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Abstract

This doctoral thesis investigates potential phonon-cooling and phonon-lasing schemes as well as

quantum applications with diamond nano-mechanical resonators also known as phonon cavities.

These particular schemes are for the irst time based on the exploitation of the multi-level en-

ergy structure of diamondǶs natural defects such as nitrogen-vacancy and silicon-vacancy centers.

We develop microscopic models for defect-phonon interactions and use various quantum optical

methods to explore diferent laser manipulation schemes under realistic experimental conditions.

In particular, we investigate the strain-induced coupling between a nitrogen-vacancy impurity and

resonant vibrational modes of diamond nano-mechanical resonators. This coupling can modify the

state of the resonator and either cool a vibrational mode close to the quantum ground state or

excite it into a large-amplitude coherent state, a phenomenon known as phonon lasing. In addi-

tion, we study a setup where a silicon-vacancy center is magnetically coupled to a low-frequency

mechanical bending mode and via strain to the continuum of high-frequency longitudinal modes

of a singly-clamped diamond beam. This setup can be used to induce cooling efects for the low-

frequency mechanical vibrations, where the high-frequency longitudinal compression modes of the

beam serve as an intrinsic low-temperature reservoir.

A natural extension of the above-described setups is a system of two-coupled resonators. Assum-

ing that one of the oscillators is cooled and the other is heated with the same rate, such a gain-loss

system ofers an ideal setup for investigating the physics of so-called parity-time-symmetric systems,

under realistic conditions. Speciically, we present a new type of parity-time-symmetry breaking,

which occurs in the steady-state energy distribution of classical (and open quantum) systems with

balanced gain and loss. We show that the combination of non-linear saturation efects and the

presence of thermal or quantum noise in actual experiments results in unexpected behavior that

difers signiicantly from the usual dynamical picture. We observe additional phases with pre-

served or broken parity-time symmetry as well as a transition from a very noisy thermal state to a

low-energy lasing state with strongly reduced luctuations.
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Zusammenfassung

In dieser Doktorarbeit werden neue Methoden zur Kühlung und Anregung von mechanischen

Schwingungen in Diamant-Nanoresonatoren theoretisch analysiert. Die untersuchten Techniken

zur Kontrolle der mechanischen Moden basieren dabei zum ersten Mal auf der intrinsischen Defor-

mationskopplung der Schwingungen an natürliche Stickstof- und Siliziumstörstellen in Diamant.

Ausgehend von einer mikroskopischen Modellierung solcher Kopplungen werden in dieser Arbeit ver-

schiedene theoretische Methoden aus dem Bereich der Quantenoptik verwendet, um das Laserkühlen

von mechanischen Resonatoren bis Nahe an den quantenmechanischen Grundzustand, als auch die

Realisierung von sogenannten Phononenlaser, zu beschreiben. Dabei wird vor allem gezeigt, wie

quasi-entartete Energiezustände dieser Defektzentren ausgenützt werden können, um diese Efekte

zu optimieren und dadurch auch unter experimentell relevanten Bedingungen möglich zu machen.

Darüber hinaus wird in dieser Doktorarbeit untersucht, wie Phononen-induzierte Dissipation gezielt

dazu verwendet werden kann, um anderen mechanische Schwingungsmoden zu kühlen oder auch in

einen stationären verschränkten Zustand zu pumpen.

Als eine interessante Erweiterung der oben beschriebenen Efekte werden im dritten Teil dieser

Doktorarbeit Systeme mit zwei oder mehreren gekoppelten Resonatoren behandelt, wobei die mech-

anischen Moden abwechselnd gekühlt oder mit der selben Rate gepumpt werden. Im klassischen

Grenzfall besitzt die Dynamik solcher Systeme eine sogenannte Paritäts-Zeitumkehr-Symmetrie,

welche für bestimmte Systemparameter gebrochen wird. In dieser Arbeit werden zum ersten Mal

die Konsequenzen dieser Symmetriebrechung für die stationären Zustände dieser Systeme unter re-

alistischen Bedingungen beschrieben. Dabei zeigt sich, dass die Kombination von nichtlinearen Sät-

tigungsefekten und der Einluss von thermischen als auch Quantenrauschen zu unerwarteten Ergeb-

nissen führt, die sich deutlich von der dynamischen Symmetriebrechung unterscheiden. Insbeson-

dere indet man weitere Phasen mit teilweise erhaltener oder gebrochener Paritäts-Zeitumkehr-

Symmetrie, sowie einem Übergang von einem thermischen Zustand in eine Lasing-Phase mit stark

reduzierten Fluktuationen.
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Science may be described as the art of systematic

over-simpliication. — Karl Popper

1
Introduction

In this doctoral thesis we analyse novel ways to cool or actuate nano-mechanical resonators using

natural impurities of diamond. By exploring these ideas further we have discovered new interesting

efects that can arise when extending these ideas to coupled mechanical systems. To motivate this

study, we here briely introduce the ield of optomechanics and the concept of cooling of mechanical

motion as well as diamondǶs natural impurities and the way they can couple to phonons.

1.1 Optomechanics

Optomechanics explores the interaction between electromagnetic radiation and mechanical motion.

Its quantum version, quantum optomechanics, has to do with the interaction between photons and

the phonons [1]. In this case the vibrating object needs to be small enough so that the quantum

nature of its vibrations can be revealed. For this reason, the scale of these objects varies between a
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few microns to tens of nanometers. Such micro- and nano-mechanical systems [2] have the ability

to respond very sensitively to weak electric, magnetic and optical signals. This ability makes them

unique tools for scientists and engineers and they are often used in sensing applications such as

biosensors and accelerometers. The cooling of a nano-mechanical oscillator close to the quantum

ground state was experimentally demonstrated in 2011 [3, 4], opening up possibilities for probing

quantum mechanical efects at a macroscopic scale. But even before this breakthrough was achieved,

a new area of research was initiated with the goal to control massive mechanical objects to a single-

phonon level. Optomechanical cooling schemes are used to cool vibrational modes of micro- and

nano-mechanical resonators close to their quantum ground state [1]. Similar to laser cooling of

atoms (and ions), optomechanical cooling is the process of converting phonons into photons, by

making use the radiation pressure of the ield of an optical cavity towards a moving mirror [4–7].

The created photons are then lost from the cavity into the surrounding environment, removing

energy from the system. Various schemes alternative to radiation pressure use as tools quantum

dots [8, 9] or superconducting two-level systems [10–12] and as we shall see in this thesis, diamondǶs

natural impurities.

1.2 Impurity centers in diamond

Impurities in crystals are formed when external atoms occupy lattice sites. More interesting struc-

tures are created when such substituted atoms are located near lattice vacancies. These particular

impurities have the ability to efectively behave as molecules. Their multi-level energy structure,

which is dictated by the molecular symmetry, can be exploited in quantum-optics applications.

The most well-studied natural defect of diamond is the negatively charged nitrogen-vacancy cen-

ter [13, 14]. The interest in this particular color center, is due to the long-coherence times of

its electronic spin [15] as well as the fact that its spin state can be prepared and detected in an

all-optical way [16]. Also, all-diamond nanostructures can be fabricated with very high mechanical
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quality factors [17, 18]. Additionally, it has been theoretically proposed to exploit the coupling of

nitrogen-vacancy centers to phonons, in addition to photons, for applications related to quantum

information processing [19–21] and quantum enhanced magnetometry [22]. Another natural defect

in diamond, that we shall consider in this work, is the silicon-vacancy center. This center is cur-

rently a topic of very active research. The interest in this defect arises mainly from the fact that it

can be used as a narrow line-width optical emitter [23–26]. Our aim in this work is to exploit the

multi-level energy structure of diamond defects and present novel schemes for cooling and actuating

mechanical vibrations in diamond nanostructures. This is achieved by engineering schemes that

take advantage of the strain-induced coupling between impurities and mechanical vibrations.

1.3 Defect-phonon coupling

The energy levels of defects in solids, are highly susceptible to deformations of the surrounding

lattice. Such local deformations can be caused by permanent (static) lattice strain or mechanical

vibrations. One consequence of this susceptibility to local strain is the broadening of optical lines. In

the case of vibrational modes this broadening is phonon-induced. There has been signiicant interest

in exploiting these defect-phonon interactions in a particular kind of nanomechanical systems,

known as phonon cavities, where single defects may be strongly coupled to individual phonon

modes [20–22, 27–32]. This opens up possibilities for research in cavity quantum electrodynamics

(cavity QED) using phonons. Possible applications range from measurement and manipulation of

single phonons, to the coupling between defects through phonons. One very fundamental way to

exploit this defect-phonon interactions, is to use the defects as tools for manipulating the state

of vibrational modes in phonon cavities. As a irst step towards these quantum applications, this

thesis analyses schemes that can either cool a mechanical mode to its ground state or amplify it.
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1.4 Cooling and phonon lasing

The basic principle behind the cooling of nano-mechanical resonators using the defect-phonon

coupling is the same as in the case of laser cooling of atoms and ions [33]. Identifying optical

transitions within the level structure of the impurities is crucial for engineering a cooling scheme.

The fact that the strain-induced coupling is (partially) dispersive, allows optical transitions to be

phonon assisted. By setting up the laser detuning appropriately, this results in transitions occurring

via either the absorption or emission of a single phonon. Repeated phonon absorption results in

the cooling of a speciic mechanical mode while the opposite results in ampliication. In the case

where the cooling rate is higher that the intrinsic mechanical dumping, the resonator mode can be

cooled down to the quantum ground state. On the other hand, the ampliication of the resonator

irst results in an increase of the temperature. However, if the ampliication occurs at higher rates

than the mechanical dissipation, the mechanical mode starts to self-oscillate in a large-amplitude

coherent state. This phenomenon is commonly known as phonon lasing and it has been investigated

in various physical settings [34–42]. As the name suggests, this process is in complete analogy to a

strongly pumped optical mode undergoing a lasing transition.

1.5 Parity-time-symmetric systems

Having discussed cooling and ampliication ideas for individual modes in nano-mechanical systems,

a natural question to ask is ”what would happen in a setup where both cooling (loss) and heating

(gain) were present?”. The simplest system in which the above question can be investigated is a

pair of coupled oscillators, one with gain and the other with loss. In the special case where the gain

and loss occur at equal rates, the system possesses a very interesting symmetry. This symmetry

corresponds to simultaneous time and parity reversal. Such parity-time-symmetric systems are

currently the topic of active research in many areas of physics, such as optical waveguides [43–46],
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lattices and resonators [47–50] as well as cold atoms [51–53] and optomechanical systems [54–56].

The interest in these gain-loss systems arises from their ability to break their symmetry under

certain conditions. More speciically, these systems remain parity-time-symmetric so long as the

gain and loss rates do not exceed the coupling rate between the oscillators. In this symmetric

regime, the system undergoes energy oscillations. Energy is transferred back and forth between

the two oscillators. On the other hand, above threshold, the eigenvectors of the system are no

longer symmetric under parity-time inversion. In this symmetry-broken regime, one of the modes

is ampliied and the other is cooled. In this thesis, we go for the irst time beyond this dynamical

picture and we investigate this parity-time-symmetric setup under realistic conditions in a system

of coupled mechanical oscillators. In fact, we no longer assume that the gain and loss rates are

constant, but rather depend —in a non-linear way— on the energy of the oscillation modes. This is

the case for optical induced gain and loss, using for instance impurities in diamond, but is also the

case for any other system, since ampliication is always limited by saturation efects. In addition to

this nonlinearity, we take into account the efects of noise in the system. In fact, we consider classical

thermal noise as well as quantum noise generated by the intrinsic radiative decay of a diamond

impurity. To extend the notion of parity-time symmetry in these realistic setups, we generalize the

concept and instead of eigenvectors, we use the steady states in order to determine the symmetry

of the system in each regime. In particular, we ind that the inclusion of nonlinearities results in

unexpected behavior that difers signiicantly from the usual dynamical picture, including a new

type of symmetry breaking. Also, by introducing noise in the system we observe that in this case,

the parity-time-symmetry breaking takes the form of an unconventional phase transition from a

very noisy thermal state to a low-energy lasing state.
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1.6 Outline of the thesis

This doctoral thesis is the result of research work performed at the TU Wien during the years

2012-2016. The organization of this dissertation is the following. In chapter 2, we give a brief

introduction to the quantum description of mechanical modes of thin rectangular beams that we

shall consider throughout this thesis. In addition, we summarize the physics of defects in diamond,

to the extent relevant for this thesis. In chapter 3, we review the theory of cooling of mechanical

motion with a two-level system as well as the basic laser theory. In chapter 4, we investigate

schemes for mechanical cooling and phonon lasing in diamond nano-scale beams using nitrogen-

vacancy centers. In chapter 5, we develop a phonon-reservoir engineering method using silion-

vacancy centers and analyze cooling and entanglement-generation schemes. Finally, in chapter

6, we discuss the phenomenon of parity-time-symmetry breaking in realistic systems, using as an

example a system of coupled mechanical resonators.

1.7 Publications

In addition to this thesis, three papers have been published in peer-review journals describing the

results of this research work.

PHYSICAL REVIEW B 88, 064105 (2013) [57]

Phonon cooling and lasing with nitrogen-vacancy centers in diamond

K. V. Kepesidis, S. D. Bennett, S. Portolan, M. D. Lukin, P. Rabl,

This paper was published in Physical Review B in 2013. In this article, we consider the strain cou-

pling between a single nitrogen-vacancy center and a single resonant mechanical mode of a diamond

nanoresonator, and analyze ground state cooling and phonon lasing techniques for manipulating
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the phonon mode in this system. For this work, I performed all calculations described in the paper

under the supervision of S. Portolan and P. Rabl.

PHYSICAL REVIEW B 94, 214115 (2016) [58]

Cooling phonons with phonons:

acoustic reservoir-engineering with silicon-vacancy centers in diamond

K. V. Kepesidis, M.-A. Lemonde, A. Norambuena, J. R. Maze, P. Rabl,

This paper was published in Physical Review B in 2016. In this work, we describe a new approach

for mechanical cooling and dissipation engineering for the low-frequency vibrations of a mechanical

beam, which uses of the naturally occurring low-temperature bath provided by the high-frequency

compression modes of the beam structure. We illustrate this scheme for the example of a negatively

charged silicon-vacancy center in a vibrating nano-scale diamond beam. For this work, I performed

the calculations related to the cooling and two-mode squeezing while M.-A. Lemonde performed

the analysis of the phonon spectral density.

New Journal of Physics 18 (2016) 095003 [59]

PT -symmetry breaking in the steady state of microscopic gain฀loss systems

K. V. Kepesidis, T. J. Milburn, J. Huber, K. G. Makris, S. Rotter and P. Rabl,

This paper was published in New Journal of Physics in 2016. In this work, we generalize the

concept of parity-time symmetry to realistic systems with nonlinearities and under the inluence of

thermal and quantum noise. We illustrate this generalization and investigate its implications for

the speciic model of coupled mechanical resonators with optically induced loss and gain. In this
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work, I performed most of the analytical as well as numerical calculations. The stability analysis

was performed together with T. J. Milburn and the numerical data for Fig. 5 was provided by J.

Huber.
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2
Mechanical systems and defect centers in

diamond

In this chapter, we present some background on the systems we consider in the following chapters.

In section 2.1, we provide details on the mechanical systems we use and derive the fundamental

equations of motion as well as their mode structure. In section 2.2, we discuss the energy-level

structure of the most important natural defects of diamond and the ways they couple to mechanical

modes.

2.1 Quantized mechanical vibrations

In this section, we present the theory of elastic waves that manifest themselves as mechanical

oscillations of thin rectangular beams. A thin beam is a structure which has one of its dimensions

much larger than the other two. Figure 2.1 illustrates the two types of mechanical systems that

are considered in this work, namely cantilever (singly-clamped) and doubly-clamped beams. The

types of vibrations we consider are lexural, i.e. the bending of the beam, and longitudinal, i.e.

its compression along its large dimension. For each type of vibrations we derive the governing

equation, provide solutions by imposing the necessary boundary conditions and inally proceed

with their quantization. The following discussion is mainly based on references [2, 60].
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a) b)

Figure 2.1 – Illustration of the two types of mechanical systems that are considered in this work, namely
a) cantilever (singly-clamped) and b) doubly-clamped beams.

2.1.1 Bending vibrations

We irst present a derivation of the Euler-Bernulli equation. This particular model which is also

called simple beam theory, is a scalar theory for the beamǶs bending motion for more or less arbitrary

forces. It is most accurate for thin beams, with small displacements. It is important to note that

in this beam model the rotational inertia of the beam are not taken into account. Speciically, we

consider a long rectangular beam of length ℓ along the z-axis, thickness t and width w, (cross-

sectional area A = w× t), and density ρ, as shown igure 2.2. The beam is assumed to be made of

isotropic material with YoungǶs modulus E. We assume displacements ξx(z, t) causing the beam

to lex along the x-direction. The force that this displacement generates on a diferential element

of mass dm, ininitesimal length dz is given by NewtonǶs second law

Fx(z, t) = dm
∂2

∂t2
ξx(z, t) = ρAdz

∂2

∂t2
ξx(z, t), (2.1)

where we have used the relation dm = ρAdz between the mass of the ininitesimal element and

density of the material of the beam. In addition, the element is subject to forces Fx(z + dz) and

−Fx(z), on each respective face, along x-direction and torques My(z + dz) and −My(z) along

10



y-direction from its two neighboring diferential elements. Balancing the forces yields

Fx(z + dz)− Fx(z)− ρAdz
∂2

∂t2
ξx(z, t) = 0. (2.2)

Similarly assuming there is no net torque on the element, we obtain

Fx(z + dz)dz +My(z + dz)−My(z) = 0. (2.3)

We now expand the force Fx(z + dz) and torque My(z + dz) in a Taylor series to irst order in z

and keep only the the irst two terms. By doing so, equations (2.2) and (2.3) take the forms

∂Fx(z, t)

∂z
= ρA

∂2ξx
∂t2

, (2.4)

Fx(z, t) = −∂My(z, t)

∂z
. (2.5)

In thin beam theory, the relation between pure torque and displacement is given by (see reference

[2], chapter 6)

My = EI
∂2ξx
∂z2

. (2.6)

where I =
∫

x2dA = wt3/12 is the moment of inertial of the thin beam. Using this result we obtain

the Euler-Bernoulli equation

ρA
∂2

∂t2
ξx(z, t) + EI

∂4

∂z4
ξx(z, t) = 0. (2.7)

This equation is solved by separation of variables, namely

ξx(z, t) =
∑

n

qn(t)un(z), (2.8)
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Figure 2.2 – Illustration of a long rectangular beam of length ℓ along the z-axis and cross-sectional area
A = w × t, with displacement ξ(z). We consider two types of displacements, lexural in x-direction, due to
forces along x-direction and torques along y-direction, related to the bending of the beam, and longitudinal
along z-direction, related to the compression vibrations. The circular inset shows magniied the diferential
element of length dz and the corresponding forces and torques responsible for the lexural displacement.

where the displacement amplitudes qn obey equations of harmonic oscillators q̈n + ω2
nqn = 0 with

frequencies

ωn = k2n

√

EI

ρA
(2.9)

and wave vectors kn. The spatial part in the solution (2.8) takes the general form

un(t) = A cos(knz) +B sin(knz) + C cosh(knz) +D sinh(knz). (2.10)

The coeicients A, B, C, D and the allowed wavevectors kn are determined by the boundary

conditions of the problem under consideration.
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Singly-clamped beam

For a cantilever beam of length ℓ and cross section A = w× t, we impose the boundary conditions

un(0) = 0, u′n(0) = 0, u′′n(ℓ) = 0, u′′′n (ℓ) = 0 ; these constraints account for one ixed and one free

end, assuming no transverse force and torque on the free end. Solving equation (2.7) one obtains

un(z) =
1√
Nn

(

[cos(knz)− cosh(knz)] +
sin(κn)− sinh(κn)

cos(κn) + cosh(κn)
[sin(knz)− sinh(knz)]

)

, (2.11)

where κn = knℓ (n = 1, 2, 3...) and Nn is the appropriate normalisation factor. The allowed

k-vectors are given by the condition

1 + cos(κn) cosh(κn) = 0. (2.12)

By numerically solving this equation we obtain, we obtain the values κn ≈ 1.875, 4.694, 7.855, ....

