office building, and the perfect interaction with future smart grids is shown.

Keywords: building automation; model predictive control; optimization of building operation;
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1. Introduction

Buildings are responsible for 40% of energy consumption in the EU. Thus, the European
legislation passed energy performance and efficiency directives to extend the green footprint of
buildings [1], affecting designers, investors and operators. The operational energy consumption of
buildings is responsible for most of the environmental burdens [2]; thus, pressure is put on operators
to run buildings efficiently in order to reduce the consumption of fossil energy. Investors are legally
responsible for integrating renewable energy sources in the building. However, such systems are only
efficient if an intelligent operating strategy maximizes their usage.

Building operation is closely linked with building automation and its implemented control
systems. Since buildings have life spans surpassing 50 years, building automation has to be flexible
to meet the requirements of today and the needs of the next decades. Changing conditions will occur
due to climate change. This is extraordinarily relevant because climate plays a unique and primary
role as it directly affects the thermal load and thus energy performance of the building [3]. In Central
Europe, more chillers will be installed in order to satisfy the user thermal comfort. Thus, the challenge
is to operate these aggregates in an energy-efficient way and to save maintenance costs over the
entire life cycle by minimizing wear and usage. Additional demands on building automation are
also made by power grids requiring direct influence on the energy demand of the building (demand
response). The opportunities and potential for both energy efficiency and demand response depend
on the existing building and equipment infrastructure and on the flexibility of building automation
systems providing technical support to the smart grid [4]. Load curtailment can lead to a reduction
of energy consumption or at least to a preferable load shift for the grid. The other way around,
the buildings’ operators gain economic viability by paying lower prices for being curtailed.

Sustainability in buildings affects the whole buildings’ life cycle from design over construction,
operation and maintenance to deconstruction for better integration of environmental, societal,
functional and cost concerns [5]. Building automation is the key instrument of the operation
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and maintenance phase. Thus, sustainable building automation is gained by flexibly meeting the
current and prospective requirements of the directly interacting groups: the users (thermal comfort),
the operators (cost efficiency) and the power grid (demand response).

However, building automation is traditionally based on rule-based controllers (RBC) and
conventional proportional-integral-derivative (PID) controllers, which are disadvantageous for this
purpose due to their rigid characteristics. Firstly, they are designed for planned building physics
often differing from its realization. Hence, the PID/RBC structures cannot in most cases reflect the
nonlinear (switching) nature of the underlying system. Even if a perfect model would be available,
PID and RBC have only limited flexibility to obtain an optimal control. Secondly, PID-controllers
cannot incorporate predictions of disturbances and only react on control errors, and thirdly, though
they are easy to implement, their parameters are not intuitively changeable.

In recent years, advanced process control approaches have been evaluated for building
control [6]. One of their most powerful representatives is model predictive control (MPC). MPC is
an optimization tool based on the dynamic process model capable of incorporating disturbances and
constraints. The optimal process inputs are computed by respecting possibly contradicting goals
formulated as objective function and set-points [7]. MPC has had a substantial impact in many fields
in practice [8] and is probably one of the most successful modern control algorithms. MPC has
also been proven as a promising technology for building systems in recent years [9], with the first
application results, e.g., [10]. Due to its flexibility, MPC enables building automation to meet the
requirements for sustainable operation and maintenance affecting environmental, societal, functional
and economic concerns. MPC is thus the best suited control concept for: (i) maximizing user comfort
and the usage of renewable energy sources; (ii) minimizing life cycle costs of aggregates, such as
chillers; (iii) flexibility towards changes in operational targets and the requirements of smart grids;
and can be (iv) part of a retrofit tool for sustainable building automation.

The main contributions of this paper are thus the definition of how building automation
affects sustainability and the introduction of a hierarchical MPC (HMPC) for sustainable building
automation with beneficial qualities for the directly interacting groups. Simulation results
of a hierarchical MPC concept show the performance of MPC for sustainable building
automation, especially regarding its flexibility towards possibly changing optimization requirements.
Additionally, quantitative differences between the state-of-the art PID and RBC concept and the
HMPC are given for a demonstration building.

The paper is structured as follows: Section 2 gives an overview of MPC in buildings and
the definition of sustainability in building automation. The proposed hierarchical MPC concept
as one promising example of MPC in building automation is presented in Section 3. In Section 4,
simulation results are given showing the performance of the HMPC concept regarding sustainability.
These results are further discussed from the perspectives of a prospective user, investor or operator
in Section 5. Finally, a conclusion is drawn in Section 6.

2. MPC in Building Automation

Within this section, the definition of how building automation affects sustainability,
a comparison of MPC and conventional PID control and an overview of MPC approaches in building
automation are given.

2.1. Building Automation and Sustainability

In [5], sustainability indicators for buildings are presented with the following key issues:
resources consumption, environmental pressure, energy and water efficiency, indoor air quality,
comfort and life cycle costs. Building automation affects sustainability in various manners
influencing all of these indicators directly or indirectly in the building operation phase. Therefore,
the performance of the overall building automation system becomes important for users, operators
and the power grids. The demands of each group affect sustainable building automation.
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Sustainability for users means a high level of thermal comfort with the opportunity to adjust certain
comfort parameters by themselves [11]. Operators are interested in a reduction of costs, including
life cycle costs due to maintenance. Furthermore, the expected life cycle of a building is exceptionally
long, and the objective of building operation might change from cradle to grave. Thus, flexibility
and an intuitive interaction with the system is required from the building automation. Flexibility is
also a key factor for the interaction with smart grids. Smart grids demand smart buildings with
the capability of dealing with varying prices, demand response and load curtailment [12]. In return,
they offer the advantage of temporarily low prices, which are again beneficial for operational cost
efficiency. Within the building operation phase, cost efficiency goes along with energy efficiency if
the potential for the usage of renewable energy sources can be realized. Thus, the usage of fossil fuels
can be minimized, positively affecting the environmental pressure. Finally, investors are indirectly
interested in sustainable building automation since they can expect an added value of the building
as long as they provide a sustainable construction with infrastructure, such as free cooling or a
geothermal source. Figure 1 shows the interaction of building automation with the most affected
groups and the environment.

users

operators investors

BA

environment

grid

variable
costs

load
curtailment

co
st

ef
fic
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nc

y flexibility

com
fort us

ab
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ty

energy

efficiency

disturbances

value added
building

sustainable
construction

Figure 1. Interaction of building automation (BA) with users, operators, grids, investors and
the environment.

Model predictive control (MPC) as introduced in Section 2.2 is a powerful tool for sustainable
building automation since the following requirements can be met:

• sustainable user satisfaction, including thermal comfort and usability.
• energy efficiency, including a maximal usage of renewable energy sources.
• minimization of costs, including life cycle costs arising due to the minimization of

aggregates’ wear.
• flexibility towards smart grids by taking advantage of varying prices and fulfilling

load curtailment.

This paper focuses on non-residential buildings, which significantly differ from residential ones
concerning the extent of building automation. However, the methodology of MPC is applicable also
for residential buildings.

2.2. MPC versus PID

Model predictive control (MPC) is a standard method from advanced process control; it is based
on a dynamic process model, predictions of disturbances, set-points and constraints and an optimality
criterion. The manipulated variables (process inputs) are optimized such that contradicting goals,
such as minimal control error and minimal control effort, are met in a suitable compromise.
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This optimization is performed by repeated on-line simulation of the process, its disturbances and
the candidate input values to be optimized. As a result, the optimal process inputs fully respect
time-varying constraints and the dynamic behavior of the process.

These features are illustrated for building automation in Figure 2.

ambient temperature

heat supply

room temperature

time

MPC

t0 t1 t2

PID

Figure 2. Comparison of MPC and PID for building automation.

In the upper plot, the ambient temperature (main disturbance) is shown. At t = t0, a
sudden drop in the ambient temperature occurs. The middle plot shows the heating input to the
building. Two inputs from alternative control concepts are shown: PID (red, dashed) and MPC (black,
continuous). Note that between t = t1 and t = t2, a strong constraint on the available heat input is
active (e.g., caused by a grid overload). The bottom plot shows the mean temperature in the building
together with an acceptable comfort band (between shaded areas).

Since MPC considers both the building’s time constants, the future disturbances and future
constraints, it can pre-heat the building before the problem actually occurs. Since constraints are
incorporated in the optimization, both input and comfort constraints are met. PID control reacts only
to the increasing control error, thus violations of the lower temperature constraints occur (see the red
regions in the bottom plot).

2.3. MPC Approaches in Building Automation

In recent years, several different approaches for the application of MPC in building automation
have been presented [13]. Their key differentiators are the overall control structure, the type of
MPC, the underlying building model and the application. Most of the concepts consider either
the user level or the energy supply level. For the control of a multi-zone user level, centralized
[9], decentralized, distributed [14] or cooperative configurations [15] have been proposed in the
literature. The centralized controller delivers one solution for all zones, but the optimization results
in a high computational load, since it incorporates the inputs, outputs and disturbances for all
zones. Solving the control task for each zone separately in several decentralized MPCs reduces the
computational burden. However, decentralized MPCs are not capable of taking coupling instances
into account, a drawback that can be overcome by distributed and cooperative MPC schemes by
sharing information between the MPCs in a cooperative loop. In [10], a hierarchical structure was
chosen where the MPC determines the set-points for the low-level PID controller, but does not affect
the energy supply system.

The type of MPC used depends on the type of system model. Buildings’ heating, ventilation
and air conditioning (HVAC), as well as energy supply behavior are strongly non-linear systems.
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Modeling is a crucial part for MPC in buildings [16], since models are expected to be as accurate
and yet as simple as possible. Hence, approximation is welcome as long as model validation assures
acceptable error. For the user level, models have been identified using either statistical methods [16],
physical modeling [10] or black-box identification routines [17].

MPCs for cooling or heating supply systems have been presented in, e.g., [18] based on
non-linear and in [19] or [20] on hybrid system models. The energy supply level is mostly modeled
based on non-linear differential equations, such as energy balance equations. Most of the MPCs
are deterministic, meaning that the forecast for uncertain disturbances is used as known input.
However, stochastic MPCs have been proposed for problem formulations involving uncertainties [21].
Furthermore, MPC approaches have been presented for the interaction with smart grids [12,22], as
well as MPC usage for the optimization of power grids [23].

3. Hierarchical Model Predictive Control

In this section, the proposed HMPC is introduced based on the example of a demonstration
building representing a large modern office building. However, due to its modularity, the control
concept presented in Section 3.1 is also applicable to other buildings. In Sections 3.2 and 3.3, the user
level MPC and the energy supply level MPC are presented.

