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Abstract

Recent studies have demonstrated the advantages of a careful processing of induced polariza-
tion (IP) imaging data sets. In particular, inversion results based on a detailed quantification
of data-error have shown the possibility to solve for electrical images with enhanced contrasts
and a reliable correlation with subsurface structures and processes, as required for quantitat-
ive applications of IP imaging. The analysis of the discrepancy between normal and reciprocal
measurements has been established as a suitable method to assess data quality in electrical
imaging and the parametrization of error models. However, for exploration surveys at extensive
areas or monitoring applications, the requirement of reduced acquisition times hinder the col-
lection of reciprocal measurements. Therefore, this thesis presents an alternative methodology
to quantify data error in time-domain IP (TDIP) imaging measurements based on the analysis
of the recorded IP decay curve. The "Decay Curve Analysis" (DCA) described here does not
require the collection of reciprocal measurements, yet provides information about data-error
required for the identification of outliers, as well as the quantification of error parameters for
the inversion of TDIP imaging datasets. Comparison of the error parameters and imaging res-
ults following the DCA analysis and conventional normal-reciprocal analysis revealed consistent
results, demonstrating the accuracy of the approach.





Kurzfassung

Kürzlich erschienene Studien betonen die gewissenhafte Prozessierung von Daten der Induzier-
ten Polarisation (IP) Bildgebungsmethode. Insbesondere Bildgebungsergebnisse, die auf einer
detaillierten Beschreibung des Datenfehlers basieren, zeigen einen stärkeren Kontrast in den
elektrischen Eigenschaften und erlauben eine verlässliche Korrelation mit den Strukturen im
Untergrund. Eine weit verbreitet Methode zur Beschreibung von systematischen und zufälligen
Datenfehlern ist die Analyse der Abweichung zwischen Messungen, die in Normal- und Rezi-
prokkonfiguration gemessen wurden. Für große Messkampagnen (eine große Anzahl an Mess-
profilen), sowie Monitoringanwendungen ist die Methode jedoch nur eingeschränkt anzuwenden,
da die Messungen in Reziprokkonfiguration einen zusätzlich Zeitaufwand bedeuten, der nicht im-
mer vertretbar ist. Diese Masterarbeit beschreibt daher eine neue Datenprozessierungmethode,
die auf einer Analyse, der im Zeitbereich gemessenen Abklingkurve des Spannungssignals basiert
und keine zusätzliche Messung in Reziprokkonfiguration voraussetzt. Die Methode erlaubt eine
zuverlässige Identifikation von systematische Messfehlern und die Beschreibung von zufälligen
Datenfehlern. Ein Vergleich von Bildgebungsergebnissen, auf Basis der Normal-Reziprok und der
hier vorgestellten Methode, zeigt konsistente Ergebnisse und demonstriert die Anwendbarkeit
und Genauigkeit der hier präsentierten Methode.
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Chapter 1
Introduction

Initially developed for the prospection of metallic ores (Pelton et al., 1978), the induced polar-
ization (IP) method has emerged in recent years as a suitable technique for environmental and
hydrogeological studies. As an extension of the standard DC-resistivity method, IP measure-
ments provide information about the electrical resistivity (i.e. energy loss) and polarization (i.e.
energy storage) properties of the subsurface, permitting an improved lithological characteriza-
tion (Kemna et al., 2012). An increasing number of studies report the meaningful application
of the IP method, such as the assessment of permafrost degradation (Doetsch et al., 2015b), the
evaluation of processes associated with CO2 injections in shallow aquifers (Dafflon et al., 2012;
Doetsch et al., 2015a), the monitoring of zero-valent nano-particles injections (Flores Orozco et
al., 2015), the mapping and delineation of landfills and contaminants (Sogade et al., 2006; Ustra
et al., 2012; Flores Orozco et al., 2012a; Gazoty et al., 2012a; Gazoty et al., 2012b) and the mon-
itoring of bioremediation processes (Flores Orozco et al., 2011; Flores Orozco et al., 2013). The
IP method has also been used for slope instability studies (Marescot et al., 2008) and the char-
acterization of cracks in clay-rocks (Okay et al., 2013) and a recent study further proposed the
application of the IP method for the detection of coal seam fires (Shao et al., 2017). Furthermore,
changes in the electrical signatures have been correlated to reversible chemical transformation
of bio-minerals (Slater et al., 2007; Flores Orozco et al., 2013) and a recent study explored the
applicability of the IP imaging method for the prospection of naturally reduced zones (NRZ) at
the floodplain scale (Wainwright et al., 2015). As pointed out by (Wainwright et al., 2015) the
modest polarization response associated to NRZ places high demands on the resolution of the
IP imaging results.

An adequate characterization of the data error is critical to enhance the resolution of elec-
trical images, considering that an underestimation of data error is typically associated to the
creation of artifacts in the images, whereas data-error overestimation generally leads to the loss
of resolution (LaBrecque et al., 1996). Furthermore, during the processing of the data, quant-
itative information on the characteristics of data error is required to i) assess the reliability of
the data, ii) identify and remove outliers associated with systematic errors, and iii) adjust error
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Chapter 1 Introduction

models describing the characteristics of inherent random errors. Additionally, the characteriz-
ation of large areas by means of IP imaging demands an on-site evaluation of data quality in
order to: (1) eventually indicate the need to increase the signal-to-noise ratio (SNR), e.g. by
modifying the measuring protocol and (2) determine areas of interest for the collection of denser
datasets (e.g. higher resolution). Furthermore, particularly for extensive data sets automatic
processing schemes are needed which fulfill the mentioned requirements. To date, a widely ac-
cepted method to evaluate IP data quality is based on the analysis of the misfit between normal
and reciprocal measurements, where reciprocal measurements refer to the recollection of the data
with interchanged current and potential electrodes (LaBrecque et al., 1996; Slater et al., 2000;
Slater and Binley, 2006; Flores Orozco et al., 2011; Flores Orozco et al., 2012b). Nevertheless,
the necessity to reduce the acquisition time for large-scale surveys compromises the collection
of reciprocals. Furthermore, measuring configurations characterized by high SNR, such as the
multiple-gradient array (Dahlin and Zhou, 2006), are not suited for the collection of reciprocals
with multi-channel instruments without severely increasing the acquisition time. Accordingly,
IP surveys at the large scale urge for the development of new techniques to quickly and reliably
quantify data error without the need of reciprocal readings.

This Master’s thesis investigates the possibility to characterize the data error in time-domain
IP measurements based on an analysis of the voltage decay curve and aims at the development
of a novel data processing methodology providing both an adequate identification of outliers and
the quantification of the random error. As the numerical modelling of typical noise characterist-
ics is practically impossible due to it’s complexity and the various possible sources (Flores Orozco
et al., 2012b), the conducted analysis are based on field data sets collected for the delineation
of NRZ and characterized by a modest polarization response. In order to evaluate the obtained
results, a comparison with the results following the normal-reciprocal methodology is performed.

The first chapter provides a short introduction to the IP imaging method, the description
of the field data and the normal-reciprocal methodology. In the second chapter the effects of
random noise on the sampling of voltage decay and the fitting of different model curves are
investigated. The third and fourth chapter describe approaches to identify systematic errors
in TDIP data based on i) an analysis of the spatial consistency of measurements and ii) an
analysis of the distribution of measurements in a histogram. Chapter five investigates the
possiblity to quantify the random error of measurements. The main finding of this thesis - a
novel data processing methodology called "Decay Curve Analysis" (DCA) is presented in chapter
six, followed by discussion and conclusion.

2



Chapter 2
Theory

2.1 Time-Domain-Induced-Polarization

The Induced-Polarization (IP) method is based on measurements with a set of four electrodes,
whereas two electrodes act as a current sink (subsequently referred to as the current dipole)
and two electrodes are used for the measurement of the potential difference, i.e. the voltage
(subsequently referred to as the potential dipole). The basic principle is illustrated in figure 2.1.
The dashed line denotes the current signal whereas the solid line denotes the measured voltage
signal. Typically a switched square wave is used for current injection in order to compensate
for possible drifts in the self potential Vsp (see figure 2.1). The length of the current injection
is commonly referred to as pulse length and varies for modern instruments between hundreds
of milliseconds (ms) to several seconds (s). After the start of current injection and a short
charge-up phase the voltage measurement should reach a stable level, here denoted to as the
primary voltage Vp. Vp is utilized for the computation of the apparent resistivity ρa (in equation
2.1), using the fundamental Ohm’s law and a geometrical factor k which takes into account the
position of the current and potential electrodes along the profile respectively the electrode array.

ρa = R k with R =
Vp

I
R ... transfer resistance I ... injected current (2.1)

Similarly to the charge-up phase during current injection, does the voltage signal after current
shut-off not directly resume to zero but follows a smooth decay. The shape of the decay is defined
by both data acquisition parameters such as the pulse length, but more important, by a variety
of parameters controlling different polarization mechanisms (Ward, 1990) therefore representing
the main target of TDIP measurements as it provides the information about the polarizability
respectively chargeability of the subsurface. Note here, that the actual voltage decay not only
contains the information on the magnitude but also on time dependent parameters of the po-
larization effect (Ward, 1990; Kemna, 2000) therefore representing a superior parametrization
over magnitude-only formulations. The voltage decay is typically being sampled using a discrete

3



Chapter 2 Theory

Figure 2.1: Signals and measurement principle of time-domain-induced-polarization.

Figure 2.2: The raw voltage signal is being integrated in different time gates for the con-
struction of the decay curve. The integrated and normalized values in each
gate are the partial chargeability values.

number of gates or IP windows depending on the capability of the instrument (see figure 2.2).
In every gate the voltage signal Vip is integrated over a specified open ti and close time ti+1 in
ms which typically can be freely chosen. The integrated value is subsequently normalized by

4



2.2 Frequency-Domain-Induced-Polarization

the primary voltage (see equation 2.2).

mi =
1

Vp (ti+1 − ti)

∫ ti+1

ti

Vip dt (2.2)

Values computed using equation 2.2 are typically referred to as apparent partial chargeability
mi in [mV/V] whereas i is the individual gate number. The early times of the voltage decay
can be affected by a sum of phenomenons generalized as electro-magnetic coupling. In order to
avoid a sampling of voltage signals with uncertain origin, the first gate commonly starts after a
delay of a few milliseconds after current shut-off. This delay is referred to as Mdelay. Assuming
20 gates resulting in 20 apparent partial chargeability values an alternative representation of the
voltage decay can be provided referred in this thesis to as the so-called decay curve. The decay
curve is the standard representation of the IP signal in TDIP and consists of plotting the partial
chargeability of every gate to the gate’s midpoint (see figure 2.2). The sampling of the voltage
decay, i.e. the number, distribution and width of the individual gates needs to be chosen on the
requirements of the survey as well as the expected noise level. Commonly used are samplings
consisting of equally sized gates or gates with increasing width over time. A standard sampling
of the Syscal Pro equipment (by IRIS Instruments) for a 2 s pulse length is composed of 20
gates, each with 80 ms duration, starting after an initial Mdelay of 240 ms.

Another parametrization of the IP signal in TDIP is the so-called integral chargeabilty Mint,
which can be computed based on equation 2.3 and represents an average value of the partial
chargeability values with the individual gate lengths acting as a weighting factor.

Mint =
N∑

i=1
mi (ti+1 − ti) /

N∑
i=1

(ti+1 − ti) N ... number of gates (2.3)

The integral chargeability however, does not explain the shape of the decay curve and can
therefore be only seen as a very robust representation of the magnitude of the polarization effect
(due to the averaging of the partial chargeability values).

2.2 Frequency-Domain-Induced-Polarization

Analogous to TDIP measurements the minimal measurement configuration consists of a set of
four electrodes with the same differentiation between the current and potential dipole. For
frequency-domain-induced-polarization (FDIP) measurements an alternating current, realized
as a harmonic sine wave with a specified frequency f (typically ranging from 0.01 Hz up to a
few kHz) is injected. At the potential dipole the voltage signal is being recorded. The measure-
ment principle is illustrated in figure 2.3. The FDIP method is based on the measurement of
the transfer impedance Z = ln R + iϕ comprised of the amplitude ratio R and the phase-shift
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Chapter 2 Theory

(also referred to as phase) ϕ between the peak current I and peak voltage V . ϕ represents the
measurement of the IP effect and in contrast to measurements in the time domain, ϕ is collected
during current injection. The collection of frequency domain data at different frequencies can
provide additional information about a possible frequency dependence of the IP effect. Such
measurements are referred to as spectral-induced-polarization (SIP) measurements. For a more
detailed review on the method please refer to Sumner (1976), Ward (1990) and Telford et al.
(1990).

Assuming a constant-phase response, time domain chargeability values can be linearly con-
verted to frequency domain phase-shift values (at the fundamental frequency of 0.125 Hz). For
a detailed description of the approach please refer to Kemna (2000).

Figure 2.3: Signals and measurement principle of frequency-domain-induced-polarization.

2.3 Electrode configuration

The electrode configuration describes the geometry of the electrodes of the four electrode array
used for current injection (referred to as A and B) and voltage measurement (referred to as
M and N) and defines the resolution of a survey. Widely deployed is the Dipole-dipole (DD)
configuration where the quadrupole of electrodes consists of a separated current and potential
dipole. Measurements with interchanged dipoles (i.e. the electrodes M and N for the current
injection and A and B for the potential measurement) from the "normal" configuration are being
referred to as reciprocal readings. The general principle of the DD configuration is illustrated in
the left panel of figure 2.4. The separation a between the electrodes of the current and potential
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2.3 Electrode configuration

dipole commonly stay fixed and are equal. Depending on the skipped electrodes in between,
the particular DD configurations are being referred to skip-0 to skip-x (where x is the number
of skipped electrodes between A, B respectively M, N). Configurations with a larger separation
between the current and potential dipole, as illustrated in the second row on the left panel of fig-
ure 2.4, are typically associated with "deeper" measurements. However, with increasing distance
between the dipoles as well as higher skip values, the signal strength decreases. Configurations
composed of several different skip values are being in this thesis referred to as mixed-skip DD
configurations.

The Multiple-gradient (MG) array (Dahlin and Zhou, 2006) is another commonly used con-
figuration which can provide similar resolution to the DD configuration. Moreover, the authors
found that the signal strength is significantly higher making it an attractive alternative espe-
cially for conditions where only low signals are being expected. The right panel of figure 2.4
illustrates the principle. The configuration consists of a large current dipole and a potential di-
pole nested within which is being moved from one side to the other (A to B). Increasing the size
a and b of the potential and current dipole leads to "deeper" measurements. Multiple-gradient
configurations typically consists of current dipoles with different sizes and potential dipoles with
multiple skip values. In contrast, Gradient arrays commonly only apply one skip value for the
potential dipole.

Figure 2.4: Geometry of the electrodes for the Dipole-dipole (left panel) and Multiple-
gradient (right panel) configuration. A, B are the electrodes of the current
dipole - M, N of the potential dipole. Depending on the requirements of the
survey, the separations a and b need to be adapted accordingly.

7



Chapter 2 Theory

2.4 Inversion

2.4.1 Complex resistivity inversion

Inversion of the IP data was performed using CRTomo, a smoothness-constraint inversion code
by Kemna (2000). For a complete description of the algorithm please refer to Kemna (2000).
The forward modelling, which consist of computing the distribution of complex resistivity values
ρ = |ρ|eiϕ with |ρ| = magnitude respectively resistivity and ϕ = phase of the complex resistivity
and i =

√−1 = imaginary unit, is based on a finite element discretization of the model space
and the solution of a complex-valued 2.5D Helmholtz equation for a given number of transfer
impedances Z. The transfer impedances are a complex representation of the measured data
values and are given by equation 2.4

Z = ln R + iϕ (2.4)

with R being the transfer resistance (see equation 2.1). The inversion algorithm iteratively
minimizes the L2 norm of the objective function following the Tikhonov approach (Tikhonov
and Arsenin, 1977) where the data misfit and first order model roughness are being balanced by
means of a regularization parameter. The iterative process is stopped when the rms data-misfit
value, as formulated in equation 2.5, reaches the value of one for the smoothest possible model.

rms =

√√√√ 1
n

n∑
j=1

|dj − fj(m)|2
|εj |2 (2.5)

The parameters in equation 2.5 are the model vector m (here the log-transformed complex
resistivity), fj(m) the forward model operator, the data point dj (as the log-transformed complex
impedance dj = ln Zj) and the error εj for which is being assumed that it is uncorrelated and
normally distributed. The error εj can also be considered as a confidence region ellipse around
the corresponding data point dj , following the formulation

εj = s(ln |Zj |) + i s(ϕj). (2.6)

In equation 2.6, s(ln |Zj |) and s(ϕj) represent the standard deviations of the log-transformed
magnitude ln |Zj | and ϕj of the complex impedance Zj . i is again the imaginary unit. Note here,
that s(ln |Zj |) typically dominates s(ϕj) in the complex error and thus controls the inversion
behavior, in particular the stopping criterion. To account for that, additional real valued inver-
sions can be computed for the phase data separately, once the complex inversion has reached
an rms of one. The formulation of the rms data misfit value which is sought to be minimized is

8



2.4 Inversion

then

rms phase =

√√√√ 1
n

n∑
j=1

Im(dj) − Im(fj(m))2

s(ϕj)
(2.7)

This additional inversion step is referred to as final-phase improvement (FPI).