For n > 1, these values can be approximated by κn ≈ π(n − 0.5). The corresponding oscillation

frequencies follow from equation (2.9). We chose a normalisation condition such that un(ℓ) = 1,

independently of n, i.e.
∫ ℓ

0
dz|un(z)|2 =

ℓ

4
. (2.13)

We do so because we are mainly interested in the displacement of the free end of the beam.

This results into the normalization constant Nn = 2(sinh2(κn) − sin2(κn)). To proceed with the

quantization of the displacement and obtain a quantum model for the vibrating beam, we write

down the Lagrangian function

L =

∫ ℓ

0
dz

[

ρA

2

(

∂ξx
∂t

)2

− EI

2

(

∂2ξx
∂2z

)2
]

, (2.14)
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that reproduces the Euler-Bernoulli equation (2.7) using the Euler-Lagrange formalism. By in-

serting the mode decomposition given in equation (2.8), the Lagrangian can reduce to a sum of

harmonic oscillators

L =
∑

n

mef

2
q̇2n − mefω

2
n

2
q2n (2.15)

where we have introduced an efective mass mef deined by the normalization condition described

above and given by

mef = ρA

∫ ℓ

0
dz|un(z)|2 =

m

4
. (2.16)

The right-hand side of the above equation is obtained by integration by parts and indicates that the

efective mass is four times smaller than the real mass and is mode independent. The corresponding

Hamiltonian is derived by applying Legendre transform and reads

H =
∑

n

p2n
2mef

+
1

2
mefω

2
nq

2
n, (2.17)

where pn = ∂L/∂q̇n = mefq̇n are the canonical momenta. Following now the canonical quantization

rules, we replace the displacement amplitudes qn and the canonical momentum by operators obeying

the usual commutation relation for position and momentum [q̂n, p̂n] = iℏ and can deine harmonic-

oscillator ladder operators for each mode

ân =

√

mefωn

2ℏ

(

q̂n +
i

mefωn
p̂n

)

, (2.18)

in terms of which, the Hamiltonian operator takes the form

Ĥ =
∑

n

ℏωn

(

â†nân +
1

2

)

. (2.19)
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The displacement of the free end of the beam, in terms of ladder operators, is then given by

ξ̂(ℓ) =
∑

n

un(ℓ)q̂n =
∑

n

√

ℏ

2mefωn

(

ân + â†n

)

. (2.20)

Doubly-clamped beam

Repeating the above procedure for a doubly-clamped beam, by imposing the boundary conditions

un(0) = 0, u′n(0) = 0, un(ℓ) = 0, u′n(ℓ) = 0, yields

un(z) =
1√
Nn

(

[cos(knz)− cosh(knz)]−
cos(κn)− cosh(κn)

sin(κn)− sinh(κn)
[sin(knz)− sinh(knz)]

)

. (2.21)

The allowed k-vectors in this case are given by

cos(κn) cosh(κn) = 1, (2.22)

with solutions κn ≈ 4.730, 7.853, 10.995, .... The corresponding oscillation frequencies follow again

from equation (2.9). Since there is no free end, we are mainly interested in the displacement at

the middle of the beam. For this reason we choose a normalization such that u1(ℓ/2) = 1. This

normalization condition deines an efective mass

mef = Aρ

∫ ℓ

0
dz|u1(z)|2 ≈ 0.4×m. (2.23)

2.1.2 Compression modes

We consider again a rectangular beam, as shown in igure 2.2. We assume a displacements ξz(z, t)

causing the beam to be compressed and decompressed along the z direction. The force that is
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generated on an ininitesimal mass element dm is given by

Fz(z, t) = ρAdz
∂2ξz
∂t2

. (2.24)

Balancing the forces by neighboring diferential elements, yields

Fz(z + dz)− Fz(z)− ρAdz
∂2

∂t2
ξz(z, t) = 0. (2.25)

We now expand Fz(z + dz) in a Taylor series and keep terms up to irst order in z, obtaining

ρA
∂2ξz
∂t2

=
∂F

∂z
. (2.26)

Using the relation between the strain and stress for longitudinal forces, i.e. ∂ξz = F/EA (see

reference [2], chapter 6), we obtain the 1-D wave equation for the longitudinal displacement,

ρ
∂2ξz(z, t)

∂t2
= E

∂2ξz(z, t)

∂z2
. (2.27)

To solve the above equation, we perform separation of variables, which gives solutions of the form

ξz(z, t) =
∑

n

qn(t)un(z), (2.28)

where the displacement amplitudes qn obey equations of harmonic oscillators q̈n + ω2
nqn = 0 with

frequencies

ωn = kn

√

E

ρ
(2.29)
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and wave vectors kn. The spatial part in the solution (2.28) is given by

un(z, t) = N sin(knz) +M cos(knz), (2.30)

and N and M are normalization constants deined by the initial conditions.

Singly-clamped beam

We repeat the quantization procedure for compression waves in a cantilever using the boundary

conditions u(0) = u′(ℓ) = 0 ; these constraints account for one ixed and one free end, in the case

of longitudinal waves. Under these conditions, the solution of equation (2.27) reads

un(z) = Nn sin(knz) (2.31)

where Nn are the normalization factors and the allowed wave-numbers are given by k = (n−1/2)π/ℓ

(n = 1, 2, 3...). We choose the following n-independent normalization

∫ ℓ

0
dz|un(z)|2 =

ℓ

2
. (2.32)

To proceed to the quantization of the longitudinal waves and obtain a quantum model for the

compression of the beam, we write down the Lagrangian function

L =

∫ ℓ

0
dz

[

ρA

2

(

∂ξz
∂t

)2

− EA

2

(

∂ξz
∂z

)2
]

, (2.33)

which reproduces the equation (2.27), using the Euler-Lagrange formalism. Inserting the mode

decomposition given in equation (2.28), the Lagrangian reduces again into the sum of harmonic
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oscillators

L =
∑

n

mef

2
q̇2n − mefω

2
n

2
q2n, (2.34)

and the efective mass in this case reads mef = m/2. Following again the canonical quantization

rules, we replace the displacement amplitudes qn and the canonical momentum by operators obeying

the usual commutation relation for position and momentum [q̂n, p̂n] = iℏ and can deine harmonic-

oscillator ladder operators for each mode.

Doubly-clamped beam

Repeating the above procedure for a doubly-clamped beam, by imposing the boundary conditions

u(0) = u(ℓ) = 0., yields

un(z) = Nn sin(knz). (2.35)

The allowed k-vectors in this case given by kn = nπ/ℓ, where n = 1, 2, 3, .... The corresponding

oscillation frequencies follow again from equation (2.29). For the normalization we require u0(ℓ/2) =

1. In this case for the fundamental function we have N0 = 1. The efective mass again reads

meff = m/2.

2.1.3 Mechanical dissipation and noise

Realistic systems are never isolated and are in general subject to environmental noise. Under exper-

imental conditions though, the coupling of the system to the degrees of freedom of the environment

can be low enough, to be treated as a small perturbation. Mechanical oscillation modes are consid-

ered to be coupled weakly to a bath of phonons in the beamǶs support or other uncontrolled noise

sources. In the following we present the quantum master equation formulation for the evolution

of the reduced density matrix ρm of a mechanical mode under the inluence of a thermal phonon

bath. The derivation of the particular master equation can be found in quantum optics [61–63]
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and nano-mechanics [2] textbooks. Notation-wise, we closely follow [64]. We start the derivation

by specifying the Hamiltonians of the system and the phonon bath. The Hamiltonian of the me-

chanical modes is given by equation (2.19) and for a single mode (shifting the zero energy by ω̄0/2)

reads

HS = ℏω0a
†a, (2.36)

while the Hamiltonian of the bath is given by

HB =

∫ ω0+∆B

ω0−∆B

dω ℏω b†(ω)b(ω), (2.37)

representing a continuum of bosonic modes with ladder operators obeying the commutation relation

[bω, b
†
ω′ ] = δ(ω − ω′) and ∆B denotes the bandwidth of the bath. The part of the Hamiltonian

representing the interaction between the system and the bath is

Hint = ℏ
√
γ
(

aB† + a†B
)

, (2.38)

where γ = ω0/Q is the mechanical damping rate for a given mechanical quality factor Q. For

simpliication we have deined the collective bath operators

B =
1√
2π

∫ ω0+∆B

ω0−∆B

dω b(ω). (2.39)

We assume that the bath is in thermal equilibrium and thus its two-time correlation functions read

⟨B(τ)B†(0)⟩ ≃ (Nth + 1)e−iω0τδ(τ), (2.40)

⟨B(τ)†B(0)⟩ ≃ Nthe
−iω0τδ(τ), (2.41)
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where Nth = (eℏω0/kBT − 1)−1 is the (equilibrium) thermal occupation number of the modes with

frequency ω ∼ ω0 for a support temperature T . Our goal is now to derive an efective equation for

the evolution of the reduced system density operator ρS(t) = TrB{ρ(t)}. As a irst step we change

into the interaction picture with respect to H0 = HS +HB, i.e.,

ρ̃(t) = eiH0t/ℏρ(t)e−iH0t/ℏ. (2.42)

In the interaction picture the von Neumann equation for ρ̃(t) reads,

˙̃ρ(t) = − i

ℏ
[Hint(t), ρ̃(t)] (2.43)

where

Hint(t) = eiH0t/ℏHinte
−iH0t/ℏ = ℏ

√
γ
(

cB†(t)e−iω0t + c†B(t)eiω0t
)

. (2.44)

The von-Neumann equation can be formally integrated and after tracing over the bath degrees of

freedom we obtain

ρ̃S(t) =ρ̃S(0)−
i

ℏ

∫ t

0
dt′TrB{[Hint(t

′), ρ̃(0)]}

− 1

ℏ2

∫ t

0
dt′
∫ t′

0
dt′′TrB{[Hint(t

′), [Hint(t
′′), ρ̃(t′′)]]}.

(2.45)

This result is still exact and we shall now proceed with the two approximations associated with the

Born-Markov master equation.
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Born approximation

To proceed we now assume that the system-bath interaction is suiciently weak and in partic-

ular that it does not considerably alter the state of the reservoir. This means that to a good

approximation we can write

ρ̃(t) ≃ ρ̃S(t)⊗ ρB(0) (2.46)

where ρB(0) is the stationary state of the bath. Under the Born approximation the term (I)

in equation (2.45) vanishes, since the coupling between system and bath is such that ⟨B(t)⟩ =

⟨B†(t)⟩ = 0. Then, after taking the time derivative, we end up with the Nakajima-Zwanzig equation

˙̃ρS(t) =− 1

ℏ2

∫ t

0
dt′TrB{[Hint(t), [Hint(t

′), ρ̃S(t
′)⊗ ρB(0)]]}. (2.47)

This equation is non-local in time, i.e., the derivative of ρ̃(t) at time t depends on ρ̃(t′) at all earlier

times 0 < t′ < t.

Markov approximation

To simplify the Nakajima-Zwanzig further, we now make use of the fact that the bath (according

to our deinition) has a very short memory time, meaning that correlations between bath operators

decay very fast. When evaluating the rhs. of equation (2.47) we encounter bath correlation functions

of the form of equation (2.40) where the inverse correlation time, ∆B = τ−1
c , can be identiied with

the reservoir bandwidth. Note that in equation (2.40) the δ(τ) is the delta-function on the scale of

the inverse bandwidth. Then, for t≫ τc we can approximately set ρ̃S(t′) ≃ ρ̃S(t) and

˙̃ρS(t) ≃− 1

ℏ2

∫ t

−∞
dt′TrB{[Hint(t), [Hint(t

′), ρ̃S(t)⊗ ρB(0)]]}. (2.48)
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By substituting τ = t− t′ we obtain

˙̃ρS(t) ≃− 1

ℏ2

∫ ∞

0
dτ TrB{[Hint(t), [Hint(t− τ), ρ̃S(t)⊗ ρB(0)]]} (2.49)

which is the master equation for ρ̃S(t), still in a general form. Note that this equation is now local

in time, i.e. ˙̃ρS(t) ∼ ρ̃S(t). The evaluation of the double-commutator in equation (2.49) results

into four terms. After taking the trace and using the properties of the correlation functions (2.40),

we collect all the terms and change back into the Schrödinger picture. Then, after integrating over

the time τ , we obtain the master equation for ρS(t),

ρ̇S = −iω0[a
†a, ρS ] +

γ

2
(Nth + 1)

(

2aρSa
† − a†aρS − ρSa

†a
)

+
γ

2
Nth

(

2aρSa
† − a†aρS − ρSa

†a
)

.

(2.50)

Using the above equation, one can derive equations of motion for expectation values, i.e.

⟨Ȯ(t)⟩ = Tr{Oρ̇(t)} = Tr{OL(ρ(t))}. (2.51)

The corresponding equation for the mean phonon occupation number is given by

∂t⟨a†a⟩ =− γ(Nth + 1)⟨a†a⟩+ γNth⟨aa†⟩

=− γ⟨a†a⟩+ γNth.

(2.52)

This means that if the mechanical mode is in its quantum ground state, the rate in which a irst

phonon will be absorbed from the environment is given by γNth ≈ kBT/ℏQ. Solving equation

(2.52), yields

⟨a†a⟩(t) = e−γt⟨a†a⟩(0) +
(

1− e−γt
)

Nth, (2.53)
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a) b)

Figure 2.3 – Illustration of the two types of color centers in diamond that we consider in this work. a)
Sketch of the nitrogen-vacancy center in diamond. It is formed by a substitutional nitrogen atom and an
adjacent lattice vacancy. b) Sketch of the silicon-vacancy center in diamond. It is formed by a silicon atom
and a split vacancy replacing two neighboring carbon atoms.

which describes relaxation towards thermal equilibrium.

2.2 Defect centers in diamond

In this section, we introduce two of the most interesting types of natural defects in diamond [65],

namely the nitrogen-vacancy (NV) and silicon-vacancy (SiV) color centers.

2.2.1 NV centers

The negatively-charged nitrogen-vacancy (NV) color center is formed when a nitrogen atom has

replaced a carbon atom of the diamond lattice and is located next to a lattice vacancy. Figure 2.3

a) illustrates a sketch of this color center. The whole structure constitutes an efective molecule

with a C3v symmetry. It has six outer electrons, three of them come from the carbon atoms, two

from the nitrogen atom and one is captured from the environment. These electrons occupy four

orbitals, as dictated by this speciic symmetry type, which we shall label a1(1), a1(2), ex, ey. These

orbitals are linear combinations of the electronic orbitals located near the carbon and the nitrogen

atoms [66, 67]. The ground state of the system (minimizing the Coulomb interaction between

the electrons) is a spin triplet which is formed when four electrons occupy the symmetric orbitals

a1(1), a1(2) and two occupy the degenerate ex, ey orbitals, as shown in igure 2.4 a). One can adopt

a representation in terms of holes rather than electrons. In this picture, the ground state can be
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a) b)

Figure 2.4 – Level structure of color centers in diamond. a) Ground state single particle coniguration in
the electron (black) and in the hole (grey arrows) representations. b) Energy level diagram of the nitrogen-
vacancy center showing the spin sub-levels of the ground and the irst excited triplet state. The energy levels
important for this work are highlighted in black.

described by a pair of holes occupying the levels ex and ey, as indicated by the grey arrows in the

igure 2.4 a) and can be written as [66]

|3A2ms⟩ = |exey − eyex⟩ ⊗ |ms⟩, (2.54)

where ms = ±1, 0 accounts for the three possible spin projections. The degeneracy of states with

|ms| = 1 and ms = 0 is lifted by spin-spin interactions. The irst excitation corresponds to the

transition of one of the holes from either ex or ey to the a1(2) orbital. This orbital is a doublet state

and combined with the spin triplet yields in total six levels which make up the manifold of the irst

excited state. We label these levels as follows |E1,2⟩,|Ex,y⟩ and |A1,2⟩, in consistency with references

[66, 67]. The energy gap between these states is of the order of a few GHz. The degeneracy lifting is

due to spin-orbit and spin-spin interactions. The level ordering of both the ground and the excited

states is shown in igure 2.4 b). In this thesis we are mainly interested in the pair of excited levels
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Figure 2.5 – Energy levels of silicon-vacancy center. The levels illustrated here are spin-1/2 doublets and
for simplicity only the spin-up levels are drawn.

corresponding to zero spin, namely

|Ex,y⟩ = |aex,y − ex,ya⟩ ⊗ |ms = 0⟩. (2.55)

The interest in these states arises from the fact that, using linearly polarized light, one can selec-

tively drive transitions to these levels from the ms = 0 ground state. In the absence of strain (or

external ields), these levels are degenerate. However the degeneracy is lifted by local strain caused

by lattice distortions.

2.2.2 SiV center

The negatively charged SiV color center in diamond is formed by a silicon atom and a split vacancy

replacing two neighboring carbon atoms as shown in igure 2.3 b). The electronic ground state

of this center consists of a single unpaired hole with spin S = 1/2, which can occupy one of the

two degenerate orbital states |ex⟩ or |ey⟩ [68, 69]. The spin and orbital degeneracy is lifted by

the spin-orbit coupling and by the Jahn-Teller (JT) efect [70, 71]. In the presence of an external
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magnetic ield B⃗, the Hamiltonian for the electronic ground state of the SiV− center is (ℏ = 1) [69]

H0
SiV = −λSOLzSz +HJT + fγLBzLz + γSB⃗ · S⃗. (2.56)

Here Lz and Sz are the projections of the dimensionless angular momentum and spin operators L⃗

and S⃗ onto the symmetry axis of the center, which we assume to be aligned along the z-axis. λSO > 0

is the spin-orbit coupling while γL and γS are respectively the orbital and spin gyromagnetic ratios.