3.1. Hierarchical MPC Concept

A HMPC structure facilitates the flexibility to meet the requirements defined in Section 2.1.
Two separately operating MPCs are independently designed, implemented and tuned and thus ideal
for retrofit application, as well as for new buildings. The hierarchy splits the buildings into two layers,
the user level and the energy supply level. Concerning control, the characteristics of these two layers
differ significantly in their objective, the influencing disturbances and the system dynamics. The MPC
on the user level, optimizing user comfort and minimizing heating/cooling energy, incorporates
ambient temperature, radiance and the occupancy profile as disturbances. The system dynamics
are basically slow since the thermal inertia of the building leads to time constants of several hours up
to two days. The MPC on the energy supply level, supplying the necessary heating/cooling energy
for the user level while fulfilling other conflicting goals, such as minimal costs, maximum usage
of renewables and minimum wear, is affected as well by the ambient temperature and the water
return temperatures of the building. The system dynamics are much faster than those of the user
level. Furthermore, the HMPC is also an enabler for the interaction with a smart grid, since the two
MPCs are flexible regarding varying prices and constraints possibly active due to load curtailment.
The overall control structure is given in Figure 3.

_

ϑref
indoor ϑact

indoor

hierarchical MPCs

supply
supply
model

building
model

plants

building

UL-MPC

Q̇ref

ESL-MPC

Figure 3. Hierarchical control structure with the user level (UL) MPC and the energy supply level
(ESL) MPC.

The two MPCs are hierarchically operating, meaning that the optimized energy demand
trajectory generated by the user level MPC Q̇ref is reference for the energy supply level MPC. Hence,
Q̇ is the only coupling point.
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3.2. User Level MPC

The user level MPC is employed for optimizing the user comfort and minimizing the heating
and cooling energy. Since this goal can be achieved by using the orientation specific radiance and
the building as passive storage, the building is divided into independently controllable zones with
different orientation; see Figure 4.

Zone NW
Zone NE

Zone SE
Zone SW global coupling zone

individual zones

Figure 4. Example for zone splitting of the user level. The orange lines mark the individual zones,
whereas the global coupling zone is surrounded in green dashed lines.

The MPC is then responsible for keeping the mean zone temperature within a predefined
comfort band, taking the forecasts of the main disturbances of ambient temperature, radiance and the
occupancy profile into account. While some heating or cooling systems provide energy for each zone
individually, some HVAC systems supply the entire floor affecting the comfort parameter of all zones.
Thus, these systems, such as ventilation systems or thermally-activated building systems (TABS), are
coupling variables for all zones. In this paper, two supply systems are respected: the fan coil (FC)
system supplying each zone individually and a common TABS providing all zones with heating or
cooling energy. Different MPC approaches for the user level have been presented in the literature;
cf. Section 2.3. However, for this study, a cooperative fuzzy MPC scheme (CFMPC) [15] is chosen,
since it is most appropriate for the specific system identification approach. Depending on the seasons
(winter, summer, transition), three local linear models (LLMs) are approximately characterizing the
non-linearity of each zone. Note that depending on the local climate, the optimal number of LLMs
can vary for a specific building. The fuzzy MPCs (FMPC) are implemented consisting of one linear
MPC for each LLM, calculating the resulting control variable and the corresponding manipulated
variables by applying fuzzy rules. The overall CFMPC thus includes one fuzzy MPC for each zone
cooperatively acting with one global MPC for the coupling TABS control. Cooperation in this case
means that two controllers, one respective FMPC of zone i and the global MPC, have to agree on one
solution that is acceptable for both. This is done between all four FMPCs and the global MPC by an
iterative loop with the aim that the corresponding manipulated variables converge to an optimum.
Note that this approach enables flexible integration of new zones, as well as additional controlled
variables: All existing MPCs can be retained without adjustments, and just the MPCs for the new
parts have to be integrated in the cooperation loop.

3.2.1. Building Model

Modeling is the most time-consuming part designing a model predictive controller.
Since buildings are complex processes with non-linear system dynamics, modeling is especially
demanding in this field.

TS-Fuzzy Building Model

Four zones of the data-driven building model have the structure of a Takagi–Sugeno (TS)-fuzzy
model. TS-fuzzy models are suitable to approximate nonlinear systems by interpolating between
local linear, time-invariant autoregressive models with exogenous inputs (ARX) [24]. The basic
element of a TS-fuzzy system is a set of fuzzy inference rules Rj [25]. In the following,
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ζ =
[
ζ1, . . . , ζp

] ∈ Rp is the vector of partition variables, and Ξj,1, . . . , Ξj,p are the fuzzy sets or regions
for the j-th rule Rj with corresponding membership functions µj,Ξ1 , . . . , µj,Ξp , with µj,Ξi(ζi) 7→ [0, 1],
for i = 1, . . . , p [17]. The number of rules ri in this work is the same as the number of local linear
models (LLMs) Li, ∀i ∈ F [17].

The elements of the fuzzy vector are usually a subset of the past input and outputs [24]. TS-fuzzy
models consist of both fuzzy inference rules and local analytic linear dynamic models as follows,

Rj : IF ζ1 is Fj
1 and . . . ζp is Fp

1

THEN xk+1 = Ak
j xk + Bk

j uk (1)

yk = Ck
j xk,

where j ∈ L = {1, . . . , p} denotes the number of LLMs (rules).
The degree of fulfillment of the specific j-th rule can be computed using the product operator

µj(ζ) = ∏
p
i=1 µj,Ξi(ζi); furthermore, the normalized degree of fulfillment can be computed as:

Φj(ζ) =
µj(ζ)

∑L
l=1 µl(ζ)

. (2)

The overall zone model is given as a superposition of the above defined local linear models.
This superposition is achieved by weighted parameter blending of the individual system matrices
over all LLMs:

Ak =
L

∑
j=1

Φj(ζ)Ak
j , Bk =

L

∑
j=1

Φj(ζ)Bk
j , Ck =

L

∑
j=1

Φj(ζ)Ck
j (3)

Each zone model of the building can thus be formally written as a time-varying linear
state-space system:

xk+1 =Akxk + Bkuk

yk =Ckxk.
(4)

The global coupling zone (see Figure 4) can be modeled by a linear time-invariant state-space system
represented by the matrices Ag, Bg and Cg.

Note that four building zones plus the linear coupling zone have been considered, and each
TS-fuzzy zone model consists of three LLMs. Each TS-fuzzy model has five inputs and the mean
room temperature of the respective zone as the output (see Figure 5).

ui ≡ Q̇FC

uT
4 ≡ Q̇TABS

ϑamb

radi

occi

yact
i ≡ ϑact

indoor,izone i

Figure 5. Input to output behavior for model identification of zone i.

Specific Building Model

For each zone of the specific building, the significant nonlinearities are given by a
two-dimensional partition space spanned by the difference between heat supply and return
temperatures of the manipulated variable TABS (denoted by ∆ϑTABS = (ϑTABSsupply − ϑTABSreturn))
and the ambient temperature (denoted by ϑamb). Both the choice of the partition variables and the
model split have been done by expert knowledge; however, they could also be identified by a local
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linear model tree algorithm (LoLiMoT) [17]. In any case, after partitioning of the measured data,
classical linear identification methods like least squares can be utilized to estimate the matrices of the
individual LLMs (1).

The LLMs and the specific partition space for the building are presented in Figure 6a. Note that
in this building, the partition space with the model splits is identical for all zones. For more detailed
information and extensive model validation, see [15,26]. It is shown there that all TS-fuzzy zone
models achieve R2-values above 0.9 for three or more LLMs.
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Figure 6. Two-dimensional partition space and the normalized membership function. (a) Two-
dimensional partition space of the building: (∆ϑTABS × ϑamb). Three local linear models (LLMs)
give good performance, each corresponding to one of the seasons: 1, summer; 2, transition; and
3, winter. The measured data are represented by stars, where measured data over one year are
included. (b) Normalized membership functions for one building zone (SW). Three local linear
models are weighted with the shown function values depending on the ambient temperature ϑamb

and the difference between supply and return temperatures of thermally-activated building systems
(TABS) ∆ϑTABS.

3.2.2. Objective

The objective of the user level MPC, for each FMPC of zone i ∈ {1, ..., 4}, is to maximize the user
comfort and to minimize the energy demand. The resulting trade off is mathematically expressed by
the quadratic objective function given in (6).

J⋆i = min
ui

Ji(ui) (5)

Ji = α
Np

∑
k=0

(yref
i (k)− yact

i (k))′Qi(yref
i (k)− yact

i (k)) + (1 − α)
Np

∑
k=0

u′
i(k)Riui(k) (6)

The control variable yact
i denotes the actual mean zone temperature for the i-th FMPC and yref

i
its reference value. The vector ui represents the energy demand to be optimized for the FC system,
the TABS and the given disturbances radiance and ambient temperature for zone i. The i-th FMPC
calculates an optimized strategy looking N p steps ahead by minimizing the sum of the costs arising
due to the deviation and the energy demand penalized with the time-invariant penalty matrices Qi
and Ri, respectively, each time step k. The optimization problem is subject to the constraints in (7)
and the usage of the model introduced in the previous section. The parameter α ∈ [0, 1] is free to be
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chosen by the operator in order to put either more weight on the minimization of the deviation of the
user comfort parameter or on the minimization of the energy demand.

ui,min ≤ ui ≤ ui,max

yi,min ≤ yact
i ≤ yi,max

(7)

The constraints guarantee that the optimized energy demand is kept within technically feasible
limits and that the mean zone temperature does not violate a predefined comfort band. The MPC
solves the corresponding optimization problem each time step k. Though the optimal strategies U⋆

i,FC
for FC and U⋆

TABS for TABS are computed for the entire prediction horizon N p, only the first elements
u⋆

i,FC(k) and u⋆
TABS(k) are applied to the system, and at the next time instance, the optimization is

repeated with the updated disturbances yielding a receding horizon strategy. Since the objective in (6)
is a quadratic function and constraints of the form (7) have to be respected, a solver has to be chosen
that is capable of solving a constrained quadratic program. For this study MATLABsolvers have been
used https://de.mathworks.com/help/optim/ug/quadratic-programming-algorithms.html.

3.3. Energy Supply Level MPC

The energy supply level MPC is responsible for minimizing the energy costs, to maximize the
usage of renewable energy sources while delivering the energy demand of the user level accurately.
The energy supply level consists of several supply circuits routed from various energy sources to
the supply systems incorporating heat exchangers, aggregates and water storage tanks. Figure 7
illustrates such circuits exemplarily for the fan coil (FC) supply, including free cooling, the chiller and
subsequent stratified water storage tank for cooling and district heat supply for heating.

ṁCT

ṁCH ṁST

ṁ-
FC

ṁ+
FC

ṁDH

Chiller (CH)

Cooling
tower (CT)

Storage (ST)
FC cooling

FC heating

District
heat
(DH)

Heat Exchanger

Heat Exchanger

Figure 7. Fan coil (FC) circuits, including free cooling, the chiller and district heat. ṁ denotes the
respective mass flows and ‘+’ heating, whereas ‘−’ cooling.

