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Introduction

We often encounter objects that can be described only with some uncertainty.
We have only vague information about them. Imagine everyday terms like little,
less, more, much, small, big, cold, hot and so on. One can definitely see that
these are meant to give us information - however uncertain.

The Greek philosopher Zenon [9] had been already dealing with problems
of uncertainty and vague terms. Let us imagine a small sandhill in front of us on
a beach. The following question can be asked: ”What if we take a small grain of
sand away from that sandhill? Will it still be a sandhill?” Should we take one
grain only, there will be still a sandhill in front of us, most likely.

Yet, when we are taking grains of sand away a longer time the sandhill
will diminish to a fistful of sand. When will the turning point happen? How
many grains of sand should a fistful contain at utmost to turn it into a small
sandhill with one grain of sand added? This is the question which can help us to
determine the exact borderline between a fistfull and a small hill. Alternatively,
having used a certain measure of uncertainty, we can lower gradually and steadily
the weight of classification of the sandformation in front of us as a small sandhill
with each grain of sand taken away.

The idea of generalized sets was originally presented by Karl Menger [7]
and the term fuzzy sets was introduced by Lofti A. Zadeh [12]. This theory
provides a scheme for handling a variety of problems in which a fundamental role
is played by an indefiniteness arising more from a sort of intrinsic ambiguity than
from statistical variation.

Measurements are basic for all quantitative science and for many human
activities. Usually real numbers are the foundation for the description of mea-
surement results of one-dimensional quantities. By the limited accuracy of every
measurement equipment the result of one measurement of a continuous quantity
is not a precise number but more or less non-precise. This unavoidable impreci-
sion - which is different from measurement errors - has to be analyzed in order
to obtain realistic results. Using the concept of so-called fuzzy numbers, which
are special fuzzy subsets of the set of real numbers, a more realistic description
of measurement results is possible.

In Chapter 1 there are the elementary fuzzy sets introduced. Chapter 2
is dealing with fuzzy numbers and Chapter 3 with fuzzy vectors. In Chapter 4
there are analyzed the basics of vectors of/with fuzzy numbers. In Chapter 5
the characterizing functions are constructed. Some of the computing with fuzzy
numbers is presented in Chapter 6. Chapter 7 demonstrates certain fuzzy valued
functions. Chapter 8 outlines practical application to measurement data.

All proofs in this dissertation thesis are made by the author of this thesis
(except the appendix part).
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1. Fuzzy Sets

Definition 1.1. Let M denote a classical universal set. A crisp set A in M is
is a set, where for each element x of M exactly one of the following holds true:
x ∈ A or x /∈ A.

Definition 1.2. Let M denote a classical universal set. A fuzzy set A in M
is characterized by a so-called membership function µA : M → [0, 1], which
associates each object in M with a real number in the interval [0, 1].

The value µA(x) is representing the grade of membership of x in A for each
x ∈M . A value of µA(x) close to unity means high grade of membership of x in
A.

Remark. When A is a crisp set, i.e. a classical set, its membership function can
take only two values 0 or 1, where

µA(x) = 1 ∀x ∈ A and µA(x) = 0 ∀x /∈ A.

Note that the set of all crisp subsets ofM is a subset of the set of all fuzzy
sets in M . Examples of fuzzy sets can be a blurry outline of an object, the set of
old or young men, a number close to zero and many others. We cannot determine
an exact border to decide if an object is or isn’t a part of our set.

Fuzzy sets are sometimes incorrectly assumed to indicate some form of
probability. Despite the fact that they can take on similar values, it is important
to realize that membership grades are not probabilities. One immediately appar-
ent difference is that the summation of probabilities on a finite universal set must
equal 1, while there is no such requirement for membership grades.

Definition 1.3. The support of a fuzzy set A in the universal set M is the crisp
set that contains all the elements of M that have a non-zero membership grade
in A. That is, the support of a fuzzy set A in M is defined by

supp(A) := {x ∈M : µA(x) > 0}.

Definition 1.4. The kernel of a fuzzy set A in the universal set M is the crisp
set that contains all the elements of M that have a membership grade in A equal
to 1. That is, the kernel of a fuzzy set A in M is defined by

kern(A) := {x ∈M : µA(x) = 1}.

Definition 1.5. An empty fuzzy set A, A = ∅, is a fuzzy set with empty support.
Its membership function is identically zero on the universal set M ,

µA(x) = 0 ∀x ∈M.

Definition 1.6. A fuzzy set A is called normalized when at least one of its
elements reaches the maximum possible membership grade 1,

∃x ∈M µA(x) = 1.
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Definition 1.7. For δ ∈ (0, 1] the δ-cut of a fuzzy set A is a crisp set Cδ(A) that
contains all the elements of the universal set M that have a membership grade
in A greater than or equal to the specified value of δ,

Cδ(A) := {x ∈M : µA(x) ≥ δ}.

Remark. Observe that the δ-cuts of any fuzzy set on M are nested crisp subsets
of M , i.e.

δ1 < δ2 ⇒ Cδ1(A) ⊇ Cδ2(A).

1.1 Operations on Fuzzy Sets

In this section let M denote a universal set, let A and B be fuzzy sets in the
universal set M with membership functions µA and µB respectively.

Definition 1.8. Two fuzzy sets A and B are equal, A = B, if and only if their
membership functions are identical.

Definition 1.9. The complement of a fuzzy set A is a fuzzy set denoted by Ac

and defined by its membership function

µAc(x) := 1− µA(x) ∀x ∈M.

Definition 1.10. A fuzzy set A is a subset of a fuzzy set B (equivalently, A is
contained in B, A is smaller than or equal to B), if and only if the following is
fulfilled:

µA(x) ≤ µB(x) ∀x ∈M

More precisely:
A ⊆ B ⇔ ∀x ∈M : µA(x) ≤ µB(x)

Definition 1.11. The union of fuzzy sets Ai, i ∈ I, is a fuzzy set C,

C =
⋃

i∈I
Ai,

whose membership function is defined by:

µC(x) := sup{µAi
(x) : i ∈ I} ∀x ∈M

Definition 1.12. The intersection of fuzzy sets Ai, i ∈ I, is a fuzzy set D,

D =
⋂

i∈I
Ai,

whose membership function is defined by:

µD(x) := inf{µAi
(x) : i ∈ I} ∀x ∈M

Definition 1.13. The difference of fuzzy sets A and B is a fuzzy set defined by:

A \B = A ∩ Bc
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Definition 1.14. Fuzzy sets Ai, i ∈ I, are disjoint if their intersection is empty:

⋂

i∈I
Ai = ∅

Lemma 1.1. Let A and B be two fuzzy sets. The union of A and B is the
smallest fuzzy set containing both A and B.

Proof. Let A, B be fuzzy sets with membership functions µA and µB respectively.

Let C = A ∪ B with membership function µC according to the definition
of union,

µC(x) = sup{µA(x), µB(x)} ∀x ∈M, equivalently

µC(x) = max{µA(x), µB(x)} ∀x ∈M.

We note first, that C is containing the fuzzy sets A and B, A ⊆ C and
B ⊆ C. It is sufficient to prove, according to definition 1.10, that

µA ≤ µC and µB ≤ µC .

To do this, we just realize that

∀x ∈M
µA(x) ≤ max{µA(x), µB(x)} = µC(x)
µB(x) ≤ max{µA(x), µB(x)} = µC(x).

Now we note that C is the smallest fuzzy set containing both A and B.
Let D be a fuzzy set containing both A and B, then

µD(x) ≥ µA(x) and µD(x) ≥ µB(x) ∀x ∈M,

µD(x) ≥ max{µA(x), µB(x)} = µC(x) ∀x ∈M,

which implies that C is a subset of D, in symbols C ⊆ D.

Lemma 1.2. Let A and B be fuzzy sets. Then the intersection of A and B is
the largest fuzzy set which is contained in both A and B.

Proof. The proof is an analogy to the previous one.

1.2 Fuzzy Set and Generating Family

Theorem 1.3. Let be a family of nested sets (Aδ; δ ∈ (0, 1]) where Aδ ⊆M ∀δ ∈
(0, 1] and Aδ ⊆ Aα ∀α < δ, where α, δ ∈ (0, 1]. We define a fuzzy set A∗ with
membership function

ξ(x) := sup {δ · 1Aδ
(x) : δ ∈ (0, 1]} ∀x ∈M.

For δ ∈ (0, 1] the following conditions are equivalent:
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◦ Cδ(A∗) = Aδ, where Cδ(A∗) is the δ-cut of the fuzzy set A∗

◦
⋂

α∈(0,δ)
Aα = Aδ

Proof. Firstly we recall the definition of supremum.

Let be N ⊆ R a set of real numbers, then we call s ∈ R supremum of N
if and only if

1. ∀x ∈ N x ≤ s,

2. ∀s′ ∈ R, s′ < s ∃x ∈ N s′ < x.

Choose arbitrary δ̃ ∈ (0, 1] and arbitrary x̃ ∈ M . We will investigate if
x̃ ∈ Aδ̃ or x̃ /∈ Aδ̃ according to the value ξ(x̃). We define

s := ξ(x̃) = sup {δ · 1Aδ
(x̃) : δ ∈ (0, 1]} .

From the first condition of the definition of supremum we have ∀δ ∈ (0, 1]

δ · 1Aδ
(x̃) =

{

0 for x̃ /∈ Aδ

δ for x̃ ∈ Aδ

}

≤ s.

Therefore x̃ /∈ Aδ is valid for δ > s (in opposite case x̃ ∈ Aδ the first condition of
supremum will not be fulfilled).

From the second condition of the definition of supremum we have

∀s′ < s ∃α ∈ (0, 1] : s′ < α · 1Aα
(x̃).

We will investigate this condition only for s′ > 0 (for s′ ≤ 0 we can choose
arbitrary α ∈ (0, 1] where x̃ ∈ Aα).

We already know that α ≤ s from the first condition of the definition of
supremum (for α > s is x̃ /∈ Aα and α · 1Aα

(x̃) = 0).

We can deduce that s′ < α, because there is to be fulfilled s′ < α · 1Aα
(x̃)

and we have α · 1Aα
(x̃) =

{

0 for x̃ /∈ Aα

α for x̃ ∈ Aα

}

.

We can now reformulate the second condition of supremum in the following
way

∀s′ < s ∃α ∈ (s′, s] : x̃ ∈ Aα.

For δ < s we can choose arbitrary s′ ∈ (δ, s) and according to the second
condition of supremum there exists α ∈ (s′, s] where x̃ ∈ Aα. From the nested
structure of the generating family (Aδ; δ ∈ (0, 1]) and the fact δ < s′ < α we know
that Aα ⊆ Aδ and hence x̃ ∈ Aδ.

Let us investigate the δ-cut Cδ̃(A∗).

ξ(x̃) ≥ δ̃ ⇒ x̃ ∈ {x ∈M : ξ(x) ≥ δ̃} = Cδ̃(A∗)

ξ(x̃) < δ̃ ⇒ x̃ /∈ {x ∈M : ξ(x) ≥ δ̃} = Cδ̃(A∗)
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We can summarize our findings in the following way:

ξ(x̃) > δ̃ for x̃ ∈ Cδ̃(A∗) and x̃ ∈ Aδ̃

ξ(x̃) = δ̃ for x̃ ∈ Cδ̃(A∗)

ξ(x̃) < δ̃ for x̃ /∈ Cδ̃(A∗) and x̃ /∈ Aδ̃

Because we have chosen x̃ ∈M and δ̃ ∈ (0, 1] arbitrary we have ∀δ ∈ (0, 1]

Aδ ⊆ Cδ(A∗) and Cδ(A∗) ⊆ Aδ ∪ {x : ξ(x) = δ}.
We want to recognize such δ ∈ (0, 1] for which {x : ξ(x) = δ} ⊆ Aδ , then we will
have Cδ(A∗) = Aδ for recognized δ.

◦ Firstly we will prove that from the fact that
⋂

α∈(0,δ)
Aα = Aδ follows that

Cδ(A∗) = Aδ, where Cδ(A∗) is the δ-cut of the fuzzy set A∗.

Let be
⋂

α∈(0,δ̂)
Aα = Aδ̂, where δ̂ ∈ (0, 1]. Choose arbitrary x̃ ∈M .

x̃ ∈ Aδ̂ : ξ(x̃) = sup{δ · 1Aδ
(x̃) : δ ∈ (0, 1]} ≥ δ̂.

x̃ /∈ Aδ̂ : We can find α < δ̂, where x̃ /∈ Aα, because x̃ /∈ Aδ̂ =
⋂

α∈(0,δ̂)
Aα.

From the nested structure of the generating family (Aδ; δ ∈ (0, 1]) we
can deduce

∀β > α Aβ ⊆ Aα, especially x̃ /∈ Aβ,

and hence

ξ(x̃) = sup {δ · 1Aδ
(x̃) : δ ∈ (0, 1]} ≤ α < δ̂.

We have {x : ξ(x) = δ̂} ⊆ Aδ̂ and hence, using the previous part of this
proof, we have Cδ̂(A∗) = Aδ̂.

◦ Secondly we will prove the opposite implication, from Cδ(A∗) = Aδ, where
Cδ(A∗) is the δ-cut of the fuzzy set A∗, follows that

⋂

α∈(0,δ)
Aα = Aδ.

Let be Cδ̂(A∗) = Aδ̂, where δ̂ ∈ (0, 1]. Choose arbitrary x̃ ∈M .

Aδ̂ = Cδ̂(A∗) = {x ∈M : ξ(x) ≥ δ̂}

M \ Aδ̂ = {x ∈M : ξ(x) < δ̂}

x̃ ∈ Aδ̂ : From the nested structure of the generating family (Aδ; δ ∈ (0, 1])

we have ∀α ∈ (0, δ̂) x̃ ∈ Aα and hence x̃ ∈
⋂

α∈(0,δ̂)
Aα.

x̃ /∈ Aδ̂ : We have ξ(x̃) < δ̂. We choose arbitrary β ∈ (ξ(x̃), δ̂), now we

have ξ(x̃) < β and hence x̃ /∈ Aβ it follows to x̃ /∈
⋂

α∈(0,δ̂)
Aα.

Because we have chosen x̃ ∈M arbitrary, we have
⋂

α∈(0,δ̂)
Aα = Aδ̂.
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2. Fuzzy Numbers

Definition 2.1. A fuzzy number a∗ is a fuzzy set in R determined by its mem-
bership function ξ called characterizing function, which is a real function of one
real variable, fulfilling

1. ξ : R → [0, 1],

2. ∀δ ∈ (0, 1] the δ-cut Cδ(a∗) is a non-empty, finite union of compact intervals,

∃ kδ∈N ∃ ([aδ,i, bδ,i])kδi=1 : Cδ(a∗) =
kδ
⋃

i=1

[aδ,i, bδ,i] ,

3. the support of a∗, supp(a∗) = {x ∈ R : ξ(x) > 0}, is bounded.

The set of all fuzzy numbers is denoted by F(R).

Remark. A precise number x0 ∈ R is represented by its characterizing function:

ξ(x) =

{

1 for x = x0
0 for x 6= x0

}

∀x ∈ R

This characterizing function is the one-point indicator function 1{x0}(·) of the
crisp set {x0}.

Remark. Each fuzzy number is a special case of a fuzzy set defined in R.

Definition 2.2. A fuzzy interval a∗ is a fuzzy number with characterizing func-
tion ξ, where each δ-cut Cδ(a∗) is a compact interval,

∀δ ∈ (0, 1] ∃aδ, bδ ∈ R Cδ(a∗) = [aδ, bδ] .

The set of all fuzzy intervals is denoted by FI(R).

Example 2.1. Examples of characterizing functions of fuzzy numbers are given
in Figure 2.1. In Figure 2.1(a) is a characterizing function of a precise number x0.
The characterizing functions in Figures 2.1(a)-(e) are characterizing functions of
fuzzy intervals.

Lemma 2.1 (Representation). For the characterizing function ξ(·) of a fuzzy
number a∗ the following holds true:

ξ(x) = max
{

δ · 1Cδ(a∗)(x) : δ ∈ [0, 1]
}

∀x ∈ R

Proof. This is a well known proof, taken from (Viertl, 2011).

For fixed x0 ∈ R we have:

δ · 1Cδ(a∗)(x0) = δ · 1{x: ξ(x)≥δ}(x0) =

{

δ for ξ(x0) ≥ δ
0 for ξ(x0) < δ

}
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Figure 2.1: Examples of characterizing functions of fuzzy numbers

✲

✻
1

x

ξ(x)

{x0}

✲

✻
1

x

ξ(x)

(a) (b)

✲

✻
1

x

ξ(x)

.
.............................

.........................

......................

...................
...............
............
......... ....... ...... ....... ......... ............

..............
.
..............
.....

..............
........

.............
............

..............
..............
.

✲

✻
1

x

ξ(x)

(c) (d)

✲

✻
1

x

ξ(x)

......... ........ ........
..........
...........
.............

.
.............
.............
..

.............
.............

.............
..........

..............
.......

...............
....
................
. ✲

✻
1

x

ξ(x)

............
.........
............
...............
............
.........
....................................

.

.............

.
......................................
..........
.
...............
............
........................................

.
.............
......

.............
..
.......................................

.
.............
........

.............
.....
.............
..
......................................
.........
............

.
..................

...............
............
.........
......................

............
.........
...........

(e) (f)

10



Therefore we have for every δ ∈ [0, 1]:

δ · 1Cδ(a∗)(x0) ≤ ξ(x0)

sup{Cδ(a∗) : δ ∈ [0, 1]} ≤ ξ(x0)

On the other hand we have for δ0 = ξ(x0):

δ0 · 1Cδ(a∗)(x0) = δ0

sup{Cδ(a∗) : δ ∈ [0, 1]} ≥ δ0

From that follows:

sup{Cδ(a∗) : δ ∈ [0, 1]} = max{Cδ(a∗) : δ ∈ [0, 1]} = δ0 = ξ(x0)

2.1 Fuzzy Number and Generating Family

Theorem 2.2. Let (Aδ; δ ∈ (0, 1]) be a generating family of uniformly bounded
nested closed intervals, where Aδ = [aδ, bδ] ∀δ ∈ (0, 1] with aδ, bδ ∈ R and
Aδ ⊆ Aα ∀α < δ, α, δ ∈ (0, 1] and

⋃

α∈(0,1]Aα is bounded. We define a fuzzy set
a∗ with membership function

ξ(x) := sup {δ · 1Aδ
(x) : δ ∈ (0, 1]} ∀x ∈ R.

The fuzzy set a∗ is a fuzzy interval and for δ ∈ (0, 1] the following conditions are
equivalent:

◦ Cδ(a∗) = Aδ, where Cδ(a∗) is the δ-cut of the fuzzy interval a∗

◦
⋂

α∈(0,δ)
Aα = Aδ

◦ The functions f(α) := aα and g(α) := bα, defined ∀α ∈ (0, 1], are continu-
ous from the left at the point δ

Proof. We have to prove that the fuzzy set a∗ in R described by the membership
function ξ(·) is a fuzzy interval. Firstly we need to verify, that a∗ is a fuzzy
number:

1. ξ : R → (0, 1].

2. ∀δ ∈ (0, 1] the δ-cut Cδ(a∗) is a compact interval:

Cδ(a∗) = {x ∈ R : ξ(x) ≥ δ}
= {x ∈ R : sup {α · 1Aα

(x) : α ∈ (0, 1]} ≥ δ}
= {x ∈ R : x ∈

⋂

α∈(0,δ)
Aα} =

⋂

α∈(0,δ)
Aα

=
[

lim
α↑δ

aα, lim
α↑δ

bα

]
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3. The support of ξ is bounded:

supp(ξ(·)) = {x ∈ R : ξ(x) > 0} = {x ∈ R : ∃δ ∈ (0, 1] with x ∈ Aδ}

From the nested structure of the generating family (Aδ; δ ∈ (0, 1]), where
Aδ = [aδ, bδ] ∀δ ∈ (0, 1], we have

supp(ξ(·)) =
[

lim
δ↓0

aδ, lim
δ↓0

bδ

]

.

We have verified that ξ(·) fulfils all conditions required for a characterizing func-
tion and hence a∗ is a fuzzy number, moreover a∗ is a fuzzy interval.

We have already proved the equivalence of the first two points from this
theorem in the more general theorem 1.3. It is enough to prove the implication
from the third to the second point and the implication from the first to the third
point.

We define the functions f(α) := aα and g(α) := bα for all α ∈ (0, 1],
where Aδ = [aδ, bδ]. The function f is non-decreasing and the function g
is non-increasing as follows from the nested structure of the generating family
(Aδ; δ ∈ (0, 1]). For all α, δ ∈ (0, 1] with α < δ we have:

Aδ ⊆ Aα

[aδ, bδ] ⊆ [aα, bα]

aα ≤ aδ and bδ ≤ bα

⇒ Let the functions f and g be continuous from the left at point δ, where
δ ∈ (0, 1].

∀ε > 0 ∃δ′ < δ ∀α ∈ (δ′, δ]
f(α) ∈ (f(δ)− ε, f(δ) + ε)
g(α) ∈ (g(δ)− ε, g(δ) + ε)

Because f is non-decreasing, α < δ and f(δ) = aδ we have f(α) ∈ (aδ−ε, aδ].
Because g is non-increasing, α < δ and g(δ) = bδ we have g(α) ∈ [bδ, bδ+ε).
We have

Aα = [aα, bα] ⊂ (aδ − ε, bδ + ε).

For arbitrary small ε > 0 we can find α < δ, where

Aδ = [aδ, bδ] ⊆ Aα ⊂ (aδ − ε, bδ + ε),

due to continuity of the functions f and g from the left at point δ.

We choose arbitrary x ∈ R.

x ∈ Aδ : From the nested structure of (Aδ, δ ∈ (0, 1]) we have

∀α < δ x ∈ Aα and hence x ∈
⋂

α∈(0,δ)
Aα.
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x /∈ Aδ : For x < aδ, we choose ε = aδ−x
2

, for x > bδ, we choose ε = x−bδ
2

.
There exists α < δ where Aα ⊂ (aδ − ε, bδ + ε), and hence x /∈ Aα and
x /∈

⋂

α∈(0,δ)
Aα.

Because we have chosen arbitrary x ∈ R we have proved thatAδ =
⋂

α∈(0,δ)
Aα.

⇐ Let be Aδ = Cδ(a∗), where δ ∈ (0, 1].

Aδ = [aδ, bδ]

=

Cδ(a∗) = {x ∈ R | ξ(x) ≥ δ}.

So we have

∀x ∈ Aδ ξ(x) ≥ δ and ∀x /∈ Aδ ξ(x) < δ.

We want to prove that the function f(α) = aα defined for all α ∈ (0, 1] is
continuous from the left at point δ. Let be ε > 0 arbitrary, we want to find
δ′ < δ with

∀α ∈ (δ′, δ) f(α) ∈ (f(δ)− ε, f(δ) + ε)

= =
aα (aδ − ε, aδ + ε).

We know that aα = f(α) ≤ f(δ) = aδ ∀α < δ from non-decreasing
characteristic of the function f .

Possibility 1: ∀α < δ f(α) = aα ≤ aδ − ε = f(δ)− ε

We will show by proof ad absurdum that this isn’t possible. We choose
x′ ∈ (aδ − ε, aδ), for example x′ = aδ − ε

2
.