The parameter f ≈ 0.1 accounts for the reduced orbital Zeeman efect in the crystal lattice [69, 70].

For weak external magnetic ields, the dominant interaction in equation (2.56) is set by the

spin-orbit coupling, λSO/2π ≈ 45 GHz, which splits the ground state manifold into two lower

states {|e−, ↓⟩, |e+, ↑⟩} and two upper states {|e+, ↓⟩, |e−, ↑⟩}. Here |e±⟩ = (|ex⟩ ± i|ey⟩)/
√
2 are

eigenstates of the angular momentum operator, Lz|e±⟩ = ±|e±⟩. The JT interaction ĤJT with

strength Υ < λSO does not afect the spin degrees of freedom, but leads to a mixing between

the orbital angular momentum states |e+⟩ and |e−⟩ (dynamical JT interaction [70, 71]). From

a combined diagonalization of the spin-orbit and the JT interaction, we obtain a total splitting

of the ground state of ∆ =
√

λ2SO + 4Υ2 ≈ 2π × 50 GHz and two sets of pairwise degenerate

eigenstates {|1⟩, |2⟩} and {|3⟩, |4⟩}. Speciically, in the basis spawned by the degenerate eigenstates

|ex, ↑⟩, |ex, ↓⟩, |ey, ↑⟩ and |ey, ↓⟩, the diferent contributions to the SiV− energy levels, introduced in

equation (2.56), read

(γSB0 − λSOLz)Sz =
1

2







γSB0 iλSO

−iλSO γSB0






⊗







1 0

0 −1






,

HJT =







Υx Υy

Υy −Υx






⊗







1 0

0 1






.

(2.57)

Here, Υx (Υy) represents an energy shift due to local strain in the crystal along x (y), such that
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Υ =
√

Υ2
x +Υ2

y. For the following analysis we consider small magnetic ields and we neglect the

efect of the reduced orbital Zeeman interaction (∼ fγLB0). Diagonalizing equation (2.57) leads to

the eigenstates

|1⟩ =
(

cos θ|ex⟩ − i sin θe−iϕ|ey⟩
)

|↓⟩,

|2⟩ =
(

cos θ|ex⟩+ i sin θeiϕ|ey⟩
)

|↑⟩,

|3⟩ =
(

sin θ|ex⟩+ i cos θe−iϕ|ey⟩
)

|↓⟩,

|4⟩ =
(

sin θ|ex⟩ − i cos θeiϕ|ey⟩
)

|↑⟩,

(2.58)

where

tan(θ) =
2Υx +∆

√

λ2SO + 4Υ2
y

, tan(ϕ) =
2Υy

λSO
. (2.59)

The corresponding eigenenergies are:

E3,1 = (−γSB0 ±∆)/2, E4,2 = (γSB0 ±∆)/2. (2.60)

In igure 2.5 we illustrate the levels and for simplicity only the spin-up levels are drawn. For the

cooling schemes described in chapter 5 we will neglect small distortions of the orbital states by the

JT efect and use the approximation |1⟩ ≈ |e−, ↓⟩, |2⟩ ≈ |e+, ↑⟩, |3⟩ ≈ |e+, ↓⟩ and |4⟩ ≈ |e−, ↑⟩ [see

igure 5.1 b) in chapter 5].

2.3 Defect-phonon coupling

In this section, we discuss the efects of lattice distortions on the above-described diamond defects

and derive the corresponding coupling Hamiltonians.
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2.3.1 NV-phonon interactions

The efect of strain on the electronic states can be described by a Hamiltonian which can be split

into two parts

Hstrain = Ha +Hna. (2.61)

The axial part Ha accounts for the lattice deformations which are symmetric, while the non-axial

part Hna represents deformations which reduce the C3v symmetry of the defect [70, 72, 73]. The

ground state of the nitrogen-vacancy center is immune to lattice distortions and the efect of Hstrain

on |3A2ms⟩ can be neglected. On the other hand, due to their degeneracy the orbitals ex and

ey are very susceptible to external perturbations [66, 67]. In terms of the states of interest, the

strain-coupling Hamiltonian takes the following form

Ha = ϵAΞA (|Ex⟩⟨Ex|+ |Ey⟩⟨Ey|) , (2.62)

for the axial part and

Hna =ϵEΞE (|Ex⟩⟨Ex| − |Ey⟩⟨Ey|) + ϵ′EΞ
′
E (|Ex⟩⟨Ey|+ |Ey⟩⟨Ex|) , (2.63)

for the non-axial part, respectively. We denote with ΞA, ΞE and Ξ′
E the deformation-potential

constants and with ϵA, ϵE and ϵ′E the corresponding components of the strain tensor. These

components can be derived through group-theoretic considerations (see reference [66] for more

details). We see that Ha can only shift the energy of the entire excited state relatively to the

ground state. The two contributions in Hna account for a strain-induced splitting of |Ex⟩ and |Ey⟩

relatively to each other (lifting of the degeneracy) and a strain-induced mixing of these two excited

levels.
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In chapter 4 we will be interested in the strain ield associated with a single quantized mode of

a nano-mechanical beam. For small displacements the induced strain at the position of the NV

center is linear in the mode amplitudes and in second quantization the strain Hamiltonian given in

equations (2.62) and (2.63) can be written in the form [72]

Hstrain = ℏ

∑

ν=0,∥,⊥

λνΣν(a+ a†). (2.64)

Here a and a† are the bosonic operators for the vibrational mode, λν are the corresponding coupling

constants. The operators Σ∥ = |Ex⟩⟨Ex|−|Ey⟩⟨Ey|, Σ⊥ = |Ex⟩⟨Ey|+|Ey⟩⟨Ex| and Σ0 = |Ex⟩⟨Ex|+

|Ey⟩⟨Ey| are the operators associated with a relative energy shift, a mixing between the excited

states and a common shift of the excited states due to axial strain, respectively. The values of the

corresponding coupling parameters λ0, λ∥ and λ⊥ depend on details of the speciic experimental

setup, such as the resonator dimensions, the vibrational mode function of interest as well as the

orientation of the NV center in the diamond lattice.

To estimate the absolute strength of the NV-phonon coupling we consider a doubly clamped

diamond nanobeam of dimensions (l, w, t) = (2, 0.2, 0.2)µm. The fundamental bending mode of

this beam has a frequency of ωm/(2π) ≈ 1 GHz. For a NV center positioned at distance z0 away

from the axis of the beam, the induced stress per zero point oscillation a0 is approximately given by

σ = [∂2u(x)/∂x2]Ez0a0, where E ≈ 1.2 TPa is the YoungǶs modulus and u(x) is the displacement

ield of the fundamental mode [2, 8, 22]. Measurements of the NV energy level splitting as a

function of applied stress [65, 74] give values around ∂ω/∂σ ∼ 2π × 1 kHz. This corresponds to

a deformation potential coupling of Ξ ≈ 5 eV and λ/(2π) ≈ 6 MHz. Similarly, by considering the

lowest order compression mode (along the long axis of the beam) we obtain a mechanical frequency

of ωm/(2π) ≈ 4.5 GHz. In this case the stress per zero-point motion is given by σ = [∂u(x)/∂x]Ea0,

where u(x) = sin(πx/L), and results in a similar coupling constant of λ/(2π) ≈ 6.5 MHz. These
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estimates show that in micron scale structures NV-phonon couplings of a few MHz are expected,

while, for example, by using a compression mode, the NV center is still located suiciently far from

the surface.

2.3.2 SiV-phonon interactions

In Chapter 5 we will consider both magnetic as well as strain induced interactions between phonons

and a SiV center in the electronic ground state. Since the levels structure and energy scales of the

SiV center are quite diferent also these couplings will results in slightly diferent interactions and

since these two types of coupling afect the various vibrational modes diferently, we divide the

phonon modes into low-frequency (l.f.) and high-frequency (h.f.) modes, i.e.

Hph =

(l.f.)
∑

l

ωlb
†
l bl +

(h.f.)
∑

n

ωnc
†
ncn, (2.65)

where the bl and cn are bosonic lowering operators. The irst sum accounts for the lowest order

vibrational modes of the beam. In particular, we are interested in the fundamental bending mode

along z with frequency ωb; for a rectangular beam of dimensions (ℓ, w, t) ≈ (25, 0.1, 0.1)µm, ωb ≈
√

Et2/12ρ(1.88/ℓ)2 ≈ 2π×480 kHz with E and ρ being the YoungǶs modulus and the mass-density

of diamond, respectively [see equation (2.7)]. This frequency is too low to induce transitions between

the orbital states, but the bending motion leads to a large absolute displacement of the SiV− center

located at the end of the beam. In the presence of a strong magnetic ield gradient, ∂zBz, it results

in a modulation of the Zeeman splitting and a magnetic spin-phonon interaction of the form [75]

Hmag = gm(b
† + b)Sz. (2.66)
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Here, gm = γSzZPF∂zBz/ℏ denotes the coupling per phonon, where zZPF =
√

ℏ/(2meffωb) is the

zero-point motion of the fundamental bending mode of the cantilever of volume V = ℓwt and an

efective vibrating mass of meff = ρV/4 [2]. For the beam dimensions given above and achievable

magnetic gradients of up to 107 T/m [76, 77], the resulting coupling strength can be as large as

gm/2π ≈ 80 kHz, and scales as gm ∼
√

ℓ/t2w with the beam dimensions (the thickness t is along

the magnetic gradient). Note that while higher order bending modes would couple to the spin as

well, all applications discussed in chapter 5 rely on resonant excitation schemes that single out a

speciic vibrational mode. This justiies the assumed single-mode approximation in equation (2.66)

for the magnetic coupling.

The second sum in equation (2.65) accounts for compression modes inside the beam with fre-

quencies ωn ∼ ∆ of the order of the SiV− level splitting. These modes have a negligible efect on

the absolute displacement of the beam, but they induce a local crystal strain which couples to the

orbital states of SiV− center.

Local strain or local distortions in the SiV− structure generates a displacement of the defect

atoms. This leads to a change in the potential seen by each atoms and result in a modiication

of the electronic distribution of the defect via electron-ion interaction. To irst order in the ion

displacements and in the Born-Oppenheimer approximation, this local distortion efect can be

modeled by the strain Hamiltonian

Hstrain =
∑

i,j,α,β

|α⟩⟨α|Vij |β⟩⟨β|γ̂ij . (2.67)

Here, |α⟩ is the electronic basis and Vij are couplings that involve the electron-ion Coulomb inter-
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action [66]. The strain ield tensor can be symmetrically decomposed as γ̂ = γ̂A1g + γ̂Eg , where

γ̂A1g =













1
2 (γ̂xx + γ̂yy) 0 0

0 1
2 (γ̂xx + γ̂yy) 0

0 0 γ̂zz













,

γ̂Eg =













1
2 (γ̂xx − γ̂yy) γ̂xy γ̂xz

γ̂xy
1
2 (γ̂yy − γ̂xx) γ̂yz

γ̂xz γ̂yz 0













.

(2.68)

Due to the inversion symmetry of the SiV− [78], the orbital degrees of freedom of the states within

the ground and excited subspace are characterized by parity [79]. As a consequence, expectation

values ⟨α|Viz|α⟩ and ⟨α|Vzz|α⟩ vanish in both ground and excited subspaces. Therefore, in the

electronic basis spawned by {|egx⟩, |egy⟩}, the strain Hamiltonian can be written as [80]

Hstrain =







δ 0

0 δ






+







α β

β −α






, (2.69)

with δ = g0 (γ̂xx + γ̂yy), α = g1 (γ̂xx − γ̂yy) and β = g2γ̂xy. Here, g0, g1 and g2 are coupling

constants. The irst term of the strain Hamiltonian is the energy shift induced by symmetry local

distortions and can be neglected. Finally, if we write the strain Hamiltonian using the basis spawned

by the eigenstates of the spin-orbit coupling [see discussion after equation (2.56)], we obtain

Hstrain =







0 α− iβ

α+ iβ 0






⊗







1 0

0 1






(2.70)

= g1 (γ̂xx − γ̂yy) (L− + L+)− ig2γ̂xy (L− − L+) .
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Thus, within the framework of linear elasticity theory, the strain coupling is given by

Hstrain = g1(γ̂xx − γ̂yy)(L− + L+)− 2ig2γ̂xy(L− − L+), (2.71)

where L+ = L†
− = |3⟩⟨1| + |2⟩⟨4| is the orbital raising operator within the ground state manifold

and g1,2 are the strength of the couplings to the strain ield. From measurements of the related

NV− defect, we expect the strain couplings g1 ≈ g2 to be of the order of PHz [81]. The local strain

ields are deined as

γ̂ij =
1

2

(

∂ûi
∂xj

+
∂ûj
∂xi

)

, (2.72)

with u1 (u2, u3) representing the quantized displacement ields along x1 = x (x2 = y, x3 = z) at

the position of the SiV− center.

By decomposing the local displacement ield u⃗ =
∑

n(u⃗ncn + u⃗∗nc
†
n) in terms of vibrational

eigenmodes with normalized mode functions u⃗n and bosonic operators cn, and after making a

RWA, the resulting strain coupling can be written in the general form

Hstrain ≃
(h.f.)
∑

n

(

gs,nĉnJ+ + g∗s,nĉ
†
nJ−

)

, (2.73)

where J− = J†
+ = |1⟩⟨3|+ |2⟩⟨4|. Note that while the operators L± induce transitions between the

orbital states |e+⟩ and |e−⟩, the operators J± induce transitions between the higher and lower energy

states. For a known set of mode functions u⃗n, the couplings gs,n can be derived by substituting in

Eq. (2.71) the corresponding strain ield γ
(n)
ij for each mode.
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3
Cooling of mechanical motion and phonon

lasing

This chapter provides an introduction to the concepts of cooling and lasing. Speciically, we present

a rigorous theory of cooling of a phonon cavity, i.e., a mechanical resonator mode, and a basic theory

of phonon lasing, based on a semiclassical description. The results presented in this chapter are

mainly a summary of standard quantum optical techniques for describing cooling [4–12, 33] or lasing

phenoma [34–42]. In chapters 4-6, these techniques will be adapted and generalized for modeling

these efects in various defect-phonon systems. For the presentations of the cooling and lasing

theories, we rigorously derive standard master equations as well as Focker-Planck equations that

can be found in various quantum-optics textbooks, such as [61, 62].

3.1 Cooling of mechanical motion

In this irst section, we develop a rigorous theory of cooling of mechanical motion using an atom-like

system, for example a defect center in a diamond nano-mechanical resonator. We will also use this

example to discuss perturbative techniques within the master equation formalism. As a starting

point, we consider a mechanical oscillator interacting with an atomic system, for example a defect

center which is part of its lattice structure. Since the defect is a part of the resonator itself, it is

possible to manipulate the motion of the resonator using the internal level structure of the defect,
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a) b)

Figure 3.1 – a) Illustration of the two-level cooling scheme. The atomic state |e⟩ is optically pumped with
the simultaneous absorption of a phonon of frequency ωm. b) Illustration of a three-level pumping scheme
(lasing scheme), where the atomic state |e⟩ is pumped via excitations to a third auxiliary level |r⟩. In the
limited Γ′ ≫ Ωp this process can be modeled by an incoherent pumping process from |g⟩ to |e⟩ with rate
Γp ≈ Ω2

p/(2Γ
′). This illustration is a reconstruction of a similar igure presented in reference [64].

which we shall assume for simplicity that consists of only two energy levels. Figure 3.1 a) shows the

two-level cooling scheme, which is a single-phonon absorption mechanism. Speciically, the atomic

state |e⟩ is optically pumped with the simultaneous absorption of a phonon of frequency ωm. Based

on the discussions in the previous chapter, we consider a Hamiltonian for the combined system of

the form

H = HA + ℏωma
†a+ ℏλ(a† + a)Σ, (3.1)

where HA and the operator Σ depend on the type of the atomic system we use and the way it

couples to the mechanical mode. Throughout our example in this chapter we shall assume that the

atomic system is a two-level system. The atomic Hamiltonian in this case then reads

HA = −ℏ∆σz + ℏ
Ω

2
σx (3.2)

and the coupling operator simpliies to Σ = σz. This coupling type is associated with a relative

energy shift between the energy levels. In particular this is the case for defects in materials, due

to lattice distortion efects that can shift the levels. We note that in the case of atoms in optical
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cavities such an efect is absent and for the cooling purposes one would assume a σx type coupling.

We can now write down the master equation in the following form,

ρ̇ = −i[H, ρ] + LΓ(ρ) + Lγ(ρ), (3.3)

where the second term accounts for the relaxation of the two-level system. Assuming that the

transition is optical (either direct radiative decay or optical spin pumping processes), we can ignore

the efects of temperature and write

LΓ(ρ) =
Γ

2
(2σ−ρσ+ − σ+σ−ρ− ρσ+σ−) . (3.4)

Finally, the third term in the master equation describes the mechanical dissipation (as described

in chapter 2) of the resonator mode,

Lγ(ρ) =
γ

2
(Nth + 1)(2aρa† − a†aρ− ρa†a)

+
γ

2
Nth(2a

†ρa− aa†ρ− ρaa†),

(3.5)

where Nth is the thermal equilibrium occupation number..

3.1.1 Lamb-Dicke regime

Following references [8, 82], one can go to the displaced oscillator basis by performing a (unitary)

polaron transformation H = UHU †, deined by

U = e−iS , S =
λ

2ωm
(a† + a)σz. (3.6)
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In this basis, one would obtain a Hamiltonian of the form

H = ℏωma
†a− ℏ∆L|e⟩⟨e|+

ℏΩ

2

(

ei(λ/ωm)(a†+a)σ+ + e−i(λ/ωm)(a†+a)σ−

)

. (3.7)

At this stage, one can deine the Lamb-Dicke parameter η = λ/ωm and argue that for the experi-

mentally most relevant regime η ≪ 1, an approximate treatment of the system dynamics in close

analogy to semiclassical laser cooling problems should also be applicable for the present system.

In the following section we rigorously derive the corresponding cooling master equation in the low

coupling limit by adiabatically eliminating the dynamics of the two-level system.