The proposed MPC for this level is a modular predictive control concept (MPCC) including a
mixed-integer MPC (MI-MPC) [27]. This special MPC has not only all of the advantages presented
in Section 2.1, but is also capable of optimizing discrete and continuous variables at the same time.
This becomes necessary if the underlying system contains switching instances, such as chillers,
which influence the operation mode of the subsequent storage in a discontinuous fashion. With this
type of MPC, the number of transitions of the aggregates from the state off to on can be reduced
significantly [28], leading to less life cycle costs due to minimal wear. The MPCC includes one MPC
for each circuit, depending on the respective building’s physical structure. If supply systems are
connected with circuits provided by fossil fuels, as well as by renewable energy sources, the MPCC
always prefers the circuits with renewables. Given the example in Figure 7, cooling energy for FC
is supplied by free cooling as long as all technical conditions such as the ambient temperature limit
are fulfilled.
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3.3.1. Energy Supply Model

Modeling the energy supply system for the proposed MPCC is done based on thermodynamic
principles [18,20]. Circuits with heat exchangers only are treated as linear systems, approximated by
linearized first order differential energy balance equations. Circuits with additional aggregates and
storage are seen as hybrid systems, since the state of the aggregate δA affects the operation mode
of the storage, such that one model is required for each mode. The resulting model is a nonlinear
piecewise affine system of the following form:

x(t + 1) =





A1x(t) + B1u(t), if δ1(t) = 1

A2x(t) + B2u(t), if δ2(t) = 1

A3x(t) + B3u(t), if δ3(t) = 1,

y(t + 1) =





C1x(t) + D1u(t), if δ1(t) = 1

C2x(t) + D2u(t), if δ2(t) = 1

C3x(t) + D3u(t), if δ3(t) = 1,

(8)

with δ1 ⇔ charging ∧ δA = 1, δ2 ⇔ discharging ∧ δA = 1 and δ3 ⇔ discharging ∧ δA = 0. Figure 8
illustrates the three basic modes: charging, discharging if the aggregate is active and discharging if
the aggregate is inactive.

z

charging ∧ δA = 1
ṁA

ṁS

(a) ṁA > ṁS, ż > 0

z

discharging ∧ δA = 1
ṁA

ṁS

(b) ṁA ≤ ṁS, ż ≤ 0

z

discharging ∧ δA = 0
ṁA

ṁS

(c) 0 ≤ ṁS, ż ≤ 0

Figure 8. The three operation modes of the stratified storage tank. (a) Charging; (b) discharging while
the aggregate is on; (c) discharging while the aggregate is off. ṁA denotes the mass flow from the
aggregate, whereas ṁS the mass flow to the supply system. z is the thermocline of the storage.

For detailed information about the modeling, see [20], and for model validation, the reader is
referred to [28].

3.3.2. Objective

For the MPC implementation, a quadratic optimization target is used, where the deviation to the
reference trajectory of the cooling respective heating power is penalized with factor S. Furthermore,
the energy costs represented by Tk, caused by the manipulated variables (mass flows of the pumps)
are taken into account. Note that the penalty matrix T depends on the time instance k, meaning that
varying prices can be respected. Both additive terms are considered for each time step k over the
whole prediction horizon N p. The parameter α is again a weighting factor, which can be modified
easily by the operator in order to shift the importance between the accuracy of the delivered power
and the energy costs. The formal description of the objective is given by:

J⋆ = min
u∈U

[
α

Np

∑
k=0

(Q̇ref
j (k)− Q̇act

j (k))′S(Q̇ref
j (k)− Q̇act

j (k)) + (1 − α)
Np

∑
k=0

u′(k)Tku(k)

]
, (9)

where j ∈ {FC,TABS} determines the supply system, and the vector uj represents the manipulated
variables, such as mass flows and supply temperatures to be optimized for the supply of the FC
system and the TABS.

uj,min ≤ uj ≤ uj,max

xj,min ≤ xj ≤ xj,max
(10)
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The optimization problem with the target given in (9), the hybrid model introduced in (8),
with constraints on the manipulated variables, and the states given in (10) result in a mixed-integer
quadratic problem, which can either be solved by commercial solvers, such as [29], or approximated
by, e.g., branch and bound algorithms, such as introduced in [28].

Note that the prediction horizon N p for the energy supply level MPC is shorter than the one
for the user level MPC (6 h versus 25 h) since the time constants are much smaller in the energy
supply level.

4. Simulation Results

The performance of the HMPC for sustainable building automation is demonstrated based on
the example of a large office building in Salzburg, Austria. The description of the demonstration
building is given including the currently active PID control structure and the HMPC integration
in the building automation system (BAS) before the simulation results are shown regarding the
requirements set up in Section 2.1. All building and energy supply models have been identified,
respectively implemented in MATLAB. The HMPC implementation, as well as the simulation have
also been conducted in MATLAB.

4.1. Demonstration Building

The demonstration building for this study is a 27,000 m2 University building in the center of
Salzburg, Austria. It has five floors above ground containing several large and numerous smaller
meeting rooms, offices and lecture rooms. For this work, focus is put on the second and third floor,
which is comprised of about 500 rooms of some 13,000 m2, almost all used as offices. Both floors are
supplied by fan coils (FC) and a thermally-activated building system (TABS) coupling the four zones;
see Figure 4. The energy supply system of this building consists of heating and cooling supply
circuits for FC (see Figure 7) and TABS. The FC system is provided energy from district heat and
cooling energy from free cooling or the chiller, whereas the geothermal source supplies the TABS
including a heat pump in the case of heating. The results presented in the following sections are
based on simulation results, but the HMPC concept is already in the test phase implemented in the
demonstration building’s automation system. The simulation is shown for representative snapshots
of the three seasons: transition periods (13 April–12 May 2014 and 16 October–15 November 2014),
summer (4 July–11 August 2014) and winter (19 January–28 February 2015). The corresponding
historic data for disturbances and comparison analysis are taken from the implemented building
automation system.

4.1.1. State-Of-The-Art PID Control Structure

The state-of-the-art PID-control structure designed for and currently active in the demonstration
building consists of PIDs together with RBC loops. In the user level PID control, the room
temperatures are based on the comfort requirements of the users. In the energy supply level, all
supply temperatures are controlled by individual PIDs. The set-points are calculated in the PLCby
comparing the recent past of the ambient temperature to a predefined skid. The mass flows of the
corresponding supply pumps are kept constant. Switching on and off the heat pump, respectively
the chiller, is decided in an RBC loop where fixed temperature limits of the stratified storage tanks
are respected. Figure 9 shows the PID controllers and RBC loops within the overall building
automation system.

4.1.2. HMPC Integration in the Building Automation System

The implementation of the proposed structure in existing building automation systems (BAS)
is straightforward. Basically, it can be seen as part of an extended supervisory control and
data acquisition (SCADA) system. As shown in Figure 9, the conventional function of (mainly
feedforward) set-point generation for the underlying PID and RBC loops is replaced by the proposed

2.3 Publication C 59



Sustainability 2017, 9, 264 12 of 20

hierarchical structure. The MPCC replaces some of the local control loops; nevertheless, in most
cases, the existing local control loops with their respective safety functions can be utilized. Note that
disturbances (weather and occupancy) are explicitly considered by predictions.

Both CFMPC and MPCC can be directly integrated in the SCADA system, as the functions of
a flexible programming structure are given in the BAS. Another solution is possible by setting up
a dedicated hardware and software for the predictive controllers, which communicate by standard
interfaces with the SCADA system and local controllers.
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locallocal
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PID4

(a) (b)

Figure 9. (a) Conventional building automation system (BAS) and (b) proposed hierarchical structure.
In (a) set-points for the underlying control loops are generated by feedforward control as part of
the SCADA system. In (b) a CFMPC computes the necessary heating/cooling Q̇ref for user comfort,
and the actual heating/cooling Q̇ transferred to the building is optimally provided by the MPCC.
Both CFMPC and MPCC are part of the updated SCADA-system.

4.2. User Satisfaction

User satisfaction in terms of sustainable building automation primarily means fulfillment of user
comfort requirements. The user level MPC, here represented by the CFMPC, is capable of predicting
the energy needed for the individual zones in order to keep the respective mean zone temperature
not only within the comfort band, but around a predefined reference value. The comfort band for
this simulation has been chosen with a tolerance of ±2 ◦C of the reference value individually for each
zone. Figure 10a–c shows the simulation results for the three seasons.

The plots show the reference, as well as the mean zone temperature for the four zones
respectively. For all periods, the thermal comfort is guaranteed with little deviation to the constant
reference value and, thus, all times within the comfort band. One can see a higher frequency in
summer arising due to the higher amplitude of the radiation in summer compared to the other
periods. Figure 10d shows the ambient temperature for the respective season. All disturbances are
taken from snapshots of the Central Institute for Meteorology and Geodynamics in Salzburg, ZAMG.
The occupancy profile is generated generically as in [15] according to the occupancy pattern for offices
adapted from [30].

User satisfaction is also affected by the degree of individual control of users’ respective operators.
Therefore, the automation system has to enable an easy and intuitive adjustment of optimization
settings. One of these parameters is α ∈ [0, 1] representing how much emphasis is either put
on the thermal comfort satisfaction or on the cost minimization in the energy supply level MPC’s
objective. In order to demonstrate the consequence of the variation, simulation runs are conducted
with α varying from 0.1–0.9. The results are given in Table 1 in terms of resulting quadratic costs
and the mean absolute error (MAE) of the MPC output to the reference value for the three seasons.
The building requires on average about 550 kW of cooling power in summer and 750 kW of heating
power in winter. The higher α, the higher the (energy) costs and the less the error of the energy supply
to the energy demand of the user level. Note that in winter, the error is generally much smaller since
the energy demand from the user level is less volatile. For an industrial application, a cost reduction
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is preferable, leading to a small α, which can be recommended in this case since the MAE does not
vary a lot. Note that the energy costs are calculated by considering the electric effort of all pumps
according to their characteristic curves, as well as the chiller with a coefficient of performance of 3.9.
For more details, see [28].
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Figure 10. User level MPC results for all zones and seasons. (a) Simulation results for summer;
(b) simulation results for transition; (c) Simulation results for winter; (d) ϑamb of summer, transition
and winter.

Table 1. Simulation results in terms of costs and MAE (kW) for varying weighting parameter α.

α
Summer Transition Winter

Costs (106) MAE Costs (106) MAE Costs (106) MAE

0.1 4.4253 2.28 1.63540 0.26 2.0305 0.014
0.5 4.4266 2.27 1.63542 0.25 2.0302 0.002
0.9 4.4267 2.26 1.63929 0.22 2.0340 0.000

4.3. Energy Efficiency

The HMPC enables an energy-efficient building operation due to the minimization of energy
demand in the user level and due to maximal usage of renewable energy sources in the energy
supply level. Free cooling is the representative renewable source for this study addressable in the
demonstration building. Figure 11 shows the active free cooling hours according to the strategy of
the HMPC and the currently-implemented PID controller in the building for spring (transition 1),
summer, autumn (transition 2) and winter.