From the nested structure of the generating family (Aδ, δ ∈ (0, 1]) we
know that

∀α ∈ (0, δ) aα ≤ aδ − ε < x′ < aδ < bδ ≤ bα,

and hence
∀α ∈ (0, δ) x′ ∈ Aα.

We also know that x′ /∈ Aδ = [aδ, bδ], and from the nested structure of
the generating family (Aδ, δ ∈ (0, 1]) we have

∀α′ ∈ [δ, 1] x′ /∈ Aα′ .

Now we can calculate

ξ(x′) = sup {α · 1Aα
(x′) : α ∈ (0, 1]} = sup{α : α ∈ (0, δ)} = δ.

But we have proved that ∀x /∈ Aδ ξ(x) < δ and x′ /∈ Aδ.  
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Possibility 2: ∃δ′ < δ f(δ′) = aδ′ > aδ − ε = f(δ)− ε

From the nested structure of the generating family (Aδ, δ ∈ (0, 1]) we
have

∀α ∈ (δ′, δ)
Aδ ⊆ Aα ⊆ Aδ′

[aδ, bδ] ⊆ [aα, bα] ⊆ [aδ′ , bδ′ ]

and hence aδ ≥ aα ≥ aδ′ > aδ − ε.

So we have for arbitrary selected ε > 0 found δ′ < δ, where

∀α ∈ (δ′, δ) f(α) = aα ∈ (aδ − ε, aδ] = (f(δ)− ε, f(δ)],

and the function f(·) is continuous from the left at point δ.

Analogically we can prove that the function g(·) continuous from the left
at point δ.

Example 2.2. We define a generating family of nested sets (Aδ; δ ∈ (0, 1]) in the
following way:

Aδ :=

{

[−1, 1] for δ ∈ (0, 1
2
)

[−1 + δ, 1− δ] for δ ∈ [1
2
, 1]

}

This structure fulfils the conditions required in Theorem 2.2. We define functions
f(·) and g(·) on the interval (0, 1] according to Theorem 2.2 as

f(α) :=

{

−1 for α ∈ (0, 1
2
)

−1 + α for α ∈ [1
2
, 1]

}

and g(α) :=

{

1 for α ∈ (0, 1
2
)

1− α for α ∈ [1
2
, 1]

}

.

An outline of the structure of the generating family of nested sets (Aδ; δ ∈ (0, 1])
is given in Figure 2.2 and the graph of the functions f and g is given in Figure
2.3.

Similarly to Theorem 2.2 we define a fuzzy number a∗ with characterizing
function ξ(x) := sup {δ · 1Aδ

(x)|δ ∈ (0, 1]} ∀x ∈ R. In this particular case we
can calculate the function ξ(·) as

ξ(x) =































0 for x < −1
1
2

for x ∈ [−1,−1
2
]

1− |x| for x ∈ [−1
2
, 1
2
]

1
2

for x ∈ [1
2
, 1]

0 for x > 1































.

We can see that for δ = 1
2
, where the set A 1

2
has the value

[

−1
2
, 1
2

]

, no one
of the three equivalent conditions from Theorem 2.2 is fulfilled:

◦ C 1
2
(a∗) = {x ∈ R : ξ(x) ≥ 1

2
} = [−1, 1] and hence C 1

2
(a∗) 6= A 1

2
.

◦
⋂

α∈(0, 1
2
)

Aα = [−1, 1] and hence
⋂

α∈(0, 1
2
)

Aα 6= A 1
2
.

◦ The functions f(·) and g(·) are non-continuous at the point 1
2
from the left.
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Figure 2.2: Borderlines for sets Aδ in the nested structure (Aδ; δ ∈ (0, 1]) from
Example 2.2.

✲
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2
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2
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δ
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4
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Figure 2.3: Functions f(·) and g(·) defined in Example 2.2.

✻
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−1

− 1

2

0

1

2

1

1

2
1

α

f(α)

g(α)

If we want to fulfil these conditions, we need to redefine the set A 1
2
to be the

biggest set keeping the nested structure of the generating family as A 1
2
= [−1, 1].

In this redefined structure ∀δ ∈ (0, 1] the δ-cuts are the same as the Aδ sets, i.e.
∀δ ∈ (0, 1] is fulfilled Cδ(a∗) = Aδ.
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3. Fuzzy Vectors

Definition 3.1. A n-dimensional fuzzy vector x∗ is a fuzzy set in R
n deter-

mined by its membership function µx∗(·, . . . , ·) called vector-characterizing func-
tion, which is a real function of n real variables, fulfilling the following:

1. µx∗ : Rn → [0, 1]

2. ∀δ ∈ (0, 1] the δ-cut Cδ(x∗) := {x ∈ R
n : µx∗(x) ≥ δ} is non-empty and

a finite union of simply connected, closed and bounded sets

3. The support of x∗, supp(x∗) = {x ∈ R
n : µx∗(x) > 0}, is a bounded set

Definition 3.2. A n-dimensional fuzzy interval is a n-dimensional fuzzy vector
where each δ-cut Cδ(x∗) is a simply connected, closed and a bounded set.

Definition 3.3. A n-dimensional convex fuzzy vector x∗ is a n-dimensional fuzzy
vector in R

n where each δ-cut Cδ(x∗) is a finite union of convex, closed and
bounded sets.

Definition 3.4. A n-dimensional convex fuzzy interval is a n-dimensional fuzzy
vector where each δ-cut Cδ(x∗) is a convex, closed and a bounded set.

Remark. A precise vector a = (a1, . . . , an) ∈ R
n can be represented by its

vector-characterizing function:

µa∗(x) =

{

1 for x = a
0 for x 6= a

}

∀x ∈ R
n,

This vector-characterizing function is the one-point indicator function 1{a}(·, . . . , ·)
of the crisp set {a}.

Remark. Each one-dimensional fuzzy vector is a fuzzy number and each fuzzy
number is a one-dimensional fuzzy vector.

Remark. Each n-dimensional convex fuzzy vector is a n-dimensional fuzzy vector
and each n-dimensional convex fuzzy interval is a n-dimensional fuzzy interval.

Remark. Each n-dimensional fuzzy vector and n-dimensional fuzzy interval is a
special case of a fuzzy set defined in R

n.

Example 3.1. Examples of vector-characterizing functions of fuzzy vectors are
given in Figure 3.1. The vector-characterizing functions in Figures 3.1(a), 3.1(c),
and 3.1(d) are characterizing functions of 2-dimensional fuzzy intervals. The
function in Figure 3.1(b) is a vector-characterizing function a of 2-dimensional
fuzzy vector. In Figure 3.1(c) is displayed a vector-characterizing function of a
crisp set.
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Figure 3.1: Examples of vector-characterizing functions of fuzzy vectors
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3.1 Simply Connected Set

In this section we will define and describe the concept of simply connected sets.
Also some basic properties will be proved.

Definition 3.5. Let M ⊆ R
n be a set. We call the set M path-connected if and

only if we can find a continuous curve between arbitrary two points in M such
that this curve is a part of the set M , more precisely:

∀x1, x2 ∈M ∃ h : [0, 1] →M : h is continuous, h(0) = x1, h(1) = x2

Definition 3.6. Let M ⊆ R
n be a set. We call the set M simply connected if

and only if M is path-connected and ∀i ∈ {1, . . . , n} any continuous mapping

f : Si →M

can be contracted to a point in the set M , where Si = {x ∈ R
i : ‖x‖ = 1} is a

sphere.

We can imagine the contraction to the point as a continuous sequence of
images of a sphere with gradually decreasing diameter. More precisely that there
exists a continuous mapping

F : Di →M

such that F restricted to Si if equal to f , where Di = {x ∈ R
i : ‖x‖ ≤ 1} is a

ball.

Example 3.2. Some graphical examples of simply connected sets in R
2 and sets

which are not simply connected in R
2 are given in Figure 3.2.

Figure 3.2: Examples of simply connected and not simply connected sets in R
2

simply connected
set

simply connected
set

not simply connected
set

not simply connected
set

Definition 3.7. Let M be a set in a vector space over R. Then M is called
convex set if the whole line segment joining any pair of points of M lies entirely
in M :

∀x, y ∈M ∀λ ∈ [0, 1] λx+ (1− λ)y ∈M
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Lemma 3.1. Let M ⊆ R
n be a convex set. Then M is a simply connected set.

Proof. Firstly we have to prove that M is path-connected. Let x, y ∈ M be two
arbitrary points. We have to construct a continuous curve between points x and
y contained in M . From the fact that M is a convex set, the continuous curve
h : [0, 1] → M fulfilling h(0) = x, h(1) = y can be constructed as a line segment
in the following way:

h(λ) = λy + (1− λ)x ∀λ ∈ [0, 1]

Now we have to prove that any continuous mapping on a sphere can be
contracted to a point in the set M . Let i ∈ {1, . . . , n} be a dimension of a sphere
Si = {x ∈ R

i : ‖x‖ = 1} and let f : Si → M be a continuous mapping of the
sphere Si to the set M . We have to prove that the mapping can be contracted to
a point in the set M .

We choose an arbitrary point x ∈ M . From the fact that M is a convex
set we know that there exists a line segment between each point of the image of
f and the point x in the set M . We define a continuous mapping F : Di → M ,
where Di = {x ∈ R

i : ‖x‖ ≤ 1} is a ball, such that F restricted to Si is equal to
f in the following way:

F (α) = ‖α‖f
(

α

‖α‖

)

+ (1− ‖α‖) x ∀α ∈ Di

Lemma 3.2. Let M ⊆ R be a non-empty and bounded set. Then the following
statements are is equivalent:

◦ M is a simply connected set

◦ M is an interval such that (inf (M) , sup (M)) ⊆M ⊆ [inf (M) , sup (M)]

Proof. We will prove both implications separately. Firstly we will prove that from
the fact that M is a simply connected set follows that M is an interval such that
(inf (M) , sup (M)) ⊆M ⊆ [inf (M) , sup (M)].

LetM be a simply connected set. For the proof ad absurdum assume that
there exists a point x ∈ (inf(M), sup(M)) such that x /∈ M . Then the set M
is not pathwise-connected (in this one-dimensional case) and hence M is not a
simply connected set.

Secondly we will prove the opposite implication. Let M be an interval
such that (inf (M) , sup (M)) ⊆ M ⊆ [inf (M) , sup (M)]. The interval M is a
convex set and thus this implication is a special case of Lemma 3.1.
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3.2 Extension principle

Definition 3.8. The extension principle generalizes classical functions from an
arbitrary set M to a second set N for fuzzy elements of M to fuzzy elements in
N . Fuzzy numbers and fuzzy vectors are special cases of fuzzy elements.

Let g: M → N be a classical function. For a fuzzy element A∗ in M
with membership function ξ(·) the generalized value g(A∗) has to be defined in
reasonable way such that it is a fuzzy element in N . In order to obtain the
membership function η(·) which characterizes the fuzzy element B∗ = g(A∗) in
N , the values η(·) are defined in the following way:

η(b) =

{

sup {ξ(a) : a ∈ g−1({b})} if g−1({b}) 6= ∅
0 if g−1({b}) = ∅

}

∀b ∈ N

By this definition a membership function η(·) of a fuzzy element in N is obtained.

Theorem 3.3. Let x∗ be a n-dimensional convex fuzzy interval with vector-
characterizing function ζ(·, . . . , ·). Let M ⊆ R

n be a set containing the support
of x∗. Let g :M → R

m be a continuous and bounded function on M such that the
image of an arbitrary convex set is a convex set.

We define a fuzzy set y∗ = g(x∗) in R
m described by its membership func-

tion ψ(·, . . . , ·) based on the extension principle by

ψ(y) = sup({ζ(x) : x ∈ R
n, g(x) = y} ∪ {0}) ∀y ∈ R

m .

Then y∗ is a m-dimensional convex fuzzy interval.

Proof. We define a function f : Rn × R
m → [0, 1] by the following formula:

f(x, y) :=

{

ζ(x) if g(x) = y
0 elswere

}

∀(x, y) ∈ R
n × R

m

An example of this type of function is given in Example 3.3 on Figure 3.5.

We can define functions f1 : R
n → [0, 1] and f2 : R

m → [0, 1] as a kind of
restriction of the function f(x, y) in the following way:

f1(x) := sup{f(x, y) : y ∈ R
m} ∀x ∈ R

n

f2(y) := sup{f(x, y) : x ∈ R
n} ∀y ∈ R

m

We can see that f1(·, . . . , ·) and f2(·, . . . , ·) are related to the vector-characterizing
function ζ(·, . . . , ·) and the membership function ψ(·, . . . , ·):

f1(x) = sup{f(x, y) : y ∈ R
m} = sup{0, f(x, g(x))} = max{0, ζ(x)} = ζ(x)

∀x ∈ R
n

f2(y) = sup{f(x, y) : x ∈ R
n} = sup({f(x, g(x)) : x ∈ R

n, g(x) = y}∪{0}) =
= sup({ζ(x) : x ∈ R

n, g(x) = y} ∪ {0}) = ψ(y) ∀y ∈ R
m
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We have shown that the function f is containing the vector-characterizing
function of the n-dimensional fuzzy interval x∗ in the first coordinate and all
information about the membership function of the fuzzy set y∗ in the second
coordinate. For better vision of this idea see Example 3.3.

We want to prove, that δ-cuts Cδ(y∗) are convex, closed and bounded sets.
We will construct a family of sets Bδ ⊆ R

n × R
m, which will have δ-cut-like

structure in (n + m) dimensions containing information about both Cδ(x∗) and
Cδ(y∗). We define Bδ for δ ∈ (0, 1] as:

Bδ := {(x, y) : (x, y) ∈ R
n × R

m, f(x, y) ≥ δ} =

= {(x, y) : (x, y) ∈ R
n × R

m, ζ(x) ≥ δ, g(x) = y} ∀δ ∈ (0, 1]

We will investigate sets {x : (x, y) ∈ Bδ} and {y : (x, y) ∈ Bδ} and find that they
correspond with the δ-cuts Cδ(x∗) and Cδ(y∗) respectively.

{x : (x, y) ∈ Bδ} = {x : (x, y) ∈ R
n × R

m, ζ(x) ≥ δ, g(x) = y} =

= {x : x ∈ R
n, ζ(x) ≥ δ} = Cδ(x∗)

Remind, that Cδ(x∗) is non-empty, simply connected, closed and a bounded set
in R

n by definition.

{y : (x, y) ∈ Bδ} = {y : (x, y) ∈ R
n × R

m, ζ(x) ≥ δ, g(x) = y} =

= {y : sup{ζ(x) : x ∈ R
n, g(x) = y} ≥ δ} =

= {y : ψ(y) ≥ δ} = Cδ(y∗)

We will prove that y∗ is a m-dimensional convex fuzzy interval with char-
acterizing function ψ(·, . . . , ·) by verifying the conditions from Definition 3.4 of a
m-dimensional fuzzy vector and m-dimensional convex fuzzy interval:

◦ ψ : Rm → [0, 1].

This is fulfilled, because of the construction of the function ψ(·, . . . , ·).

◦ ∀δ ∈ (0, 1] the δ-cut Cδ(y∗) is a non-empty convex, closed, and a bounded
set.

We have proved, that Cδ(y∗) = {y : (x, y) ∈ Bδ}. We can express this set
also in the following way:

{y : (x, y) ∈ Bδ} = {y : (x, y) ∈ R
n × R

m, ζ(x) ≥ δ, g(x) = y} =

= {y : x ∈ Cδ(x∗), g(x) = y} = g(Cδ(x∗))
So we have Cδ(y∗) = g(Cδ(x∗)), where x∗ is a n-dimensional convex fuzzy
interval.

We know that Cδ(x∗) is non-empty, convex, closed, and a bounded set of
M from the definition for all δ ∈ (0, 1]. Now we will prove that Cδ(y∗) also
fulfils all these attributes.
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− Cδ(y∗) is non-empty.

Cδ(x∗) is non-empty, therefore exists x ∈ Cδ(x∗). The function g(·, . . . , ·) is
defined on M ⊇ supp(ζ(·, . . . , ·)) so we can take y := g(x). From Cδ(y∗) =
g(Cδ(x∗)) we have y ∈ Cδ(y∗) and therefore Cδ(y∗) is non-empty.

− Cδ(y∗) is convex.
Cδ(x∗) is convex and the function g(·, . . . , ·) by assumption displays a convex
set to a convex set, so Cδ(y∗) = g(Cδ(x∗)) is a convex set.

− Cδ(y∗) is closed.
The function g(·, . . . , ·) is continuous on M and the set Cδ(x∗) ⊂ M is
closed, so the set Cδ(y∗) = g(Cδ(x∗)) is closed as an continuous image of a
closed set.

− Cδ(y∗) is bounded.
The function g(·, . . . , ·) is bounded on M , so there exists r ∈ R such that
g(M) ⊆ B(0, r) := {y ∈ R

m : |y| < r}. We have Cδ(x∗) ⊆ supp(ζ(·, . . . , ·)) ⊆
M and hence Cδ(y∗) = g(Cδ(x∗)) ⊆ B(0, r) is bounded.

◦ Support of ψ(·, . . . , ·) is bounded.
The support of the function ψ(·, . . . , ·) can be expressed as

supp(ψ(·, . . . , ·)) = {g(x) : x ∈ supp(ζ(·, . . . , ·))},

where the function g(·, . . . , ·) is bounded, therefore the support of the func-
tion ψ(·, . . . , ·) is bounded.
We have proved that the fuzzy set y∗ is an m-dimensional convex fuzzy
interval.

Theorem 3.4. Let x∗ be a n-dimensional convex fuzzy interval with vector-
characterizing function ζ(·, . . . , ·). Let M ⊆ R

n be a set containing the support
of x∗. Let g : M → R be a continuous and bounded function on M such that the
image of an arbitrary convex set is an interval.

We define a fuzzy set y∗ = g(x∗) in R described by its membership function
ψ(·) based on the extension principle by

ψ(y) = sup({ζ(x) : x ∈ R
n, g(x) = y} ∪ {0}) ∀y ∈ R .

Then y∗ is a one-dimensional convex fuzzy interval and each δ-cut Cδ(y∗) fulfils
the following:

Cδ(y∗) =
[

min
x∈Cδ(x∗)

g(x), max
x∈Cδ(x∗)

g(x)

]

∀δ ∈ (0, 1]
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Proof. This Theorem is a special one-dimensional case of Theorem 3.3. The only
part we have to prove is the part describing the shape of Cδ(y∗).

We have proved, that g(Cδ(x∗)) = Cδ(y∗). We also know, that both Cδ(x∗)
and Cδ(y∗) are non-empty, closed, bounded, and convex sets.

Then the following must be fulfilled:

Cδ(y∗) =
[

min
y∈Cδ(y∗)

y, max
y∈Cδ(y∗)

y

]

=

[

min
x∈Cδ(x∗)

g (x) , max
x∈Cδ(x∗)

g (x)

]

Theorem 3.5. Let x∗ be a n-dimensional convex fuzzy vector with vector-chara-
cterizing function ζ(·, . . . , ·). Let M ⊆ R

n be a set containing the support of x∗.
Let g :M → R

m be a continuous and bounded function on M such that the image
of an arbitrary convex set is a convex set.

We define a fuzzy set y∗ = g(x∗) in R
m described by its membership func-

tion ψ(·, . . . , ·) based on the extension principle by

ψ(y) = sup({ζ(x) : x ∈ R
n, g(x) = y} ∪ {0}) ∀y ∈ R

m

Then y∗ is a m-dimensional convex fuzzy vector.

Proof. We will prove this Theorem 3.5 by using Theorem 3.3.

We know, that the δ-cut Cδ(x∗) is non-empty and a finite union of convex,
closed, and bounded sets, for all δ ∈ (0, 1]. We can split each δ-cut into a finite
number kδ of convex, closed, and bounded sets and denote them by X1

δ , . . . , X
kδ
δ .

We also know, that Cδ̃(x∗) ⊆ Cδ(x∗) for all δ, δ̃ ∈ (0, 1], where δ ≤ δ̃.
Especially we know that C1(x∗) ⊆ Cδ(x∗) for all δ ∈ (0, 1], and hence k1 ≥ kδ for
all δ ∈ (0, 1].

We will construct k1 n-dimensional convex fuzzy intervals with the δ-cuts:

Cδ(xi∗) := Xj
δ , where X i

1 ⊆ Xj
δ for i ∈ {1, . . . , k1}

According to Theorem 3.3 there existm-dimensional convex fuzzy intervals
yi

∗ = g(xi
∗) for all i ∈ {1, . . . , k1}.

We can construct a m-dimensional convex fuzzy vector y∗ as (some sort
of) union of y1, . . . , yk1 with δ-cuts fulfilling the following formula:

Cδ(y∗) :=
k1
⋃

i=1

Cδ(yi∗) ∀δ ∈ (0, 1]
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Example 3.3. We define the (one-dimensional) fuzzy interval x∗ as a fuzzy in-
terval x∗ with the characterizing function ξ(·) (see Figure 3.3):

ξ(x) :=



















(x− 1)/3 for x ∈ [1, 4]
1 for x ∈ [4, 7]

8− x for x ∈ [7, 8]
0 elswere



















∀x ∈ R

We define a function g(·) using the following formula (see Figure 3.4):

g(x) := 5− 2 sin(x) ∀x ∈ R

Then we can construct a function f(·, ·) : R× R → R like in the proof of
Theorem 3.3 in the following way:

f(x, y) :=

{

ξ(x) where g(x) = y
0 otherwise

}

∀(x, y) ∈ R× R

The function f(·, ·) has a 3-dimensional structure, as shown in Figure 3.5.

If we look to this structure in the direction of the y-axis, we will see the
characterizing function ξ(·) (see Figure 3.6), and if we look in the direction of the
z-axis, we will see a part of the function g(·) (see Figure 3.7).

We define a fuzzy set y∗ = g(x∗) described by its membership function:

ψ(y) := sup({ξ(x) : x ∈ R, g(x) = y} ∪ {0}) ∀y ∈ R

According to Theorem 3.3 the function ψ(·) is the characterizing function of a
fuzzy interval.

We can look at the function f(·, ·) in the direction of x-axis and we will
see the function ψ(·) (see Figures 3.8 and 3.9). This discovery of the function
ψ(·) is the reason for the construction of the function f(·, ·).
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Figure 3.3: Characterizing function ξ(·) of a fuzzy interval x∗
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Figure 3.4: Function g(·).
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Figure 3.5: Function f(·, ·) from two different viewpoints
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Figure 3.6: Function f(·, ·) viewed in direction of the y-axis
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Figure 3.7: Function f(·, ·) viewed in direction of the z-axis
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Figure 3.8: Function f(·, ·) viewed in direction of the x-axis
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Figure 3.9: Characterizing function ψ(·) of a fuzzy interval y∗
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4. Vector of Fuzzy Numbers

Definition 4.1. A n-dimensional vector of fuzzy numbers (x∗1, . . . , x
∗
n) is a vector

containing n fuzzy numbers x∗1, . . . , x
∗
n. It is determined by n characterizing

functions µx∗
1
(·), . . . , µx∗

n
(·) belonging to fuzzy numbers x∗1, . . . , x

∗
n.

Definition 4.2. A function T : [0, 1]× [0, 1] → [0, 1] is called triangular norm or
t-norm, if ∀x, y, z ∈ [0, 1] the following conditions are fulfilled:

1. T (x, y) = T (y, x), T is commutative

2. T (T (x, y), z) = T (x, T (y, z)), T is associative

3. T (x, 1) = x, value 1 is neutral to T

4. x ≤ y ⇒ T (x, z) ≤ T (y, z), T is transitive in one coordinate

Definition 4.3. In this definition are given some examples of t-norms.