3.1.2 Master equation formalism

Since we are interested in the cooling processes of the resonator mode, we derive an efective master

equation for its reduced density matrix. In the case where the dynamics of the two-level system is

fast enough —namely when Γ ≫ λ and Γ ≫ γ—, we can proceed with an adiabatic elimination of

its degrees of freedom. We thus have two small parameters (compared to Γ), the efective coupling

λ (Lamb-Dicke regime) and the damping rate γ of the resonator. Therefore, we can treat those

processes as perturbations. In the frame rotating with ωm, we write the master equation in the

following restructured form

ρ̇ = LA(ρ) + Lλ(ρ) + Lγ(ρ), (3.8)

which is a more convenient form and will allow us to separate relevant and irrelevant parts and

perform an adiabatic elimination of the atomic dynamics. The irst term is of zeroth order in the

two small parameters. It accounts for the total dynamics of the two-level system (unitary and

relaxation)

LA(ρ) = − i

ℏ
[HA, ρ] + LΓ(ρ). (3.9)
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The second term correspond to irst-order in λ, describing the interaction between the resonator

and the two-level system

Lλ(t)(ρ) = −iλ[(ae−iωmt + a†eiωmt)σz, ρ]. (3.10)

Finally, the last term, which is irst order in γ, gives the dissipation of the resonator, given in

equation (3.5). For cooling we are interested in the dynamics of the state of the resonator mode

µ(t) = TrA{ρ(t)} (3.11)

only, and in the following our goal is to derive an efective master equation for µ(t), by treating the

couplings Lλ and Lγ in perturbation theory. In the absence of the coupling between mechanical

and atomic states —as well as thermal dissipation—, the system evolves into a state

ρ(t) = eLAtρ(t = 0) → µ(t)⊗ ρ0 (3.12)

where ρ0 is the steady state of the atomic dynamics, LAρ0 = 0 (ρ0 is the zero-eigenvalue state of

the superoperator LA). We deine a projection operator

Pρ = TrA{ρ} ⊗ ρ0, P2 = P (3.13)

which projects any density operator into the zero-eigenvalue subspace of LA. Since ρ0 is the only

steady state of LA any other operator ρ′ in the complementary subspace

ρ′ = Qρ, Q = (1− P), Q2 = Q (3.14)
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evolves on a timescale set by the internal frequency scales Γ, Ω, ∆. In particular, any operator in

the Q-subspace will decay under the evolution of LA on a fast timescale Γ−1,

eLAtQρ→ 0, t≫ Γ−1. (3.15)

Therefore, we can divide the whole density operator ρ = Pρ +Qρ into a slowly evolving part Pρ

and a fast evolving part Qρ. Using the identity

(P +Q)ρ̇ = (P +Q) (LA + Lλ + Lγ) (P +Q)ρ (3.16)

we obtain the two coupled equations, which to irst order in λ and γ read

(I) P ρ̇ = PLλQρ+ PLγPρ (3.17)

(II) Qρ̇ = QLAQρ+QLλPρ. (3.18)

To derive this result we have used the fact that PQ = P − P2 = 0 and since LA does not mix

atomic and mechanical degrees of freedom it also follows that PLAQ = 0, etc. and LAPρ vanishes

by deinition. Also, in (I) we have neglected a term

PLλPρ = −iλTrA{[(ae−iωmt + a†eiωmt)σz, µ]} ⊗ ρ0. (3.19)

This term simply represents a constant force on the resonator. This force can be absorbed by a

shift of its equilibrium position and a redeinition of the coupling Liouvilian operator

Lλ(t)(ρ) = −iλ[(ae−iωmt + a†eiωmt)σ̄z, ρ], (3.20)
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where σ̄z = σz − ⟨σz⟩. The new coupling term then satisies PLλPρ = 0.

Adiabatic elimination of the atomic states

The equation (II) for the fast subspace can be formally integrated,

Qρ(t) = eQLA(t−t0)Qρ(t0) +
∫ t

t0

dt′eQLA(t−t′)QLλ(t
′)Pρ(t′). (3.21)

Since for the adiabatic elimination of the NV center we are interested in timescales larger than 1/Γ,

we neglect the irst term in the above equation. Also, the integral kernel (memory of the previous

states) decays in a time-scale 1/Γ, allowing us to perform the Markov approximation. Speciically,

we make the variable change t′ → t − t′ and extend the upper limit of the integration to t → ∞

(eliminating in this way the dependence on the initial state) and we replace the time t0 in ρ(t′) by

t. Also, without loss of generality, we make the convention t0 → −∞ for the initial time.

Qρ(t) =
∫ ∞

0
dt′eQLAt′QLλ(t− t′)Pρ(t). (3.22)

Now, we insert the above expression for the irrelevant part of the density matrix into equation (I),

obtaining,

µ̇(t) = Lγµ+

∫ ∞

0
dt′TrA

(

Lλ(t)e
LAt′Lλ(t− t′)µ⊗ ρ0

)

. (3.23)

After careful calculation of the double commutator Lλ(t)e
LAt′Lλ(t− t′)µ⊗ ρ0, the above equation

can be brought into the form

µ̇(t) =
[γ

2
(Nth + 1) +

Γc

2
(N0 + 1)

]

(2aµa† − a†aµ− µa†a)

+
[γ

2
Nth +

Γc

2
N0

]

(2a†µa− aa†µ− µaa†),

(3.24)
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where we have introduce the optical cooling rate Γc = S(ωm)−S(−ωm) and the minimal occupation

number N0 = S(−ωm)/Γc, which are determined by the correlation spectrum

S(ω) = 2λ2Re

∫ ∞

0
dt′(⟨σz(t′)σz(0)0⟩ − ⟨σz⟩20)eiωt. (3.25)

From the efective master equation (3.24), one can derive the rate equation for the occupation

number of the resonator mode nm(t) = Tr{a†aρ}. In the steady state of the system, the occupation

number reads

n0 = nm(t→ ∞) ≈ γNth

Γc
+N0. (3.26)

Optical Bloch equations

To evaluate the cooling rate and inal occupation number, we must evaluate the correlation spectrum

S(ω) of the two level atom. To do so we derive the equations of motion for the expectation values

of the atomic coherence

∂t⟨σ−⟩ =
(

i∆− Γ

2

)

⟨σ−⟩+ i
Ω

2
⟨σz⟩ (3.27)

and the population inversion

∂t⟨σz⟩ = −Γ⟨σz⟩ − iΩ⟨σ+⟩+ iΩ∗⟨σ−⟩ − Γ. (3.28)

Together with the conjugate equation for ∂t⟨σ+⟩ we can write these equations in a matrix form

∂t⟨S⃗⟩ = M⟨S⃗⟩ − R⃗ (3.29)
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where the dynamical matrix M is given by

M =













i∆− Γ
2 0 iΩ2

0 −i∆− Γ
2 −iΩ∗

2

+iΩ∗ −iΩ −Γ













, R⃗ =













0

0

Γ













(3.30)

and grouped the Pauli-operators into a vector S⃗ = (σ−, σ+, σz)
T . The set of equations (3.29) are

called the optical Bloch equations (OBEs) and describe the dynamics of a driven two-level system

in the presence of decay. The steady state values ∂t⟨S⟩0 = 0 are given by

⟨S⃗⟩0 = M
−1R⃗. (3.31)

Explicitly, one obtains

⟨σ−⟩0 = ⟨σ+⟩∗0 =
Ω(2∆− iΓ)

4∆2 + 2Ω2 + Γ2
(3.32)

and

⟨σz⟩0 = −1 +
2Ω2

4∆2 + 2Ω2 + Γ2
. (3.33)

Evaluation of the correlation spectrum

For the evaluation of the spectrum and cooling rate, we write the spectrum as follows,

S(ω) = 2λ2Re{C⃗3(s = −iω)}, (3.34)
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where C⃗(s) is the Laplace transform of C⃗(τ) = ⟨S⃗(τ)σz⟩0−⟨S⃗⟩0⟨σz⟩0. Using the quantum regression

theorem (for details see references [61, 62]), we obtain

C⃗(s) =
1

sI−M

























⟨σ−⟩0
−⟨σ+⟩0

1













− ⟨S⃗⟩0⟨σz⟩0













. (3.35)

The cooling rate is then given by

Γc = −2λ2Re























(0, 0, 1)
1

iωmI+M

























⟨σ−⟩0
−⟨σ+⟩0

0













− ⟨S⃗⟩0⟨σz⟩0



































. (3.36)

3.2 Basic laser theory

We consider a similar setup as in the case of cooling, discussed in the previous section. The actual

phonon lasing scheme that we consider is illustrated in igure 3.1 b). This is a phonon-creation

mechanism with an efective two-level system. Speciically, the atomic state |e⟩ is pumped via

excitations to a third auxiliary level |r⟩. In the limit Γ′ ≫ Ωp this process can be modeled by an

incoherent pumping process from |g⟩ to |e⟩ with rate Γp ≈ Ω2
p/(2Γ

′). In this case we can again

write a master equation of the same form as equation (3.8), namely

ρ̇ = LA(ρ) + Lλ(ρ) + Lγ(ρ). (3.37)

However, the Liouvilian operator LA, associated to the atomic dynamics, is now given by

LA(ρ) =
Γ

2
(2σ−ρσ+ − σ+σ−ρ− ρσ+σ−) +

Γp

2
(2σ+ρσ− − σ−σ+ρ− ρσ−σ+) , (3.38)
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where Γp is the efective pumping rate. The second term in the master equation corresponds to a

Jaynes-Cummings type coupling (diferent from what we used in the cooling section) of the form

LA(ρ) = −iλ[(aσ+ + a†σ−), ρ]. (3.39)

Finally, the third term in the master equation is the same as in the previous section and given by

equation (3.5). We can now again continue with the adiabatic elimination of the atomic degrees of

freedom. However, in this case, it is more convenient to derive a Fokker-Planck equation instead

of an efective master equation.

3.2.1 Fokker-Planck equation

We expand the total density matrix in terms of coherent states of the harmonic oscillator, ρ =

∫

d2α|α⟩⟨α|ρA(α). Note that, ρA(α) is still an operator in the atomic subspace. Taking the

trace over the atomic degrees of freedom yields the reduced density matrix of the mechanics

µ =
∫

d2α|α⟩⟨α|P (α) where P (α) = TrA{ρA(α)} is the Glauber-Sudarshan phase-space repre-

sentation or P -distribution (for details see references [83] and [61]). The master equation for ρA(α)

is ρ̇A(α) =
(

L′
γ + L′

A + L′
λ

)

ρA(α) where

L′
γρA(α) =

γ

2

(

∂

∂α
α+

∂

∂α∗
α∗

)

ρA(α) + γNth

∂2

∂α∗∂α
ρA(α)

+ iλ

(

∂

∂α
⟨σ−⟩ −

∂

∂α∗
⟨σ+⟩

)

ρA(α),

L′
AρA(α) = LAρA(α)− iλ (α∗[σ−, ρA(α)] + α[σ+, ρA(α)]) ,

L′
λρA(α) = iλ

[ ∂

∂α
(σ− − ⟨σ−⟩)ρA(α)−

∂

∂α∗
ρA(α)(σ+ − ⟨σ+⟩)

]

.

(3.40)

Here we have deined the stationary mean values of the atomic systemǶs operators ⟨σ⟩ = TrA{σρssA(α)}

where ρssA(α) is the instantaneous stationary state of the atomic system deined via L′
Aρ

ss
A(α) = 0

44



and Tr{ρssA(α)} = 1. This is reasonable because the dynamics due to L′
A is much faster than the

dynamics due to L′
γ and L′

λ. Introducing the total gain function

Γ(α) = Γq(α)−
γ

2
, Γq(α) = − iλ⟨σ−⟩

α
, (3.41)

we may rewrite the new harmonic oscillator part as

L′
γρA(α) = −

(

∂

∂α
α+

∂

∂α∗
α∗

)

Γ(α)ρA(α) + γNth

∂2

∂α∗∂α
ρA(α). (3.42)

The functional form of Γ(α) depends on the details of the atomic systemǶs dynamics and will be

evaluated after the derivation of the Fokker-Planck equation. We now observe that the coupling

term L′
λρA(α) no longer scales with λα but rather with λ(∂/∂α) and may therefore be treated

as a small perturbation, even if the resonator undergoes large oscillations. Since we have already

assumed that LA contains a fast relaxation rate Γ, this allows us to adiabatically eliminate the

atomic system. The solution for the dynamics of the atomic system to irst order is

ρA(α, t) ≃
[

ρssA(α) +

∫ t

−∞
ds eL

′
A
(t−s)L′

λρ
ss
A(α)

]

P (α, t). (3.43)

Inserting this into the master equation for ρA(α) and taking the trace with respect to the atomic

systemǶs degrees of freedom yields

Ṗ (α) = L′
γP (α, t) +

∫ ∞

0
dτ TrA

{

L′
λe

L′
A
τL′

λρ
ss
A(α)

}

P (α, t). (3.44)

A typical term in the second part of the right-hand-side reads

λ2
∂

∂α∗

∫ ∞

0
dτ TrA

{

σ̄+e
L′

A
τ ∂

∂α
σ̄−ρ

ss
A(α)

}

P (α, t), (3.45)
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where σ̄ = σ−⟨σ⟩. To proceed, we make an approximation: we exchange the partial derivative ∂/∂α

with exp(L′
Aτ). These operators obviously do not commute with each other, but the corrections

scale with λ and may therefore be neglected. The above term then becomes

λ2
∂2

∂α∗∂α

∫ ∞

0
dτ ⟨σ̄+(τ)σ̄−⟩ss(α)P (α, t), (3.46)

where ⟨σ̄+(τ)σ̄−⟩ss = TrA{σ̄+ exp(L′
Aτ)σ̄−ρ

ss
A(α)} is the two-time correlation function for the oper-

ators of the atomic system. We can now write down the Fokker-Planck equation for P (α, t):

Ṗ (α, t) =

[

−
(

∂

∂α
α+

∂

∂α∗
α∗

)

Γ(α) +
∂2

∂α∗∂α
D(α)

]

P (α, t), (3.47)

where we have introduced the total difusion function

D(α) = γNth +Dq(α),

Dq(α) = 2λ2Re

∫ ∞

0
dτ ⟨σ̄+(τ)σ̄−⟩ss.

(3.48)

The part γNth encapsulates the efect of classical noise, whereas Dq(α) that of quantum noise.

Drift and diffusion functions

The semi-classical Bloch equations for the vector S⃗ = (σ+ σ− σz)
T are

d

dt
⟨S⃗(t)⟩ = M⟨S⃗(t)⟩ − R⃗, (3.49)

where

R⃗ =













0

0

Γ− Γp













, M =













−1
2Γtot 0 −iλα∗

0 −1
2Γtot iλα

−2iλα 2iλα∗ −Γtot













(3.50)
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and Γtot = Γp + Γ. The stationary state is

⟨σz⟩ss =
Γ2
p − Γ2

Γ2
tot + 8|α|2λ2 , ⟨σ−⟩ss =

2iαλ(Γp − Γ)

Γ2
tot + 8|α|2λ2 (3.51)

and ⟨σ+⟩ss = ⟨σ−⟩∗ss. The gain function is thus Γ(α) = −γ + Γq(α) where Γq(α) reads

Γq(α) =
Γ

1 + |α|2/n0
(3.52)

and we have deined Γ = 2λ2(Γp−Γ)/Γ2
tot and n0 = Γ2

tot/8λ
2. By choosing either Γp > Γ or Γp < Γ

one obtains an efective non-linear gain or loss medium respectively with saturation threshold

n0. In order to calculate the total difusion function we require the two-time correlation function

⟨σ̄+(τ)σ̄−⟩ss where σ̄i = σi−⟨σi⟩. Note that, ⟨(σ̄+ σ̄− σ̄z)
T (τ)σ̄−⟩ss = ⟨S⃗(τ)σ̄−⟩ss. By the quantum

regression theorem [61, 62, 83] we obtain

d

dτ
⟨S⃗(τ)σ̄−⟩ss = M⟨S⃗(τ)σ̄−⟩ss. (3.53)

Recognising that the integral in (3.48) is simply the Laplace transform of ⟨σ̄+(τ)σ̄−⟩ evaluated at

s = 0, we ind the total difusion function. Explicitly, the resulting expression for Na atoms reads

Dq(α) =
4λ2Γ↑

Γ2
tot

×

Γ↑Γ
6
tot + 8Γ↑Γ

3
tot(Γ↑ + 4Γ↓)λ

2|α|2 + 64Γ3
totλ

4|α|4 + 128Γtotλ
6|α|6

Γ↑(Γ
2
tot + 8λ2|α|2)3 .

(3.54)

In the limit α → 0 this becomes Dq(α → 0) = 4λ2Γ↑/Γ
2
tot and for Γ↓ = 0, which corresponds to

gain, we obtain Dq(α → 0) = 2Γ, whilst for Γ↑ = 0, which corresponds to loss, Dq(α → 0) = 0.

Note that, however, in the very large amplitude limit α → ∞̄ the difusion function in this model

approaches the constant value Dq(α→ ∞̄) = λ2/Γtot ≈ Γ/2 for both loss and gain processes.
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4
Phonon cooling and lasing with

nitrogen-vacancy centers in diamond

In this chapter, we investigate novel schemes for mechanical cooling and phonon lasing in diamond

nano-scale beams using a single, optically-pumped NV defect. For the theoretical analysis of these

schemes, the general cooling and lasing theory presented in chapter 3 is adapted for the speciic

level structure of the NV center, as described in chapter 2. The theory is also generalized to a

Floquet representation in order to treat dispersive defect-phonon interactions. This generalization

allows us to identify diferent cooling mechanisms and make accurate predictions for the expected

cooling and gain rates in upcoming experiments. The development of these methods was done in

collaboration with S. D. Bennett, S. Portolan, M. D. Lukin, P. Rabl and the theoretical results

were published in Physical Review B [57]. For this work, I performed all calculations under the

supervision of S. Portolan and P. Rabl.

4.1 Introduction

The basic idea of this part is illustrated by the schematic setup shown in Fig. 4.1 a), where a

single NV center is embedded in a diamond nanobeam or other vibrating structure. As already

described in chapter 2, section 2.2.1, the negatively charged NV− center in diamond is formed by a

substitutional nitrogen atom and an adjacent lattice vacancy; by ignoring spin degrees of freedom
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diamond resonator

NV center

laser

ΓΓ Γ

a) b) c) d)

Figure 4.1 – a) Setup. A single NV− defect center is embedded in an all-diamond doubly clamped beam.
Vibrations of the beam with frequency ωm modulate the local strain and shift the energy levels of the
electronically excited defect states. b)-d) Illustration of the phonon-assisted optical transitions for the case
where the state |y⟩ is driven by a laser of frequency ωL and detuning δL = ωL − ωy. The spacing between
the two excited levels is deined as ∆ = ωx − ωy. b) Phonons coupled to Σ∥ only afect the driven state |y⟩
and lead to cooling (heating) efects for a laser detuning δL ≈ −ωm (δL ≈ +ωm). c) For phonon-induced
transitions between the excited states with coupling ∼ Σ⊥, a resonant cooling process occurs for ∆ = ωm

and with resonant excitation of the |y⟩ state. d) For an opposite level ordering, i.e. ∆ = −ωm, the same
process leads to resonant phonon emission, leading to heating and lasing efects discussed in section 4.4.

for the moment, the electronic level structure of this defect is well described by a single electronic

ground state |g⟩ and two optically excited states |x⟩ ≡ |Ex⟩ and |y⟩ ≡ |Ey⟩. Due to the C3v

symmetry of the NV center, the states |x⟩ and |y⟩ are degenerate in energy, but can be split by

a few GHz in the presence of static lattice distortions or by applying external electric ields. At

cryogenic temperatures, the linewidth of the excited states is suiciently narrow such that they can

be selectively addressed by laser ields of appropriate linear polarization [72, 84].