The results show a big potential for the transition period, as well as summer, since the MPCC is
capable of predicting time slots of ambient temperature below the technical limit, whereas the PID
controller only reacts on weather data from the past. For the entire simulation period, an additional
221 active free cooling hours have been achieved, which means an overall increase of 11%. However,
for the transition periods, up to 25% more free cooling hours become feasible with the HMPC. Note
that the high amount of cooling hours in winter is a result of continuous cooling of the server rooms.
The total number of cooling hours in summer is 694 with the MPCC or 684 with the PID control.
Further simulation results have been presented in [28], where additionally explicit costs and the
cooling energy provided by free cooling are compared, resulting in about 50% less electric energy
costs for cooling and the double amount of cooling energy supplied via free cooling for the transition
month of May.
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Figure 11. Free cooling hours of simulated hierarchical (HMPC) compared to the implemented
PID controller.

Figure 12 shows the difference between the control strategy of the PID/RBC structure and the
proposed HMPC concept. All data concerning the PID/RBC results are taken from the demonstration
building’s BAS database. The first subplot shows the ambient temperature. Note that the days are
often quite hot, and the nights remain chilly, which can be considered as a sudden drop concerning
the time constants of the building, such as demonstrated in Figure 2. The second subplot shows the
differences of the cooling supply strategy. The HMPC pre-cools the building during night where the
electric energy is less expensive, whereas the PID structure reacts if the ambient temperature gets
hotter for some hours. The third subplot shows the resulting indoor zone temperature. Note that the
HMPC can keep the temperature in the comfort band (marked with the gray lines) over the entire
simulation period, but the PID sometimes violates it; see the blue marked spots. Furthermore, the
HMPC reduces the variance significantly. The last subplot shows when the PID, respectively the
HMPC, activates the supply via free cooling. At hours 130 and 173, the PID violates the rule that free
cooling must not be activated if the ambient temperature is higher than 18 ◦C, whereas the HMPC
uses all possible periods for free cooling by meeting this requirement.
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4.4. Life Cycle Costs

Life cycle assessment for buildings is generally a demanding task [2]. Nevertheless, reducing
costs for energy supply systems in operation and maintenance is an effective means. Applying an
MPC with the optimization target presented in Section 3.3.2 minimizes the wear of aggregates, such as
chillers or heat pumps. For this simulation study, the number of transitions from state off to state on
from the chiller is the reference measure. Figure 13 shows the simulation results compared to the
measured transitions resulting from the PID control decision in the respective seasons.
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Figure 13. Chiller active hours and transitions of simulated HMPC compared to the implemented
PID controller.

The number of active chiller hours can be reduced by 206 h or 17%, and simultaneously, the
number of transitions from state off to state on can be reduced by 11% or 35% with the MPCC for the
entire simulation period. However, the results for individual seasons are much more promising, such
as a reduction of chiller transitions of up to 50% in autumn and spring. Note that in winter, the chiller
has not been active, since free cooling could be activated all of the time.

4.5. Flexibility towards the Smart Grid

Demand response programs vary in their price or incentive options, but in general, accepting
load shift or curtailment is monetarily beneficial for building operators. For this simulation study, the
winter period is considered. The exemplary price profile is based on fixed rates depending on the time
of day; see Figure 14a. For the high-peak hours in the morning, at noon and in the evening, higher
prices are accepted, but in turn, the price is lower (e 1.0/kWh) than the constant price of e 1.2/kWh
for all other hours. The energy supply level MPC predictively incorporates the varying prices and
optimizes the strategy such that more energy is demanded if the price is low and less if it is high.
The resulting costs are therefore a little higher during the more expensive hours, but lower for the less
expensive periods compared to the MPC results with a time-invariant price profile. Figure 14b shows
a snapshot of the difference of the costs from the MPC simulations with a constant and a varying
price profile, resulting in an overall cost reduction of 14% or e 3.230 only for the heating TABS supply
in winter. For the same high-peak hours, load curtailment is demanded at lower electricity costs.
Figure 14c shows this requirement for the TABS supply represented by upper constraints in gray
dashed lines. The user level MPC is capable of adjusting the strategy taking the load curtailment as a
time variant input constraint into account (see the pink line), while still guaranteeing the desired user
comfort over the entire simulation period; see Figure 14d.
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Figure 14. Simulation study for flexible pricing and load curtailment for smart grid integration.
(a) Price profile with fixed rates for 24 h; (b) ∆ costs for constant and varying prices; (c) load
curtailment on TABS supply; (d) user comfort with load curtailment.

5. Discussion

In this section, the results are discussed, and possible obstacles and necessary measures are given
for the industrial usage of the proposed MPC concept.

5.1. Perspectives

In Section 2.1, Figure 1, the interaction of building automation with the most important groups
is illustrated. In the following sections, the simulation results are discussed from the perspective of
the buildings’ users, operators, investors and the smart grid.

5.1.1. User Perspective

Users judge the performance of building automation systems particularly in terms of thermal
comfort. The simulation results in Section 4.2 show that a predictive control concept is capable
of guaranteeing high user comfort with less energy demand. Even if load curtailment is accepted
at some hours a day, the user comfort is kept within the predefined comfort band as illustrated in
Section 4.5. Sustainability for users also means the opportunity to adjust certain comfort parameters
by themselves. The objective function as a key element of MPCs is changeable within the building
automation system. Thus, some tuning parameters can easily be disclosed for the users or operators.
In Section 4.2, Table 1, the effect of changing the parameter α shows that the trade off between costs
and thermal comfort can be regulated to some degree by the user. Note that different set-points for
different zones are possible without compromising the overall optimum.

5.1.2. Operator Perspective

Operators are mainly interested in a reduction of costs, including life cycle costs. In Section 4.3,
it is shown that the energy supply level MPC maximizes the usage of free cooling, which is in
relation to other (fossil) sources a significantly less expensive solution. Thus, in building operation,
energy efficiency is equivalent to cost efficiency. Regarding the life cycle costs the proposed energy
supply level MPC reduces the aggregates’ wear and therefore maintenance effort by decreasing the
aggregates’ transitions by 15%–50% compared to conventional PID control depending on the season.
Additionally, the aggregates are less used if other (less expensive) sources are available. Thus, the
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chiller has 17% less active hours over the year. In Section 4.5, it is shown that the energy supply
level MPC can additionally take advantage of varying prices by saving up to 10% for the chosen
price profile.

5.1.3. Smart Grid Perspective

Smart grids demand smart buildings with the capability to deal with varying prices, demand
response and load curtailment. The results in Section 4.5 clearly show that the HMPC concept meets
these requirements and becomes therefore beneficial for a smart grid integration and simultaneously
for a reduction of energy costs.

5.1.4. Investor Perspective

Providing sustainable construction with infrastructure, such as free cooling or geothermal
source, is expensive. However, investors can expect a value added building if sustainable building
automation is implemented, and a return on invest is possible since the infrastructure can be used
efficiently. Moreover, the added flexibility of the proposed HMPC concept results in a robust
building automation system, easily adaptable to future demands. It is thus also a contribution to
risk mitigation.

5.2. Possible Obstacles and Necessary Measures

Several simulation studies [10,31], as well as the first prototypes of MPC implementations for
large non-residential buildings [32] show the performance and the readiness level for industrial
solutions of this intelligent control scheme. Nevertheless, some obstacles might complicate successful
implementations and future market penetration. In the following sections, possible obstacles are
addressed, and necessary measures are given.

5.2.1. Trained Personnel

An industrial usage of MPC as a key component in building automation requires the automation
suppliers to employ experts in the field of building modeling and experienced control engineers
for MPC design and implementation. The availability of competent and trained experts in this
field may be the real bottleneck for market penetration. On the other side, also operating
personnel are necessary who are willing to apply advanced control approaches not commonly used.
For retrofitting projects, it has been proven advisable to involve operators early in the control design
and implementation phase in order to integrate their knowledge of the process and the building’s
specifics on the one side and to let them participate on the engineering progress to dismantle the fear
from the new technique on the other side.

5.2.2. Data Acquisition

Building modeling is a crucial part for the MPC’s performance. Hence, for model identification,
historic data from the building in operation are essential. The more powerful the automation system is
regarding the data base structure, data acquisition and archiving, the better the basis for the resulting
models. If input data or data from disturbances are missing or not appropriately assignable to its
timestamps, the model quality may be poor. Therefore, the accessibility of sensors, as well as of, for
instance, weather data from external systems is important.

5.2.3. Hardware Requirements

The proposed MPC approach works with existing building infrastructures for heating and
cooling supply. However, the performance depends on the availability of information of the
energy supply and building process. For the closed loop control of thermal comfort parameters,
it is necessary to obtain actual measures of indoor room temperatures, energy supply to the
respective zones, water supply and return temperatures, mass flows of pumps, etc. This requires the
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implementation, availability and integration of the corresponding sensors to the building automation
system. In turn, all actuators, such as pumps or valves must be addressable in order to execute new
set-points computed by the MPC.

6. Conclusions

The paper has presented a hierarchical model predictive controller (HMPC) for sustainable
building automation. The proposed MPC structure sustainably affects the directly influenced groups,
such as users, operators, investors, the environment or the power grid. The HMPC is capable
of maximizing user comfort and the usage of renewable energy sources while minimizing energy
demand and costs for buildings in operation. Additionally, it allows the integration of the resulting
smart building in the smart grid. Furthermore, due to the HMPCs flexibility, changing legislative
requirements can easily be applied with little investment, since only the optimization target of the
HMPC has to be adapted. For example, a time-variant constant proportion of renewable energy
sources can be guaranteed. The performance of the exemplarily proposed HMPC is demonstrated
regarding the demands of the respective group by simulation results of a modern office building.
For users, thermal comfort is guaranteed throughout all seasons, and the variation of a user-adjustable
parameter shows the resulting trade off between user comfort and energy costs. Operators benefit
monetarily from energy-efficient strategies and lower life cycle costs, since free cooling is used
up to 25% more often than by the conventional PID controller instead of more expensive fossil
sources. Furthermore, the aggregates’ wear is minimized due to a reduction of transitions from
state off to on of up to 50%. Furthermore, an easy smart grid integration is possible, since the
predictive character of the MPC is ideal to take advantage of flexible prices and to meet temporarily
active load curtailment without violating the thermal comfort band. Finally, possible obstacles for a
successful implementation of MPC in building automation are addressed, and necessary measures
for a prosperous industrial development of MPC for sustainable building automation are given.
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a  b  s  t  r  a  c  t

This paper  presents  a  cooperative  fuzzy  model  predictive  control  (CFMPC)  for heating  and  cooling  of  build-
ings. Because  of  different  supply  zones,  the  large  time  constants  and  the non-linear  building  dynamics
with  respect  to  the different  seasons,  a CFMPC  concept  is proposed.  The overall  non-linear  building  is split
into  different  zones,  which  are  consisting  of  input-coupled  Takagi-Sugeno  (TS)-fuzzy  models.  Each  such
TS-fuzzy  model  is constituted  by a local  linear  model  network  (LLMN).  The  LLMN  consists  of  local  linear
models  (LLM),  which  are  representing  the  different  seasons:  winter,  transition  season  (fall  and  spring),
and  summer.  The  control  of each  LLM is realized  by model  predictive  control  (MPC).  For  each  building
zone  the  associated  MPCs  are output-blended  by the  fuzzy  membership  functions,  which  leads  to fuzzy
model  predictive  control  (FMPC).  In  addition  to the  FMPCs  a global  MPC is  controlling  the  thermally
activated  building  systems,  which  affect  all other  zones.  To  coordinate  the different  controllers  a  coop-
erative  iteration-loop  is  assumed,  which  leads  to cooperative  fuzzy  model  predictive  control  (CFMPC).
The  concept  is  developed  for a specific  demonstration  building  and  can  be  easily adapted  for  other  com-
plex  buildings.  A simulation  example  demonstrates  that  the  proposed  CFMPC  achieves  a performance
increase  with less  energy  consumption,  as compared  to  FMPC  controllers  and  historical  measured  data
of the  demonstration  building.

