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Abstract

Quantum mechanics introduced new concepts into physics, such as wave-

particle duality, contextuality, or the uncertainty relation. Matter-wave ex-

periments are a fruitful approach to investigate the foundations of quantum

mechanics. Neutron interferometry especially is a powerful tool for studying

quantum mechanical phenomenons. In this thesis two experiments are pre-

sented: a measurement of a Bell-like inequality, and a which-way experiment.

Prior to the execution of the experiments, improvements of the experimental

setup, and newly designed and constructed spin manipulation devices, were

implemented. This improved setup allows for more precise measurements.

The first measurement shows a clear violation of a Bell-like inequality, and

confirms contextual nature of quantum mechanics. It therefore proves, that

no contextual hidden variable theory can reproduce all the predictions of

quantum mechanics. The second experiment was able to shed light on the

question which path the neutrons take in an interferometer. A which-way

measurement is presented, utilizing time dependent which-way marking in

a double-loop interferometer. Following the time-development of the wave-

function and considering interference terms, between the main components

and the marked components of the neutron beam an accurate description of

the experiment is given.
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Kurzfassung

Durch die Quantenmechanik wurden neue Konzepte in die Physik eingeführt,

wie der Welle-Teilchen Dualismus, Quantenkontextualität, oder die Un-

schärferelation. Für die Untersuchung von fundamentalen quantenmecha-

nischen Effekten sind Masse behaftete Quantenexperimente besonders gut

geeignet. Neutroneninterferometrie gilt als ein besonders nützliches Instru-

ment um Quantenphenomenen zu ergründen. In dieser Dissertation werden

zwei Experimente vorgestellt: das erste ist eine Messung einer Bellschen

Ungleichung, und das zweite ist ein welcher-Weg Experiment. Vor der

Durchführung der Experimente wurden Verbesserungen am Versuchsaufbau

vorgenommen und neue Spinmanipulatoren konstruiert und gebaut. Dieser

verbesserte Versuchsaufbau ermöglicht herheblich genauere Messungen. Das

erste Experiment zeigt eine deutliche Verletztung einer Bellschen Ungle-

ichung, wodurch die Quantenkontextualität bestätigt wird und beweist, dass

Theorien, basierend auf nicht-kontextuellen versteckten Variablen, die Natur

nicht korrekt beschreiben können. Das zweite Experiment befasst sich mit

der Frage welchen Weg ein Teilchen in einem Doppelspaltexperiment gen-

gangen ist. Um Informationen über den Weg, den die Neutronen genommen

haben, zu bekommen, werden die einzelnen Pfade eines Dreiweginterferom-

eters mit einem zeitabhängigen Signal markiert. Eine theoretische Behand-

lung des Experiments wird präsentiert, die sich einer zeitlichen Entwick-

lung der Wellenfunktion bedient. Interferenzterme zwischen den makierten

Anteilen und den unmarkierten Hauptanteilen der Wellenfunktion werden

genutzt um die Resultate des Experiments präzise vorherzusagen.
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Chapter 1

Introduction

Quantum mechanics is probably the best verified physical theory, from an

experimental point of view [Wheeler and Zurek, 1983,Sakurai, 1993,Haroche

and Raimond, 2006]. From the emergence of quantum mechanics in the

early 20th century up to this day numerous novel theoretical predictions were

made and still are made, based on the frame work of quantum mechanics.

Continuous test of these predictions using a variety of different quantum

systems are essential for their experimental verification, which often led to

practical and everyday application [Wilton, 2014].

Quantum mechanics introduced new physical concepts like the wave-

particle duality, the probabilistic description of nature and the uncertainty

relation. The famous debate between Bohr and Einstein is a pinnacle point

for understanding the implications made by quantum mechanics [Bohr, 1949].

The wave-particle duality is best illustrated by the double-slit experiment,

where interference fringes become visible on a screen in an appropriate dis-

tance to the double slit, which is a consequence the wave-nature of quantum

mechanics. However, for every particle passing through the double-slit only

one count is detected at a distinct location, which is the particle-nature of

quantum mechanics. The Mach-Zehnder interferometer demonstrates the

wave-particle dualism in a similar manner: A particle passes through two

1
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spatially separated paths and can leave the interferometer in two different

direction. Depending on the phase induced between the two paths the par-

ticle is detected only in one of the two outgoing paths. By altering the

induced phase intensity modulations are visible at the outgoing beams, i.e.

interference fringes.

Matter wave interferometry has proven to be a very capable and versatile

tool to investigate the foundations of quantum mechanics. Countless exper-

iments, using different measurement systems, such as neutrons, electrons,

atoms, and even molecules, have been accomplished [Davisson and Germer,

1927, Jönsson, 1961, Rauch et al., 1974, Arndt et al., 1999]. By entangling

particles or different degrees of freedom, e.g. polarization, spin, and energy,

in an interferometer, fundamental aspects of quantum mechanics can be il-

luminated, such as quantum contextuality and weak values.

1.1 Neutron interferometry

Perfect-crystal neutron interferometry, introduced in 1974 by Rauch, Treimer

and Bonse [Rauch et al., 1974], together with spin polarimetry has proven

to be a very suitable tool for investigating fundamental quantum mechan-

ics [Rauch and Werner, 2000,Hasegawa and Rauch, 2011,Klepp et al., 2014].

Since neither matter-wave interferometry nor spin-1/2 particles have a clas-

sical analogue, polarized neutron interferometry is a purely quantum me-

chanical system. Both the spin and the path state can be manipulated with

high precision using devices as described in section 2. The large beam sep-

aration of usually about 50 mm allows for deployment of various neutron

manipulation devices. To illustrate the wide range of application of neutron

interferometry, several important measurements are presented below.

Right after the first successful test of neutron interferometry a very fun-

damental property of spin-1/2 particles was tested i.e. the first experimental
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investigation of the 4π spinor symmetry [Rauch et al., 1975]. The wave func-

tion of a spin-1/2 particle under a rotation 2π gives ψ(2π) = −ψ(0), this

phase factor of eiπ, while predicted theoretically, was considered inaccessible

and some how artificial. Only after a rotation of 4π the wave function is in

the same state as initially ψ(4π) = ψ(0). When a neutron beam passes a

region where the magnetic field ~B is applied, the neutron spin is rotated by

an angle of

α =
2µ

~

∫
Bdt, (1.1)

with the magnetic moment µ. By applying a magnetic field in one path of the

interferometer using an electromagnet and using the second path as reference

the phase shift induced by the magnetic field can be observed. Suprizingly

there is no polarized beam needed for this experiment, since both up-spin

and down-spin component of the neutron beam obtain the same phase under

rotation. The observation of the 4π-symmetry was first accomplished in

1975 using perfect-crystal neutron interferometry showing good agreement

with theoretical predictions. Later on another experiments on 4π-symmetry

using neutrons were successfully performed [Klein and Opat, 1976,Grigoriev

et al., 2004].

Another interesting experiment deals with a non intuitive effect when

one of the beams in the interferometer is reduced in intensity by absorp-

tion [Summhammer et al., 1987]. When the transmission in one path is

reduced, the visibility of the interference fringes is reduced as well. At the

point when the transmission reaches zero no interference fringes are visible

any more. The way the absorption is accomplished is crucial to the outcome

of the experiment. Quantum mechanical predictions for the visibility of the

interference fringes differ whether stochastic or deterministic absorption is

used. In the case of deterministic absorption (e.g. chopper with variable

open/block ratio), one can tell where or when the neutron is absorbed, while
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in the stochastic case (e.g. absorbing foil) the amplitude of the beam is

reduced. The visibility in the deterministic case is proportional to the trans-

mission Td in respective beam, while in the stochastic case the visibility scales

with
√
Ts. This can be seen in the intensity

IDet ∝ |ψ|2
[
1 + Td + 2Td cos(χ)

]
ISto ∝ |ψ|2

[
1 + Ts + 2

√
Ts cos(χ)

]
,

(1.2)

with χ being the phase shift between the paths induced by a phase shifter.

The square root relation between transmission and visibility is remarkable

especially at very low transmissions, which result in quite large interference

patterns. For example a transmission of Ts = 0.01 results in a amplitude of

the interference fringes of 0.1.

The use of a polarized neutron beam in neutron interferometry opened up

a new era of experimental capabilities. For example spin superposition was

investigated using polarized neutron interferometry [Summhammer et al.,

1983]. This was experimentally realized by a neutron beam, polarized in

positive z-direction (up-spin), entering the interferometer. In one path the

spin is flipped into the negative z-direction (down-spin) at the third plate

the beams are recombined. The resulting state is not a incoherent mixture

of up-spin and down-spin, but a new coherently superposed spin state

|ψ〉 =
1√
2

(
|s+〉+ eiχ|s−〉

)
, (1.3)

in the xy-plane. In forward direction the neutron beam is spin-analyzed in

x-direction. When the phase χ between the paths is changed spin rotation

is visible. The beam in reflected direction is not spin analyzed and does not

show interference fringes when the phase χ is altered, which is a result of

the orthogonal spin state. This experiment can also be accomplished using

a resonance-frequency spin-flipper and stroboscopic measurement of the spin

analyzed beam [Badurek et al., 1983].
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The total phase induced during the evolution of a quantum system con-

sists of two components a dynamical phase and a geometric phase. The pe-

culiarity of the geometric phase, introduced by Berry in 1984 [Berry, 1984],

is that it deepens purely on the evolution path of the state, and not on the

dynamics of the system. The acquired phase is proportional to minus the half

of the solid angles enclosed by the evolution path φ = −Ω/2. This geometric

phase was observed in neutron interferometric experiments [Hasegawa et al.,

2001,Filipp et al., 2005,Filipp et al., 2009,Sponar et al., 2010]

Recently weak value measurements have been performed successfully.

The concept of weak measurements was introduced by Aharonov, Albert,

and Vaidman in 1988 [Aharonov et al., 1988]. The weak value allows to ex-

tract information about a quantum system between pre-selection and post-

selection, and is defined as

〈A〉w =
〈ψf |A|ψi〉
〈ψf |ψi〉

. (1.4)

This measurement scheme was used successfully in neutron interferometry

to observe the quantum Cheshire cat [Denkmayr et al., 2014], spin weak

values [Sponar et al., 2015], and the quantum pigeonhole effect [Waegell

et al., 2017].

Many different experiments have been successfully executed, which tested

the very foundations of quantum mechanics since the introduction of neu-

tron interferometry. Such as the gravitational phases in the neutron in-

terferometer (COW) [Colella et al., 1975]. The Aharonov-Bohm and the

Aharonov-Cahser effect [Aharonov and Bohm, 1959, Aharonov and Casher,

1984] have been experimental confirmed [Werner and Klein, 2010,Lee et al.,

1998]. Measurements of confinement induced phases [Rauch et al., 2002] have

been performed, as well as entanglement between three different degrees of

freedom [Hasegawa et al., 2010,Erdösi et al., 2013].





Chapter 2

Elements of neutron optical

experiments

In this chapter we describe neutron sources, the function of the neu-

tron interferometer, how spin-polarization and spin-analyzation are accom-

plished, as well as how the spin-manipulation is performed. Newly built

spin-manipulation devices are presented, which are produced utilizing 3D-

printing.

2.1 Neutron sources

A free neutron has a lifetime of ∼ 880 s, consequentially free neutrons need to

be produced on demand by extracting them from heavy atomic nuclei. The

main ways to generate free neutrons are fusion as used in neutron generators

or fission as used in spallation sources and nuclear reactors. Neutron gen-

erators are small devices generating a low neutron flux by accelerating and

fusing hydrogen, deuterium or tritium into helium and free neutrons. Spal-

lation sources provide neutrons by accelerating protons and shooting them

on a target consisting of elements with high atomic weight, e.g. tungsten,

prompting neutron emission. Neutron generators and spallation sources are

7
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not suitable for neutron optical experiments since the first has too low flux

and the latter provides high intensity neutron pulses, but not a constant

neutron flux.

The third type of neutron source is the nuclear reactor. The high flux

reactor at the Institut Laue-Langevin (ILL) in Grenoble, France is used as

neutron source for the experiments presented in this thesis. The reactor

at the ILL uses only one highly enriched fuel element with one control rod

in the center of it. This allows for very high neutron flux of 1.5 × 1015

cm−2s−1, since the neutrons are produced in a very small volume, i.e. a

small source size, in respect to the thermal power of 58 MW. The produced

neutrons are moderated to thermal energy and guided via neutron guides

to the neutron interferometer instrument S18. The count rates in polarized

neutron interferometry are in the order of 102 cm−2s−1 typically.

2.2 Neutron interferometry

The perfect-crystal neutron interferometer for thermal neutrons is a Mach-

Zehnder-like interferometer. A scheme of a optical Mach-Zehnder interfer-

ometer is shown in Fig.2.1. The incoming beam is split up into two paths

at the beam-splitter (BS). The mirrors reflect the beams towards a beam-

analyzer (BA). A phase-shifter tunes the phase between the two paths. The

two beams are recombined at the beam-analyzer and passed on into two

directions. One direction is parallel to the incoming beam and ends up at

the O-detector, the second ends up at the H-detector. By tuning the phase

between the two paths the intensity can be divided between the two detec-

tors. From the intensity measured at the detectors the relative phase of the

interfereing beams can be determind.

Perfect crystal neutron interferometry was first accomplished by Rauch,

Treimer, and Bonse [Rauch et al., 1974] [Rauch and Werner, 2000] at the
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H-Det

O-Det

BS

M

M

BA

PS

Figure 2.1: Scheme of an optical Mach-Zehnder interfreometer, consisting of

a beam-splitters (BS), two mirrors (M), a phase-shifter (PS), beam-analyzer

(BA), and two detectors (O-Det and H-Det).

TRIGA Mark II research reactor at the Atominstitut at the Technische Uni-

versität Wien, in Vienna. It is constructed out of a single rod of a silicon

perfect crystal, with a monolithic structure, which is cut into the shape of

the interferometer. The interferometer has three parallel plates which are

equally distanced and connected through a base as seen in Fig.2.2.

2.2.1 Beam splitter; dynamical diffreaction at the sil-

icon perfect-crystal plate

Each plate of the perfect-crystal neutron interferometer acts in principle as

a beam splitter and divides each incoming beam into a transmitted beam

and a reflected beam on the other side of the plate, by Laue-case diffraction.

The two outgoing beams enclose an angle of twice the Bragg angle 2θB to

the incoming beam. This is depicted in Fig.2.3a. In contrast the Bragg-case

diffraction (Fig.2.3b) where the refraction planes are parallel to the surface of
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Figure 2.2: Picture of a triple Laue interferometer made out of a single silicon

perfect-crystal. The overall length of this interferometer is 123 mm.

the crystal, Laue-case diffraction uses a crystal orientation with the refection

planes perpendicular to the surface of the crystal. Note that in the Bragg case

total reflection of the neutron beam occurs while in the Laue case two beams

emerge behind the crystal. Only the Laue case can be sufficiently used as a

50:50 beam splitter. The perfect crystal silicon interferometer is also referred

to as a triple Laue (LLL) interferometer, because of the orientation of the

three crystal planes. The refraction plane used in the presented experiments

is the (2,2,0) crystal plane and a diffraction angle θB of 30 deg or θB = π/6.

The wave length λ of the neutrons can be calculated using Braggs law

nλ = 2dhkl sin(θB), dhkl =
d0√

h2 + k2 + l2
, (2.1)

with a lattice constant of silicon of d0 = 5.43 ·10−10 m, and the Miller indexes

h = 2, k = 2, and l = 0. This results in a neutron wave length of 1.92 Å.

Suppose that the incoming beam is given by a plane wave

|ψin〉 = Ainei~k~r, (2.2)
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ψ
in

ψ
t

ψ
r

2θ
B

(2,2,0) b)a)

ψ
in ψ

r

Figure 2.3: a) Depiction of a Laue-case diffraction beam splitter. The incom-

ing wave function ψin is split up into a transmitted wave function ψt and a

wave function ψr reflected from the (2,2,0) crystal plane. b) Scheme of the

Bragg-case diffraction with a incoming beam ψin and a reflected beam ψr.

with its position ~r, momentum vector ~k and amplitude Ain. Behind the beam

splitter two wave functions are present

|ψt〉 = Ate
i~k~r

|ψr〉 = Are
i~k′~r,

with the wave vector of the reflected beam given by ~k′ = ~k+ ~H, where ~H is the

reciprocal lattice vector corresponding to the (2,2,0) crystal plane. A scheme

of the vectors ~k, ~k′, and ~H is given in Fig.2.4. This is why the beams leaving

the interferometer at the third plate are referred to as the O-beam which is

parallel to the incoming beam and the H-beam, which differs in direction by

the reciprocal lattice vector ~H to the incoming beam. It is worth noting that

the transmitted wave function gets an phase shift of 0, while the reflected

wave function gets a phase shift of π. For simple description of a perfect

50 : 50 beam splitter the amplitudes fulfill the relation

|At| = |Ar| =
1√
2
|Ain|. (2.3)

However, the inevitable divergence of the angle of the incoming beam of
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2θ
B

k
in

δθ

H(2,2,0)
→

k
→

k´
→

→

θ
B

Figure 2.4: Depiction of the wave vectors ~k, and ~k′ as well as the reciprocal

lattice vector ~H. A deviation δθ from the Bragg angle θB is depicted.

θ = θB + δθ needs to be taken into account as depicted in Fig.2.4. The

deviation angle is expressed using the dimensionless parameter

y =
∆0k

π
δθsin(θB), (2.4)

with the Pendellösungslänge ∆0 = 68µm for λ = 1.92 Å. When the parame-

ter y is taken into account the amplitudes behind the beam splitter become

functions of y, with the amplitude t(y) for the transmitted beam, and the am-

plitude r(y) for the reflected beam. The intensities behind the beam splitter

as a function of y is given by

IH = |r(y)|2 = 1−
sin2

(
B
√

1 + y2
)

(
1 + y2

)
IO = |t(y)|2 =

sin2
(
B
√

1 + y2
)

(
1 + y2

) ,

(2.5)

with B being the crystal thickness. In Fig.2.5 the intensities for the O-beam

and the H-beam are plotted in dependence of y, and for different crystal

thicknesses B given in multiples of the Pendelösungslänge ∆0. The intensity

oscillates of the O-beam and the H-beam, as a function of y, for different

thickness of the beam splitter. Only for crystal plates much thicker than the

Pendelösungslänge ∆0 the plate acts as a 50 : 50 beam splitter.
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Figure 2.5: Plot of the intensity in dependence of the deviation y to the Bragg

angle θB for the O-beam on the left and the H-beam on the right for different

thicknesses B of the crystal plate.

The beam inside the crystal can be reflected several times as depicted in

Fig.2.6, resulting in the Borrmann triangle, which is the space between the

points A, B, and C. The point A is the position on the plate where the

beam enters the crystal. Points B and point C are the furthermost points

the neutron beam can reach. The Borrmann triangle results in a widening

of the beam at each plate of the interferometer by the thickness of the plate,

for a Bragg-angle of θB = π/6, as used in the experiment, since the neutrons

can reach every position between point B and C. The angle Ω defines the

point of exit of the beam and is used for the deffinition of the dimensionless

parameter

Γ ≡ tan(Ω)

tan(θB)
, (2.6)

with Γ = −1 corresponds to point B and Γ = 1 corresponds to point C. The
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Figure 2.6: The Borrmann triangle spans between the point of incident A

of the wave function, and points B and C, the furthermost points the wave

function is present. The angle Ω defines of the point of exit of the outgoing

beams in direction parallel to the incident beam ~kO, and reflected direction

~kH .

intensity of the outgoing beams is given by

IO =
1− Γ

1 + Γ
J 2

1

(πB
∆0

√
1− Γ2

)
IH = J 2

0

(πB
∆0

√
1− Γ2

)
,

with the Bessel functions Ji, and Γ is in the rage −1 < Γ < 1 [Suda,

2005,Lemmel, 2006]. The intensity distributions are shown in Fig.2.7. This is

a lateral intensity distribution, in contrast to the angular distribution caused

by the deviation δθ form the Bragg-angle of the incident beam, as disused

above.

2.2.2 Triple-Laue neutron interferometer

By combining three equidistant Laue-case beam splitter of equal thickness,

one can build a Mach-Zehnder-like triple-Laue interferometer. In Fig.2.8 a

scheme of the interferomter with an inserted phase shifter (PS) is depicted.

The beam (green arrows) propagate through the interferometer and get trans-

mitted (t) or reflected (r) at each plate respectively. Analogous to the optical
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Figure 2.7: Plot of the intensity in the Borrmann triangle in dependence of

Γ for the O-beam on the left and the H-beam on the right. The position

in the graph for parameter Γ = −1 corresponding to point B, while Γ = 1

corresponds to point C in Fig.Fig.2.6.

interferometer the three plates of the neutron interferometer are referred to

as beam splitter (BS), mirror (M), and beam analyzer (BA). The mirror of

course acts as a beam splitter too and produces two outgoing beams, which

are not of use and blocked by beam blockers (BB). The beam parallel to

the incoming beam is ends up at the O-detector, the beam in the reflected

direction end up at the H-detector. The neutrons can take two path to end

up at either the O-detector or the H-detector. The lower path is referred to

as path I while the upper path is referred to as path II. The wave functions

at the detectors are composed out of components coming from both paths

and are given by

ψO =
(
trr + rrt eiχ) ei~k~r

ψH =
(
trt+ rrr eiχ) ei~k′~r,

with the phase shift of χ induced by the phase shifter. Note that the beams

ending up at the O-detector are both reflected twice and transmitted once,

while the beam ending up at the H-detector is composed of one beam which

is transmitted twice and reflected once and a second beam being reflected
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Figure 2.8: Beams of a perfect crystal neutron interfreometer, passing through

a beam-splitter plate (BS), a mirror plate (M), a beam-analyzer plate(BA),

a phase-shifter (PS), and arriving at two detectors (O-Det and H-Det). The

neutron beam is represented by the green arrows with crossbars representing

the plane waves of the neutrons. Two beam blockers (BB) block beams go-

ing out of the interferometer, which are not of use. Each plate produces a

transmitted (t) and a reflected (r) beam for each incoming beam.

three times. By calculating the intensities for each path, accounting for the

beam divergence and the intensity profile caused by the Borrmann triangle,

it can be shown, that only the O-beam can show full contrast, while the

H-beam can not [Rauch and Suda, 1974]. The O-beam will only show full

contrast if every plate is a perfect 50 : 50 beam splitter of equal thickness

and equal spacing between the plates.