The degeneracy of the excited |x⟩ and |y⟩ orbitals makes these states highly susceptible to

variation of the local strain near an NV center. Here, we are interested in the resulting coupling of

the NV center to the quantized strain ield associated with a single resonant vibrational mode of

a diamond structure. In general, the strain ield induced by this mode will break the symmetry of

the NV center and cause energy shifts as well as a mixing of the states |x⟩ and |y⟩. As shown in

more detail in section 2.3.1, the resulting NV-phonon coupling is of the form (ℏ = 1)

HNV−ph ≃
(

λ∥Σ∥ + λ⊥Σ⊥

)

(a† + a), (4.1)
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where a and a† are the annihilation and creation operators for the vibrational mode and Σ∥ =

|x⟩⟨x| − |y⟩⟨y| and Σ⊥ = |x⟩⟨y| + |y⟩⟨x| are the operators associated with a relative energy shift

and a mixing between the excited states, respectively. As discribed in section 2.3.1, the coupling

constants λ∥ and λ⊥ can reach values of several MHz. This is comparable to the radiative lifetime

Γ of the excited states and can be even stronger in smaller structures [21, 28]. More importantly

for the present work, the strength of the NV phonon coupling can by far exceed the mechanical

damping rate γm = ωm/Q, which for realistic mechanical quality factors of Q = 105 − 106 is in the

kHz regime.

4.2 Model

For the cooling and lasing efects discussed below we assume that the NV center is driven by a near

resonant laser of frequency ωL. For concreteness we assume that the excitation laser is linearly

polarized along the y axis and detuned from the state |y⟩ by δL. In the frame rotating with the

laser frequency the resulting efective model Hamiltonian for our system is (ℏ = 1)

H =ωma
†a− δL|y⟩⟨y| − (δL −∆)|x⟩⟨x|+ Ω

2
(|y⟩⟨g|+ |g⟩⟨y|) + λΣ̄(a+ a†), (4.2)

where we have introduced the short notation λΣ̄ ≡ ∑

ν=0,∥,⊥ λνΣν and ∆ = ωx − ωy ∼ 1 GHz is

the frequency splitting between the two excited states |x⟩ and |y⟩ due to static lattice distortions.

This splitting can be tuned by applying external electric ields [85] and in the following we treat ∆

as an adjustable parameter.

To account for dissipation due to radiative and mechanical losses we model the system dynamics

by the master equation

ρ̇ = −i [H, ρ] + LΓρ+ Lγρ, (4.3)
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for the system density operator ρ. The Liouville operator LΓ is given by

LΓρ =
Γ

2

∑

ξ=x,y

(2|g⟩⟨ξ|ρ|ξ⟩⟨g| − |ξ⟩⟨ξ|ρ− ρ|ξ⟩⟨ξ|)

+
Γϕ

2

∑

ξ=x,y

(2|ξ⟩⟨ξ|ρ|ξ⟩⟨ξ| − |ξ⟩⟨ξ|ρ− ρ|ξ⟩⟨ξ|),
(4.4)

and describes the radiative decay of the excited states with an approximately equal decay rate

Γ/(2π) ≈ 15 MHz as well as an additional broadening ∼ Γϕ of the optical transitions due to

spectral difusion. In bulk diamond and low temperatures of T < 10 K, narrow optical lines

with Γϕ ∼ Γ can be achieved [24, 86]. For shallow implanted NVs, surface impurities induce

additional dephasing and signiicant experimental efort is devoted to understanding and mitigating

this additional dephasing. For NV centers located a few tens of nanometers away from the surface,

it is expected that suiciently narrow lines with Γϕ ≲ 100 MHz can be reached.

The last term in equation (4.3) describes mechanical dissipation due to the coupling of the

resonant vibrational mode to the thermal bath of phonon modes in the support and it is given

by equation (3.5). For mechanical frequencies ωm/(2π) ≈ 1 GHz and realistic values of Q ≈

105 − 106 [17, 18] the corresponding damping rates are a few kHz and Nth ≈ 100 at T = 4 K.

4.3 Ground state cooling of a mechanical resonator

In this section we apply the cooling theory of section 3.1 to the case of the NV center. We will

irst focus on the cooling efects induced by the ∼ Σ∥ and ∼ Σ⊥ type interactions and evaluate the

conditions for ground state cooling of the mechanical mode.

51



4.3.1 Cooling: Theory

For the parameters of interest λ < Γ and low mechanical occupation numbers, the dynamics of the

NV center is only weakly perturbed by the phonon mode. This allows us to adiabatically eliminate

the NV center degrees of freedom and derive an efective equation of motion for the mechanical

degrees of freedom only [8, 9, 12, 82, 87, 88]. To do so, we follow the steps outlined in section 3.1

with NV-phonon coupling given by the Liouvilian

Lλρ = −iλ[Σ̄(ae−iωmt + a†eiωmt), ρ] (4.5)

and we obtain the efective master equation for the mechanical mode [12, 82, 87]

ρ̇m =Lγρm +
Γ̃

2
(N0 + 1)D[a]ρ+

Γ̃

2
N0D[a†]ρ. (4.6)

Here we have introduced the cooling rate Γ̃ = 2λ2(Re[S(ωm)] − Re[S(−ωm)]) and the minimal

occupation number N0 = Re[S(−ωm)]/(Re[S(ωm)] − Re[S(−ωm)]), which are determined by the

equilibrium luctuation spectrum

S(ωm) =

∫ ∞

0
dt′⟨Σ̄(t′)Σ̄(0)⟩eiωmt′ , (4.7)

where ⟨·⟩ denotes the average with respect to the stationary NV center state ρ0.

To describe the dynamics of the NV center we use σgg = 1−σxx−σyy and group the remaining in-

dependent expectation values into a vector, ⟨χ⃗⟩ = (⟨σxx⟩, ⟨σyy⟩, ⟨σgx⟩, ⟨σgy⟩, ⟨σxg⟩, ⟨σxy⟩, ⟨σyg⟩, ⟨σyx⟩)T .

The expectation values evolve according to the Bloch equation

⟨ ˙⃗χ⟩ = M⟨χ⃗⟩+ V⃗ , (4.8)
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where V⃗ = (0, 0, 0,−iΩ/2, 0, 0, iΩ/2, 0)T and the matrix M is explicitly given by

M =















































−Γ 0 0 0 0 0 0 0

0 −Γ 0 iΩ2 0 0 −iΩ2 0

0 0 i(δL −∆)− Γ
2 0 0 0 0 iΩ2

iΩ2 iΩ 0 iδL − Γ
2 0 0 0 0

0 0 0 0 −i(δL −∆)− Γ
2 −iΩ2 0 0

0 0 0 0 −iΩ2 i∆− Γ 0 0

−iΩ2 −iΩ 0 0 0 0 −iδL − Γ
2 0

0 0 iΩ2 0 0 0 0 −i∆− Γ















































.

For the evaluation of the cooling rate Γ̃ and the efective occupation number N0, we need to calculate

the spectrum S(ωm) given in equation (4.7), which fully determines the cooling dynamics in the

Lamb-Dicke regime. This is done using the quantum regression theorem [61, 62], and we obtain

S(ωm) =−
(

λ0 + λ∥

λ
,
λ0 − λ∥

λ
, 0, 0, 0,

λ⊥
λ
, 0,

λ⊥
λ

)

1

iωm1+M

(

⟨χ⃗Σ̄⟩ss − ⟨χ⃗⟩ss⟨Σ̄⟩ss
)

. (4.9)

From equation (4.6), the mean occupation number ⟨n⟩ = ⟨a†a⟩ of the phonon mode satisies

∂t⟨n⟩ = −Γ̃ (⟨n⟩ − nf ) , (4.10)

where for Γ̃ ≫ γ and Nth ≫ 1 the inal occupation number nf is approximately given by equation

(3.26). In the following discussion we are mainly interested in the sideband resolved regime Γ,Γϕ ≪

ωm where N0 ≪ 1 can be neglected. The inal mode occupation number is then determined by the

competition between the optical cooling rate Γ̃ and the rethermalization rate γNth.
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a) b)

d)c)

Figure 4.2 – Density plots of the Lamb-Dicke cooling rate (in units of λ2/Γ) as a function of the detuning
δL (y-axis) and the frequency diference ∆ of the excited levels (x-axis) for four diferent values of the Rabi
frequency: a) Ω/Γ = 0.5, b) Ω/Γ = 1, c) Ω/Γ = 2 and d) Ω/Γ = 5. For all plots it has been assumed that
λ⊥ = λ∥ = λ, λ0 = 0 and Γφ = 0.

4.3.2 Cooling: Results and discussion

In igure 4.2 we numerically evaluate the cooling rate Γ̃ and plot the result as a function of ∆ and δL

and diferent values of the driving strength Ω. We ind regions of strong cooling around δL ≈ −ωm

and around δL ≈ 0, ∆ ≈ ωm, which can be associated with the two excitation processes indicated

in igure 4.1 b) and c), respectively. In the irst case the laser is tuned on the red sideband of the

|g⟩ → |y⟩ transition and a mechanical energy of ℏωm is absorbed to make this transition resonant.

In the second case the laser excites the state |y⟩ on resonance, and by absorbing an additional

phonon, the NV center is further excited to the state |x⟩ before it decays. For large Ω > Γ, the

cooling maximum is separated into two peaks as a result of the strong Rabi splitting.

Figure 4.2 shows that while at larger driving powers Ω ≈ ωm both cooling mechanisms lead to

appreciable rates of Γ̃ ∼ O(λ2/Γ), the mechanism related to Σ0- or Σ∥-type coupling is strongly
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reduced at lower Rabi frequencies. To see this more explicitly we evaluate the cooling rate Γ̃ under

weak-driving conditions (Ω < Γ, ωm) and for the two types of couplings ∼ Σ∥ and ∼ Σ⊥ separately.

In the irst case we obtain

Γ̃∥ =
4Γλ2∥Ω

2

Γ2 + 4δ2L

[

1

Γ2 + 4(ωm + δL)2
− 1

Γ2 + 4(ωm − δL)2

]

, (4.11)

in agreement with previous results for phonon-cooling schemes with two-level systems [82]. For

sideband resolved conditions, Γ ≪ ωm, this cooling rate is optimized for δL = −ωm and with a

maximal value given by

Γ̃∥ ≈
λ2∥

Γ

Ω2

ω2
m

. (4.12)

On the other hand, by considering only the Σx coupling we obtain

Γ̃⊥ =
4Γλ2⊥Ω

2

Γ2 + 4δ2L

[

1

Γ2 + 4(∆− ωm − δL)2
− 1

Γ2 + 4(∆ + ωm − δL)2

]

. (4.13)

Again under side-band resolved conditions, the maximal rate in this case occurs for δL = 0 and

∆ = ωm, where the maximal value is given by

Γ̃⊥ ≈ λ2⊥
Γ

4Ω2

Γ2
. (4.14)

We see that the requirement to maximize the cooling rate is now only Ω ∼ Γ, which corresponds to

a saturation of the state |y⟩ on resonance. This is a signiicant improvement compared to the much

stronger requirement Ω ∼ ωm in equation (4.12) when the mechanical frequency is high, ωm ≫ Γ.

For example, by comparing equations (4.12) and (4.14) for typical parameters considered in this

work and assuming λ⊥ ∼ λ∥, we ind that the optimal cooling rate for the same Ω is improved by
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a factor

Γ̃⊥

Γ̃∥

≈ 4ω2
m

Γ2
≈ 104. (4.15)

In other words, the laser power that is needed to achieve the same cooling rate can be a factor 104

lower when making use of the multi-level structure of the NV center. This diference in the scaling

has important practical implication when the laser power is limited by heating of the sample or by

two-photon charging efects [89, 90]. Therefore, the near degenerate excited state manifold of the

NV defect can provide a crucial ingredient for a irst experimental demonstration of strain induced

cooling efects for nanomechanical systems.

As mentioned above, the inal occupation number nf in the sideband resolved regime is mainly

determined by the competition between the cooling rate Γ̃ and the rethermalization rate γNth ≃

kBT/(ℏQ). Under optimal driving the maximal achievable cooling rate approaches Γ̃max ≈ λ̄2/Γ.

This happens for laser powers Ω ∼ ωm for the Σ∥-type coupling and for Ω ∼ Γ for the Σ⊥-

type coupling. The minimal achievable occupation numbers are then approximately given by

nf ≈ γNthΓ/λ
2. For λ/(2π) ≈ 5 MHz, ground state cooling nf ≲ 1 can be achieved for realistic

mechanical quality factors of Q ≈ 105 and initial temperature of T = 4 K.

In our analysis so far we have considered the ideal case of purely radiatively broadened optical

lines Γ > Γϕ, which is a realistic assumption in bulk diamond and at temperatures of a few Kelvin.

In nanoscale structures, noise processes on the surface become important and can lead to additional

spectral difusion of the optical line. For the cooling to remain eicient, we require that Γϕ < ωm,

such that the phonon sidebands are still well resolved. Based on rapid progress with shallow-

implanted NVs and expected line widths of Γϕ ∼ 200 MHz, this condition can be realistically

achieved for ∼ GHz mechanical modes. Since spectral difusion broadens the line without causing

dissipation, the cooling rate is reduced by a factor Γ̃ ∼ Γ/(Γϕ + Γ). This slightly degrades the

cooling, but does not afect the mechanism itself.
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It is important to point out that in our model in equations (4.4) a simple Markovian linebroading

∼ Γϕ is assumed. In practice the spectral difusion of the excited states is often better described

by a highly non-Marokvian, slow drift of the excited state energies. This can in principle be

compensated by applying additional optical dressing or real-time feedback schemes to stabilize the

optical transitions and a reduction of the remaining broadening to Γϕ ∼ Γ seems feasible.

4.4 Phonon lasing with nitrogen vacancy centers

As a second application we now consider the opposite regime, where the detuning of the optical

driving ield is chosen to enhance phonon emission processes. At low driving powers this simply leads

to an increase of the mechanical energy, but at larger driving strengths the heating can overcome

the intrinsic mechanical damping and drive the resonator into a large amplitude coherent state. In

analogy to a strongly pumped optical mode undergoing a lasing transition, this efect is commonly

referred to as ǵphonon lasingǶ and has been investigated in diferent physical settings [34–42]. While

mechanical systems can in principle be driven into a coherent state by applying a resonant external

force, this becomes increasingly more diicult for high-frequency modes in small structures. In

contrast to the cooling mechanism discussed above, the phonon-lasing scheme we now discuss

ampliies the mechanical motion, providing an eicient way to probe NV-phonon interactions.

4.4.1 Semiclassical phonon-lasing theory

In the previous section we derived an efective rate equation for the resonator mode under the

assumption λ
√

⟨n⟩ ≪ Γ. In the opposite regime of ampliication, the mean resonator occupation

⟨n⟩ can become very high and non-linear saturation efects —which eventually limit the maximal

achievable occupation number— become important. Still assuming λ ≪ Γ these efects can be

described within a semiclassical approach [83], where the efect of a large classical phonon amplitude

∼ λ
√

⟨n⟩ on the NV center dynamics is taken fully into account.
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In section 3.2.1, the basic theory of lasers was discussed. Here we closely follow the phase-space

approach, which was used in reference [82] to model phonon cooling efects at high initial temper-

atures, in order to account for the more general dispersive NV-phonon coupling. We introduce a

set of quasi-probability distributions

Pjk(α, t) =
1

π2

∫

d2β eαβ
∗−α∗βTr

{

eβa
†
e−β∗aσjkρ(t)

}

, (4.16)

where σjk = |j⟩⟨k| and j, k = g, x, y. The Pjk(α, t) correspond to the expectation value of the

operator σjk for a ixed coherent state amplitude α and ⟨σjk⟩(t) =
∫

Pjk(α, t)d
2α. The function

P (α, t) = Pgg(α, t) +Pxx(α, t) +Pyy(α, t) is the usual Glauber-Sudarshan P representation [61, 62,

83] of the mechanical resonator density matrix.

In the frame rotating with ωm, the state of the mechanical mode changes slowly on the relaxation

timescale Γ−1 of the NV excited states. This allows us to evaluate the quasi-stationary values of

Pij(α, t) for a ixed point α in phase space, and insert the result back into the equation of motion

for the P-representation P (α, t). Starting from the set of distribution functions deined in equa-

tion (4.16), we use Pgg = P−Pxx−Pyy, and deine a vector P⃗ = (Pxx, Pyy, Pgx, Pgy, Pxg, Pxy, Pyg, Pyx)
T ,

which for λ→ 0 evolves according to

˙⃗
P (α, t) = MP⃗ (α, t) + V⃗ P (α, t) +DγP⃗ (α, t). (4.17)

The irst two terms on the right-hand side correspond to the dissipative evolution of the NV center

and M and V⃗ have been previously deined. The third term accounts for the mechanical damping
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of the oscillator, where

DγP⃗ (α, t) =
γ

2

(

∂

∂α
α+

∂

∂α∗
α∗

)

P⃗ (α, t) + γNth
∂2

∂α∂α∗
P⃗ (α, t). (4.18)

฀ The coupling between the mechanical mode and the NV center is described by the term ρ̇(t) =

−i[Hλ, ρ(t)] in the master equations, where the interaction Hamiltonian is Hλ = λΣ̄(ae−iωmt +

a†eiωmt) and

Σ̄ =
λ⊥
λ

(σxy + σyx) +
λ0 + λ∥

λ
σxx +

λ0 − λ∥

λ
σyy. (4.19)

This coupling add the following terms to the equations of motion for the P-functions,

Ṗσjk
=− iλ

(

αe−iωmt + α∗eiωmt
)

P[σjk,Σ̄] + iλeiωmt ∂

∂α
PΣ̄×σjk

− iλe−iωmt ∂

∂α∗
Pσjk×Σ̄, (4.20)

where Pσjk
≡ Pjk. To remove the explicit time dependence we introduce a Floquet representation

Pjk(α, t) =
∞
∑

n=−∞

Pn
jk(α, t)e

−inωmt, (4.21)

and we obtain

Ṗn
σjk

=iωmnP
n
σjk

− iλ
(

αPn+1
[σjk,Σ̄]

+ α∗Pn−1
[σjk,Σ̄]

)

+ iλ
∂

∂α
Pn+1
Σ̄×σjk

− iλ
∂

∂α∗
Pn−1
σjk×Σ̄

. (4.22)

By replacing in this equation σjk by the identity operator 1, we get the corresponding equation for
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the resonator P-function, which by including the mechanical damping, is given by

Ṗn = DλP
n + iωmnP

n + iλ

(

∂

∂α
Pn+1
Σ̄

− ∂

∂α∗
Pn−1
Σ̄

)

. (4.23)

For the other P-distributions we obtain

˙⃗
Pn =(M+ iωmn)P⃗n + V⃗ Pn +DγP⃗

n + iλ
(

αAP⃗n+1 + α∗
AP⃗n−1

)

+ iλ
∂

∂α
BP⃗n+1 − iλ

∂

∂α∗
B

†P⃗n−1,

(4.24)

where the 8×8 matrices A and B can be derived from equation (4.22). Following reference [82] we

solve this set of equations by using λ × ∂/∂α as a formal expansion parameter, while keeping all

orders in λα. To zeroth order, and assuming γNth ≪ Γ the stationary solution of equation (4.24)

is given by

(M+ iωmn) P⃗
n + iλ

(

αAP⃗n+1 + α∗
AP⃗n−1

)

= −V⃗ Pnδn,0. (4.25)

We can numerically solve this equation by truncating the maximal value of n and write the result

as

P⃗n(α, t) = X⃗n(α)P 0(α, t). (4.26)

By inserting this solution back into equation (4.23) we obtain

Ṗ 0 = DγP
0 + iλ

(

∂

∂α
X̄+1 − ∂

∂α∗
X̄−1

)

P 0, (4.27)

where

X̄n =

(

λ0 + λ∥

λ
,
λ0 − λ∥

λ
, 0, 0, 0,

λ⊥
λ
, 0,

λ⊥
λ

)

X⃗n. (4.28)
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Now, we deine parameters Γ̃(α) and ∆(α) such that iλX̄+1 = α[Γ̃(α) + i∆(α)]. Then the above

equation reads

Ṗ 0 = DγP
0 +

1

2

(

∂

∂α
α[Γ̃(α) + i∆(α)] +H.c.