2.4.2 Parameterization of resistance error

As can be easily seen in equation 2.5 the inversion results are strongly dependent on a proper
parameterization of the data error. The overestimation of data error typically leads to under-
fitted electrical images, lacking the contrast needed for a quantitative interpretation whereas an
underestimation of data error typically results in images with a lot of artifacts, also threatening
to be pitfalls during the interpretation (LaBrecque et al., 1996).

LaBrecque et al. (1996) proposed a linear relationship between the measured resistances (with
R = |Z|) and their associated error s(R). The model (Slater et al., 2000) writes as

s(R) = a + bR (2.8)

with a being the absolute resistance error for small resistance values and b being defined as
the relative resistance error for larger resistance values. The authors however observed that
noise estimates from simple repeating measurements often greatly underestimate the true data
error (which is also true for phase measurements) and proposed the parameterization of a and
b based on the standard deviations of the differences between resistance values in a normal and
reciprocal configuration. For further details on the normal-reciprocal methodology please refer
to section 2.7, LaBrecque et al. (1996) and Flores Orozco et al. (2012b).

2.4.3 Parameterization of phase error

To date, well-established data error quantification methodologies are based on the normal and
reciprocal misfit of the phase values. In the first reported work of Ramirez et al. (1999), the
authors defined a constant value to describe the error of the phase data, based on the misfit
between the normal and reciprocal phase measurements and their corresponding average value.
In 2006, Slater and Binley showed that the estimation of a constant phase error as the standard
deviation of the entire normal-reciprocal phase misfit distribution could improve the computed
images. Recent work, by Flores Orozco et al. (2012b), proposed an inverse power law relationship
between the error in phase s(ϕ) and the associated resistance R

s(ϕ) = aRb (2.9)
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with b < 0. Such model considers that resistances may be used as a first proxy to assess the
signal strength. The adaptation of the proposed error model to an appropriate inversion scheme
(Kemna, 2000) also yielded improved images with negligible artifacts.

2.5 Site description and TDIP survey

The TDIP measurements used within this thesis were collected on the Shiprock Site (New Mex-
ico, USA) on the grounds of a former uranium-processing facility. The site has been remediated
but measurable concentrations of uranium are still present in water samples. The site’s lithology
consists of three main units: an impermeable clay-rich layer extending from the surface to ∼2 m
depth, followed by a sandy-gravel aquifer (∼3 m thickness) that rests on top of a low-permeable
shale known as Mancos formation. Figure 2.5 presents a schematic cross section of the site’s
lithology. The groundwater level was located at a depth ∼2 m during the field surveys.

Figure 2.5: Schematic cross section of the lithology at the Shiprock Site consisting of an
impermeable clay-rich top layer, a sandy-gravel aquifer and a low-permeable
shale referred to as Mancos formation.

Studies on similar sites (Wainwright et al., 2015) revealed that fluvially deposited organic
material within aquifer sediments naturally stimulates the activity of subsurface microorganisms
leading to both the natural immobilization of uranium and the accumulation of reduced end
products (minerals and pore fluids). In order to map these possible hot spots, which are expected
to generate measurable IP anomalies, a total of 22 TDIP profiles were collected. Six long profiles
(up to 350 m) were laid out to fairly characterize large-scale changes in the electrical properties
across the floodplain and 16 shorter profiles helped to improve the resolution of particular areas
of interest (see figure 2.6). Separation between electrodes was 2 m for all measurements using the
Syscal Pro Switch 72 equipment (from IRIS Instruments) with a square-wave current injection
and a pulse length of 2 s. The voltage decay was measured along 20 gates - of 80 ms duration
each, starting after an initial delay of 240 ms after current shut-off. The measurements were
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Figure 2.6: Distribution of the TDIP profiles (white lines) at the Shiprock Site. Satellite
image modified from GoogleEarth.

collected using two configurations: a) DD skip-0 (i.e. a length of 2 m for both current and
potential dipoles), and b) MG configurations with 10 potential dipoles (skip-0, skip-1 and skip-
2) nested within the current dipole. DD measurements were collected as normal-reciprocal pairs.
In order to reduce acquisition time, the depth of investigation was limited to 7 m, which fairly
covers the aquifer and the uppermost part of the Mancos Shale.

2.6 Pseudosections

Pseudosections are an approach to visualize measured data and can also be used to display other
parameters associated to measurements such as the corresponding standard deviations or signal
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strengths. Every point in the pseudosection represents one measurement (i.e. one particular
electrode quadrupole) and the lateral position and (pseudo)-depth are a function of the asso-
ciated electrodes used for the measurement. For MG and mixed-skip DD configurations it can
therefore happen that different measurements are related to the same plotting point. Hence, for
such cases the sizes for the plotting points are being adjusted accordingly. Pseudosections should
not be used for a direct interpretation of the electrical properties, as for example topographic
effects are not taken into account. The visualization of the measured data is however commonly
used to get a first thought on the data quality and the order of magnitude of the to be expected
electrical properties. For example can measurements contaminated with particular systematic
errors, e.g. arising from badly connected electrodes, be easily identified in pseudosections. This
should be illustrated by the following example.

The panels a) to d) in figure 2.7 present the pseudosections of the apparent integral chargeab-
ility Mint and logarithmic apparent resistivity ρ obtained from a forward modelling for a DD and
MG configuration. The forward modelling was performed using CRMod by Kemna (2000) and
the corresponding three layer models, which should be representative for the Shiprock Site (c.f.
section 2.5), are shown in figure 2.8. Please note that for the modelling the integral chargeab-
ility values were converted to phase-shift values following the approach mentioned in section
2.2. Figures 2.7 a) and b) illustrate the differences in the distributions of the points within the
pseudosections for the DD and MG configurations, resulting from the different rules for the com-
putation of the (pseudo)-depth for both configurations. Panels e) to h) of figure 2.7 illustrate
the effects of random and systematic errors on the appearance of data in the pseudosection.
The systematic error is simulated as a badly connected electrode 30, whereas the random error
consists of adding gaussian noise to the signal. The characteristics of the gaussian noise can be
found in table 2.1.

As can be seen is the introduced systematic error visible as bands of anomalously high values
without spatial correlation within the data set and the patterns are different for the electrode
configurations. Systematic errors can normally be identified and need to be removed prior to
the inversion to prevent the creation of artifacts. The random error on the opposite, affecting
all measurements, is practically impossible to remove as commonly neither the variance nor
the distribution of it is known. It is however commonly assessed by finding a description of it
(typically via a proxy) and the modelling of it’s effects during the inversion.

mean (center of distribution) standard deviation (width of distribution)
Resistivity 0 0.5 [mV/V]

Chargeability 0 15 [Ωm]
Table 2.1: The characteristics of gaussian noise simulating the random error in measure-

ments.
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Figure 2.7: a) to d) present the pseudosections of the forward modelled electrical prop-
erties for a DD and MG configuration. Every point in the pseudosections
corresponds to a particular electrode quadrupole and the calculation for the
(pseudo)-depth is dependent on the type of electrode array. e) to h) show the
pseudosections after the contamination with systematic and random errors.

Figure 2.8: The three layer models of the resistivity (top) and chargeability (bottom)
used for the forward modelling with a DD and MG configuration. The models
should be representative for the Shiprock Site.
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2.7 Normal-reciprocal approach

The state-of-the-art methodology for the characterization and removal of systematic errors as
well as the quantification of data error is the analysis of the discrepancy of measurements collec-
ted in normal and reciprocal configuration. Numerous studies report the successful application
of the normal-reciprocal approach (NRA) spanning various areas (e.g. Krautblatter et al. (2010),
Koestel et al. (2008), Yang et al. (2014), LaBrecque and Daily (2008), Flores Orozco et al. (2011)
and Flores Orozco et al. (2015) and others). Initially proposed for resistance measurements R

only (Binley et al., 1995; LaBrecque et al., 1996), the approach has soon been applied to IP
measurements (Slater and Binley, 2006; Flores Orozco et al., 2012b).

The approach is based on the calculation of the misfit between R, ϕ or Mint collected in the
normal and reciprocal configuration and a following statistical analysis of the misfits. For the
approach described here, the measured electrical values of the normal and reciprocal configura-
tion are being averaged and form a new data set. Another possible option consists of keeping
the normal and reciprocal measurements in separated data sets. However, averaging the two
data sets has shown to further improve the consistency in the data. The classification of outliers
is based on the misfit values and measurements, where the corresponding misfit value exceeds
a specified threshold (commonly two times the standard deviation of all misfit values as for ex-
ample used by Flores Orozco et al., 2012) are being classified as outliers and have to be removed.
Choosing a multiple of the standard deviation becomes reasonable when looking at figure 2.9
which displays the misfit value (here the misfit of resistance ΔR) plotted against the associated
transfer resistance R of an already filtered data set. The misfit value can be approximated by
a normal distribution which easily justifies the standard deviation as a threshold value. The
same assumption can also be made for the misfit of phase values. Distributions departing from
a normal distribution indicate the presence of systematic errors.

To better understand the wide use of the NRA, the application of the misfit for the definition
outliers needs to be properly addressed. Analogous to the misfit values derived by a simple
repetition of measurements, misfit values of the NRA are only estimates of precision and not
of accuracy (LaBrecque et al., 1996). However, due the specific design of the methodology, i.e.
the interchange of current and potential dipole, a reciprocal measurement is not only a plain
repetition of the measurement rather than another independent realization of the same meas-
urement with different settings (e.g. the electrodes). By having two realizations of the same
measurement kinds of systematic errors, for example problems with the electrodes, can be made
visible.

The following example should illustrate the principle and advantages of the NRA over the
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2.7 Normal-reciprocal approach

Figure 2.9: The normal-reciprocal discrepancies for the resistance measurements plotted
against their associated transfer resistances. The misfit distribution can be
approximated by a normal distribution.

repetition approach. Let’s assume that in normal configuration one of the current electrodes
has poor contact with the ground resulting in only low current densities being injected to the
ground, resulting in a decrease in the signal strength. Depending on the subsurface conditions
low current densities might lead to erroneous potential readings. A simple repetition of the same
measurement will probably produce a comparable potential reading and only small variability in
the misfit value. This would mean, that although the measurement might be obviously wrong,
the misfit is not capable of identifying it as an outlier. On the opposite, following the NRA,
for the reciprocal configuration the current injection now takes place at electrodes with proper
contact to the ground and adequate current is being injected. The potential measurement might
but does not necessarily need to be affected by the loosely placed electrode. In any case the
reciprocal measurement will be different to the one obtained in the normal configuration thus
leading to a more representative misfit value.

Nevertheless, also the NRA has it’s limitations. For example are there sources of noise which
are fully reciprocal, meaning that they cannot be made visible by an analysis of the associated
misfit. This is true for EM-coupling, which will affect the measurements in the same way
regardless of the used configuration. Apart from that, there is no proper realization of the
normal-reciprocal analysis for the actual decay curve in TD measurements. The NRA can only
applied on the level of the integral chargeability values, neglecting potential for in-depth analysis.
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There are also time and economical limitations. For large mapping campaigns, the conduction
of reciprocal measurements basically doubles the amount of the acquisition time. Furthermore,
measuring configurations such as the MG configuration, are not suited for the collection of
reciprocal with multi-channel instruments without severely increasing the acquisition time.
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Chapter 3
Fitting and Sampling of the Decay Curve

3.1 Evaluation of the sampling of the voltage decay on the
derivation of the decay curve

For the understanding and design of further analysis, such as the fitting of models to the meas-
ured decay curve, it is critical to understand and investigate the effects of random noise in the
voltage signal and the appropriate sampling of such noise contaminated signals. The sampling
means the Mdelay and the number, distribution and width of the individual gates, whereas the
gate refers to the time span used for the integration of the voltage signal as outlined in section 2.1.

The experimental set-up for this test consists of contaminating a voltage signal with different
levels of gaussian noise (i.e. samples from a normal distribution) and the subsequent derivation
of the corresponding decay curve with varying samplings. In order to provide an undistorted
decay curve for comparison, the voltage signal has been sampled prior to the addition of noise.
This experiment was conducted for two cases. The first case investigates the effects based on a
modelled voltage signal, in the following referred to as the "numerical example". The numerical
data was created after a power law model with an additional constant term (V (t) = at−b + c)
using a discretization of 1 ms. The other case uses a measured voltage decay, where the signal
has been sampled in 10 ms steps. Here the voltage decay is already contaminated by noise, yet
for this experiment it was found to be negligible. The measured voltage decay was included to
(i) provide a voltage decay with another "shape" and to (ii) evaluate the effects of the samplings
for a signal with a the lower discretization - 10 ms. The characteristics of the added gaussian
noise can be found in table 3.1. In table 3.2 the properties of the samplings are presented. The
arithmetic and semi-logarithmic samplings are standard options of the widely used Syscal Pro
equipment (by IRIS Instruments). The 30ms sampling is an artificial example to evaluate how
high sampling rates and high number of gates effect the shape of the derived decay curve. Please
be aware that all results shown here are only a snapshot for a given distribution of random noise
and therefore all observations are a more rough description of the performance of the different
samplings.
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level mean (center of distribution) standard deviation (width of distribution)
1 0 10
2 0 50
3 0 100
4 0 500

Table 3.1: Characteristics of the added gaussian noise for the different levels.

Arithmetic Semi-logarithmic 30ms
Mdelay 240 40 30 Mdelay
Gate 1 80 40 30 Gate 1
Gate 2 80 40 30 Gate 2
Gate 3 80 40 30 Gate 3
Gate 4 80 40 30 Gate 4
Gate 5 80 40 30 Gate 5
Gate 6 80 40 30 Gate 6
Gate 7 80 40 30 Gate 7
Gate 8 80 80 30 Gate 8
Gate 9 80 80 30 Gate 9
Gate 10 80 80 30 Gate 10
Gate 11 80 80 ... Gate ...
Gate 12 80 80 30 Gate 58
Gate 13 80 80 30 Gate 59
Gate 14 80 80 30 Gate 60
Gate 15 80 160 30 Gate 61
Gate 16 80 160 30 Gate 62
Gate 17 80 160 30 Gate 63
Gate 18 80 160 30 Gate 64
Gate 19 80 160 30 Gate 65
Gate 20 80 160 30 Gate 66

Table 3.2: Mdelay, gate widths, gate numbers and their distribution for three different
samplings. Note here, that all values are given in ms and that the 30ms
sampling has 66 gates instead of 20.

Figure 3.1 presents the experiment’s outcome for the numerical case. The left panels show
the modelled voltage signal (red line) contaminated with different levels of noise (black line) as
indicated in table 3.1. The right panels show the derived decay curves for the different sampling
types (colored lines) as well as the decay curve for the undistorted case (black line). For the
first level of noise all samplings are capable of reproducing the shape of the actual undistorted
decay curve, only small differences can be observed. However, as soon as the noise level is
increasing (second row of figure 3.1) first deviations occur. In particular after around 750 ms
the semi-logarithmic sampling is not capable of reproducing the shape of the decay curve - in

18



3.1 Evaluation of the sampling of the voltage decay on the derivation of the decay curve

Figure 3.1: Effects of different samplings and different levels of noise on the derivation of
the decay curve for a numerical example. The left panel shows the modelled
voltage decay contaminated with different levels of noise and the right panel
the corresponding decay curves for different samplings. 19
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comparison with the two other types - higher sampling rates are probably needed. Row three
shows the results for added noise with a standard deviation of 100. The voltage signal roughly
ranges from 250-1000 mV and the maximum percentage error can be estimated at around 27%
assuming a noise range of two times the standard deviation. Although being subjected to a
significant level of noise, all sampling types still catch the general trend of the decay curve. The
problems of the semi-logarithmic sampling observed in row two are persistent. Furthermore the
arithmetic sampling underestimates the signal in the early times (from 250 to 500 ms) rendering
the demand for high sampling rates there particularly for higher levels of noise. Row four of
figure 3.1 clearly shows a breaking point for the methodology. Here, not even the dense 30ms
sampling is capable of reproducing the original signal.

For the sake of clarity the signal of the measured voltage decay is limited to a maximum of
1200 mV as indicated by the dashed red line in figure 3.2. Compared to the numerical example
the measured voltage decay has a much more pronounced decrease in the early times, which
together with the coarser discretization marks the main differences between the numerical and
measured case. Figure 3.3 shows the voltage signal with the different levels of added noise (left
panels) and the corresponding decay curves for the tested samplings (right panels). Compared
to figure 3.1 the noise exhibits a different pattern contributed to the differences in the discret-
ization of the numerical and measured decay. The general shape of the decay is being resolved
for any sampling for the first three noise levels. If of interest, the strong decrease in the early
times however, would demand even higher sampling rates than the 30 ms used here. Consistent
to the numerical case, the sampling methodology seems to be limited to specific amounts of
random noise - resulting in unsatisfactory decay curves in comparison with the undistorted case.
Results for this case are shown in the fourth row of figure 3.3. Although it seems that the general
shape of the decay curve is being resolved, the fluctuations of the decay curves of the different
samplings around the undistorted decay curve are much higher than the actual signal.

Based on both the numerical and measured case the following general statements can be made:

• The common methodology outlined in section 2.1 consisting of partitioning the voltage
decay into gates and the subsequent integration within the gates (i.e. the derivation of the
decay curve) appears to be a robust tool and can capture the general shape of the voltage
decay. The integration in the gates makes it applicable even to high levels of random noise.

• The sampling needs to be chosen based on the requirements of the survey. If the decay in
the early times is of interest high sampling rates and small Mdelays are needed.