The neutron interferometer is very sensitive to external disturbances like

vibration, temperature changes over time, or temperature gradients within

the interferometer caused by external heat sources, as described in section

3.4. The interferometer is placed on a vibration damping optical bench in an

insulated and temperature stabilized experiment chamber.
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2.2.3 Phase shifter

The phase shifter induces a relative phase between the beams in the inter-

ferometer. The phase shifter is a slab of material which has a low absorption

cross section such as silicon Si, aluminium Al, or sapphire Al2O3. The faces

of the phase shifter need to be smooth an parallel to avoid dephasing. Due

to the optical potential of a material the neutrons path through a phase shift

occurs. The phase shift χ is given by

χ = (n− 1)kD = −NbcλD, (2.7)

with n is the refection index, k is the wave vector, and D is the thickness

of the slab, N being the atomic density, bc the nuclear scattering length,

and λ the wave length of the neutrons. When the phase shifter is placed

O-Det

IFM

PS

I

II

H-Det

δ

θ
B

D
0

Figure 2.9: Scheme of the interferometer with a phase shifter inserted. The

Bragg angle θB, the angle of the phase shifter δ, and the thickness of the

phaseshifter D0 are depicted.

in the interferometer as depicted in Fig.2.9 and rotated by an angle of δ,

the neutrons in the two paths experience a relative phase shift due to the
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different of the optical path length through the material, given by

∆D =
[ 1

cos(θB + δ)
− 1

cos(θB − δ)
]
D0, (2.8)

with the Bragg angle θB, and δ being the angle between the phase shifter

and the plates of the interferometer. The resulting phase shift is given by

∆χ = −Nbcλ∆D. (2.9)

When the phase shifter encloses a small angle of rotation δ to the interfer-

ometer plates, the phase shift can be linear approximated ∆χ ∝ δ. In figure

Fig.2.10 a comparison between the exact calculation of ∆Dexact, and a linear

approximation with ∆Dapp(δ) = 4δ/3 is depicted. For typical phase shifter

rotation angles of ∼ 1 deg, as used in the experiment, the error of the linear

approximation is 0.4 · 10−3.

−π/8 −π/16 0 π/16 π/8

δ[rad]

−0.6
−0.4
−0.2

0

0.2

0.4

0.6

∆
D
/D

0

Figure 2.10: Comparison between the exact calculation of ∆Dexact(δ) (pur-

ple line) using equation 2.8, and a linear approximation ∆Dapp(δ) = 4δ/3

(dashed gray line).

It is important to point out that the interferometer is very sensitive to

material which is put into the beam path within the interferometer. If mate-

rial is put into the neutron beam with a rough surface, uneven thickness, or
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irregular composition the neutron beam receives different amounts of phase

shift within the beam cross section, which leads in turn to reduced or van-

ishing interference effect.

2.2.4 Beam attenuators

Beam attenuators are used to reduce the neutron intensity in one path of the

interferometer. In the which-way experiment described in chapter 4 beam

attenuators are used to reduce the effect of a reference beam on the system

probed by the reference beam. The transitivity T of an beam attenuator

of thickness D, absorption cross section σabs, and atomic density N can be

calculated using the Beer-Lambert law [Beer, 1852]

T =
It
Ii

= e−NσabsD. (2.10)

With Ii being the incoming neutron intensity and It being the transmitted

neutron intensity. Cadmium is used to block a neutron beam because of

its high absorption cross section of 2520 b, which results in an absorption

coefficient of Nσabs = 12× 103 m−1 and a transitivity of T = 4× 10−6 for a

1 mm thick Cadmium slab. A slab of Indium with a thickness of 1 mm and

an absorption cross section 785 b, which results in a transitivity of T = 0.456,

is used for the which-way experiment presented in chapter 4. The scattering

cross section is neglected in this calculation. This is justified by the small

contribution of the scattering cross section for these two materials of less the

1 % of the absorption cross section.

2.2.5 Neutron detection

The detectors used at the neutron interferometer instrument S18 are 3He

counter tubes. Since the neutron is not electrical charged it does not produce

any electrical signal when passing trough the detector. A conversion process
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is needed to produce a detectable electrical signal in the detector. The 3He

counter tube is based on the nuclear reaction

3
2He +1

0 n −→3
1 H +1

1 p Q = 0.764 MeV (2.11)

The neutrons are absorbed by 3
2He, which then decays into triton (3

1H) and a

AMP

HV

R

C

+

-

CT

Figure 2.11: Scheme of counter tube and connected electronics. A high volt-

age source (HV) supplies the counter tube (CT). The intrinsic resistance is

represented by R. The capacity (C) is put in front of the signal amplifier

(AMP).

proton (1
1p). The energy yield of this reaction of 0.764 MeV is divided on the

decay products. Due to the high absorption cross section of 3
2He of 5333 b

the efficiency of the detector is very high. The decay products ionize the gas

in the counter tube. High voltage of about ∼ 1200 V is applied between the

housing of the tube and a wire in the middle of it, as depicted in Fig.2.11.

Due to electric field applied, the electrons are are accelerated to the wire and

secondary ionization takes place. When the electrons are collected there is a

small electrical pulse which passes through a capacity to an amplifier. The

amplifier produces a square signal which is forwarded to the data acquisition

system. The 3He counter tube is insensitive to gamma radiation, but it
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must be shielded against scattered background neutrons. This is achieved by

putting neutron absorbing material as a shielding around the detector, such

as Cadmium or borated paraffin wax.

2.3 Neutron spin and electromagnetic inter-

action

Neutrons have an intrinsic magnetic moment called spin. The spin vector is

related to magnetic moment ~µn of magnitude |~µn| = 9.65 · 10−27 J/T and

the gyro magnetic factor γ = −1.8301 · 108 rad s−1T−1 [Abele, 2008] via the

relation

~S =
~µn
γ
. (2.12)

The spin vector can be written in terms of expectation values of the Pauli

spin operators 〈σ̂i〉 [Mezei, 1972] and the reduced Planck constant ~

~S =
~
2


〈σ̂x〉
〈σ̂y〉
〈σ̂z〉

 . (2.13)

The factor 1/2 above derive from the property of the neutron being a spin-1/2

particle. Subsequently resulting in the 4π-periodicity of the wave function

as first shown by Rauch et al. [Rauch et al., 1975]. The three Pauli spin

matrices σ̂i are given by

σ̂x =

 0 1

1 0

 , σ̂y =

 0 −i

i 0

 , σ̂z

 1 0

0 −1

 . (2.14)
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The Pauli spin matrices can be expressed via a two dimensional standard

vector base

|sx+〉 =
1√
2

1

1

 , |sy+〉 =
1√
2

1

i

 , |sz+〉 =

1

0

 ,

|sx+〉 =
1√
2

 1

−1

 , |sy+〉 =
1√
2

 1

−i

 , |sz+〉 =

0

1

 ,

as

σ̂x = |sx+〉〈sx+|+ |sx−〉〈sx−|

σ̂y = i
(
|sy+〉〈sy+| − |sy−〉〈sy−|

)
σ̂z = |sz+〉〈sx+| − |sx−〉〈sz−|.

The Hamiltonian for a neutron with a mass of mn = 1.6749 · 10−27 kg inter-

acting with a magnetic field ~B(~r, t) is given by

ĤB = − ~
2m
∇2 − ~µ ~B(~r, t) = − ~

2m
∇2 − 1

2
~γ~σ ~B(~r, t). (2.15)

The solution of the Schrödinger equation

i~
∂

∂t
ψ(~r, t) = ĤBψ(~r, t), (2.16)

can be written using ψ = ψr ·ψs, where ψr is the space dependent part and

ψs the spin dependent part, as

ψ(~r, t) =

(
c+ cos

(θ
2

)
|sz+〉+ c− sin

(θ
2

)
eiφ|sz−〉

)
ψr, (2.17)

with the polar angle θ and the azimuth angle φ of the spin polarization vector

on the Bloch-sphere, as seen in Fig.2.12.

The coefficients c+ and c− are weighting coefficients, which become 1 for

a spin eigenstate |sz±〉. When an external magnetic field ~B interacts with

the neutron spin a change in direction of the spin vector ~S perpendicular to
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Figure 2.12: Representation of spin polarization vector for the polar angle θ,

and the azimuth angle φ on the Bloch sphere.

the field and the spin direction appears

d~S

dt
= γ~S × ~B = ~S × ~ωL, (2.18)

with ~ωL = γ ~B, being the Larmor frequency. The spin vector precesses around

the external field at a frequency of ωL. The action of a constant magnetic

field ~B acting for a duration of τ on a spin state can be expressed as a

unitary transformation Û(~α), with ~α = α~n being the rotation angle given by

~α = 2µ~Bτ/~, by

Û(~α) = cos
(α

2

)
1− i~n~σ sin

(α
2

)
. (2.19)
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Which results for x, y, and z directions in the unitary rotation matrices:

Ûx(α) =

 cos
(
α
2

)
−i sin

(
α
2

)
−i sin

(
α
2

)
cos
(
α
2

)


Ûy(α) =

 cos
(
α
2

)
− sin

(
α
2

)
sin
(
α
2

)
cos
(
α
2

)


Ûz(α) =

 e−iα/2 0

0 eiα/2


(2.20)

Every spin rotation which can be achieved in a neutron experiment can be

constructed out of this rotation matrices.

2.3.1 Neutron spin polarization

The beam produced by the neutron source is unpolarized i.e. all spin di-

rections are equally likely. If a spin measurement is performed along any

direction half of the neutrons would be aligned parallel the other half anti

parallel to the direction of measurement. For measurements utilizing the

neutrons spin, the neutrons usually need to be spin-polarized. The degree of

polarization is an important parameter of the used setup and is defined as

P =
|N+ −N−|
N+ +N−

, (2.21)

with N+ being the number of neutrons aligned parallel and N− the number

of neutrons anti-parallel to the measurement direction.

The spin polarization can be achieved by two spin-dependent birefringent

magnetic prisms in front of the interferometer, as done in the presented

experiments. The prisms are permanent magnetic yolks, that produce a

triangular shaped magnetic field in z-direction in a small gap, the neutrons

can pass. The prisms refract the up-spin component sz+ and the down-

spin component sz− by a different angle as seen in Fig.2.13. This results
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Figure 2.13: Scheme of the neutron beam passing the two birefringent mag-

netic prisms (P1,P2). The neutrons are refracted by the magnetic fields in

z-direction (Bz) according to their spin direction (sz+, sz−). Behind the

prisms the direction of the up-spin beam and down-spin beam differ by an

angle δ.

in two polarized sub-beams. The angle difference between these two sub-

beams is δ = 2.3 · 10−5 rad for neutrons with a wave length of 1.92 Å. At the

interferometer one of these sub beams can be selected by tuning the Bragg

angle so that one sub-beam fulfills the Bragg-condition and is reflected, while

the other passes through the interferometer with out interacting and therefore

does not participate in the experiment any further.

A rocking curve is a plot of the angular distribution of the intensity, de-

pending on the angle of the interferometer in respect to the incoming beam.

The rotation axis is the z-axis. A typical expected rocking curve is depicted

in Fig.2.14. By tuning the angle of the interferometer to the position corre-

sponding to the center of the left peak, up-spin neutrons (sz+) are selected

and the down-spin neutrons (sz−) pass trough the interferometer without

interacting. When the interferometer is set to the position corresponding to

the right peak it is the other way around.
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Figure 2.14: Expected rocking curve of a neutron beam after passing through

two birefringent magnetic prisms. The left peak consist of up-spin neutrons

(sz+) and the right peak consist of down-spin neutrons (sz−).

2.3.2 Neutron spin analysis

To measure specific spin states a spin analysis is needed. A super mirror

in front of the detector allows only neutrons with one spin-component to

pass trough and end up in the detector. In combination with a spin-rotation

device, as described in section 2.3.5, any spin direction can by analyzed.

Typically the supermirror is constructed of many alternating thin layers

of Nickel and Titanium as depicted in Fig2.15. Nickel is ferromagnetic with a

magnetic permeability µNi and has a coherent scattering length of bc(Ni) =

7.845 b. Titanium is paramagnetic with a magnetic permeability µT i and has

a coherent scattering length of bc(Ti) = 1.485. Note that depending on the

alloy and production method the magnetic permeability can vary a lot. The

total refection index n of a material in a magnetic field is given by

n(B) = 1− λ2

(
Nbc
2π
± µnmnB

h

)
, (2.22)
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Figure 2.15: Scheme of a super mirror with alternating Ti layers (gray) and

Ni layers (light gray) and an beam blocker on the backside (black). The up-

spin neutrons are reflected. The down-spin neutrons are absorbed on the

backside of the supermirror.

which is the sum of the nuclear and the magnetic refraction index. The

± sign accounts for the two spin directions i.e. up-spin and down-spin.

For a certain magnetic field BSM the total refraction index n of Titanium

and Nickel become equal in magnitude for the down-spin component of the

neutrons only. Therefore the down-spin neutrons effectively ”see” no layer

structure, but the layer structure is still ”visible” for the up-spin neutrons.

The layers are designed to take advantage of Braggs law Eq.2.1 so that the

critical reflection angle, until which total reflection occurs, is extended as far

as possible for a neutron seeing the layer structure i.e. the up-spin component

[Mezei, 1972]. While the down spin component passes through the layer

structure and is absorbed by an neutron absorbing material at the back of

the supermirror as shown in Fig.2.15. The supermirror is a device which

filters out the down-spin component. Well constructed supermirrors achieve

degrees of polarization of well above P > 0.99. Although the super mirror has
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a high degree of polarization it can not be used in front of the interferometer

because of the divergence of the neutron beam leaving the supermirror. This

would lead to low count rates, since the acceptance angle of the interferometer

is very small < 10−6 rad, and low contrast as a direct consequence of the

beam divergence.

2.3.3 Guide field

In polarimetric experiments usually a guide field ~BGF = (0, 0, BGF ) is applied

in z-direction, over the whole experimental setup, to avoid depolarization.

The guide fields are usually produced by Helmholtz like coil pairs. The ideal

pair of Helmholtz coils consists of two circular coils with radius R, which are

arrange coaxial with a distance of d = R between them. Close to center line

of the coil pair the field is nearly constant. In most neutron interferometric

experiments a long guide field is needed, along the beam trajectory. To reduce

the space required by the coils they are usually constructed in rectangular

shape instead of a circular shape. In case of rectangular coils the distance d

between the coils is half the width of the coils. The guide field strength is

typically set between 10−3 T and 3 · 10−3 T. The Larmor precision causes the

neutrons polarization vector to rotate around the guide field in z-direction.

2.3.4 Larmor accelerators

The Larmor accelerator is a pair of Helmholtz like coils which apply a mag-

netic field parallel or anti-parallel to the guide field and accelerate or decel-

erate the Larmor precision, and therefore manipulate the azimuth angle φ of

spin state. The action on the neutron spin can be expressed by the unitary

transformation

Ûz(α) =

 e−iα/2 0

0 eiα/2

 , (2.23)
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with α = 2µBτ/~. The coils are bent away from the neutron beam at the

point of entrance and exit of the neutron beam. This reduces magnetic stray

fields which could reduce efficiency of the device and also could lead to depo-

larization of the neutron beam. A depiction of a Larmor accelerator is given

in Fig.2.16, as well as the first version built out of acrylic glass. Since the

Figure 2.16: Depiction of a Larmor accelerator. Left side: The copper wires

coils are represented in yellow colored tubes. The green arrows represents the

neutron beam passing through the Larmor accelerator, the red arrow repre-

sents the magnetic field, and the blue arrows represent the flow of the cooling

water in the housing (gray). Right side: First version of Larmor accelerators

built out of acrylic glass.

neutron beam does not need pass through any material in this device, it can

be used within the interferometer without any dephasing effect. When the

Larmor accelerator is used within the interferometer it needs to be cooled to

avoid thermal disturbance on the measurement. This is achieved by putting

the coils into a water-tide box and pump water at a constant temperature

through the box as depicted in Fig.2.16 by blue arrows. Recent versions of

this device are built using 3D-printed boxes as described in section 2.3.7.

This Larmor accelerators were deployed in the experiment measuring the

Bell inequalities presented in chapter 3, as well as in the demonstration of

the Quantum Cheshire cat [Denkmayr et al., 2014], a direct path measure-
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ment experiment [Denkmayr et al., 2017] , a measurement of general complex

spin weak values [Sponar et al., 2015], and more experiments to come.

2.3.5 Direct current spin-rotators

ZX

Y

B
Z

B
X

Figure 2.17: Schematic of a DC spin-rotator. Two coils made of copper wire

are wound perpendicular to each other around an aluminium frame. The

outer coil applying a field in z-direction Bz has a cutaway in the drawing

to reveal the inner coil applying a field in x-direction Bx. The green arrows

represent the neutron beam.

The direct current (DC) spin-rotator can manipulate the polar angle of

the spin state, by applying a field in x-direction. Since a guide field is applied

all over the setup, the DC spin-rotator needs a coil able to compensate the

guide field ~Bcomp = − ~BGF , in addition to the coil generating the field in x-

direction. The two coils are wound one onto the other as depicted in Fig.2.17,

with the outer compensating coil applying a field of ~Bcomp = (0, 0, Bz) and

the actual spin-rotating inner coil applying a field of ~Bx = (Bx, 0, 0). The
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action on the neutron spin can be expressed by the unitary transformation

Ûx(α) =

 cos
(
α
2

)
−i sin

(
α
2

)
−i sin

(
α
2

)
cos
(
α
2

)
 , (2.24)

with α = 2µBτ/~. The field transition from the guide field to the inner

field needs to be non-adiabatic, or else the spin-polarization vector would

just follow the changing field direction ending up in the same direction but

with an added phase. This is why the DC spin-rotator is design so that the

neutron beam passes through the coil material to achieve a instant change

of the field direction.

2.3.6 Resonance-frequency spin-rotator

A resonance-frequency spin-rotator is another spin manipulation device, but

in contrast to the spin-manipulators above it is operated using a time

dependent field. Additional to the guide field ~BGF = (0, 0, BZ) a field

~Bosc = (0, Bosc cos(ωt), 0) oscillating parallel to the propagation direction

of the neutron beam. The resulting magnetic field ~BRF , which is the sum

~BRF = ~BGF + ~Bosc, can be rewritten as the sum of two fields of half the field

strength of the oscillating field rotating around the z-axes, and the guide

field, as given in

~BRF =


0

0

BZ

+


Bosc

2
sin(ωt)

Bosc
2

cos(ωt)

0

+


−Bosc

2
sin(ωt)

Bosz
2

(cos(ωt)

0

 . (2.25)

The oscillating field is set small compared to the guide field | ~Bosc| << | ~BGF |,
so that it can be neglected for all but one crucial case when the oscillation

frequency is about the same as the Larmor frequency of the neutrons in the

guide field ω ≈ |γ| ~BGF . In this case one rotating field of Eq.2.25 rotates in

the same direction at the same frequency as the polarization vector ~S of the
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neutrons. The other rotating component can be neglected, which is known as

the rotating-wave approximation (RWA) [Allen and Eberly, 1975]. Resulting

in an approximated field

~Bapp =


0

0

BZ

+


Bosc sin(ωt)

Bosc cos(ωt)

0

 . (2.26)

The Shrödinger equation for a neutron interacting with the field ~Bapp is given

by

i~
∂

∂t
ψ(~r, t) = − ~

2

2m

∂

∂r2
ψ(~r, t)

− (µσxBosc sin(ωt) + µσyBosc cos(ωt) + µσzBGF )ψ(~r, t)

(2.27)

Using the separation ansatz ψ = φ(~r) · ζ(t) the equation Eq.2.27 can be

decomposed into two equations

− ~2

2m

1

φ(~r)

∂2

∂r2
φ(~r) = C

i~
1

ζ(t)

∂

∂t
ζ(t) +

(
µσxBosc sin(ωt) + µσyBosc cos(ωt) + µσzBGF

)
= C

(2.28)

The solution of the first equation in Eq.2.28 is a plane wave

φ(~r) =
1√
2π

ei~k~r, (2.29)

with C = ~2k2/2m. The second equation in Eq.2.28 can be solved leading

to the equation

ζ(t) = ei ~k
2

2m
tζ(0)e−iωtσz/2

[
cos
(
α(t)/2

)
− i~σα̂sin

(
α(t)/2

)]
, (2.30)

with α(t) = γt
√

(BGF + ω/γ)2 +Bosc. A detailed calculation is presented

in [Rabi, 1937,Ramsey, 1940,Bloch and Sieger, 1940,Suda, 2005]. Because of

the approximation of the field BRF by the rotating field Bapp there is a small

error in the calculation. The field oscillating in the opposite direction to the
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Larmor precision cause a shift in the resonance frequency called the Bloch-

Siegert shift [Bloch and Sieger, 1940], resulting in a resonance frequency of

ωres =
2|µ|BGF

~

(
1 +

B2
osc

16B2
GF

)
, (2.31)

instead of ω = 2|µ|BGF
~ . The action of a resonance-frequency spin-rotator

on the neutrons spin can be written using the unitary transformations in

Eq.2.20, as

ÛRF (ω, α) = Û−1
z (ωt)Ûx(α)Ûz(ωt)

=

 cos(α/2) −ieiωt sin(α/2)

−ie−iωt sin(α/2) cos(α/2)

 ,
(2.32)

with the oscillation frequency of the resonance-frequency spin-rotator ω, and

the polar angle of rotation α. This is a rotation around x-axes which is

transformed into a frame rotating around the z-axes at a frequency of ωRF .

The phase φRF of the resonance-frequency spin-rotator can be taken into

account additionally, by an other unitary transformation Ûz(φRF ).

Note that a time dependent magnetic field B(t) does not keep the total

energy of the neutrons constant, since

d

dt
〈Ĥ(t)〉 6= 0. (2.33)

Therefore a small energy shift of ∆E = ~ωres occurs.

In the experiments a local guide field is put around the resonance-

frequency spin-rotator so that the resonance frequency can by adjusted lo-

cally. A picture of a resonance-frequency spin-rotator is shown in Fig.2.18.

2.3.7 3D printing

3D-printing was invented in the 80s, but due to patent laws and compli-

cated machinery 3D-printers where expensive and needed high amounts of

maintenance work. With the start of the RepRap project, newly developed
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Figure 2.18: Picture of a resonance-frequency spin-rotator and a pair of

Helmholtz coils providing a local guide field for resonanze adjustment.

single board mini computers such as arduino and raspberry pi were utilized,

leading to cheaper 3D printers. The RepRap project is an open source devel-

oper project, which lead to an accelerated evolution of both hard ware and

software for extrusion deposit 3D-printers citePearce10, Jones11,Joshua12.

In this process a plastic filament (a string of printing material) is forced by

a gear drive into a heated nozzle, which melts the plastic and produces a

thin layer of material as shown in Fig.2.19. The first successful print by the

RepRap was performed in 2006, By printing one layer on top of the other the

3D-printer builds any desired structure as depicted in Fig.2.19. Designs can

be more complicated and finer in structure than CNC-milling would allow

for. In the year 2012 the price for 3D-printer kits for was still high, and the

built quality of the printers and the print quality itself was poor. That is

why I decided to built my own 3D-printer, which is depicted in Fig.2.19.