)

P 0. (4.29)

∆(α) corresponds to a small frequency shift and will be from now on neglected. By including

in equation (4.25) the next order correction ∼ λ × ∂P 0/∂α we would in equation (4.29) obtain

additional correction to the difusion terms [82]. However, a numerical estimate shows that these

corrections are negligible for the high temperatures Nth ≫ 1 and other parameters considered in

this work, but must be taken into account when studying lasing efects at low thermal occupation

numbers Nth ∼ 1 [34–36, 39, 42]. Finally, we can write the efective Fokker-Planck equation for the

mechanical mode as follows,

Ṗ (α, t) ≃1

2

(

∂

∂α
αγ(α) +

∂

∂α∗
α∗γ(α)

)

P (α, t) + γNth
∂2

∂α∂α∗
P (α, t), (4.30)

where γ(α) = Γ̃(α) + γ. In the limit α → 0 the energy-dependent damping rate Γ̃(α) ≡ Γ̃(|α|)

reduces to Γ̃ deined below equation (4.6), and must be in general evaluated numerically.

Equation (4.30) preserves the radial symmetry of the initial thermal state; thus, by writing

α = reiϕ, we can rewrite it in terms of a Fokker-Planck equation for the radial distribution,

Ṗ (r, t) =
1

2

(

∂

∂r
r + 1

)

γ(r)P (r, t) +
γNth

4

(

∂2

∂r2
+

1

r

∂

∂r

)

P (r, t). (4.31)

The steady-state solution of the radial equation is P (r,∞) = N e−ϕ(r), where N is a normalization

constant such that 2π
∫∞
0 rP (r)dr = 1 and

ϕ(r) =
2

γNth

∫ r

0
r′γ(r′)dr. (4.32)
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Figure 4.3 – a) The stationary P-function P (r,∞) is plotted for diferent values of the Rabi frequency Ω
given in the inset. Each curve is rescaled by its maximal value Pmax and the other parameters used for this
plot are (in units of ωm), Nth = 20, γ = 10−6, λ⊥ = 0.001, Γ = 0.05 and Γφ = 0. b) The inal phonon
occupation number nf is plotted as a function of Ω and other parameters as in a). The dashed line indicates
the approximate result derived from the Gaussian P-function given in equation (4.37). c) Under the same
conditions the Fano factor F (solid line) and the correlation function g2(0) (dashed line) are plotted as a
function of the driving strength. In b) and c) the vertical dashed line indicates the position of the threshold
given in equation (4.36).

In the absence of driving, γ(r) = γ and we obtain the thermal distribution function P (r,∞) =

e−r2/Nth/(πNth). For the cooling schemes described in section 4.3, we obtain Γ̃(r → 0) = Γ̃ > 0, but

Γ̃(r) decreases at larger values of r, where saturation efects set in and limit the cooling efect [82].

In the following, we are mainly interested in detuning such that for low occupations, γ(r → 0) < 0

and energy is pumped into the mechanical mode. Again, due to saturation, this heating decreases

at large oscillation amplitudes, where eventually γ(r → ∞) = γ > 0.

4.4.2 From heating to lasing

In the previous section we have shown that resonant phonon interactions ∼ Σ⊥ provide an eicient

way to cool high frequency phonons, and in the following we analyze the reverse process of phonon

lasing. To do so, we set ∆ ≈ −ωm and obtain the inverted level structure shown in igure 4.1 d),

where the driving laser excites the upper state |y⟩, which can undergo a further transition to the
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lower state |x⟩ by emitting a phonon.

In igure 4.3 a) we present the numerically-calculated P-functions for diferent values of the

driving strength Ω. For very low driving, the optical heating rate is still smaller than the intrinsic

mechanical damping rate. In this case the resonator mode remains in a thermal state, but with a

higher efective temperature. Above a threshold driving strength, Ω > Ωc, the P-function starts

to deviate from a thermal distribution and reaches its maximum at a inite value r0 > 0. This

is the onset of the lasing transition. By further increasing Ω, the maximum shifts to larger and

larger values and the P-function displays a narrow Gaussian shape, which approximates the sharp

δ-function, P (r) ∼ δ(r − r0), expected for an ideal coherent state.

To further characterize the phonon lasing phenomenon, we plot in igure 4.3 b) the inal phonon

occupation number nf as a function of Ω, starting from an equilibrium value of Nth = 20. We

see that around Ωc/Γ ≈ 0.11 the phonon number starts to increase signiicantly; for the chosen

parameters, it can reach values up to nf ≈ 104. In igure 4.3 c) we show the corresponding values

for g2(0) = ⟨a†a†aa⟩/⟨n⟩2 and the Fano factor F = ⟨n2⟩/⟨n⟩, which also show clear signatures of

the transition from heating to lasing. For Ω < Ωc the Fano factor remains close to F ≈ nf + 1, as

expected for a thermal distribution. Above Ωc the Fano factor starts to decrease, indicating a more

Poisson-like distribution. This is even more apparent by looking at g2(0), which changes from a

value of g2(0) = 2 for a thermal state to g2(0) ≃ 1 of a coherent state.

Note that an increase of the driving strength Ω > Γ leads to a saturation of the optical transition

and therefore also the lasing efect. In addition, for a very strong driving ield Ω ≫ Γ, but otherwise

ixed detunings, the resulting Rabi splitting between |g⟩ and |y⟩ will drive the system out of the

resonance condition and the lasing efect breaks down.

Under weak driving conditions (Ω < Γ, ωm) and assuming a dominantly Σ⊥ coupling, we derive

an approximate analytical form for the heating rate, which on resonance (∆ = ωm, δL = 0) is given
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by

Γ̃⊥(r) =
−4λ2⊥ΓΩ

2

(Γ2 + 4λ2⊥r
2)2

. (4.33)

By direct integration of equation (4.32) we obtain

ϕ(r) =
r2

Nth

(

1− 4λ2⊥Ω
2

γΓ(Γ2 + 4λ2⊥r
2)

)

, (4.34)

and the position of the maximum of the P-function is found by solving ϕ′(r0) = 0,

r0 =
1

2

√

− Γ2

λ2⊥
+

2
√
ΓΩ√
γλ⊥

. (4.35)

Setting r0 to zero yields the lasing-threshold,

Ωc

Γ
=

√
Γγ

2λ⊥
, (4.36)

which is indicated in igure 4.3 by the vertical dotted line. Deep in the lasing regime, where r0 ≫ 1,

we can further make a saddle-point approximation and obtain a Gaussian P-distribution of the

form

P (r) ≈ 1

r0σ
√
8π3

e−
(r−r0)

2

2σ2 , (4.37)

where the variance is given by σ2 = 1/ϕ′′(r0). From equation (4.33) we see that the requirement for

lasing |Γ̃⊥(r → 0)| ≫ γ implies the condition λ2⊥Ω
2 ≫ γΓ3, for which the variance of the Gaussian

distribution is essentially determined by thermal luctuations, σ2 ≈ Nth/4. In this limit, the mean

occupation number nf ≈ r20 + 3σ2 derived from equation (4.37) is approximately given by

nf ≈ Ω

2λ⊥

√

Γ

γ
+

3

4
Nth. (4.38)
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Figure 4.4 – Numerically evaluated inal phonon occupation number nf as function of ∆ and δL and
assuming an initial occupation of Nth = 80. The other parameters used for this plot are (in units of ωm)
Ω = 0.05, Γ = 0.05, γ = 10−6, λ⊥ = λ∥ = 0.005 and Γφ = 0. The dashed lines indicate the resonance
conditions for single and multi-phonon sidebands.

Our analytical results are compared to the numerically-computed inal phonon occupation number

in igure 4.3 b), and we ind very good agreement above threshold.

4.4.3 Single- and multi-phonon regime

In general, the presence of both Σ⊥- and Σ∥-type NV-phonon interactions can lead to a rich interplay

between cooling and heating mechanisms, as diferent single and multi-phonon processes become

resonant depending on the laser detuning δL and the excited state splitting ∆. This is illustrated

in igure 4.4, where we evaluate numerically the inal phonon occupation number nf for a large

range of detunings δL and ∆. The plot shows the same cooling and heating processes discussed

above, corresponding to Σ⊥-type (maximized for ∆ = ±ωm, δL = 0) and Σ∥-type (maximized for

δL = ±ωm) interactions and associated with emission or absorption of single phonons. In addition,

we observe heating and cooling features at multiple integers of the phonon frequency, i.e. under the

condition δL−∆ = ±nωm, indicating multi-phonon processes. These efects are most pronounced in

the lasing regime, where the mechanical mode is highly excited and higher order phonon-processes
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become relevant. Note that such multi-phonon efects (for example the two- and three-phonon

lasing peaks at ∆ = −2ωm and ∆ = −3ωm) appear only in the presence of both types of couplings.

Similarly, two types of NV-phonon interactions are thought to be involved in the NV zero-phonon

line broadening and its T 5 scaling [72]. In light of this, studying multi-phonon lasing may provide

a useful tool to analyze the detailed nature of NV-phonon coupling.

4.5 Detection

In this last section we study the excitation spectrum of the NV center, which provides a direct

way to probe the state of the mechanical resonator by measuring the light scattered from the NV

center. By considering a polarization-selective photon detection setup, we calculate the photon lux

Iη=x,y(δL) = Γ⟨σηη⟩ emitted from the two excited states and as a function of the laser detuning δL.

According to the deinition in equation (4.16) we obtain

Iη(δL) = Γ

∫

d2αPηη(α), (4.39)

and under the validity of our semiclassical approximation, Pηη(α) ≃ X0
η (α)P (α,∞). Here X0

η (α) is

an energy-dependent factor and P (α,∞) is the stationary P-function as evaluated in the previous

section.

In igure 4.5 a) we plot Iy(δL) for diferent driving strengths Ω and with only Σ∥-type coupling.

For clarity, we normalize each curve to I0 = ΓΩ2/(Γ2 + Ω2), which is the scattered photon lux at

resonance and in the absence of the mechanical mode. At low driving powers, the inluence of the

NV center on the mechanical mode is small and the resonator mode remains in a thermal state,

⟨n⟩ ≈ Nth. In this case we obtain the familiar phonon sideband spectrum of a two level defect [91],

Iy(δL) ≈
Γ (Ω/2)2

(Γ/2)2 + δ2L

∞
∑

n=−∞

Ane
−(λ∥/ωm)

2
(2⟨n⟩+1), (4.40)
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a) b) c)

Figure 4.5 – Scattered photon lux Iη=x,y as functions of the laser detuning δL and normalized to the
resonant scattering rate I0. a) Photon lux from the |y⟩ state and assuming a dominant Σ∥ coupling of
strength λ∥ = 0.05ωm and an equilibrium occupation number of Nth = 80. At low driving, Ω = 0.001ωm

(solid line), phonon sideband at δL = ±ωm are of approximately the same height. At larger probe strength,
Ω = 0.01ωm (dashed line), the probe laser induces cooling and heating efects, which result in a pronounced
asymmetry between the sidebands. The other parameters for this plot are (in units of ωm) Γ = 0.1, Γφ = 0,
γ = 10−6. In b) and c) the scattered photon lux from the |x⟩ state is plotted for ∆ = ωm and ∆ = −ωm,
respectively. In b) the height of the scattered intensity peak provides a direct measurement of the phonon
number ⟨n⟩. In c) the transition to the lasing regime at large Ω results in a phonon induced Rabi-splitting of
the signal proportional to ∼ 2λ⊥

√

⟨n⟩. For these two plots a Σ⊥-type coupling with strength λ⊥ = 0.01ωm

has been assumed and Ω = 10−2.5 (solid lines), Ω = 10−2 (dashed lines) and Ω = 10−1.5 (dotted lines). The
other parameters are as in a).

where An = In[2(λ∥/ωm)2
√

⟨n⟩(⟨n⟩+ 1)]× [(⟨n⟩+ 1)/⟨n⟩]n/2 and In(x) is the nth order modiied

Bessel function. As we increase the driving strength we ind deviations from this dependence: by

probing the mechanical sidebands, we simultaneously generate signiicant cooling and heating, and

the mean occupation ⟨n⟩ ≡ ⟨n⟩(δL) varies as a function of the detuning. For example, for δL ≈ −ωm

the phonon modes is cooled, which leads to a reduction of the corresponding phonon peak. In the

opposite case, i.e. δL ∼ ωm the phonon sideband is ampliied due to heating and lasing efects.

The resulting asymmetry between red and the blue phonon sidebands, provides a clear signature

for the backaction of the probing laser on the phonon modes.

In igure 4.5 b) and c) we plot the scattered light intensity Ix(δL) from the |x⟩ level, still assuming

that the NV center is excited on the |g⟩ → |y⟩ transition. In this case, there is no scattered light and

Ix(δL) ≈ 0 in the absence of the mechanical mode, and therefore the measured signal is a direct

consequence of phonon-induced transitions between |y⟩ and |x⟩. Figure 4.5 b) shows the signal
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for cooling conditions, ∆ = ωm. As above, we see that by probing the resonance with increasing

driving strength, cooling sets in and reduces the height of the peak. For weak driving, Ω < Γ and

λ
√

⟨n⟩ ≪ Γ, the total photon lux is approximately given by

Ix(δL) ≈
4λ2⊥Ω

2Γ

(Γ2 + 4δ2L)
2
× ⟨a†a⟩. (4.41)

and it can be directly used to measure the inal occupation number ⟨n⟩. Compared to the case of a

two level system described above, where the phonon sidebands are reduced by (λ∥/ωm)2, the signal

given in equation (4.41) remains signiicant even for large mechanical frequencies and provides a

practical way to measure the temperature of high frequency phonon modes in experiments.

Finally, igure 4.5 c) shows the excitation spectrum Ix(δL) for heating conditions, ∆ = −ωm. In

this case, the transition to a lasing state can substantially increase the phonon occupation number

when probing the resonance with moderate laser power. Similar to cooling, the inluence of phonon

lasing on the excitation spectrum can also be used to determine the mean phonon number: here, it

is no longer provided by the height of the resonance, but rather the splitting of the resonance into

two peaks by ∼ 2λ⊥
√

⟨n⟩. This splitting results from the mechanical system being driven into a

large-amplitude oscillating state, which in turn acts like an additional strong driving ield between

the two excited NV states.
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5
Phonon-reservoir engineering with SiV centers

In this chapter, we describe a new approach for mechanical cooling and dissipation engineering

for the low-frequency vibrations of a mechanical beam, which uses the naturally occurring low-

temperature bath provided by the high-frequency compression modes of the beam structure. We

illustrate this scheme for the example of a SiV center in a vibrating nano-scale diamond beam. These

schemes presented here are based on the defect-phonon interaction theory described in chapter 2.

The development of these methods was done in collaboration with M.-A. Lemonde, A. Norambuena,

J. R. Maze and P. Rabl and the theoretical results were published in Physical Review B [58]. For

this work, I performed the calculations related to the cooling and two-mode squeezing while M.-A.

Lemonde performed most of the analysis of the phonon spectral density presented in section 5.3.

5.1 Introduction

As previously discussed in the context of trapped ions, laser cooling can be viewed as a special case

of the more general concept of quantum reservoir engineering [92], which refers to techniques for

preparing a quantum system in a highly non-classical stationary state by an appropriately designed

dissipation mechanism [93–95]. A basic example of such reservoir engineering concepts is the

dissipative preparation of a squeezed motional state of a trapped ion via a two-tone driving [96, 97],

but more elaborate schemes can be used to create, for example, highly nonclassical cat states [92, 98],

stationary entangled states between separated systems [99–101], or even for the preparation of
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non-trivial many-body states [102–104]. Reservoir-engineering ideas have also been discussed and

implemented for macroscopic mechanical objects [105–110], using again the optical or microwave

radiation ield as a low-entropy environment.

In this part, we describe an alternative approach for mechanical cooling and dissipation engineer-

ing for the low-frequency vibrations of a mechanical beam, which uses of the naturally occurring

low-temperature bath provided by the high-frequency compression modes of the beam structure.

Since intrinsic nonlinear interactions between mechanical modes are typically very weak, we pro-

pose here to mediate the coupling via a single electronic defect center embedded in the host lattice

of the beam. Speciically, we illustrate this scheme for the example of a negatively charged silicon-

vacancy (SiV−) center in a vibrating diamond nanobeam, but the basic concept could be applicable

for other defects and host materials as well. We analyze the application of this general scheme for

the ground state cooling of the fundamental bending mode, as well as for the preparation of a

stationary entangled state between two diferent mechanical resonator modes. These schemes rely

solely on the intrinsic properties of the beam and do not require optical ields or strong optome-

chanical couplings to microwave circuits. Thus, such phononic reservoir engineering ideas could

provide a valuable alternative for mechanical systems, where an eicient integration with optical or

microwave photons is not available. In view of the recent progress in the fabrication of high-quality

diamond structures and mechanical beams [17, 18, 31], and demonstrations of strain-induced control

of defects [111–115], the proposed scheme could realistically be implemented in such systems.