• Wider gates at the late times can smoothen out the decay curves (due to the integration
in equation 2.2). They are however also prone to an under- respectively overestimation of
the shape of the decay particularly for cases with high levels of noise.
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• Both the numerical and measured data case show a similar behavior of the sampling types
and only minor differences between a high and lower discretization of the voltage decay as
basis for the sampling can be observed.

Figure 3.2: Raw measured voltage decay collected with a sampling consisting of 10 ms
large gates. The red dashed line indicates where the signal is cut-off for the
subsequent analysis.

21



Chapter 3 Fitting and Sampling of the Decay Curve

Figure 3.3: Effects of different samplings and different levels of noise on the derivation
of the decay curve for a measured voltage decay. The left panel shows the
voltage decay contaminated with different levels of noise and the right panel
the corresponding decay curves for different samplings.22
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3.2 Evaluation of appropriate fitting models

As the fitting of model curves to the measured decay curves is one of the major components
of the DCA it needs to be addressed in detail. The fitted model curves are commonly used
to either get a smooth description of the measured decay curve as for example needed for an
easier comparison with other curves of the data set (refer to chapter 5) or to characterize the
inherit random noise of such measurements for the incorporation into an inversion scheme (refer
to chapter 6). In particular a model function is sought which fulfills the following conditions:

• Best fitting function with a minimum number of parameters applicable to decay curves
obtained with any kind of sampling, i.e. the distribution, width and number of IP gates.

• Weak dependence on starting values

• High chance on convergence

• Computationally inexpensive (as hundreds to thousands of models will need to be pro-
cessed)

In order to reduce the number of the to be considered model functions a preliminary test with
three models of the exponential family as well as three models of the power law family has been
performed. The equations of the different model functions write (with e being Euler’s number):

pow : f(x) = ax−b (3.1a)

pow2 : f(x) = ax−b + c (3.1b)

powm : f(x) = ax−b + x−c (3.1c)

exp0 : f(x) = ae−bx (3.2a)

exp1 : f(x) = ae−bx + c (3.2b)

exp2 : f(x) = ae−bx + ce−dx (3.2c)

Possible model functions of the fourier family (where the data are approximated by a sum of
sin and cos functions) were not considered as the number of model parameters exceeds any of
the six models above. Models of the rational family, although fitting most of the decay curves
quite well, turned out to be too sensitive on starting values and a proper convergence could not
be guaranteed. Lastly, commonly used models of the cole-cole family were investigated as well
and are covered separately (see section 3.3).
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The fitting of any of the six model functions (equations 3.1a-c, 3.2a-c) obviously consists of
solving a non-linear least squares problem. In particular model parameters are sought, so that
the sum of the squares of the deviations is minimized:

k∑
i=1

(f(xi,1, ..., xi,n) − yi)2 → min! (3.3)

In equation 3.3, yi are the partial chargeability values of the decay curve and f(xi,1, ..., xi,n are the
partial chargeability values of the model function. Unless otherwise stated, all non-linear least
squares problems in this Master’s thesis are solved using the well-known Levenberg-Marquardt
algorithm. For more details on the algorithm please refer to Moré (1978) and Gill and Murray
(1978). To get a statistical measure on the goodness of fit (gof) the root-mean-square deviation
(RMSD) is evaluated for all models. It writes:

gof = RMSD =

√√√√ 1
n

n∑
i=1

(mf (ti) − mm,i)2 (3.4)

n is the number of gates, mf (ti) the partial chargeability of the fit at times ti and mm,i the
measured partial chargeability.

Figure 3.4 shows the fitted model curves (colored lines) for the exponential family (left panel)
and the power law family (right panel) as well as the measured decay curve (black dots), acting
as the input data for the fitting. A smooth decay curve, representative for conditions with a
high SNR, was chosen in order to evaluate the general performance of the different models to
describe the decay. Later in this section the fitting of models to more erroneous decay curves
will be tested. It is obvious that the exp0 model is not flexible enough to fit the decay. By
modifying the initial model, which evidently goes along with an increase in model parameters,
the decay is fitted far better and the calculated gof values are quite low (0.06 and 0.02 for exp1
and exp2 and 0.23 with the initial model exp0 ). All model curves of the power law family fit the
decay to an acceptable degree with no differences being observed for the powm and pow model
(also consistent in the gof values of 0.10). The best performing model is pow2 which perfectly
describes the measured decay and reaches the minimum gof value of 0.01. Based on this initial
test, three models were chosen to test their performance on less smooth decay curves (i.e. more
erroneous decay curves), as well as for varying pulse lengths and decay curves obtained with
different samplings. The models and the individual selection criteria are stated in table 3.3.

Figure 3.5 shows the fitted model- (colored lines) and measured decay curves (black line)
for decay curves obtained with arithmetic samplings for three different pulse lengths of 1 (left
panels), 2 (center panels) and 4 s (right panels). Each individual row indicates a different SNR
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model number of parameters goodness of fit (gof) selection criterion
pow2 3 0.01 lowest gof
exp2 4 0.02 2nd lowest gof
pow 2 0.1 only 2 parameters, acceptable gof

Table 3.3: The selected models for the fitting evaluation to less smooth decay curves as
well as decay curves obtained with different samplings and pulse lengths.

Figure 3.4: First evaluation of the fitting results for models of the exponential and power
law family.

starting with a high value in the first row and decreasing downwards. All decay curves are
from field data sets (obtained with a Syscal Pro unit) and the assignment of the SNR values
was done based on the geometrical factor k for each measurement (please refer to section 2.1).
Furthermore each row’s measurements were collected with the same quadrupole of electrodes
and thus the decay curves for the different pulse lengths should be comparable.

What can be seen obviously and consistently to the preliminary test is that the pow model
is not flexible enough to fit most of the decay curves. Another important observation is the
unintentional overfitting of the exp2 model for two decay curves (third plot in the second row
and first plot in the third row of figure 3.5). In such cases the gof value may not be used to
evaluate the performance of the model. The gof will clearly be low despite the unusable fitting
results. As expected, does the pow2 model fit all decay curves with satisfying results. A similar
comparison, as presented in figure 3.6 shows consistent results. Here, instead of using decay
curves obtained with an arithmetic sampling, the decay curves obtained with a semi-logarithmic
gate distribution as well as the corresponding fitted model curves are shown. The overfitting and
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the inflexible behavior of the exp2 and pow model observed in figure 3.5 still occur. Consistently,
the same observations can be made for data acquired with a sampling using 34 gates instead of
20. The decay curves and the fitted models are shown in figure 3.7.

Concluding, with the pow2 model, a simple model with a minimum of parameters was found
which is capable of fitting almost any tested decay curve without the threat of under- or over-
fitting. Even for very erroneous and non-decaying curves (not shown here) good results can
be achieved. Furthermore neither numerical instabilities respectively convergence problems nor
a strong dependence on the starting values were observed and the computational effort to fit
numerous decays is very limited.
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Figure 3.5: Fitted models (colored lines) and measured decay curves (black line) for an
arithmetic gate distribution and three pulse lengths as well as different SNR
(individual rows).
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Figure 3.6: Fitted models (colored lines) and measured decay curves (black line) for an
semi-logarithmic gate distribution and two pulse lengths as well as different
SNR (individual rows).
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Figure 3.7: Fitted models (colored lines) and measured decay curves (black line) for dif-
ferent sampling types and pulse lengths as well as different SNR (individual
rows).
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3.3 Fitting of the time-domain Cole-Cole model

The Cole-Cole model (Cole and Cole, 1942) is a dispersion model that can be used to describe
the polarization response, i.e. the relaxation curve measured in TDIP. Cole-Cole parameters
can be related to the grain size distribution as well as the mean grain size (Chelidze et al., 1999;
Kemna, 2000) and are widely used (Binley et al., 2005; Koch et al., 2011; Revil et al., 2014).
Initially introduced for the frequency-domain, Pelton et al. (1978) proposed a time-domain for-
mulation. Fitted to a decay curve, it is possible to determine the frequency depend parameters
of the IP effect based on measurements collected in the time-domain. From that point of view
it would be well reasonable to use this model instead of the power law model due a possible
linkage to physical parameters. This section is sought to be a comparison of the Cole-Cole model
and the power law model by means of the goodness of fit, the convergence, the dependence on
starting values as well as the computational effort.

Equation 3.5 shows the time-domain Cole-Cole model as used by Pelton et al. (1978) as well
as the corresponding Python implementation.

M(t) = M0

∞∑
n=0

(−1)n( t
τ )nc

Γ (1 + nc)
(3.5)

import numpy as np
from scipy.special import gamma

def ccm_p(t, c, tau, M0, n):
out = np.zeros(len(t),)
n = np.arange(0,n)
for iter in range(len(t)):

out[iter] = M0*sum(((-1)**n * (t[iter]/tau)**(n*c))/gamma(1+n*c))
return out

M0, τ and c are being referred to as Cole-Cole parameters and Γ is the Gamma function.
M0 is the chargeability for t = t0, τ is a time constant that characterizes the decay and c

is a dimensionless constant bounded to [0, 1] which controls the frequency dependence. The
extremely slow convergence of this formulation for t/τ < 10 is well known (Ghorbani et al.,
2007; Gazoty et al., 2012a) and the authors suggest the use of an alternative formulation after
Guptasarma (1982) which writes:

M(t) = M0

∞∑
n=0

(−1)n+1( t
τ )−nc

Γ (1 − nc)
(3.6)
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3.3 Fitting of the time-domain Cole-Cole model

import numpy as np
from scipy.special import gamma

def ccm_g(t, c, tau, M0, n):
out = np.zeros(len(t),)
n = np.arange(0,n)
for iter in range(len(t)):

out[iter] = M0*sum(((-1)**n+1 * (t[iter]/tau)**(-n*c))/gamma(1-n*c))
return out

Fitting of a model with constrained parameters isn’t possible using the same Python code and
libraries as for the fitting of the power law model. The LMFIT package by Newville et al. (2014)
is a powerful compilation of different optimization algorithms and was used for this purpose.
For this particular non-linear optimization problem the Levenberg-Marqardt algorithm did not
produce any meaningful results - a proper convergence was just not guaranteed even for perfect
starting values. Instead the Nelder-Mead method (Nelder and Mead, 1965) was used which is
able to fit, given a set of proper starting values (which can be deduced by trial-and-error), almost
all decay curves of a data set. This is however only valid for the Cole-Cole model introduced in
equation 3.6. For the initial formulation after Pelton et al. (1978) neither proper starting values
nor a optimization method was found which is capable of achieving meaningful fitted models.
This model was therefore not further treated and no results are shown.

Figure 3.8 shows the fitted models for equation 3.6 in comparison with the pow2 model for two
different samplings and pulse lengths. The Cole-Cole model curves approximate the measured
decay curves relatively well, however the associated gof values are higher than for the power
law model (e.g. 0.0418 for the Cole-Cole and 0.0081 for the pow2 fit) and particularly in the
late times of the decay deviations can be observed. This can be contributed to the constrained
character of the model with parameters bound to certain limits resulting in a smaller flexibility.
Furthermore, it has been demonstrated, that not all IP responses can necessarily be described
by a Cole-Cole model (Nordsiek and Weller, 2008; Flores Orozco et al., 2012b). As discussed
in section 3.2 the desired fitting model needs to meet some important conditions, e.g. a low
sensitivity to starting values and a low computational effort. For the Cole-Cole model none of
them are satisfyingly fulfilled. Particularly the condition of the best possible approximation is
critical as the estimation of the random noise relies on that (please refer to chapter 6). Deviations
from the measured decay as observed for the Cole-Cole model would bias the error estimates
and thus the resulting electrical images.

Two models of the Cole-Cole family have been examined on their potential to fit measured
decay curves and were compared with the pow2 model. No practical and more important stable
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Chapter 3 Fitting and Sampling of the Decay Curve

Figure 3.8: Fitted curves of the Cole-Cole model in comparison with the pow2 model.
Visual analysis as well as the goodness of fit (gof) indicate a better approx-
imation for the pow2 model.

and robust approach of fitting models based on the initial formulation after Pelton et al. (1978)
was found. Fitted curves, based on the model formulation after Guptasarma (1982), when
provided with proper starting values, proved to be able to fit most decay curves. However, a
visual analysis as well as the goodness of fit showed that the pow2 model approximates the
measured decay far better which is critical for further analysis. The gof values for fitted curves
of the Cole-Cole and pow2 model can be found in table 3.4. Although not quantified here, the
computational effort to fit the Cole-Cole model is not negligible and particularly relevant when
fitting hundreds or thousands of curves of a data set. By means of a theoretical background
the Cole-Cole model might be the best-suited model to approximate any decay curve. However,
given the reasons here, it must be concluded that a robust and simple model, such as the pow2
model, is probably the better choice.
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3.4 Evaluation of the sampling on the model fitting

Goodness of fit
Sampling Case Cole-Cole pow2

Arithmetic 1 0.0418 0.0081
2 0.6739 0.2398

Semi-log. 1 0.1298 0.1292
2 0.9103 0.7877

Table 3.4: Values for the goodness of fit for fitted curves of the Cole-Cole and pow2 model
for two cases of decay curves obtained with an arithmetic and semi-logarithmic
sampling.

3.4 Evaluation of the sampling on the model fitting

The evaluations in section 3.2 geared more towards a general description of the fitting of model
curves to the measured decay and a deduction of a best-fitting model. Furthermore tests with
decay curves obtained with different samplings of the voltage decay revealed consistent results
in terms of the model fitting. However since the decay curves are from field data sets and the
voltage decays are not known the "goodness of the approximation" of the fitted model curves to
the actual voltage decay could not have been evaluated. Therefore a series of numerical tests
were conducted aiming at the understanding of the representativeness of the fitted model curve
and the effects of different samplings of the voltage decay on the model fitting. In particular the
question of "is there a best sampling (i.e. the distribution, number and width of the IP gates)
for the model fitting" should be answered.

Consistent to the approach in section 3.1 the voltage decay was modelled after a power law
function and subsequently contaminated with different levels of gaussian noise with standard
deviations of 50, 100, 500 mV representing different SNR. For each of the samplings in tables
3.2 and 3.5 the decay curves for the clean voltage decay as well as the contaminated decays
were derived following the standard approach stated in section 2.1. To the four decay curves of
each sampling type (one for the clean voltage and three for the contaminated voltage decays)
the proposed power law (see section 3.2) was fitted. In order to have statistical parameters for
the goodness of approximation the RMSD (see equation 3.4) between the fitted model and the
decay curve for the clean voltage signal as well as the misfit ΔMint of the integral chargeability
values (see equation 2.3) of both curves were calculated. The equation for ΔMint writes

ΔMint = Mc,int − Mf,int (3.7)

with Mc,int being the integral chargeability of the decay curve (clean voltage decay) and Mf,int

the integral chargeability of the fitted model curve.

Figure 3.9 shows the modelled voltage with the different noise levels (top panel) and the fit-
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Semi-logarithmic mod Cole-cole Test
Mdelay 160 20 50
Gate 1 40 20 50
Gate 2 40 30 50
Gate 3 40 30 120
Gate 4 40 30 50
Gate 5 40 40 120
Gate 6 50 40 50
Gate 7 50 50 120
Gate 8 50 60 50
Gate 9 50 70 120
Gate 10 50 80 50
Gate 11 90 90 120
Gate 12 90 100 50
Gate 13 90 110 120
Gate 14 90 120 50
Gate 15 90 130 120
Gate 16 120 140 50
Gate 17 120 150 120
Gate 18 120 160 50
Gate 19 240 180 120
Gate 20 240 200 50

Table 3.5: Mdelay, gate widths, gate numbers and their distribution for three different
samplings. All values are given in ms.

ted model curves for different SNR (rows two to four). For the sake of clarity the six tested
samplings respectively the corresponding model curves are distributed on two columns. As for
the case of a high SNR all models approximate the decay curve of the clean voltage signal well
with only small deviations being observed for the model curves of the left column. This visual
analysis is also supported by the small values for the parameters of the RMSD and ΔMint,
e.g. for the arithmetic sampling RMSD = 0.16 and ΔMint = 0.153 mV/V. Also for decreasing
SNR (third row of figure 3.9) the results are quite promising with a maximum deviation for
the fit of a modified semi-logarithmic sampling of ΔMint = 0.353 mV/V. The mean value of all
integral chargeability values Mc,int is 2.823 mV/V (also see figure 3.9) and thus a deviation of
0.353 mV/V represents an error of approximately 9%. Regarding the model curves for the most
distorted voltage decay (fourth row of figure 3.9) some observations can be made. Although the
fitted model curves of the left column by no means approximate the undistorted decay curve,
the difference of the integral chargeability values are small, in fact even lower as for the fitted
model curves of the third row. This is an important observation because it means that ΔMint

alone is probably not enough to describe the goodness of approximation. Also the RMSD values
need to be considered. Furthermore it seems that model curves fitted to decay curves obtained
with samplings characterized by a small Mdelay and more narrow gates in the early times of
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3.4 Evaluation of the sampling on the model fitting

Figure 3.9: The effects of the sampling of the voltage decay on the fitting of a model curve.
The first row shows the modelled voltage decay contaminated with different
levels of noise and the rows two to four the fitted model curves for different
samplings and noise levels. 35
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the decay tend to approximate the undistorted decay far better. The maximum value of ΔMint

for the Cole-cole fit is 0.592 mV/V and represents an error of around 20% which is acceptable
considering the high level of noise in the voltage decay. Except for the test fit also the RMSD
values are relatively low with 0.53 mV/V for the Cole-cole and 0.43 mV/V for the 30ms fit.