©  2015  Elsevier  B.V.  All  rights  reserved.

1. Introduction

1.1. Motivation and contribution

Energy efficient climate control is an important current task,
hence there has been a growing rethinking in energy savings.
The building sector accounts for about 40% of the total energy
consumption [1]. In order to guarantee user comfort in complex
office-buildings an intelligent automation system has to be imple-
mented. Such controversial optimization problems, as minimizing
energy cost while maximizing user comfort, are suitable for model
predictive control (MPC). Furthermore, external disturbances for
buildings as weather (ambient temperature and radiance) can
be explicitly handled by MPCs. Also internal disturbances caused
by occupancy, large time-delays caused by the building’s heat
capacity, strong couplings between different supply zones, and

∗ Corresponding author.
E-mail addresses: michaela.killian@tuwien.ac.at (M.  Killian),

barbara.mayer@fh-joanneum.at (B. Mayer), martin.kozek@tuwien.ac.at (M.  Kozek).

constraints in all variables can be incorporated in the MPC opti-
mization. This complete coverage of the control problem together
with the possibility to directly balance the trade-off between com-
fort and energy saving makes a strong point for MPC  in building
automation. Since one of the most time-consuming parts for the
design of model-based controllers is the model design [2], it is
essential to choose the best fitting model structure. Therefore,
this work presents a grey-box modelling method for buildings,
which approximates the non-linear building behaviour with local
linear models (LLM). This non-linear behaviour is mainly caused
by the seasonal changes in building dynamics, which is espe-
cially important when designing indoor-room temperature control
for both heating and cooling. Conventional non-predictive con-
trol concepts can robustly compensate these non-linearities only
by accepting performance losses. The standard in building control
is currently rule-based control utilizing expert knowledge com-
bined with PID-control for manipulated variables [3]. In order to
avoid this disadvantage non-linear concepts such as fuzzy predic-
tive control have to be employed. Because of the aforementioned
large time constants the combination with MPC  is favourable. The
use of LLMs lead to a special type of non-linear MPC (NMPC),

http://dx.doi.org/10.1016/j.enbuild.2015.12.017
0378-7788/© 2015 Elsevier B.V. All rights reserved.
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Nomenclature

ARX auto-regressive model with exogenous input
CFMPC cooperative FMPC
FC fan coil
FMPC fuzzy MPC
hq

Fi
cooperative iteration-update of zone i

hq
T cooperative iteration-update of coupling zone

k� steepness of the membership function
LLM local linear model
LLMN local linear model network
LoLiMoT local linear model tree
ṁ mass flow in kg·  s−1

MISO multi-input single-output
MPC  model predictive control
NARX non-linear ARX
NE north-east
NMPC non-linear MPC
NW north-west
occi occupancy of zone i in %
Q̇Fi

heat flow of zone i in kW
Q̇T heat flow of coupling zone in kW
Q̇∑ sum of all heat flows in kW

radi radiance of zone i in W/m2

SE south-east
SW south-west
TABS thermally activated building system
TS Takagi-Sugeno
ϑamb ambient temperature in K
Yact

i
actual indoor room temperature of zone i in K

Yref
i

reference indoor room temperature of zone i in K
Ȳact actual mean indoor room temperature in K
Ȳ ref reference mean indoor room temperature of cou-

pling zone in K
�ϑj difference between heat flow and heat return for

supply source j

the so-called fuzzy MPC  (FMPC) [4]. If several zones of a build-
ing are controlled by dedicated FMPCs a coordinated controller
scheme provides additional advantages. In order to coordinate dif-
ferent buildings zones, including coupling zones, a cooperative
FMPC (CFMPC) is introduced. In addition, the proposed models for
the CFMPC cover all seasons, hence, heating as well as cooling are
shown for a specific demonstration building. Building climate con-
trol in general includes several systems as heating, ventilation and
air conditioning (HVAC) systems, lighting systems, and many more.

In this work the focus is put on the control of indoor-room tem-
perature, which is controlled by both fan coils (FC) and thermally
activated building system (TABS). The proposed concept is applica-
ble to other control configurations; especially if ventilation and air
conditioning (VAC) significantly contributes to indoor-room tem-
perature it must be included in the control concept as an additional
manipulated variable.

The main contributions of this work are for one thing non-
linear grey-box models, which are valid for all seasons (heating
and cooling). In addition, the second main part of the work is the
cooperative FMPC structure. This CFMPC provides a novel, more
flexible and intelligent opportunity for temperature control of the
office rooms of a complex multi-zone building. The scope of the con-
trol design is to provide separate FMPC controllers independently
designed for each building zone, and to incorporate the strong cou-
pling of the activated concrete core by a cooperative scheme. A
comparison between a rule-based PID-controller [3] and two

predictive controllers (linear MPC  and fuzzy MPC) is performed in
this work.

1.2. State-of-the-art system identification

Classical system identification algorithms are useful in the case
of MPC  [5]. Black-box models are known as purely data-driven
models. Such a data-driven algorithm is the local linear model tree
(LoLiMoT) algorithm, which has been introduced in [6,7]. LoLiMoT
approximates non-linear systems with LLMs, which leads to an
overall fuzzy model. Another black-box method for building mod-
els are subspace identification methods, like n4SID, which provides
a model in state-space form [2], this is purely linear. Furthermore,
other methods as the prediction error method or a deterministic
semi-physical modelling method are introduced in [2].

The next category is grey-box models. These model types are
hybrid models that use simplified physical descriptions to simulate
the behaviour. Model coefficients are identified based on the oper-
ating data of the building. Therefore, the combination of black-box
and white-box model is called grey-box [8].

In [9], a comparison is given between black-box and grey-
box models for HVAC systems. It was found that artificial neural
networks perform best followed by the auto-regressive model with
exogenous input (ARX) and the grey-box model. In this work, the
grey-box model is based on an ARX-algorithm, but one of the most
important tasks is done by expert knowledge, the choice of the so-
called partition space [6]. This fact leads to a grey-box model in this
work.

The last general group of models is white-box models, which are
purely physical. A lot of mature white-box software tools such as
EnergyPlus and TRNSYS have been widely used [8]. The choice of
the model type is depending on three main factors: effort, com-
plexity and accuracy. The cost for parameterizing of white-box
models is very high, but the resulting accuracy is high as well. In the
case of MPC  design the order and complexity of white-box models
implies an enormous effort, because of the necessary model reduc-
tion and possible problems such as underlying switching control
loops. Therefore, black-box and grey-box models are more suitable
for the design of MPC. In this work the grey-box approach is chosen,
based on a black-box model as the incorporation of expert knowl-
edge additionally reduces the dimension of the partition space in
the LoLiMoT method [7].

The use of Takagi-Sugeno (TS)-fuzzy models is widespread for
fuzzy identification [10]. These models can be extracted from LLMs
and can be directly fed into the FMPC design [11]. Fuzzy identi-
fication for control in general is illustrated in [12]. FMPC using
TS-fuzzy models is a smart way  to use general linear MPC  optimiza-
tion formulations, while afterward blending the different controller
outputs with a non-linear validity function [13]. In case of build-
ings a fuzzy modelling approach is given in [14]. Skrjanc et al.
[14] have introduced two different types of modelling: theoreti-
cal and experimental. The theoretical approach is based on energy
balances, which is described by differential equations.

The grey-box model, in this application, is based on TS-fuzzy
models, and the controller is based on non-linear output-blending.

1.3. State-of-the-art MPC

Classical MPC  approaches are presented in [15]. However, ther-
mal  behaviour of buildings is typically non-linear especially when
considering both heating and cooling. As already mentioned, this
work illustrates a cooperative concept including more than one
FMPC (CFMPC) [16]. The authors of [17] present an energy efficient
MPC  for temperature control, based on a model from a simulation
package. The authors of [18] use fuzzy logic-based advanced on-off
control for thermal control in residential buildings. They achieved a
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reduction of energy consumption while improving the control per-
formance. The focus in [17] is on controlling the vapor compression
cycle in an air-condition system, which is used for cooling. An MPC
only for a building heating system is introduced in [19], in contrast
to [20], where only building cooling systems are taken into account.
In opposition to [17,19,20], in this work the building is controlled
for heating and cooling.

In this work, not only a straight-forward FMPC for buildings is
shown. A more intelligent algorithm for more than one FMPC is
given, a coordinated FMPC (CFMPC) [16]. This problem formula-
tion is similar to distributed MPCs [21], both leading to a suboptimal
solution. The authors of [21] present a distributed MPC  structure for
thermal regulation in buildings with an inner cooperation-loop. In
[21], a simulated building with 3 rooms (one room is one zone)
is presented. Moreover, only heating is proposed. In contrast to
[21], in this work a real demonstration building with 4 zones, each
zone includes approximately 61 rooms per floor, is shown. There-
fore, the complexity in the recent work is much higher and the
optimization problem for all seasons is more challenging. Further-
more, in [21], only output-coupling is taken into account, which
is irrelevant in sense of building temperature control where the
room/zone differences are very small. It is much more complex to
consider input-coupled systems, as it is presented in the recent
work.

Furthermore [22], illustrates the concept of suboptimal MPCs.
Scokeart et al. [22] establish conditions under which suboptimal
MPCs are stabilizing. The theoretical background of cooperative
MPCs is given in [23], where the theoretical assumptions are dis-
cussed and proved. In addition [24,25], introduce a hierarchical
concept for MPCs, respectively FMPCs. Also in this work, such a
hierarchical scheme is assumed to exist, but it is assumed that a
suitable energy management system (EMS) as introduced in [26] is
existing.

Added flexibility of CFMPC is given by the possibility to either
add or omit specific zones of the building with minimum effort,
depending on the building’s current usage. Furthermore, CFMPC
achieves higher control performance with slightly less energy con-
sumption. Both stability and convergence are secured by theoretic
results [16]. While many state-of-the-art MPCs in buildings just
control heating or cooling systems, the presented CFMPC is able to
provide control for all seasons, both in terms of heating and cooling.