This printer was used for fabricating many parts of the experimental

setup such as the Larmor accelerators, the RF spin-rotators, mounts for the

supermirror, mounts for phase shifters, DC coils and many more. The printed

parts are designed in a 3D-CAD program. The design files are converted into
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Figure 2.19: Picture of the home built 3D-printer on the left. Illustration

of the printing process on the right. The plastic string (filament) is forced

through a heated brass nozzle buy a set of gears. Beneath the nozzle the

material is deposit in thin layers.

a machine code called g-code, by a special software called Cura. The g-code

controls the actual 3D printing process. A picture of a set of RF spin-rotators

for use in the interferometer is depicted in Fig.2.20. The 3D printed parts

have several advantages over machine milled metal parts. They are cheaper

and faster to produce, therefore a large variety of designs can be manufac-

tured and tested. The parts made of plastic have no electrical conductivity,

have a low thermal conductivity, and are not magnetic so that remanence

and short currents are not a problematic issue. 3D printed spin manipulators

provide a better thermal stability then metal spin manipulators, since the are

thermal insulators. Which is helpful when trying to improve the performance

of the setup. The precision of the 3D-printed parts is better than 0.1 mm.
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Figure 2.20: The 3D-printed RF-spin rotator. Left: Picture of a 3D-printed

box with two RF spin-rotators. Each spin-rotator has a small guide field to

adjust the resonance frequency. Right: CAD-drawing of the RF-spin rotator.



Chapter 3

Bell measurement

3.1 Introduction

At the beginning of the 20th century scientist believed that the world can

be explained by one theory describing everything in a deterministic way and

by knowing the exact state of a system at a given time, e.g. position and

momentum of every particle of the system, the past and the future can be

calculated precisely. Laplace’s demon could even have known past and future

of the whole universe [Laplace, 1814]. With the introduction of quantum

mechanics the theoretical possibility of knowing everything, including past

and future of a system, localism, and the exact pridictability down to the

smallest detail were ruled out on a very fundamental level. Because of the

probabilistic nature of quantum mechanics, quantum contextuality, and the

uncertainty principle introduced by Heisenberg [Heisenberg, 1927]. Only a

probability on the outcome of an experiment can be given, but the outcome

of the single event can not be predicted with certainty.

The uncertainty principle eliminates the possibility to know position and

momentum of a particle at a certain time with arbitrary accuracy. Many

physicists believed that quantum mechanics is incomplete and a new under-

37
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lying theory would overcome the restrictions of quantum mechanics. Einstein

was the best known critic of quantum mechanic, by saying ’He does not play

dice’ he pointed out, that he did not believe in a probabilistic nature of

physics as described by quantum mechanics [Born, 1971].

In their famous paper Einstein, Podolsky and Rosen [Einstein et al., 1935]

argue that a complete physical theory must provide an arbitrarily accurate

discription of the system at any given time. Since quantum mechanics does

not, this theory is considert incomplete. To resolve this problem hidden

variable theories have been presented which would resolve the shortcomings

of quantum mechanics and give deterministic results [Bohm, 1952]. However,

at the time no test could be made to decide,whether quantum mechanics or

hidden variable theories provide a correct picture of nature. In 1964 John

Bell presented his famous theorem [Bell, 1964], which pointed out a conflict

between local hidden variable theories and quantum mechanics, providing a

possibility to test which description actually coincides with nature.

Bell’s inequality was introduced to give a limit for local hidden vari-

able theories, which can be violated by quantum mechanics. Violaton of

Bell’s inequality in experiments, means that local hidden variable theories

can not reproduce nature but quantum mechanics can. Such experiments

have been accomplished using various physical systems, such as atomic cas-

cade [Freedman and Clauser, 1972, Aspect et al., 1982], downconversion of

laser [Kwiat et al., 1995, Weihs et al., 1998, Tittel et al., 1998], correlated

photon pairs [Bertlmann and Zeilinger, 2002]. Furthermore neutron inter-

ferometric experiments confirmed a wider class of basic properties [Mermin,

1990], i.e. quantum contextuality [Hasegawa et al., 2003, Geppert et al.,

2014].
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3.2 The EPR argument

In quantum mechanics the state of a system is completely characterized by

a wave function ψ, with variables such as position x and momentum p de-

scribing the state of the system. Any other set of variables can also be used

to describe the system, given it provides the same predictions. For every

measurable quantity A of the system there is a corresponding operator Â.

When ψ is in an eigenstate of Â, which is the case if

Âψ = aψ, (3.1)

then the observable A has with certainty the real value a. When ψ is in an

eigenstate of A it is considered an element of reality, by the authors. For

example, when the momentum operator

P̂ =
~
i

∂

∂x
(3.2)

acts on the wave function

ψ = e
ip0x
~ , (3.3)

with a constant p0 and an independent variable x, the result

P̂ψ = p0ψ (3.4)

is obtained, i.e. the value p0 is measured with certainty.

Heisenberg’s uncertainty relation can be summarized as follows [Kennard,

1927]: for every measurement of the position X of a particle with a precision

ε(X) a disturbance of the momentum P of η(P ) is caused, which satisfies the

relation

ε(X)η(P ) ≥ ~
2
. (3.5)

So by increasing the accuracy of the position measurement the disturbance

on the momentum is increased and therefore the momentum can be known
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less precisely. On the other hand a precise measurement of the momentum

would lead to a less precise measurement of the position of the particle. The

authors argue that a complete theory must represent both the position and

the momentum of a particle at any time with arbitrary accuracy. Since quan-

tum mechanics does not it is considered an incomplete theory by Einstein,

Podolsky and Rosen.

The main argument, however, is the quantum mechanical description of

two space like separated particles, as pointed out by Bohr [Bohr, 1935]. Two

systems I and II interact for a given time 0 ≤ t ≤ T and the states of each

system at a time t < 0 are well known. After the interaction t > T the

systems are separated and no further interaction can take place. Using the

Schrödinger equation the wave function ψ of the combined system I+II can

be calculated. The state of either of the systems after the interaction can

not be calculated. According to quantum mechanics further measurements

are required. The wave function of the combined systems is given by

Ψ(x1, x2) =

∫ ∞
−∞

e(2πi/h)(x1−x2+x0)pdp, (3.6)

where x0 is a constant, x1 describes the first system, and x2 the second. The

observable is now the momentum P̂ of the first system, given by

P̂ψ =
h

2πi

∂

∂x1

ψ = pψ, (3.7)

then the eigenfunction to the eigenvalue p is given by

up(x1) = e(2πi/h)x1p. (3.8)

The wave function of the combined system can now be written as

Ψ(x1, x2) =

∫ ∞
−∞

ψp(x2)up(x1)dp (3.9)

using

ψp(x2) = e2πi/h)(−x2+x0)p, (3.10)
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which is the eigenfunction of the operator

P̂ =
h

2πi

∂

∂x2

(3.11)

corresponding to the momentum −p of the second system. However, if we

choose the observable to be the position of the position of the first particle

with the eigenfunction

vx(x1) = δ(x− x1), (3.12)

with the eigenvalue x, the wave function in Eq.3.6 can be written as

Ψ(x1, x2) =

∫ ∞
−∞

φx(x2)vx(x1)dx, (3.13)

where

φx(x2) =

∫ ∞
−∞

e2πi/h)(x−x2+x−0)pdp = δ(x− x2 + x− 0)h, (3.14)

which is the eigenfunction of the operator X̂ = x1, with the eigenvalue x+x0

of the second particle. The operators X̂ and P̂ are non-commuting

[X̂P̂ ] = X̂P̂ − P̂ X̂ =
h

2πi
. (3.15)

So it is possible to assign two eigenfunction φx and ψp of non-commuting

operators, corresponding to physical quantities. Depending on which mea-

surement is performed first on the first system, the second system is left in

a state with different wave function, even if no interaction between the two

systems is possible since they are spatially separated. This is what Einstein

referred to as the ’spooky action at a distance’. In the first case P̂ is an

element of reality in the second X̂ is an element of reality, in both cases the

other is not, but both wave functions φx and ψp are part of the same real-

ity. The authors conclude from the calculation above, that the description

of quantum mechanics is not complete.

In the paper by Einstein, Podosky and Rosen state that: ’... when the
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momentum of a particle is known, its coordinate has no physical reality...

From this follows either (1) the quantum mechanical description of reality

given by the wave function is not complete or (2) when the operators corre-

sponding to two physical quantities do not commute the two quantities cannot

have simultaneous reality.’ [Einstein et al., 1935]

If quantum mechanics is not complete there must be some kind of un-

derlying mechanism, to give rise to the observed behavior of non-commuting

quantum observables. One of the candidates to give such predictions is the

so called hidden variable theory [Wheeler and Zurek, 1983].

There are two major assumptions in the EPR claim, which are realism

and locality. Physical realism states that the value of an observable can be

predicted before a measurement is made. The value of a physical quantity

exists without the measurement and is therefore an element of reality. Physi-

cal localism states that the properties of a system must be independent form

any interaction (measurement) on a spatially separated system. The proper-

ties of the system can be described locally. These assumptions conflict with

the predictions of quantum mechanics.

3.3 Bell’s inequality

In his paper ’On the einstein podolsky Rosen paradox’ [Bell, 1964] Bells

starts at the example given in the paper by Bohm and Aharonov [Bohm

and Aharonov, 1957], where an two spin one half particles in a singlet spin

state propagate in opposite directions. Two Stern-Gerlach magnets perform

measurements on each particle in direction α and β on particle a and B re-

spectively. As in the example given above a measurement of the spin ~σ on

the first particle in direction ~α yielding +1 infers the result of −1 when a

spin measurement in direction ~α is performed on the second particle. This

kind of predetermination is not valid in quantum mechanics, Bell states in
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his paper ’this predetermination implies the possibility of a more complete

specification of the state.’ He then introduces λ, which could be a parame-

ter, a set of variables, or even a set of functions, and gives rise to a complete

specification of the state. The parameter is also not limited to be discrete or

continuous. A measurement of the spin of the first particle ~σA only depends

on the direction ~α and λ, the measurement of the spin of the second particle

~σB only depends on the direction ~β and λ.

A(~a, λ) = ±1

B(~b, λ) = ±1
(3.16)

The expectation value of the product of the components ~σ1~a and ~σ2
~bis given

by

P (~a,~b) =

∫
ρ(λ)A(~a, λ)B(~b, λ) dλ, (3.17)

with the probability distribution ρ(λ), that fulfills∫
ρ(λ) dλ = 1. (3.18)

This should be equal to the quantum mechanical expectation value for the

singlet state

〈~σ · ~a ~σ ·~b〉 = −~a ·~b. (3.19)

Because of the anti-correlation of A(~a, λ) = −B(~a, λ), the equation

Eq.3.17 can be written as

P (~a,~b) = −
∫
ρ(λ)A(~a, λ)A(~b, λ) dλ, (3.20)

By introducing another unity vector ~c the relation

P (~a,~b)− P (~a,~c) = −
∫
ρ(λ)

[
A(~a, λ)A(~b, λ)− A(~a, λ)A(~c, λ)

]
dλ

=

∫
ρ(λ)A(~a, λ)A(~b, λ)

[
A(~b, λ)A(~c, λ)− 1

]
dλ,

(3.21)



CHAPTER 3. BELL MEASUREMENT 44

can be formulated with,

|P (~a,~b)− P (~a,~c)| ≤
∫
ρ(λ)

[
1− A(~b, λ)A(~c, λ)

]
dλ. (3.22)

This can be written as

|P (~a,~b)− P (~a,~c)| ≤ 1 + P (~b,~c). (3.23)

It is then shown that this relation prohibits, that P (~b,~c) can not reproduce

the quantum mechanical value form equation Eq.3.19, by introducing the

functions

P (~a,~b), and −~a,~b, (3.24)

where the bar denotes averaging over vectors ~a′ ·~b′ within small angles of ~a

and ~b. Under the assumption that there are boundaries ε and δ, with

|P (~a,~b) + ~a~b| ≤ ε and |~a~b− ~a~b| ≤ δ, (3.25)

it is shown that the boundaries, i.e. the difference between classical descrip-

tion and a quantum mechanical description, can not be made arbitrary small

4(ε+ δ) ≥ |~a · ~c− ~a ·~b|+~b · ~c− 1. (3.26)

Therefore the quantum mechanical expectation value from equation Eq.3.19

can not be represented in the form of equation Eq.3.17.

3.3.1 Correlation measurements of photons

In 1951 Bohm published a paper [Bohm, 1951] reformulating the EPR argu-

ment, in which he replaced position and momentum measurements, by po-

larization measurements of two entangled spatially separated particles. This

paper illustrated the essential features of the EPR argument and presents

the paradox in the way it is found in many books today.

To describe correlation measurements, let us consider a source, which
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Figure 3.1: Scheme of the cascade decay in an calcium atom. Two photons

are emitted at 551 nm and 423 nm wave length [Freedman and Clauser, 1972].

produces two entangled photons, for inctance, by an atomic cascade decay

of calcium [Freedman and Clauser, 1972, Aspect et al., 1982] as depicted

in Fig.3.1, which are emitted in opposite direction. Since they are a decay

product of an initial state with an angular momentum of J = 0 the photons

must have opposite angular momentum one to the other. That is for example,

one photons is emitted along the positive z-axes ~ez and the other along the

negative z-axes −~ez, as depicted in Fig.3.2. The resulting state is given by

|ΦAB〉 =
1√
2

(
|RA, RB〉+ |LA, LB〉

)
, (3.27)

with |R〉 is right hand circular polarization and |L〉 is left hand circular

polarization. This is a so called Bell state.

Source
υ
A

υ
B

α β

x
A

y
A

x
B

y
B

x

y z

Figure 3.2: Source of entangled photons sending two photons (νA, νB) towards

two polarization filters and detectors. On the left hand side the polarization

filter can be rotated by an angle α on the right hand side by an angle β
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This equation can be transformed into the laboratory frame in terms of

measurement directions xA, yA and xB, yB resulting in

|RA〉 =
1√
2

(
|xA〉+ i|yA〉

)
(3.28)

|LA〉 =
1√
2

(
|xA〉 − i|yA〉

)
(3.29)

|RB〉 =
1√
2

(
|xB〉 − |yB〉

)
(3.30)

|LB〉 =
1√
2

(
|xB〉+ |yB〉

)
(3.31)

⇓
|ΦAB〉 =

1√
2

(
|xA, xB〉+ |yA, yB〉

)
, (3.32)

with |xi〉 and |yj〉 representing linear polarized states. Two polarization filters

and detectors are placed along the flight path of νA and νB. The polarization

filters can be rotated around the z-axes as depicted in Fig.3.2, filter A by an

angle of α and filter B by an angle of β. Using projection operators depending

on the angle α of the polarization filter [Scully and Suhail Zubairy, 1997],

P̂x(α) = |αx〉〈αx| (3.33)

P̂y(α) = |αy〉〈αy|, (3.34)

with

|αx〉 = cosα |x〉+ sinα |y〉 (3.35)

|αy〉 = − sinα |x〉+ cosα |y〉 (3.36)

the probabilities for the outcome of a measurement at the left and the right
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side can be calculated

P+(α) = 〈ΦAB|P̂x(α)|ΦAB〉 = 〈ΦAB|αx〉〈αx|ΦAB〉 =
1

2
(3.37)

P−(α) = 〈ΦAB|P̂y(α)|ΦAB〉 = 〈ΦAB|αy〉〈αy|ΦAB〉 =
1

2
(3.38)

P+(β) = 〈ΦAB|P̂x(β)|ΦAB〉 = 〈ΦAB|βx〉〈βx|ΦAB〉 =
1

2
(3.39)

P−(β) = 〈ΦAB|P̂y(β)|ΦAB〉 = 〈ΦAB|βy〉〈βy|ΦAB〉 =
1

2
. (3.40)

These single measurement give random results of equal probability. But

when joint measurements are performed the probability for each set of joint

measurement becomes a function of the difference in angles to which the

polarization filters are set to.

P++(α, β) = 〈ΦAB|P̂x(α)P̂x(β)|ΦAB〉 =
1

2
cos2(β − α) (3.41)

P+−(α, β) = 〈ΦAB|P̂x(α)P̂y(β)|ΦAB〉 =
1

2
sin2(β − α) (3.42)

P−+(α, β) = 〈ΦAB|P̂y(α)P̂x(β)|ΦAB〉 =
1

2
sin2(β − α) (3.43)

P−−(α, β) = 〈ΦAB|P̂y(α)P̂y(β)|ΦAB〉 =
1

2
cos2(β − α). (3.44)

The probability for finding both photons in the same polarization is given

Psame(α, β) = P++(α, β) + P−−(α, β) = cos2(β − α). (3.45)

The probability for finding both photons in the different polarization is given

Pdiff (α, β) = P+−(α, β) + P−+(α, β) = sin2(β − α). (3.46)

When the polarization filters are set parallel (α = β) the probabilities for

joint measurements become

P++(α, α) = P−−(α, α) =
1

2

P+−(α, α) = P−+(α, α) = 0.

(3.47)

This means for parallel polarization filters, that when the photon νA is found
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in the + channel, the photon νB must be found in the plus channel too.

When photon νA is found in the - channel, then the photon νB is also found

in the - channel. Thus full correlation occurs and by measuring on one side

the outcome on the other side is instantly known with certainty. This can

also be expressed using the correlation coefficient for polarization

EQM(α, β) = P++(α, β)+P−−(α, β)− P+−(α, β)− P−+(α, β) (3.48)

EQM(α, α) = 1, (3.49)

for parallel polarization filters the correlation becomes 1, or fully correlated.

When the measurement is performed on one side first in direction α and

the photon is found in the + channel, then a measurement of the photon in

direction α on the other side has to be found in the + channel with certainty,

even when the latter is measured much later. In quantum mechanics the

outcome of the measurement is defined in the moment when the measurement

is performed on one side, and the collapse of the wave function specifies the

outcome of the measurement on the other side instantly. At the first glance

this seams to violate the laws of relativity since the outcome on the second

side is known instantly regardless of the distance between the photons. Never

the less it is not, since no actual information transport has happened, just

the collapse of the wave function.

3.3.2 Classical and quantum mechanical correlation

measurements of correlated spin-1/2 particles

For simplicity of the argument λ is chosen to be a continuous parameter.

Every particle is emitted with a random λ which holds the relation∫
ρ(λ) dλ = 1. (3.50)
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As an example the parameter λ is now chosen to be an angle in the xy-

plane measured from the x-axes in the range 0 to 2π. A pair of particles

emitted at the same time have the same parameter λ assigned randomly.

The probability distribution becomes

ρ(λ) =
1

2π
, (3.51)

which results in each possible direction of the polarization is equally likely.

There must also be an unambiguous function SλA(α) that assigns the outcome

of a measurement to be either +1 or −1, according to the parameters λ and

α, to give deterministic outcomes. The same is true for the second particle

with SλB(β). The functions giving an unambiguous outcome for every λ can

be chosen to be

SλA(α) =

+1 (α− λ) ≥ 0

−1 (α− λ) < 0
(3.52)

SλB(β) =

+1 (β − λ) ≥ 0

−1 (β − λ) < 0
. (3.53)

Using the definitions above, which give deterministic results just like clas-

sical mechanics, the probability for measuring +1 and −1 respectively can

be calculated by

PCL
+ (α) =

∫
ρ(λ)

SλA(α) + 1

2
dλ =

1

2
(3.54)

PCL
− (α) =

∫
ρ(λ)

1− SλA(α)

2
dλ =

1

2
(3.55)

Accordingly the probabilities for the other side can be calculated by

PCL
+ (β) =

∫
ρ(λ)

SλB(β) + 1

2
dλ =

1

2
(3.56)

PCL
− (β) =

∫
ρ(λ)

1− SλB(β)

2
dλ =

1

2
. (3.57)
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The probabilities for joint measurements can be calculated

PCL
++(α, β) =

∫
ρ(λ)

SλA(α) + 1

2

SλB(β) + 1

2
dλ (3.58)

PCL
+−(α, β) =

∫
ρ(λ)

SλA(α) + 1

2

1− SλB(β)

2
dλ (3.59)

PCL
−+(α, β) =

∫
ρ(λ)

1− SλA(α)

2

SλB(β) + 1

2
dλ (3.60)

PCL
−−(α, β) =

∫
ρ(λ)

1− SλA(α)

2

1− SλB(β)

2
dλ. (3.61)

The correlation function for this system can be given by

ECL(α, β) =

∫
ρ(λ)SλA(α)SλB(β) dλ =

2|β − α− π|
π

− 1. (3.62)

The fact that ECL(α, β) is given by using the product of the functions SλA(α)

and SλB(β) reflects the locality inherent in this description, i.e. independence

of a measurement on A form a measurement on B, and the other way around.

The equation Eq.3.49, which is calculated for spin-1 particles can be cal-

culated in the same manner above for spin-1/2 particles yielding

EQM(α, β) = cos2
(β − α

2

)
− sin2

(β − α
2

)
= cos(β − α). (3.63)

In Fig.3.3 a comparison between the correlation function for the classical

hidden-variables model given by Eq.3.62 and the quantum mechanical corre-

lation function given by Eq.3.63 is depicted. Note that the correlation func-

tions differ by small amounts. This small derivations between the hidden-

variable model and quantum mechanical description seamed to be resolvable,

but are not as Bell has proven in his paper.

3.3.3 Simple example given for Bell’s inequality

The discussion above shows, under special circumstances, a fundamental de-

viation between classic and quantum mechanical description of the EPR para-

dox. However, in his famous paper Bell presented a general approach to this
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Figure 3.3: Polarization correlation coefficients for hidden-variable correla-

tion ECL(α, β) in red and quantum mechanical correlation EQM(α, β) in blue,

as a function of the relative angle β − α of the Stern-Gerlach magnets.

problem deriving Bell’s inequality, which is an so called ’no-go theorem’, dis-

proving all local hidden variable theories at once. Starting with three pairs

of measurements with all three having the same functional dependency of

the parameter λ and an arbitrary measurement angle δ

SλA(δ) = SλB(δ) = SλC(δ) = Sλ(δ). (3.64)

The three measurements are performed at pairs of angles (α, β), (α, γ), and

(β, γ). Starting with this the equation Eq.3.21 results in

ECL(α, β)− ECL(α, γ) = −
∫
ρ(λ)

[
Sλ(α)Sλ(β)− Sλ(α)Sλ(γ)

]
dλ

=

∫
ρ(λ)Sλ(α)Sλ(β)

[
Sλ(β)Sλ(γ)− 1

]
dλ

(3.65)

Which leads to

|ECL(α, β)− ECL(α, γ)| ≤
∫
ρ(λ)

[
1− Sλ(β)Sλ(γ)

]
dλ

|ECL(α, β)− ECL(α, γ)| ≤ 1 + ECL(β, γ),

(3.66)
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this inequality corresponds to equation 3.23. This equation conflicts with

quantum mechanical predictions, which can be shown by setting the mea-

surement angles to α = π/3, β = 2π/3, and γ = π in an experiment using

spin-1/2 particles. The correlation functions for the given angles give

EQM(α, β) =
1

2
, EQM(α, γ) = −1

2
, and EQM(β, γ) =

1

2
, (3.67)

and result in a violation of the inequality

1 ≤ 1

2
. (3.68)

This incompatibility of local hidden variables with the results of nature and

quantum mechanics results in the foreclose all local hidden variable theories.