Minimum t-norm:

Tmin(x, y) = min{x, y} ∀(x, y) ∈ [0, 1]2

Product t-norm:

Tprod(x, y) = x · y ∀(x, y) ∈ [0, 1]2

Limited sum t-norm:

Tlsum(x, y) = max{x+ y − 1, 0} ∀(x, y) ∈ [0, 1]2

Drastic product t-norm:

Tdp(x, y) = min{x, y} · 1{max{x,y}}(1) ∀ (x, y) ∈ [0, 1]2

Example 4.1. In Figure 4.1 are given fuzzy vectors obtained by application of
the above defined t-norms on a vector of two fuzzy numbers.

Remark. Combination of fuzzy numbers into a fuzzy vector is possible based on
t-norms. For two fuzzy numbers a∗ and b∗ with corresponding characterizing func-
tions µa∗(·), µb∗(·) a fuzzy vector x∗ = (a, b)∗ is given by its vector-characterizing
function µx∗(·, ·) whose values µx∗(x, y) are defined based on a t-norm T by:

µx∗(x, y) := T (µa∗(x), µb∗(y)) ∀(x, y) ∈ R
2

By the associativity of t-norms this can be extended to n fuzzy numbers,
n ∈ N. Let a∗1, . . . , a

∗
n be fuzzy numbers with corresponding characterizing func-

tions µa∗1
(·), . . . , µa∗n(·). Then we can define a fuzzy vector x∗ = (x1, . . . , xn)

∗ by
its vector-characterizing function µx∗(· · ·) fulfilling the following formula:

µx∗(x1, . . . , xn) := T (µa∗1
(x1), T (µa∗2

(x2), . . . T (µa∗n−1
(xn−1), µa∗n(xn)) . . .))

∀(x1, . . . , xn) ∈ R
n

29



Figure 4.1: Combination of fuzzy numbers
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(a) Combination of two fuzzy numbers using the minimum t-norm
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(b) Combination of two fuzzy numbers using the product t-norm
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(c) Combination of two fuzzy numbers using the limited sum t-norm
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(d) Combination of two fuzzy numbers using the drastic product t-norm
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5. Construction of

Characterizing Functions

How to construct a membership function, a characterizing function or a vector-
characterizing function is an important topic of fuzzy set theory. There are many
approaches, determined by the structure of the data. Some ways how to create a
characterizing function or a vector-characterizing function are mentioned in this
chapter.

Let us have some metric space M with a metric ρ : M → [0,∞). We
want to construct a fuzzy set on M . More specifically we want to construct a
fuzzy number where M = R and ρ is the Euclidean metric or a fuzzy vector with
M = R

n and ρ is the Euclidean metric in R
n. For I ⊆ M let h : I → R be some

function defined on a subset ofM . In order to describe a fuzzy number or a fuzzy
vector, the function h has to be extended to the whole set M .

Usually we will construct firstly a function g : M → R from the function
h : I → R. Then we will be able to construct the required characterizing function
or vector-characterizing function ξ : M → [0, 1] by normalizing the function
g :M → R.

5.1 Function h defined on whole Rn

Let the function h(·) be defined on the setM = R
n, let h(·) be partly continuous,

and let there exist a bounded subset B ⊆ R
n, where h(x) = 0 ∀x ∈ R

n \ B.
Then we define the function g : Rn → R in the following way:

g(x) :=







|h(x)| for h continuous in x

max
{

|h(a)|, lim sup
x→a

|h(x)|
}

for h not continuous in x







∀x ∈ R
n

To construct the characterizing function or the vector-characterizing func-
tion ξ : Rn → [0, 1] from the function g : Rn → R, we need to normalize the
function g. One possible way to do so is using the following equation:

ξ(x) :=
|g(x)|

max {|g(z)| : z ∈ Rn} ∀x ∈ R
n

We have transformed the problem of constructing a characterizing function
or a vector-characterizing function ξ : Rn → [0, 1] to the problem of constructing
some suitable function g : Rn → R, which will be normalized afterwards.
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Example 5.1. Let M = R and let the function h(·) be defined as follows:

h(x) =































3
2
(x− 1) for x ∈ [1, 3)
3 for x ∈ [3, 5)

x2 − 14x+ 48 for x ∈ [5, 8]
1 for x ∈ (8, 10)
0 for x ∈ (−∞, 1) ∪ [10,∞)































∀x ∈ R

Then we set g(x) := |h(x)| ∀x ∈ R\{8, 10} and g(x) := 1 for x ∈ {8, 10}.
Then we compute the characterizing function ξ(·) by normalization and get:

ξ(x) :=
g(x)

3
∀x ∈ R

The function h(·) is shown in Figure 5.1 and the resulting characterizing
function ξ(·) is shown in Figure 5.2.

Example 5.2. Let M = R
2 and let the function h(·, ·) be defined as follows:

h(x, y) = max







0, 3 (1− x)2 e(−x2−(y+1)2) − 10
(

1
5
x− x3 − y5

)

e(−x2−y2)

−1
3
e(−(x+1)2−y2) − 1

100







∀(x, y) ∈ R
2

Then we can set g(x, y) := h(x, y) ∀(x, y) ∈ R
2 and compute the vector-

characterizing function ζ(·, ·) by normalization and get:

ζ(x, y) :=
h(x, y)

max{h(u, v) : (u, v) ∈ R2} ∀(x, y) ∈ R
2

The resulting vector-characterizing function ζ(·, ·) is shown in Figure 5.3.

Example 5.3. Let M = R
2 and let the function h(·, ·) be defined as follows:

h(x, y) =























1 for x = y = 0

sin
(√

x2+y2
)

√
x2+y2

+ 1
12

(

4π −√
x2 + y2

)

for 0 <
√
x2 + y2 ≤ 4π

0 for 4π <
√
x2 + y2























∀(x, y) ∈ R
2

Then we set g(x, y) := h(x, y) ∀(x, y) ∈ R
2 \{(0, 0)} and g(0, 0) := 1+ 1

3
π.

Then we compute the vector-characterizing function ζ(·, ·) by normalization as:

ζ(x, y) :=
g(x, y)

1 + 1
3
π

∀(x, y)∈R2

The resulting vector-characterizing function ζ(·, ·) is shown in Figrure 5.4
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Figure 5.1: Function h(·) according to Example 5.1
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Figure 5.2: Characterizing function ξ(·) constructed from the function h(·)
according to Example 5.1
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Figure 5.3: Vector-characterizing function ζ(·, ·) constructed from the function
h(·, ·) according to Example 5.2
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Figure 5.4: Vector-characterizing function ζ(·, ·) constructed from the function
h(·, ·) according to Example 5.3
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5.2 Function h defined for one value a ∈Rn

Let the function h(·) be defined on the set M = {a} ⊂ R
n, in other words, we

have only one a ∈ R, for which the function h(·) is defined. We can interpret
the value a as the measurement result. Then we have different approaches, how
to construct the characterizing function, in dependence with the measurement
uncertainity of the measurement machine.

5.2.1 Crisp approach

In the case, where there is no uncertainty and we know it, the crisp approach can
be used. The characterizing function is representing a crisp number. Results of
calculation with this type of characterizing functions are analogue to calculations
with standard real numbers.

Let a ∈ R
n and let there be no uncertainty in the measurement. Then we

define the characterizing ξ : Rn → [0, 1] in the following way:

ξ(x) :=

{

1 for x = a
0 for x 6= a

}

∀x ∈ R
n

An equivalent way of describing this characterizing function is using the
indicator function of the set {a} as follows:

ξ(x) := 1{a}(x) ∀x ∈ R
n

The function ξ(·) defined above fulfils the conditions for characterizing
functions (for n = 1) and vector-characterizing functions (for n > 1).

Example 5.4. Let us have a one-dimensional measurement, n = 1, let a = 2
be the measurement result and let there be no uncertainty in the measurement.
Then the characterizing function ξ : R → [0, 1] is:

ξ(x) := 1{2}(x) ∀x ∈ R

The resulting characterizing function is displayed in Figure 5.5.

Example 5.5. Let us have a two-dimensional measurement, n = 2, let a = (3, 4)
be the measurement result and let there be no uncertainty in the measurement.
Then the vector-characterizing function ξ : R2 → [0, 1] is defined as:

ξ(x, y) :=

{

1 for x = 3 and y = 4
0 elsewhere

}

∀(x, y) ∈ R
2

The resulting vector-characterizing function is displayed in Figure 5.6.
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Figure 5.5: Characterizing function ξ(·) according to Example 5.4
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Figure 5.6: Characterizing function ξ(·, ·) according to Example 5.5
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5.2.2 Interval approach

In the case, where there is some uncertainty and we know the value of the uncer-
tainty, the interval approach can be used. The uncertainty can be represented by
a real number or a vector of real numbers. The characterizing function is then
representing an interval [a − u, a + u]. Results of calculation with this type of
characterizing functions are analogue to interval calculus.

Firstly we will investigate the construction of the characterizing function
in one-dimensional case (n = 1). Let a ∈ R be a measurement result and let
u ∈ [0,∞) be the measurement uncertainty. Then we define the characterizing
function ξ : R → [0, 1] as indicator function of the interval [a−u, a+u] in the
following way:

ξ(x) := 1[a−u, a+u](x) =

{

1 for x ∈ [a−u, a+u]
0 for x ∈ (−∞, a−u) ∪ (a+u,∞)

}

∀x ∈ R

The function ξ(·) defined above fulfils the conditions for characterizing functions.

Similarly we construct the vector-characterizing function for the more-
dimensional case (n > 1). Let a ∈ R

n be a measurement result and let u ∈ [0,∞)n

be a measurement uncertainty. The measurement a = (a1, . . . , an) and measure-
ment uncertainty u = (u1, . . . , un) are n-dimensional vectors of real numbers. We
define multi-dimensional interval in the following way:

[a− u, a+ u] = [a1 − u1, a1 + u1]× . . .× [an − un, an + un]

Then we define the vector-characterizing function ζ : Rn → [0, 1] as in-
dicator function of the multi-dimensional interval [a−u, a+u] in the following
way:

ζ(x) := 1[a−u,a+u](x) =

{

1 for x ∈ [a−u, a+u]
0 for x ∈ R

n \ [a−u, a+u]

}

∀x ∈ R
n

The function ζ(·, . . . , ·) defined above fulfils the conditions for vector-
characterizing functions.

Example 5.6. Let us have a one-dimensional measurement, n = 1, let a = 2.5 be
the measurement result and let the uncertainty in the measurement be u = 0.5.
Then the characterizing function ξ : R → [0, 1] is defined as:

ξ(x) := 1[2,3](x) =

{

1 for x ∈ [2, 3]
0 elsewhere

}

∀x ∈ R

The resulting characterizing function is displayed in Figure 5.7

Example 5.7. Let us have a two-dimensional measurement, n = 2, let a = (3, 4)
be the measurement result, let the uncertainty in the measurement be u = (1, 1).
Then the vector-characterizing function ζ : R2 → [0, 1] is defined as:

ζ(x, y) := 1[2,4]×[3,5](x, y) =

{

1 for x ∈ [2, 4], y ∈ [3, 5]
0 elsewhere

}

∀(x, y) ∈ R
2

The resulting vector-characterizing function is displayed in Figure 5.8.
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Figure 5.7: Characterizing function ξ(·) according to Example 5.6
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Figure 5.8: Characterizing function ζ(·, ·) according to Example 5.7
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5.2.3 Trapezoidal approach

In the case, where there is some uncertainty and we know, that the uncertainty
has a trapezoidal shape, the trapezoidal approach can be used. The uncertainty
can be represented by two real numbers (in one-dimensional case) or two vec-
tors of real numbers (in more-dimensional case). The characterizing function is
represented by a trapezoid.

Firstly we will investigate the construction of the characterizing function
in one-dimensional case (n = 1). Let a ∈ R be a measurement result and let
u, U ∈ [0,∞) be measurement uncertainties, such that 0 < u < U . Then we
define the characterizing function ξ : R → [0, 1] in the following way:

ξ(x) :=























x−(a−U)
U−u

for x ∈ [a− U, a− u)

1 for x ∈ [a− u, a+ u]
(a+U)−x

U−u
for x ∈ (a+ u, a+ U ]

0 for x ∈ R \ [a− U, a+ U ]























∀x ∈ R

The function ξ(·) defined above fulfils the conditions for characterizing functions.

For more-dimensional case (n > 1) we will firstly construct the vector of
fuzzy numbers (x∗1, . . . , x

∗
n). Then we will construct the fuzzy vector x∗ by apply-

ing one of the t-norms to the vector of fuzzy numbers. The vector-characterizing
function of the fuzzy vector x∗ can vary depending on the selected t-norm.

Let a = (a1, . . . , an) ∈ R
n be a measurement result and let u = (u1, . . . , un),

U = (U1, . . . , Un) ∈ [0,∞)n be measurement uncertainties, such that 0 < ui < Ui

for all i ∈ {1, . . . , n}. We construct the characterizing functions ξ1, . . . , ξn : R →
[0, 1] in the same way as in one-dimensional case:

ξi(x) :=























x−(ai−Ui)
Ui−ui

for x ∈ [ai−Ui, ai−ui)
1 for x ∈ [ai−ui, ai+ui]

(ai+Ui)−x
Ui−ui

for x ∈ (ai+ui, ai+Ui]

0 for x ∈ R \ [ai−Ui, ai+Ui]























∀x ∈ R ∀i ∈ {1, . . . , n}

Then we define the vector-characterizing function ζ : Rn → [0, 1] using
a t-norm. Some t-norms were defined in Chapter 4. The vector-characterizing
function can be constructed using the minimum t-norm:

ζ(x1, . . . , xn) = min{ξ1(x1), . . . , ξn(xn)} ∀(x1, . . . , xn) ∈ R
n

Other choices of t-norms are also possible. The function ζ(·, . . . , ·) fulfils the
conditions for vector-characterizing functions.

Example 5.8. Let us have a one-dimensional measurement, let a = 2.5 be the
measurement result and let the uncertainties in the measurement be u = 0.5 and
U = 1.5. Then the characterizing function ξ : R → [0, 1] is defined as:

ξ(x) :=



















x− 1 for x ∈ [1, 2)
1 for x ∈ [2, 3]

4− x for x ∈ (3, 4]
0 for x ∈ R\[1, 4]



















∀x ∈ R

The resulting characterizing function is displayed in Figure 5.9
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Figure 5.9: Characterizing function ξ(·) according to Example 5.8
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Figure 5.10: Characterizing function ζ(·, ·) according to Example 5.9
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Example 5.9. Let us have a two-dimensional measurement, let a = (3, 4) be the
measurement result and let the uncertainties in the measurement be u = (1, 1),
U = (2, 3). Then the characterizing functions ξ1, ξ2 : R → [0, 1] are defined as:

ξ1(x) :=



















x− 1 for x ∈ [1, 2)
1 for x ∈ [2, 4]

5− x for x ∈ (4, 5]
0 for x ∈ R\[1, 5]



















, ξ2(y) :=



















1
2
(x− 1) for y ∈ [1, 3)
1 for y ∈ [3, 5]

1
2
(7− x) for y ∈ (5, 7]
0 for y ∈ R\[1, 7]



















∀x ∈ R ∀y ∈ R

The resulting vector-characterizing function ζ : R2 → [0, 1] constructed by
the minimum t-norm, i.e.

ζ(x, y) = min{ξ1(x), ξ2(y)} ∀(x, y) ∈ R
2

is displayed in Figure 5.10.

5.2.4 Rotation approach

This approach should be used for more-dimensional measurements where there
is some uncertainty which is not independent in individual dimensions, but the
uncertainty of individual dimensions is dependent on the distance from the mea-
surement result. The uncertainty can be represented by two real numbers, simi-
larly to the trapezoidal approach, or by one real number, similarly to the interval
approach. The vector-characterizing function is then represented by a rotated
trapezoid or a rotated interval.

Let a = (a1, . . . , an) ∈ R
n be a measurement result and let u, U ∈ [0,∞)

be measurement uncertainties, such that 0 < u < U . We construct a helping
function f : [0,∞] → [0, 1] in a similar way as in the one-dimensional case of the
trapezoidal approach:

f(x) :=











1 for x ∈ [0, u]
U−x
U−u

for x ∈ (u, U ]

0 for x ∈ (U,∞)











∀x ∈ [0,∞)

Then we construct the vector-characterizing function ζ : Rn → [0, 1] using
some metric d : Rn × R

n → [0,∞) on R
n and the above defined function f(·) in

the following way:
ζ(x) = f (d(x, a)) ∀x ∈ R

n

In the case when d(·, ·) is the Euclidean metric, the vector-characterizing
function ζ : Rn → [0, 1] is then defined in the following way:

ζ(x1, . . . , xn) = f





√

√

√

√

n
∑

i=1

(xi − ai)
2



 ∀(x1, . . . , xn) ∈ R
n

The function ζ(·, . . . , ·) fulfils the conditions for vector-characterizing functions.
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For the rotation interval approach, the only difference would be using one
value for uncertainty and in the definition of the function f(·).

Let a ∈ R
n be a measurement result and let u ∈ [0,∞) be the measurement

uncertainty. We construct a helping function f : [0,∞] → [0, 1] in a similar way
as in the one-dimensional case of the trapezoidal approach:

f(x) :=

{

1 for x ∈ [0, u]
0 for x ∈ (u,∞)

}

∀x ∈ [0,∞)

The construction of the vector-characterizing function ζ : Rn → [0, 1] using
a metric d : Rn × R

n → [0,∞) and the above defined function f(·) is similar to
the rotation trapezoid case:

ζ(x) = f (d(x, a)) ∀x ∈ R
n

The function ζ(·, . . . , ·) fulfils the conditions for vector-characterizing functions.

Example 5.10. Let us have a two-dimensional measurement, let a = (3, 4) be the
measurement result and let the uncertainty in the measurement be u = 3

2
. Then

we can use the trapezoidal approach and the helping function f : [0,∞) → [0, 1]
is constructed as:

f(x) :=

{

1 for x ∈ [0, 3
2
]

0 for x ∈ (3
2
,∞)

}

∀x ∈ [0,∞)

The resulting vector-characterizing function ζ : R2 → [0, 1] constructed by
using the Euclidean metric and the above defined function f(·) is defined as:

ζ(x, y) = f
(

√

(x− 3)2 + (y − 4)2
)

∀(x, y) ∈ R
2

More precisely:

ζ(x, y) =







1 for
√

(x− 3)2 + (y − 4)2 ∈ [0, 3
2
]

0 for
√

(x− 3)2 + (y − 4)2 ∈ (3
2
,∞)







∀(x, y) ∈ R
2

This vector-characterizing function ζ(·, ·) is displayed in Figure 5.11.

Example 5.11. Let us have a two-dimensional measurement, let a = (3, 4) be
the measurement result and let the uncertainties in the measurement be u = 1,
U = 5

2
. Then we can use the trapezoidal approach and the following helping

function f : [0,∞) → [0, 1]:

f(x) :=











1 for x ∈ [0, 1]
5−2x
3

for x ∈ (1, 5
2
]

0 for x ∈ (5
2
,∞)











∀x ∈ [0,∞)

Again the resulting vector-characterizing function ζ : R2 → [0, 1] construct-
ed using the Euclidean metric and the above defined function f(·) is defined as:

ζ(x, y) = f
(

√

(x− 3)2 + (y − 4)2
)

∀(x, y) ∈ R
2

This vector-characterizing function ζ(·, ·) is displayed in Figure 5.12.
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Figure 5.11: Characterizing function ζ(·, ·) according to Example 5.10
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Figure 5.12: Characterizing function ζ(·, ·) according to Example 5.11
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5.2.5 Normal distribution approach

In the case, where in the measurement is some uncertainty and we know the
distribution of this uncertainty, for example from the equipment specification,
then a modified density function can be used. When the distribution of the
uncertainty has a normal distribution with mean value 0 and with known variance,
then the approach described in this section can be used.

Firstly we will investigate the construction of the characterizing function
in one-dimensional case (n = 1). Let a ∈ R be a measurement result and let
u2 ∈ [0,∞) be the variance of the measurement uncertainty. Then the density
function f : R → R of a normal distribution with mean a and variance u2 is the
following:

f(x) = 1√
2πu2

e−
(x−a)2

2u2 ∀x ∈ R

The characterizing function of a fuzzy number (see Definition 2.1) should
have its values in the interval [0,1], so we should omit the normalizing constant
of the density function f(·). Another condition for characterizing functions is
to have bounded support. Therefore we should use some interval, let say the
confidence interval on the level 1−α for some α ∈ (0, 1). The confidence interval
of the function f(·) is defined as [a−uΦ(α

2
), a+uΦ(α

2
)], where Φ : (0, 1) → (0,∞)

is the quantile function of the standard normal distribution.

Then we define the characterizing function ξ : R → [0, 1] using the density
function f(·) and the interval I = [a− uΦ(α

2
), a+ uΦ(α

2
)] in the following way:

ξ(x) :=







e−
(x−a)2

2u2 for x ∈ I
0 elsewhere







∀x ∈ R

The function ξ(·) defined above fulfils the conditions for characterizing functions.

For the more-dimensional case (n > 1) the construction of a vector-
characterizing function is analogue to the one-dimensional case. Let a ∈ R

n be
a measurement result and let Σ ∈ R

n×n be a covariance matrix of measurement
uncertainties in the following shape

a =













a1
a2
...
an













, Σ =













u21 u1,2 · · · u1,n
u2,1 u22 u2,n
...

. . .
...

un,1 un,2 u2n













,

where ai ∈ R are coordinates of the measurement result, u2i ∈ [0,∞) are the
uncertainties of the ith coordinate and ui,j = uj,i ∈ R are covariances between
uncertainty of the ith and jth coordinate, for all i, j∈{1, . . . , n}, i 6=j.

The density function of a multivariate normal distribution with mean vec-
tor a and covariance matrix Σ is defined as

f(x) = 1√
(2π)n|Σ|

e−
1
2
(x−a)TΣ−1(x−a) ∀x ∈ R

n

where x is a column vector, (x−a)T is a transposed vector, |Σ| is the determinant
of the matrix Σ, and Σ−1 is the inverse matrix of Σ.
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Again, the vector-characterizing function of a fuzzy vector (see Definition
3.1) should have its values in the interval [0,1]. We should omit the normalizing
constant of the density function f(·) by definition of a new function f̃ : Rn → [0, 1]
in the following way:

f̃(x) = e−
1
2
(x−a)TΣ−1(x−a) ∀x ∈ R

n

Another condition for vector-characterizing functions is to have bounded support.
We should construct a confidence region, multi-dimensional version of confidence
interval, or just select some c ∈ (0, 1) and restrict the non-zero values of the
vector-characterizing function to the set, where the function f̃(·) has greater or
equal values to c, denoted as C := {x ∈ R

n : f̃(x) ≥ c}. The set C is an ellipsoid.

Then the vector-characterizing function ζ : Rn → [0, 1] is defined as:

ζ(x) =

{

e−
1
2
(x−a)TΣ−1(x−a) for x ∈ C

0 elsewhere

}

∀x ∈ R
n

The function ζ(·, . . . , ·) fulfils the conditions for vector-characterizing functions.