The remainder of this work is structured as follows: in Section
2, a general formulation of the grey-box modelling is given and the
most important tasks are introduced. A general description of the
demonstration building and the final building model are given in
Section 3. The methodology of cooperative fuzzy model predictive
control (CFMPC) for the specific building is outlined in Section 4.
Simulation and validation results are presented in Section 5, and
Section 6 summaries the results.

2. Grey-box model

It is common for modelling a process to use one of the introduced
methods: white-box models, black-box models or grey-box mod-
els [9]. White-box models require the understanding of the system
physics and use physical parameters for modelling the system
dynamics. But these models are usually not suitable for model
predictive control of buildings because of their high order and com-
plexity. Black-box models are purely data-driven models [7].

In the recent work, grey-box models were used for modelling
the building. A balance between good generalization and high accu-
racy is given by grey-box models. In addition, this approach validly
presents a grey-box model for building control, both for heating as
well as for cooling.

Fig. 1. First four iterations of LoLiMoT algorithm for a two-dimensional input space
(m  = 2).

2.1. Grey-box model as local lineal model network

In this work, a local linear model network (LLMN) approach is
chosen for modelling the different building zones. The so-called
local linear model tree (LoLiMoT) algorithm combines a heuris-
tic strategy for partition space decomposition with weighted least
squares optimization or output error optimization [6]. It therefore
provides a local linear model (LLM) approximation of globally non-
linear dynamic systems.

The main part of the algorithm are Gaussian Kernel functions,
which are fitted to a rectangular partitioning of the m-dimensional
input or partition space performed by a decision tree with axis-
orthogonal splits at the internal nodes (Fig. 1). Each local model
belongs to one hyper-rectangle in the center of which the fitting
point is placed. New hyper-rectangles are found by testing the
possible splits in all dimensions and taking the one with the high-
est performance improvement. The choice of the partition space
is the key point of this LoLiMoT algorithm; it should describe the
strongest non-linearities in the process to reach the best results.
The algorithm is described in detail in [6,7].

For the global non-linearities in the building, the LLMs are
blended with mentioned Gaussian Kernel functions, which leads to
fuzzy modelling, see Section 2.2 and subsequently to fuzzy model
predictive control (FMPC).

It is known that buildings are complex non-linear dynamic
processes. Therefore, the behaviour of the specific building is
approximated by LLMs, where the partitioning variable ϑamb is
chosen by expert knowledge. This fact turns the modelling into a
grey-box model.

Both analysis of historical data and expert knowledge (build-
ing operators) indicate the choice of the different LLMs, which are
given by the seasons: winter, transition season (fall and spring),
summer. Thus, the partition space for the specific building is 1-
dimensional. Therefore, ϑamb is the only variable for the validity of
the different local models. Furthermore, each split of the partition
space is equivalent to fuzzy inference rules and can be mathemat-
ically formulated as Takagi-Sugeno (TS)-fuzzy models, see Section
2.2 [11].

The parameters of each input to output transfer function are
estimated from historical data. The model validation of each zone
is given in Section 5.2.

2.2. Takagi-Sugeno (TS)-fuzzy model

TS-fuzzy models are suitable for approximating systems by
interpolating between local linear, time-invariant auto-regressive
models with exogenous inputs (ARX) [12]. The resulting output of
the LoLiMoT algorithm, see Section 2.1, are parameters for an ARX-
model. Therefore, the equivalence to a TS-fuzzy model is obtained.
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The basic element of a TS-fuzzy system is a set of fuzzy inference
rules. In general, each inference rule consists of two  elements: the
IF-part (antecedent) and the THEN-part (consequent) [10], the set
of rules is given by R in this work.

Here � = [�1, �2, . . .,  �p] ∈ R
p is the vector of input fuzzy vari-

ables. The elements of the fuzzy vector are usually a subset of the
past input and outputs [12]. This vector is defined as:

� ∈ {yk, . . .,  yk−na+1, uk−�
s , . . .,  uk−nb−�+1

s } ∈ R
p, (1)

where y is the output, us is the input s where s denotes the specific
input parameter or number of input, na is the maximum lag con-
sidered for the output and nb is the maximum lag considered for
the input terms. Furthermore, � is the discrete dead time.

The overall system is approximated by a collection of coupled
multiple-input single-output (MISO) discrete-time TS-fuzzy mod-
els of the input-output non-linear ARX (NARX) type

yk+1 =
r∑

j=1

�j(�)yk+1
j

, (2)

where r denotes the global number of rules. The degree of fulfill-
ment of the specific jth rule can be computed using the product
operator �j(�) =

∏p
i=1�j,	i

(�i), where 	i are the antecedent fuzzy

set or regions for the jth rule Rj . Furthermore, the normalized
degree of fulfillment can be computed as

�j(�) = �j(�)∑r
i=1�i(�)

. (3)

The membership function is parameterized properly by the cen-
ters, the spreads and the steepness value k� [6,12,10].

Note, �i,l denotes the fuzzy membership function for LLMl of
LLMNi, which is expressed by LLMi,l, i ∈ F, l = {1, . . .,  Li} = L.  In the
remainder of this work F  denotes the number of FMPCs, which
is equivalent to the number of LLMNs, and is set to the num-
ber of buildings zones, which are considered to be 4 zones, thus,
F  = {1, 2, 3, 4}. Note, the number of LLMs Li is the same as the num-
ber of rules r, therefore Li ≡ r holds, here Li ≡ r is assumed to be
equal to 3 for all i ∈ F. In this work, blended describes the mixture
between LLMs, where

∑Li
l=1�i,l = 1 holds ∀i ∈ F. Blended zones

are the areas in the partition space where the LLMs are overlapping
each other.

Note, the manipulated variables of the FMPCi, ∀i ∈ F  are given
by output blending, not by parameter blending, see Section 4.3.

3. Building model

The building presented in this work is a 27,000 m2 university
building in the center of Salzburg, Austria. It has five floors above
ground containing several large and numerous smaller meeting
rooms, offices and lecture rooms. The facade of this special building
has a glass ratio of about 70% and outside blinds over 2 floors, see

Fig. 2. Photo of the University building in Salzburg, Austria. © Luigi Caputo.

Fig. 2. On each floor. The building contains 250 office rooms, the
footprint of these floors is identical and each has an effective area
of about 6500 m2. The building contains four shafts, which connect
the piping for the cooling and heating supply and return with the
supply level in the basement. The modelling of this specific building
is based on these four main shafts, because each of these shafts sup-
plies one building zone. These zones are distributed according to
the building’s orientation, which is equal to the cardinal direction.
This fact makes the modelling more difficult, since the radiance
input is given as a mixture from North-East (NE – zone1), South-
East (SE – zone2), South-West (SW – zone3) and North-West (NW –
zone4). For control purposes, the building model is split into these
four independent zones and one coupling zone, see Fig. 3. Energy
supply in this specific building is provided by a concrete activated
floor distributing supply water in a second circuit, which means
that this building has a thermally activated buildings system (TABS
– coupling zone). Another supply into the building is based on Fan
Coils (FC), which are required for the fast dynamics. The time con-
stant of TABS is given by approximately 48h, in contrast to which
the time constant for FC is assumed to be 4 h.

The energy demand of each zone i, respectively the coupling
zone TABS, is denoted by Q̇Fi

, i ∈ F, and Q̇T . Note, it is assumed that
a suitable energy management system (EMS) exists, which is able
to provide the requested energy demand of the cooperative fuzzy
model predictive control (CFMPC) scheme. An appropriate energy
management system is presented in [26,24].

The coupling zone is controlled by TABS, which spans over all 4
zones and feeds the energy into the building through the concrete
floor. TABS has a slow dynamic, but a very high thermal coefficient.
Hence, it is beneficial to provide the building with a base level of
energy. Each individual zone is managed by FC, which are able to
control fast and react to short-term disturbances.

In the recent approach for the specific building, 13 models were
made for control purposes depending on historical data and expert
knowledge, see Section 2.1. For each FMPCi, i ∈ F, 3 models (Li ≡ 3)

Fig. 3. Zone splitting for modelling the university building in Salzburg, Austria.
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Fig. 4. Scheme of input-output relation for each MISO zonei model, ∀i ∈ F. The
manipulated variables after the cooperation loop are denoted by u


Fi
for FC of zonei

and u

T

for TABS. The heat supply Q̇T is divided by 4, because each zone comprises
one  quarter of the floor. Furthermore, ϑamb denotes the ambient temperature in K,
radi the radiance input in the ith zone in W/m2, occi the occupancy in zonei in %, and
Yact

i
represents the actual average indoor room temperature in zonei in K, ∀i ∈ F.

are in use, constituting the LLMs. In addition, one global model for
the whole floor (TABS) is designed for the global MPC  (MPCT).

The 3 LLMs of each FMPC are dedicated to the relevant seasons:
winter, transition season (spring and fall), and summer. Therefore,
for the zone-FMPCs, 12 LLMs are needed and 1 additional model
for MPCT, which is also valid for all seasons. The CFMPC is able to
control the building over the whole year, because the fuzzy rules
are switching between the three different seasons.

Note, for heat flow Q̇j , j = {T, Fi}, i ∈ F  of TABS and FC the follow-
ing relation holds:

Q̇j = ṁj︸︷︷︸
const.

· �ϑj · cp︸︷︷︸
const.

, (4)

where cp, the specific heat capacity of water, is assumed to be con-
stant and has no sub fix j, �ϑj denotes the temperature difference
between the supply and the return auf the jth control input, j = {T,
Fi}, i ∈ F. Also, the mass flows ṁj are assumed to be constant, fur-
ther j = {T, Fi}, ∀i ∈ F. The heat supplies are given in kW (heating
– positive; cooling – negative) in the remainder of this work. The
summation of the manipulated variables

Q̇∑ =
∑

i ∈ F

|Q̇Fi
| + |Q̇T |, (5)

is sent to the suitable EMS  [26], where the energy supply is opti-
mized and delivered to the building. All zonesi of the plant are
MISO-models, the input-output relation is demonstrated in Fig. 4.

Note that the effect of existing HVAC systems on indoor-room
temperature must be included in the model. The best approach
would be to include the dynamic response of the HVAC together
with other heating and cooling systems in the grey-box model. It
would then constitute just another manipulated variable. An alter-
native is given by considering the HVAC as an disturbance to the
indoor-room temperature control; this known disturbance could
consequently be included in the CFMPC concept.

4. Cooperative fuzzy model predictive control

Linear MPC  refers to a class of control algorithms that com-
pute manipulated variables by utilizing a linear process model [15].
However, many systems are inherently non-linear. This motivates

the use of non-linear MPCs (NMPC). Here a non-linear and generally
non-convex optimization problem has to be solved. To avoid non-
convex optimization, a set of LLMs can be extracted from a TS-fuzzy
model [11], which is then used by the MPC  algorithm [27,13,12]. The
overall control structure in this specific problem leads to FMPCs and
subsequently to CFMPC – because of the different building zones
and one coupling zone, see Section 3. The concept of the CFMPC in
general is presented in [16].