All observations and conclusions made for the results presented in figure 3.9 are however only
valid for this one specific distribution of noise in the voltage decay. To evaluate the general
performance of the individual samplings for the model fitting another experiment has been con-
ducted. It consisted of repeating the setup as described above 100 times and a statistical analysis
of the parameters ΔMint and RMSD. Figure 3.10 shows the distributions of ΔMint (upper panel)
and the RMSD (bottom panel) plotted against Mint for low levels of noise (light colors), medium
levels of noise (medium-dark colors) and high levels of noise (dark colors) as obtained for the
different samplings and corresponding fitted model curves. The standard deviations presented
in the legends of figure 3.10 are the values calculated for all 100 samples of the individual noise
levels (starting with the value for the low noise case). Apparently, of all tested samplings, the
30ms fit has the lowest values of ΔMint and RSMD with both values being a factor 0.5 smaller
than for the next best sampling (0.06 vs. 0.1 mV/V of the test fit for ΔMint and 0.03 vs.
0.07 mV/V for the RMSD). This confirms the observations made before with a preference for
samplings with a high number of narrow gates. On the opposite however, the other samplings
with a small Mdelay and dense sampling of the early times are not performing significantly
better than the widely used arithmetic sampling and the standard deviations for the ΔMint and
RMSD values as well as the distributions observed in figure 3.10 are similar. That is unexpec-
ted, because following the conclusions from earlier, at least the RMSD values should show more
variance for the arithmetic and the modified semi-logarithmic sampling. Two possible explana-
tions are i) the experimental setup is insufficient and a sole visual analysis of the fitted curves
is needed or ii) the distribution and width of sampling is of less importance for the model fitting.

To summarize this section in the following the general conclusions of this experiments:

• In section 3.1 the effects of random noise as well as the sampling of the voltage decay were
evaluated concluding that for random noise with a standard deviation of 500 the decay
curves become erroneous and an approximation to the undistorted decay is hardly given.
However, following the observations made here, it is clear that the fitted model curves
are able to reproduce the shape of the undistorted decay to a certain degree, despite the
erroneous decay curves as the input parameter.

• The goodness of approximation is difficult to quantify. The values for the ΔMint and
RMSD might not be sufficient and probably demand an additional visual analysis of the
fitted curves.

36



3.4 Evaluation of the sampling on the model fitting

• It seems that the number of gates is the dominating factor for the model fitting. Whereas
only small differences can be observed for the samplings with 20 IP gates the statistical
indicators (i.e. the standard deviations for ΔMint and RMSD) for fitted model curves of
the sampling with 66 gates were much lower. However please be aware that this statement
might be compromised by the insufficient quantification of the goodness of approximation
as described above.

Figure 3.10: The general performance of the samplings on the model fitting was evaluated
by calculating ΔMint and RMSD for 100 different distributions of random
noise in the voltage decay for the three particular noise levels. Light colors
and circle markers correspond to the added noise with a standard deviation
of 50, medium-dark colors and square markers to standard deviations of 100
and dark colors and triangle markers to standard deviations of 500. The
standard deviations in the legends are computed for all 100 values for each
noise level starting with the lowest one.
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Chapter 4
Histogram Analysis

The identification and removal of outliers could be performed by setting thresholds for the meas-
ured electrical values, e.g. the apparent resistivity ρa, the transfer resistance R or the integral
chargeability Mint. Filtering schemes following this approach are fully automatable, therefore
being applicable to extensive data sets. However the definition of appropriate thresholds can be
arbitrary and is mostly based on subjective observations. Only under rare circumstances, for
example with data being normally distributed, threshold values can be defined with a proper
statistical background.

The following example should illustrate some problems typically related to the characterization
of outliers based on the thresholds in the histogram. Let it be assumed that 90% of a data set’s
apparent resistivity values are valid measurements and follow a normal distribution (blue bins
in figure 4.1), 7% are outliers by means of not being part of the normal distribution (green bins
in figure 4.1) and 3% of the values are being associated to outliers without spatial correlation
within the data set (red bins in figure 4.1). This spatially inconsistent outliers are however in the
range of magnitude of the values of the normal distribution. For normally distributed data, the
interval ±2σ, with σ being the distribution’s standard deviation, contains 95.45% of all values of
the normal distribution. Therefore a first approach for the definition of a threshold could consist
of two or three times the distributions standard deviation as values exceeding those thresholds
are probably not part of the normal distribution.

Now, some observations can be made:

• Based on the threshold, outliers not associated to the normal distribution can be classi-
fied and removed. However, also valid measurements are being rejected. Therefore the
threshold may be justified by a statistical point of view, yet may not be fully optimal.

• Outliers characterized by a lack of spatial correlation within the data set, however char-
acterized by values within the same range of values as the valid measurements cannot be
classified with simple thresholds of the electrical values. Other approaches are needed.
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Figure 4.1: The threshold identifies and filters non-normal outliers not associated with
the valid measurements of the normal distribution. However also valid meas-
urements are being identified as outliers. Furthermore, spatial inconsistent
outliers with magnitudes within the range of valid measurements cannot be
assessed using this filtering approach.

• Even though this is a fictitious example with ideal distributions of measurements and
outliers, the estimated threshold is not optimal. Generally, under normal conditions, ideal
normal distributions are a rare exception and measured data distributions differ from well-
known statistical models. This raises the questions whether appropriate thresholds can
be defined based on statistical analysis such as the standard deviation or percentiles or
if optimal thresholds can only be deduced by a visual analysis of the measured data’s
distributions respectively a-priori information on the data (e.g. apparent resistivity values
are only expected up to 130 Ωm). This again, confines the application of this approach in
automated filtering schemes.

• There is no possibility to quantify the amount of random noise based on the threshold
approach as needed for the application during the inversion.

In order to account for some of the above mentioned deficiencies another approach has been
developed. The so-called histogram analysis relies on the background that histograms of the
integral chargeability values of clean data sets are typically characterized by a high degree of
connectivity between the individual bins (e.g. refer to figure 4.2 a) ). Therefore can discontinu-
ities or gaps (i.e. empty bins or bins with a low number of counts) indicate the presence of
outliers. However only under the assumption that the histogram was computed for a represent-
ative number of bins. As discussed before can outliers for example be related to measurements
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without spatial correlation within the data set or to anomalously high integral chargeability
values. For the latter type of outliers the histograms commonly reveal patterns similar to figure
4.2 b), where additionally to a main distribution, separated clusters of bins with only a limited
number of counts are present. The main distribution corresponds to the valid measurements,
whereas the clusters are associated to outliers. The assumption that outliers are clustered apart
from the main distribution (without direct connection) is the key premise of this methodology.
The histogram analysis/filter searches the histogram for possible gaps and removes those meas-
urements associated to minimal counts and separated bins.

Figure 4.2: a) presents a histogram typical for a clean data set without the occurrence
of gaps between bins. The histogram presented in b) is based on a data set
with outliers characterized by anomalously high integral chargeability values
(measurements in red bins). Large gaps (i.e. empty bins) are considered as
an indication of outliers.

Subsequently the general design of the histogram filter will be illustrated. Details on partic-
ular parameters of the filter will be discussed later on. Figure 4.3 presents a block chart of the
work flow. As a first step the number of bins nb for the histogram is defined and the histogram
is computed. The second step consists of a loop iterating over the individual bins starting with
the bin with the lowest chargeability values. A bin is then classified as gap if the counts per
bin (i.e. the number of measurements in the bin) is lower than a freely selectable threshold
tg. If no gaps can be identified it is assumed that the data set is free of outliers and the ana-
lysis stops. Bins classified as gaps can be subject to a set of optional queries, here denoted as
secondary conditions. If the secondary conditions are not fulfilled the loop continues with the
next iteration. For the other case an integral chargeability in the bin, typically realized as the
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Figure 4.3: Schematic block chart of the histogram analysis.

integral chargeability value associated to the left boundary of the bin, is selected. The value
is subsequently used to define rules for a filter (e.g. remove all measurements exceeding this
threshold). After the application of the filter the next iteration of the histogram analysis starts.
However this time the updated (filtered) data set is used for the definition of nb. The number
of iterations ni of the histogram analysis can be chosen freely. Nevertheless, a large number
of iterations may lead to the removal of data of spatially constrained anomalies that are not
necessarily outliers.

The selection of an adequate number of bins is critical. Histograms calculated for a large
number of bins are typically characterized by the appearance of many thin separated bins and
applying the filter can result in the removal of measurements that are not outliers (e.g. the data
set is overfiltered). A low number of bins leads to histograms with very broad bins and outliers,
even if they may be well-separated from the main distribution, might be grouped in the same
bin as valid measurements and therefore only a poor identification of outliers is given (e.g. the
data set is underfiltered). To better illustrate the problem, figure 4.4 presents the histograms
and filter thresholds (blue lines) for three iterations ni and different parameterizations of nb.
The rules for the calculation of nb are presented in table 4.1. nb used in the first row of figure
4.4 corresponds to a value determined by an empirically deduced equation, for the second row
nb was defined as a fifth of the number of measurements of the data set and for the third row
nb is a function of the integral chargeability values of the data set. Based on a visual analysis
of the histogram and the corresponding pseudosection an optimal threshold for outliers was
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Rule
Row 1 nb = 1 + 4.5 · log(n), n...number of measurements
Row 2 nb = n/5
Row 3 nb = max(M) · 1.25, M ...array of integral chargeability values

Table 4.1: Three different rules for the calculation of nb were investigated with two of
them being a function of the number of measurements n and one as a function
of the associated integral chargeability values of the data set (Row 3).

defined denoted by the red line in figure 4.4. tg was chosen with 1 (i.e. a gap is defined as an
empty bin) and a secondary condition was introduced consisting of a check whether the integral
chargeability of the bin is higher than the median value of integral chargeability values of the
data set.

Results for the first row reveal that the outliers are well separated from the main distribution
and the corresponding gaps can be easily detected. Already after the second iteration all outliers
are removed. Since there are no gaps left the third iteration stops without a loss of valid
measurements. Quite obviously the second row represents the case of a number of bins chosen
too high. Particularly for the second iteration, where the filter threshold is based on a single
gap within the valid measurements resulting from to the inadequately defined number of bins, a
significant amount of valid measurements is removed. The same applies for the third iteration.
For the third row, the parameterization based on the integral chargeability values leads to an
underestimation of the number of bins and although starting with a number of bins close to
values of the first row, the values for nb in the second and third iteration will not lead to a
removal of remaining outliers.

The proposed histogram analysis can also be used to investigate the distributions of other
parameters as for example the normal-reciprocal misfits or parameters determined in an ana-
lysis of the spatial consistency. However it may be necessary to adapt the filter parameters and
particularly for such applications it has shown that the choice of the threshold value tg used for
the classification of a gap is not necessarily confined to the value of 1. The before mentioned
secondary conditions are thought to imply additionally constraints to the data values associated
to the as gap classified bin and are often of empirical nature and based on subjective observa-
tions. The secondary condition introduced for the example before, consisted of only allowing
gaps associated to integral chargeability values higher than the median value of the data set.
Gaps in the vicinity of the median value, which for normal conditions is located at the peak of
the main distribution, would result in a drastic removal of valid measurements. Other secondary
conditions could consist of percentiles or median values with added standard deviations.

Outliers can also be related to measurements with anomalously low integral chargeability
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Figure 4.4: Histograms and defined filter thresholds (blue lines) of the histogram ana-
lysis for three iterations and different parameterizations of the number of bins
nb (c.f. table 4.1). The red line indicates the optimal threshold for out-
liers determined by an visual analysis of the histogram and the corresponding
pseudosection of the data set.

values without connection to the main distribution. By adapting the direction in which the
histogram bins are iterated over (i.e. starting with the rightmost bin, e.g. the bin with the
highest integral chargeability value) such outliers can also be removed. Clearly a change of
direction also requires the adjustment of possible secondary conditions.
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Chapter 5
Analysis of the Spatial Consistency

Spatial consistency is a key parameter of clean data sets (e.g. free of outliers). For electrical
measurements, such as the IP method, the measured parameters are expected to vary smoothly
and sharp contrast between neighboring measurements could indicate systematic errors needed
to be removed prior inversion. Figure 5.1 presents an integral chargeability pseudosection before
and after an analysis of the spatial consistency (and the corresponding filtering). The unfiltered
data set is characterized by measurements contaminated by systematic errors (dark red points
in the pseudosection in figure 5.1 with Mint > 15 mV/V). Outliers like this don’t have any
connection to the surrounding measurements in the pseudosection and the removal of such out-
liers improves the integrity in the data and allows to solve for images with higher contrast. To

Figure 5.1: Pseudosections of integral chargeability data before and after filtering with an
spatial consistency based approach.
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be practical, data filtering approaches based on an analysis of the spatial consistency need to
take into account more than one measurement at a time. This can be easily illustrated on the
following example. A smooth decay curve, which is characterized by a high goodness of fit (see
section 3.2) can however be situated in the wrong range of magnitude. There is probably neither
a correlation in the integral chargeability values nor in the characteristics of the shape of the
decay curve in regard to the neighboring measurements. However, without taking into account
either a-priori information (i.e. integral chargeability values exceeding 10 mV/V are not being
expected) or other measurements for comparison, there will be no possibility to characterize the
decay curve as an outlier.

The proposed approach for the analysis of the spatial consistency applied in the DCA is real-
ized as a comparison of a reference decay curve with either the measured or the fitted decay
curve. The reference curves should be representative for a subset of decay curves and the spatial
inconsistency can be characterized by means of i) a deviation from the shape of the reference
curve and ii) a deviation from the magnitude of the reference curve. Understandingly, both
deviations are in most cases coupled.

The following sections discuss the:

Computation of reference curves: Reference curves need to be as smooth as possible to avoid
biasing deviation estimates. Furthermore, the computation needs to be robust, by means
of an independence to erroneous curves and the reference curve needs to represent the
characteristics of the decay curves used for the computation.

Partitioning of data sets: The proper choice of subsets for the computation of the reference
curve is critical. Subsets can be defined on characteristics of the decay curves but also on
general properties of measurements such as the electrode configurations or the number of
depth levels in the pseudosection.

Analysis of the spatial consistency - the reference curve approach: A detailed description of
the analysis approach.

Characterization of outliers: To be of use, the deviation parameters derived during the analysis
of the spatial consistency need to be capable of characterizing outliers. This section will
discuss deviation parameters obtained for different realizations of the reference curves.

Definition of parameter thresholds: Finally different approaches to define parameter thresholds
as needed for the filtering will be discussed.
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5.1 Computation of reference curves

5.1 Computation of reference curves

Reference curves (RCs) need be representative for the given subset of either measured decay
curves (MDCs) or fitted decay curves (FDCs). In order to avoid biasing during the comparison
reference curves further require to be as smooth as possible. Therefore, in a first step, non-
decaying curves are not taken into account for the computation of a reference curve. Equations
5.1a-e show five different computation approaches which in the following should be evaluated.

mean(MDC) : mr,i = mean([mm,i, mm,i+1, . . . , mm,N ]) (5.1a)

median(MDC) : mr,i = median([mm,i, mm,i+1, . . . , mm,N ]) (5.1b)

median(FDC) : mr,i = median([mf,i, mf,i+1, . . . , mf,N ]) (5.1c)

weighted average(MDC) : mr,i =
N∑

j=1
(wj · mm,ij) /

N∑
j=1

wj (5.1d)

weighted average(FDC) : mr,i =
N∑

j=1
(wj · mf,ij) /

N∑
j=1

wj (5.1e)

with : wj =
[

RMSDj · max
( 1

[RMSDj , RMSDj+1, . . . , RMSDN ]

)]−1
(5.1f)

mr,i is the calculated partial chargeability for the reference curve, mm,i the measured partial
chargeability and mf,i the partial chargeability of the fitted curve, all for the i-th gate. N is the
number of decay curves of the given subset. wj is a weighting factor realized as the normalized
inverse of the individual RMSD for each MDC/FDC pair (as introduced in equation 3.4). Noisy
decay curves are therefore being assigned to lower weights than smooth decay curves. Hence,
defining the weighting factors like this, further favors smooth reference curves.

Figure 5.2 presents the calculated reference curves as well as the MDCs and FDCs for the
case of a high SNR (left panel) and low SNR (right panel). The subset of decay curves for the
high SNR case is characterized by a majority of smooth curves with only a few curves show-
ing erroneous behavior. Apparently all five proposed computation approaches provide smooth
reference curves which are further representative for the subset. Only minor differences can be
observed and even the rather non-robust approach of calculating the mean value of each gate of
the MDCs (see equation 5.1a) is performing satisfyingly.

However, as presented in the right panel of figure 5.2, with increasing number of noisy decay
curves the approaches of calculating the mean/median value of the MDCs (equations 5.1a,
5.1b) seem to reach a breaking point. The calculated RCs are no longer smooth and also the
magnitude of the mean calculation is overestimated and not representative. This is due to the
two high magnitude decay curves and highlights the non-robust behavior of a mean calculation
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in presence of outliers (which, for the given subset, the two decay curves obviously are). The
weighting average (both based on the FDCs and MDCs) and the median calculation for the FDCs
provide smooth RCs in the similar range of magnitude. They can be considered as representative
for the subset and it appears that the weighting significantly reduces the influence of noisy decay
curves - even for the MDC case.

Figure 5.2: Different realizations of the computed reference curve for the case of a high
SNR subset (left panel) and a low SNR subset (right panel) of decay curves.