Example 5.12. Let us have a one-dimensional measurement, let a = 2.5 be the
measurement result and let the standard deviation of the measurement uncertain-
ty be u = 0.7. Let the 95% confidence interval and the 99% confidence interval
be chosen, hence α1 = 0.05, α2 = 0.01.

Then the characterizing functions ξ1, ξ2 : R → [0, 1] are defined as

ξi(x) :=







e−
(x−a)2

2u2 for x ∈ Ii
0 elsewhere







∀x ∈ R,

where Ii = [2.5 − 0.7Φ(αi

2
), 2.5 + 0.7Φ(αi

2
)] is the support of the characterizing

function ξi(·) for i ∈ {1, 2}.
The resulting characterizing functions ξ1(·) and ξ2(·) are displayed in Fig-

ure 5.13 and Figure 5.14 respectively.

Example 5.13. Let us have two different two-dimensional measurements, let
a = (3, 4)T be the measurement result and let the coordinates be independent in
first case and correlated in second with covariance matrices Σ1,Σ2 ∈ R

2×2 where:

Σ1 =

(

1 0
0 2

)

, Σ2 =

(

1 1
2

1
2

2

)

Let the constant c = 0.04 be chosen, then the support of vector-characterizing
functions is selected as Ci := {x ∈ R

2 : e−
1
2
(x−a)TΣ−1

i
(x−a) ≥ 0.04} for i∈{1, 2}.

The resulting vector-characterizing functions ζ1, ζ2 : R
2 → [0, 1] are con-

structed for i∈{1, 2} as

ζi(x) =

{

e−
1
2
(x−a)TΣ−1

i
(x−a) for x ∈ Ci

0 elsewhere

}

∀x ∈ R
n

and are displayed in Figure 5.15 and Figure 5.16 respectively.
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Figure 5.13: Characterizing function ξ1(·) according to Example 5.12 for the
95% confidence interval
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Figure 5.14: Characterizing function ξ2(·) according to Example 5.12 for the
99% confidence interval
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Figure 5.15: Characterizing function ζ1(·, ·) according to Example 5.13
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Figure 5.16: Characterizing function ζ2(·, ·) according to Example 5.13
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5.3 Function h defined on equally spaced finite

subsets of R

If we have values of a function only in certain points, in order to obtain a char-
acterizing function we have to extend the function to the whole space.

Let be I = {x1, . . . , xn} for n ∈ N and let xi ∈ R be equally spaced and
x1 < x2 < . . . < xn, more precisely

∃∆ ∈ (0,∞) ∀i ∈ {2, . . . , n} xi − xi−1 = ∆.

Let the function h(·) be defined on the set I. We define x0 := x1 − ∆, and
xn+1 := xn +∆ and extend the function h(·) in the following way:

h(x0) := 0 and h(xn+1) := 0

Example 5.14. Let the set I ⊂ R be defined in following way:

I =
{

1
2
, 11

2
, 21

2
, 31

2
, 41

2
, 51

2
, 61

2
, 71

2
, 81

2
, 91

2
, 101

2
, 111

2

}

Let the function h(·) be defined on I by the same equation as in Example 5.1.
Let additionally h(1

2
) = h(111

2
) = 0. Then the values of function h(·) are the

following:

xi
1
2

11
2

21
2

31
2

41
2

51
2

61
2

71
2

81
2

91
2

101
2

111
2

h(xi) 0 3
4

21
4

3 3 11
4

−3
4

−3
4

1 1 0 0

The function h(·) defined on the set I is depicted in Figure 5.17.

We want to extend the function h : I → R. We can define the function
g : R → R as a partly constant function or as a partly linear function as will be
explained in the following sections.

5.3.1 Partly constant approach

Firstly we will describe the partly constant approach. Let I ⊂ R, the function
h : I → R and values x0, x1, . . . , xn, xn+1,∆ ∈ R be defined as in Section 5.3.

We can extend the function h : I → R to a non-negative partially constant
function g : R → R using the following formula:

g(x) :=



































































0 for x < x1 − ∆
2

|h(x1)| for x ∈ [x1 − ∆
2
, x1 +

∆
2
)

max{|h(x1)|, |h(x2)|} for x = x1 +
∆
2

· · ·
|h(xi)| for x ∈ (xi − ∆

2
, xi +

∆
2
)

max{|h(xi)|, |h(xi+1)|} for x = xi +
∆
2

· · ·
|h(xn)| for x ∈ (xn − ∆

2
, xn +

∆
2
]

0 for x > xn +
∆
2



































































∀x ∈ R
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We can write this formula in another way, using the structure of I, as:

g(x) := max
({

|h(xi)| : |x− xi| ≤ ∆
2

}

∪ {0}
)

∀x ∈ R

Then the characterizing function ξ : R → [0, 1] can be obtained from the
function g(·) by normalization in the following way:

ξ(x) :=
g(x)

max {g(z) : z ∈ R} ∀x ∈ R

The function ξ(·) defined above fulfils the conditions for characterizing functions.

Example 5.15. Let the set I ⊂ R and the function h(·) be defined in the same
way as in Example 5.14 and depicted in Figure 5.17. The characterizing function
ξ(·) obtained by the partly constant approach is shown in Figure 5.18.

5.3.2 Partly linear approach

Now we describe the partly linear approach. Let I ⊂ R, the function h : I → R

and values x0, x1, . . . , xn, xn+1,∆ ∈ R be defined as in Section 5.3.

We can think about this approach as connecting points using line segments.
More precisely we will extend the function h : I → R to a continuous partially
linear function g : R → R in the following way:

g(x) :=



















































0 for x < x0
x−x1

∆
h(x2) for x ∈ [x1, x2)

· · ·
h(xi) +

x−xi

∆
(h(xi+1)− h(xi)) for x ∈ [xi, xi+1)

· · ·
h(xn)− x−xn

∆
h(xn) for x ∈ [xn, xn+1]

0 for x > xn+1



















































∀ x ∈ R

The characterizing function ξ : R → [0, 1] can be obtained from the func-
tion g(·) by normalization in the following way:

ξ(x) :=
|g(x)|

max {|g(z)| : z ∈ R} ∀x ∈ R

The function ξ(·) defined above fulfils the conditions for characterizing functions.

Example 5.16. Let the set I ⊂ R and the function h(·) be defined in the same
way as in Example 5.14 and depicted in Figure 5.17. The characterizing function
ξ(·) obtained by the partly linear approach is shown in Figure 5.19.
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5.3.3 Differential approach

If we are more interested in the slope of the function h(·) instead of it’s values, we
can investigate the differences between neighbouring values. Let the set I ⊂ R

and the function h : I → R and values x0, x1, . . . , xn, xn+1,∆ ∈ R be defined as
in Section 5.3.

We want to investigate the differences between the neighbourhood values
of the function h(·). The standard way to do so is to compute the derivative.
More precisely it would be the function ġ(·) fulfilling the following:

ġ(x) :=











|h(xi+1)− h(xi)| for x ∈ (xi, xi+1)
max {|h(xi)− h(xi−1)| , |h(xi+1)− h(xi)|} for x = xi
0 for x /∈ [x0, xn+1]











∀x ∈ R

Actually, we can obtain the function ġ(·) as the derivative of the function
g(·) constructed by the partly linear approach (see Section 5.3.2), more precisely
as the maximum of the derivatives of the function g(·) from the left and from the
right direction (multiplied by constant 1

∆
):

ġ(x) = max
{ ∣

∣

∣g′−(x)
∣

∣

∣ ,
∣

∣

∣g′+(x)
∣

∣

∣

}

· 1
∆

∀x ∈ R

To obtain a fuzzy number we should make the normalization. The formula
for the characterizing function for the fuzzy number is:

ξ(x) :=
|ġ(x)|

max {|ġ(z)| : z ∈ R} ∀x ∈ R

The function ξ(·) defined above fulfils the conditions for characterizing
functions.

Example 5.17. Let the set I ⊂ R and the function h(·) be defined in the same
way as in Example 5.14 and depicted in Figure 5.17. Then the values of function
h(·) are the following:

xi
1
2

11
2

21
2

31
2

41
2

51
2

61
2

71
2

81
2

91
2

101
2

111
2

h(xi) 0 3
4

21
4

3 3 11
4

−3
4

−3
4

1 1 0 0

The function ġ(·) has according the previous definition the following values:

x (−∞, 1
2
) [1

2
, 11

2
) [11

2
, 21

2
] (21

2
, 31

2
] (31

2
, 41

2
) [41

2
, 51

2
)

ġ(x) 0 3
4

11
2

3
4

0 13
4

x [51
2
, 61

2
] (61

2
, 71

2
) [71

2
, 81

2
] (81

2
, 91

2
) [91

2
, 101

2
] (101

2
,∞)

ġ(x) 2 0 13
4

0 1 0

The characterizing function ξ(·) obtained by the differential approach de-
scribed in this section is defined in the following way:

ξ(x) =
ġ(x)

2
∀x ∈ R

The characterizing function ξ(·) is shown in Figure 5.20.
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Figure 5.17: Set I and function h(·) defined in Example 5.14

✻
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Figure 5.18: Characterizing function ξ(·) constructed from the function h(·)
according to Example 5.15
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Figure 5.19: Characterizing function ξ(·) constructed from the function h(·)
according to Example 5.16
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Figure 5.20: Characterizing function ξ(·) constructed from the function h(·)
according to Example 5.17
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5.4 Function h defined on equally spaced finite

subsets of R2

This section describes a two-dimensional generalization of the one-dimensional
approach described in Section 5.3.

Let be I = {(x1, y1), . . . , (x1, ym), . . . , (xn, y1), . . . , (xn, ym)} for n,m ∈ N,
xi and yi ordered, and let the points (xi, yj) be equally spaced in the plane, more
precisely:

∃∆x ∈ (0,∞) ∀i ∈ {2, 3, . . . , n} xi − xi−1 = ∆x

∃∆y ∈ (0,∞) ∀j ∈ {2, 3, . . . ,m} yj − yj−1 = ∆y

Let the function h(·, ·) be defined on such a set I.

We define values x0, xn+1, y0, ym+1 as following:

x0 := x1 −∆x, xn+1 := xn +∆x

y0 := y1 −∆y, ym+1 := ym +∆y

Add to the set I all border points B defined as:

B :=
⋃

i∈{0,...,n+1}
{(xi, y0), (xi, ym+1)} ∪

⋃

j∈{1,...,m}
{(x0, yj), (xn+1, yj)}

We extend the function h(·, ·) in the following way:

∀i ∈ {0, . . . , n+ 1} h(xi, y0) := 0, h(xi, ym+1) := 0

∀j ∈ {0, . . . ,m+ 1} h(x0, yj) := 0, h(xn+1, yj) := 0

Example 5.18. Let the set I ⊂ R
2 be defined in the following way:

I = {−2.96,−2.48,−2, . . . , 2.32, 2.8} × {−2.96,−2.48,−2, . . . , 2.32, 2.8}

Let the function h(·, ·) be defined on I by the same equation as was in Exam-
ple 5.2. Let additionally h(−2.96, y) = h(2.8, y) = h(x,−2.96) = h(x, 2.8) = 0
∀(x, y)∈I. The function h(·, ·) defined on the set I is depicted in Figure 5.21.

Example 5.19. Let the set I ⊂ R
2 be defined in the following way:

I = {−14.8,−13,−11.2, . . . , 12.2, 14} × {−14.8,−13,−11.2, . . . , 12.2, 14}

Let the function h(·, ·) be defined on I by the same equation as was in Exam-
ple 5.3. Let additionally h(−14.8, y) = h(14, y) = h(x,−14.8) = h(x, 14) = 0
∀(x, y)∈I. The function h(·, ·) defined on the set I is depicted in Figure 5.22.

We want to extend the function h : I → R. We can define the function
g : R2 → R as a partly constant function or as a partly linear function. This will
be explained in the following sections.
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Figure 5.21: Set I and function h(·, ·) defined in Example 5.18
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Figure 5.22: Set I and function h(·, ·) defined in Example 5.19
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5.4.1 Partly constant approach

Firstly we describe the partly constant approach. Let the set I ⊂ R
2, the function

h : I → R and values x0, x1, . . . , xn, xn+1, y0, y1, . . . , ym, ym+1,∆x,∆y ∈ R be
defined as precedes in Section 5.4.

We want to create a partly constant function g : R2 → R, which extends
the function h : I → R. There could be written two formulas similarly to the
one-dimensional case described in Section 5.3.1. The first formula describing the
function g(·, ·) is the following:

g(x, y) :=



















































































































































|h(xi, yj)|
for x ∈ (xi − 1

2
∆x, xi +

1
2
∆x) and y ∈ (yj − 1

2
∆y, yj +

1
2
∆y)

max{|h(xi, yj)|, |h(xi+1, yj)|}
for x = xi +

1
2
∆x and y ∈ (yj − 1

2
∆y, yj +

1
2
∆y)

max{|h(xi, yj)|, |h(xi, yj+1)|}
for x ∈ (xi − 1

2
∆x, xi +

1
2
∆x) and y = yj +

1
2
∆y

max{|h(xi, yj)|, |h(xi+1, yj)|, |h(xi, yj+1)|, |h(xi+1, yj+1)|}
for x = xi +

1
2
∆x and y = yj +

1
2
∆y

where i ∈ {0, . . . , n}, j ∈ {0, . . . ,m}

0 for x /∈ (x0, xn+1) or y /∈ (y0, ym+1)



















































































































































∀(x, y) ∈ R
2

The second formula for the function g(·, ·), which is equivalent to the first formula,
is the following:

g(x, y) = max
i∈{1,...,n}
j∈{1,...,m}

({

|h((xi, yj))| : |x− xi| ≤ 1
2
∆x, |y − yj| ≤ 1

2
∆y

}

∪ {0}
)

∀(x, y) ∈ R
2

Then the vector-characterizing function ζ : R2 → [0, 1] can be obtained
from the function g(·, ·) by normalization in the following way:

ζ(x, y) :=
g(x, y)

max {g(u, v) : (u, v) ∈ R2} ∀(x, y) ∈ R
2

The function ζ(·, ·) defined above fulfils the conditions for vector-characterizing
functions.

Example 5.20. Let the set I ⊂ R
2 and the function h(·, ·) be defined in the

same way as in Example 5.18. The vector-characterizing function ζ(·, ·) obtained
by the partly constant approach is shown in Figure 5.23.

Example 5.21. Let the set I ⊂ R
2 and the function h(·, ·) be defined in the

same way as in Example 5.19. The vector-characterizing function ζ(·, ·) obtained
by the partly constant approach is shown in Figure 5.24.
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Figure 5.23: Vector-characterizing function ζ(·, ·) constructed from the function
h(·, ·) according to Example 5.20
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Figure 5.24: Vector-characterizing function ζ(·, ·) constructed from the function
h(·, ·) according to Example 5.21
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5.4.2 Partly linear approach

In this section we describe the partly linear approach. Let the set I ⊂ R
2, the

function h : I → R and values x0, x1, . . . , xn, xn+1, y0, y1, . . . , ym, ym+1,∆x,∆y ∈ R

be defined as in Section 5.4.

The partly linear approach is a little more complicated. In the one-
dimensional case described in Section 5.3.2 we have simply connected two neigh-
bouring points. In the two dimensional case there are four points arranged in
rectangle. We want to interpolate a plane through four edge points of this rect-
angle, but this isn’t possible in general.

We create a new point (xi+ 1
2
, yj+ 1

2
) in the centre of each rectangle and set

the value of the function h(·, ·) at this new point as the mean of the values at the
edges of the rectangle.

We define xi+ 1
2
:= xi +

1
2
∆x and yj+ 1

2
:= yj +

1
2
∆y and define the set J in

the following way:

J :=
{(

xi+ 1
2
, yj+ 1

2

)

: i ∈ {1, . . . , n}, j ∈ {1, . . . ,m}
}

⊂ R
2

We extend the function h(·, ·) to the set J in the following way:

h(x, y) :=
1

4





h(x− 1
2
∆x, y− 1

2
∆y) + h(x− 1

2
∆x, y+

1
2
∆y)+

+h(x+ 1
2
∆x, y− 1

2
∆y) + h(x+ 1

2
∆x, y+

1
2
∆y)



 ∀ (x, y) ∈ J
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Then we create a partly linear function g(·, ·) in the following way:

g(x, y) :=



























































































































































































































































h(xi, yj) +
(x−xi)∆y−(y−yj)∆x

∆x∆y
(h(xi+1, yj)−h(xi, yj))+

+2(y−yj)

∆y
(h(xi+ 1

2
, yj+ 1

2
)−h(xi, yj))

for x > xi and
x−xi

xi+1−xi
≤ y−yj

yj+1−yj
and x−xi+1

xi−xi+1
> y−yj

yj+1−yj

h(xi+1, yj) +
(x−xi+1)∆y+(y−yj)∆x

∆x∆y
(h(xi+1, yj+1)−h(xi+1, yj))−

−2(x−xi+1)
∆x

(h(xi+ 1
2
, yj+ 1

2
)−h(xi+1, yj))

for y ≤ yj+1 and x−xi

xi+1−xi
≤ y−yj

yj+1−yj
and x−xi+1

xi−xi+1
≤ y−yj

yj+1−yj

h(xi, yj+1) +
(x−xi)∆y+(y−yj+1)∆x

∆x∆y
(h(xi+1, yj+1)−h(xi, yj+1))−

−2(y−yj+1)

∆y
(h(xi+ 1

2
, yj+ 1

2
)−h(xi, yj+1))

for x ≤ xi+1 and x−xi

xi+1−xi
> y−yj

yj+1−yj
and x−xi+1

xi−xi+1
≤ y−yj

yj+1−yj

h(xi, yj) +
−(x−xi)∆y+(y−yj)∆x

∆x∆y
(h(xi, yj+1)−h(xi, yj))+

+2(x−xi)
∆x

(h(xi+ 1
2
, yj+ 1

2
)−h(xi, yj))

for y > yi and
x−xi

xi+1−xi
> y−yj

yj+1−yj
and x−xi+1

xi−xi+1
> y−yj

yj+1−yj

where i ∈ {1, . . . , n}, j ∈ {1, . . . ,m}

0 for x /∈ (x0, xn+1) or y /∈ (y0, ym+1)



























































































































































































































































∀(x, y) ∈ R
2

Then the vector-characterizing function ζ : R2 → [0, 1] can be constructed
by normalization of the function g(·, ·) in the following way:

ζ(x, y) :=
|g(x, y)|

max {|g(u, v)| : (u, v) ∈ R2} ∀(x, y) ∈ R
2

The function ζ(·, ·) defined above fulfils the conditions for vector-characterizing
functions. Note that the function g(·, ·) is partly linear and continuous and hence
also the vector-characterizing function ζ(·, ·) is partly linear and continuous.

Example 5.22. Let the set I ⊂ R
2 and the function h(·, ·) be defined in the

same way as in Example 5.18. The vector-characterizing function ζ(·, ·) obtained
by the partly linear approach is shown in Figure 5.25.

Example 5.23. Let the set I ⊂ R
2 and the function h(·, ·) be defined in the

same way as in Example 5.19. The vector-characterizing function ζ(·, ·) obtained
by the partly linear approach is shown in Figure 5.26.
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Figure 5.25: Vector-characterizing function ζ(·, ·) constructed from the function
h(·, ·) according to Example 5.22
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Figure 5.26: Vector-characterizing function ζ(·, ·) constructed from the function
h(·, ·) according to Example 5.23
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5.4.3 Differential approach

If we are more interested in the slope of the function h(·, ·) instead of it’s values,
we can investigate the differences between neighbouring values and use the dif-
ferential approach. Let the set I ⊂ R

2, the function h : I → R, and the values
x0, x1, . . . , xn, xn+1, y0, y1, . . . , ym, ym+1,∆x,∆y ∈ R be defined as in Section 5.4.

In the previous one-dimensional case we are able to use the derivative of
the function constructed by the linear approach (see Section 5.3.3).

In the more-dimensional case the partial derivatives and the total differ-
ential can be used. The total differential of a function g : R2 → R is defined in
the following way:

Tot(x, y) :=

(

∂ g(x, y)

∂x
,
∂ g(x, y)

∂y

)

∀(x, y)R2

Let the function g : R2 → R be constructed from the function h : I → R

in the partly linear approach described in Section 5.4.2. Then we can construct
the function ġ : R2 → R using the total differential Tot : R2 → R

2 of the function
g(·) and a metric ρ : R2 → [0,∞) ∪∞ in the following way:

ġ(x, y) := ρ (Tot(x, y)) ∀(x, y) ∈ R
2

In case where ρ(·, ·) is the Euclidean metric we can construct the function ġ(·, ·)
from the function g(·, ·) obtained by the partly linear approach in the following
way:

ġ(x, y) :=

√

√

√

√

(

∂ g(x, y)

∂x

)2

+

(

∂ g(x, y)

∂y

)2

∀(x, y) ∈ R
2

Then the vector-characterizing function ζ : R2 → [0, 1] can be constructed
by normalization of the function ġ(·, ·) in the following way:

ζ(x, y) :=
|ġ(x, y)|

max {|ġ(u, v)| : (u, v) ∈ R2} ∀(x, y) ∈ R
2

The function ζ(·, ·) defined above fulfils the conditions for vector-characterizing
functions.

Example 5.24. Let the set I ⊂ R
2 and the function h(·, ·) be defined in the

same way as in Example 5.18. The vector-characterizing function ζ(·, ·) obtained
by the differential approach is shown in Figure 5.27.

Example 5.25. Let the set I ⊂ R
2 and the function h(·, ·) be defined in the

same way as in Example 5.19. The vector-characterizing function ζ(·, ·) obtained
by the differential approach is shown in Figure 5.28.
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Figure 5.27: Vector-characterizing function ζ(·, ·) constructed from the function
h(·, ·) according to Example 5.24
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Figure 5.28: Vector-characterizing function ζ(·, ·) constructed from the function
h(·, ·) according to Example 5.25
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6. Computing with Fuzzy

Numbers

Example 6.1. Let x∗1 and x∗2 be fuzzy intervals with corresponding characteriz-
ing functions ξ1(·) and ξ2(·), and suppose that we want to add these two fuzzy
numbers. The function for the sum of two numbers is:

g(x, y) = x+ y ∀ (x, y) ∈ R
2

Firstly we create a vector of fuzzy numbers (x∗1, x
∗
2). In the next step we con-

struct a fuzzy vector (x1, x2)
∗ with vector-characterizing function ζ(·, ·) from the

characterizing functions of the fuzzy numbers x∗1 and x∗2 by applying a t-norm.
Usually the minimum t-norm is used, but others are also possible.

ζ(x, y) = min{ξ1(x), ξ2(y)} ∀ (x, y) ∈ R
2

Now we can apply the extension principle in order to obtain the characterizing
function ψ(·) for the addition of two fuzzy numbers based on the function for the
addition of two real numbers, and based on the fuzzy vector (x1, x2)

∗:

ψ(z) =

{

sup {ζ(x, y) : g(x, y) = z} if ∃z ∈ R : g(x, y) = z
0 if 6 ∃z ∈ R : g(x, y) = z

}

∀z ∈ R

The function ψ(·) can be equivalently defined by a shorter formula:

ψ(z) = sup({ζ(x, y) : g(x, y) = z} ∪ {0}) ∀z ∈ R

The result of applying the extension principle is the above defined charac-
terizing function ψ(·) describing a fuzzy number y∗ = g((x1, x2)

∗).