5.2 Model

The setup that we shall consider in this chapter is depicted in igure 5.1 (a), which shows a singly-

clamped diamond nanobeam with a single SiV− center located near its freely vibrating end. In

the presence of a strong magnetic ield gradient, which is produced, for example, by a nearby

magnetized tip, the bending motion of the beam modulates the local magnetic ield and thereby
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Figure 5.1 – a) Sketch of a single SiV− center embedded near the freely vibrating end of a diamond
cantilever of length ℓ, width w and thickness t. In the presence of a strong magnetic ield gradient produced
by a nearby magnetized tip, the motion of the beam modulates the local magnetic ield and results in a
magnetic coupling between the electronic spin of the SiV− center and the fundamental bending mode with
frequency ωb. In addition, the orbital states of the defect are coupled via strain to a continuum of compression
modes propagating along the beam (indicate by the curvy arrow). b) Level scheme of the SiV− ground state
and the relevant microwave transitions used for ground state cooling of the bending mode.

couples to the electronic spin of the defect [116–118]. In addition, local lattice distortions associated

with internal compression modes of the beam afect the defectǶs electronic structure and result in

a strain coupling between these phonons and the orbital degrees of freedom of the center. The

Hamiltonian for the whole system is given by

H = HSiV +Hph +Hmag +Hstrain, (5.1)

where the individual terms describe the bare SiV− center (discussed in section 2.2.2), the phonon

modes of the diamond beam and the magnetic and strain-induced defect-phonon couplings, re-

spectively. Under the validity of the diferent approximations outlined in the discussion of the

SiV-phonon coupling in section 2.3.2 (see equation 2.73), we obtain the inal Hamiltonian for the

SiV− center and the vibrations of the beam,

H =HSiV + ωbb
†b+ gm(b

† + b)Sz +
∑

n

ωnc
†
ncn +

∑

n

(

gs,ncnJ+ + g∗s,nc
†
nJ−

)

, (5.2)
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which we will use as a starting point for the following analysis.

5.3 Phonon reservoirs

In this part of the thesis, we are primarily interested in the steady state of the bending mode, which

apart from the interaction with the SiV− center already included in equation (5.2), is also weakly

coupled to the continuum of phonon modes in the cantilever support. This coupling is characterized

by the damping rate γb and the thermal equilibrium occupation number Nb. For frequencies of

ωb ∼ MHz and temperatures T ∼ 1 K, Nb is of the order of 104. In the absence of any other

interaction, the bending mode will thus relax into a highly occupied thermal state. However, for

realistic Q-values of Qb ≈ 105 − 106, the thermalization with the phonon bath is very slow so that

by engineering a more eicient coupling to an efective low-entropy reservoir, a cooling into a more

pure quantum state can be achieved.

In our model, we consider only the electronic ground state of the SiV− center so that no radiative

decay occurs, which is usually the main ingredient for atomic and mechanical laser cooling schemes.

However, the orbital states are strongly coupled to the lattice vibrations at ∼ 50 GHz. These modes

dissipate very quickly and can thus serve as an eicient Markovian reservoir for the SiV states. The

characteristic phonon-induced decay rate, Γph, for the higher-energy orbital states |3⟩ and |4⟩ can

be estimated from FermiǶs Golden rule. At temperatures T → 0, it is given by Γph = J(∆), where

J(ω) = 2π
∑

n

|gs,n|2δ(ω − ωn) (5.3)

is the phonon spectral density. For temperatures T > ℏ∆/kB ≈ 2.4 K, the decay rate is enhanced

by the thermal occupation number Nc = NBE(∆) and reverse transitions, e.g., from state |1⟩ to

state |3⟩, become allowed. Experimental studies of SiV− centers in bulk at temperatures of few

Kelvin observe a bare phonon induced decay rate of Γph/2π ≈ 1.6 MHz [119].
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5.3.1 Master equation

Starting from the model given in equation (5.2), we can use a Born-Markov approximation to

eliminate the fast dynamics of the compression modes and derive an efective master equation for

the density operator ρ, which describes the SiV− degrees of freedom and the bending mode. We

write the result as

ρ̇ = (Lb + LSiV + Lint) ρ. (5.4)

The irst term describes the dynamics of the bending mode,

ρ̇ = −iωb[b
†b, ρ] + Lγbρ, (5.5)

where Lγbρ is the standard thermal dissipator given in equation (3.5) and in this context describes

the dissipation due to the coupling to the support of the cantilever. The second term in equa-

tion (5.4) represents the bare dynamics of the SiV− center including the phonon induced decay and

excitation processes,

LSiVρ = −i[HSiV, ρ] +
Γph

2
(Nc + 1)D[J−]ρ+

Γph

2
NcD[J+]ρ. (5.6)

Finally, the last term,

Lintρ = −i[gm(b+ b†)Sz, ρ], (5.7)

accounts for the magnetic spin-phonon interaction.

In view of Nc ≪ Nb, it is our overall goal to use the driven SiV− center to mediate an efective

coupling between the bending mode and the low-entropy reservoir of compression modes. The

extent to which this is possible depends on various system parameters. A particularity of the

current setting is that the bending mode of interest, as well as the phononic bath composed of the
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Figure 5.2 – Spectral density of the high frequency compression modes. The blue (short-) and red (long-)
dashed lines represent the spectral density in the limit of a semi-ininite 1D-cantilever along x. The density
of state of the phonons is linear in frequency while the sinusoidal envelope is due to the position-dependence
of the strain ield. The blue and red curves are obtained for a SiV− defect positioned at xSiV = λ∆/2 and
xSiV = λ∆/8 of the free end, respectively. The black dotted line represents the opposite limit of an ininite
3D-crystal. In that case, transverse modes play an important role and the phonon density of state goes as
ω3. For a realistic cantilever, the 1D limit should be corrected toward the 3D-limit, due to contributions of
transverse modes. In the inset, we show a inite size (ℓ = 25µm) 1D-cantilever, where the frequencies of each
mode can be resolved. The inite width of each peak is due to a inite lifetime modeling losses into the bulk
of the support. We chose w = t = 0.1µm (1D limit), Q∆ = 250 and g1 = g2 = 2π × 1 PHz.

continuum of the compression modes, are determined by the same beam structure. The coherent

and incoherent processes described in equation (5.4) are thus not completely independent of each

other.

5.3.2 Phonon spectral density

In general, an accurate evaluation of the relevant phonon density of states requires a full numerical

calculation of the individual phonon modes of a speciic beam structure. However, to obtain a

basic estimate of the phonon-induced decay rate and its dependence on the systems parameters, we

summarize here a few limiting cases, which have been derived in reference [58] to obtain approximate

analytic expressions for J(ω). Furthermore, in the following analysis, we neglect the efect of the

weak Poisson ratio in diamond [120].

As a reference, let us irst consider the limit of an ininite 3D diamond crystal, which would
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correspond to the case where all beam dimensions are much larger than the characteristic phonon

wavelength λ∆ = πv/∆ ≈ 0.2 µm, where v =
√

E/ρ ≈ 1.8 × 104 m/s is the characteristic speed

of sound in diamond. In the 3D limit, the phonon modes are plane waves propagating along

all directions with three possible orthogonal orientations of the displacement (polarization): one

parallel (longitudinal polarization) and two perpendicular (transverse polarizations) to the wave

propagation. Consequently, for every propagation directions q⃗, there are three possible polarizations

with the corresponding displacements

ûl(r⃗, t) =
∑

q⃗

1
√

2ρV ωl,q

e⃗q

[

ĉ†l,q⃗(t)e
−iq⃗·r⃗ + ĉl,q⃗(t)e

iq⃗·r⃗
]

,

ûθ(r⃗, t) = −
∑

q⃗

1
√

2ρV ωt,q

e⃗θ

[

ĉ†θ,q⃗(t)e
−iq⃗·r⃗ + ĉθ,q⃗(t)e

iq⃗·r⃗
]

,

ûϕ(r⃗, t) =
∑

q⃗

1
√

2ρV ωt,q

e⃗ϕ

[

ĉ†ϕ,q⃗(t)e
−iq⃗·r⃗ + ĉϕ,q⃗(t)e

iq⃗·r⃗
]

.

(5.8)

Here, l stands for the longitudinal mode, with a displacement along the unit vector e⃗q, θ and ϕ

denote the two transverse modes, with displacements along the unit vectors e⃗θ and e⃗ϕ respectively.

The operators ĉi,q⃗ are bosonic lowering operator for the mode with wavevector q⃗ and polarization

i, and V is the volume of the diamond structure. Neglecting the weak Poisson ratio of diamond,

the mode frequencies are given by

ωl,q = vlq ≈
√

E

ρ
q, ωt,q = vtq =

√

E

2ρ
q, (5.9)

where vl and vt are sound velocities of the longitudinal and transverse modes, respectively.

It is straightforward to compute the strain ields γ̂ij = (∂ûi/∂xj+∂ûj/∂xi)/2 at the SiV− position

for each of the phonon modes of equations (5.8) and substitute them in equation (2.73), leading

to the strain interaction Hamiltonian Ĥ3D
strain = Ĥ l

strain + Ĥθ
strain + Ĥϕ

strain. As an example, the
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contribution from the transverse modes ĉθ,q⃗ reads

Hθ
strain =

∑

q⃗

ig1,θ(q⃗)Ĵ+ĉθ,q⃗ − g2,θ(q⃗)Ĵ+ĉθ,q⃗ +H.c.,

g1,θ(q⃗) =
g1
vt

√

ωt,q

2ρV
sin θ cos θ(sin2 ϕ− cos2 ϕ),

g2,θ(q⃗) =
2g2
vt

√

ωt,q

2ρV
sin θ cos θ sinϕ cosϕ.

(5.10)

The spectral density, J3D(ω) = J l(ω) + Jθ(ω) + Jϕ(ω), is obtained by substituting the diferent

coupling constants g(q⃗) in equation (5.3),

Jθ(ω) =
∑

q⃗

[

|g1,θ(q⃗)|2 + |g2,θ(q⃗)|2
]

δ(ω − ωt,q), (5.11)

leading to the ininite 3D limit

J3D(ω) =
g21 + g22
πρ

(

1

5v5t
+

2

15v5l

)

ω3. (5.12)

For identical coupling constants g1 = g2 ≡ gs [cf. equation (2.71)] and
√
2vt = vl = v, the spectral

density reads

J3D(ω) = C
ℏg2s
πρv5

ω3, (5.13)

with a numerical constant C ≈ 2.5. By using the value gs/2π ≈ 1 PHz, we obtain Γph/2π ≈ 1.78

MHz, which is in good agreement with the experimental results found in reference [81, 119].

The other limiting case, which is more appropriate for the considered transverse beam dimensions

of t, w ≲ λ∆, is the limit of a quasi-1D beam, where the frequencies of all the transverse compression

modes exceed ∆. The remaining compression modes along the beam direction x adopt the simple

form u⃗n(r⃗) ∝ e⃗x cos(ωnx/v), with ωn = πvn/ℓ. In that case, the strain-induced coupling constant
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introduced in equation (2.73) is

gs,n =
gs
v

√

ℏωn

ρV
sin
(ωn

v
xSiV

)

, (5.14)

where xSiV is the position of the defect along the cantilever.

For a completely isolated beam, the longitudinal compression modes are equally spaced with

mode spacing δω = πv/ℓ; for a ℓ = 25µm long beam, δω/2π ≈ 370 MHz. However, it is expected

that the relection of a compression mode at the clamping boundary is rather poor and in a realistic

system, the individual resonances ωn will be broadened by the decay γn into the phonon modes of

the support or by other dissipation channels. The resulting inite phonon lifetime can be captured

by approximating the phonon spectral function as a sum of individual (zero dimensional) Lorentzian

peaks

J0D(ω) ≃
∑

n

|gs,n|2
4

γn
(ω − ωn)2 + γ2n/4

, (5.15)

with gs,n given in equation (5.14).

In the limit δω ≲ γ∆, where γ∆ = ∆/Q∆ is the decay rate of the compression mode with

frequency ∆, the resonances of interest completely overlap and the beam can be approximated

by a semi-ininite 1D beam. This limit corresponds to values of the quality factor Q∆ ≲ 100 for

ℓ = 25µm. The phonon spectral density then becomes

J1D(ω) =
g2s
2v3

ℏω

ρwt
sin2

(ω

v
xSiV

)

. (5.16)

We see that compared to the 3D limit, the resulting phonon induced decay rate, Γph = J(∆),

strongly depends on the position of the SiV− defect. This is illustrated in igure 5.2, where we

compare the semi-ininite 1D limit for two diferent positions of the SiV− defect. It clearly shows

the possibility to engineer smaller (larger) phonon induced decay rates by placing the SiV− close
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to a node (anti node) of the strain ield generated by the phonon mode of frequency ∆. Compared

to the 3D case, the phonon induced decay in the 1D limit scales as

Γ
(1D)
ph

Γ
(3D)
ph

∼ 1

2πC

(

λ2∆
A

)

sin2
(

π
xSiV

λ∆

)

, (5.17)

where A = wt is the cross section of the beam. A crossover between the 1D and the 3D limit is

expected for w ∼ t ∼ λ∆, i.e. when the irst transverse compression mode of frequency ∆ appears.

In a system where high mechanical quality factors even in the 50 GHz regime can be achieved,

i.e., Q∆ ≳ ∆/δω, the individual compression modes become spectrally resolved and equation (5.15)

applies. In this limit, the phonon spectral density can be signiicantly enhanced or reduced by tuning

the splitting ∆ in resonance or of-resonance with a compression mode. Using this tunability, the

phonon induced decay could be further varied over the range

4

π

(

∆

δωQ∆

)

<
Γ
(0D)
ph

Γ
(1D)
ph

<
2

π

(

δωQ∆

∆

)

. (5.18)

The dependence of J(ω) is plotted in igure 5.2 in the diferent limiting regimes. For the reservoir-

engineering schemes discussed below, we are interested in the so-called sideband-resolved regime

Γph ≲ ωb. This can be achieved in general for small beams ℓ ∼ 10µm, where ωb ≈ 3 MHz. In cases

where the 1D limit is reached, one can further make use of the SiV− positioning and frequency

tuning to reach the well-resolved sideband regime.

5.4 Cooling

As a irst application, we now analyze a cooling scheme —in accordance with the cooling theory

described in chapter 3— for the low frequency bending mode. The basic idea is illustrated in

igure 5.1 (b). At low temperatures, the SiV− center is predominantly in one of the lower states |1⟩
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or |2⟩, but coupled to the excited states |3⟩ or |4⟩ by two microwaves ields detuned by the same

amount δ = ω1 − (∆ + γSB0) = ω2 − (∆ − γSB0). In the presence of the magnetic ield gradient,

vibrations of the beam lead to phonon-induced processes, where the excitation of the internal state

is accompanied by the absorption or emission of a motional quanta of frequency ωb. The energy of

the states |3⟩ or |4⟩ is then dissipated into the high frequency phonon reservoir at a rate Γph and

the cycle repeats. If the microwave ields are detuned to the red, i.e. δ < 0, the phonon-absorption

process dominates and the mechanical mode is cooled.

5.4.1 Reservoir engineering

It is instructive to also look at this cooling scheme from a more general perspective by irst con-

sidering the magnetic coupling [equation (2.66)] in the interaction picture with respect to the free

oscillator and the SiV− Hamiltonian,

Ĥm(t) =
(

b̂e−iωbt + b̂†eiωbt
)

F̂ (t). (5.19)

The operator F̂ (t) = gmŜz(t) represents a force acting on the oscillator. If we assume that the

dynamics of the SiV− center is only weakly perturbed by the resonator, i.e., gm
√

⟨b†b⟩+ 1 < Γph (a

more detailed analysis shows that the weaker condition, gm
√
n̄b + 1 < Γph, is suicient to correctly

predict the inal occupation number n̄b [82]), the luctuations δF̂ (t) = F̂ (t)− ⟨F̂ (t)⟩0 of this force

are fully characterized by the spectrum

SFF(ω) = 2Re

∫ ∞

0
dt ⟨δF̂ (t)δF̂ (0)⟩0eiωt. (5.20)

Here, ⟨. . .⟩0 denotes the expectation value with respect to the stationary state of the SiV− cen-

ter in absence of the magnetic coupling. From equation (5.19), we can deduce that the rates at

which phonons are absorbed and emitted by the SiV− defect are proportional to the force spec-
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Figure 5.3 – The force luctuation spectrum SFF(ω) deined in Eq. (5.20) is plotted for an SiV− center
driven on the red sideband, δ = −ωb, and for Nc = 0.5 and Γph/ωb = 0.15. The dashed line corresponds
to the approximate analytic result given in Eq. (5.24). For comparison, the red dotted line illustrates the
luctuation spectrum Seq

FF(ω) ∼ ω [coth(ℏω/(2kBT )) + 1] for an ohmic environment in equilibrium with a
temperature kBT/(ℏωb) = 5.

trum evaluated at +ωb and −ωb, respectively. For systems in thermal equilibrium, the ratio

SFF(−ω)/SFF(ω) = exp(−ℏω/kBT ) is ixed by the temperature T . However, in the present case of

a driven SiV− center, the system is out of thermal equilibrium and the above detailed balance equa-

tion does not hold. The ratio SFF(−ωb)/SFF(ωb) is instead used to deine an efective temperature

Teff of the defect. If the asymmetry of SFF(±ωb) is suiciently high, this efective temperature

becomes signiicantly lower than the temperature of the environment, allowing the defect to act as

a cold reservoir for excitations of frequency ωb. This is illustrated in igure 5.3, where SFF(ω) is

plotted for a SiV− center driven on the red sideband (δ = −ωb) and compared to the equilibrium

spectral density of an ohmic bath.

The above arguments can be derived more rigorously from an adiabatic elimination of the

SiV− degrees of freedom —as described in chapter 3, section 3.1.2— and obtain an efective master

equation for the reduced density operator of the bending mode, of the form

˙̂ρb = (Lth + Leff) ρ̂b, (5.21)

where the second term describes the efect of the engineered efective reservoir (similar to the one
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derived in the case of the NV center, given in equation 4.6)

Leff ρ̂ =
Γeff

2
(Neff + 1)D[b̂]ρ̂+

Γeff

2
NeffD[b̂†]ρ̂, (5.22)

where Γeff = SFF(ωb)− SFF(−ωb) and Neff = SFF(−ωb)/Γeff . From equation (5.21) we can derive

the steady-state occupation number of the fundamental bending mode and obtain a form similar

to equation (3.26)

n̄b =
γbNb +NeffΓeff

γb + Γeff
≃ γbNb

Γeff
+Neff , (5.23)

where γbNb ≃ kBT/(ℏQb) is the rate at which the mechanical system in the ground state would

absorb a single phonon from the environment. The last equality is valid in the limit Γeff ≫ γb.