To further validate whether the above observations, regarding the smoothness of the RCs,
are only applicable to this given subset a series of tests have been conducted. From two data
sets, characterized by different SNR (high and low), N random sized subsets of decay curves
were drawn and the RCs calculated (non-decaying curves were removed before). The smooth-
ness of each calculated RC was evaluated by means of its gof respectively RMSD when fitting a
pow2 model. Smooth RCs should be characterized by low gof values whereas noisy realizations
show higher values. Finally, the general estimation of smoothness was evaluated as the stand-
ard deviation of all of the N gof values. This was done for each computation approach separately.

Table 5.1 shows the number of subsets for each data set and the corresponding calculated
standard deviations. The calculation based on the weighted average of the FDCs has the lowest
value for both data sets with standard deviations being a factor 10 to 1000 smaller than for
other calculations. Even the approaches of weighted average of the MDCs and median of the
FDCs, which appeared to perform comparable as can be seen in figure 5.2, are associated to
much higher standard deviations. It is further interesting, that the different SNR of the data
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sets is directly being reflected by the estimated standard deviations. In summary it is fair to
conclude that the computation approach based on the weighted averaging of the fitted curve’s
partial chargeability values (as written in equation 5.1e) represents the most robust methodology
to calculate smooth reference curves.

Data set 1 - high SNR Data set 2 - low SNR
Subsets: N = 164 Subsets: N = 65

Computation approach Standard deviation Standard deviation
Mean(MDC) 0.1532 0.9252

Median(MDC) 0.0795 0.2314
Median(FDC) 0.0277 0.0204

Weighted average(MDC) 0.0031 0.0369
Weighted average(FDC) 0.0002 0.0037
Table 5.1: Results of the evaluation of smoothness of the RCs for the different computation

approaches.

5.2 Partitioning of data sets

The partitioning of data sets, i.e. the definition of appropriate subsets for the computation of
the reference curve, is not trivial. The reference curve should be representative for the sub-
sets and thus the number of decay curves, however also the quality of corresponding the decay
curves need to be selected properly. Partitioning the data set in too many subsets might results
in reference curves not able to characterize outliers, as they might even be defined for outliers
themselves. Considering the opposite case of just a few subsets defined, the dynamic in the
decay curves may be too large to permit a proper identification of outliers. Moreover even valid
measurements with low and high integral chargeability values might be classified as outliers (as
it will be later discussed in section 5.4).

To better illustrate the problem figure 5.3 presents the subsets (blue) and reference curves
(black) for a given data set for the case of too few reference curves (left panel) and too many
reference curves (right panel). FDCs in red color indicate the classified outliers following the
reference curve approach. To set it in a relation it is assumed that decay curves exceeding an
average magnitude of about 10 mV/V can be seen as outliers. The limit is indicated by the
dashed green curve. Whereas only a few measurements are being classified for the case of too
many reference curves, the classification based on only one reference curve would lead to drastic
removal of measurements during the filtering.

As it can be seen in figure 5.3, the reference curves require to describe the characteristics of
valid measurements. For reference curves defined on a subset of outliers the derived deviations
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Figure 5.3: Comparison of classified outliers (red lines) for the case of too few reference
curves (left panel) and too many reference curves (right panel). The dashed
green line is the assumed limit for outliers and the blue decay curves indicate
the subsets used for the computation of the reference curves.

parameters will be very small and thus the outliers won’t be removed in the filtering proced-
ure. This marks a limitation of this data set partitioning approach as an adequate prefiltering is
required in order to define the reference curves on the valid measurements. In fact, the most rep-
resentative reference curves would be defined for clean data sets. However, since clean data sets
represent the desired outcome of such analysis, circular reasoning applies here. Alternatively,
subsets can be defined based on the characteristics of the survey, i.e. the geometrical factors,
potential dipoles belonging to the common current dipole or measurements of the same depth
level of the pseudo section. Such approaches cluster the measurements in a different manner
and require, compared to the partitioning discussed above, a less sophisticated prefiltering of
the data beforehand.

The following sections are intended to introduce different realizations of data partitioning with
a distinction between approaches based on the integral chargeability and approaches taking into
account the electrode configuration (i.e. the geometry used for current injection and voltage
readings).

Uniform partitioning - binning in uniform subsets: As a first approach the integral chargeab-
ility values of a prefiltered data set (after the removal of non-decaying curves and decay
curves with implausible high integral chargeability values) were divided into uniform sub-
sets. For the definition of subsets the range of integral chargeability values was calculated
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and used to formulate the boundaries of the subsets by dividing it into three equal parts.
The choice of three subsets is empirical and might need to be adjusted for particular data
sets. For the present data sets it is however an acceptable compromise, when keeping in
mind the trade-off between too many and too few subsets. The boundary definition for
the uniform partitioning can be found in table 5.2.

range(Mint) = max(Mint) − min(Mint)
third = range /3

Subset 1 min(Mint) min(Mint) + third
Subset 2 min(Mint) + third min(Mint) + third ∗2
Subset 3 min(Mint) + third ∗2 max(Mint)

Table 5.2: Formulation of the range and the subsets for the case of a uniform partitioning.
Here, Mint denotes an array containing the integral chargeability values of the
prefiltered data set.

Focused partitioning - histogram analysis for focused bins: Analogous to the uniform parti-
tioning, is the focused approach based on the integral chargeability values. However con-
trary to before, are the subsets in this case defined by the distribution of values in the
histogram. In particular, relative minima of the binned integral chargeability values are
sought and later on used for the definition of subset boundaries. It is clear that the oc-
currence and number of such minima is to a large part dependent on the number of bins
in the histogram. For the present data sets, the formulation already presented in table 4.1
was used (with n being the number measurements). It writes

nb = 1 + 4.5 · log(n) (5.2)

The detection of the relative minima was performed using a standard function of the Scipy
stack (Jones et al., 2001–; Du et al., 2006). It allows to choose the number of values on
each side to use for the comparison with the value currently being tested. The intent is to
solve for three subsets again. Thus the number is varied until at least three minima are
found. For the case that only two, one or no relative minima or minimum can be located
the approach degenerates to a uniform partitioning. For the case of three or more minima
there is further a differentiation consisting of a check wether the first minimum is closely
located to zero (i) or not (ii). The boundary definitions for (i) and (ii) can be found in
table 5.3 and 5.4. The minima in the number of integral chargeability values per bin
bi are therefore being transfered to the position along the chargeability values Mint(bi)
as the left bound of the corresponding bin (figure 5.4). As can be seen in the tables
5.3 and 5.4, only the first two to three minima are taken into account for the boundary
definition. Minima in the higher range of integral chargeability values, which are typic-
ally relatively small compared to the first two to three minima, are merged into one subset.
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bi ... relative minima
Mint(bi) ... corresponding chargeability

(i) Mint(b1) close to zero
Subset 1 0 Mint(b2)
Subset 2 Mint(b2) Mint(b3)
Subset 3 Mint(b3) max(Mint)

Table 5.3: Definition of the boundaries for the focused partitioning when Mint(b1) is close
to zero. Here, Mint denotes an array containing the integral chargeability
values of the prefiltered data set.

bi ... relative minima
Mint(bi) ... corresponding chargeability

(ii) Mint(b1) not close to zero
Subset 1 0 Mint(b1)
Subset 2 Mint(b1) Mint(b2)
Subset 3 Mint(b2) max(Mint)

Table 5.4: Definition of the boundaries for the focused partitioning when Mint(b1) is not
close to zero. Here, Mint denotes an array containing the integral chargeability
values of the prefiltered data set.

Figure 5.4: The computed relative minima bi refer to the number of values per bin. For
the partitioning (based on the integral chargeability values) the left bound of
the corresponding bin, here denoted as Mint(bi), is used.

Figure 5.5 presents the reference curves (black lines), subsets (blue lines) and histograms
indicating the boundaries for the subsets for the uniform partitioning (top panels) and
focused partitioning (bottom panels). The blue decay curves shown here are the fitted
decay curves. Although the first subsets are different the computed reference curves are
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similar. The reason for that is the number of measurements in this particular subset and
the robust formulation of the reference curve. When looking at the histogram it is logical
that the reference curve will be centered in the distributions maximum, regardless of the
change in the right bound of the subset. Major differences can however be observed for the
reference curves of the subsets two and three. Whereas the focused partitioning provides
reference curves describing the higher magnitude decay curves appropriately, the uniform
partitioning obviously underestimates the influence of such measurements.

Figure 5.5: Computed reference curves (black lines), fitted decay curves of the subsets
(blue lines), and the corresponding histograms indicating the boundaries of
the subsets for the cases of a uniform partitioning (top panels) and the focused
partitioning (bottom panels).

Current dipole partitioning - subsets for measurements sharing the current dipole: The cur-
rent dipole partitioning is the first representative of the data partitioning approaches based
on the electrode configuration and clusters measurements differently when compared to
the approaches introduced before. Subsets are defined for measurements for which the
potential dipoles are sharing the same current dipole. The number of reference curves is
therefore not limited to the empirical value of three and is solely based on the charac-
teristics of the deployed measurement configuration (i.e. the sequence of electrodes being
addressed). Further, measurements within a subset are related to the same current density
and thus fairly similar signal strengths and subsets should moreover cluster measurements
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of similar SNR, when compared among each other. Table 5.5 shows the definition of two
subsets for an exemplary DD data set. As can be seen, measurements of a subset typically
span a range of different SNR due to the increasing separation between the current and
potential dipole.

Current electrodes Potential electrodes
A B M N

Subset 1

2 1 3 4
2 1 4 5
2 1 5 6
2 1 6 7

Subset 2

7 6 8 9
7 6 9 10
7 6 10 11
7 6 11 12

Table 5.5: Exemplary definition of subsets, following the current dipole partitioning ap-
proach for a Dipole-Dipole data set. A, B are the current electrodes and M, N
are the potential electrodes.

Figure 5.6: The fitted decay curves (black lines) and computed reference curve (dashed red
line) for a subset based on the current dipole partitioning. The red bins in the
histogram in the right panel indicate bins containing the integral chargeability
values of the subset.

Figure 5.6 shows the fitted decay curves of a subset (black lines), the computed reference
curve (dashed red line) and for comparison all fitted decay curves of the data set (light blue
lines). The FDCs of the subset, when compared with a subset of the uniform partitioning
approach, span a wider range of magnitudes and different shapes. This marks a major
difference between the two approaches. The computed reference curve however, is similar
to the one computed for all measurements (when compared with figure 5.5). The variety
of measurements in the subset is also visible in the integral chargeability values, presented
in the right panel of figure 5.5 where the distribution of integral chargeability values of
the subset is indicated by the red bins. Blue bins refer to the distribution of integral
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chargeability values of the entire data set.

Partitioning on the levels of the pseudosection: Another approach of partitioning the data set
based on the electrode configuration is the definition of subsets for each depth level of
the pseudosection. The plotting depth respectively (pseudo)-depth, which isn’t necessary
representative for the real distribution of electrical properties in the subsurface, is depend-
ent on the electrode configuration and the separation between electrodes (as discussed in
section 2.6). Since the topography is commonly not taken into account for the simple
visualization of data in pseudosections, several measurements refer to the same depth and
thus can be clustered (see red and black rectangle in figure 5.7). It is important to point
out that the number of measurements as well as the SNR typically decrease with increas-
ing depth. Hence, depth level partitioning groups measurements of similar signal strength.
The subsets among each other however, considered in terms of the general SNR, are in fact
not comparable. Depth level partitioning doesn’t consider changes in the signal strength
due to variations in the electrical properties. This may however be an important problem
particularly for long profiles.

Figure 5.7: Measurements plotted to the same depth level can be grouped into subsets.
The red and black rectangles indicate the measurements of the subset D1 and
D10. Deeper depth levels are associated to lower SNR.

The fitted decay curves (black lines) and reference curves (dashed red lines) for the sub-
sets D1 and D10, where D1 and D10 refer to different depths in the pseudosection, are
presented in figure 5.8. The blue lines indicate the fitted decay curves of the entire data
set. Again, the reference curves are in a similar magnitude as for the case of a single bin
(i.e. no partitioning into subsets) and the histogram for D1 shows a grouping of integral
chargeability values around 2 mV/V. This is also represented by the cluster of decay curves
(in the left panel). The values for D10 are more evenly distributed which could point to
the decreasing SNR of this subset (with a few outliers also visible in figure 5.7).
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Figure 5.8: The fitted decay curves (black lines) and computed reference curves (dashed
red line) for subsets based on the depth level partitioning. The red bins
in the histograms in the right panels indicate bins containing the integral
chargeability values of the subsets D1 and D10.

5.3 Analysis of the spatial consistency - the reference curve approach

The analysis of the spatial consistency realized in the DCA is based on the comparison of
a reference curve with the MDC or FDC. Spatially inconsistent measurements can be either
characterized by erroneous decay curves with implausible shape or magnitudes (i.e. integral
chargeability values) without correlation within the data set. The reference curve approach
can provide both - parameters describing deviations in the shape of the decay curve as well
as deviations from the magnitude, both in regard to the reference curve. Such parameters are
commonly applied for the characterization of outliers.

The analysis is based on a minimization process of the RMSD for Δmi = mm,i − mRC,i with
mm,i and mRC,i being the partial chargeability values of the RC and MDC for the i-th gate. In
small incremental steps, the RC is therefore being shifted along the chargeability axis in direction
of the decay curve. For each shifting step the RMSD for Δm (for all gates) is calculated and
compared with the previous one. Understandingly, the RMSD should decrease with each step
moving the RC in direction of the decay curve. The minimization process stops for the condition
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RMSDj > RMSDj−1 (j is the step number) and the RMSD reaches a minimum at step j − 1.
The RMSDj−1 (i) and the cumulative shift (ii), from the initial position of the reference curve
to the position with minimized RMSD, are the parameters for the deviation in shape g (i) and
deviation in magnitude k (ii) and represent the output of the reference curve approach. The
principle of the reference curve approach is illustrated in figure 5.9.

Figure 5.9: Illustration of the reference curve approach for an "up-shifting" and compar-
ison with MDC (left panel) and "down-shifting" and comparison with FDC
(right panel).

The comparison with the reference curve is strictly limited to a shifting along the chargeab-
ility axis - no deformations or rotations are being applied. Further, the step size needs to be
chosen carefully to allow to characterize small changes in the RMSD values and thus an adequate
approximation of the reference curve to the decay curve. A high value for the step size would
result in overestimated RMSD values as well as wrong estimates of the deviation in magnitude
(as the reference curve cannot approximate the decay curve). It is important to point out that
the minimized RMSD only represents a local minimum. For rare cases, there might be a second
minimum for the RMSD with an even smaller value - this would then be referred to as global
minimum. However, solving for the global minimum would require shifting the reference curve
over a much broader range of values, resulting in a higher computational effort. Nevertheless,
for the DCA it has shown that the use of the local minimum is sufficient.

The comparison with the reference curve can be applied for the MDC and FDC depending
on the objective of the analysis. Using the FDC instead of the MDC has shown to provide
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more appropriate estimates of the deviations in shape as the random noise in the MDC would
bias the RMSD. As illustrated in figure 5.9 is the comparison not limited to an "up-shifting"
of the RC. In order to differentiate between an "up-" (ku) and "downshift" (kd) of the RC the
resulting deviations in magnitude are being assigned to positive and negative signs respectively.
The reason for that is an easier definition of thresholds for the filtering.

5.4 Characterization of outliers

To be of practical use parameters obtained from the reference curve approach need to describe
possible outliers in a data set. Hence, in this section the deviation parameters k and g for
different realizations of the reference curves (i.e. partitioning approaches) on the basis of a MG
and DD data set will be investigated. The data sets were selected due to the different SNR
of the DD and MG configuration and the dynamic in the integral chargeability values. The
pseudosections of the raw data are presented in figure 5.10 a) and b). In order to validate
the correlation between the parameters and outliers, the DD data set was filtered following
the normal-reciprocal approach (as described in Flores Orozco et al., 2012). Measurements for
which the normal-reciprocal misfit of the integral chargeability exceeds a value greater than two
times the standard deviation of all misfits were removed as outliers. The small differences in the
integral chargeability values, as can be observed between the raw and filtered pseudosection in
figure 5.10 b) and d), are due to the averaging of the integral chargeability values of the normal
and reciprocal data set (as mentioned in section 2.7). For the MG data set a manual removal of
outliers was performed and the corresponding pseudosection is presented in figure 5.10 c). Let it
be assumed that both the filtered MG and DD data set are free of systematic errors (outliers).

Outliers, associated to non-decaying curves would bias statistical analysis (e.g. the compu-
tation of the reference curve) and therefore need to be removed beforehand. The identification
of non-decaying curves is based on a two step procedure. In the first step a linear model
(f(x) = c + dx) is fitted to the measured decay and curves with increasing tendency as well as
negative curves (characterized by only negative partial chargeability values) can be identified
by an analysis of the model parameters. A positive parameter d indicates non-decaying curves
whereas negative decay curves should be characterized by negative values of the parameter c.
However, cases might occur (typically related to measurements characterized by low SNR) where
this approach is not able to identify a non-plausible curve. Hence, the second step consists of
an analysis of the model parameters of the fitted decay curve (c.f. equation 3.1b). FDCs for
which the model parameters fulfill the conditions a < 0 and b < 0 or a > 0 and b > 0 are being
removed. Data sets after the removal of non-decaying curves will from now be referred to as
prefiltered data sets. The pseudosections of the prefiltered MG and DD data set used in the
following sections are presented in figure 5.10 e) and f).
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Figure 5.10: Pseudosections of the raw data sets for a MG a) and DD b) configuration,
after the removal of outliers c) and d) and the after the removal of non-
decaying curves only e) and f). g) and h) present the pseudosections of
deviation in shape g as obtained from the reference curve approach using
only one single reference curve (RC).