To be precise we should verify the presumptions of one of the extension
principle theorems from Chapter 3.2, in this case Theorem 3.4. We will repeat
here the wording of the Theorem.

Theorem 3.4. Let x∗ be a n-dimensional convex fuzzy interval with vector-
characterizing function ζ(·, . . . , ·). Let M ⊆ R

n be a set containing the support
of x∗. Let g : M → R be a continuous and bounded function on M such that the
image of an arbitrary convex set is an interval.

We define a fuzzy set y∗ = g(x∗) in R described by its membership function
ψ(·) based on the extension principle by

ψ(y) = sup({ζ(x) : x ∈ R
n, g(x) = y} ∪ {0}) ∀y ∈ R .

Then y∗ is a one-dimensional convex fuzzy interval and each δ-cut Cδ(y∗) fulfils
the following:

Cδ(y∗) =
[

min
x∈Cδ(x∗)

g(x), max
x∈Cδ(x∗)

g(x)

]

∀δ ∈ (0, 1]
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In this example the fuzzy vector x∗ = (x1, x2)
∗ was constructed by the

minimum t-norm from fuzzy intervals x∗1 and x∗2. The δ-cuts of the fuzzy vector
x∗ are in this case, where the minimum t-norm was used, the Cartesian products
of δ-cuts of fuzzy intervals x∗1 and x∗2 (where for each δ ∈ (0, 1] the δ-cuts Cδ(x∗1)
and Cδ(x∗2) are compact intervals from definition of fuzzy interval):

∀δ ∈ (0, 1] Cδ(x∗) = Cδ(x∗1)× Cδ(x∗2)
From that we can see, that each δ-cut Cδ(x∗) is a convex, closed and bounded set,
hence x∗ is a 2-dimensional convex fuzzy vector.

The setM⊆R
2 can be choosen as the support of x∗,M :=supp(x∗) where:

supp(x∗) = {x ∈ R
2 : ζ(x) > 0} = {x1 ∈ R : ξ1(x1) > 0}×{x2 ∈ R : ξ2(x2) > 0}

Then the set M is a bounded set.

The function g : M → R defined as g(x, y) = x + y ∀ (x, y) ∈ R
2 is

continuous on R
2 and bounded on M . Now we will show, that the image of an

arbitrary convex set is an interval. Let N ⊆M be an arbitrary convex set. Then
from the definition of convex sets (Definition 3.7) the following holds true:

∀x, y ∈ N ∀λ ∈ [0, 1] λx+ (1− λ)y ∈ N

We want to show that the image of N , defined as g(N) = {g(x, y) : (x, y) ∈ N},
is an interval. Let a, b ∈ g(N), a < b be two arbitrary values from g(N), then
there exists (xa, ya), (xb, yb) ∈ N , such that g(xa, ya) = a and g(xb, yb) = b. Now
let c ∈ R be arbitrary such that a < c < b, we want to show that c ∈ g(N).
We set λ = b−c

b−a
and while N is a convex set and (xa, ya), (xb, yb) ∈ N then

λ(xa, ya) + (1− λ)(xb, yb) = (λxa + (1− λ)xb, λya + (1− λ)yb) ∈ N . We compute

g(λxa + (1− λ)xb, λya + (1− λ)yb) = λxa + (1− λ)xb + λya + (1− λ)yb =

λ(xa + ya) + (1− λ)(xb + yb) = λg(xa, ya) + (1− λ)g(xb, yb) = λa+ (1− λ)b =

= b−1
b−a

a+ (1− b−c
b−a

)b = b−c
b−a

a+ b−a−b+c
b−a

b = ba−ca−ab+cb
b−a

= c(b−a)
b−a

= c

Then we have shown that c ∈ g(N) and hence g(N) is an interval.

Now we have verified all presumptions of Theorem 3.4 and hence we can
use the conclusion of this theorem. This means that z∗ = g(x∗) is described by
its characterizing function ψ(·), where

ψ(y) = sup({ζ(x1, x2) : (x1, x2) ∈ R
2, g(x1, x2) = y} ∪ {0}) ∀y ∈ R

is a fuzzy interval and each δ-cut Cδ(y∗) is an interval fulfilling:

Cδ(y∗) =
[

min
x∈Cδ(x∗)

g(x), max
x∈Cδ(x∗)

g(x)

]

∀δ ∈ (0, 1]

In our case, where g(x, y) = x+ y and the minimum t-norm was used, the δ-cut
Cδ(y∗) can be rewritten in the following way:

Cδ(y∗) =
[

min
(x,y)∈Cδ(x∗

1)×Cδ(x∗
2)
x+ y, max

(x,y)∈Cδ(x∗
1)×Cδ(x∗

2)
x+ y

]

=
[

min Cδ (x∗1) + min Cδ (x∗2) ,max Cδ (x∗1) + max Cδ (x∗2)
]

∀δ ∈ (0, 1]
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6.1 Fuzzy Arithmetic

To extend the arithmetic operations from real numbers to fuzzy numbers we
need to realize, that the well known arithmetical operations can be represented
as functions:

+,−, · : R× R → R, for / : R× (R \ {0}) → R

We can use the extension principle to these standard arithmetic functions, as was
shown in Example 6.1, and get a new fuzzy number as a result of the arithmetic
operation.

Let x∗1 and x∗2 be two fuzzy numbers with corresponding characterizing
functions ξ1(·) and ξ2(·) and let g ∈ {g+, g−, g . , g /} be an arithmetic operation.

The well known functions for arithmetic operations g+, g−, g . : R×R → R

and g / : R× (R \ {0}) → R are defined in the following way:

g+(x1, x2) = x1+x2, g−(x1, x2) = x1−x2, g . (x1, x2) = x1 ·x2 ∀(x1, x2) ∈ R
2

g /(x1, x2) =
x1
x2

∀(x1, x2) ∈ R× (R \ {0})

If the selected arithmetic operation g is division g /, then we will addition-
ally require that the support of the fuzzy number x∗2 will be contained in the set
of positive numbers or in the set of negative numbers. The reason is that the
function g / is not connected in 0 in the second argument and we want the image
of an arbitrary convex subset of supp(x∗1) × supp(x∗2) to be a one-dimensional
convex set, which is an interval.

The result of the selected arithmetic operation g is a fuzzy number x∗result
with characterizing function ξresult(·) defined in the following way:

ξresult(y) =



















sup {ζ(x1, x2) : (x1, x2) ∈ g−1({y})}
if g−1({y}) 6= ∅

0 if g−1({y}) = ∅



















∀y ∈ R

where x1, x2 are two real numbers, and where the vector-characterizing function
ζ(·, ·) : R2 → [0, 1] is constructed by using one of the following t-norms, usually
the minimum t-norm ζmin(·, ·):

ζmin(x1, x2) = min{ξ1(x1), ξ2(x2)} ∀(x1, x2) ∈ R
2

ζprod(x1, x2) = ξ1(x1) · ξ2(x2) ∀(x1, x2) ∈ R
2

ζlsum(x1, x2) = max{ξ1(x1) + ξ2(x2)− 1, 0} ∀(x1, x2) ∈ R
2

ζdp(x1, x2) = min{ξ1(x1), ξ2(x2)}1{max{ξ1(x1),ξ2(x2)}}(1) ∀(x1, x2) ∈ R
2

The fuzzy number x∗result can be written as x∗1 ⊕ x∗2 if the selected arith-
metical operation is addition, x∗1 ⊖ x∗2 if the selected arithmetical operation is
subtraction, x∗1 ⊙ x∗2 if the selected arithmetical operation is multiplication and
x∗1 ⊘ x∗2 if the selected arithmetical operation is division.
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Remark. Arithmetic operations defined in this way are an extension of arith-
metic operations defined on real numbers. Furthermore, if you want to compute
an arithmetic operation, where one operand is a fuzzy number x∗ and the second
operand is a real number a, then there can be constructed a fuzzy number a∗

with characterizing function ξa(·) : R → [0, 1] where:

ξa(x) =

{

1 for x = a
0 for x ∈ R \ {a}

}

∀x ∈ R

Example 6.2. Let x∗1 and x
∗
2 be two fuzzy intervals with characterizing functions

ξ1, ξ2 : R → [0, 1] defined in the following way:

ξ1(x) =



















x for x ∈ [0, 1)
1 for x ∈ [1, 3]

4− x for x ∈ (3, 4]
0 for x ∈ R \ [0, 4]



















∀x ∈ R

ξ2(x) =



















x−1
2

for x ∈ [1, 3)
1 for x ∈ [3, 5]

7−x
2

for x ∈ (5, 7]
0 for x ∈ R \ [1, 7]



















∀x ∈ R

The characterizing functions ξ1(·) and ξ2(·) of the fuzzy numbers x∗1 and x∗2 are
displayed in Figure 6.1 and Figure 6.2 respectively.

From the vector of fuzzy numbers (x∗1, x
∗
2) the fuzzy vector (x1, x2)

∗ was
constructed using the minimum, product, limited sum and drastic product t-norm
with vector-characterizing functions ζmin, ζprod, ζlsum, ζdr : R× R → [0, 1] where:

ζmin(x1, x2) = min{ξ1(x1), ξ2(x2)} ∀(x1, x2) ∈ R
2

ζprod(x1, x2) = ξ1(x1) · ξ2(x2) ∀(x1, x2) ∈ R
2

ζlsum(x1, x2) = max{ξ1(x1) + ξ2(x2)− 1, 0} ∀(x1, x2) ∈ R
2

ζdp(x1, x2) = min{ξ1(x1), ξ2(x2)}1{max{ξ1(x1),ξ2(x2)}}(1) ∀(x1, x2) ∈ R
2

The resulting vector-characterizing functions ζmin, ζprod, ζlsum, ζdr : R× R → [0, 1]
of the fuzzy vector (x1, x2)

∗ constructed from the vector of fuzzy numbers (x∗1, x
∗
2)

by the minimum, product, limited sum and drastic product t-norm are shown in
Figure 6.3, Figure 6.4, Figure 6.5 and Figure 6.6 respectively.

The characterizing functions ψ⊕, ψ⊖, ψ⊙, ψ⊘ : R → [0, 1] of the results of
fuzzy addition x∗1 ⊕ x∗2, fuzzy subtraction x∗1 ⊖ x∗2, fuzzy multiplication x∗1 ⊙ x∗2,
and fuzzy division x∗1 ⊘ x∗2 using different t-norms are displayed in Figure 6.7,
Figure 6.8, Figure 6.9, and Figure 6.10 respectively.

The values of different vector-characterizing functions fulfils the following:

ζmin(x1, x2) ≥ ζprod(x1, x2) ≥ ζlsum(x1, x2) ≥ ζdp(x1, x2) ∀(x1, x2) ∈ R
2

Therefore the values of the characterizing functions giving the result of fuzzy
arithmetic operations using fuzzy vectors obtained by different t-norms obeys
the same:

ψmin(x) ≥ ψprod(x) ≥ ψlsum(x) ≥ ψdp(x) ∀x ∈ R

Selected points used by the extension principle for different types of arith-
metic operations and different t-norms are depicted in Figures 6.11 – 6.14.
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Figure 6.1: Characterizing function ξ1(·) of the fuzzy number x∗1 from Example 6.2
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Figure 6.2: Characterizing function ξ2(·) of the fuzzy number x∗2 from Example 6.2
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Figure 6.3: Vector-characterizing function ζ(·, ·) of the fuzzy vector (x1, x2)
∗,

where the fuzzy vector was constructed using the minimum t-norm
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Figure 6.4: Vector-characterizing function ζ(·, ·) of the fuzzy vector (x1, x2)
∗,

where the fuzzy vector was constructed using the product t-norm
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Figure 6.5: Vector-characterizing function ζ(·, ·) of the fuzzy vector (x1, x2)
∗,

where the fuzzy vector was constructed using the limited sum t-norm
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Figure 6.6: Vector-characterizing function ζ(·, ·) of the fuzzy vector (x1, x2)
∗,

where the fuzzy vector was constructed using the drastic product
t-norm
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Figure 6.7: Characterizing function ψ(·) of the fuzzy number x∗1 ⊕ x∗2, where
the fuzzy vector was constructed using different t-norms
( minimum, product, limited sum, and drastic product t-norm)
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Figure 6.8: Characterizing function ψ(·) of the fuzzy number x∗1 ⊖ x∗2, where
the fuzzy vector was constructed using different t-norms
( minimum, product, limited sum, and drastic product t-norm)
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Figure 6.9: Characterizing function ψ(·) of the fuzzy number x∗1 ⊙ x∗2, where
the fuzzy vector was constructed using different t-norms
( minimum, product, limited sum, and drastic product t-norm)
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Figure 6.10: Characterizing function ψ(·) of the fuzzy number x∗1 ⊘ x∗2, where
the fuzzy vector was constructed using different t-norms
( minimum, product, limited sum, and drastic product t-norm)
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Figure 6.11: Construction of the fuzzy number x∗1 ⊕ x∗2

Vector-characterizing functions ζ(·, ·) of the fuzzy vector (x1, x2)
∗

constructed by using different t-norms with highlighted points for
which the supremum selected by the extension principle during the
computation of the fuzzy number x∗1 ⊕ x∗2 is obtained

points selected by the extension principle

(a) minimum t-norm, (b) product t-norm, (c) limited sum t-norm, and

(d) drastic product t-norm
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Figure 6.12: Construction of the fuzzy number x∗1 ⊖ x∗2

Vector-characterizing functions ζ(·, ·) of the fuzzy vector (x1, x2)
∗

constructed by using different t-norms with highlighted points for
which the supremum selected by the extension principle during the
computation of the fuzzy number x∗1 ⊖ x∗2 is obtained

points selected by the extension principle

(a) minimum t-norm, (b) product t-norm, (c) limited sum t-norm, and

(d) drastic product t-norm
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Figure 6.13: Construction of the fuzzy number x∗1 ⊙ x∗2

Vector-characterizing functions ζ(·, ·) of the fuzzy vector (x1, x2)
∗

constructed by using different t-norms with highlighted points for
which the supremum selected by the extension principle during the
computation of the fuzzy number x∗1 ⊙ x∗2 is obtained

points selected by the extension principle

(a) minimum t-norm, (b) product t-norm, (c) limited sum t-norm, and

(d) drastic product t-norm
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Figure 6.14: Construction of the fuzzy number x∗1 ⊘ x∗2

Vector-characterizing functions ζ(·, ·) of the fuzzy vector (x1, x2)
∗

constructed by using different t-norms with highlighted points for
which the supremum selected by the extension principle during the
computation of the fuzzy number x∗1 ⊘ x∗2 is obtained

points selected by the extension principle

(a) minimum t-norm, (b) product t-norm, (c) limited sum t-norm, and

(d) drastic product t-norm
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6.2 Fuzzy Mean and Fuzzy Standard Deviation

In classical measurement analysis the mean value and the standard deviation of
repeated measurements x1, . . . , xn are usually taken.

xmean =
1

n

n
∑

i=1

xi

xstd.dev =

√

√

√

√

1

n− 1

n
∑

i=1

[xi − xmean]
2

For a vector of fuzzy numbers (x∗1, . . . , x
∗
n), where the fuzzy numbers

x∗1, . . . , x
∗
n have corresponding characterizing functions ξ1(·), . . . , ξn(·), this op-

eration has to be generalized. This is possible based on the extension principle.

Let x∗1, . . . , x
∗
n be fuzzy numbers with corresponding characterizing func-

tions ξ1(·), . . . , ξn(·). Then the fuzzy mean value x∗mean and the fuzzy standard
deviation x∗std.dev have characterizing functions ξmean(·) and ξstd.dev(·) respectively
defined in the following way:

ξmean(y) =



















sup {ζ(xn) : xn ∈ g−1
mean({y})}

if g−1
mean({y}) 6= ∅

0 if g−1
mean({y}) = ∅



















∀y ∈ R

ξstd.dev(y) =























sup
{

ζ(xn) : xn ∈ g−1
std.dev({y})

}

if g−1
std.dev({y}) 6= ∅

0 if g−1
std.dev({y}) = ∅























∀y ∈ R

where xn = (x1, . . . , xn) is a vector of real numbers, and the vector-characterizing
function ζ(·, . . . , ·) : Rn → [0, 1] is constructed by using a t-norm, usually the
minimum t-norm:

ζ(x1, . . . , xn) = min{ξ1(x1), . . . , ξn(xn)} ∀(x1, . . . , xn) ∈ R
n

The well known functions for computing the mean value gmean(·, . . . , ·) : Rn → R

and computing the standard deviation gst.dev(·, . . . , ·) : Rn → R are defined in the
following way:

gmean(x1, . . . , xn) =
1

n

n
∑

i=1

xi ∀(x1, . . . , xn) ∈ R
n

gstd.dev(x1, . . . , xn) =

√

√

√

√

1

n− 1

n
∑

i=1

[

xi − ( 1
n

∑n
j=1 xj)

]2 ∀(x1, . . . , xn) ∈ R
n

Example 6.3. The fuzzy mean and fuzzy standard deviation for fuzzy numbers
x∗1 and x∗2 given in Example 6.2 was computed using different types of t-norms.
Selected points used by the extension principle are depicted in Figure 6.17 and
Figure 6.18. The resulting characterizing functions of fuzzy mean and fuzzy
standard deviation are given in Figure 6.15 and Figure 6.16 respectively.
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Figure 6.15: Characterizing function ψ(·) of the fuzzy mean of (x∗1, x
∗
2), where

the fuzzy vector was constructed using different t-norms
( minimum, product, limited sum, and drastic product t-norm)
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Figure 6.16: Characterizing function ψ(·) of the fuzzy std. deviation of (x∗1, x
∗
2),

where the fuzzy vector was constructed using the different t-norms
( minimum, product, limited sum, and drastic product t-norm)
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Figure 6.17: Construction of the fuzzy mean of fuzzy numbers x∗1 and x∗2

Vector-characterizing functions ζ(·, ·) of the fuzzy vector (x1, x2)
∗

constructed by using different t-norms with highlighted points for
which the supremum selected by the extension principle during the
computation of the fuzzy mean of numbers x∗1 and x∗2 is obtained

points selected by the extension principle

(a) minimum t-norm, (b) product t-norm, (c) limited sum t-norm, and

(d) drastic product t-norm
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Figure 6.18: Construction of the fuzzy std. deviation of fuzzy numbers x∗1 and x∗2

Vector-characterizing functions ζ(·, ·) of the fuzzy vector (x1, x2)
∗

constructed by using different t-norms with highlighted points for
which the supremum selected by the extension principle during the
computation of the fuzzy standard deviation of fuzzy numbers x∗1 and
x∗2 is obtained

points selected by the extension principle

(a) minimum t-norm, (b) product t-norm, (c) limited sum t-norm, and

(d) drastic product t-norm
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7. Fuzzy Valued Functions

Definition 7.1. A fuzzy valued function f ∗(·) is a function whose range of values
are fuzzy intervals, more precisely f ∗ :M → FI(R).

Definition 7.2. Let f ∗(·) be a fuzzy valued function with domain M and let
x ∈M . Then f ∗(x) is a fuzzy interval and we denote its δ-cuts by

Cδ(f ∗(x)) =
[

f
δ
(x), f δ(x)

]

∀δ ∈ (0, 1],

where f
δ
(·), f δ(·) : M → R are real valued functions called δ-level functions.

In the case M = R the δ-level functions are called δ-level curves.

Example 7.1. An example of a fuzzy valued function f ∗(·) : [−2, 2] → FI(R) is
given in Figure 7.4. The δ-level curves f

δ
(·), f δ(·) : [−2, 2] → R are the following:

f
δ
(x) = δ ·

(

x4 − 8x2 + 16
)

, f δ(x) =
(

5
2
− δ

)

·
(

x4 − 8x2 + 16
)

Some of the δ-level curves are given in Figure 7.2. The values of a fuzzy valued
functions are fuzzy intervals, values f ∗(−1), f ∗(0), f ∗(1) are shown in Figure 7.3.

Figure 7.1: Fuzzy valued function f ∗(·) from Example 7.1
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Figure 7.2: δ-level curves of the fuzzy valued function f ∗(·) from Example 7.1 for
δ ∈ { 1

5
, 2

5
, 3

5
, 4

5
, 1}

✻

✲

fδ(x)

x
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10

0
-2 -1 0 1 2

Figure 7.3: Characterizing functions of the fuzzy intervals f ∗(−1), f ∗(0), and
f ∗(1) of the fuzzy valued function f ∗(·) from Example 7.1
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7.1 Integral of Fuzzy Valued Functions

Definition 7.3. Let f ∗(·) be a fuzzy valued function defined on a measure space
(M,A, µ) and let all δ-level functions f

δ
(·) and f δ(·) be integrable with finite

integrals:

−∞ <
∫

M
f
δ
(x)dµ(x) ≤

∫

M
f δ(x)dµ(x) <∞

Then the fuzzy integral
∫

M
f ∗(x)dµ(x) is the fuzzy number I∗ whose gen-

erating family (Aδ; δ ∈ (0, 1]) is defined by:

Aδ(I
∗) =

[

Iδ, Iδ
]

:=
[∫

M
f
δ
(x)dµ(x),

∫

M
f δ(x)dµ(x)

]

∀δ ∈ (0, 1]

Remark. By the Generation Lemma 2.2 the characterizing function of the fuzzy
integral I∗ is given by:

ξI∗(x) := sup
{

δ · 1[Iδ ,Iδ]
(x) : δ ∈ [0, 1]

}

∀x ∈ R

Theorem 7.1. Let f ∗ :M → FI(R) be a fuzzy valued function with non-negative
integrable δ-level functions f

δ
(x), f δ(x) :M → R ∀ δ ∈ (0, 1] with finite integrals.

We denote by I∗ the fuzzy integral

I∗ :=
∫

M
f ∗(x)dµ(x),

we denote by (Aδ; δ∈(0, 1]) the family of intervals generating the fuzzy number I∗

Aδ :=
[∫

M
f
δ
(x)dµ(x),

∫

M
f δ(x)dµ(x)

]

∀ δ ∈ (0, 1],

and we denote by ξI∗(·) the characterizing function of I∗, defined by

ξI∗(x) := sup {δ ·1Aδ
(x) : δ ∈ (0, 1]} ∀x ∈ R.

Then for all δ ∈ (0, 1] the following is equivalent:

◦ Cδ(I∗) = Aδ

◦ lim
β↑δ

f
β
(x) = f

δ
(x) and lim

β↑δ
fβ(x) = f δ(x) almost everywhere on M

Proof. Choose arbitrary δ ∈ (0, 1]. From Theorem 2.2 we know that:

Cδ(I∗) = Aδ ⇔
⋂

β<δ

Aβ = Aδ

We can formulate the following sequence of equivalences:

⋂

β<δ

Aβ = Aδ ⇔

⇔
⋂

β<δ

[∫

M
f
β
(x)dµ(x),

∫

M
fβ(x)dµ(x)

]

=
[∫

M
f
δ
(x)dµ(x),

∫

M
f δ(x)dµ(x)

]
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⇔ sup
β<δ

∫

M
f
β
(x)dµ(x) =

∫

M
f
δ
(x)dµ(x) & inf

β<δ

∫

M
fβ(x)dµ(x) =

∫

M
f δ(x)dµ(x) (∗)

We denote by g(·) and g(·) real valued functions g(·) : (0, 1] → R and
g(·) : (0, 1] → R defined by:

g(α) :=
∫

M
f
α
(x)dµ(x) and g(α) :=

∫

M
fα(x)dµ(x) ∀α ∈ (0, 1] (△)

We can reformulate the statement (∗) as:

sup
β<δ

g(β) = g(δ) and inf
β<δ

g(β) = g(δ) (∗∗)

The conditions (∗∗) are fulfilled for g(·) non-decreasing on (0, 1] and con-
tinuous from left at the point δ and g(·) non-increasing on (0, 1] and continuous
from left at the point δ.