3.3.4 CHSH-formulation of Bells inequality

In 1969 Clauser, Horne, Shimony and Holt (CHSH-form) reformulated Bells

inequalities [Clauser et al., 1969]. This new formulation is suitable for the

first experimental test of quantum non-locality [Freedman and Clauser, 1972,

Aspect et al., 1982]. The inequality given by CHSH is

|S| ≤ 2, (3.69)

where

S(a, a′b, b′) = E(a, b)− E(a, b′) + E(a′, b) + E(a′, b′). (3.70)

This algebraic sum S(a, a′b, b′) is constructed from correlation functions

E(α, β), with analysis angles α = a, a′ for detector A and analysis angles

β = b, b′ for detector B. The measurement results can be ηA(α) = +1,−1

and ηB(β) = +1,−1. Calculating the S(a, a′b, b′) using classical expectation
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values as given in Eq.3.62 leads to the result

|SCL(a, a′b, b′)| = |ECL(a, b)− ECL(a, b′) + ECL(a′, b) + ECL(a′, b′)| ≤ 2.

(3.71)

While a quantum mechanical calculation using Eq.3.63 results in

SQM = cos(b− a)− cos(b′ − a) + cos(b− a′) + cos(b′ − a′). (3.72)

When we us θαβ = α − β and setting the angles a = 0, a′ = π/2, b = π/4,

and b′ = 3π/4 which leads to equidistant θαβ = θ = π/4 the result of the

algebraic sum becomes

SQM(θ) = 3 cos(θ)− cos(3θ) = 2
√

2, (3.73)

which is the largest result for SQM possible. A comparison between the

classical limit −2 ≤ SCL ≤ 2 and the quantum mechanical limit 2
√

2 ≤
SQM ≤ 2

√
2 is given in Fig.3.4, where the green hatch part is the area of

values not allowed classical but quantum mechanical. When the result of

0 π/2 π 3π/2 2π

θ [rad]

2
√

2

2

1

0

1

2

2
√

2

S
(θ
)

Figure 3.4: Comparison of the S value between local hidden variable theories

(red) and quantum mechanics (blue). The green hatched areas are regions

prohibited by local hidden variable theories but allowed in quantum mechanics.
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an experimental measurement of S exceeds the classical limit of |S| ≤ 2,

as done in many experiments [Freedman and Clauser, 1972, Aspect et al.,

1982, Bertlmann and Zeilinger, 2002, Kwiat et al., 1995, Weihs et al., 1998],

this proves that no local hidden variable theory can reproduce nature and

quantum mechanics ever. In the experiments the correlation functions are

contracted as follows

E(α, β) =
N++(α, β)−N+−(α, β)−N−+(α, β) +N−−(α, β)

N++(α, β) +N+−(α, β) +N−+(α, β) +N−−(α, β)
, (3.74)

with the coincidence rates N±±(α, β) at the detectors.

3.3.5 Bell’s inequality for a single spin-1/2 particle and

quantum contextuality

All discussions above are base on some source of entangled particles, propa-

gating in opposite directions. However, there exists no neutron source avail-

able, which emits pairs of entangled neutrons with sufficient intensity.

In the paper ’Bell’s inequality for a single spin-1/2 particle and quan-

tum contextuality’ [Basu et al., 2001] a different approach is presented, that

utilizes entanglement of two different degrees of freedom spaces of a sin-

gle spin-1/2 particle, instead of entangled entangled pairs of particles. It is

shown that noncontextual models [Mermin, 1993] can be tested, with out a

localilty assumption given by Bell in his equality.

The spin-1/2 particle is described in terms of a tensor product H =

H1⊗H2, where H1 and H2 correspond to the mutual disjoint Hilbert spaces

for spin degree of freedom and path degree of freedom. They argue the

experimental arrangement is given, as depicted in figure Fig.3.5.

A beam of neutrons polarized in +z direction enters a Mach-Zehnder

interferometer. The wave functions ψ1 and ψ2 are manipulated by a spin-

flipper and a phase shifter, and the outgoing wave functions ψ3 and ψ4 leave
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Figure 3.5: Experimental arrangement using a Mach-Zehnder interferometer,

with two beam splitters (BS1, BS2) and two mirrors (M). A neutron beam,

polarized in +z direction, passes through the first beam splitter (BS1). In one

path the spin is flipped by spin-flipper (SF). A phase shifter (PS) induces the

phase shift φ. The beams are recombined at the second beam splitter (BS2).

Each outgoing beam passes a Stern-Gerlach device and four detectors (D3±

and D4±) are coupled to the four channels of the Stern-Gerlach devices.

the interferometer.

The Bell-like state

Ψ =
1√
2

(
| ↓〉 ⊗ |I〉+ eiφ| ↑〉 ⊗ |II〉

)
(3.75)

is generated, with |I〉 and |II〉 corresponding to the upper and the lower

beam path, and | ↑〉 and | ↓〉 being the spin polarizations parallel or anti-

parallel to the z-axes. For measuring the Bell-like inequality given by Basu,

et al.

|〈A1B1〉+ 〈A1B2〉+ 〈A2B1〉 − 〈A2B2〉| ≤ 2, (3.76)

joint measurements of the path observable Ai and Bj need to be performed.
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The path observable Ai and the spin observable Bj can be deduced form the

count rates (N±3 and N±4 ) of the four detectors (D3± and D4±). For example:

〈A1〉 = N+
3 +N−3 − (N+

4 +N−4 )

〈B1〉 = (N+
3 −N−3 ) + (N+

4 +N−4 )

〈A1B1〉 =
[
N+

3 +N−3 − (N+
4 +N−4 )

][
(N+

3 −N−3 ) + (N+
4 +N−4 )

] (3.77)

Similar relations can be derived for 〈A1B2〉, 〈A2B1〉, and 〈A2B2〉. By

choosing suitable orientations of the Stern-Gerlach devices and phase shifter

settings for the joint measurements 〈Ai, Bj〉, the result of a measurement of

equation Eq.3.76 is larger than 2: a violation of Bell’s inequality is achieved,

and therefore noncontextual models are falsified. This measurement arrange-

ment is suitable for showing a violation of this Bell-like inequality using

perfect-crystal neutron interferometry.

3.4 Experiment: setup and improvement

To show the violation of Bell’s inequality a setup is needed that provides high

degree of polarization, high contrast of the interferometer, thermal stability,

efficient spin-manipulation, and efficient spin-analysis. Since the classical

limit for local hidden variable theories is |SCL| ≤ 2 and the quantum me-

chanical predicts is |SQM | = 2
√

2, an overall efficiency ξ of the setup of less

than ξ ≤ 0.707 makes a violation of Bell’s inequality not achievable. The

efficiency of the setup ξ is a product of all imperfections of the setup, such

as degree of polarization and contrast of the interferometer of less than 1, or

the efficiency of the spin manipulation devices. To obtain a violation as high

as possible every element of the setup must be optimized to highest possible

performance. For example if the degree of polarization is P = 0.9 and the

contrast is C = 0.78 it is impossible to show a violation of Bell’s inequality,

since the highest result achievable would be 2
√

2 · ξ = 1.98, which would be
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within the classic boundaries.

Previously used neutron interferometry setups [Hasegawa et al., 2003,

Erdösi and Hasegawa, 2011] had drawbacks that degrade the quality of the

measurement results.The devices used were designed for one measurement

only, and could not be used for other experiments. In many other experiments

contrast and degree of polarization were not as big as an issue, as they are

for Bell measurements. The spin manipulators used were often constructed

in a way so that the beam inside the interferometer passed through material

such as Mu-metal sheets [Hasegawa et al., 2003], anodized aluminum [Allman

et al., 1997] or magnetic foils [Abutaleb et al., 2012], causing dephasing and

therefore loss in contrast.

To avoid depolarization the spin-turners need to provide a homogeneous

magnetic field over the whole beam cross section and well defined magnetic

field transissions between the guid field and the field of the spin manipula-

tion device. Devices lacking this properties [Werner et al., 1975, Erdösi and

Hasegawa, 2011] would cause too much depolarization.

Figure 3.6: a) Setup with mu-metal inserted in the beam as spin-rotator. b)

Setup using a mu-metal ring to shield the guide field causing depolarization

due to field inhomogeneity.

For Bell-measurement using single-neutron interferometry two different
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setups were realized [Hasegawa et al., 2003,Erdösi and Hasegawa, 2011] ear-

lier, in which the spin manipulation was problematic causing loss in con-

trast and degree of polarization. These two setups are depicted in figure

Fig.3.6. The interferometer with inserted soft magnetic Mu-metal foil as a

spin-rotator is depcited on the left side [Hasegawa et al., 2003]. The rotation

is achieved by a magnetic field induced into the Mu-metal by a coil around

the sheet outside of the IFM. The Mu-metal sheet considerably reduced the

contrast of the IFM by dephasing. To overcome this problem am other setup

was designed, which does not need any material in the neutron beam in the

interferometer [Erdösi and Hasegawa, 2011], shown in figure Fig.3.6 on the

right side. In one path of the interferometer the beam passes a tube of Mu-

metal which reduces the magnetic guide field strength and thereby induces

a relative spin-rotation by different amount of Larmor precision in the two

IFM paths. Since the guide field leaks into the cylinder at its open ends, the

field homogeneity is compromised which causes depolarization of the neutron

beam. This setup also requires a spin turner in front of the interferometer

which in addition reduces the degree of polarization as described below.

A new setup is designed to improve performance and tuneability. This

setup is not only used to measure Bell’s inequality, but also for the measure-

ment of the quantum Cheshire Cat, spin and path weak values, path state

reconstruction, the quantum pigeonhole effect [Denkmayr et al., 2014,Sponar

et al., 2015,Denkmayr et al., 2017,Waegell et al., 2017], and is still in use for

other experiments.

3.4.1 Measurement concept

Essential for every Bell measurement is the generation of a fully entangled

state, or Bell-like state. In the Bell argument one particle moves towards the

detector A while the other moves in opposite direction to detector B, with

anti-parallel spin polarizations. In this experiment a single loop interferom-
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eter providing two paths the neutrons can go through is used, with spin sx+

in path I and spin sx− in path II, as given in

ΨBell =
1√
2

(
|I〉|sx+〉+ |II〉|sx−〉

)
. (3.78)

This is a fully entangled or Bell-like state. Instead of using two detectors

and two polarization filters as proposed by Bell, one detector measures a

correlation of the spin and the path observable. The algebraic sum S given

in equation Eq.3.70 becomes a function of a parameter for spin measurement

direction α, which is an angle in the yz-plane of the Bloch sphere, and the

phase shift χ between the paths,

S(α, α′, χ, χ′) = E(α, χ) + E(α, χ′)− E(α′, χ) + E(α′, χ′), (3.79)

with the correlation function

E(α, χ) =
N++(α+, χ+)−N+−(α+, χ−)−N−+(α−, χ+) +N−−(α−, χ−)

N++(α+, χ+) +N+−(α+, χ−) +N−+(α−, χ+) +N−−(α−, χ−)
.

(3.80)

The coincident rates are given by N±,±(α±, χ±) = [1 + cos(α± − χ±)]/2

The largest violation of Bell’s inequality is given for spin analysis directions

α+ = 0, α′+ = π/2, α− = π and α′− = 3π/2, and path selections χ+ = π/4,

χ′+ = 3π/4, χ− = 5π/4 and χ′− = 7π/4. This settings result in a theoretical

violation of S = 2
√

2 � 2. Figure Fig.3.7 shows the spin and path settings

depicted on Bloch-spheres.

In Fig.3.8 the experimental setup is shown. A magnetic guide field ~BGF =

(0, 0, BGF ) is applied over the whole setup to prevent depolarization. The Bell

state (Eq. 3.78) is prepared by polarizing the neutrons in the +z direction

using birefringent prisms as described in section 2.3.1, which is then rotated

into +y direction, by DC spin-rotator as described in section 2.3.5. The beam

polarized in +y direction enters the interferometer and is rotated around the

z-axes by −π/2 in path I and by π/2 in path II by two Larmor accelerators,

one in each path, as described in section 2.3.4. At this stage the Bell state
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Figure 3.7: Left: Spin measurement direction for the largest violation of Bell’s

inequality. Right: Path selection for largest possible violation. The super

position of path I and path II results in a path state in the equatorial plane

which can be rotated by phase shifter by an angle of χ.

is prepared.

In order to set the path states χ± and χ′pm, a phase shifter in the inter-

ferometer is tuned accordingly. The path part of the wave function is given

by

ψ(χ) =
1√
2

(
|I〉+ eiχ|II〉

)
. (3.81)

Only the neutron beam measured by the O-detector is used for the measure-

ment, since it is the only beam able to show full contrast, as described in 2.2.

That is why spin analysis is only applied on the O-beam. The spin selection

is accomplished by a second DC spin-rotator and a supermirror. By tuning

the field strength of the DC spin-rotator the polar angle θ measured from the

z-axes is adjusted. While the azimuth angle φ is tuned by moving the DC

spin-rotator along the flight path of the neutrons. Due to Larmor precision

caused by the guide field, the change in length l of the flight path up to the
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Figure 3.8: Setup for measuring Bell’s inequality. Magnetic prisms polarize

the neutrons and a DC spin-rotator rotates the spin in +y direction. In the

interferometer a Bell state is generated by two Larmor accelerators. The

path state is selected by a phase shifter and the third plate of the interfer-

ometer. Behind the interferometer the spin state is selected by an other DC-

spinrotator and the supermirror spin analyzer. The O-detector counts the

selected neutrons. A guide field is applied over the whohle setup to prevent

depolarization.

DC spin-rotator results in different azimuth angles φ, as given in

φ(l) =
2µBGF

~vn
l. (3.82)

Since the supermirror lets the |sz+〉 spin component pass and the other com-

ponents are filtered out, the second DC spin-rotator must be tuned in a way

that the spin component required for the measurement is rotated into z+

direction. The O-detector only measures the neutrons passing through the

supermirror, which have a the spin component parallel to the +z direction.
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3.4.2 Setup design

In this experiment symmetrical triple-Laue interferometer is used, which has

an overall length of 123 mm, a plate thickness of 3 mm, and a plate separation

of 53 mm. This interferometer named ’Kaiser interferometer’, is chosen be-

cause of the high contrast of > 0.9 [Geppert et al., 2014] and the large space

between the plates to accept sufficiently large spin manipulation devices. In

order to achieve a large violation all components of the setup must be op-

timized to reduce perturbations on the system. The two most important

factors are high temperature-stability and avoiding depolarization.

The neutron interferometer is very sensitive to temperature fluctuations,

which reduces contrast and induces phase fluctuation.
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Figure 3.9: Influence of the surrounding temperature on the contrast of the

interferometer. At 25.15 ◦C a contrast C > 0.88 is achieved, which is marked

with a dashed green line. At a temperature 1 ◦C higher than the ideal tem-

perature a contrast of only C < 0.60 can be achieved.

The spin manipulators inside the interferometer i.e. the Larmor accelera-

tors, need to be water cooled since the coils produce heat that would disturb
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the interferometer. To evaluate the influence of temperature fluctuations on

the interferometer the water temperature inside the Larmor accelerators is

changed and the contrast is measured at different temperatures. In figure

Fig.3.9 the contrast as function of the cooling water temperature of spin ma-

nipulation device is given. When the temperature is set to the temperature of

the setup environment the contrast becomes largest, because no temperature

gradients are present and the interferometer is kept at a stable temperature.

This is fulfilled at 25.15 ◦C and the contrast at this cooling water tempera-

ture is C > 0.88. When the temperature of the spin manipulation device is

changed by just 1 ◦C the contrast drops to C < 0.6. A temperature of 0.7 ◦C

over the ideal temperature leads to a drop in contrast to below C < 0.71 and

therefore no violation of Bell’s inequality would be notable.
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Figure 3.10: The phase shift induced by temperature change of the Larmor

accelerators inside the interferometer.

Even more delicate is the phase shift induced by temperature gradients

and fluctuations as shown in figure Fig.3.10. A change in temperature of 1 ◦C

results in a phase shift of 1.92 rad. This results in S < 2 for a temperature

change of just 0.22 ◦C. In practices even a small droplet of water evaporating
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on the surface of the Larmor accelerator makes no measurements possible.

This results are specific for each interferometer and can variate a bit, but are

of similar magnitude for every interferometer.

The second big issue are in-homogeneous magnetic fields. If the field

applied by a spin manipulation device is not homogeneous over the whole

cross section, different parts of the beam are rotated by different amounts,

which results in depolarization. Every time a non-adiabatic field change

occurs the beam can loose degree of polarization easily. This effects can be

minimized by using adiabatic field transitions whenever possible, or aligning

fields producing a non adiabatic field transition as good as possible.

New guide field

The old guide field used in previous experiments had several shortcomings,

such as the small size, the in-homogeneous field, and insufficient thermal

properties. The old guide field didn’t allow for the newly built interferometer

presented in chapter 4 since it was too narrow. The small width of the guide

field also results in an in-homogeneous field over the width and height of the

guide field, since the field gradients increase in close proximity of the coil

windings. The old guide field had a water cooling system, but the thermal

coupling of the wires to the cooling water was insufficient, therefore to much

heat was transferred from the coils to the interferometer.

The guide field is the largest magnetic field component of the the new

setup. The new magnetic guide field should be as homogeneous as possible

over the whole width and length of the setup, while providing as much space

as possible between the coils for other components, such as the interferometer

it self, the spin manipulation devices and also an aperture for beam shaping.

The coils must be insulated and water cooled to avoid thermal perturbation

on the interferometer. The coils should be able to provide guide fields up

to 30 G, which is needed for some experiments using resonance frequency
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Figure 3.11: Pictures of the new guide field. Left: Side view of the Guide field

(red) in the setup. The length is limited by the radiation shielding to the left

and the supermirror to the right. Right: Detail of the setup from above. The

guide field is built wide enough to fit the table on which the interferometer

stands and a box of acrylic glass around the interferometer.

spin-rotators. A Helmholtz-like design is made with a pair of coils which are

separated in z-direction by half their width, which provides a homogeneous

field along the longitudinal center line except for the very ends. A CAD-

drawing of the of one coil frame is shown in figure Fig.3.12.

The windings (orange) are embedded in an aluminium frame (black),

which provides structural support and tubing for the cooling water. The

tubing for cooling water is rectangular with a width of 36 mm and 16 mm

height. The frame provides a rectangular gap of 38 mm width and 18 mm

height, which is enough space for 120 windings of the wire with a diameter

of 2 mm. This results in a resistance of 1.8 Ω for each coil. The gaps between

the wires are filled with heat conducting resin to provide good heat transport

from the wires to the cooling water. The coils are wrapped in insulating foam,

which reduces the heat transport towards the interferometer. The finished

coils weigh about 25 kg each.

The length of the guide filed is limited to 1.1 m by the space between the

shielding around the neutron guide in front, and in the back by the position
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Figure 3.12: CAD-drawing of one of the two coil frames for the guide field.

A cut is shown in the upper right corner, representing the finished coil with

winding and insulation. Aluminium profiles (black) provide tubing for cooling

water (blue) and space for copper wire (orange). The gaps between the wires

is filled with heat-conducting resin. The coil is wrapped with insulating foam

(red).

of the supermirror in front of the O-detector, as can be seen in the photo

Fig.3.11 The interferometer is placed on a rotating table as can be seen on

the left picture in Fig.3.11. The table is enclosed in a acrylic box, which

avoids convectional ventilation at the interferometer. This box needs to fit

inside the guide field coils. Since the box is 0.3 m wide, the coils have to be

at least 0.31 m wide on the inside. The vertical distance between the lower

and the upper coil is 0.175 m, this distance accounts for the volume of the

windings.

The coils are connected in a parallel circuit. The new guide field provides

a field strength of 3.6 G/A, which results in a current of 8.3 A for the desired

maximal guide field of BGF = 30 G. Since the coils are in a parallel circuit
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the resulting thermal output is 62 W.

Monochromator

The monochromator selects neutrons with the wave length λ used in the ex-

periment and also defines the wave length distribution, therefore the neutron

velocity distribution. Depending on the design of the monochromator the full

width at half maximum (FWHM) σ of the wave length distribution can vari-

ate. It is basically a trade of between higher count rate for larger σ or longer

coherence length for smaller σ. The FWHM can be quantify by measuring

a rocking curve, where the intensity is measured while the interferometer is

rotated around the vertical axes. The monochromatiszation also influences

the efficiency of the spin manipulation devices. The angle of rotation of the

neutron spin is directly proportional to the time the neutrons are exposed

to the field, as given in α(τ) = 2µBτ/~. Since slower neutrons take more

time τ to pass a spin manipulator, they are rotate a little more than faster

neutrons, which effectively reduces the degree of polarization.

Also the initial degree of polarization is influenced by the monochromator,

because of the small separation between up-spin and down-spin component

of the neutron beam, achieved by the magnetic prisms. In figure Fig.3.13

a rocking curve of a beam passing through the two birefringent magnetic

prisms is shown. Two separated peaks are visible, one coming from the

up-spin component, the other the down spin component. When the peaks

get wider the peaks can overlap so much that down-spin neutrons fulfill the

Bragg condition at the up-spin peak, there fore they are reflected by the first

plate of the interferometer and reduce the degree of polarization.

In previous setups a single-fold reflection from a silicon perfect crystal

monochromator was used, which provided a beam with mean wave length of

1.92 Å and a FWHM of σ = 6.11 · 10−6 rad. In the new setup a three-fold

reflection from a new silicon perfect crystal monochromator is used which
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Figure 3.13: Rocking curve with the two birefringent prisms in place. Two

peaks are visible one consisting of up-spin neutrons the other of down-spin

neutrons.

provides the same wave length but a FWHM of 4.26 · 10−6. The respective

rocking curves are shown in Fig.3.14. The smaller FWHM is achieved at the

expense of about 10 % decreased count rate.