5.4.1 Single reference curve

The analysis of spatial consistency can also be conducted using just one single reference curve.
Therefore, all measurements after the prefilter were used to compute the reference curve. The
deviation parameters g (for the shape) and k (for the magnitude) as introduced in section 5.3
were determined in regard to this single RC using the fitted decay curve of each measurement.

Panels g) and f) of figure 5.10 present the pseudosections of the deviation parameter g for the
MG and DD data set. It seems that g obtained from this method is sensitive to outliers, yet
some exceptions can be observed. In particular for the DD configuration several outliers in the
bottom left section of the pseudosection are not being identified. Furthermore would a removal
of high g values lead to a removal of measurements associated to high integral chargeability val-
ues in the center of the array. Hence, following the requirement to remove as few measurements
as possible, the analysis of g appears poorly suited, as such method may be too sensitive to
random error even for measurements related to high signal strength.
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For one single RC the values of k, in a first approximation though, are similar to a difference
of the measured integral chargeability to a median value of the data set. The pseudosections
would therefore display the same distributions as in a) and b) of figure 5.10 after the subtraction
of the median of the integral chargeability values of the data set. Although the parameters
would perfectly describe the corresponding outliers the problem would still be the same, namely
adequate thresholds for outliers cannot be defined. For such either a-priori information or a
visual analysis of the corresponding histograms are needed (as discussed in chapter 4).

5.4.2 Current dipole partitioning

The values for the deviation in shape g are presented in the pseudosections in figure 5.11 a) and
b) and the corresponding values for the deviation in magnitude k are shown in 5.12 a) and b).
An analysis of both values revealed a strong correlation with outliers regardless of the electrode
configuration. The cluster of outliers in the right bottom section of the MG data set is slightly
better characterized by k, however the distinction between outliers and valid measurements is
more exact for g when compared with the filtered data sets in figure 5.10 e) and f). One might
argue that the pseudosections reveal a similar pattern to the prefiltered data presented in figure
5.10 c) and d) and raise the question on the difference between k values for the single RC and
the current dipole partitioning. In contrast to the single RC the comparison with multiple RCs
of the current dipole approach cannot be approximated by a single subtraction (i.e. a difference
to one median value) which results in a higher variability of k for a comparison with the multiple
reference curves.

5.4.3 Depth level partitioning

The distributions of the deviation parameters after performing the reference curve approach on
the basis of the depth level partitioning are in figures 5.11 c) and d) presented for g and in
figure 5.12 c) and d) for k. The deviation in shape g reveals only a weak correlation with the
associated outliers for the MG data set (figure 5.11 c) ). The cluster of anomalously high integ-
ral chargeability values in the center right section of the pseudosection is not represented by g

which can be related to an excess of outliers in the corresponding subsets and thus a comparison
with a reference curve only representative for outliers. A comparison with the pseudosection
of the DD data set after the removal of outliers following the NRA approach (figure 5.10 d) )
indicates a stronger correlation of g with outliers for the DD configuration (figure 5.11 d) ). For
both data sets, horizontal band-like distributions of g can be observed, with values of g > 15
mV/V (figure 5.11 c) ). The pseudosections of the deviation in magnitude k, as presented in
figure 5.12 c) and d), show similar patterns (horizontal bands). Furthermore, for the MG data
set k reveals only a weak correlation with outliers (consistently to g). The again more adequate
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Figure 5.11: Pseudosections of the deviation in shape g, as obtained with the reference
curve approach, for the current dipole- a) and b), the depth level- c) and d),
the uniform- e) and f) and the focused partitioning approach. Figures of the
left column refer to a MG dataset, figures of the right column to a DD data
set. Please note the different color scales.

identification of outliers (here based on k) for the DD data set, as presented in figure 5.12 d) and
in agreement with the NRA results in figure 5.10 d), is compromised by the band of negative
k values (<-10 mV/V). A removal of such values would lead to a removal of measurements not
related to outliers (as can be seen in figure 5.10 d) ).

The band-like distributions of low and high values of both deviation parameters g and k

are limiting the application of such in the scope of the identification of outliers, following the
premise to remove as few measurements as possible. Further research is needed to investigate the
applicability of such method for the determination of the deviation parameters. In it’s current
form, the method seems to be highly sensitive to large spatial changes in the measured data
leading to a poor statistical analysis.

5.4.4 Uniform partitioning

Until now, the choice of the RC for the comparison with the fitted decay was implicitly defined
by the subset. Measured decay curves, respectively fitted decay curves of a subset were com-
pared with the subset’s RC. For the uniform partitioning the selection of the RC is performed
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Figure 5.12: Pseudosections of the deviation in magnitude k, as obtained with the ref-
erence curve approach, for the current dipole- a) and b), the depth level-
c) and d), the uniform- e) and f) and the focused partitioning approach.
Pseudosections in the left column refer to a MG dataset, pseudosections in
the right column to a DD data set. Please note the different color scales.

differently. Therefore the mean value of the partial chargeability values of the RCs and the mean
value of partial chargeability values of the fitted decay curve (which equals an unweighted calcu-
lation of the integral chargeability - please refer to equation 2.3) are calculated. The RC used for
comparison is the one with the smallest absolute difference to the fitted decay curve’s mean value.

Panels e) and f) of figures 5.11 and 5.12 present the distribution of the deviation in shape g

and deviation in magnitude k in pseudosections. Outliers in the bottom left and center areas of
the MG pseudosection (figure 5.11 e) ) correlate well with g. The cluster of outliers in the center
right section is however not represented by g. A possible explanation is that the computation
of one of the reference curves was actually based on this particular measurements (i.e. outliers)
and deviations (g and k) for this measurements will therefore be small. For the DD data set
the agreement of outliers and g is small (compare with 5.10 d) ). Valid measurements of the
polarizable anomaly in the center of the pseudosection are furthermore characterized by high
values of g and at risk to be removed during the filtering.

As for the pseudosections of the deviation in magnitude k it is obvious that there is hardly
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any possibility for an usage in the identification of outliers. Neither the MG nor the DD data
set reveal a clear distinction in the values of k between valid measurements and outliers. Also,
particularly for the DD data set the highest values of k correlate with the polarizable anomaly
in the center which is in fact the opposite of what the characterization was intended for. Sum-
marizing it can be concluded that k as obtained with the uniform partitioning approach is not
suited to detect outliers. The deviation in shape g is potentially better suited.

5.4.5 Focused partitioning

The reference curve for the comparison with the FDC was selected following the techniques
mentioned before, however using RCs defined for subsets based on the focused partitioning
approach. The pseudosections in figure 5.11 g) and h) present the distribution of the deviation
in shape g. When compared with the MG pseudosection of g following the uniform partitioning,
as presented in figure 5.11 e), the choice of the different subsets used for the computation of
the RC is directly reflected in g. For the focused partitioning (figure 5.11 g) ) also the cluster in
the center right section of the pseudosection is represented by increased values of g (>8 mV/V)
and there’s an adequate discrimination in the values of g between valid measurements (0 to 5
mV/V) and outliers (>5 mV/V, c.f. figure 5.10 c) ). The performance of g for the identification
of outliers for the DD data set (figure 5.11 h) ) is less convincing. When compared with the
pseudosection of g in figure 5.11 f) a quick analysis reveals a similar distribution as for the
uniform partitioning. Apparently the subsets and corresponding reference curves are similar
to the ones defined for the uniform partitioning. As stated in section 5.2 does the focused
partitioning degenerate to the uniform partitioning approach when no relative minima in the
histogram can be found. However for such a case the pseudosections in 5.11 f) and h) would need
to be identical - which is not the case. Likely the similarity is simply related to almost identical
subsets. Panel g) of figure 5.12 presents the pseudosection of the deviation in magnitude k for
the MG data set. High values of k are in agreement with outliers (c.f. figure 5.10 d) ) and are
well delimited from k for valid measurements (-5 to 5 mV/V for valid measurements and >10
mV/V for outliers). The pseudosection of k for the DD data set (figure 5.12 h) ) reveals an
identical distribution of k as for the uniform partitioning (figure 5.12 f) ). A discussion on that
can be found in the section above.

5.4.6 Other parameters

5.4.6.1 Goodness of fit

Figure 5.13 c) and d) presents the pseudosections of the logarithmic goodness of fit (gof) for
the MG and DD data sets used in the previous sections. The gof was computed based on the
equation 3.4 and o strong correlation between outliers, as visible in 5.13 a) and b) and the gof
can be observed. As the gof is a parameter of the deviations of the FDC from the MDC it is
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strongly sensitive to changes in the shape of the curve. The erratic behavior of the decay curves
typically increases with decreasing SNR (as discussed in section 3.1) and it can be assumed that
the gof is an indicator of the signal strength. This is also justified by the small gof values for the
highly polarizable anomaly in the pseudosections. Furthermore, the different SNR of the used
electrode configurations are also represented by the magnitude of the gof, revealing higher gof
values for DD than for MG configurations.

Figure 5.13: Pseudosections of the prefiltered MG a) and DD b) data sets and the cor-
responding pseudosections of the goodness of fit c) and d) and 3-model de-
viations e) and f).

5.4.6.2 Deviation between model curves fitted to all gates and gates with even/uneven
numbers – 3-model deviations

An early stage approach for the characterization of outliers was based on a comparison of the
model curves fitted to all gates of the MDC with those fitted to gates with an even and uneven
number. If ma = [m1, m2, · · · , mn] are the n partial chargeability values of the decay curve,
me = [m2, m4, · · · , mn] and mu = [m1, m3, · · · , mn−1] are the partial chargeability values of
the even (m2) and uneven (mu) gate numbers. For each realization (me, mu) the RMSD from
ma was evaluated and the mean value of the two RMSD value is being referred to as 3-model
deviation. The assumption is that for erratic decay curves the differences between the fitted
model curves should be higher than for smoothly decaying curves when comparing curves fitted
to different sampling.

In figure 5.10 e) and f) the pseudosections of the logarithmic 3-model deviations are presented.
As can be seen there is no correlation with outliers and the overall pattern and magnitude of
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values are similar to the case of the gof. This means that although the same model is fitted,
different realizations (ma, me, mu) reveal variations in the calculated RMSD. Such variations are
related to changes in the quality (i.e. the shape) of the decay curve due to presence of random
error, which is typically higher for a low SNR. Due to the similarity to the goodness of fit (in
both the distribution and magnitude of the values) the 3-model deviations could therefore also be
used as an indicator of signal strength. However, given this similarity, the lower computational
effort to calculate the gof (as the 3-model deviations require the fitting of 3 model curves) and
the non-applicability to identify outliers, the 3-model deviations were not further investigated.

5.5 Definition of parameter thresholds

The selection of adequate values to define the range of valid measurements and outliers represents
the second most important step, after the identification of outliers, in any filtering procedure
and needs to be performed with uttermost care to prevent a filtering scheme from under- or
overfiltering of the data set. Moreover threshold values should be defined automatically and
require to be applicable to a wide range of possible data sets without the need of a manual
readjustment of thresholds or an additional postprocessing (e.g. outliers still prevail in the data
set after the filter).

Incorporated into a filtering scheme, subsequently three different approaches to select threshold
values for the parameter k (the deviation in magnitude, as obtained from the reference curve
approach) will be discussed and reviewed on their applicability. Please note that the approaches,
however after some minor modifications, can be also applied to other parameters besides k (e.g.
values for the goodness of fit or integral chargeability values).

5.5.1 Stepwise selection of threshold values

As the name implies this approach consists of a stepwise refinement of the threshold which is
based on the standard deviation of k. As can be seen for example in figure 5.14 a) do outliers,
associated to high integral chargeability values, still prevail in the prefiltered data sets. Such
outliers are typically related to high values of k and thus would strongly influence the calculation
of the standard deviation. Hence, a second prefilter (based on a histogram analysis) was applied
to achieve a further removal of high integral chargeability and k values. The actual refinement
process of the threshold is then based on a three step procedure. For each step the standard
deviation σ is calculated and used to define two thresholds (t1 = σ and t2 = −σ). Measurements
for which k is lower respectively larger than the corresponding threshold are being removed. This
is then followed by a histogram analysis of the integral chargeability values for a further removal
of possible remaining outliers. The second and third step follow analogously. However for each
new step the filtered data set from the preceding step is used for the calculation of the standard
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deviation.

Figure 5.14: Pseudosections of the prefiltered data sets as well as the different iteration
steps for a filtering scheme based on the stepwise definition of threshold
values. Each column presents a particular data set collected with a MG
configuration and the defined threshold consisted of two times the standard
deviation of k.

Of course is the choice of three steps for the procedure an empirical one. However it was found
that for the majority of the data sets three steps provide an acceptable trade-off between under-
and overfiltering. Furthermore is the actual threshold not directly realized as the standard
deviation of k rather than the standard deviation times a multiplication factor which is different
for the used electrode configuration. For the MG configuration a multiplication factor of 2 was
found to be well suited, whereas for DD configurations a factor of 3 is needed to provide similar
results (which probably reflects the different SNR of the two configurations). Other statistical
parameters, such as percentiles or the median absolute deviation as threshold values have been
investigated but no robust criteria applicable to all data sets were found. For relatively clean data
sets it might happen that the selected threshold would result in a removal of valid measurements.
In order to account for such cases it could be advisable to introduce a stopping criterion. A
possible criterion for example, could consist of the condition that thresholds may not be smaller
than the median of the data set’s integral chargeability values. Figures 5.14 and 5.15 present the
pseudosections of the prefiltered data sets and individual filter steps (with the above mentioned
stopping criterion implemented) for data collected with a DD and MG configuration. Analysis
of the tested data revealed an adequate definition of outliers even for data sets characterized by
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a significant amount of outliers, e.g. figure 5.14 a), as well as a clean data set, e.g. left panel
of figure 5.15 a). The filter results of the DD data sets (see figure 5.15) are in agreement with
results following the normal-reciprocal approach (Flores Orozco et al., 2012b) as presented in
figure 5.16. This further demonstrates the applicability of this threshold definition approach.

Figure 5.15: Pseudosections of the prefiltered data sets as well as the different iteration
steps for a filtering scheme based on the stepwise definition of threshold
values. Each column presents a particular data set collected with a DD
configuration and the defined threshold consisted of three times the standard
deviation of k.

Figure 5.16: Pseudosections of the raw and filtered data sets for the removal of outliers
following the normal-reciprocal approach. Measurements for which the as-
sociated normal-reciprocal misfit of the integral chargeability exceeds two
times the corresponding standard deviation of the misfits of the entire data
set were removed as outliers.
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5.5.2 Thresholds defined by a histogram analysis of k

For this approach the definition of the threshold is solely based on a histogram analysis of k. The
value for k corresponding to the last found gap in the analysis is the threshold being applied dur-
ing the filtering. In order to take care of outliers associated to very small integral chargeability
values, the histogram analysis is performed in forward direction (starting with the bin containing
the smallest value for k) and additionally in reversed direction (starting with the bin contain-
ing the highest value for k). Thus two separate thresholds for values of k smaller and greater
than 0 are being defined. Remaining outliers after this filter step subsequently were assessed
by a histogram analysis of the integral chargeability values (consistently to the approach before).

Although this approach revealed promising results at first, no general applicability, particu-
larly for data sets characterized by high amounts of erroneous measurements, was given. Here
the key assumption of the histogram analysis that k values associated to outliers are separated
from a main distribution was not fulfilled and thus the overall concept couldn’t be applied. It
was further found that there’s a generally higher sensitivity to the number of bins nb selected
than for example using the histogram analysis for the integral chargeability values. Particularly
for noisy data sets an adjustment of nb based on the individual characteristics of the data set
would be required. However no robust criteria was found. An alternative approach of solving
this difficulty consisted of formulating additional criteria in the histogram analysis of k to pre-
vent an under- respectively overestimation of the threshold. Although appealing, this approach
also suffered from similar limitations as the formulation of nb because no robust definitions
applicable to a wide range of different data sets could be found.

5.5.3 Fixed thresholds with additional conditions

Instead of calculating the standard deviation of k directly, this approach relies on separating k

into the corresponding "up-shift" and "down-shift" values ku and kd and a subsequent calculation
of the associated standard deviations. Rows a) and b) of figure 5.17 present the pseudosections
of the prefiltered data sets and after the removal of measurements associated to ku and kd values
larger or smaller than the corresponding standard deviations. As can be seen and in agreement
with the observations made in section 5.5.1 is the use of the same threshold definition (here the
standard deviations of ku and kd) obviously not suited for the application to electrode configura-
tions characterized by different signal strengths. It permits an adequate identification of outliers
for the MG data set, however leads to a drastic removal of measurements for the DD data set,
in particular of the high polarizable anomaly in the center of the pseudosection. An increase
of the standard deviation to three times it’s value, as presented in figure 5.17 c) can help to
improve the filtering for DD data however results in few outliers removed for the MG data set.
This general problem needs to be properly addressed in the filtering scheme, particularly during
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Figure 5.17: Pseudosections of the prefiltered and filtered data sets collected with a MG
(left column) and DD (right column) configuration. Rows b) and c) represent
the filter results for different multiplication factors of the standard deviation.
d) shows the filtered pseudosections as obtained with the adjusted threshold
values.

the definition of threshold values for k, ku and kd. Thus, the approach here consists of initially
fixing the thresholds for ku and ku to three times their standard deviations and a subsequent
optional adjustment depending on the individual characteristics of the data set. This procedure
is then followed by a histogram analysis of the integral chargeability values to remove remaining
outliers. The use of three times the standard deviation has shown to provide satisfying results
for most of the data sets, however particularly for fairly clean (i) and "noisy" (ii) data sets the
adjustment is absolutely needed. The rules for the identification of (i) and (ii) and the corres-
ponding adjustments can be found in table 5.6. Figure 5.17 d) presents the pseudosections after
the removal of outliers applying the adjusted threshold. In comparison with filter results from
the stepwise selection of threshold values, as presented in figures 5.14 and 5.15, this approach
retains more measurements with high integral chargeability values. Analysis of the tested DD
data set further revealed a removal of outliers similar to the normal-reciprocal approach (c.f.
right column of figure 5.16).