Let h : (0, 1] → R be a function which is non-decreasing on (0, 1] and
continuous from left at the point δ. We define a value s and set A as following:

s := h(δ) A := {h(β) : β ∈ (0, δ)}

Now we have to check by verifying the conditions of supremum that the value s
is a supremum of the set A, with supA = supβ<δ h(β).

◦ ∀x ∈ A x ≤ s:

We can find β ∈ (0, δ) such that x = h(β) for all x ∈ A, since the function
h(·) is non-decreasing and β < δ, we have x = h(β) ≤ h(δ) = s.

◦ ∀s′ ∈ R, s′ < s ∃x ∈ A x > s′

We can reformulate this condition in the following way:

∀ε > 0 ∃x ∈ A : x > s− ε

∀ε > 0 ∃β ∈ (0, δ) : h(β) > h(δ)− ε

We suppose, that h(·) is continuous from left at the point δ, which means:

∀ε > 0 ∃γ > 0 ∀β ∈ (δ − γ, δ] h(β) ∈ (h(δ)− ε, h(δ) + ε)

When adding the first condition of supremum, we get:

∀ε > 0 ∃γ > 0 ∀β ∈ (δ − γ, δ] h(β) ∈ (h(δ)− ε, h(δ)]

We have proved that supβ<δ h(β) = h(δ) for arbitrary function h(·) non-
decreasing on (0, 1] and continuous from left at the point δ. Now we will investi-
gate if the function g(·) constructed according the (△) statement is non-decreasing
on (0, 1] and continuous from left at the point δ.

Firstly we will prove that g(·) is non-decreasing on (0, 1] and g(·) is non-
increasing on (0, 1] (for arbitrary fuzzy valued function f ∗). This results from the
structure of δ-level functions and δ-cuts, and monotonicity of Lebesgue integral.
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We choose arbitrary α, β ∈ (0, 1], α < β. Then we have:

[f
α
(x), fα(x)] = Cα(f ∗(x)) ⊇ Cβ(f ∗(x)) = [f

β
(x), fβ(x)] ∀x ∈ R

f
α
(x) ≤ f

β
(x) and fα(x) ≥ fβ(x) ∀x ∈ R

The δ-level functions are non-negative integrable functions, so we can use the
monotonicity of Lebesgue integral A.7:

g(α) =
∫

M
f
α
(x)dµ(x) ≤

∫

M
f
β
(x)dµ(x) = g(β) and

g(α) =
∫

M
fα(x)dµ(x) ≥

∫

M
fβ(x)dµ(x) = g(β)

Secondly we will investigate the conditions which are required for the func-
tion g(·) to be continuous from left at the point δ. From the definition of the
function g(·) we know the following:

lim
β↑δ

∫

M
f
β
(x)dµ(x) = lim

β↑δ
g(β) and g(δ) =

∫

M
f
δ
(x)dµ(x)

According to the definition of continuous functions and Lemma A.1, the
function g(·) is continuous from left at the point δ if and only if limβ↑δ g(β) = g(δ),
which can be formulated as:

lim
β↑δ

∫

M
f
β
(x)dµ(x) = lim

β↑δ
g(β) = g(δ) =

∫

M
f
δ
(x)dµ(x) (△△)

Now we have to prove this equation.

For all x ∈ M the function f
(·)(x) is non-decreasing and bounded as a

function of the parameter in the subscript index. According to Theorem A.4
there exists a pointwise limit of f

(·)(x). We denote by f̃ the function of pointwise

limits for β going to δ from the left:

f̃(x) := lim
β↑δ

f
β
(x)

(

≤ f
δ
(x)
)

∀x ∈M

Let (an)n∈N ⊆ (0, δ) be an arbitrary monotone sequence converging to δ,
then (f

an
)
n∈N

is a non-decreasing sequence of non-negative measurable functions:

f
an
(x) ≤ f

an+1
(x) ∀n ∈ N ∀x ∈M

The pointwise limit of the sequence (f
an
)
n∈N

is the function f̃ according to the

Heine theorem A.3. We have fulfilled the prerequisites of the Lebesgue mono-
tone convergence Theorem A.8 so we can use this theorem and get the following
statement:

lim
n

∫

M
f
an
(x)dµ(x) =

∫

M
f̃(x)dµ(x)

According to Heine Theorem A.3 we can generalize this result as follows:

lim
β↑δ

∫

M
f
β
(x)dµ(x) =

∫

M
f̃(x)dµ(x)
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We know that f̃(x) ≤ f
δ
(x) for all x∈M from the construction of f̃ . From

the monotonicity of Lebesgue integral A.7 we get:

lim
β↑δ

∫

M
f
β
(x)dµ(x) =

∫

M
f̃(x)dµ(x) ≤

∫

M
f
δ
(x)dµ(x)

We will investigate and denote by N the following set:

N := {x ∈M : f̃(x) < f
δ
(x)} = {x ∈M : lim

β↑δ
f
β
(x) < f

δ
(x)}

According to the linearity of Lebesgue integral A.6 and the fact 0≤ f̃(x)≤
f
δ
(x) , the following is fulfilled:

lim
β↑δ

∫

M
f
β
(x)dµ(x) =

∫

M\N
f
δ
(x)dµ(x)+

∫

N∩supp(f
δ
)
f̃(x)dµ(x)+

∫

N\supp(f
δ
)
0dµ(x)

∫

M
f
δ
(x)dµ(x) =

∫

M\N
f
δ
(x)dµ(x)+

∫

N∩supp(f
δ
)
f
δ
(x)dµ(x)+

∫

N\supp(f
δ
)
0dµ(x)

These equations differ only on the set N ∩ supp(f
δ
).

The set N \ supp(f
δ
) is empty by the fact that 0≤ f̃(x)≤f

δ
(x), from the

construction of the set N , where f̃(x)<f
δ
(x), and from the complement of the

support supp(f
δ
), where f

δ
(x) = 0, hence 0≤ f̃(x)<f

δ
(x) = 0 and therefore:

N = N ∩ supp(f
δ
)

If the measure of the set N will be zero, µ (N) = 0, then according to
Lemma A.5 the following is fulfilled:

lim
β↑δ

∫

M
f
β
(x)dµ(x) =

∫

M
f
δ
(x)dµ(x)

and according to the (△△) statement the function g(·) is continuous from left at
the point δ.

Otherwise, for µ (N) > 0, from the similar reason the following is fulfilled:

lim
β↑δ

∫

M
f
β
(x)dµ(x) <

∫

M
f
δ
(x)dµ(x)

According to the (△△) statement the function g(·) is not continuous from left at
the point δ.

We have just proved that the first part of statement (∗∗) is equivalent with
the fact that the measure of the set N is zero:

sup
β<δ

g(β) = g(δ) ⇔ µ (N) = 0

The fact that the measure of the set N is zero can be also formulated as follows:

lim
β↑δ

f
β
(x) = f

δ
(x) almost everywhere on M
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The last part of the proof is to investigate the conditions which are required

for the function g(·) to be continuous from left at the point δ. We denote by f̃
the function of pointwise limits for β going to δ from the left:

f̃(x) := lim
β↑δ

fβ(x)
(

≥ f δ (x)
)

∀x ∈M

Let (an)n∈N ⊆ (0, δ) be a monotone increasing sequence converging to δ.

Then (fan)n∈N is a non-increasing sequence of measurable functions less than 1

with pointwise limit equal to f̃ , and (1− fan)n∈N is a non-decreasing sequence

of non-negative measurable functions with pointwise limit equal to 1− f̃ .

According to the Lebesgue monotone convergence theorem A.8, Heine the-
orem A.3, monotonicity of Lebesgue integral A.7, linearity of Lebesgue integral
A.6 and linearity of limit A.2 we get:

1− lim
β↑δ

∫

M
fβ(x)dµ(x) = 1−

∫

M
f̃(x)dµ(x) ≤ 1−

∫

M
f δ(x)dµ(x)

From the construction of f̃ we know that 1 ≥ f̃(x) ≥ f δ(x) for all x∈M and we
denote by N the following set:

N := {x ∈M : f̃(x) > f δ(x)} = {x ∈M : lim
β↑δ

fβ(x) > f δ(x)}

We define the kernel of the function f δ(·) in the following way:

kern(f δ) := {x ∈M : f δ(x) = 1}

According to the linearity of Lebesgue integral A.6 and the fact 1≥ f̃(x)≥f δ(x),
the following is fulfilled:

lim
β↑δ

∫

M
fβ(x)dµ(x) =

∫

M\N
f δ(x)dµ(x)+

∫

N\kern(fδ)
f̃(x)dµ(x)+

∫

N∩kern(fδ)
1dµ(x)

The set N ∩ kern(f δ) is empty from the fact that 1 ≥ f̃(x) ≥ f δ(x), from the

construction of the set N , where f̃(x) > f δ(x), and from the definition of the

kernel kern(f δ), where f δ(x) = 1, hence 1≥ f̃(x)>f δ(x) = 1 and therefore:

N = N \ kern(f δ)

If the measure of the set N will be zero, µ
(

N
)

= 0, then will be fulfilled

lim
β↑δ

∫

M
fβ(x)dµ(x) =

∫

M
f δ(x)dµ(x),

and the function g(·) will be continuous from left at the point δ. Otherwise, for

µ
(

N
)

> 0, will be fulfilled

lim
β↑δ

∫

M
fβ(x)dµ(x) >

∫

M
f δ(x)dµ(x),
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and the function g(·) will not be continuous from left at the point δ.

We have just proved that the second part of statement (∗∗) is equivalent
with the fact that the measure of the set N is zero:

inf
β<δ

g(β) = g(δ) ⇔ µ
(

N
)

= 0

The fact that the measure of the set N is zero can be also formulated as:

lim
β↑δ

fβ(x) = f δ(x) almost everywhere on M

At the beginning of this proof we have shown, that statement (∗∗) is
equivalent with Cδ(I∗) = Aδ.

Example 7.2. I this example we will compute a fuzzy integral I∗

I∗ :=
∫ 2

−2
f ∗(x)dx

for the fuzzy valued function f ∗(·) : [−2, 2] → FI(R) given in Example 7.1. The
δ-level curves f

δ
(·), f δ(·) : [−2, 2] → R of the fuzzy valued function f ∗(·) are

defined as follows:

f
δ
(x) = δ ·

(

x4 − 8x2 + 16
)

, f δ(x) =
(

5
2
− δ

)

·
(

x4 − 8x2 + 16
)

We can easily check, that lim
β→δ

f
β
(x) = f

δ
(x) and lim

β→δ
fβ(x) = f δ(x)

everywhere on [−2, 2], while δ-level functions are linear and continuous in δ.

The δ-level function are also non-negative and integrable on [−2, 2]:

∫ 2

−2
f
δ
(x)dx =

∫ 2

−2
δ ·
(

x4 − 8x2 + 16
)

dx =

[

δ ·
(

x5

5
− 8 · x

3

3
+ 16x

)]2

−2

=

= δ ·
((

25

5
− 8 · 2

3

3
+ 16 · 2

)

−
(

(−2)5

5
− 8 · (−2)3

3
+ 16 · (−2)

))

= δ · 128
5

∫ 2

−2
f δ(x)dx =

∫ 2

−2

(

5
2
− δ

)

·
(

x4 − 8x2 + 16
)

dx =
(

5
2
− δ

)

· 128
5

= 64− δ · 128
5

We can construct the generating family (Aδ; δ ∈ (0, 1]) in the following way:

Aδ =
[

δ · 128
5
, 64− δ · 128

5

]

∀δ ∈ (0, 1]

The integral
∫ 2

−2
f ∗(x)dx is a fuzzy number I∗ generated by the family

(Aδ; δ ∈ (0, 1]) according to Definition 7.3. The fuzzy number I∗ is shown in
Figure 7.5.

According to Theorem 7.1 we know that δ-cuts of the fuzzy number I∗ are
equal to the sets of the generating family (Aδ; δ∈(0, 1]):

Cδ(I∗) =
[

δ · 128
5
, 64− δ · 128

5

]

∀δ ∈ (0, 1]
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Figure 7.4: Fuzzy valued function f ∗(·) from Example 7.1
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Figure 7.5: Characterizing function of the fuzzy integral
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f ∗(x)dx of the fuzzy
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8. Measurement and Fuzziness

Measurements are activities people were engaged in already long-ago, and with
time various methods of measurement were continually refined, modified and
cultivated. A persisting problem regarding measurements remained and remains
an error handling, the errors caused by whether instrument or human deficiency.
An importance of very precise measurements is increasing all the time.

When Galileo Galilei (1564 – 1642) wrote [1]: ”Measure everything which is
measurable, and the non-measurable make measurable” this had strong influence
on the development of science, and still it is governing all kinds of quantitative sci-
entific work. So-called exact sciences are based on the possibility of measurement
of continuous quantities like time, length, volume, mass etc.

The fundamental question is: What is the result of a measurement? Al-
ready Julius Robert Mayer (1814 – 1878) wrote [6]: ”Numbers are the fundament
of exact scientific research”. Moreover William Thomson Kelvin (1824 – 1907)
expressed the importance of numbers by his words [10]: ”When you cannot ex-
press it in numbers, your knowledge is of a meagre and non-satisfactory kind”.

In 1951 Karl Menger published [7] the idea of generalizing indicator func-
tions of subsets and created the term ensembles flous for generalized subsets.
Later such generalized subsets were called fuzzy sets by Lotfi A. Zadeh [12]. This
concept, applied to the set of real numbers R and specialized, is a suitable basis for
the description of measurement results of one-dimensional continuous quantities.

As the exact sciences grew in importance in modern times, the measure-
ments did the same as well as errors and errors handling. Contemporary science
is dealing not only with clear cases as in the past but with the indistinct, blurred
ones as well.

There is a guideline GUM ”Guide to the expression of uncertainty in mea-
surement” [2] released for unified approach to processing of measurements errors.
Denomination of measurement error was replaced by a concept of measurement
uncertainty, where all the circumstances causing indeterminacy in resulting ex-
actness are considered as the causes of uncertainty, diverging thus the obtained
value from the real one.

Measurements are connected with different kinds of uncertainty, the most
important are variability, errors and imprecision. Whereas errors and variabili-
ty are properly described by statistical methods, imprecision is not a statistical
uncertainty. Imprecision is the unavoidable uncertainty coming from the impossi-
bility to know the resulting numbers from measurement equipments exactly. The
concept of fuzziness gives us suggestions how to handle this type of uncertainty
and what to do in those cases.
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8.1 Measurement Uncertainty

There are many reasons for measurement uncertainty and errors. These reasons
can be sorted on accidental and systematic errors. The common reason of un-
certainty are for example: an inappropriate measurement method, an unsuitable
choice of measuring instrument, an improper selection of the processed sample,
a miserable definition of measured value, rounding or rounding-off, an unknown
influence of environment, a non-compliance of the same conditions by repeated
measurements, a subjective influence of operating staff and many others.

The idea is that the result of a measurement of a one-dimensional continu-
ous quantity is a real number times a measurement unit. Despite of all problems
concerning the definition of measurement units a practical measurement result of
a continuous variable can never be an exact real number. The reason is that it
is impossible to obtain all infinitely many decimals of a real number. Therefore
a measurement result can, also in principle, not realistically be identified with a
precise real number.

The result of a measurement is viewed as an approximation of the value
of the measurand and is complete only when it is accompanied by a statement of
the uncertainty of that estimate. It is assumed that the result of a measurement
has been corrected for all recognized significant systematic effects and that every
effort has been made to identify such effects.

The uncertainty of the result of a measurement is defined as a parameter
associated with the result of a measurement, that characterizes the dispersion
of the values that could reasonably be attributed to the measurand, it reflects
the lack of exact knowledge of the value of the measurand. The most important
components of the uncertainty are variability, errors and imprecision.

The guideline GUM [2] is a standard specification which determines the
general rules for evaluation and representation of the uncertainty in measure-
ments. It handles well the variability and error components of uncertainty in the
following way:

Type A standard uncertainty is calculated from series of repeated observa-
tions and is the familiar statistically estimated standard deviation obtained from
a probability density function derived from an observed frequency distribution.

Type B standard uncertainty is usually based on a pool of comparative-
ly reliable information as for example data of measurement units, components
released by a manufacturer, knowledge of material behaviour, data obtained by
calibration, uncertainty of data in reference manuals and so on.

In most cases, a measurand Y is not measured directly, but is determined
fromN other quantitiesX1, X2, . . . , XN through a functional relationship f where
Y = f(X1, X2, . . . , XN ).

An estimate of the measurand Y , called measurement result and denoted
by y, is obtained using input estimates x1, x2, . . . , xN for the values of the N
quantitiesX1, X2, . . . , XN by the same relationship f where y = f(x1, x2, . . . , xN ).
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The combined standard uncertainty associated with the measurement re-
sult y, denoted by uc(y), is determined from the standard uncertainty associated
with each input estimate xi, denoted by u(xi) and evaluated by Type A or Type B
evaluation. The combined standard uncertainty uc(y) characterizes the dispersion
of the values that could reasonably be attributed to the measurand Y .

The combined standard uncertainty uc(y) associated with the result of a
measurement y where all input quantities are independent is computed as

u2c(y) =
N
∑

i=1

(

∂f

∂xi

)2

u2i (xi)

where f is the function giving relationship between measurement result and input
quantities as y = f(x1, x2, . . . , xN) and where ui(xi) is the standard uncertainty
associated with the input estimate xi.

When some of the input quantities are correlated, the combined standard
uncertainty uc(y) associated with the result of a measurement y is computed as

u2c(y) =
N
∑

i=1

(

∂f

∂xi

)2

u2i (xi) + 2
N−1
∑

i=1

N
∑

j=i+1

∂f

∂xi

∂f

∂xj
ui,j(xi, xj)

where ui,j(xi, xj) = uj,i(xj, xi) is the estimated covariance associated with xi and
xj.

Although the combined standard uncertainty uc(y) can be universally used
to express the uncertainty of the result of a measurement result, in some commer-
cial, industrial, regulatory, health and safety applications, it is often necessary to
give a measure of uncertainty that defines an interval about the measurement re-
sult that may be expected to cover a large fraction of values that could reasonably
be attributed to the measurand.

This type of uncertainty is called expanded uncertainty and is denoted by
U . The result of a measurement is then expressed as Y = y ± U , which is an
interval [y − U, y + U ] that should cover a large fraction of values that could be
attributed to Y and which is interpreted as the best estimate of that value.

The expanded uncertainty U is obtained by multiplying the combined
standard uncertainty uc(y) by a so-called coverage factor k:

U = k · uc(y)

The value of the coverage factor k is chosen on the basis of the level of confidence
required of the interval [y − U, y + U ] . In general, k will be in the range 2 to 3.
Ideally such that the interval Y = y ± U = y ± k · uc(y) would be corresponding
to a particular level of confidence as 95 or 99 percent.

However, this is not easy to do in practice because it requires extensive
knowledge of the probability distribution characterized by the measurement re-
sult y and its combined standard uncertainty uc(y). Although these parameters
are of critical importance, they are by themselves insufficient for the purpose of
establishing intervals having exactly known levels of confidence.
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8.2 Application of Fuzzy Models to Measure-

ment Data

Statistics as a science of general data processing assumes a postulate that a given
measurement process is possible to repeat many times over identical conditions,
what needs not to agree with the reality all the times. On the other hand a
fuzzy approach indicates the uncertainty of every single measurement. For the
description of imprecision a generalization of real numbers, the fuzzy numbers
are a suitable model (see Chapter 2, Definition 2.1).

Example 8.1. Our first example would include no imprecision. This is usually
in the case, where the measurement result is a small natural number. An example
of such measurement should be number of the apples on a table.

The best model to use in this case is a natural number n ∈ N, but rep-
resentation by a special fuzzy number is also possible (see Section 5.2.1). The
characterizing function is given by the indicator function 1{n}(·) of the number
n ∈ N.

Example 8.2. Some digital measurement equipments for continuous quantities
produce decimal numbers with finitely many digits, but the idealized value is
represented by a real number with infinitely many digits. Therefore a more
general concept than precise numbers is necessary to model measurement results.
The measurement result could be represented by an interval [a, a], where the
number a is the value given on the instrument, where the remaining infinitely
many digits are set to be 0, the number a is obtained by setting the remaining
infinitely many digits to be 9.

This approach can be represented by interval arithmetic and also by fuzzy
numbers (see Section 5.2.2). The characterizing function is the indicator function
1[a,a](·) of the interval [a, a].

Example 8.3. Some digital measurement equipments for continuous quantities
produce a decimal numbers with too many digits, where some of the digits may be
incorrect, and the uncertainty of the measurement the measurement equipment
is given. Let a be the result on the screen, and let u be the declared uncertainty
of the measurement equipment. Then there are more ways how to handle the
measurement imprecision of a single measurement.

One way is to use the interval approach as the guideline GUM advises.
The expanded uncertainty U = k · u will be computed with the coverage factor
k ∈ [2, 3]. The imprecision of the measurement will then be represented by the
interval [a−U, a+U ]. The corresponding fuzzy number can be constructed (see
Section 5.2.2). The characterizing function is the indicator function 1[a−U,a+U ](·)
of the interval [a− U, a+ U ].

Another way is to use the trapezoidal approach to represent the uncer-
tainty of the measurement (see Section 5.2.3). The characterizing function of the
measurement result is then represented using the value a, uncertainty u and the
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expanded uncertainty U in the following way:

ξ(x) =























x−(a−U)
U−u

for x ∈ [a− U, a− u)

1 for x ∈ [a− u, a+ u]
(a+U)−x

U−u
for x ∈ (a+ u, a+ U ]

0 elsewhere























∀x ∈ R (△)

This type of characterizing function for a = 5, u = 1 and U = 2 is displayed in
Figure 8.1.

While the uncertainty should be an estimation of standard deviation of the
measurement, as is indicated in the guideline GUM [2], the normal distribution
approach can be used (see Section 5.2.4). The characterizing function of the fuzzy
measurement result would be a modified normal density with mean a and variance
u2, cropped to the confidence interval on the level 1− α for some α ∈ (0, 1).

The characterizing function ξ(·) is defined using the confidence interval
I = [a − uΦ(α

2
), a + uΦ(α

2
)], where Φ(·) is the quantile function of standardized

normal distribution, in the following way:

ξ(x) =







e−
(x−a)2

2u2 for x ∈ I
0 elsewhere







∀x ∈ R

This type of characterizing function for a = 5, u = 1 and α = 0.05 is displayed
on Figure 8.2.

Example 8.4. For analogue measurement equipments the best one can do is
to make a photograph of the pointer position on the measurement scale. This
is a color intensity picture. From such pictures characterizing functions can be
obtained using the colour intensity along the real axis for one-dimensional quan-
tities. Each pixel of the photography on the measurement scale then represents
one point of the function h(·) from which the characterizing function can be con-
structed according to Section 5.3. The partly constant approach (see Section
5.3.2) or partly linear approach (see Section 5.3.3) can be used.