New DC spin-rotators

The DC spin-rotators consist of two coils one providing a field compensating

the guide field and a second for the field performing the desired spin-rotation,

as described in section 2.3.5. The two field should be perpendicular to each

other and the field transition from the guide field to the DC spin-rotator

field should be non-adiabatic. If the field transition would be adiabatic, the

spin polarization would follow the magnetic field change and would not ro-

tate as desired. A non-adiabatic field transition is best achieved when the

neutron beam is passing through the windings. Since the neutrons propagate

trough material, small angle scattering occurs. This small angle scattering is
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Figure 3.14: Rocking curve using a single-fold silicon perfect crystal

monochromator (red) and using a triple-fold silicon perfect crystal monochro-

mator (blue).

problematic for the first DC spin-rotator between the prisms and the interfer-

ometer: due to small angle scattering the FWHM of the rocking curves can

increase, therefore more down-spin neutrons are scattered into the up-spin

peak and the degree of polarization is reduced.

In the previous setups copper wires were used for the coils, which pro-

duced much scattering. The small angle scattering can be reduced in two

ways: by changing the winding material from a round wire to a flat band,

and by choosing a material with lower scattering cross section. Several pro-

totypes for the new DC spin-rotators are fabricated and tested. The first is

made out of high purity aluminium wire with a diameter of 0.5 mm. Alu-

minium has a ten times smaller scattering cross section than copper. Three

different DC spin-rotators are made, using copper and aluminium ribbons

instead of wires, which, due to their rectangular cross section, produce less

small angle scattering than wires made of the same materials. The copper
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Figure 3.15: An empty frame for a DC spin-rotator, a DC spin-rotator made

of copper ribbon, and one made of aluminium ribbon.

ribbons used are made of high purity copper, are 0.1 mm thick, and 3 mm

and 4 mm wide respectively. The high purity aluminium ribbon is 4 mm wide

and 1 mm thick. The aluminium wire is thicker because it is much less duc-

tile than copper and brittle when thin. Figure Fig.3.15 shows a frame of a

DC spin-rotator without wires and two completed types of DC spin-rotators,

one using copper ribbon the other aluminium ribbon. All DC spin-rotators

use the same frame design made of aluminium, which is 70 mm wide, 70 mm

high, and 20 mm deep.

All new DC spin-rotators are tested by measuring rocking curves with

the spin-rotators put between the monochromator and the interferometer.

As comparison a rocking curve is measured with nothing between monochro-

mator and interferometer. The results are shown in the graph Fig.3.16. In

table Tab.3.1 the results of the measurements are summarized. These mea-

surements show that there is more influence on the FWHM, whether wires

or ribbons are used, than the material properties for copper and aluminium.

The aluminium ribbon coils have the same properties as the copper ribbons

coils, within the errors. The FWHM of the ribbon coils is 30 % smaller than
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Figure 3.16: Rocking curves without a DC spin-rotator placed in the beam line

and with different DC spin-rotator designs in the beam line.

the FWHM of the wire coil. It is important to notice that not only the de-

gree of polarization is reduced by small angular scattering but also the count

rate. The wire coil has 30 % less peak height and therefore transmission than

the ribbon coils. For the experiment the 3 mm wide copper wire is chosen,

because it is easier to handle than aluminium ribbon and more windings can

be applied than with the 4 mm copper ribbon.

To test the degree of polarization of the setup and the efficiency of the

DC spin-rotators the two flipper method [Fredrikze and van de Kruijs, 2001]

is used. The interferometer is tuned so that the up-spin peak fulfills the

Bragg condition and one beam of the interferometer is blocked to remove

any possible path interference effects. One DC spin-rotator is put in front

of the interferometer, and one behind the interferometer. The supermirror

is placed in front of the O-detector so that only up-spin neutrons arrive at

the detector. Now four intensity measurements are performed: first with

both DC spin-rotators turned off I(off , off ), the second with the first set
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Peak FWHM

No Coil 1.000 1.000

Al Wire 0.56(1) 1.68(4)

Al Ribbon 0.80(1) 1.16(2)

Cu Ribbon 3mm width 0.84(1) 1.11(2)

Cu Ribbon 4mm width 0.85(1) 1.16(2)

Table 3.1: Rocking curve comparison with DC spin-rotator coils made of

different materials, normalised to the empty setup.

to induce a rotation of π I(on, off ), third the second DC spin-rotator set

to π spin rotation and the first turned off I(off , on), and fourth both DC

spin-rotators set to π spin rotation I(on, on). Using the equations below the

efficiencies (ξfront, ξback) of both DC spin-rotators and the overall degree of

polarization P are calculated,

ξfront =
I(on, on)− I(on, off )

I(off , off )− I(off , on)
, ξback =

I(on, on)− I(off , on)

I(off , off )− I(on, off )
,

P =

√√√√(I(off , off )− I(on, off )
)(
I(off , off )− I(off , on)

)
I(off , off )I(on, on)− I(on, off )I(off , on)

(3.83)

The measurement results for the four normalized intensities needed for

the evaluation of the degree of polarization and the efficiencies of the DC

spin-rotators are given in table Tab.3.2.

The degree of polarization is measured to be P = 0.999(6) or for simplicity

P > 0.993, the efficiency of the first DC-coil is ξfront = 0.98(1) and efficiency

of the second coil is ξback = 0.98(1). The degree of polarization using a DC

spin-rotator with a aluminium wire is P < 0.95.
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cps err

I(off , off ) 110.3 ±0.96

I(on, off ) 1.39 ±0.11

I(off , on) 1.26 ±0.10

I(on, on) 107.7 ±0.95

Table 3.2: Intensities measured for the evaluation of the degree of polarization

and the efficiencies of the DC spin-rotators.

3.5 Adjusting the setup

The S18 instrument at the ILL in Grenoble is a user facility which is used

for interferometric experiments as well as ultra small angular scattering (US-

ANS) experiments. Both typs of experiments can be performed at different

neutron wave length and therefore different Bragg angles. Both types of

experiments can either use polarized or unpolarized neutron beams. As a

consequence the setup has to be realigned, partly rebuilt, and adjusted from

scratch for every measurement cycle. The process of adjusting the setup

from scratch to the first measurement take two scientists between 10 and 14

days. The actual setup is placed on a vibration damping optical bench in a

concrete housing, to reduces thermal fluctuations.

Monochromator

First the monochromator, with a triple-fold reflection, that reflects the neu-

trons from the neutron guide onto the interferometer, needs to be adjusted.

The reflection plane used in the monochromator is the (2,2,0) crystal plane.

It is important that the beam coming from the monochromator has the de-

sired Bragg angle of θ = π/6. The neutron beam also needs to be horizontal,

otherwise it could not pass the small gap in the yoke of the magnetic prisms
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used for polarization. A laser level is utilized, which projects a height ad-

justable horizontal line, to set the detector to the correct height, as seen in

Fig.3.17. The monochromator is adjusted so that as many neutrons as possi-

ble arrive at the detector while satisfying the requirement mentioned above.

Figure 3.17: Pictures of the setup with red laser line of the laser level tool.

Adjusting the tilt angle of the interferometer

Next the interferometer is placed in the beam path and adjusted. First the

Bragg condition must be fulfilled. This is achieved by measuring a rocking

curve by rotating the interferometer along the vertical axes while only one

path the neutrons can take through the interferometer is open, the other is

blocked by cadmium beam stoppers. Usually path I is blocked, to reduce

background at the O-detector, caused by the direct beam coming from the

monochromator. Second the so-called ρ-axes, i.e. the tilt angle of the inter-

ferometer, needs to be adjusted, which is the rotation of the interferometer

along the beam direction. The goal is to get the (2,2,0) crystal plane of the

interferometer parallel to the reflection plane of the monochromator. The

measurement is executed by a measuring rocking for each position of the ρ-

axes. This increases the peak intensity and makes the FWHM of the rocking

curve narrower. The narrower the rocking curve the higher the achievable

degree of polarization as described above.
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Phase shifter and contrast of the interferogram

Now the phase shifter is inserted and both beam path are opened to allow ac-

cessing interference fringes. In this experiment a 3 mm thick slab of sapphire

(AL2O3) is used as the phase shifter. The interference pattern is measured

by rotating the phase shifter, which induces a phase shift χ between the two

paths of the interferometer. A typical interference pattern is shown in figure

Fig.3.18. The function g(χ) = y0 + A cos(fχ + φ), with the offset y0, the
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Figure 3.18: Interference pattern showing a contrast of C = 0.86.

amplitude A, the frequency f , and a phase φ, is least square fitted to the

measurement data. The contrast is calculated by C = A/y0.

Depending on the position where the neutron beam passes through the

interferometer, different contrasts emerges. By opening of the aperture, the

contrast of the interference patterns is decreased, due to phase and contrast

fluctuations across the area covered by the neutron beam. In order to reduce

this effect, a small aperture is chosen of 3 ·3 mm2 for the actual measurement

of Bell’s inequality. To find the spot on the interferometer that provides

the highest contrast a raster scan is performed. The aperture is moved in
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1 mm steps over a range of 8 mm wide and 3 mm height, at every position a

interference pattern is measured. In figure Fig.3.19 the obtained contrasts of

the interferograms are plotted. In height 0 mm at position 13 mm and 14 mm

the highest contrast is found and the aperature is set to position 13.5 mm

and 0.0 mm. The height 0 mm actually corresponds to 12 mm above the basis

of the interferometer. A lower position of the aperture would provide enough

space for the Larmor accelerator.

Figure 3.19: Results of a raster scan, where the contrast is plotted against the

position of the aperture.

During the adjustment and installment of each of the elements of the

setup, the housing of the interferometry setup is opened often, this results in

thermal perturbations and reduces the contrast of the interferometer. After

the setup is adjusted completely no perturbations occur and the whole setup

transits into stable thermal conditions over a time period of one to three

days. When the setup is in a thermal stable condition, contrast of C > 0.91

are measured.

In figure Fig.3.20 the mean intensity y0 is plotted against the position

of the aperture. The maximum intensity is at the position x = 13 mm and

z = 0 mm which is close to the position of the highest contrast. If they would
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Figure 3.20: Results of a raster scan, where the contrast is plotted against the

position of the aperture.

differ considerably, the interferometer would be moved, so that the region of

highest contrast of the interferometer matches the region of highest intensity

of the neutron beam.

Guide field

Now the polarimetric part of the setup is adjusted. To avoid depolariza-

tion of the neutron spin the guide field must be switched on, during the

measurements for the adjustment of the spin manipulation devices. First the

magnetic field is set to the desired field strength of 12 G using a Gauss-meter.

To cool the coils of the guide field a temperature regulating water pump runs

tempered water through the guide field coil frames. Depending on the tem-

perature of the cooling water the contrast of the interferometer changes, but

since the guide field coils are well insulated the change in contrast is small.

A temperature scan is performed, where the contrast is measured at different

temperatures of the cooling water for the guide field. the result is shown in

figure Fig.3.21 The temperature is set to 21.25 ◦C.
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Figure 3.21: Contrasts measured at different temperatures of the cooling water

of the guide field. A temperature of 21.25 ◦C provides the best performance,

which is marked with a dashed green line. The insulation of the guide field

coils results in a small dependency of the contrast on the change in temper-

ature.

Birefringent prisms

After the position of highest contrast is found the birefringent magnetic

prisms, working as a polarizer, are put in place. The function principles

of the prisms are described in section 2.3.1. The two prisms can be trans-

lated horizontally perpendicular to the beam direction, depending on their

position the angular separation between up-spin and down-spin component

changes. The best position for the prisms can be evaluated by blocking one

beam in the interferometer to avoid interference effects and measuring rock-

ing curves at different positions of the prisms. First the best position for the

prisms closer to the monochromator is adjusted, followed by adjusting the

best position of the second prism with the first in place. With the prisms in

the beam two peaks are visible in the rocking curve, as can be seen in figure
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Fig.3.13. The measurement data is fitted with the function

g(θ) = y0 +
A√
2π∆

(
e−

(x−x0)2

2∆2 + e−
(x−x0−δx0)2

2∆2

)
, (3.84)

with the offset y0, the peak height A, the peak width ∆, the position of the

first peak x0 and the separation of the peaks δx0. The best position for the

prisms is found when the peak separation δx0 becomes largest. An angular

separation of the up-spin and the down-spin component of 2.3 · 10−5 rad is

found in our setup. Due to the small acceptance angle of the Bragg-reflection

of the interferometer these two peaks can be clearly separated, and the chosen

peak has a degree of polarization of P > 0.993.

Supermirror

Next the supermirror spin analyzer is put in the beam line and adjusted.

The correct height of the supermirror is adjusted using the laser level. The

supermirror has a 20 mm entry window and exit window and is 0.86 m long,

which results in an acceptance angle of 0.05 rad. To adjust the supermirror

two translation stages, one at the front and the other at the back of the

supermirror, translate the supermirror perpendicular to the beam line. This

allows for adjusting angle and lateral position of the supermirror. When

the maximal intensity is found the supermirror is adjusted and the spin

manipulation devices can be installed and adjusted.

DC spin-rotator

The DC spin-rotator in front of the interferometer needs to be adjusted first,

since it is needed to adjust the other components. For adjusting a DC spin-

rotator three steps are required: first a rough adjustment of the field in

±x-direction without compensation field; second scanning the compensation

field in -z direction with the field in x-direction set to the estimated current
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needed for a rotation of θ = π; and third a precise scan of the field in ±x-

direction with the compensation field active. For all these measurements one

path is blocked in order to avoid path interference during the measurement.
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Figure 3.22: Plot of the intensity versus the current in the coil of the DC

spin-rotator producing a field in ±x-direction, with out a Bz compensation

field. The flip ratio is 4.25 and the efficiency 0.76

The first scan of the field in ±x-direction is depicted in figure Fig.3.22.

A cosine function is fitted to the obtained data. Without a compensation

field the DC spin-rotator shows poor flip ratio of Imax/Imin = 4.25, which

translates to a efficiency of ξ = 0.62. It is important that the field in ±x-

direction is square to the magnetic guide field. If this is not the case the

minimum on one side is lower than on the other and the cosine curve is

shifted in one direction. In this case the coil needs to be tilted until both

minimums are on the same height and the cosine function has phase φ = 0

i.e. the maximum of the fit function is at I = 0 A. The required current for

the measurement of the compensation field is extracted out of the fit results

to be Imin = 3.259 A.
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Figure 3.23: Scan of the compensation field of the DC spin-rotator, with

roughly estimated filed in y-direction applied.

With the current in the coil in x-direction set, a scan of the compensation

field is executed. Since the field needs to be applied in -z-direction, negative

currents must be applied. The scan is shown in plot Fig.3.23, with a sine

curve fitted to the data. The minimum given by the fit result gives the

strength needed for the compensation field Icomp = −0.861 A.

With the compensation field established a precise scan of the field in

±x-direction can be performed. The result of this scan is depicted in figure

Fig.3.24, with a cosine curve fitted to the data. The flip ratio of this scan

is FR = 99.8 and the corresponding efficiency is ξ = 0.98. The currents for

specific spin-rotation angles θ are derived from the fit. The current needed

for a rotation of π, i.e. a spin flip, is I(π) = 3.463 A, which results in a

polarization of the beam in the −z-direction or a spin state of |sz−〉. For a

spin state in +y-direction or a |sy+〉, as desired for the experiment a current

of I(π/2) = 1.732 A is needed.

The DC spin-rotator behind the interferometer is adjusted in the same
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Figure 3.24: Plot of the precise scan of the field in ±x-direction of the DC

spin-rotator, with the compensating field in -z-direction applied.

manner as the DC spin-rotator in front of the interferometer, and has about

the same flip ratio of Imax/Imin = 99.8. To select any possible spin direction

for measuring at the detector an other parameter additional to the current in

the coil in ±x-direction needs to be applied; the current only gives a rotation

around the x-axes i.e. the polar angle θ. By moving the coil back and

forth along the beam path the azimuth angle φ can be adjusted additionally,

due to Larmor precision by the guide field. Therefore the DC spin-rotator

behind the interferometer is put on a translation stage to be able to adjust

the azimuth angle φ. A scan is performed where the DC coil in front of the

interferometer is set to Ifront(π/2), the DC coil behind the interferometer

is set to Iback(−π/2), and one path in the interferometer is blocked. While

moving the coil back and forth the intensity at the O-detector oscillates. At

the position of maximal intensity the |sy+〉 spin component is selected for

detection, at the position of minimum intensity the |sy−〉 spin component

is selected, and on the positions in between the two spin components |sx+〉
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and |sx−〉 are selected respectively. This is shown in plot Fig.3.25. The

positions for the respective spin component selections are marked by dashed

green lines. To select the |sz+〉 spin component the DC coil can be turned

off Iback(0) = 0, for the |sz−〉 component the DC coil is set to Iback(π) at any

position of the translation stage.
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Figure 3.25: Plot of the intensity modulation as a function of the position of

the DC spin-rotator coil behind the interferometer. The dashed green lines

show the positions i.e. the azimuth angle φ = 0, π/2, π, 3π/2 for selecting the

|sx±〉 and |sy±〉 respectively.

Larmor accelerators

After the DC spin-rotators are adjusted the Larmor accelerators are placed

in the interferometer. The Larmor accelerators need to be cooled when in

use, since the 3D printed plastic can melt and the coils deform when they
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get to hot (> 80 ◦C). Despite the fact that only little power is applied to

the Larmor accelerators, about 1 W, this power output takes place in a small

insulated volume of about 4 cm3. To avoid negative influences of the water

temperature on the interferometer a temperature scan of the cooling water of

this device is performed. The results of this scan is shown in figure Fig.3.9.

The temperature, which allows for the highest contrast, is chosen at 25.15 ◦C.

Now beam in path I of the interferometer is blocked and a current versus

intensity scan can be performed. To do so the DC spin-rotator in front of the

interferometer is set to Ifront(π/2) and the DC spin-rotator in the back is set

to select the |sy+〉 component for measurement. By applying field additional

to the guide field in ±z-direction the azimuth angle φ of the spin polarization

can be adjusted, which results in a change in intensity at the detector as seen

in Fig.3.26.
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Figure 3.26: Plot of the intensity modulation as a function of the current

in the Larmor accelerator in path II. The current needed for a rotation of

φ = π/2 is marked with a dashed green line.

The current of ILA(π/2) = −2.559 A for a rotation of φ = π/2 is calcu-
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lated from the least square fit parameters of the cosine function. By rotating

the |sy+〉 spin state by φ = π/2 the |sx−〉 state in path II is generated. Note

that the maximum is exactly at zero current, since this path was used to

adjust the DC spin-rotators. The flip ratio measured is Imax/Imin = 22 or

an efficiency of ξ = 0.91 is obtained respectively. Considering that this effi-

ciency is reduced considerably by the efficiencies of the two DC spin-rotators

and the degree of polarization, the efficiency of the Lamor accelerator itself

is extracted to be ξ ≈ 0.96.

The Larmor accelerator in path I is adjusted in the same way, but with

the beam stopper put in path II. The results of the scan is shown in figure

Fig.3.27, with a cosine curve fitted to the data. To establish the |sx+〉 state

in path I a rotation of φ = −π/2 is needed. The corresponding current of

ILF (−π/2) = 2.766 is marked with a dashed green line in the graph. Note
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Figure 3.27: Plot of the intensity modulation as a function of the position

of the DC spin-rotator coil behind the interferometer. The dashed blue lines

show the positions i.e. the azimuth angle φ for selecting the |sx±〉 and |sy±〉
respectively.
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the small shift of the maximum of the cosine curve to the right by φ ≈ π/16,

which is caused by a small in-homogeneity of the guide field. Given the path

length of roughly 100 mm in which the two beam path are separated, the

mean guide field difference between path I and path II is about 0.2 G or

1.5 % of the guide field strength.

By using the evaluated efficiencies of each element of the setup, an overall

efficiency is calculated to be ξsetup = 0.84. This gives an estimate for the

maximal achievable violation of Bell’s inequality of S(ξsetup) = 2
√

2 · ξsetup =

2.376. This rough estimation can also be applied in a similar manner to

other measurements performed utilizing this setup. In earlier measurements

the overall efficiency of the old setup was about ξold = 0.72, as calculated

from the magnitude of the violation of Bell’s inequality.

Now all devices needed for the measurement of Bell’s inequality are ad-

justed. However, it is possible to adjust the setup differently in a large variety

of settings. The incoming state can be set to any point on the Bloch sphere,

since the DC spin-rotator in front of the interferometer can also put on a

translation state, which allows for setting the azimuth angle φ. The DC

spin-rotator is able to select any spin component for measurement. Using

the Larmor accelerators the degree of entanglement can be adjusted from

not entangled at all, to a fully entangled state. The Larmor accelerators

are also used to mark the paths in weak measurements as done in other

measurements [Denkmayr et al., 2014, Sponar et al., 2015, Denkmayr et al.,

2017,Waegell et al., 2017] using this setup.

3.6 Results

The Bell state |ψBell〉 = (|sx+〉|I〉 + |sx−〉|II〉)/
√

2 is generated as described

above. Four phase shifter scans are performed for one data set, each at dif-

ferent settings for the spin selection angles α+ = 0,α− = π,α′+ = π/2, and
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α′− = 3π/2. Since the measurement is very sensitive to temperature fluc-

tuations the four phase shifter scans are convoluted into one measurement:

the phase shifter is set to the first measurement position and a count rate

is measured for each spin direction α. Then the phase shifter is moved to

the next position and again count rates for all four spin directions are mea-

sured. By doing so eventual phase drifts are spread evenly onto all four phase

shifter scans and no relative phase drift between the phase shifter scans oc-

curs. However, temperature drifts may result in a change of the period of

the interference patterns, but this does not compromise the measurement

results. The results of such a measurement of a set of interference patterns

for each spin direction α is shown in figure Fig.3.28. The dashed green lines

show the phase settings needed to evaluate result of the Bell measurement.

The different mean intensities obtained for the measurements in α− = π di-

rection and α′− = 3π/2 direction, is a result of a miss alignment. Either the

generated state is not a perfect Bell state, or the measurement directions for

αi are not correctly adjusted.

Two sets of data are collected, so that the measurement time for each

measurement is shorter and less susceptible to temperature fluctuations. One

set is measured 60 s per phase and spin selection setting, the other 90 s. This

two sets are evaluated separately and an average over the two results is

calculated to reduce statistical error.

The data is normalized to the time counted and least square fitted with

a sine curve g(x) = y0 + A sin(fχ + φ), the standard deviation σ =
√
n

of the count rate n is used a weighting for the fit. The values given by

the fit functions for the phase settings χ+ = π/4, χ− = 5π/4, χ′+ = 3π/4,

and χ′− = 7π/4 give the values for the coincidence rates N(α±, χ±). The

error of the coincident rates can be calculated using the variance of the fit

parameters. The S value is calculated as given in the equations Eq.3.74 and
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Figure 3.28: Interference patterns of the Bell measurement. The four plots

show interference patterns at different measurement directions α. The dashed

green lines mark the phase settings χ used for the evaluation of the expectation

E(α, χ) values.