In the following, the index i of FMPCs is taken from the set F  =
{1, 2, 3, 4}, and the associated Li ∈ L LLMs for FMPCi, ∀i ∈ F, are
denoted by the index l ∈ L = {1, 2, 3}.

4.1. CFMPC for specific building

In this section, the CFMPC structure for the specific build-
ing is introduced. The CFMPC controls the average indoor-room
temperature in the office rooms by manipulating supply temper-
atures of both FCs and TABS, while considering main disturbances
given by ambient temperature, radiance, and occupancy. In Fig. 5
the control concept for 4 FMPCs (FMPCi, ∀i ∈ F) cooperating with
1 global coupling MPC  (MPCT) is illustrated.

The controlled variable is the average indoor room temperature
of each zone denoted by Yact

i
, ∀i ∈ F. In Fig. 5, Y ref

i
describes the

reference trajectory for the ith FMPC of the closed-loop system, and
Yact

i
represents the actual value. For the coupling zone, the mean

Ȳ ref of the other 4 reference values is taken, and the actual mean
indoor room temperature is given as Ȳact.

The manipulated variables before the cooperative iteration-loop
are denoted by uj, j = {T, Fi}, ∀i ∈ F. The “T” denotes “TABS” and
“Fi” denotes the control by FC for zonei. After the cooperation,
the manipulated variables are star-variables u


j
. Furthermore, three

main disturbances to the building are considered:

• ambient temperature denoted by “ϑamb” in K,
• radiance denoted by “rad” in W/m2,
• occupancy denoted by “occ” in %, adapted from [28].

The cooperative iteration-loop is introduced in Section 4.2. Note
that the manipulated variables uj (and consequently u


j
) are equal

to the energy demand Q̇j , see Section 3 Eqs. (4) and (5). Further-
more, the disturbances “rad” and “occ” are split into radi and occi
depending on the zones, ∀i ∈ F.

The global plant (see Fig. 5 “building”) consists of 4 parallel
input-coupled zones, and each FMPC controls one zone. The manip-
ulated coupling variable u


T influences all 4 zones. These zones are
each defined by one LLMN, split into the cardinal directions, see
Section 3. As introduced in Section 2.2, ARX transfer functions can
be transformed state-space matrices. Therefore, the overall non-
linear building plant, consisting of 4 input-coupled zones (by TABS),
is possible to be presented in time-variant state-space matrices.
These matrices are given as: Ak

i
, B̃k

i
, Ck

i
, ∀i ∈ F. Note in contrast

to the output-blended controller, for the global plant parameter-
blended matrices are assumed. This means that the system matrix
at time k is calculated as: Ak

i
=
∑

l ∈ L
Ak

i,l
�i,l , ∀i ∈ F.

Note B̃k
i

= [Bk
i
; Ek

i
] is a stacked matrix for the input-matrix and

the disturbance-matrix, for details see Section 4.3. In contrast to
parameter-blending, the manipulated variable for each FMPC is
computed by output-blending:

uk
i =
∑

l ∈ L

uk
i,l�i,l. (6)

The fuzzy membership functions �i,l are given for the fuzzy input
vector depending on all LLMsi,l, ∀i ∈ F  and l ∈ L.
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Fig. 5. CFMPC scheme for the specific building. The scheme shows the structure of a CFMPC, which is used for the demonstration building, with 4 different zones.

In this cooperative control structure (based on Fig. 5), four
FMPCs are in cooperation with one global MPC. Each manipulated
variable of the ith FMPC is a disturbance to the global MPC, and the
manipulated variable of MPCT is an additional disturbance to each
FMPCi, ∀i ∈ F.

4.2. Cooperative iteration-loop

The cooperative iteration-loop is computed between consecu-
tive time steps. Furthermore, only ui for FMPCi and uT for MPCT,
∀i ∈ F, are iteratively updated, all other variables are assumed to
be constant during the iteration-loop (e.g. external disturbances).
The functions

uq
Fi

= hq
Fi

( · |uq
T ), (7)

uq
T = hq

T ( · |uq
F1

, . . .,  uq
F4

), (8)

∀i ∈ F  are the cooperative qth iteration-updates, see Fig. 6 [22,23].
Between consecutive time steps, the cooperative MPCs per-

form q iterations of a feasible path algorithm. Let u
 be the overall
blended output after the iteration loop, see Fig. 6. u
 is computed
such that some cost function, see Eq. (9), is minimized and accept-
able for each zone. The cooperation update uq

Fi
= hq

FC,i
( · |uq

T ) denotes
the iteration-update for each FMPCi, dependent on the additional
disturbance uq

T . Furthermore, uq
T = hq

T ( · |uq
F1

, . . .,  uq
F4

) is the cooper-
ative iteration-update for the manipulated variable of the coupling
zone, dependent on the other 4 manipulated variables from each
FMPC within the qth iteration. Note that all other disturbances
(ϑamb, rad, occ) are held constant during the iteration-loop.

The cooperative iteration-updates are calculated in a loop until
a maximal number of iteration-steps is reached or if the incre-
ment between the (q − 1)th and qth manipulated variable (for all
five variables) is smaller then a given threshold ε. If one of these

criteria is fulfilled, the algorithm is advancing to time step k = k + 1,
see Fig. 6.

4.3. CFMPC optimization problem

FMPC are non-linear MPCs, which achieve the global optimum
for a given performance criterion. However, for a cooperation
between a global MPC  with several FMPCs, increased flexibility and
a scalable control architecture can be achieved by accepting subop-
timal inputs [23,22,25,24]. Hence, a suboptimal FMPC analogous to
suboptimal MPC  presented in [22,23] is proposed. Note that each
FMPC actually acts like a parallel connection of linear MPCs with
output-blending, which effectively constitutes a non-linear con-
troller [29,30]. The cost functions for all, the FMPCs and the MPCT,
are equal. For the FMPCs #L = 3 parallel MPCs (for the defined sea-
sons, see Section 3) of each zone are output blended as defined in
Section 4.1, Eq. (6), to the overall blended output. In this section, the
derivation to the CFMPC optimization problem definition is given
and explained. In the following, the variable ũ = [u; z] describes the
stacked variable of manipulated variable and disturbances.

The optimization problem for each MPC  can be formulated as:

J

j = min

�uj

Jj(ũj)∀j = T, Fi, ∀i ∈ F  (9)

where

Jj(ũ
k,k+np−1
j ) =

np−1∑

k=0

[(Y ref,k
j

− Yact,k
j

)′Q̃j(Y
ref,k
j

− Yact,k
j

) + ũk′
j Rjũ

k
j ]

(10)

subject to

uj,min ≤ uj ≤ uj,max, (11)

Yact
j,min ≤ Yact

j ≤ Yact
j,max, (12)
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Fig. 6. Schematic flow-chart of cooperative iteration loop of CFMPC. Between consecutive time steps k and k + 1, the qth cooperative iteration update hq
j
( · | · ) is computed in

a  loop, ∀j ∈ {T, Fi}, ∀i ∈ F  = {1, 2, 3, 4}. The resulting cooperative solution for the manipulated variable is given by u
 . The abort criterion has to be fulfilled for all, the MPCT

and the i FMPCs, in the same iteration-step q to advance to k = k + 1, or the maximal number of iterations-steps has to be reached.

j = {T, Fi}, ∀i ∈ F, where np denotes the prediction horizon and “′”
denotes transpose. Note that the Y ref,k

i
are external reference val-

ues and are considered to be known (see Fig. 5). Furthermore,
Yact

T ≡ Ȳact and Y ref
T ≡ Ȳ ref. Note that the optimization (9)–(12)

applies only the uj, the first part of ũj = [uj, zj], ∀j = T, Fi, ∀i ∈ F.
Hence, Q̃j ∈ R

nyj
×nyj is a positive semi-definite weighting matrix

with dimension nyj
, and Rj ∈ R

nũj
×nũj is a positive definite weight-

ing matrix, with j = {T, Fi}, ∀i ∈ F. Note that nũj
is the dimension

of the manipulated variable of uj including the number of distur-
bances for the jth MPC, j = {T, Fi}, ∀i ∈ F. The objective function of
each FMPCi is also subjected to a LLMN, which consists of Li LLMs,
which are equivalent to r-fuzzy rules.

Now only the i FMPCs are considered. These manipulated vari-
ables uk+t

i
can be calculated by generating l sets of local linear

control inputs in the first step, uk+t
i,l

, ∀t ∈ {1, 2, . . .,  nc}, ∀i ∈ F, ∀l ∈
L, where nc denotes the control horizon. In the second step, the
weighted sum of the local linear control inputs give the overall
output-blended control input as defined in Eq. (6), see Section 4.1.
The weight of the lth fuzzy control action �i,l is the same as that
for the lth local linear model [12,4,30].

Let u
 be the overall blended output, after the iteration loop,
see Section 4.2 Fig. 6, with arbitrary chosen initial condition for
the CFMPC algorithm. Then the suboptimal optimization problem
is formulated as given in [23] and solved at each iteration q ≥ 0 for
all zones i ∈ F.

In following equations �i,l are the fuzzy membership functions
for output blending for LLMl of LLMNi.

Given the prior feasible iteration (uq
T , uq

Fi
), then the next iteration

for the cooperative iteration-loop (for the iteration-update uq
Fi

=

hq
Fi

( · |uq
T )), see Fig. 6, is defined to be

uq+1 = (uq+1
Fi

, uq+1
T )

= �Fi
· (u


Fi
(uq

T ), uq
T ) + �T · (uq

Fi
, u


T (uq
Fi

))

= �Fi
·
(∑

l ∈ L

�Fi,l
u


Fi,l

(
uq

T

)
, uq

T

)

+�T ·
(∑

l ∈ L

�Fi,l
uq

Fi,l
, u


T

(∑

l ∈ L

�Fi,l
uq

Fi,l

))
(13)

∑

j={T,Fi}
�j = 1∀�j > 0, i ∈ F. (14)

Here, �j are arbitrary scalar weighting factors. For uq
T =

hq
T ( · |uq

F1
, . . .,  uq

F4
), the calculation is equivalent to Eq. (13) with Eq.

(14) with the four FC input as disturbance vector. Stability of the
CFMPC concept is proven and discussed in [16].

5. Simulation and validation results

In the following Sections 5.1–5.3, the main simulation results
are given and discussed. The CFMPC concept is compared to the
FMPC concept, see Fig. 5, without the cooperative iteration-loop,
see Fig. 6, is denoted by FMPCwo,c. Furthermore, the CFMPC com-
pared to a global linear MPC  concept, denoted as MPClin, and to
the actual implemented rule-based PID-controller strategy from
measured data is given.

Unfortunately, a direct comparison between the simulated
CFMPC and the historical measured data is not completely fair.
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Fig. 7. In (a) the validity of the membership functions is shown during the chosen period. In this sub-figure a, �i,1 denotes the winter model, �i,2 the transition season model,
and  �i,3 the summer model. Because of the fact that the partition variable is an external input, the validity of the different LLMs is equal for all zonesi , ∀i ∈ F. In (b), the
corresponding partition space is given with the partition variable ϑamb. Furthermore, the limits of the individual models are illustrated with their center points.