The question arises whether other statistical parameters for the selection of the threshold
value apart from the standard deviation would be better suited and could eventually eliminate
the need for an optional adjustment. Numerous other parameters (e.g. percentiles, median,
weighted average and others) have been investigated but none revealed a deviating behavior

69



Chapter 5 Analysis of the Spatial Consistency

from the standard deviation in terms of the required additional adjustment of the threshold.
Furthermore it was found that the empirical definitions and rules presented in table 5.6 are only
applicable to the standard deviation and the mean of ku and kd. Apart from that, no robust
criteria applicable to the majority of data sets could be found. From all other tested statistical
parameters only the mean of ku and kd represents a possible candidate (i.e. threshold value)
for the incorporation into a filtering scheme. However compared to the standard deviation the
determined thresholds are smaller and thus will result in the removal of more measurements.
Particularly for noisy data sets this could also be intentional.

Case Definition Threshold ku Threshold kd

clean (i) 3 times standard deviation of ku

< median of integral chargeability
values of data set

⇒ 4 times standard de-
viation

⇒ 4 times
standard
deviation

noisy (ii) 3 times standard deviation of ku

> 2 times median of integral
chargeability values of data set

⇒ 1.5 times standard
deviation

⇒ single
standard
deviation

Table 5.6: Automatable criteria for the definition of clean and noisy data sets and the
adjustment of the corresponding thresholds for ku and kd.
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Error Modelling

The determination of error models describing the inherit random errors of the measurements in
a data set and the application of such during the inversion is critical to solve for electrical images
with high contrast and enhanced resolution. This needs to be addressed carefully, considering
that an underestimation of data error is typically associated to the creation of artifacts in the
images, whereas data error overestimation generally leads to the loss of resolution (LaBrecque et
al., 1996). Thus the subsequent analyses aim at finding parameters describing the random error
in measurements, the adjustment of error models to such and the application in an inversion
scheme (Kemna, 2000). The results obtained here are also compared with parameters from the
well-established normal-reciprocal approach (NRA) which depicts the reference approach.

6.1 Finding parameters describing the random error

This section will discuss different parameters derived within this thesis (denoted as DCA misfits)
in regard to their applicability to describe the random error in measurements and investigate
whether they are applicable in the same way as existing error models based on the normal-
reciprocal approach (NRA). Therefore, such parameters describing outliers should be a function
of resistance R and show a distribution similar to the NRA misfit presented in figure 6.1 - with
high misfit values for small resistances and low values for high resistances and misfits being
defined as the difference of measurements collected in the normal- and reciprocal configuration
(refer to section 2.7). In particular should the parameters exhibit a normal distribution centered
around zero to be gaussian error. Distributions departing from that indicate a correlated error,
thus pointing to systematical errors needed to be removed. The adjustment of the error models
to the misfit, i.e. the parameter describing the random error, will be performed following the
concept of the so-called bin analysis, as it facilitates the comparison with the normal-reciprocal
approach. The bin analysis consists of partitioning the misfits into several bins with respect
to R and a subsequent adjustment of the error model to the standard deviations of each bin.
For more details on the technique please refer to Koestel et al. (2008) and Flores Orozco et al.
(2012b). In order to ensure a fair comparison of NRA and DCA misfits, the misfits for both
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Figure 6.1: The left panel shows the normal-reciprocal misfit of the integral chargeabil-
ity measurements ΔMint as a function of the resistance R. The right panel
presents the histogram of the misfit and the probability density function (red
curve) justifying the assumption of a normal distribution.

approaches were derived for the measurements of a representative data set. Outliers were then
removed following the criteria described in Flores Orozco et al. (2012b), namely those meas-
urements with normal-reciprocal misfit of the integral chargeability larger than two times the
standard deviation of the misfit of the entire data set. By this means the misfit values of both
approaches can be compared for the same measurements (i.e. quadrupoles).

Figure 6.2 presents the values for the deviation in magnitude k (for different partitioning
approaches) plotted as a function of R in comparison with the NRA misfit as well as the corres-
ponding histograms of k in order to evaluate the assumption of a normal distribution. The red
curves in the right column show the probability density functions. Please note that k was com-
puted based on a comparison with the FDC. Plots of k for the MDC revealed similar patterns
and are therefore not shown. Figure 6.2 a) presents the distribution of k following the focused
partitioning approach revealing no dependence on the resistance and a uniform scattering of
the values. The only variations from the NRA misfit can be observed for small resistances. A
larger error for measurements associated to small resistance values would probably be underes-
timated, biasing the error estimates on the analysis of the k-R relationship. The homogeneous
distribution is also reflected by the shape of the histogram. Figure 6.2 b) presents k as obtained
for the computation with a single RC. The distribution does not follow the NRA pattern and
seems more scattered with no dependence on R and is poorly represented by any model. Thus it
was not further investigated. Figure 6.2 c) shows the distribution and corresponding histogram
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of k for the current dipole partitioning. Here the computed mean value μ = −0.44 indicates
a non-gaussian error which is also confirmed by a visual analysis of the skewed distribution of
k. It would of course be possible to center the distribution by subtracting a mean or median
value but such procedure lacks the physical explanation and may result in a poor estimation
of random error. Due to the lack of correlation with the NRA misfits it was concluded not to
further investigate k (for any of the tested partitioning approaches) for the description of the
random error.

Considering that deviations of the measured decay curve from a smooth fitted model curve or
computed reference curve may be considered the result of random error in the chargeability read-
ings further investigations aimed at the evaluation the potential of such misfits. The misfit, here
denoted as Δmi, is characterized as the difference of the partial chargeability values of the i-th
gate of the two different decay curves, for instances of the FDC and MDC (Δmi = mm,i −mf,i).
The voltage decay of the available data sets was discretized using 20 gates, hence 20 differ-
ent values of Δmi, consisting of one for each gate, were computed. Figure 6.3 presents the
distributions of Δmi for the 1st, 10th and the 20th gate in comparison with the NRA misfit,
both as a function of the corresponding resistance. The gate numbers were selected in order
to evaluate the effect of a changing signal strength as associated to early and late times of the
decay curve, on the distributions and magnitudes of Δmi. As can be seen in figure 6.3 there is
practically no difference between early and late gates and the distributions, the magnitudes as
well as the corresponding histograms of Δmi are consistent. The histograms, in accordance with
the fitted probability density functions, also justify the assumption of a normal distribution and
thus uncorrelated error. Furthermore are the observed patterns in agreement with the NRA
misfits. However for resistances larger than 10−1 Ω, it appears that Δmi is at least one order of
magnitude smaller than the corresponding NRA misfit.

Instead of calculating Δmi for the FDC, also realizations of the reference curves can be used
(Δmi = mm,i − mRC,i) for the comparison. In the following Δmi computed for one single ref-
erence curve for the entire data set will be discussed. In comparison with Δmi from the section
above, are misfits computed with the single reference curve expected to be larger because the
reference curve with it’s fixed shape cannot approximate the MDC as well as the FDC, which is
much more flexible. This is particularly interesting as error estimates based on Δmi computed
with the FDC might underestimate the actual data error due to the best possible approxima-
tion to the MDC. Figure 6.4 presents the distributions of Δmi computed for the single RC and
in comparison with the NRA misfits for the same gates (i =1, 10, 20) as before. Such plots
reveal that the distribution for the 1st gate (figure 6.4 a) ) is significantly different from the one
computed for the comparison with the single RC presented in figure 6.3 a). That can likely be
explained by the fixed shape of the RC, which apparently cannot approximate the higher vari-
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Figure 6.2: Values for the deviation in magnitude k, as obtained with different partitioning
approaches, in comparison with the NRA misfit both as a function of resistance
R. The histograms and probability density functions (red curves) in the right
column are intended to evaluate the assumption of a normal distribution.

Figure 6.3: The distributions of Δmi (for the comparison with the FDC) computed for
different gates in comparison with the NRA misfit both as a function of resist-
ance R. The histograms and probability density functions (red curves) in the
right column are intended to evaluate the assumption of a normal distribution.
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ability of the MDCs in the early times. Such an assumption is also confirmed by the distribution
of Δmi for the 10th gate, as presented in figure 6.4 b). Considering the concept of how the RC
and MDC are being compared (please refer to section 5.3), the approximation using the RC for
gates in the center of the decay curve should be the best possible and the distribution of Δmi

consistent to the one presented in figure 6.3 b). Finally figure 6.4 c) presents the distribution of
Δmi for the last gate (20). Contrary to the expectation, that the misfit would show a pattern
consistent to figure 6.4 a), the magnitudes as well as the distribution are consistent to the NRA
misfit without revealing a particular skewness similar to figure 6.4 a). This is also reflected by
the histogram, which justifies the assumption of a normal distribution - in strong contrast to
the histogram in figure 6.4 a), where μ = −0.77.

Summarizing it can be concluded that both realizations of Δmi (based on the comparison
with the FDC and single RC) are likely suited to describe the random error. However, for
Δmi based on a comparison with the single RC, the distributions are varying depending on
the selected gate (refer to figure 6.4). Furthermore, there are gates for which Δmi does not
meet the initially formulated requirements (normal distributed and pattern following the NRA
misfit). Hence the choice of the best suited gate for Δmi cannot be justified easily. A possible
solution in order to overcome this limitation is the use of Δmi for all gates in one combined
analysis. Figure 6.5 presents the distributions of Δmi computed for all gates of the decay curve
as well as the corresponding histograms for the case of the comparison with the FDC (top panel)
and single RC (bottom panel). As expected does the combined distribution of Δmi in figure
6.5 a) not significantly differ from the distributions in figure 6.3 and the calculated standard
deviations as well as the histograms are comparable. It can therefore be concluded that both
approaches (single gate/combined gates) will provide similar parameters of the adjusted error
models. However, the bin analysis will benefit of the larger number of points for a better
estimation of the standard deviation in each bin, i.e. increasing the representativeness and
robustness and thus it could be preferable to use the information of all gates together. The
distribution presented in figure 6.5 b) (Δmi for the single RC) reveals a similar pattern to the
distribution in figure 6.5 a) (Δmi for the FDC), however the misfits associated to resistances
above 10−1 Ω are at least one order of magnitude larger than the corresponding values in figure
6.5 a) and are closer to the NRA misfit. The deviating behavior of particular gates, as for example
observed in figure 6.4 a), obviously is compensated by Δmi associated to other gates and the
histograms as well as the associated mean μ = −0.04 clearly indicate a normal distribution.
Hence, for this realization of Δmi the adjustment of the error model should only be performed
on the basis of the combined distribution in order to minimize the deviating effect of individual
gates and to avoid the arbitrary choice of a best-suited gate for Δmi. Furthermore are the
observed pattern as well as the magnitudes of the misfit in good agreement with the NRA
estimates.
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Figure 6.4: The distributions of Δmi (for the comparison with the single RC) computed
for different gates in comparison with the NRA misfit both as a function of
resistance R. The histograms and probability density functions (red curves)
in the right column are intended to evaluate the assumption of a normal
distribution.

Figure 6.5: The distributions of Δmi for all gates in comparison with the NRA misfit as
a function of resistance R. The histograms and probability density functions
(red curves) in the right column are intended to evaluate the assumption of a
normal distribution. The upper panel presents Δmi for the comparison with
the FDC, whereas the distribution in the bottom panel shows Δmi values
computed for the comparison with a single RC.
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6.2 Consistency between Δmi of MG and DD data sets

For the general applicability of Δmi in the scope of the error modelling it would be beneficial if
the observed distributions are consistent for data sets collected with different electrode config-
urations. This is particularly important if data sets consisting of measurements collected with
various electrode configurations are to be inverted as a joint data set. Commonly such data sets
are being processed separately, however for subsurface conditions related to low IP responses,
thus low SNR, the inversion of joint data sets of a MG and DD configuration can be useful
to improve the contrast and quality of the electrical images. Hence, it is critical that (i) the
random error can be described in a consistent manner and (ii) the adjusted error models are
akin in order to avoid an over- or underestimation of data error for measurements of one par-
ticular electrode configuration. Otherwise it could happen that due to the wrong re-weighting
of particular measurements contributed to the falsely applied error model, measurements from
one configuration are "dominating" the inversion results and thus the beneficial character of the
inversion of a joint data set is lost.

In order to assess the consistency of Δmi in both the distribution and magnitude for two widely
applied electrode configurations, the values for Δmi were derived for a MG and DD data set
associated to the same section of the subsurface (i.e. the same electrodes were used). For the DD
data set outliers were removed consistently to the approach outlined before (using the normal-
reciprocal methodology) and for the MG data set, outliers removal was performed by an analysis
of the spatial consistency (please refer to chapter 5). Figure 6.6 presents the distributions of
Δmi (for all gates) as obtained for a comparison with the FDC (top panel) and with the single
RC (bottom panel) for data sets collected with a MG (green) and DD (blue) configuration.
The black dots represent the NRA misfit. As can be seen are the distributions as well as the
magnitude of Δmi consistent between the two configurations and no differences can be observed
for the different realizations of the misfit (Δmi for the FDC and single RC). Furthermore, figure
6.6 illustrates the higher signal strength typically related to MG configurations reflected by
the smaller range of resistances as well as corresponding misfits. In conclusion, there are no
indications of a deviating behavior in neither the distribution nor the magnitude of Δmi for the
used electrode configuration and thus the random error on basis of the combined distribution
can be modelled in a consistent manner.
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Figure 6.6: Distributions of Δmi (for all gates) for MG and DD data collected on the
same profile (i.e. with identical electrodes) for the case of a comparison with
the FDC (upper panel) and single RC (bottom panel). The distributions as
well as the magnitude of Δmi are consistent for the MG and DD data set and
thus the error can also be modelled on the basis of the combined distribution.

6.3 Determination of error parameters and the application in an
inversion scheme

The final missing step is the adjustment of the error model and the application of the computed
error parameters in an appropriate inversion scheme (e.g. CRTomo by Kemna, 2000). In it’s
current form, the code only allows the application of error parameters for phase measurements
based on an inverse power law model, as proposed by Flores Orozco et al. (2012b). Hence it
is necessary that the found relationship between Δmi and R can be approximated by an in-
verse power law model, (i) to ensure a fair comparison with the normal-reciprocal estimates
and (ii) to evaluate the applicability without modifying the inversion code. Therefore the NRA
chargeability misfits and Δmi (for both the comparison with the FDC and single RC) were
computed for the measurements of a DD data set. Outliers were then removed following the
normal-reciprocal methodology as outlined by Flores Orozco et al. (2012b). For the bin analysis
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the misfit distributions were divided into 10 bins, followed by an adjustment of the power law
model s(m) = aRb (with b < 0) to the corresponding standard deviations of the misfits in each
bin.

Figure 6.7 a) presents the adjusted error models as well as the corresponding standard devi-
ations for the normal-reciprocal misfit (red circles), Δmi for the FDC (black squares) and Δmi

for the single RC (blue triangles). The plot reveals that the standard deviations of Δmi for the
single RC cannot be approximated by the power law model (gof=0.5) and the adjusted error
model is similar to the one obtained for Δmi for the FDC, which approximates the correspond-
ing standard deviations well with a gof value of only 0.04. Unexpected is the poor goodness of
fit for the adjusted model of the normal-reciprocal estimates with a gof value of 0.43. Further-
more, differences can be observed for the general shape of the models. Whereas the model for
Δmi for the FDC reveals an almost constant error until 10−1 Ω and a pronounced increase for
R < 10−1 Ω, the adjusted model for the normal-reciprocal estimates displays a gradual increase
over the range of resistances. Yet, are the differences likely a result of the poor adjustment of
model to the normal-reciprocal standard deviations, as a comparison with fitted rational models
(s(m) = cR−1 +d) demonstrates (figure 6.7 b) ). For the rational model the standard deviations
of the NRA misfits as well as Δmi are well approximated by the adjusted models (gof<0.14)
and the differences between the models are mostly restricted to R < 10−1 Ω.

Figure 6.7: Bin standard deviations and adjusted error models for the NRA misfit (red
circles), Δmi for the FDC and Δmi for the single RC using a) an inverse
power law model and b) a rational model.