Eq.3.70. Using error propagation

σBell =

√∑(∂S(xi)

∂xi
σi

)2

, (3.85)

the standard deviation of the measurement result is calculated. We obtain

the final result,

S = 2.365± 0.013, (3.86)

which gives a violation of 28σ, well above the classical limit of S < 2.
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3.7 Discussion

The new devices used in the setup considerably improve the abilities of the

polarized neutron interferometer setup. Using a new coil design for the DC

spin-rotators and a triple-fold monochromator, a degree of polarization of the

incoming beam of P > 0.993 is achieved. The newly designed spin manipu-

lation devices allow for very accurate adjustment, as well as high flexibility

of the setup. New Larmor accelerators allow the reduction of thermal distur-

bances on the interferometer. Dephasing is not an issue since no material is

put in the beam path inside the interferometer. This results in high contrasts

of C > 0.91.

The value of S = 2.365± 0.013 for the Bell-like inequality measurement,

is 28σ above the limit of 2 for noncontextual hidden variable theories. It

therefore proves, that no contextual hidden variable theory can reproduce

the predictions of quantum mechanics. This clear violation of the Bell-like

inequality is much higher than previous measurements using neutron interfer-

ometry [Hasegawa et al., 2003,Erdösi and Hasegawa, 2011], and was achieved

in a fraction (∼ 1/10) of the measurement time used in the other experiments.





Chapter 4

Which-way measurement

4.1 Introduction

The first double slit experiments by Young 1802, was performed to show the

wave theory of light, and to contradicted Newton’s corpuscular theory. In

the double slit experiment a coherent light source illuminates a plate with

two narrow parallel slits. A screen is placed behind the the plate, on which

interference patterns become visible. Experiments using massive particles

such as electrons [Davisson and Germer, 1927,Jönsson, 1961,Tonomura, 1987]

or neutrons [Rauch et al., 1974] also showed interference fringes. Later on

experiments using even larger particles like atoms [Cronin et al., 2009], or

even large molecules [Arndt et al., 1999,Nairz et al., 2003] showed interference

fringes in double-slit experiments.

However, there is an important distinction between the classical version

of the double-slit experiment, e.g. using a beam of light, and the quantum

mechanical version, using massive particles: In a classical experiment, using

electromagnetic waves, interference fringes are instantaneously visible on the

screen. In a quantum mechanical experiment using massive particles only

statistically distributed detection-spots appear at the first stage, and inter-

91
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ference fringes become visible only after an accumulation of enough particles.

The question arises which way a particle took in a double slit experiment.

When which-way information is obtained by putting a detector in one

path the interference patterns vanish, since the detected particles can no

longer interfere with the particles traveling through the other path. This

led to the complementarity principle formulated by Bohr [Bohr, 1928], which

states that a quantum system either shows particle or wave properties. A

simple experiment proposed by Ghose [Ghose et al., 1991] with a simple twist

as suggested by Bose [Bose, 1927] illuminates issues with the complementarity

principle by Bohr. Let’s consider a 50:50 beam splitter and two detectors

in the beam in transmitted direction Dt and one in the beam in reflected

direction Dr. Single photons passing trough the beam splitter can either be

detected at Dt or Dr the detectors never click at the same time, which is

perfect anti-coincidence and particle behavior. When a biprism with a small

tunneling gap is placed in one path, only photons that tunneled, i.e. a wave

property, can be detected at the respective detector. Englert inrtoduced

the duality relation D2 + V 2 ≤ 1 [Englert, 1996], which represents a trade

off between path information, or distinguishability D, and visibility V of

the interference fringes, which allows for both particle and wave properties

in a system: the more information is extracted about the path, the less

interference fringes are visible. Quantum eraser experiments show that, if

which-way information is extracted the visibility is reduced up to the point

of no visibility, when the which-way information is ’erased’ afterwards the

visibility is regained [Herzog et al., 1995,Walborn et al., 2002].

Many theoretical discourses and experiments [Greenberger and Yasin,

1998, Englert, 1996, Dürr et al., 1998] tried to push limits to obtain as

much path information as possible while still allowing for interference ef-

fects. New approach to which-way measurements is the two-state vector

formalism [Watanabe, 1955, Aharonov et al., 1964, Aharonov and Vaidman,
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1990, Vaidman, 2013]. In the two-state vector formalism each particle is

described by a backward-evolving quantum state created at the detector,

in addition to the standard, forward-evolving wave function created at the

source. The two-state vector formalism implies that a particles can have a

local observable effect only if both the forward- and backward-evolving quan-

tum waves are nonvanishing at this location. The chain of causality in the

two-state vector formalism is the combination of the forward causality of the

particle coming from the source, and the backward causality of the particle

from the future, i.e. a particle traveling back in time.

In 2013 a experiment was presented by Danan et al., using this two-state

vector formalism to explain the results of a which-way measurement in a laser

Mach-Zehnder interferometer [Danan et al., 2013]. They make the claim,

that ’The photons do not always follow continuous trajectories. Only the

description with both forward and backward evolving quantum states provides

a simple and intuitive picture of pre- and postselected quantum particles.’

We present a which-way experiment using a double-loop interferomete,

and apply small time-dependent which-way marking by resonance-frequency

spin-rotators. The which-way information is extracted via Fourier-analysis

of the time-dependent detector signal behind the interferometer. We give a

simple picture, explaining the observed results: In our picture cross terms

between the main (time-independent) component and the which-way marked

components of the wave function in the interferometer are responsible for the

observed effects. This picture provides a deeper understanding of the physics

involved and gives quantitative results, which is missed the two-state vector

formalism, in the form presented by Danan et al.
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4.2 Theory

In this experiment a four plate double-loop interferometer is used that pro-

vides three spatially separated paths which are recombined at the fourth plate

and interfere with each other. A scheme of the interferometer is depicted in

Fig.4.1.

O-Det

H2-Det

H1-Det
IFM

PS
II

PS 
R

R

I

II

FL

I+II

x
y

z
O

H1

H2
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Figure 4.1: Double-loop interferometer with three beam paths. The neutron

beam is depicted in green. The front-loop (FL) is composed of two beams in

path I, and path II. A phase shifter (PSII) tunes the phase of the front loop.

One outgoing beam in path I+II is combined with the reference beam in path

R. The phase of the reference beam in path R is tuned using phase shifter

PSR. Three detectors O, H1, and H2 measure the intensity of the outgoing

beams in paths O, H1, H2 respectively.

The three path can be described as a normal single-loop Mach-Zehnder

interferometer with an additional beam (reference beam) that interferes with

one of the outgoing beams of a single-loop interferometer (front-loop). Two

phase shifters are used the first one (PSII) tunes the phase of the front

loop, the second phase shifter (PSR) tunes the phase of the reference beam

relative to the outgoing beam it interferes with. The incoming wave function
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in path in is normalized Iin = |ψin|2 = 1. Each plate acts as a beam splitter,

as described in section 2.2. Between second and third plate three separate

beams are present with corresponding wave functions and phases 1
2
eiχIψI ,

1
2
eiχIIψII , and 1

2
eiχRψR. At the third plate beams in path I and path II are

recombined to

1

2
eiχI+IIψI+II =

1

2
√

2
eiχIψI +

1

2
√

2
eiχIIψII , (4.1)

with χI+II = Arg
(
eiχI + eiχII

)
. The intensity II+II = |ψI+II |2 = 1

4

[
1 +

cos(χI − χII)
]

is analogous to the intensity of a single-loop interferometer.

By tuning the phases of beams in path I and path II the intensity of the

beam in path I+ II can be tuned between 0 ≤ II+II ≤ 1/2 in relation to the

initial intensity Iin. At the fourth plate the beam in path I + II is combined

with the reference beam in path R and compose the beam in path O. The

wave function in path O can be written as

ψO =
1

2
√

2
eiχI+IIψI+II +

1

4
eiχRψR. (4.2)

The intensity at the O-detector is given by

IO = |ψO|2 =
1

16

[
3+2 cos(χI−χII)+2 cos(χI−χR)+2 cos(χII−χR)

]
. (4.3)

In practice only two phase shifters are needed, because an overall phase

can not be resolved, only the relative phases between the beams in each path

are of importance. Therefore the phase of the beam in path I can be assigned

to be zero, while the phases of the beams in paths II and path R can be tuned

with the phase shifters PSII and PSR respectively.

To obtain which-way information which-way markers are facilitated. This

markers should make a small imprint on the wave function without much dis-

turbance on the system, so that coherence is conserved, and must allow for

a accurate readout behind the interferometer. In this experiment which-way

markers are inserted at four positions in the interferometer. To mark four
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Figure 4.2: A schematic depiction of the setup. The neutrons are polarized in

positive z-direction +z by passing two magnetic prisms (P) before entering

the four plate interferometer. The first three plates provide a regular Mach-

Zehnder interferometer consisting of paths I and II. The fourth plate enables

a reference beam R to interfere with the outgoing beam of the interference loop

in front in path I + II. Phase shifter PSII tunes the phase of the front-loop

and phase shifter PSR tunes the phase of the reference beam. Four which-

way markers (WWMi), and two slots for absorbers (ABi) are placed in the

interferometer. An energy compensator (EC) and a supermirror (SM) are

place in font of the O-detector.

different paths (I, II, R, and I+II) in the interferometer simultaneously the

usual marking, like absorbers or static spin rotations, used in previous exper-

iments [Denkmayr et al., 2014,Sponar et al., 2015] are not suitable: they do

not allow extraction of which-way information of four paths simultaneously.

In the presented experiment resonance-frequency spin-rotators are chosen,

since they can provide distinguishable which-way marking for each path. By

applying a small energy shift of different magnitude in each path, which leads

intensity modulation in time, with different frequencies, attributed to each
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path. Since every path is marked with a different energy shift ∆Ei = ~ωi,

which-way information can be derived by a Fourier-analysis of the intensity

modulation in time at the O-detector. A peak at the frequency ωi, found

in the power spectrum, is clear evidence that neutrons have taken path i.

The physical principles of a resonance-frequency spin-rotator are described

in section 2.3.6.

A scheme of the setup is depicted in Fig.4.2. The incoming beam is

spin-polarized in positive z-direction represented by sz+, being the positive

eigen-state of the spin operator Ŝz = ~
2
σ̂z. (For easier readability the notation

is changed in comparison to chapter 4.) The spin polarization is achieved

by two birefringent prisms (P) as described in section 2.3.1. The down-spin

component is represented by sz−, which is the negative eigen-state of the spin

operator Ŝz = ~
2
σ̂z. Two phase shifters (PSII , PSR) are inserted in the inter-

ferometer, and there are two slots for absorbers (ABI+II , ABR) are between

the third and fourth plate of the interferometer. Four which-way markers

(WWMI , WWMII , WWMR, WWMI+II) are placed inside the interferom-

eter for which-way marking, and one resonance-frequency spin-rotator (EC)

behind the interferometer for energy compensation, as described below. A

supermirror spin-analyzer (SM) is put in front of the O-detector. Two more

detectors H1-Det, and H2-Det monitor the phases of the front loop and the

reference beam.

The design of the resonance-frequency spin-rotators is described in section

2.3.6. The magnitude of the energy shift ∆Ei = ~ωi is tuned by the local

guide field and the frequency ωi of the oscillating field of the corresponding

which-way marker. The amount of which-way marking is controlled by a

rotation angle α of the neutron-spin. This angle α is chosen to be small

enough to reduce perturbation on the wave function due to marking. The

unitary transformation ÛWWM(ω, α) represents the rotation of the neutron
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spin by a resonance-frequency spin-rotators

ÛWWM(ω, α) =

 cos(α/2) −ieiωt sin(α/2)

−ie−iωt sin(α/2) cos(α/2)

 . (4.4)

When ÛWWM(ωi, αi) is applied on a wave function Ψi = sz+ ⊗ ψi between

second and third plate the result is given by

Ψ′i = ÛWWM(ωi, αi)Ψi

=
eiχi

2

[
cos(αi/2)sz+ − ie−iωit sin(αi/2)sz−

]
⊗ ψi

=
eiχi

2

[
sz+ − ie−iωit sin(αi/2)sz−

]
⊗ ψi +O(α2

i ),

(4.5)

with i = I, II, R. The energy shift results in a time dependent phase of e−iωit.

In Fig.4.3 a diagram of the energy levels is depicted. The up-spin component

sz+ is represented by the solid blue line and the down-spin component sz−

by the dashed red line.

The path I + II coming from the front loop is also marked by an energy

shift of ∆EI+II = ~ωI+II by which-way marker WWMI+II between the third

and the fourth plate of the interferometer. The wave function Ψ′I+II behind

which-way marker WWMI+II is given by

Ψ′I+II = ÛWWM(ωI+II , α)
1√
2

(Ψ′I + Ψ′II)

= s+ ⊗ ψI+II −
i√
2

∑
i

sin(αi/2)e−iωiteiχis− ⊗ ψi +O(α2
i ),

(4.6)

with i = I, II, I + II, and the definition of ψI+II as in Eq.4.1. The beam

in the (marked) path I + II is recombined with the reference beam in the

(marked) path R at the fourth plate. The wave function in path O behind

the interferometer is given by ΨO = 1√
2
Ψ′I+II + 1

2
Ψ′R.

Behind the interferometer an energy compensation of ∆EEC = ~ωEC is

performed in path O by resonance-frequency spin-rotator WWMEC to reduce

the overall energy shift of the which-way marking, as seen in Fig.4.3. This
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Figure 4.3: Schematic of the energy levels of the neutrons, terms of second

order and higher order are neglected. Up-spin components s+ are represented

by the solid green line, down-spin components sz− by the dashed red line. Only

the up-spin components reach the O-detector the down-spin components are

filtered out by the supermirror. Region 1 represents the beam before entering

the interferometer in the energy level of the incoming beam. In regions 2 and

3 represent the which-way marking, that takes place between the second and

third plate, and the third and fourth plate of the interferometer respectively.

In region 4 the energy compensation behind the interferometer is set.
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is achieved by a spin-rotation of α±EC = ±π/2 at a frequency of ωEC . The

wave function behind WWMEC is given by Ψ±EC = ÛWWM(ωEC , α
±
EC)ΨO. It

is important to point out that only the frequency differences ∆Ei = ~(ωi −
ωEC) = ~∆ωi between the initial energy, and the compensated energies, need

to be resolved by the O-detector as seen in Fig4.3. Before the beam reaches

the O-detector a super-mirror filters out the down-spin component. The

super-mirror is represented by the projector Π̂sz+ onto the sz+ state. The

wave function behind the super-mirror Ψ±SM = Π̂sz+Ψ±EC can be written as

Ψ±SM = [
eiχI

4
√

2

[
1∓ sin(αI/2)

(
e−i∆ωI t + e−i∆ωI+II t

)]
ψI

+
eiχII

4
√

2

[
1∓ sin(αII/2)

(
e−i∆ωII t + e−i∆ωI+II t

)]
ψII

+
eiχR

4
√

2

[
1∓ sin(αR/2)e−i∆ωRt

]
ψR ]⊗ s+ +O(α2

i )

= ΨE0 +
∑
i

Ψ±i +O(α2
i ),

(4.7)

where ΨE0 = 1
4
√

2
(ΨI + ΨII + ΨR) is the sum of the main components of

the wave functions at energy level ∆E = 0, and Ψ±i are the energy shifted

components , given by

Ψ±i = ∓ eiχi

4
√

2
sin (αi/2) e−i∆ωits+ ⊗ ψi, (4.8)

with i = I, II, R, I + II. The energy shifted component, i.e. which-way

marked component, of the which-way markers WWMI and WWMII , leaks

out of the front-loop interferometer, regardless of settings of PSII . The inten-

sity, up to first order of α, can be calculated by summing up the unchanged

energy component ΨE0 and the individual cross terms between the initial

energy components and the marking components Ψ±i , as given in

I± = |Ψ±SM |2 = |ΨE0|2

+2
∑
i

Re
(
Ψ∗E0

Ψ±i
)

+O(α2
i ),

(4.9)
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for i = I, II, R, I+II. The intensity of the O-beam behind the interferometer

is given by

I±O−Det =
1

32

[
3 + 2 cos(χI − χII) + 2 cos(χI − χR) + 2 cos(χII − χR)

∓ 2 sin(α/2)

[
cos(∆ωIt)

[
1 + cos(χI − χII) + cos(χI − χR)

]
+ sin(∆ωIt)

[
sin(χI − χII) + sin(χI − χR)

]
+ cos(∆ωIIt)

[
1 + cos(χII − χI) + cos(χII − χR)

]
+ sin(∆ωIIt)

[
sin(χII − χI) + sin(χII − χR)

]
+ cos(∆ωRt)

[
1 + cos(χR − χI) + cos(χR − χII)

]
+ sin(∆ωRt)

[
sin(χR − χI) + sin(χR − χII)

]
+ cos(∆ωI+IIt)

[
2 + 2 cos(χI − χII) + cos(χI − χR) + cos(χII − χR)

]
+ sin(∆ωI+IIt)

[
2 sin(χI − χII) + sin(χI − χR) + sin(χII − χR)

]]
+O(α2

i )

]
.

(4.10)

It should be noticed, that the first line of Eq.4.10 is equal to the intensity of

the unmarked double-loop interferometer in Eq.4.3, besides a scaling factor,

that accounts for the intensity lost by the energy compensation. This results

in an intensity, for the phases set to χI = χII = χR = 0 and αi = α,

I±(χI = χII = χR = 0) =

1

32

[
9∓ 6 sin

(α
2

) [
cos(∆ωIt) + cos(∆ωIIt) + cos(∆ωRt) + 2 cos(∆ωI+IIt)

]]
.

(4.11)

This setting provides highest possible intensity of the beam in path I + II,

and therefore highest possible intensity at the O-detector. The intensity at
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the O-detector for the phases χII = π and χI = χR = 0 is given by

I±(χI = χR = 0, χII = π) =

=
1

32

[
1∓ 2 sin

(α
2

) [
cos(∆ωIt)− cos(∆ωIIt) + cos(∆ωRt)

]]
.

(4.12)

This setting gives lowest possible intensity in the beam in path I + II. In an

ideal case no intensity would be measured, if a detector is put in the beam

in path I + II. By tuning the phase of the front-loop to χI = 0, and χII = π

the intensity at the O-detector drops to 1/9 of the intensity when the phase

of the front-loop is set to χI = χII = 0. At the same time the intensity of the

signal of WWMI , WWMII , and WWMR drops to 1/3, while the signal from

WWMI+II vanishes. This is easily understood by considering the fact that

1/9 of the amplitude corresponds to 1/
√

9 = 1/3 intensity. The amplitudes of

the wave functions in path I and path II cancel out, due to the phase shift

of χII = π.

In the experiment absorbers can be put in positions ABR, and ABI+II , as

depicted in Fig.4.2. By putting absorbers in the beam paths the interference

effect of the reference beam R on the outgoing beam I + II of the front

loop can be tuned and vice versa. The transmission of the absorbers (TABR ,

tABI+II ) is dealt with by multiplying each wave function by the square root

of the transmissivity Ti of the respective absorber

Ψ′I+II ≈
√
TABI+II eiχI+II

[
sz+ −

∑
i=I,II,I+II

ie−iωit sin(αi/2)sz−
]
⊗ ψI+II

(4.13)

Ψ′R ≈
√
TABR eiχR

[
sz+ − ie−iωRt sin(αR/2)sz−

]
⊗ ψR. (4.14)

The intensity I±AB incorporating the absorbers calculates accordingly to the
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intensity without the absorbers Eq.4.10. The intensity is given by

I±AB(χI = χR = 0χII = π) =

=
1

32

[
TABR − 2

√
tABRTABI+II sin

(α
2

)
cos(∆ωIt)

+2
√
TABRTABI+II sin

(α
2

)
cos(∆ωIIt)− 2TABR sin

(α
2

)
cos(∆ωRt)

]
,

(4.15)

for the phases set to χI = χR = 0, and χII = π, which is the only phase set-

ting used in the experiment when absorbers are inserted. When no absorber

is put in position ABR and beam stopper with zero transitivity T = 0 is put

in position ABI+II , only the signal of WWMR and the offset from the beam

in path R remains.

I±AB(tABR = 1, tABI+II = 0) =
1

32
− 1

16
sin
(α

2

)
cos(∆ωIIt) (4.16)

This is the intensity at the O-detector coming from the beam in path R and

interference between ΨR and Ψ′R. When a beam stopper is put in ABR and

no absorber is put in ABI+II , no signal arrives at the O-detector. The signal

of the beams in path I and II vanishes, as well as the blocked beam in path

R. This is understood by the fact, that no intensity arrives at the O-detector.

When the marking strength is increased by increasing the angle αi terms

of the order α2 can no longer be neglected, which makes the calculation much

more complicated, since the terms such as∑
i

∑
j

Re
(
Ψ±∗i Ψ±j

)
(4.17)

should be taken into account. In the extreme case of complete entanglement

of path and energy shift, given at αi = π, the phase shifters no longer shift

intensity from one detector to the other, but only add a phase to the time

depending intensity modulations. Without a time resolved measurement the

intensity at the O-detector would be constant, which is not the case for
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which way marking of α < π. This is analogous to Englerts duality relation

D2 + V 2 ≤ 1 [Englert, 1996], but in this case the visibility is proportional to

cos(α/2), and distinguishability is proportional to sin(α/2), which results in

cos(α/2)2 + sin(α/2)2 ≤ 1. (4.18)

This relation limits the amount of which-way information can be extracted,

while preserving a certain amount of visibility of the interference fringes.

4.3 Simulation

Due to imperfections in the setup and the interferometer, the interference

visibility is reduced. To be able to compare theoretical predictions with the

experimental results, the effect of the reduction in contrast needs to be ac-

counted for in a simulation. Deviations from the ideal theoretical predictions

are caused for example by external perturbations, reduced degree of spin po-

larization, efficiency of the spin manipulators and analyzer, misalignment of

the setup, and the contrast of the interferometer itself.

In case of the present experiment using a four plate double-loop inter-

ferometer, the contrast of the interferometer has the larges influence. Since

the simulation is an approximation and the other influences listed above are

considered to be small, in comparison with the effect of the contrast of the

interferograms, they are not taken into account.

First we consider a single loop interferometer with two path wave func-

tions ψI and ψII and try to give a simple description of reduced degree of

interference ability, by a contrast parameter 0 ≤ Ci,j ≤ 1. The wave functions

are given by

ψI =
1

2
√

2
eiχI , and ψII =

1

2
√

2
eiχII . (4.19)

The intensity of the outgoing beam towards the O-detector can now be writ-
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ten as

IO(Ci,j) =
∑
i=I,II

∑
j=I,II

Ci,j

(
ψ∗iψj

)
=

1

4
(1 + CI,II cos(χI − χII)) . (4.20)

By tuning Ci,j between 0 and 1 any contrast occurring in an experiment

can be simulated. For the double loop interferometer a set of three wave

functions are present,

ψI =
1

4
eiχI , ψII =

1

4
eiχII , and ψI =

1

4
eiχI . (4.21)

The contrast of each pair of wave functions need to be taken into account

Ci,j

∣∣∣
i 6=j

= {CI,II = CII,I , CI,R = CR,I , CII,R = CR,II}

CI,I = CII,II = CR,R = 1.