Fig. 8. This figure shows the worst 24-h ahead prediction RMSE of the four zone models in K. The 24 h ahead prediction RMSE values for all zones are given in Table 1.

The actual implemented rule-based PID-controller in the demon-
stration building is not controlled to one set-point. It is a range
[294.15K; 296.15K] where the indoor room temperature is accept-
able during working hours. In addition, this range is widened
on weekends and during the night. However, for comparison the
measured outputs and manipulated variables are shown in the fol-
lowing sections.

5.1. Simulation setup

The setup of four controller schemes is shown for 2 weeks in
September 2014. For the CFMPC, the FMPCwo,c and a linear global
MPC  acting on the office level as a whole, all disturbances are
measured from the introduced period. The actual implemented
controller is a state-of-the-art rule-based PID-controller, where
expert rules in if-then form are combined with PID control for con-
tinuous variables. The zoning for the CFMPC is based on the actual
supply shafts (which coincide with the cardinal directions) in the
demonstration building. Note that the designation of an individual
zone is only meaningful if an individual supply (manipulated vari-
able) is available for that zone. If a zone is overlapping with others
(as is the case for the TABS), a weighted average of temperature
measurements is assigned to that zone, but otherwise the FMPC
design is done separately. The cooperative iteration loop then takes
care of the proper interaction of the individual FMPC controllers. All
results for the rule-based PID-controller are denoted with the sub-
fix “meas”, which stands for “measured” and the linear global MPC
is given by MPClin. Furthermore, for the rule-based PID-controller,
the reference value is illustrated by the mean of the comfort range
[294.15K; 296.15K]. Thus, Y ref

meas is equal to 295.15K. For the MPClin
one global model for all four zones is considered. Therefore the ref-
erence value Y ref

MPClin
has been defined as the mean of the four zone

reference values.
The period of these 2 weeks in September 2014 is chosen,

because all possible cases for the fuzzy membership functions are

included: full validity of one LLM, part-validity of 2 LLMs, part-
validity of all 3 LLMs, and fast transition between the LLMs. The
validation of the zone models is given in Section 5.2, and the com-
parison of the different controller schemes is described in Section
5.3.

5.2. Model validation

In Fig. 7b, the ambient temperature ϑamb in the partition space is
given for 2 weeks in September 2014. Moreover, the validity of the
membership functions is illustrated above in Fig. 7a. It is obvious
which function �i,l is valid ∀i ∈ F, ∀l ∈ L,  because in Fig. 7b it is
well illustrated in the partition space. The steepness k� of all LLMs
is chosen by k� = 1/3. Therefore, more than 1 LLM is valid in the
transitional regions. For instance, 3 LLMs are part-valid at time step
k = 100h or 2 LLMs are part-valid at k = 165h (�i,1 and �i,2).

The model validation is based on a 24-h ahead prediction. The
root-mean-square error (RMSE) is computed over 24 values in each
time step k for model performance. This statistical value is com-
puted as:

RMSEj ≡

√∑N
k=1‖Ŷ k − Yk

meas‖2
2

N
,  (15)

where Ŷ k is value of the 24-h ahead prediction at time step k, Yk
meas

gives the output measured from historical data, and N is the number
of measurements for Y, j = {T, Fi}, ∀i ∈ F.

The RMSE value is directly interpretable in Kelvin K. In Fig. 8,
the RMSE is plotted over the time in hours (226 h = 2 weeks) for the
worst model fit.

The model performance shown in the RMSE values in K for all
zones i, i ∈ F, is given in Table 1.

As shown in Table 1, the fit of all models is in the same range,
which is in an error rate of about 10% only. Note that a model
error of 0.18 K (see Fig. 8) is smaller than the accuracy of mea-
surement. The comparison of these models is presented at the zone
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Table 1
RMSE values (model performance) of 24-h ahead prediction of all zones.

Zone1-NE Zone2-SE Zone3-SW Zone4-NW

0.111 0.112 0.106 0.091

level only. The building’s system level is discussed separately in [7].
One advantage of the proposed concept is the decoupled controller
structure between the comfort and the supply level [24]. Hence, in
our manuscript the comfort maximization in the different zones is
the optimization goal. Realistic fluctuations in the occupancy pro-
file do not significantly influence the model performance for a 24-h
ahead prediction. This is mainly due to the averaging effect of more
than 500 users.

5.3. Closed-loop controller simulation

In this Section, the performance of the four introduced controller
schemes is compared. Furthermore, the energy consumption of the
manipulated variables, calculated in an adapted form (Eq. (16)) as
given in Eq. (5), is compared. Occupant thermal comfort is defined
as minimal deviation from the indoor-room temperature set-point.
Other factors such as radiance, lighting, and humidity [31] are not
considered, as they are neither measured nor included in the exist-
ing automation system. Therefore, in the comparison before and
after the implementation of CFPMC only room temperature devi-
ations are considered. Since all other influencing factors are not
significantly changed by the different control schemes, this com-
parison should be fair. Note that for the measured historical data
only an indoor mean room temperature Yact

meas is given, because the
zone splitting is not implemented in the demonstration building
yet. In addition, Y ref

meas is assumed to be equal to 295.15 K. Note that
the coupling zone TABS is included in the CFMPC and the MPClin
concepts, in contrast to the FMPC without cooperation, FMPCwo,c,
where the information about TABS is not included. In Fig. 9a–c, the

outputs for each zone and their reference values are illustrated. The
disturbances are given in Fig. 9d–f. The disturbances are taken from
measured historical data. Therefore, the energy consumption of the
CFMPC is compared to the energy demand depending on historical
measured data, the FMPCwo,c, and the MPClin. Energy consumption
is proportional to the measured temperature difference between
feed and return, as the circulation pumps are operating with fixed
speed. The heat flow is therefore calculated using this constant
mass flow (has been measured during commissioning) and the
temperature difference. It is obvious in Fig. 9a–c that the model
predictive controllers, which are including the coupling zone TABS,
perform better than the state-of-the-art rule-based PID-controller.
As the building’s rule-based PID-control has been optimized for
minimal energy consumption over the last two years, all other
control schemes are tuned to the same consumption. The control
performance can therefore be seen as main criterion in the compar-
ison. The deviation in the measured data from its assumed set-point
is up to 1 K in some regions. Furthermore, a strong time-delayed
correlation between the measured indoor room temperature data
Yact

meas and ϑamb is illustrated in Fig. 9c–d.
With the assumed set-point for the measured indoor temper-

ature, the CFMPC concept is better in performance by 21.86% as
compared to the FMPCwo,c. Performance of the presented CFMPC
concept provides an improvement of 19.67% over the rule-based
PID-controller in the specific demonstration building and 16.17%
against the MPClin.

The corresponding manipulated variables are shown in
Figs. 10 and 11. Fig. 10 shows the manipulated variables u


T,CFMPC
and uT,p for the different controllers in kW,  and “p” stands for
FMPCwo,c, MPClin or meas. Note that the star-variable results
from the cooperative iteration-loop. It demonstrates the different
behaviour in this manipulated variable due to different controller
schemes. However, the energy cost of TABS is not as high as the
cost for FC. Therefore, the different strategies in TABS see Fig. 10,
and the higher cost of the fuzzy predictive controllers in TABS, are

Fig. 9. In subplot (a), the indoor zone temperatures of the FMPCwo,c are given. The same is given for the CFMPC in subplot (b), and the measured output as well as the output
of  MPClin is shown in (c). The disturbances are pictured in the subplots (d–f). Note that “s” stands for s = {act, ref} and ∀i ∈ F  ∩ {meas, MPClin}.
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Fig. 10. Manipulated variables u

T,CFMPC and uT,p for TABS, where “p” stands for FMPCwo,c, MPClin or meas.

Fig. 11. Manipulated variables u

Fi ,CFMPC and uFi ,p for FC, where “p” stands for the different controllers FMPCwo,c, MPClin or meas and i ∈ F, in kW.

Table 2
Comparison of performance and energy supply of four different controller schemes.

Concept Performance Energy supply

CFMPC 100% 100%
FMPCwo,c 78.14% 100.21%
MPClin 83.83% 100.55%
Rule-based PID 80.33% 100.43%

compensated by the predictive use of the FCs, see Fig. 11. The strate-
gies for FMPCwo,c are given in Fig. 11a. They are similar to the FC
strategies of the CFMPC, see Fig. 11b. The subplot in the bottom
Fig. 11c shows the measured strategy of the manipulated PID vari-
able FC and of the MPClin during the chosen 2 weeks. It is illustrated
that the FCs with PID are in the cooling mode for a longer period
of time. Furthermore, it is obvious that the predictive controllers,
Fig. 11a and b, are able to cool and heat predictively.

For a comparison of energy costs, Eq. (5) is adapted for each
controller concept:

Q̇∑
,


=
∑

i ∈ F

|Q̇Fi,
| + |Q̇T,
|, (16)


 = {FMPCwo,c, CFMPC, meas, MPClin}. The results of the four men-
tioned controller schemes in performance and energy demand are
summarised in Table 2. Note that all controllers are compared to
the CFMPC, for which the reference values in performance as well
as in energy supply are assumed to be 100%.

It follows that the energy costs of all controllers is nearly in the
same range, see Table 2. Thus, it is noteworthy that the presented
CFMPC concept is able to achieve a great performance increase with
less energy consumption as compared to all other controllers. It is to

mention that the FMPCwo,c has no information about the coupling
zone TABS, and the rule-based PID-controller in the demonstration
building has been optimized over the last 2 years.

6. Conclusion

A cooperative FMPC has been proposed for heating and cool-
ing of buildings. It is important to notice that the FMPCs for each
zone are designed by input-coupled LLMNs. One coupling variable
exists, which influences each building zone. One  great advantage of
the underlying MPC  models is the validity over all seasons – winter,
transition season (spring and fall) and summer. Thus, the presented
CFMPC concept is able to control both modes, heating and cool-
ing, in contrast to most of the state-of-the-art MPCs in buildings,
where just heating or cooling systems are controlled. Another ben-
efit of the CFMPC is the independence of the building and system
type. The CFMPC is useful and implementable for all building types
with multiple heat/cooling supplies. The data-based model has to
be identified for each for specific building, which is standard in pro-
cess industry. Hence, for each zone a model (suitable for MPC) has to
be created which requires availability of suitable input (heat supply
and disturbances) and output (temperatures) data. For the demon-
stration building a model validation of all zones is given, where
the fuzzy grey-box model approach is underlined with excellent
results.

A cooperative FMPC (CFMPC) is presented to coordinate the
different input-coupled manipulated variables. The outstanding
performance results are given with a closed-loop simulation. The
CFMPC achieves significantly higher control performance with
slightly less energy consumption in contrast to two predictive con-
trollers and the rule-based PID-controller which is implemented
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in the demonstration building. The simulation examples verify the
advantages and effectiveness of the CFMPC for heating and cooling
in the field of building control.
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