The influence of the different error models on the resulting images will be discussed for in-
versions performed on a joint data set, consisting of MG and DD data collected on the same
profile. For the inversion with the normal-reciprocal error estimates the DD data set was filtered
following the techniques outlined by Flores Orozco et al. (2012b). Outliers in the MG data set
were defined by thresholds of the integral chargeability values. The inversions were performed
with the chargeability error estimates of the DD data set (as no reciprocal readings for the MG
data set were available). Outliers in the data sets used for the inversion with error estimates
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for the Δmi-R relationship were removed based on the analysis of the spatial consistency (i.e.
chapter 5). The error model for the chargeability measurements was adjusted to the standard
deviations obtained from the bin analysis of the combined distribution of Δmi for all gates of the
DD and MG data set. Considering the negligible differences between the adjusted error models
for Δmi for the FDC and the single RC, as presented in figure 6.7 a), only inversions performed
with error estimates based on Δmi for the FDC will be discussed (denoted as DCA inversions).
For the inversion with CRTomo, the integral chargeability values were linearly converted to
frequency domain phase values assuming a constant phase response (please refer to Kemna,
2000). Furthermore, for both inversions (NRA and DCA) the error parameters for the resist-
ance measurements (refer to section 2.4) were fixed to the normal-reciprocal resistance estimates.

Figure 6.8 presents a comparison of the imaging results, as obtained for the filtering and error
estimates following the NRA a) and DCA b), for the polarization effect expressed in terms of the
phase ϕ of the complex electrical resistivity. Furthermore figure 6.8 c) presents the phase images
as obtained for adjusted DCA error estimates, where the DCA error model was shifted to fit
the magnitude of the corresponding NRA model (s(m) = aRb + c), as illustrated in figure 6.9.
Despite the different error parameterizations all images presented in figure 6.8 solve for the same
features and only minor differences can be observed between the NRA (figure 6.8 a) ) and DCA
image (figure 6.8 b) ). The bottom boundaries of the polarizable anomalies located at 20 and
90 m seem to be better resolved for the DCA inversion. No differences can be observed for the
image presented in figure 6.8 b) and the image for the adjusted version of the DCA error model
presented figure 6.8 c). The adjustment was either too small to influence the inversion behavior
or the more important factor is the "shape" of the error model, which is obviously different for
the NRA and DCA approach (see figure 6.7). Separate inversions of the MG and DD data sets,
after filtering with the spatial consistency approach and a parameterization of the chargeability
error based on the Δmi-R relationship, consistently solved for phase images revealing the same
anomalies (figure 6.10). This again demonstrates the applicability of the approach for different
measurement configurations.

Unlike the normal-reciprocal methodology, which can directly provide error estimates for the
resistance based on the misfit of the resistance readings, an analysis of the decay curve is limited
to direct error estimates for the chargeability readings only. Thus further investigations aimed
at an evaluation of Δmi as a proxy for the random error in the resistance measurements. As
presented in figure 6.11, for a given DD data set the comparison of the distributions of Δmi

plotted against R (figure 6.11 a) ) and the normal-reciprocal resistance misfit ΔR plotted against
1/R (figure 6.11 b) ) shows similar patterns. The magnitudes of the misfit values (Δmi and ΔR)
are however completely different. The rational model s(m) = cR−1 + d, as discussed before, is
also suited to fit the bin standard deviations obtained from the bin-analysis of Δmi. Hence, the
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Figure 6.8: Imaging results for the polarization effect expressed in terms of the phase ϕ
of the complex electrical resistivity for filtering and error estimates based on
a) the NRA, b) the DCA and c) DCA with the error model adjusted to fit
the magnitude of the NRA error model (see figure 6.9).

Figure 6.9: Adjusted version of the error model based on Δmi where the model is shifted
to fit the magnitude of the corresponding NRA model, e.g. a constant term
is added to the power law model s(m) = aRb + c.
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Figure 6.10: Imaging results for the polarization effect expressed in terms of the phase ϕ
of the complex electrical resistivity for filtering and error estimates based on
the DCA approach for a a) MG and b) DD data set measured on the same
profile revealing consistent images.

proposed approach to characterize the random error for the resistance measurements consists
of fitting the rational model and the subsequent insertion of the model parameters c and d

to the linear model s(R) = c + Rd used by most authors (LaBrecque et al., 1996; Slater et
al., 2000; Flores Orozco et al., 2012b). Alternatively, the linear model can directly be fitted
to the bin standard deviations as obtained from the bin analysis of Δmi plotted against 1/R

providing consistent error parameters. Figure 6.11 c) presents the adjusted models for the
NRA resistance misfit ΔR and the approach based on Δmi revealing the possibility to solve for
similar error parameters. Differences can be observed for R > 101 Ω where the DCA error model
shows a stronger increase. Nevertheless inversions computed with both parameterizations of the
resistance error consistently solved for the same resistivity images with a slightly higher contrast
for the DCA resistivity image, as presented in figure 6.12. The inversions were performed for
the same joint data sets of MG and DD data as mentioned before.
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6.3 Determination of error parameters and the application in an inversion scheme

Figure 6.11: Distributions of a) Δmi plotted against R and b) ΔR against 1/R reveal
similar patterns. b) adjusted resistance error models for the DCA approach
(based on Δmi; red line) and the NRA approach (based on ΔR; black line).

Figure 6.12: Resistivity images as obtained for inversions performed with resistance error
parameterizations based on a) the NRA approach (ΔR) and b) the DCA
approach (Δmi) reveal the same features. For the DCA images the contrast
is slightly higher.
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Chapter 7
Decay Curve Analysis∗

The so-called "Decay Curve Analysis" (DCA), as the main outcome of this thesis, comprises a
novel data processing methodology for TDIP data based on the analysis of the voltage decay
curve. Consisting of a four-step methodology it permits to remove outliers and furthermore is
suited to quantify the random error in the resistance and chargeability measurements without
the need of reciprocal readings. The upcoming sections will provide a step-by-step description
of the proposed DCA and references to the corresponding detailed discussions within this thesis.
In order to evaluate the accuracy of the proposed approach, filter and imaging results obtained
from the DCA are in a final step compared with results from the well-established NRA.

7.1 Power law fit and first filter

In a first step the modified power law model (equation 3.1c), as discussed in section 3.2, is fitted
to each measured decay curve of the data set and the goodness of fit is assessed by computing
the RMSD (equation 3.4) between the MDC and FDC. Non-decaying curves are then being
removed based on the model parameters of the FDC (a < 0 and b < 0 or a > 0 and b > 0).
Figure 7.1 presents the pseudosection of MG integral chargeability data before (top panel) and
after the removal of non-decaying curves (center panel). Furthermore the bottom panel of figure
7.1 presents the pseudosection of the associated logarithmic RMSD/goodness of fit values. As
noticed earlier (section 5.4.6.1) are "deep" measurements typically related to a large RSMD,
i.e. erratic decay curves. However, following the premise to preserve as many measurements as
possible, chargeability readings associated to high RMSD values were not removed.

∗This chapter is based on the submitted manuscript to Journal of Applied Geophysics: Adrián Flores Orozco,
Jakob Gallistl, Matthias Bücker, Kenneth H. Williams, ’Decay-curve analysis for data-error quantification
in time-domain induced polarization imaging’
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Figure 7.1: Pseudosections of the integral chargeability values for a MG data set for the
unfiltered data set (top) and after the removal of measurements related to
non-decaying curves (center). The bottom panel presents the pseudosection
of the associated goodness of fit values.

7.2 Computation of the reference curve and second filter

As can be observed in figure 7.1, outliers for example related to anomalously high integral
chargeability values still prevail after the first filter. Thus, in a second step of the DCA an
analysis of the spatial consistency based on the reference curve approach is performed (see
section 5.3). The data set after the first filter is therefore partitioned after the current dipole
partitioning approach (section 5.2) and for each subset the reference curve is computed following
the formulation in equation 5.1e. Based on the deviation in magnitude k, provided by the
comparison with the reference curve, outliers are then identified using the methodology described
in section 5.5.3. k is therefore separated into the corresponding values ku, kd and the associated
standard deviations used as the threshold for filtering are then automatically refined based on
the individual characteristics of the data set. Possible remaining outliers in the data set, which
could not be identified by the reference curve approach, are then assessed by a histogram analysis
of the integral chargeability values. Figure 7.2 presents the pseudosection of the MG data set
after the removal of outliers following the second filter step.
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7.3 Standard deviation estimate and bin analysis

Figure 7.2: Pseudosection of the integral chargeability values of the MG data set after the
removal of outliers following the second filter step. Outliers were identified
based on an analysis of the spatial consistency.

7.3 Standard deviation estimate and bin analysis

The misfit of the partial chargeability values Δmi between the MDC and FDC allows to quantify
the temporal instability (i.e. erratic behavior) of the measured voltage decay and thus can be
used for an estimation of the standard deviation of the chargeability measurement (refer to
chapter 6). As discussed in section 6.3 and presented in figure 6.5 is the general dependence on
the resistance consistent for Δmi and the normal-reciprocal chargeability misfit and thus Δmi

can be modelled using the power law relationship (equation 2.9) proposed by Flores Orozco et al.
(2012b). The values of Δmi are therefore partitioned into 10 bins in respect to the resistance
and the error model is fitted to the standard deviation of Δmi in each bin.

7.4 Error model for resistance measurements

Δmi has also shown to be suited as a proxy to describe the random error in the resistance
measurements (section 6.3). The proposed approach consists of adjusting a rational model
(s(m) = cR−1 + d) to the bin standard deviations from the step before and a subsequent
insertion of the model parameters c and d into the linear model (equation 2.8) used by most
authors (LaBrecque et al., 1996; Slater et al., 2000; Flores Orozco et al., 2012b) to describe the
error of the resistance measurements. As presented in figure 6.11 c), following this strategy it
is possible to solve for error parameters similar to the ones obtained from the normal-reciprocal
approach.

7.5 Results

Figure 7.3 presents the pseudosection of DD integral chargeability data after the removal of out-
liers following the steps 1 and 2 of the DCA (top panel) and following the NRA (bottom panel).
For the latter, outliers were defined as measurements with a normal-reciprocal misfit larger than
2 times the standard deviation of all normal-reciprocal misfits of the data set (Flores Orozco
et al., 2012b). Figure 7.3 reveals pseudosections similar for both approaches and only minor
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differences can be observed. The DCA however removes fewer measurements associated with
high integral chargeability values and/or small separations between electrodes. This illustrates
the main difference between the two approaches.

Figure 7.3: Pseudosections of DD integral chargeability data after the removal of outliers
following the DCA (top) and NRA (bottom).

Regarding the differences in the electrical images, figure 7.4 presents the imaging results
as obtained for the DCA (left column) and NRA (right column) expressed in terms of the
resistivity/magnitude ρ (bottom panels) and phase ϕ (top panels) of the complex electrical
resistivity. The inversions were performed for a joint data set of DD and MG measurements
with the individual error parameterizations for the chargeability and resistance measurements
of both approaches. For the inversion with CRTomo (Kemna, 2000) the integral chargeability
values were linearly converted to frequency domain phase values assuming a constant phase
response (Kemna, 2000). Plots of the inverted resistivity (bottom panels of figure 7.4) reveal
consistent results for both approaches and demonstrate the applicability of Δmi as a proxy
for the quantification of the resistance error. The phase images presented in the top panels of
figure 7.4 consistently solve the main geological units; the low phase values correspond to the
unsaturated clay-rich top layer and the low permeable Mancos Shale at the bottom, whereas
the intermediate to high phase values are associated with the sandy-gravel aquifer material (c.f.
section 2.5). The imaging results presented in figure 7.4 clearly show that the DCA permits the
inversion of quantitatively similar results as those obtained by the NRA. Furthermore, inversion
results after the DCA exhibit a better contrast at depth, clearly indicating the contact between
the aquifer materials and the Mancos formation (at ∼6 m depth). Such contact is poorly solved
in the phase image computed after the NRA.
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7.5 Results

Figure 7.4: Imaging results as obtained for the DCA (left column) and NRA (right
column) expressed in terms of the resistivity/magnitude ρ (bottom panels)
and phase ϕ (top panels) of the complex electrical resistivity. The inver-
sions were performed for joint data of DD and MG measurements with the
individual error parameterizations for the chargeability and resistance meas-
urements of both approaches.
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Chapter 8
Discussion & Conclusion

The proposed DCA is based on the fitting of the measured decay curves by means of a simple
power law model (f(x) = ax−b + c), which represents the voltage decay after switching the cur-
rent injection off. Therefore it is critical that the fitted model curves approximate the measured
decays as well as possible, in order to prevent biasing of the estimates for the random error and
possible distortions during the computation of the reference curves. From all evaluated model
functions, the above stated power law model was found to be the best-suited, in terms of the
computed goodness of fit as well as the robustness regarding starting values and convergence. In
addition, numerical tests revealed only a weak dependence on the sampling of the voltage decay
for the fitted model curves, further demonstrating it’s applicability. The fitting of models of the
Cole-Cole family, which are dispersion models describing the frequency-dependence of the IP
response (Pelton et al., 1978) revealed similar results when incorporated into the reference curve
approach and used for the definition of outliers. However for erratic curves (e.g. noisy data
sets), the goodness of fit strongly depends on adequate starting values defined for the fitting,
thus compromising the application in an automatic processing scheme. Generally, contributed
to the constrained character of the Cole-Cole models with bounded parameters, the computed
goodness of fit values were found to be an order of magnitude larger than the one’s for the
proposed power law model, hence indicating a better approximation for the power law model.
Considering these limitations, which will effect i) the estimates for the random error and ii)
confine the use in an automatic processing scheme, it was concluded that the power law model
is better suited. The advantages regarding the robustness and weak dependency on the starting
values outweigh the possible lack of a theoretical justification.

The reference curve approach implemented in the DCA and used as a tool for the analysis
of the spatial consistency represents a novel methodology for the identification of outliers in
TDIP data. Based on the comparison of the measured decay curves with reference curves it
is important that the number of subsets (and therefore the number of reference curves) and
the decay curves within the subsets are selected with care. Different partitioning approaches
were investigated and the definition of subsets based on the common current dipole seems to be
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robust and clusters measurements of comparable signal strength. Also the electrical responses
of these subsets stem from a limited volume of influence and thus are likely to be related to
similar electrical properties. However in it’s current form the partitioning approach and thus
analysis of the spatial consistency with the reference curve approach has two minor limitations.
For electrode configurations like the Wenner configuration, where every potential measurement
refers to a different injection dipole, the current concept to cluster the measurements is not ap-
plicable and other partitioning approaches are required (e.g. based on the integral chargeability
values). Furthermore, for data sets where the first filter step of the DCA removes too many
measurements associated to the common current dipole, it might happen that the computed
reference curves are only a weak representation of the subset or worse that they might even be
defined based on outliers. For such cases the computed deviation parameters are not represent-
ative and outliers might stay unidentified.

Yet, this limitation can be resolved by the application of a histogram analysis on the integral
chargeability values. By this means possible remaining outliers, which were not assessed by the
analysis of the spatial consistency, can be identified and removed. However in order to work
properly the number of bins nb for the histogram needs to be selected in such a way that no
over- or underestimation of gaps (related to over- and underfiltering of the data set) occurs. The
definition of nb as a function of the number of measurements n in a data set (nb = 1+4.5·log(n))
proved to be robust in that regard and permits to identify outliers which fulfill the key premise
of the methodology - being well-separated from valid measurements of the main distribution.
Applied to integral chargeability values the histogram analysis is however not thought to be
the ultimate stand-alone tool rather than an add on to another filter, considering that spatially
inconsistent outliers with magnitudes in the range of valid measurements cannot be identified
as they are not fulfilling the premise of the approach. In the course of this Master’s thesis it
was found that the best practice is to perform an analysis of the spatial consistency and the
corresponding filtering first and then apply the histogram analysis as an additional refinement.

The quantification of random error for the chargeability and resistance measurements based
on the misfit between the measured and the fitted decay curve in each gate (Δmi) represents
a novelty in the processing of TDIP data. The observed patterns for Δmi as a function of
the resistance R are in agreement with those observed for the chargeability misfits obtained
from the normal-reciprocal approach revealing differences only for misfit values associated to
larger resistances, where Δmi is an order of magnitude smaller then the corresponding normal-
reciprocal misfit. It was therefore concluded that the error can be modelled in consistent manner
to the normal-reciprocal appraoch, using the power law relationship and techniques proposed
by Flores Orozco et al. (2012b). It was further found that the combined use of Δmi for all
gates provides more robust estimates of the standard deviations during the bin analysis and
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eliminates the arbitrary choice of one particular gate for Δmi. Furthermore, analysis of Δmi for
DD and MG data sets revealed consistency in both the patterns and magnitudes of the values.
For the quantification of random error in the resistance measurements it was assumed that Δmi

can be used as a proxy value and although the adjusted error models based on the DCA and
NRA approach are slightly different the computed resistivity images reveal consistent results.
The same applies for the computed phase images where the parameterization on Δmi further
provides images with enhanced contrast at depth.

This Master’s thesis describes a novel methodology - the decay curve analysis (DCA) - for the
processing of TDIP data solely based on an analysis of the measured decay curve. The obtained
results demonstrate that the proposed approach is suited to identify outliers and permits to ad-
equately quantify the random error of both the chargeability and resistance measurements. The
performance was evaluated based on a comparison with the well-established normal-reciprocal
analysis (NRA) and revealed consistent results in terms of the removal of outliers, the quantific-
ation of random error and the computed electrical images. Furthermore, DCA processed images
exhibit an enhanced contrast at depth, permitting to solve for the contact between the aquifer
and the Mancos formation. In contrast to the NRA, the DCA does not require the collection
of reciprocal measurements, which i) reduces the acquisition times by 50% and improves the
efficiency of field surveys and ii) permits the use of different electrode configurations apart from
the DD configuration. Considering these findings, the DCA represents a general improvement
of the quality of TDIP imaging.
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