(4.22)

The intensity at the O-detector is given by

IO(Ci,j) =
∑

i=I,II,R

∑
j=I,II,R

Ci,j

(
ψ∗iψj

)
=

1

3

[
1 +

2

3

(
CI,II cos(χI − χII) + CI,R cos(χI − χR)

+ CII,R cos(χII − χR)
)]
.

(4.23)

At the first glance this relation allows for negative intensities for example

when the parameters χI = χR = 0, χII = π, CI,II = CI,R = 1, and CI,R = 0

are chosen, which results in

IO(Ci,j) = −1

9
. (4.24)

But this is not a possible set of parameter achievable in reality, since the

contrast parameters Ci,j are composed in practice as products of the co-

herent amplitudes of each wave function Acohi corresponding to the contrast
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parameter, as given in

AcohI AcohII = CI,II (4.25)

AcohI AcohR = CI,R (4.26)

AcohII A
coh
R = CII,R. (4.27)

This natural restriction is sufficient to avoid negative intensities at the O-

detector. Therefore the equation Eq.4.23 is valid for a double loop interfer-

ometer with reduced contrast. Furthermore since contrast of each pair of

wave functions is experimentally accessible, the values of Ci,j can be mea-

sured separately.

When the experiment is simulated including the spin dependent part of

the wave functions, the intensity at the O-detector can be calculated in a

similar manner as in equation Eq.4.9.

I±c.c. =
∑
i

∑
j

Ci,j

(
Ψ∗iΨj

)
+
∑
i

∑
j

Re
(
Ci,jΨ

∗
iΨ
±
j

)
+O(α2

i ). (4.28)



CHAPTER 4. WHICH-WAY MEASUREMENT 107

This result in an contrast corrected intensity of

I±c.c. =

1

32

[
3 + 2CI,II cos(χI − χII) + 2CI,R cos(χI − χR) + 2CII,R cos(χII − χR)

∓ 2 sin(α/2)[
cos(∆ωIt)

[
1 + CI,II cos(χI − χII) + CI,R cos(χI − χR)

]
+ sin(∆ωIt)

[
CI,II sin(χI − χII) + CI,R sin(χI − χR)

]
+ cos(∆ωIIt)

[
1 + CI,II cos(χII − χI) + CII,R cos(χII − χR)

]
+ sin(∆ωIIt)

[
CI,II sin(χII − χI) + CII,R sin(χII − χR)

]
+ cos(∆ωRt)

[
1 + CR,I cos(χR − χI) + CR,II cos(χR − χII)

]
+ sin(∆ωRt)

[
CR,I sin(χR − χI) + CR,II sin(χR − χII)

]
+ cos(∆ωI+IIt)[

2 + 2CI,II cos(χI − χII) + CI,R cos(χI − χR) + CII,R cos(χII − χR)
]

+ sin(∆ωI+IIt)[
2CI,II sin(χI − χII) + CI,R sin(χI − χR) + sin(CII,RχII − χR)

]]
+O(α2

i )

]
.

(4.29)

4.4 Preparations for the experiment

The present which-way measurement requires an interferometer that provides

three spatially separated interfering beams, and time resolved measurement

at the three detectors. Since there was no suitable interferometer, a new

double-loop interferometer is designed and fabricated. For the time resolved-

measurement a new FPGA-card (field programmable gate array) is installed

in the computer system at the S18 facility, new software is written and im-
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plemented in the existing control system of the S18 facility.

4.4.1 The new double-loop interferometer

To satisfy all requirements of the experiment a new interferometer must

be built to very specific needs. A interferometer is needed in which three

different beam paths interfere with each other. The distance between the

plates must be as big as possible to have as much space as possible in the

interferometer for spin manipulation devices. However, the design is limited

by the size of the silicon crystal rod and by technical restraints.

Design of the new double-loop neutron interferometer

When four plates are placed one after another, eight outgoing beams are

present behind the fourth plate as seen in Fig.4.4. Four of this outgoing

beams i.e. A, B, G, and H, can only be reached by one path the neutrons

can take, therefore the show no interference between three paths. The other

four outgoing beams can be reached by three path each, the neutron can

take. However, only path C can show a contrast of C = 1 in each of the

three possible loops. This is due to Pendellösungs effects, which are described

in section 2.2.1. Only beams which are reflected and transmitted the same

amount of times show full overlap and therefor full interference. There are

three paths for the neutrons ending up in beam C = ttrr + trrt+ rrtt. The

new double loop interferometer is designed in a way that beam C is used for

measurements. The plates need to be equally distanced and equally thick,

in order to enable full contrast in the experiment.

The interferometer is cut out of a silicon perfect crystal rod with 4 inch

diameter. The 220-plane is chosen as reflection plane, which allows to use

neutrons with a wavelength of 1.92 Å at a Bragg-angle of 30◦ and a symmet-

ric beam design. The thermal neutron guide H25 used at the S18 instrument

at the ILL provides highest neutron intensity at 1.92 Å, and therefore the
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Figure 4.4: A four plate interferometer with all possible outgoing beams (A-H)

depicted.

highest possible count rate. Since the coherence length of the neutrons is

about 10µm for the transversal direction of the beam trajectory, between

the plates should be within one order of magnitude below the coherence

length i.e. 1µm. This very high precision is feasible for the manufacturing

process.

Each plate should be as thin as possible to allow for more space for spin

manipulation devices, as well as to avoid to much widening of the beam, since

the beam gets widened by the plate thickness while passing it. If the plates

are to thin they will bend during the cutting process and therefor reduce

the achievable precision. After consulting with the company Holm-Silicon

[Holm, 2013], which actually did the cutting, a plate thickness of 2.5 mm

was chosen. The design of the interferometer is depicted in Fig.4.5,4.6, with

length specification in millimeters.

The distance between the plates is limited by the width of the crystal.

The incoming beam gets wider at every plate of the interferometer by the

thickness of the plate, as described in section 2.2.1. Since the interferometer

has four plates with a thickness of 2.5 mm the beam widens by 10 mm by
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Figure 4.5: CAD planes of the new double loop interferometer, with length

specification in mm. Left: Top-view of the interferometer. Right: Side-view

of the interferometer.

passing through the interferometer. Due to the Bragg-angle of θB = 30◦,

resulting in an angle between transmitted and reflected beam of 60◦, the

beam separation is as wide as the plate distance. The distance between the

interferometer plates is chosen to be 42.5 mm, as depicted in figure Fig.4.5.

This results in a separation between furthest left and furthest right position

of the beam of 64 mm. By adding the initial beam width of about 5 mm and

the beam widening of 10 mm, a rough estimate of the width needed by the

neutron beam is given at 79 mm. At the broadest point of the interferometer

of 100 mm, this allows for lateral adjustment of the beam within a range of

21 mm.

The beam path in the interferometer is depicted in 3D in Fig.4.7. Two

phase shifter plates (PSII , PSR) are sufficient to tune any relative phases

for the three beams. There are three outgoing beams, which are used in



CHAPTER 4. WHICH-WAY MEASUREMENT 111

30.00

50.00

70
.0

0

100.00

43.59

30
.0

0
40

.0
0

70.00

Figure 4.6: Side-view of the CAD plan for new double-loop interferometer,

withlength specification in mm.

experiments, labeled H1, H2, and O. By monitoring two of the three beams

the phase relations of all three paths can be monitored, i.e. H1 and H2.

The third beam can be used for additional analysis like spin state and time

resolution.

Principles of silicon etching

The cutting process produces micro cracks on the surface of the interferom-

eter, that need to be removed before the interferometer can be put to use.

This is achieved by chemical etching of 30µm in depth from the surface of

the whole interferometer. The etch bath consist of nitric acid HNO3 60 %

and hydrofluoric acid HF 40 %. The reaction takes place in several steps:

First the nitric acid is converted to nitrogen dioxide and water. Then silicon

dioxide builds up on the surface of the crystal. The silicon oxide is then



CHAPTER 4. WHICH-WAY MEASUREMENT 112
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Figure 4.7: Interferometer (IFM) with two phase shifters (PSII , PSR) in-

serted. Two beam stoppers (BS) block non-interfering beams, not used for

measurement. Three detectors (O, H1, H2) detect beams which can show

interference.

removed by the hydrofluoric acid. This whole process can be written as

HNO2 + HNO3 −→ 2NO2 + H2O

2NO+Si −→ Si2+ + 2NO−2

Si2+ + 2(OH)− −→ SiO2 + H2

SiO2 + 6HF −→ H2SiF6 + 2H2O

⇓
Si + 6HF + HNO3 −→ H2SiF6 + HNO2 + H2 + H2O

(4.30)

The etching bath is a mixture of 60 parts nitric acid and 1 part hydrofluo-

ric acid. The mixing ratio determines the etching rate, the more hydrofluoric

acid is added the faster the etching rate. The expected etching rate using a

60 : 1 mixture is 0.3µm/min [Zawisky et al., 2009], which can vary depend-

ing on temperature and roughness of the surface of the interferometer. It is

important to etch slowly to get homogeneous etching on the whole surface of
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the interferometer. When etching fast the interferometer heats up, especial

the plates and the edges, the higher the temperature the faster the etching

process. Also when etching fast the exchange of exhausted acid and fresh

acid is in-homogeneous over the surfaces of the interferometer. Both effects

result in a higher etching rate at edges, which results in a cushion like shape

of the plates, referred to as ’cushion effect’. Which results in defocusing of

the neutron beam and therefor a reduction in contrast. Both effects are in-

evitable, but can be reduced by slow etching and constant temperature of the

etching bath. When an etching depth of about 100µm is reached the cushion

effect has built up to an amount that is already reducing the contrast of the

interferometer, etching any further should be avoided.

When the etching rate is to high, gas bubbles appear on the surface of the

crystal. This bubbles cause an in-homogeneous etching result. By moving

the interferometer in the etching bath, the bubbles can be removed.

During the etching process the hydrofluoric acid is degraded and needs to

be replaced at a rate of 20 ml per gram of silicon removed from the interfer-

ometer. How much mass of silicon is removed during the etching process can

be calculated using ∆mSi = AρSi∆d, where A is the surface of the interfer-

ometer, ρSi = 2.363 kg/m3 is the density of silicon, and ∆d is the expected

etching depth. By weighing the interferometer before and after the etching,

it is possible to calculate the actual etching depth using the formula above.

Interferometer etching process

Prior to the etching process the interferometer has to be cleaned to remove

any residue of the cutting process, which would have an adverse affect on the

etching. First the interferometer is put in a lean solution of the detergent

Dextran neutral c© in deionized water for several hours, to dissolve residue.

The interferometer is then wiped with dust free laboratory wipes to remove

residue. This is done until no more residue is visible on the laboratory wipes.
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Figure 4.8: Interferometer in an acetone bath before the etching process.

The interferometer is rinsed with deionized water before it is put in a bath

of p.a. (pro analysis) acetone for several hours, to dissolve any remaining

fouling. In Fig.4.8 the interferometer is shown in the acetone bath. The

interferometer is wiped again with laboratory wipes and acetone. To avoid

dust to set on the interferometer it is placed in the acetone bath until the

etching process.

The etching depth is estimated by weighing the interferometer before and

after the etching process. Since the interferometer weighs about 860 g and

the expected weight loss is expected to be about 5 g the weighing has to

be highly accurate. The scale used is a Sartorio PT-300 with a precision of

0.001 g at a weight of 1000 g. The interferometer is taken out of the acetone

bath dried using compressed nitrogen gas to get rid of any access acetone

as seen in Fig.4.9 and put on the scale Fig.4.9. Since the evaporation of

the acetone cools the interferometer moister in the air condensates on the
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Figure 4.9: Weighing of the interferometer. Left: Air-drying of the interfer-

ometer. Right: Interferometer on a high precision scale.

interferometer and therefore alter the weighing result. To get better weighing

results an average over three weighings is calculated. For the etching process

the etching bath is put in a water bath, which acts as a temperature reservoir

to keep the etching bath at a stable temperature as seen in Fig.4.10 . When

the interferometer is put into the etching bath bubbles can form on the surface

of the silicon crystal, which can degrade the quality of the etching process. By

moving the interferometer in the bath this bubbles can be removed. During

the etching hydrofluoric acid is dissipated and needs to be replaced. After

the estimated etching time, the interferometer is put into a bath of deionized

water to wash out the acids of the etching bath.

For the first etching an etching rate of 0.3µm/min was expected, there-

fore a etching time of 60 min was calculated for an etching depth of 18µm,

which is set lower than the 30µm expected for the interferometer to work,

to avoid too deep etching. Given the calculated surface of the interferometer

of 633.5 cm2, a mass loss of 2.7 g of silicon was expected, which results in a

consumption of 54 ml of hydrofluoric acid during the etching process. This

consumption needs to be compensated by adding hydrofluoric acid during the

etching. The hydrofluoric acid is added in 18 ml portions at 15 min, 30 min,



CHAPTER 4. WHICH-WAY MEASUREMENT 116

Figure 4.10: The etching bath in a temperature reservoir ready for etching.

and 45 min. The interferometer weighed before etching, and has a mass of

854.67 g. During the etching no bubbles appeared on the surface of the in-

terferometer, which is an indication for slow and homogeneous etching. The

interferometer is moved in the bath at least every 3 min to mix the etching

bath and to get acid exchange on the surface of the interferometer.

After 60 min of etching the interferometer is put in deinonized water to

get rid of any access acid and the etching bath is disposed. For weighing the

interferometer is put in an acetone bath, taken out, air dried and weighed

in the same manner as before the etching. The weight of the interferometer

after etching is 852.83 g, which gives a mass loss 1.83 g, therefor an etching

depth of ∆d = 12.2µm, and an etching rate of 0.2µm/min. The etching

rate is much lower than expected, which is caused by the very flat surface

provided by the company Holm-Silicon.

The goal for the second etching is to reach an over all etching depth of

30µm. Since the first etching reached 12.2µm, only 17.8µm need to be re-

moved now. By the etching rate of 0.2µm/min a etching time of 89 min is

calculated as well as 2.7 g of mass loss and 53 ml of hydrofluoric acid con-
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Figure 4.11: Interference pattern for two phase shifters in the interferometer.

sumption. The hydrofluoric acid is added in 18 ml portions after 22 min,

44 min, and 66 min.

After the second etching the interferometer weight 849.72g, which gives

an etching depth of 20.8µm and an average etching rate of 0.23µm/min.

The interferometer is now etched by 33.0µm overall, slightly more than ex-

pected. The interferometer is tested at the S18 at the ILL Grenoble, but no

interference fringes are found. This makes a third etching necessary.

The goal for the third etching process is to etch 15µm more. For the

etching the previously obtained average etching rate of 0.22µm/min is used

for calculations. This results in an etching time of 68 min, a weight loss of

2.25 g and a hydrofluoridic acid consumption of 45 ml. The hydrofluoric acid

is added in 15 ml portions after 17 min, 34 min, and 51 min.

After the third etching the interferometer weight 847.67g, which gives an

etching depth of 13.7µm at an etching rate of 0.2µm/min. The interferom-
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Figure 4.12: Interference pattern with one phase shifter fixed at a position

with maximum contrast for the second phase shifter.

Figure 4.13: Photography of the double-loop interferometer after the completed

etching process.
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eter is tested in Grenoble and showed a contrast of about 65 %. Two test

are made both with two phaseshifters in the interferometer as depicted in

Fig.4.7. In Fig. 4.11 an interference pattern for an array of positions for

phase shifter PSII and phase shifter PSR is depicted. Depending on the po-

sition of one phaseshifter the contrast achieved by tuning the other varies.

In figure Fig.4.12 phase shifter PSII is set to give a phase shift of 0 rad and a

phase shifter scan using phase shifter PSR is performed. The contrast of this

scan is 0.647(5). A photography of the finished double-loop interferometer is

depicted in Fig.4.13.

4.4.2 Time-resolved measurement

To obtain information of the which-way marking a time-resolved measure-

ment of the detector signal needs to be performed. This is achieved via a

FPGA card (field programmable gate array) and new software for the FPGA

card, as well as software, integrated in the slow control system (i.e. the

user interface) of the S18 instrument. The time resolution program is pro-

grammed using LAB-View c©. Beside the time resolution of the detector signal

the FPGA card also creates a trigger signal for the spin manipulators and

the data acquisition to ensure a synchronized processes. A schematic of the

time resolution system is given in Fig.4.14

The time resolved measurement is performed in a way that the slow con-

trol system gives parameters to the FPGA card i.e. loop time, delay time

of the trigger signal, duration of the trigger signal, duration of the mea-

surement, start signal, and stop signal. When the measurement is started

by sending the start signal to the FPGA card, the FPGA card starts loops

with given duration, every time a neutron is detected by one of the detectors

the FPGA card creates an entry in a FIFO data buffer (first in first out)

containing a detector identifier and the time of measurement of the neutron

since the start of the last loop. This buffer is read out by the slow control
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Figure 4.14: The setup for time resolved measurements, consisting of (1)

the slow control system, (2) FPGA card, (3) function generators, (4) sig-

nal amplifiers, (5) resonance-frequency spin-rotators, (6) detectors, (7) pre-

amplifier, and (8) single channel analyzer.
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system. In each loop a trigger signal is produced by the FPGA card starting

after the delay time is reached, and lasting as long as the given duration of

the trigger signal. The delay is to compensate for the time of flight of the

neutrons between the spin manipulators and the detector. The delay can be

calculated by subtracting the time of flight from the loop time. The trigger

signal is sent to the function generators, which produce sinusoidal output sig-

nals of given frequency and amplitude. The signal is forwarded to amplifiers,

which in turn power the spin manipulators. When the function generators

are triggered, the start producing a burst of sine waves for the duration of

one loop with certain parameters (i.e. frequency, amplitude, offset), given

by the slow control system. The parameters for the signal generators are set

before the FPGA card is activated. The FPGA card operates continuously

until the duration of the measurement is reached, or a stop signal is sent

from the slow control system.

The slow control system dequeues the buffer, and sorts the counts into

bins according to the time the neutrons where measured after start of the

loop. The slow control system creates two files, one with the accumulated

counts in each bin, and one with detection time of every single neutron. The

later can be used for investigating correlations in neutron detection.

The FPGA card used is a National Instrument c© NI PXI-7813R card, with

40 MHz clock frequency which gives a maximal time resolution of 25 ns. The

signal coming from each detector is preamplified by a mesytec-MRS-2000 c©

preamplifier, and discriminated by ORTEC c© 590A single channel analyzers

(SCA), which passes a TTL signal on to a digital input of the FPGA card.

When the signal from the SCA exceeds a threshold, the FPGA card registers

one count. The shaping time of the SCA limits the resolution to 500 ns. The

signal generators used are Tektronix c© AFG320, and the signal amplifiers used

are Toellner c© TOE7610.
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4.5 Experiment realisation

For the execution of this experiment some components, such as beam po-

larization, a spin analysis, vibration damping, and long-term temperature

stability, are identical to those used in the setup for the measurement of

Bell’s inequality. However, since the double-loop interferometer provides one

more path which need to be adjusted, two insted of one phase shiters, and

five instead of four spin manipulation devices are needed, which are more

complicated to adjust, the time for adjusting the setup increases by few

days.
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Figure 4.15: Rasterscan of the front-loop. Top: The double-loop interferome-

ter with a cadmium absorber (Cd) placed in path R. Only path I and path II

are able to show interference fringes, this loop is refereed to as the front loop

(FL). Bottom: Results of a raster scan of the front loop, where the contrast

is plotted against the position of the aperture.
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As in the Bell setup, the three-fold monochromator is adjusted first. Then

the interferometer is place in the beam and the rocking angle together with

the ρ-axes is adjusted. The double loop interferometer requires two phase

shifters. As a phase shifter PSII a 5 mm thick slab of silicon is used. The

second phase shifter PSR is made of 3 mm thick sapphire crystal.
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Figure 4.16: Rasterscan of the big-loop. Top: The double-loop interferometer

with a cadmium absorber (Cd) placed in path I. Only path II and path R

are able to show interference fringes, this loop is refereed to as the big loop

(BL). Results of a raster scan of the big loop, where the contrast is plotted

against the position of the aperture.

The double-loop interferometer provides three path, each pair of paths

shows interference fringes, which results in three different loops consisting of

two paths interfering with each other. To find the spot where the interfer-

ometer provides the highest contrast three raster scans must be performed.

Finally a raster scan of the aft loop is performed, with the Cadmium
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beam blocker in path II. This raster scan is performed using phase shifter

PSR. The results of this raster scan are depicted in figure Fig.4.17.
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Figure 4.17: Rasterscan of the aft-loop. Top: The double-loop interferometer

with a cadmium absorber (Cd) placed in path II. Only path I and path R

are able to show interference fringes, this loop is refereed to as the aft loop

(AL). Bottom: Results of a raster scan of the aft loop, where the contrast is

plotted against the position of the aperture.

First a scan of the front loop is performed with a Cadmium beam blocker

in path R, as plotted in figure Fig.4.15. The aperture in front of the in-

terferometer is moved in 2 mm increments over an area of 12 mm width or

Y -direction and 8 mm height in Z-direction, at each position a phase shifter

scan using phase shifter PSII is performed. The results of the raster scan are

shown in figure Fig.4.15.

In the same manner a raster scan of the big loop is performed with the

Cadmium beam blocker placed in beam path I, as depicted in Fig.4.16.
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The raster scan is performed in the same area as before using phase shifter

PSII again, since this is the phase shifter that is actually altered during the

measurement. The results are shown in graph fig.4.16.

For the measurement the position Y = 21 mm and Z = 4 mm, this posi-

tion shows good contrast for all three loops. The contrasts at this positions

are used for the simulation later on.

Next the guide field is set adjusted. The resonance-frequency spin-

rotators will operate at ωI/2π = 74 kHz, ωII/2π = 77 kHz ,ωI+II/2π =

80 kHz, and ωR/2π = 71 kHz respectively. The energy compensating SREC

behind the interferometer is set to the frequency ωEC/2π = 68 kHz. The local

guide fields adjust the the local guide field to satisfy the resonance condition

ωres =
2|µ|Btot

~

(
1 +

B2
osc

16B2
tot

)
, (4.31)

with Btot = BGF +Bloc, which is the sum of the guide field and the local guide

field. To reduce the fields applied by the local guide fields the guide field is

set roughly to the field strength needed for the middle frequency of ωI/2π =

74 kHz. This results to a field strength of about 25 G. In figure Fig.4.18

a CAD drawing is depicted showing the fields applied by the resonance-

frequency spin-rotator on the left side, and on the right side a picture of the

actual spin-rotator at three different stages of construction is shown.