Example 8.5. Let us have a set of five fuzzy measurements x∗1, . . . , x
∗
5 with

trapezoidal shape. Let the corresponding characterizing functions ξ1(·), . . . , ξ5(·)
be defined according the formula (△) described in Example 8.3 using the following
parameters:

Measurement Parameters
result a u U
1 7.0 0.8 2.0
2 7.0 1.0 3.0
3 4.2 0.4 0.8
4 8.0 0.4 1.2
5 6.0 0.4 1.2

The characterizing functions ξ1(·), . . . , ξ5(·) of the individual measurement
results x∗1, . . . , x

∗
5 are displayed in Figure 8.3.
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In case of fuzzy individual measurements the calculation of an aggregate
function is described in Chapter 6, especially the fuzzy mean and the fuzzy stan-
dard deviation can be computed in the way described in Section 6.2.

Let us have individual fuzzy measurement results x∗1, . . . , x
∗
n with corre-

sponding characterizing functions ξ1(·), . . . , ξn(·). We can construct a fuzzy vec-
tor x∗ with corresponding vector-characterizing function ζ : Rn → [0, 1] by using
a t-norm (see Chapter 4). Usually the minimum t-norm is used:

ζ(x1, . . . , xn) = min{ξ1(x1), . . . , ξn(xn)} ∀(x1, . . . , xn) ∈ R
n

Let g : Rn → R be a statistic. Usually the mean value gmean(·, . . . , ·), the
sample variance gvar(·, . . . , ·), and the sample standard deviation gstd.dev(·, . . . , ·)
are used, these statistics can be written in the following way:

gmean(x1, . . . , xn) =
1

n

n
∑

i=1

xi ∀(x1, . . . , xn) ∈ R
n

gvar(x1, . . . , xn) =
1

n− 1

n
∑

i=1

[

xi − ( 1
n

∑n
j=1 xj)

]2 ∀(x1, . . . , xn) ∈ R
n

gstd.dev(x1, . . . , xn) =

√

√

√

√

1

n− 1

n
∑

i=1

[

xi − ( 1
n

∑n
j=1 xj)

]2 ∀(x1, . . . , xn) ∈ R
n

Then we can generalize these statistics for fuzzy numbers, where the result
would be a fuzzy number y∗ with corresponding characterizing function ξ(·), using
a fuzzy vector x∗ with corresponding vector-characterizing function ζ(·, . . . , ·) in
the following way:

ξ(y) =



















sup {ζ(x1, . . . , xn) : (x1, . . . , xn) ∈ g−1({y})}
if g−1({y}) 6= ∅

0 if g−1({y}) = ∅



















∀y ∈ R

The function ξ(·) defined above fulfils the conditions for characterizing functions.

Example 8.6. Let us have the measurement results x∗1, . . . , x
∗
5 with corresponding

characterizing functions ξ1(·), . . . , ξ5(·) according to Example 8.5.

The fuzzy mean value, fuzzy sample variance, and fuzzy sample stan-
dard deviation for fuzzy numbers x∗1, . . . , x

∗
5 was computed using different types

of t-norms. The resulting characterizing functions are given in Figure 8.4, Fig-
ure 8.5, and Figure 8.6 respectively.

By using fuzzy models it is possible to analyse realistic measurement
results in a more adequate way, taking care of different types of uncertainty.
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Figure 8.1: Trapezoidal shape of the characterizing function ξ(·) according to
Example 8.3
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Figure 8.2: Modified normal distribution shape of the characterizing function ξ(·)
according to Example 8.3
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Figure 8.3: Characterizing functions ξ1(·), ξ2(·), ξ3(·), ξ4(·), ξ5(·)
of the fuzzy numbers x∗1, x

∗
2, x

∗
3, x

∗
4, x

∗
5 according to Example 8.5
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Figure 8.4: Characterizing function ψ(·) of the fuzzy mean from Example 8.6,
where the fuzzy vector was constructed using different t-norms
( minimum, product, limited sum, and drastic product t-norm)
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Figure 8.5: Characterizing function ψ(·) of the fuzzy variance from Example 8.6,
where the fuzzy vector was constructed using different t-norms
( minimum, product, limited sum, and drastic product t-norm)
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Figure 8.6: Characterizing function ψ(·) of the fuzzy sample standard deviation
from Example 8.6, where the fuzzy vector was constructed using
different t-norms
( minimum, product, limited sum, and drastic product t-norm)
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A. Appendix

A.1 List of Definitions

Definition A.1. Let M be an ordered set. We call m the maximum of M if and
only if:

m ∈M and ∀x ∈M x ≤ m

Definition A.2. Let f : M → N be a function. We call m the global maximum
of the function f if and only if:

∃x ∈M f(x) = m and ∀x ∈M f(x) ≤ m

Definition A.3. LetM ⊂ R be a set. We call s ∈ R∪{−∞,∞} the supremum of
M and write s = sup(M) if and only if the following two conditions are fulfilled:

∀x ∈M x ≤ s,

∀s′ ∈ R, s′ < s ∃x ∈M s′ < x

The supremum of empty set is −∞ and the supremum of R is ∞.

Definition A.4. Let M ⊂ R be a set. We call i ∈ R∪ {−∞,∞} the infimum of
M and write i = inf(M) if and only if i = −sup({−x : x ∈M}).

Definition A.5. Let A, B be sets. We call the Cartesian product of sets A and
B the set of all pairs (a, b) where a ∈ A and b ∈ B. It is denoted A×B.

Definition A.6. We denote a non-negative function d : M ×M → [0,∞) de-
scribing the distance between two points for a given set M as metric if and only
if it fulfils the following conditions:

◦ ∀x, y ∈M [d(x, y) = 0] ⇒ [x = y]

◦ ∀x, y ∈M d(x, y) = d(y, x) (symmetry)

◦ ∀x, y, z ∈M d(x, y) + d(y, z) ≥ d(x, z) (triangle inequality)

Definition A.7. We call a metric space (M,d) a set M with a metric d defined
on the set M .

Definition A.8. The metric space (Rn, dEuklid), where

dEuklid(x, y) =

√

√

√

√

n
∑

i=1

(xi − yi)2 x =









x1
...
xn









, y =









y1
...
yn









∈ R
n

is called n-dimensional Euclidean space and the metric dEuklid is called Euclidean
metric.
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Definition A.9. Let (M,d) be a metric space and let (xn)n∈N ⊆ M be a se-
quence. We call (xn)n∈N a Cauchy sequence if and only if

∀ε > 0 ∃n0 ∈ N ∀m ∈ N, m>n0 ∀n ∈ N, n>n0 : d(xm, xn) < ε

Definition A.10. Let (M,d) be a metric space and let (xn)n∈N ⊆ M be a
sequence. We call (xn)n∈N a convergent sequence if and only if there exist a ∈M
such that:

∀ε > 0 ∃n0 ∈ N ∀n ∈ N, n > n0 : d(xn, a) < ε

We write xn → a and call a the limit of the sequence (xn)n∈N.

Definition A.11. A complete metric space is a metric space in which every
Cauchy sequence is a convergent sequence.

Definition A.12. Let (M,dM ), (N, dN) be metric spaces, let f : M → N be
a function, a ∈ M and L ∈ N . We say that the limit of the function f , as x
approaches a, is L and write lim

x→a
f(x) = L if and only if:

∀ε > 0 ∃δ > 0 ∀x ∈M, x 6= a, dM(x, a) < δ : dN(f(x), L) < ε

Definition A.13. Let (M,dM), (N, dN ) be metric spaces, let f : M → N be a
function, a ∈M . We say that the function f is continuous in a if and only if:

∀ε > 0 ∃δ > 0 ∀x ∈M, dM(x, a) < δ : dN(f(x), f(a)) < ε

Definition A.14. LetM be a set in a metric space (M,d). ThenM is a bounded
set if and only if there exists a real number r <∞ such that:

∀x, y ∈M d(x, y) ≤ r

Definition A.15. Let S be a set and (M,d) be a metric space, let f : S →M be
a function. Then f is a bounded function if and only if the range of the function
{f(x) : x ∈ S} ⊆M is a bounded set.

Definition A.16. Let (M,d) be a metric space, S ⊆ M be a subset. Then S is
called open set if and only if every point in S has a neighbourhood lying in the
set.

∀x ∈ S ∃ε > 0 {x′ ∈M : d(x′, x) < ε} ⊂ S

The set S is called closed set if and only if it is a complement of an open set.

Definition A.17. Let (M,d) be a metric space, S ⊆ M be a subset. We define
the closure of a set S, write S, as the smallest closed set containing the set S.

Definition A.18. Let (M,d) be a metric space, S ⊆ M be a subset. Then S
is called connected set if and only if the set S cannot be partitioned into two
non-empty subsets such that each subset has no points in common with the set
closure of the other.

Definition A.19. Let (M,d) be a metric space, S ⊆ M be a subset. We call S
a compact set if and only if from each sequence of elements of S can be chosen a
convergent subsequence with its limit in S.
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Definition A.20. A function f(·) : R → R is called convex function on the
interval [a, b] ⊂ R if for any two points x and y in [a, b] and any λ where λ ∈ (0, 1):

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)

A function f(·, . . . , ·) : R
n → R

m is called convex function on a convex set
M ⊂ R

n if the function f(·, . . . , ·) is convex in each coordinate.

Definition A.21. A function f(·, . . . , ·) : Rn → R
m is called concave function

on a convex set M ⊂ R
n if the opposite function −f(·, . . . , ·) is convex on M .

Definition A.22. Let scalars be members of a field F , and let V be a space over
F . In order for V to be a vector space, the following conditions must hold for all
elements X, Y, Z ∈ V and for all scalars r, s ∈ F :

◦ X + Y = Y +X (commutativity)

◦ (X + Y ) + Z = X + (Y + Z) (associativity of vector addition)

◦ ∃0 ∈ V ∀X ∈ V : 0 +X = X + 0 = X (additive identity)

◦ ∀X ∈ V ∃ −X ∈ V : X + (−X) = 0 (existence of additive inverse)

◦ r ·(s ·X) = (r ·s) ·X (associativity of scalar multiplication)

◦ (r + s) ·X = r ·X + s ·X (distributivity of scalar sums)

◦ r · (X + Y ) = r ·X + r · Y (distributivity of vector sums)

◦ ∃1 ∈ F ∀X ∈ V : 1 ·X = X (scalar multiplication identity)

Definition A.23. A Banach space is a complete vector space B with a norm.

Definition A.24. Let (M,dM), (N, dN ) be Banach spaces, let f : M → N be a
function, a ∈M . We define:

f ′(a) := lim
x→a

f(x)− f(a)

x− a

If the limit exists we call f ′(a) the derivative of the function f(·) at point a and
we call function f(·) differentiable at point a.

Definition A.25. Let S be a set and (M,d) be a metric space, let fn : S → M
be a function ∀n ∈ N. We call the sequence (fn(·))n∈N pointwise convergent if
and only if there exists a function f : S →M such that:

∀x ∈M ∀ε > 0 ∃n0 ∈ N ∀n ∈ N, n > n0 : d(fn(x), f(x)) < ε

Definition A.26. Let S be a set and (M,d) be a metric space, let fn : S → M
be a function ∀n ∈ N. We call the sequence (fn(·))n∈N uniformly convergent if
and only if there exists a function f : S →M such that:

∀ε > 0 ∃n0 ∈ N ∀x ∈M ∀n ∈ N, n > n0 : d(fn(x), f(x)) < ε
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Definition A.27. Let M be a set. We define a σ-algebra A as a non-empty
collection of subsets of M such that the following holds true:

◦ M ∈ A.

◦ If a set A ⊆M is in A, then its complement Ac is in A.

◦ If An ⊆M is a sequence of elements of A, then its union
⋃

n

An is in A.

The elements of A are called measurable sets.

Definition A.28. We call a measurable space (M,A) a set M with σ-algebra A
defined on M .

Definition A.29. Let (M,A) and (N,B) be two measurable spaces. A function
f : M → N is called measurable if and only if for every set B ∈ B the inverse
image f (−1)(B) = {x ∈M : f(x) ∈ B} is an A-measurable set, i.e f−1(B) ∈ A.

Definition A.30. Let M be a set, A be a σ-algebra on M . Then a function
µ : A → R ∪ {+∞} is called measure if it satisfies the following properties:

◦ ∀A ∈ A : µ(A) ≥ 0 (non-negativity)

◦ µ(∅) = 0 (null empty set)

◦ For all countable collections {An}∞n=1 of pairwise disjoint sets in A

µ

( ∞
⋃

n=1

An

)

=
∞
∑

n=1

µ(An) (σ−additivity)

Definition A.31. We call measure space (M,A, µ) a measurable space (M,A)
with a non-negative measure µ : A → R ∪ {+∞} defined on (M,A).
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A.2 Selected Parts of Mathematical Analysis

Lemma A.1. Let (M,dM), (N, dN ) be Banach spaces, let f : M → N be a
function, a ∈M . Then f(·) is continuous in a if and only if lim

x→a
f(x)=f(a).

Proof. This lemma follows directly from the Definition A.12 and Definition A.13.

Lemma A.2. Let (M,dM), (N, dN ) be Banach spaces, a ∈ M , let f, g : M → N
be functions with limit in point a, α, β ∈ R. Then the function αf + βg has limit
in a and:

lim
x→a

(αf + βg)(x) = α lim
x→a

f(x) + β lim
x→a

g(x)

Proof. From the prerequisites we know there exist limx→a f(x) and limx→a g(x).
We will denote these limits by L1 and L2 respectively. Written by the definition
it means that we know that the following holds true:

∀ε1 > 0 ∃δ1 > 0 ∀x ∈M, x 6= a, dM(x, a) < δ1 : dN(f(x), L1) < ε1

∀ε2 > 0 ∃δ2 > 0 ∀x ∈M, x 6= a, dM(x, a) < δ2 : dN(g(x), L2) < ε2

We want to prove that there exists limx→a(αf+βg)(x) with value L := αL1+βL2.
For arbitrary ε > 0 we need to find δ > 0 such that the following will hold:

∀x ∈M, x 6= a, dM(x, a) < δ : dN(αf(x) + βg(x), L) < ε

From the triangle inequality of the metric space we have:

dN(αf(x) + βg(x), L) ≤ α · dN(f(x), L1) + β · dN(g(x), L2)

We can set ε1 :=
ε
2α
, ε2 :=

ε
2β

and find appropriate δ1 and δ2 fulfilling the formulas.

Then we can set δ := min{δ1, δ2} and from that the following is fulfilled:

dN(αf(x) + βg(x), L) ≤ α · dN(f(x), L1) + β · dN(g(x), L2) < αε1 + βε2 = ε

Theorem A.3 (Heine). Let (M,dM), (N, dN ) be complete metric spaces, let f :
M → N be a function, a ∈ M and L ∈ N . Then the following conditions are
equivalent:

(∗) lim
x→a

f(x) = L

(∗∗) For all sequences (xn)n∈N ⊆ M , such that xn → a and xn 6= a ∀n ∈ N, it
follows f(xn) → L, in symbols

∀(xn)n∈N ⊆M with [ xn → a & xn 6= a ∀n ∈ N ] ⇒ f(xn) → L

102



Proof. The implication (∗) ⇒ (∗∗) can be proved directly from definitions.

From limx→a f(x) = L we know that:

∀ε > 0 ∃δ > 0 ∀x ∈M, x 6= a, dM(x, a) < δ : dN(f(x), L) < ε (△)

Let (xn)n∈N ⊆ M be a sequence, such that xn → a and ∀n ∈ N : xn 6= a. From
the convergence of the sequence we know that:

∀δ > 0 ∃n0 ∈ N ∀n ∈ N, n > n0 : dM(xn, a) < δ (△△)

We want to prove that f(xn) → L, which is from definition:

∀ε > 0 ∃n0 ∈ N ∀n ∈ N, n > n0 : dN(f(xn), L) < ε (△△△)

For ε > 0 we will find δ > 0 in (△), and for this δ we will find n0 ∈ N in (△△),
which will fulfil statement (△△△).

We will prove implication (∗∗) ⇒ (∗) as a reverse implication of negations
¬(∗) ⇒ ¬(∗∗).

The negation of the (∗) statement is following:

∃ε > 0 ∀δ > 0 ∃x ∈M, x 6= a, dM(x, a) < δ : dN(f(x), L) ≥ ε (◦)

We will find the ε > 0, choose δ = 1
n
for all n ∈ N and construct the sequence

(x̃n)n∈N using the following reformulation of (◦):

∃ε > 0 ∀n ∈ N ∃x̃n ∈M, x̃n 6= a, dM(x̃n, a) <
1
n
: dN(f(x̃n), L) ≥ ε

We have to construct a sequence (x̃n)n∈N, such that f(x̃n) is not converging to

the value L. From the fact that dM(x̃n, a) <
1
n
for all n ∈ N, we can see that x̃n

is converging to the value a.

We have just found the sequence (x̃n)n∈N, which we need for proving the
negation of the (∗∗) statement:

∃(xn)n∈N ⊆M : xn → a & ∀n ∈ N : xn 6= a & ¬(f(xn) → L)

Theorem A.4. LetM,N be ordered Banach spaces, let f :M → N be a function,
a ∈M . If the function f(·) is monotonous and bounded, then exists L ∈ N such
that lim

x→a
f(x) = L.
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A.3 Remarks on Lebesgue Integral

In this section we will summarize the definition and some basic characteristics of
the Lebesgue integral.

We start with a measure space (M,A, µ) whereM is a set, A is a σ-algebra
of subsets of M and µ is a non-negative measure on M defined on sets of A.

For example, M can be the Euclidean space R
n or some Lebesgue mea-

surable subset of it, A will be the σ-algebra of all Lebesgue measurable subsets
of M , and µ will be the Lebesgue measure.

In Lebesgue’s theory, integrals are defined for a class of functions called
measurable functions. A real-valued function f on M is measurable if the pre-
image of every interval of the form (t,∞) is inA, {x ∈M : f(x)>t} ∈ A ∀t ∈ R.

Definition A.32. A finite linear combination of indicator functions
∑

k ak1Sk

where ak ∈ R are real numbers and the sets Sk are pairwise disjoint and measur-
able, is called a simple function.

Definition A.33. The Lebesgue integral

∫

M
f dµ =

∫

M
f (x) µ (dx)

for a measurable real-valued function f defined on M is defined in the following
steps:

Indicator functions : To assign a value to the integral of the indicator function
1S of a measurable set S consistent with the given measure µ, the only
reasonable choice is to set:

∫

1S dµ = µ(S).

Simple functions : We extend the integral by linearity to non-negative simple
functions. When the coefficients ak are non-negative, we set:

∫

M

(

∑

k

ak1Sk

)

dµ =
∑

k

ak

∫

M
1Sk

dµ =
∑

k

ak µ(Sk)

The result may be infinite, the convention 0 · ∞ = 0 is used.

Non-negative functions : Let f : M → [0,+∞] be a non-negative measurable
function on M , in other words f takes non-negative values in the extended
real number line. We define:

∫

M
f dµ = sup

{ ∫

M
s dµ : s ≤ f, s is simple function

}

This integral coincides with the preceding one, defined on the set of simple
functions. For some functions this integral

∫

M f dµ will be infinite.
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Signed functions : Let f : M → R ∪ {−∞, +∞} be a measurable function,
then we can write f = f+ − f− where

f+(x) =

{

f(x) f(x) > 0
0 elsewhere

}

, f−(x) =

{

−f(x) f(x) < 0
0 elsewhere

}

∀x ∈ R.

Both f+ and f− are non-negative measurable functions and |f | = f++ f−.

We say that the Lebesgue integral of the measurable function f exists if
at least one of

∫

f+ dµ and
∫

f− dµ is finite. In this case we define:

∫

f dµ =
∫

f+ dµ−
∫

f− dµ

If
∫ |f | dµ <∞, we say that f is Lebesgue integrable.

It turns out that this definition gives the desirable properties of the integral.

The Lebesgue integral does not distinguish between functions which differ
only on a set of µ-measure zero.

Definition A.34. Functions f and g are said to be equal almost everywhere if

µ({x ∈M : f(x) 6= g(x)}) = 0.

Lemma A.5. Let f , g be non-negative measurable functions (possibly assuming
the value +∞) such that f = g almost everywhere, then

∫

f dµ =
∫

g dµ.

Lemma A.6 (Linearity of Lebesgue integral). Let f and g be Lebesgue integrable
functions and α, β ∈ R, then αf + βg is a Lebesgue integrable function and

∫

(αf + βg) dµ = α
∫

f dµ+ β
∫

g dµ.

Lemma A.7 (Monotonicity of Lebesgue integral). Let f and g be non-negative
measurable functions, f ≤ g, then

∫

f dµ ≤
∫

g dµ.

Theorem A.8 (Lebesgue monotone convergence). Let (fk)k∈N be a sequence of
non-negative measurable functions such that

fk(x) ≤ fk+1(x) ∀k ∈ N, ∀x ∈M.

Then, the pointwise limit f of fk is Lebesgue integrable and

lim
k

∫

fk dµ =
∫

f dµ.

The value of any of the integrals is allowed to be infinite.
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THE GENERATION OF FUZZY SETS AND

THE CONSTRUCTION OF CHARACTERIZING

FUNCTIONS OF FUZZY DATA

L. KOVÁŘOVÁ AND R. VIERTL

Abstract. Measurement results contain different kinds of uncertainty. Be-
sides systematic errors and random errors individual measurement results are

also subject to another type of uncertainty, so-called fuzziness. It turns out

that special fuzzy subsets of the set of real numbers R are useful to model
fuzziness of measurement results. These fuzzy subsets x∗ are called fuzzy num-

bers. The membership functions of fuzzy numbers have to be determined. In

the paper first a characterization of membership function is given, and af-
ter that methods to obtain special membership functions of fuzzy numbers,

so-called characterizing functions describing measurement results are treated.

1. Introduction

A critical point in fuzzy set theory is “how to obtain the membership function”.
There are some methods for special situations, where this is possible in a natural
way. Especially, for special fuzzy subsets of the set of real numbers R, and for special
fuzzy subsets of R2.

Construction of membership functions of data is useful in many field of sciences
[2, 4, 8]. There are methods based on probabilistic theory [1]. The fuzzy set concept
was firstly introduced by L. Zadeh [7], description of the fuzzy set theory can be
found in monographs, for example in [3].

2. δ-Cuts and Generating Families

Let A∗ be a fuzzy subset of a universal set M , which means, that there exists a
function, called membership function µ : M → [0, 1] associating each object in M
with a real number in the interval [0,1]. Then for δ ∈ (0, 1] the so-called δ-Cut
Cδ[A∗] is defined based on the membership function µ(·) of A∗ in the following way:

Cδ[A∗] := {x ∈M : µ (x) ≥ δ}

Denoting by 1A(·) the indicator function of a classical set A ⊆M , where

1A(x) :=

{
1 for x ∈ A
0 for x /∈ A

}
∀x ∈M,

Received: January 2015; Revised: April 2015; Accepted: October 2015

Key words and phrases: Characterizing function, Fuzzy data, Generating families, Measure-
ment results, Vector-characterizing function.



2 L. Kovářová and R. Viertl

the family of δ-Cuts (Cδ [A∗] ; δ ∈ (0, 1] ) determines the membership function µ(·)
of A∗ by the following lemma:

Lemma 2.1.