Interferograms of the front-loop are measured at different cooling-water

temperatures of the guide field, as described in section 3.5. The best tem-

perature setting is found at 22.0 ◦C. Subsequently the spin rotator assembly

is put into the interferometer. A picture of the assembly is shown in figure

Fig.4.19. Then a temperature versus contrast scan of the cooling water in the

spin rotator assembly is performed. The result is depicted in graph Fig.4.20,

we found the best temperature at 21.37 ◦C marked with a dashed green line.

Now the resonance-frequency spin-rotators can be adjusted one at the
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Figure 4.18: Resonance-frequency spin-rotator. Left: Depiction the two mag-

netic fields, i.e. the local guide field Bloc and the time dependent oscillating

field BRF (t) Right: Picture of the resonance-frequency spin-rotator from left

to right: 3D printed frames, frame with coil for the oscillating field, finished

spin-rotator with local guide field coils.

Figure 4.19: The resonance-frequency spin-rotator assembly. Left: The whole

assembly is about 110 mm in length. The black lines on the boxes mark the

middle of the passage for the neutron beam, which is aligned using a laser

level. Right: The resonance-frequency spin-rotator assembly in the interfer-

ometer.
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Figure 4.20: The contrast in dependence on the temperature of the spin rotator

assembly. The best temperature is at 21.37 ◦C, which is marked with a green

dashed line.

time and the unused paths are blocked using Cadmium beam blockers. First

the spin rotator in path I is adjusted at a frequency of ωI/2π = 74 kHz. A

function generator produces a sine curve at the given frequency, the output

amplitude i.e. the peak voltage, is adjusted. The signal coming form the

function generator is sent to an amplifier, that drives the resonance-frequency

spin-rotator. By changing the output amplitude of the function generator

the power output of the amplifier to the resonance-frequency spin-rotator is

tuned.

First the amplitude of the function generator is set to an estimated 3 V

and the count rate versus of current in the coil producing the local guide field

is measured. The result of this scan is shown in Fig.4.21. A green dashed

line marks the current of Cmin = 0.32 A at which the lowest count rate is

achieved, according to a polynomial curve fit. Then a scan of the amplitude

of the function generator with the current of the local guide field set to Cmin.

The result is shown in graph Fig.4.21. The wide curve is best fitted using a

sine curve. From the fit parameters the amplitude corresponding to a spin-
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Figure 4.21: Which-way marker adjustment. Left: Scan of the local guide

field of a which-way marker. Right: Scan of the amplitude of the function

generator of a which-way marker.

rotation of α = π/9 is extracted. The resulting amplitude A(π/9) = 0.58 V

is marked in the graph with a dashed green line. The flip ratio of this device

is calculated to be Imax/Imin = 44.

The other three resonance-frequeny spin-rotators inside the interferometer

are adjusted in the same manner. The spin-rotator in path II, which operates

at a frequency of ωII/2π = 77 kHz has a flip ratio of Imax/Imin = 50 and the

amplitude is set to A(π/9) = 0.57 V. The spin rotator in path I+II operating

at a frequency of ωI+II/2π = 80 kHz is set to A(π/9) = 1.83 V and has a

flip ratio of 33. The lower flip ratio and higher amplitude is due to the the

spin-rotator being a little shorter than the others, since less space is available

for this which-way marker because of the phase shifter PSR. The spin rotator

in path R is set to a frequency of ωR/2π = 71 kHz the amplitude is set to

A(π/9) = 0.44 V with a flip ratio of Imax/Imin = 42.

The resonance-frequency spin-rotator behind the interferometer is ad-

justed in the same way. Since it is about eight times longer, the expected

amplitude is one eighth and the resonance should be much narrower then the

resonance of the spin-rotators inside the interferometer. For the guide field

scan the amplitude is set to A = 0.4 V. The result of the guide field scan is
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Figure 4.22: Adjustment of the resonance-frequency spin-rotator behind he in-

terferometer. Left: Scan of the local guide field. Right: Ampitude scan of the

frequency generator governing the energy compensating resonance-frequency

spin-rotator behind he interferometer.

depicted in graph Fig.4.22, with the ideal current Cmin = −0.18 A.

Using the guide field cuurent of Cmin = −0.18 A a amplitude scan is

performed. The scan is shown in graph Fig.4.22. Since the resonance is

very narrow, so it is best fitted using a Gauss-function. The amplitude for a

rotation of α = π/2 is A(π/2) = 0.37 V. This spin rotator has a flip ratio of

Imax/Imin = 61. The second setting, a spin-rotation of α = −π/2, is achieved

at an amplitude of A(−π/2) = −0.37 V. This completes the adjustment of

the setup for measuring this which-way experiment.

For this experiment several measurements are performed with different

phase shifter settings and absorbers in two different potions in the interfer-

ometer. A data collection for one set of parameters can take between 24 h

and 50 h, depending on the count rates. The final count rates are between

3 cps and 19 cps. Each measurement for one set of parameters is split up in

shorter sub-measurements with a duration of 1800 s, in which half of the time

an energy compensation set to αEC = π/2 the other half set to αEC = −π/2.

Between each sub-measurement phase shifter scans are performed fitted and

the phase shifter settings are readjusted, to account for possible phase drifts
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caused by temperature fluctuations. First a scan of PSII is performed with

all resonance-frequency spin-rotators turned off. The intensity at the H1-

detector is fitted with a cosine function and the desired phase shifter posi-

tion is calculated from the fit parameters. The H1-detector is used since the

neutron intensity is higher at the H1-detector than the O-detector. In the

same manner the position of phase shifter PSR is adjusted.

0 0.1 0.2 0.3

Time [ms]

−200

−100

0

100

200

S
ig
n
al

[a
.u
.]

χII=0

0 0.1 0.2 0.3 0.4

Time [ms]

χII=π

Figure 4.23: Intensity differences of measurements with the phases set to

χII = χR = 0 on the left hand side, and the phases set to χII = π and

χR = 0 on the right hand side. Both fitted with a sum of four sine curves.

The actual data collection is done by repeating a time-resolved sub-

measurement, until the full measurement duration is completed. During

a sub-measurement a looped measurement is performed as discriebed in sec-

tion 4.4.2. This loop is divided into bins. Each count is added to the bin

corresponding to the point in time the neutron is detected since the starting

time of the loop. The loop duration and the bin width are optimized using

the Nyquist-theorem [Nyquist, 1928], with the expected count rates and the

frequency resolution of the fast Fourier transform in mind. The loop dura-

tion is set to 4 ms and the bin with to 10µs. The chosen parameters allow
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for a frequency resolution of the Fourier transformation up to 250 Hz, which

allows for a clear separation of the frequencies used in the experiment.
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Figure 4.24: Intensity differences of measurements with the phases set to

χII = π and Indium on path R on the left hand side, and the phases set to

χII = π and Cadmium in path R on the right hand side. Both fitted with a

sum of four sine curves.

The intensity difference ∆I = I+ − I− for the energy compensations

α±EC = ±π/2 is calculated from the data. Typical results for two phase

shifter settings are shown in figure Fig.4.23. On the left hand side the phases

are set to χII = χR = 0, while the right hand side shows the intensity

difference for the phases set to χII = π and χR = 0. Both are fitted with a

sum of four sine curves as given in

g(t) = y0 +
4∑
i=1

Ai sin
(
ωit+ φi

)
, (4.32)

to guide the eye.

The intensity differences for the phase shifters set to χII = π and χR = 0,

and absorbers in path R or path I + II, are shown in Fig.4.24 and Fig.4.25

respectively.
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Figure 4.25: Intensity differences of measurements with the phases set to

χII = pi and Indium on path I + II on the left hand side, and the phases set

to χII = π and Cadmium in path I + II on the right hand side. Both fitted

with a sum of four sine curves.

The least square fit converges very slowly and has large standard devi-

ations of the fit parameters. To obtain reasonable good fits to give quanti-

tative fit results, the measurement time would need to be extended beyond

manageable durations.

4.6 Data analysis and results

After the data acquisition, the intensity differences are calculated, are nor-

malized to compensate for different measurement duration, and Fourier trans-

formed using a discrete Fourier transformation (FFT) in a standard manner

with zero-padding and a Hann window-function. Zero-padding allows for

more frequency bins in the same interval of the Fourier spectrum, therefore

isolated frequencies can be resolved clearly. The Hann window-function re-

duces spectral leakage, and therefore the resolution is further increased. The
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theoretical prediction for the ideal case with Ci,j = 1 and the contrast cor-

rected simulation with Ci,j < 1 yield intensities I±(t), which are normalized,

and Fourier transformed in the same way.

First a measurement with both phases set to χII = χR = 0 is performed.

The count rate for this setting is 18.6 counts per second (cps) at the O-

detector. The Fourier spectrum of this measurement is depicted in the top

row in figure Fig.4.26, with a scheme of the setup. This measurement is

used as bases for the normalization of the spectra of all Fourier spectra

shown below. The data is normalized in a way that the peaks in the Fourier

spectrum corresponding to the frequencies of the spin-rotators in paths I,

II, and R are at the height of 1 in arbitrary units. The normalization factor,

derived in this way, is also applied to all other sets of data to allow for easy

comparison of the peak heights of each Fourier spectrum.

In the first row of figure Fig.4.26 the ideal simulation, the contrast cor-

rected simulation and the measurement show the same peak heights for the

respective frequencies. The peaks at frequencies ∆ωR, ∆ωI , and ∆ωII are

the same height, while ∆ωI+II is twice the height. The height of the peak at

frequency ∆ωI+II can be explained easily. Every plate acts as a beam splitter

dividing the wave functions of each path into a forward and a reflected wave

function both reduced in amplitude by a factor of 1/
√

2. The marking signal

from spin-rotator in path ψI+II has amplitude, which is larger by a factor of
√

2, which results in twice the peak height at ∆ωI+II compared to the other

peaks in the first row of figure Fig.4.26. This can also been seen in equation

Eq.4.11, since the amplitude of spin-rotator SRI+II is twice the amplitude of

the other spin-rotators. This plot also shows that the resonance-frequency

spin-rotators are well adjusted. If one spin-rotator would be set to an incor-

rect angle α, i.e. a wrong amplitude of the frequency generator, the repective

peak in the Fourier spectrum would be a different height.

The second row of figure Fig.4.26 shows Fourier spectra of a measurement
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Figure 4.26: Fourier spectra of the ideal theoretical prediction with Ci,j = 1

and the contrast corrected simulation with Ci,j < 1 and measurement, with

the experimental setup and parameters. a) The phase shifter PSII is set to

χII = 0. b) The phase shifter PSII is set to χII = π.

with the phases set to χII = π and χR = 0. Since most of the neutrons of the

front loop end up at the H1-detector, the count rate at the O-detector drops

as seen from equations Eq.4.11 and Eq.4.12. The intensity at the O-detector

drops to 9.1 cps in practice, which is above the level predicted by theory due

to the contrast Ci,j < 0. When the phase of path II is set to χII = π the

amplitudes of all four peaks drop drastically. In the ideal simulation the

peaks ∆ωR, ∆ωI and ∆ωII drop to one third of their initial amplitude but

are the same height each. This results from the fact that the interference
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terms between the marking signal and the main components from path I and

path II interferes destructively due to the phase shift of χII = π

II,II(χI = 0, χII = π) = |ΨI −ΨII |2 = 0, (4.33)

only the interference of the marking signal of all paths with the main com-

ponent of path R arive at the O-detector. This reduces equation Eq.4.9

to,

I± = |ΨR|2 + 2
∑

i=I,II,R

Re
(
Ψ∗RΨ±i

)
+O(α2

i ). (4.34)

Because of the phase shift χII = π, spin-rotaotr SRI+II marks the wave

function (ψI + eiπψII)/4
√

2 = (ψI − ψII)/4
√

2 = 0, therefore the marking

signal is zero and no peak at frequency ∆ωI+II is visible. This is also reflected

in the calculation in Eq.4.12. In the experiment the wave functions in path

I+ II do not interfere completely destructive, due to the contast of Ci,j < 1.

The main components from path I and path R interfere constructively, while

the main components from path II and path R interfere destructively, due

to the phases of χII = π and χR = 0, which results in different heights of the

peaks ∆ωI , ∆ωII , and ∆ωR

In Fig. 4.27 and Fig. 4.28 Fourier-spectra of measurements with ab-

sorbers in position ABR and ABI+II respectively are shown. The absorbers

used are an Indium foil with a transmission of T = 0.456, and a Cadmium

foil with a transmission of T = 0. When the absorbers are put in ABR the

contribution of the beam in path R is decreased or canceled out respectively.

When the transmission in path R reaches TR = 0, all peaks vanish in the

theoretical prediction, since path I and path II interfere destructively and

path R is blocked the main component becomes |ΨE0|2 = 0. Therefore the
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Figure 4.27: Fourier spectra of the ideal theoretical prediction with Ci,j = 1

and the contrast corrected simulation with Ci,j < 1 and measurement, with

the experimental setup and parameters. a) The phase shifter PSII is set to

χII = 0 and an Indium absorber in path R. b) The phase shifter PSII is set

to χII = π and a Cadmium beam stopper in path R.
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intensity in Eq.4.9 becomes I± = 0, since

I±(TR = 0) = |
√
TR ΨR|2 + 2

∑
i=I,II,R

Re
(√

TR Ψ∗RΨ±i

)
+O(α2

i ) ≈ 0 (4.35)

In the contrast corrected simulation as well as in the measurement peaks at

frequencies ∆ωI , ∆ωII , and ∆ωI+II remain because of the contrast Ci,J < 1,

that produces leakage from the front loop. The peak at frequency ∆ωR

vanishes since both the main component and the marking signal in path R

are blocked. For T = 0.456 all peaks are reduced in height and the contrast

corrected simulation matches the measurement. This demonstrates that the

way the simulation is constructed gives a suitable picture of the experiment.

This also shows clearly the necessity of the reference beam in path R. In the

ideal case no information can be extracted from the Fourier spectra, when

the phase shifter PSII is set to χ = π, without the beam in path R.

When the absorbers are put in ABI+II , as seen in figure Fig.4.28, the

peaks at frequencies ∆ωI , ∆ωII , and ∆ωI+II are reduced, or disappear de-

pending on the transmission. The peak at frequency ∆ωR has the same am-

plitude regardless of the absorber, according to theory, since it arises from

the interference of the marking signal and the main component of the beam

in path R, which are both unaffected by the absorber.

I±(TI+II = 0) =

|ΨR|+ 2
∑
i=I,II

Re
(√

TI+II Ψ∗RΨ±i

)
+ 2Re

(
Ψ∗RΨ±R

)
+O(α2

i ) =

|ΨR|+ 2Re
(
Ψ∗RΨ±R

)
+O(α2

i )

(4.36)

Again the contrast corrected simulation matches the measurement. The fluc-

tuation of the height of the peak at frequency ∆ωR results from increased

statistical error because of the very low count rates, of about 3 counts per

second, since only one path is open.



CHAPTER 4. WHICH-WAY MEASUREMENT 138

O-Det

II

In

I
χ
II

R

=!

χ
R=0

a)

∆ωR ∆ωI ∆ωII ∆ωI+II

0.0

0.2

0.4

0.6

0.8

1.0

n
or
m
.
si
gn

al
[a
.u
.]

χ2 =π, IO →min

TABI+II
=0.456

Simulation

ideal
c.c.

∆ωR ∆ωI ∆ωII ∆ωI+II

χII=π, IO →min

TABI+II
=0.456

Measurement

measurement

O-Det

II
I

χ
II

R

=!

χ
R=0

Cd

b)

∆ωR ∆ωI ∆ωII ∆ωI+II

0.0

0.2

0.4

0.6

0.8

1.0

n
or
m
.
si
g
n
al
[a
.u
.]

χII=π, IO →min

TABI+II
=0.0

Simulation

ideal
c.c.

∆ωR ∆ωI ∆ωII ∆ωI+II

χII=π, IO →min

TABI+II
=0.0

Measurement

measurement

Figure 4.28: Fourier spectra of the ideal theoretical prediction with Ci,j = 1

and the contrast corrected simulation with Ci,j < 1 and measurement, with

the experimental setup and parameters. a) The phase shifter PSII is set to

χII = 0 and an Indium absorber in path I + II. b) The phase shifter PSII is

set to χII = π and a Cadmium beam stopper in path I + II.
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4.7 Discussion

In this chapter we describe a measurement, utilizing which-way marking

of several paths in a double loop interferometer simultaneously. By time-

resolving the spin-analyzed signal at the O-detector which-way information

has be derived. The second loop provides the reference beam in path R,

that allows to probe the outgoing beam from the front loop. This provides

information which could not be extracted without it. A theoretical analysis

of the experiment is given, that provides a detailed picture of the essential

processes involved. This is achieved by calculating the cross terms between

marking signal and main components of the beams.

The core concept of our analysis is to attribute the observed intensity

modulations to cross-terms, i.e. interference terms between the main compo-

nents and the which-way marked components of the beams. This formalism

provides a simple, yet precise, prediction of the experimental results. The

predictions given by our description give quantitative results for a wide va-

riety of experimental settings.

The strength of our approach is best expressed in a comparison to the

explanation of a which-way experiment given by Danan [Danan et al., 2013]:

In Fig.4.29 two schemes of the laser interferometric experiment are depicted.

The nested interferometer (marked by dashed gray line) corresponds to the

front loop in our experiment, and the beam reflected by mirror C corresponds

to the reference beam in path R in our experiment.

The which-way marking is achieved by small oscillations of the mirrors

A, B, C, E, and F at frequencies fA, fB, fC , fE and fF respectively. By

tuning the phase shift χ in the nested interferometer to π, the peaks at the

frequencies fE and fF vanish. Note that the height of the other peaks at

frequencies fA, fB, fC stay practically the same height.

In their paper the authors make the claims:
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χ=0

χ=̟

Figure 4.29: The laser interferometric experiment and power spectra of the

intensity modulation at the detector [Danan et al., 2013]. The dashed gray

line marks the nested interferometer. a) The phase of the nested interferom-

eter loop is set to χ = 0. b) The phase of the nested interferometer loop is

set to χ = π.

• ’The photons do not always follow continuous trajectories. Some of them

have been inside the nested interferometer (otherwise they could not have

known the frequencies fA, fB), but they never entered and never left the

nested interferometer, since otherwise they could not avoid the imprints of

frequencies fE and fF of mirrors E and F leading photons into and out of

the interferometer.’

• ’Only the description with both forward and backward evolving quantum

states provides a simple and intuitive picture of pre- and postselected quantum

particles.’

First the absence of the peaks at both frequencies fE and fF , is easily

explained, with our approach, by the phase shift induced in the nested inter-
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ferometer. The which-way signal of mirror E enters the nested interferometer

loop and half the signal gets an additional phase of π, which result in the

destructive interference of the signal behind the nested interferometer loop.

At the mirror F , the main beams coming from mirror A and B interfere

destructively, therefore the signal from mirror F becomes zero. The signals

from morrors A and B leak out of the nested interferometer, due to interfer-

ence with the main component of the beam coming from mirror C, peaks at

frequencies fA and fB are visible. There is no need for introducing discon-

nected trajectories, that imply realism at the point of which-way marking,

between pre- and post-selection.

Second the change in magnitude of the peaks at frequencies fA, fB and

fC is not explained by Danan et al. This can also be easily explained in our

description, by the destructive interference occurring in the nested interfer-

ometer, only the interference of the which-way signals, which leak out of the

nested interferometer, with the main component of the beam reflected at the

mirror C remains. The approach chosen by Danan et.al. does not provide as

much information as our standard approach using step by step evolution of

the wave function, but obscures the workings of this experiment and makes

it hard to anticipate the results of this experiment.

The two-state vector formalism does not provide additional information

to standard quantum mechanics. Another interesting question is whether or

not the two-state vector formalism can give accurate descriptions of delayed

choice experiments.





Chapter 5

Conclusion and outlook

In this thesis two fundamental experiments, using polarized perfect-crystal

neutron interferometry, have been presented.

In chapter 2 the physical principles of neutron interferometry are de-

scribed, as well as the methods and devises used for spin preparation, ma-

nipulation, and analysis. All elements of the setup, that are essential to

understand the experiments presented in thesis, are presented.

In chapter 3 the background to Bell’s theorem is given, which includes

the historical development. The path that leads from Bell’s theorem to an

experimentally accessible inequality, as given by CHSH, is outlined, as well

as the measurement concept for the neutron interferometric experiment. The

crucial and extensive improvements of the setup are presented. The exper-

imental implementation, and the actual measurement are described. The

results show clear evidence of the incompatibility of non-contextual hidden

variable theories with quantum mechanics: not only a considerably larger

violations than previous experiments using perfect-crystal neutron interfer-

ometry is achieved, but also in a fraction of the time needed in earlier mea-

surements.

In chapter 4 a measurement scheme for a which-way measurement is pre-

sented, using path marking in a double-loop neutron interferometer, where
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a reference beam is used to probe another neutron beam. The theoretical

treatment is presented, that leads to a simple, yet substantial picture. The

method for the simulation for the experiment is explained, that allows to ac-

cess the measurement results very accurately. The process of designing and

fabricating the new double loop interferometer is presented. A new time-

resolved measurement system is implemented and successfully used in the

measurement. The adjustment procedure of the components needed in the

experiment is described, as well as the data handling and analysis. The ex-

perimental results agree with the theoretical predictions and simulations, and

justify our treatment following the time-development of the wave function.

The presented experiments both study fundamental phenomena of quan-

tum mechanics, but also the capabilities of perfect-crystal neutron interfer-

ometry are improved. The setup and new devices, fabricated by the use of

a 3D printer, are used in a series of experiments, such as the observation

of the quantum Cheshire cat, weak measurements of the Pauli spin opera-

tor, ”direct” paths reconstruction, or the quantum pigeon hole effect. The

3D-printed spin manipulation devices reduce perturbation on the measure-

ments, can easily be designed for various purposes, and produced with very

high accuracy. By using energy as path marking in the new double-loop

interferometer and developing a new formalism for calculating quantitative

weak values, many future experiments can be feasable. For example, de-

layed choice experiments, three box paradoxes, and the complete quantum

Cheshire cat with delayed choice option. This kind of experiments are very

much in reach of the experimental capabilities, but still much effort has to

be committed to develop further the capability.
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[Dürr et al., 1998] Dürr, S., Nonn, T., and Rempe, G. (1998). Origin of

quantum-mechanical complementarity probed by a ’which-way’ experi-

ment in an atom interferometer. Nature, 395:33–37.



BIBLIOGRAPHY 149

[Einstein et al., 1935] Einstein, A., Podolsky, B., and Rosen, N. (1935). Can

quantum-mechanical description of physical reality be considered com-

plete? Phys. Rev., 47:777–780.

[Englert, 1996] Englert, B. G. (1996). Fringe visibility and which-way infor-

mation: An inequality. Phys. Rev. Lett., 77:2154.
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