µ(x) = max
{
δ · 1Cδ[A∗](x) : δ ∈ [0, 1]

}
∀ x ∈M

This lemma is well known. Moreover the following holds true for all δ ∈ (0, 1]:

Cδ[A∗] =
⋂

0<β<δ

Cβ [A∗]

Now one could think that all nested families (Aδ; δ ∈ (0, 1] ) of classical subsets of
M , i.e. Aδ1 ⊇ Aδ2 for δ1 < δ2, are already the δ-Cuts of a fuzzy subset of M . This
is not true as can be seen by simple examples (compare Example 2.3).

Definition 2.2. Given a nested family (Aδ; δ ∈ (0, 1] ) of classical subsets of M ,
a fuzzy subset A∗ of M is generated, whose membership function µ(·) is defined in
the following way:

µ(x) := sup {δ · 1Aδ (x) : δ ∈ (0, 1]} ∀ x ∈M

Example 2.3. Let M be the set of real numbers and let the nested family (Aδ; δ ∈
(0, 1] ) of classical subsets of M be defined in following way:

Aδ :=

{
[0, 2] for δ ∈

(
0, 1

2

)[
1
2 ,

3
2

]
for δ ∈

[
1
2 , 1
] }

Then the generated fuzzy subset A∗ has the following membership function µ(·)
according to Definition 2.2:

µ(x) =


0 for x /∈ [0, 2]
1
2 for x ∈

[
0, 1

2

)
∪
(

3
2 , 2
]

1 for x ∈
[

1
2 ,

3
2

]
 ∀ x ∈M

The δ-Cuts for this fuzzy subset A∗ are the following:

Cδ[A∗] =

{
[0, 2] for δ ∈

(
0, 1

2

][
1
2 ,

3
2

]
for δ ∈

(
1
2 , 1
] } ∀ δ ∈ (0, 1]

Now the set A 1
2

is equal to the interval
[

1
2 ,

3
2

]
and the δ-Cut C 1

2
[A∗] is equal to the

interval [0, 2].

For the membership function generated by a nested family (Aδ; δ ∈ (0, 1] ) the
following holds:

Theorem 2.4. Let Cδ[A∗] be the δ-Cut of a fuzzy set A∗ with membership function

µ(·) generated by a nested family of subsets (Aδ; δ ∈ (0, 1] ) of a set M according
to Definition 2.2. Then for any δ ∈ (0, 1] the following holds true:

Cδ[A∗] = Aδ if and only if Aδ =
⋂

0<β<δ

Aβ
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Proof. Firstly extend the nested family of subsets (Aδ; δ ∈ (0, 1] ) by the element
A0 := M . Then the proof is made in three steps.

◦ Aδ ⊆ Cδ[A∗] is fulfilled ∀ δ ∈ (0, 1].
For arbitrary x ∈ Aδ we have δ·1Aδ = δ and thus sup

{
β · 1Aβ (x) : β ∈ (0, 1]

}
≥ δ. Using the definition of µ(·) we have µ(x) ≥ δ and from the definition
of the δ-Cut we obtain x ∈ Cδ[A∗].
◦ Aδ =

⋂
0<β<δ

Aβ ⇒ Cδ[A∗] = Aδ

Choose x /∈ Aδ. From Aδ =
⋂

0<β<δ Aβ we know that there exists α <

δ, with x /∈ Aα and from the nested structure of the generating family
(Aδ; δ ∈ (0, 1] ) we know that x /∈ Aβ ∀ β ∈ [α, 1]. We have

µ(x) = sup
{
β · 1Aβ (x) : β ∈ [0, 1]

}
≤ α < δ

and from that x /∈ Cδ[A∗].
◦ Cδ[A∗] = Aδ ⇒ Aδ =

⋂
0<β<δ

Aβ

Aδ ⊆
⋂

0<β<δ Aβ holds from the nested structure of the generating family

(Aδ; δ ∈ (0, 1] ). Choose x /∈ Cδ[A∗] and suppose that Aδ = Cδ[A∗]. Then

µ(x) = sup
{
β · 1Aβ (x) : β ∈ [0, 1]

}
< δ.

Choose α ∈ (µ (x) , δ), then x /∈ Aα and hence x /∈
⋂

0<β<δ Aβ .

�

Remark 2.5. For a nested sequence of classical subsets B1 ⊆ B2 ⊆ . . . ⊆ Bn of a
set M a nested family of subsets (Aδ; δ ∈ (0, 1] ), where Aδ1 ⊇ Aδ2 for δ1 < δ2, can
be constructed in the following way:

Aδ = Bi, where δ ∈
(
1− i

n , 1−
i−1
n

]
∀δ ∈ (0, 1]

3. Fuzzy Numbers and Characterizing Functions

In applications, measurement results of continuous quantities do not result in
precise numbers times the measurement unit, but are always more or less imprecise
and we call them fuzzy. For one-dimensional continuous quantities real measure-
ment data are best described by so-called fuzzy numbers.

Definition 3.1. A fuzzy subset x∗ of the set of real numbers R is called fuzzy
number if its membership function ξ(·) fulfils the following three conditions:

(1) ξ : R→ [0, 1]
(2) supp [ξ (·)] :=

{
x ∈ R : ξ (x) > 0

}
is a bounded set

(3) ∀ δ ∈ (0, 1] the δ-Cut Cδ [ξ (·)] is non-empty and a finite union of compact
intervals, i.e.

Cδ [ξ (·)] =

kδ⋃
j=1

[aδ,j , bδ,j ]
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Functions ξ(·) fulfilling conditions (1) – (3) are called characterizing functions.
In Figure 1 some examples of characterizing functions are depicted.

✲
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Figure 1. Characterizing Functions

An important topic is how to obtain the characterizing function of a fuzzy ob-
served (measured) quantity. There is no general solution to this problem, but some
measurement situations allow to generate the characterizing function. This prob-
lem is a special case of the problem obtaining the membership function of a fuzzy
set. Four references for that are the following: [4] and [5] are good introductions to
the problem, [2] and [8] are more recent application-oriented contributions to this
topic.

Example 3.2. For a digital measurement equipment the measurement result is a
decimal number with finitely many digits. About the remaining infinitely many
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digits nothing is known. Therefore the measurement result is an interval [x, x],
where the number x is the reading of the instrument and the remaining (infinitely
many) decimals are all set to be 0. The number x is obtained if the remaining
decimals are all set to be 9.

The characterizing function is the indicator function 1[x,x](·) of the interval [x, x].
This is a special characterizing function.

Example 3.3. Let the result of the measurement of a one-dimensional continuous
quantity be a light point on a screen. Then the light intensity h(x) is a real valued,
non-negative function of a real variable x. The characterizing function ξ(·) of the
measurement result x∗ is obtained by normalization in the following way:

ξ(x) :=
h(x)

max
{
h (z) : z ∈ R

} ∀ x ∈ R

This function ξ(·) is a characterizing function.

Example 3.4. In case the measurement result is characterized by the (fuzzy)
boundary of a color intensity picture, the color intensity g(x) for x ∈ R can be
used to generate the characterizing function ξ(·) of the observed quantity x∗ in the
following way:

The so-called scaled rate of change of the color intensity transition is used, i.e.
the normalized derivative of the function g(·), where the derivative is denoted by
g′(·):

ξ(x) :=
|g′(x)|

max
{
|g′ (z)| : z ∈ R

} ∀ x ∈ R

Again by this definition a characterizing function ξ(·) is obtained, which is charac-
terizing the fuzzy measurement result x∗.

Example 3.5. For analogue measurement equipments with pointers the best one
can do is to make a photograph of the pointer position on the measurement scale.
This is a color intensity picture. Taking the scale on a straight line the color
intensity is a fuzzy point on the scale. This situation can be dealt with as in
Example 3.3.

For the measurement of a one-dimensional quantity in discrete case (finitely
many points) we have to extend it to the whole real line. We can create a partly
constant characterizing function (Example 3.6) or a partly linear characterizing
function (Example 3.7).

Example 3.6. Let the function h(·) be a non-negative function defined in finitely
many points {x1, x2, . . . , xn} ⊂ R and let the distance between x1 < x2 <. . .< xn
be constant and equal to ∆.

We can extend the function h(·) to a non-negative partially constant function
g(·) in the following way:
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g(x) :=



0 for x < x1 − ∆
2

h(x1) for x ∈
[
x1 − ∆

2
, x1 + ∆

2

)
max{h(x1), h(x2)} for x = x1 + ∆

2

· · ·
h(xi) for x ∈

(
xi − ∆

2
, xi +

∆
2

)
max{h(xi), h(xi+1)} for x = xi +

∆
2

· · ·
h(xn) for x ∈

(
xn − ∆

2
, xn + ∆

2

]
0 for x > xn + ∆

2


∀ x ∈R

The function g(·) is defined on the whole real line, we can construct the charac-
terizing function by normalization in the same way as in Example 3.3. In Figure
2(b) is shown the results of such construction.

Example 3.7. Let the function h(·) be a non-negative function defined in finitely
many points {x1, x2, . . . , xn} ⊂ R, where x1 < x2 <. . .< xn and h(x1) = h(xn) =
0.

We can extend the function h(·) to a non-negative partially linear function g(·)
in the following way:

g(x) :=



0 for x < x0
x−x1
x2−x1

h(x2) for x ∈ [x1, x2)

· · ·
h(xi) +

x−xi
xi+1−xi

(h(xi+1)− h(xi)) for x ∈ [xi, xi+1)

· · ·
h(xn−1)− x−xn−1

xn−xn−1
h(xn−1) for x ∈ [xn−1, xn]

0 for x > xn


∀ x ∈R

This situation can be dealt with as in Example 3.3 or Example 3.4. In Figure
2(c) is shown the results of such construction (using the normalization approach).

Remark 3.8. Many measurement results are in one of the forms given by the
above examples.

Another problem is measurement results of vector-valued quantities. This is
explained in the next section.

4. Fuzzy Vectors and Vector-characterizing Functions

For vector-valued continuous quantities x = (x1, . . . , xk), measurement results
are again subject to variability, errors, and fuzziness. The mathematical models for
errors are stochastic quantities, and that for fuzziness so-called fuzzy vectors.

Definition 4.1. A fuzzy subset x∗ of the k-dimensional Euclidean space Rk is
called fuzzy vector if its membership function ζ(·, . . . , ·) fulfils the following condi-
tions:

(1) ζ : Rk → [0, 1]
(2) supp [ζ (·, . . . , ·)] :=

{
x ∈ Rk : ζ (x) > 0

}
is a bounded subset of Rk

(3) ∀ δ ∈ (0, 1] the δ-Cut Cδ [ζ (·, . . . , ·)] is non-empty and a finite union of
compact connected subsets of Rk
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Figure 2. Construction of Characterizing Functions

(a) Selected points from the function h(·), from which the characterizing func-
tion is constructed in Examples 3.6 and 3.7

(b) Characterizing function constructed from the selected points in (a) accord-
ing to Example 3.6

(c) Characterizing function constructed from the selected points in (a) accord-
ing to Example 3.7

Functions ζ(·, . . . , ·) fulfilling the conditions in Definition 4.1 are called vector-
characterizing functions.

In Figure 3 examples of vector-characterizing functions are depicted.
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Again, it is important how to obtain the vector-characterizing function ζ(·, . . . , ·)
of a fuzzy vector.
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Figure 3. Vector-characterizing Functions

Example 4.2. In the situation of 2-dimensional continuous quantities where the
so-called measurement results are presented on a screen, we can obtain the vector-
characterizing function in the following way:

Let h(x, y) be the light intensity of the light point x∗ = (x, y)∗. Then the
function h(·, ·) is non-negative and bounded on the whole plane. Therefore, the
values ζ(x, y) of the vector-characterizing function ζ(·, ·) are given by

ζ(x, y) :=
h(x, y)

max
{
h(u, v) : (u, v) ∈ R2

} ∀ (x, y) ∈ R2.

The function ζ(·, ·) defined above fulfils the conditions for vector-characterizing
functions. In Figures 4(a) and 5(a) examples are shown.

Example 4.3. In case of 2-dimensional quantities, where the light intensities are
defined on a finite number of points, the vector-characterizing function can be
obtained in the following way:

Let I = {(x1, y1), . . . , (x1, ym), . . . , (xn, y1), . . . , (xn, ym)} ⊂ R2 be a set with
n,m ∈ N, where xi and yj are linearly ordered, and the points (xi, yj) are equally
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spaced in the plane:
∃∆x ∈R+ ∀ i ∈ {1, . . . , n− 1} xi+1 = xi + ∆x

∃∆y ∈R+ ∀ j ∈ {1, . . . ,m− 1} yj+1 = yj + ∆y

Let h(·, ·) be a non-negative function defined on the set I and let h(x1, ·) =
h(·, y1) = h(xn, ·) = h(·, ym) = 0. Examples of such functions are depicted in
Figures 4(b) and 5(b).

Then we can create a partly constant function g(·, ·) in the following way:

g(x, y) :=



h(xi, yj)
for x ∈ (xi − 1

2 ∆x, xi + 1
2 ∆x) and y ∈ (yj − 1

2 ∆y, yj + 1
2 ∆y)

max{h(xi, yj), h(xi+1, yj)}
for x = xi + 1

2 ∆x and y ∈ (yj − 1
2 ∆y, yj + 1

2 ∆y)

max{h(xi, yj), h(xi, yj+1)}
for x ∈ (xi − 1

2 ∆x, xi + 1
2 ∆x) and y = yj + 1

2 ∆y

max{h(xi, yj), h(xi+1, yj), h(xi, yj+1), h(xi+1, yj+1)}
for x = xi + 1

2 ∆x and y = yj + 1
2 ∆y

where i ∈ {1, . . . , n− 1}, j ∈ {1, . . . ,m− 1}

0 for x /∈ (x1, xn) or y /∈ (y1, ym)


∀ (x, y) ∈R2

The vector-characterizing function ζ(·, ·) can be obtained from the function g(·, ·)
by normalization:

ζ(x, y) :=
g(x, y)

max
{
g(u, v) : (u, v) ∈R2

} ∀ (x, y) ∈R2

The function ζ(·, ·) defined above again fulfils the conditions for vector-characterizing
functions. In Figures 4(c) and 5(c) are shown the results of this construction.

Example 4.4. The so-called partly linear approach is a little more complicated.
In the one-dimensional case we have simply connected two neighbouring points. In
the two dimensional case there are four neighbouring points arranged in a rectangle.
We want to interpolate a plane through four edge points of this rectangle, but this
is not possible in all cases. We will create a new point in the centre of each rectangle
and set it’s value as mean of the values at the edges of the rectangle.

Let the set I and the function h(·, ·) be defined in the same way as in the previous
example.

We define xi+ 1
2

:= xi + 1
2 ∆x, yj+ 1

2
:= yj + 1

2 ∆y, and define the set J in the

following way:

J :=
{(
xi+ 1

2
, yj+ 1

2

)
: i ∈ {1, . . . , n− 1}, j ∈ {1, . . . ,m− 1}

}
⊂R2

We extend the function h(·, ·) to the set J in the following way:

h(x, y) =
1

4

 h(x− 1
2

∆x, y− 1
2

∆y) + h(x− 1
2

∆x, y+
1
2

∆y)+

+h(x+ 1
2

∆x, y− 1
2

∆y) + h(x+ 1
2

∆x, y+
1
2

∆y)


∀ (x, y) ∈ J
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Then we can create a partly linear function g(·, ·) in the following way:

g(x, y) :=



h(xi, yj) +
(x−xi)∆y−(y−yj)∆x

∆x∆y
(h(xi+1, yj)−h(xi, yj))+

+
2(y−yj)

∆y
(h(xi+ 1

2
, yj+ 1

2
)−h(xi, yj))

for x > xi and x−xi
xi+1−xi ≤

y−yj
yj+1−yj and x−xi+1

xi−xi+1
>

y−yj
yj+1−yj

h(xi+1, yj) +
(x−xi+1)∆y+(y−yj)∆x

∆x∆y
(h(xi+1, yj+1)−h(xi+1, yj))−

− 2(x−xi+1)
∆x

(h(xi+ 1
2
, yj+ 1

2
)−h(xi+1, yj))

for y ≤ yj+1 and x−xi
xi+1−xi ≤

y−yj
yj+1−yj and x−xi+1

xi−xi+1
≤ y−yj

yj+1−yj

h(xi, yj+1) +
(x−xi)∆y+(y−yj+1)∆x

∆x∆y
(h(xi+1, yj+1)−h(xi, yj+1))−

− 2(y−yj+1)
∆y

(h(xi+ 1
2
, yj+ 1

2
)−h(xi, yj+1))

for x ≤ xi+1 and x−xi
xi+1−xi >

y−yj
yj+1−yj and x−xi+1

xi−xi+1
≤ y−yj

yj+1−yj

h(xi, yj) +
−(x−xi)∆y+(y−yj)∆x

∆x∆y
(h(xi, yj+1)−h(xi, yj))+

+ 2(x−xi)
∆x

(h(xi+ 1
2
, yj+ 1

2
)−h(xi, yj))

for y > yi and x−xi
xi+1−xi >

y−yj
yj+1−yj and x−xi+1

xi−xi+1
>

y−yj
yj+1−yj

where i ∈ {1, . . . , n− 1}, j ∈ {1, . . . ,m− 1}

0 for x /∈ (x1, xn) or y /∈ (y1, ym)


∀ (x, y) ∈ R2

The vector-characterizing function ζ(·, ·) can be obtained again from the function
g(·, ·) by normalization:

ζ(x, y) :=
g(x, y)

max
{
g(u, v) : (u, v) ∈ R2

} ∀ (x, y) ∈ R2

The function ζ(·, ·) defined above fulfils the conditions for vector-characterizing
functions. In Figures 4(d) and 5(d) the results of this construction are given.
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h(x, y) = max


3 (1− x)

2
e(−x

2−(y+1)2) − 10
(

1
5x− x

3 − y5
)
e(−x

2−y2)

− 1
3e

(−(x+1)2−y2) − 1
100

0
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Figure 4. Two-dimensional Vector-characterizing Functions

(a) Vector-characterizing function constructed from the function h(·, ·) accord-
ing to Example 4.2

(b) Selected points from the function h(·, ·), from which the vector-
characterizing function is constructed in Examples 4.3 and 4.4

(c) Vector-characterizing function constructed from the selected points in (b)
according to Example 4.3

(d) Vector-characterizing function constructed from the selected points in (b)
according to Example 4.4
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h(x, y) =


1 + 1

3π for x = y = 0
sin
(√

x2+y2
)

√
x2+y2

+ 1
12

(
4π −

√
x2 + y2

)
for 0 <

√
x2 + y2 ≤ 4π

0 for 4π <
√
x2 + y2
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Figure 5. Two-dimensional Vector-characterizing Functions

(a) Vector-characterizing function constructed from the function h(·, ·) accord-
ing to Example 4.2

(b) Selected points from the function h(·, ·), from which the vector-
characterizing function is constructed in Examples 4.3 and 4.4

(c) Vector-characterizing function constructed from the selected points in (b)
according to Example 4.3

(d) Vector-characterizing function constructed from the selected points in (b)
according to Example 4.4
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5. Vectors of Fuzzy Numbers

Definition 5.1. A n-dimensional vector of fuzzy numbers (x∗1, . . . , x
∗
n) is a vec-

tor containing n fuzzy numbers x∗1, . . . , x
∗
n. It is determined by n characterizing

functions ξ1(·), . . . , ξn(·) belonging to the fuzzy numbers x∗1, . . . , x
∗
n.

Definition 5.2. A function T : [0, 1] × [0, 1] → [0, 1] is called triangular norm or
t-norm, if and only if ∀ x, y, z ∈ [0, 1] the following conditions are fulfilled:

(1) T (x, y) = T (y, x), i.e. T is commutative
(2) T (T (x, y), z) = T (x, T (y, z)), i.e. T is associative
(3) T (x, 1) = x, i.e. 1 is neutral to T
(4) x ≤ y ⇒ T (x, z) ≤ T (y, z), i.e. T is monotone

Combination of fuzzy numbers into a fuzzy vector is possible based on t-norms.
For two fuzzy numbers a∗ and b∗ with corresponding characterizing functions ξa∗(·),
ξb∗(·) a fuzzy vector (a, b)∗ is given by its vector-characterizing function ζ(a,b)∗(·, ·),
whose values ζ(a,b)∗(x, y) are defined based on a t-norm T by:

ζ(a,b)∗(x, y) := T (ξa∗(x), ξb∗(y)) ∀ (x, y) ∈ R2

In the general case of n fuzzy numbers x∗1, . . . , x
∗
n with corresponding character-

izing functions ξ1(·), . . . , ξn(·) a fuzzy vector (x1, . . . , xn)∗ is given by its vector-
characterizing function ζ(x1,...,xn)∗ whose values ζ(x1,...,xn)∗(x1, . . . , xn) are defined
based on a t-norm T by using its associativity:

ζ(x1,...,xn)∗(x1, . . . , xn) := T (ξ1(x1), T (. . . , T (ξn−1(xn−1), ξn(xn)) . . .))

∀ (x1, . . . , xn) ∈ Rn

For details see [6].

Remark 5.3. A fuzzy vector can be obtained from a vector of fuzzy numbers using
a t-norm. For statistical applications the most important t-norm is the minimum
t-norm.

In Figure 6 examples for the above construction using the following t-norms are
given:

Minimum t-norm:

Tmin(x, y) = min{x, y} ∀ (x, y) ∈ [0, 1]2

Product t-norm:

Tprod(x, y) = x · y ∀ (x, y) ∈ [0, 1]2

Limited sum t-norm:

Tlsum(x, y) = max{x+ y − 1, 0} ∀ (x, y) ∈ [0, 1]2

Drastic product t-norm:

Tdp(x, y) = min{x, y} · 1{max{x,y}}(1) ∀ (x, y) ∈ [0, 1]2
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✻
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(a) Combination of Two Fuzzy Numbers Using the Minimum t-norm

✻
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(b) Combination of Two Fuzzy Numbers Using the Product t-norm

Figure 6. Combinations of Fuzzy Numbers
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(c) Combination of Two Fuzzy Numbers Using the Limited Sum t-norm
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(d) Combination of Two Fuzzy Numbers Using the Drastic Product t-norm

Figure 6. Combinations of Fuzzy Numbers
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6. Conclusion

There is no general rule of how to obtain the membership function of a fuzzy set.
But in this paper for different important situations methods for the construction
of the characterizing function of a fuzzy number as well as for the construction of
vector-characterizing functions of fuzzy vectors are given.

In Section 2 of this article the δ-Cuts are introduced and an universal approach
for the construction of the membership function based on a nested family of sets
(Aδ; δ ∈ (0, 1] ) is explained. In Theorem 2.4 a necessary and sufficient condition
for the nested family of sets to be equal to the δ-Cuts of the generated fuzzy set is
given.

In Section 3 fuzzy numbers are introduced and different methods are proposed
how to obtain the characterizing function for one-dimensional measured quanti-
ties. Similarly in Section 4 fuzzy vectors are introduced, and different methods to
obtain the vector-characterizing function for multi-dimensional data are proposed
and graphically demonstrated. In Section 5 t-norms are used to describe how to
combine fuzzy numbers into a fuzzy vector. Using the above described principles
the characterizing function of a fuzzy number or the vector-characterizing function
of a fuzzy vector can be obtained for different types of measurement data.
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