5.4.2 Ground state cooling

The force spectrum SFF(ω) can be evaluated numerically for all parameters using the quantum

regression theorem. To obtain more insights, we restrict the following discussion to a fully symmetric

situation Ω1 = Ω2 = Ω under weak driving conditions Ω ≪ |Γph + iδ|. In this limit, the spectrum

is approximately given by

SFF(ω) = ϵg2mΓph

{

Nc + 1

(δ + ω)2 + [(2Nc + 1)Γph/2]2

+
Nc

(δ − ω)2 + [(2Nc + 1)Γph/2]2
+

2Nc + 1

ω2 + [ϵ(2Nc + 1)Γph/2]2

}

,

(5.24)

where we have deined the probability to excite the higher-energy states via the drives

ϵ =
Ω2/4

δ2 + [(1 + 2Nc)Γph/2]2
. (5.25)
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An example of the spectrum is illustrated in igure 5.3 and exhibits three peaks at frequencies

ω = 0,±δ. For red-detuned driving ields, the irst term in equation (5.24) corresponds to the

process where an excitation of the bending motion is absorbed, while the second term corresponds

to the Stokes process where a phonon is emitted. Note that for a reservoir at inite temperature,

the ratio between the heating and the cooling process scales as Nc/(Nc + 1). The peak at ω = 0

arises from random spin-lip processes which are induced by the driving ields even in the absence

of the phonon mode. These random spin lips occur at a rate Γsf ≃ ϵ(2Nc + 1)Γph and create a

luctuating force symmetric in frequency. Therefore, they only contribute to Neff and not to the

cooling rate Γeff .

From this expression and in view of equation (5.23), we identify three basic conditions for achiev-

ing ground state cooling, i.e. n̄b < 1. First, the system must be in the well-resolved sideband regime

(i) Γph(2Nc + 1) ≲ ωb. Provided that SFF(ω) [cf. equation (5.24)] is a sum of three Lorentzian

peaks centered at ω = 0 and ω = ±δ with width ∼ Γph(2Nc + 1), this condition is necessary

to have a large asymmetry between the positive-frequency and negative-frequency domain of the

force spectrum in the ideal case δ = −ωb. As a consequence, Γeff is enhanced while the minimal

occupancy Neff is decreased. If this condition is satisied, the remaining asymmetry is determined

by Nc, which sets the limit n̄b ≥ Nc. In terms of the efective temperature, this limit means that

the cooling ratio can reach

Teff
T

=
ωb

∆
≈ 10−5 − 10−4. (5.26)

The high-frequency phonon reservoir must then also be close to the ground state, i.e. (ii) Nc < 1.

Finally, the engineered cooling rate,

Γeff = ϵg2mΓph

{

1

(δ + ωb)2 + [(1 + 2Nc)Γph/2]2
− 1

(δ − ωb)2 + [(1 + 2Nc)Γph/2]2

}

, (5.27)

must overcome the rethermalization rate of the natural bath (iii) Γeff > γbNb. For a phononic bath
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in its ground state (Nc < 1) coupled to a SiV− center driven on a very well-resolved red sideband

(δ = −ωb, Γph ≪ ωb), the efective damping rate is maximized to Γeff = g2mΩ
2/(Γphω

2
b). Note that

this result is derived under the assumption of weak coupling and the cooling rate is always bounded

by Γeff ≲ gm.

While condition (ii) is solely determined by the temperature of the support, the competition

between the coupling strength gm ∝
√
ℓ and the mechanical frequency ωb ∝ 1/ℓ2 may prevent one

from fulilling (i) and (iii) at the same time. This is illustrated in igure 5.4, where we show the

inal occupancy of the fundamental bending mode n̄b [cf. equation (5.23)] as a function of the beam

length ℓ for diferent values of Γph and T . We see that already for temperatures T ≲ 1 K and

a moderate suppression of the phonon spectral density below the 3D limit, ground state cooling

becomes feasible.

Let us inally remark that in our analysis we have neglected coherent frequencies shifts as well

as coherent couplings to other vibrational modes that are induced by the driven SiV− center.

Such coherent interaction induced by the efective reservoir are at most as large as Γeff ≪ ωm and

therefore under usual conditions will only lead to minor correction in the above described dynamics.

However, for a highly symmetric resonator the SiV− center could potentially also be used to induce

a switchable coupling between two nearly degenerate modes.

5.5 Two-mode squeezing

As a second application of the scheme described in this chapter, we now discuss an extension of the

previous scheme for the dissipative preparation of an entangled two-mode squeezed (TMS) state

|ψTMS⟩, which is shared between two low-frequency mechanical modes â and b̂. A pure TMS state
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Figure 5.4 – Final occupation of the bending mode n̄b as function of the beam length ℓ for diferent values
of Γph. We considered a diamond cantilever at T = 4K (dotted-dashed red line), which corresponds to an
occupation of the compression mode of frequency ∆/2π = 50 GHz of Nc ≈ 1.2. The blue solid line shows
the results for Γph/2π = 250 kHz and a lower temperature T = 100mK (Nc ≃ 0) while the dotted black
line corresponds to an intermediate temperature of T = 1K (Nc ≃ 0.1). In the inset, we plot the initial
occupation (gm = 0) of the bending mode. It shows that even for initial occupancy Nb ∼ 104, it is possible
to reach the ground state (n̄b < 1) using experimentally accessible parameters. These results are obtained
using a driving strength ϵ = 0.2 [cf. equation (5.27)] and the full expression of SFF(ω) that includes the drive
at every order; we use the corresponding optimal detuning δ ≈ −ωb/

√
1 + 4ϵ. The remaining parameters are

the bending mode quality factor Qb = 106, the transverse beam dimension w = t = 0.1 µm and a magnetic
ield gradient of 107 T/m.
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is deined by the conditions

Â|ψTMS⟩ = (µâ+ νb̂†)|ψTMS⟩ = 0,

B̂|ψTMS⟩ = (µb̂+ νâ†)|ψTMS⟩ = 0,

(5.28)

where µ and ν are complex parameters satisfying |µ|2−|ν|2 = 1. This implies that these parameters

can be written as µ = cosh(r) and ν = eiθ sinh(r), where r is the squeezing parameter. The TMS

state belongs to the family of Gaussian states for which entanglement can be veriied from a violation

of the separability criteria [121, 122]

ξ =
1

2
[Var(x̂a + x̂b) + Var(p̂a − p̂b)] ≥ 1, (5.29)

where x̂a = (â† + â)/
√
2 and p̂a = i(â† − â)/

√
2 are the normalized position and momentum

operators (a → b for the b̂ mode). For a pure TMS state and θ = 0, the amount of entanglement

increases exponentially with the squeezing parameter, i.e. ξ = e−2r.

For mechanical oscillators prepared in a pure TMS state, the thermal noise coming from their

coupling to the environment rapidly degrades such a fragile entangled state. It is thus intriguing to

consider engineered processes, where the TMS state emerges as a steady state of a purely dissipative

dynamics. From the dark state conditions (5.28), one can readily see that |ψTMS⟩ is the stationary

state of a master equation of the form

Lsqρ̂ =
Γsq

2

(

2Âρ̂Â† − Â†Âρ̂− ρ̂Â†Â
)

+
Γsq

2

(

2B̂ρ̂B̂† − B̂†B̂ρ̂− ρ̂B̂†B̂
)

. (5.30)

The implementation of such a dissipation process has previously been discussed and experimen-

tally implemented in the context of two separated spin ensembles coupled to a common opti-

cal channel [100, 101] and closely related schemes have been proposed for optomechanical sys-
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a) b)

Figure 5.5 – Setup for the dissipative preparation of a mechanical two-mode squeezed state. a) Two
possible conigurations, where two vibrational modes, representing either orthogonal vibration modes of the
same beam (left) or the fundamental bending modes of two diferent beams (right), are coupled magnetically
to the same SiV− center. b) Energy level diagram of the SiV− defect. The green and blue arrows indicate
the four driving ields which are detuned from resonance by ±ωa and ±ωb. See text for more details.

tems [108, 109, 123]. In the following, we show how such an efective dissipation can be realized

in the present setup and evaluate its robustness with respect to inite temperature efects and

deviations from the ideal side-band resolved limit.

5.5.1 Driving scheme

We consider two low-frequency mechanical modes â and b̂ with two diferent frequencies ωa and

ωb, respectively. As shown in igure 5.5 (a), these two modes could be two bending modes of the

same beam, or the fundamental modes of two independent beams coupled magnetically to the same

SiV− center. In contrast to the cooling scheme, engineering the jump operators Â and B̂ requires

driving the transitions |1⟩ → |4⟩ and |2⟩ → |3⟩ by two near-resonant microwave ields. As indicated

in igure 5.5 (b), those drives are detuned by −ωa and +ωb in one half of the cycle (e.g. transitions

2 → 3) where a phonon is added to the mode a and removed from the mode b, and by +ωa and

−ωb in the other half (e.g. transitions 1 → 4) where the opposite processes take place.

The total Hamiltonian for this system is then given by

Ĥsq = Ĥres + ĤSiV + Ĥm, (5.31)
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where Ĥres = ωaâ
†â+ ωbb̂

†b̂ is the Hamiltonian of the two mechanical resonator modes and

ĤSiV =
∑

j=1,4

Ej |j⟩⟨j|+
(

Ω1

2
e−iω1t − Ω2

2
e−iω2t

)

|3⟩⟨2|+H.c.

−
(

Ω3

2
e−iω3t − Ω4

2
e−iω4t

)

|4⟩⟨1|+H.c.

(5.32)

is the Hamiltonian for the internal states, where E1 = 0, E2 = γSB0, E3 = ∆ and E4 = ∆+ γSB0.

Note that in equation (5.32) all Rabi frequencies Ωi are assumed to be real and positive and the

minus signs have been chosen to reproduce the correct efective interaction in the analysis below.

Finally,

Ĥm =
[

ga(â+ â†) + gb(b̂+ b̂†)
]

Ŝz (5.33)

is the Zeeman coupling as introduced in equation (2.66).

5.5.2 Sideband-resolved regime

For the implementation of the TMS state master equation (5.30), it is instructive to irst follow

a simpliied approach that is valid in the well-resolved sideband regime. In this regime, only the

resonant processes play an important role and, as we show, are responsible for the mechanical entan-

glement. In order to identify those dominant processes, we irst perform a polaron transformation

Ĥ → ÛĤÛ † [8], where

Û = exp







∑

η=a,b

gη
ωη

(η̂† − η̂)Ŝz







. (5.34)
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This transformation eliminates the coupling Ĥm, but generates an ininite series of phonon sidebands

in the driving processes, i.e.

|3⟩⟨2| → |3⟩⟨2|e−
∑

η=a,b

gη
ωη

(η̂†−η̂)
,

|4⟩⟨1| → |4⟩⟨1|e
∑

η=a,b

gη
ωη

(η̂†−η̂)
.

(5.35)

For gη/ωη ≪ 1, we can expand the exponential to irst order and thus neglect the contribution of

higher-order phonon processes. By going into the interaction picture with respect to Ĥres + ĤSiV

and making a RWA, only the resonant processes remain so that Ĥsq adopts the form

Ĥsq ≃ g̃

2
(Â|3⟩⟨2|+ B̂|4⟩⟨1|) + H.c. (5.36)

In the particular case of a symmetric driving cycle (cf. igure 5.5), where the cooling (heating)

processes for both mechanical modes occur at the same rates, i.e. Ω1ga/ωa = Ω3gb/ωb (Ω2gb/ωb =

Ω4ga/ωa), the new jump operators Â and B̂ are deined as in equation (5.28) with

g̃µ =
Ω1ga
ωa

=
Ω3gb
ωb

, g̃ν =
Ω4ga
ωa

=
Ω2gb
ωb

. (5.37)

The condition |µ|2 − |ν|2 = 1, which imposes the proper commutation relations for Â and B̂, is

fulilled when the coupling constant g̃, given by

g̃ =
ga
ωa

√

Ω2
1 − Ω2

4 =
gb
ωb

√

Ω2
3 − Ω2

2, (5.38)

remains real. One can show that for drive strengths that lead to an imaginary coupling constant

g̃, the coherent dynamics described by Ĥsq becomes unstable. Physically, it corresponds to heating

processes (∼ Ω2,Ω4) that exceed the rates at which the drives cool down the mechanical modes
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(∼ Ω1,Ω3), leading to a parametric instability of the mechanical system. The squeezing parameter

is also determined by the ratio between the driving strengths for the two mechanical modes:

tanh(r) =
Ω2

Ω3
=

Ω4

Ω1
. (5.39)

As expected, the squeezing parameter diverges when the heating and cooling rates become equal.

As a inal step, we can adiabatically eliminate the internal degrees of freedom of the SiV−, given

that Γph ≫ ga, gb, and obtain the master equation

˙̂ρ = (Lth + Lsq) ρ̂. (5.40)

The irst term describes the coupling of the mode â and b̂ to their respective thermal environment

with damping rates γa/b and thermal occupation numbers Na/b. The second term describes the

engineered dissipative processes that lead to entanglement, and in the limit of Nc = 0, it reduces to

equation (5.30) with the corresponding rate Γsq = g̃2/(2Γph). Note that in the sideband-resolved

and weak driving limit this rate scales as Γsq ≃ Γeff/(2 cosh(r)) compared to the optimized single

mode cooling rate, assuming ga ≈ gb and ωa ≈ ωb.

As a consequence, the amount of steady-state entanglement between the two mechanical modes

is a results of the competition between the squeezing rate Γsq and the rates at which the thermal

noise perturbs the system, (Nb + 1)γb, (Na + 1)γa. To make this statement more precise, one can

explicitly solve equation (5.40) for the steady-state ( ˙̂ρ = 0), resulting in:

ξ =
γaNa + Γsqν

2

γa + Γsq

+
γbNb + Γsqν

2

γb + Γsq

− 2Γsqµν
γa+γb

2 + Γsq

+ 1. (5.41)

A pure TMS state can only be achieved in the limit where Γsq greatly exceeds the thermal noise

rate. On the other hand, the larger is Γsq ∼ (Ω2
1 − Ω2

4)/Γph, the smaller is the inal amount of

89



Figure 5.6 – The separability parameter ξ is plotted as a function of the squeezing parameter r for three
values of the ratio Γth/Γef, in the limit γa,b ≪ Γsq and γaNa = γbNb = Γth. Vertical dotted line indicates
the threshold bellow which the two bending modes are entangled, as given by equation (5.29). For this plot
ideal sideband resolved conditions and Nc = 0 have been assumed.

squeezing tanh r ∼ Ω4/Ω1. By assuming γa,b ≪ Γsq and γaNa = γbNb = Γth, the separability

criterion can be approximated by

ξ ≈ 4Γth

Γeff
cosh(r) + e−2r, (5.42)

where again Γeff = g2bΩ
2
3/(ω

2
bΓph) is the single mode cooling rate in the well-resolved sideband limit.

The dependence of ξ on r is plotted in igure 5.6 for diferent values of Γth/Γeff .

5.5.3 Two-mode squeezing by a finite-temperature reservoir

Up to now, in our discussion on two-mode squeezing, we have assumed Nc = 0 and the sideband-

resolved regime, such that the temperature of the engineered reservoir is zero. We now want to

evaluate how sensitive the entanglement is with respect to small deviations from these conditions. In

principle, one can use a similar approach as in section 5.5.2 to derive an efective master equation

for the two mechanical modes. All the rates are then determined by the luctuation spectrum

SFF(ω) (including the four drives) evaluated at the relevant frequencies ω = ±ωa,±ωb. However,

outside the sideband-resolved regime the result would be quite involved and not very illuminating.
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Instead, we will here analyze an approximated master equation, which nevertheless captures the

most essential efects of a inite efective temperature on the entanglement generation and can thus

be adopted to other systems as well.

Let us irst point out that when generalized to a inite Nc, the above approach introduces for every

dissipation processes associated with the jump operator Â (B̂), a reverse process with operator Â†

(B̂†). The rates of the original and the reverse processes scale like (Nc + 1) and Nc, respectively.

More generally, we can replace Nc by an efective occupation number Neff , which, similar as in the

cooling discussion, also takes into account of the inite overlap of the spectral peaks. Under this

assumption we obtain a ǵthermalǶ two-mode squeezing master equation of the form

Lsqρ̂ ≃
Γa
sq

2
(Na

eff + 1)D[Â] +
Γa
sq

2
Na

effD[Â†] +
Γb
sq

2
(N b

eff + 1)D[B̂] +
Γb
sq

2
N b

effD[B̂†]. (5.43)

The rates Γa,b
sq and the efective occupation numbers Na,b

eff can be estimated from the luctuation

spectrum given in equation (5.20) as

Γη=a,b
sq =

SFF(ωη)− SFF(−ωη)

2 cosh(r)
, (5.44)

and

Nη=a,b
eff =

SFF(−ωη)

SFF(ωη)− SFF(−ωη)
≥ Nc. (5.45)

Then equation (5.43) becomes exact in the sideband-resolved regime ωa,b ≫ Γph and reproduces as

well the correct cooling dynamics in the limit r → 0. While under general conditions equation (5.43)

is only a crude approximation, it is still expected to give accurate predictions for the squeezing

parameter in the relevant regime Na/b
eff < 1.

In the simplest case of identical mechanical modes, i.e. γaNa = γbNb = Γth, Na
eff ≃ N b

eff ≃ Neff ,

Γη=a,b
sq = Γeff/(2 cosh r), and assuming again that γa,b ≪ Γsq, we can derive from equation (5.43) a
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a) b) c)

Figure 5.7 – Contour plot of the minimal achievable separability parameter ξmin = min{ξ(r)|r} as a
function of the ratio Γef/Γth and the efective occupation Nef. The red line corresponds to the threshold
given by the condition ξmin = 1. For this plot the parameter ξ(r) has been evaluated using equation (5.46),
where equal parameters for the two modes and γa = γb ≪ Γsq have been assumed. The values of Γef and
Nef are plotted in b) and c) as a function of the length ℓ of the beam. For both plots the values of T = 100
mK, Γph/(2π) = 250 kHz (solid line), T = 100 mK, Γph/(2π) = 1 MHz (dashed line), T = 1 K, Γph/(2π) = 1
MHz (dotted line) and T = 1 K, Γph/(2π) = 250 kHz (dashed-dotted line) have been assumed. All the other
parameters are the same as in igure 5.4.

generalized expression for the separability parameter,

ξ ≈ 4Γth

Γeff
cosh(r) + (1 + 2Neff)e

−2r, (5.46)

which reproduces equation (5.42) for Nef = 0. In igure 5.7 (a) we plot the value of ξ minimized

with respect to r for diferent ratios Γef/Γth and efective reservoir occupation numbers Nef. This

plot provides a general overview on the minimal conditions required for the dissipative preparation

of entangled mechanical states. In particular, it shows that the two-mode squeezing scheme does not

rely on a strict zero reservoir temperature. Indeed, the steady-state entanglement is rather robust

with respect to Neff , which is related to the fact that the thermal luctuations of the environment

become squeezed as well. However, note that for Na/b
eff ≳ 1 the current approach can only provide

a crude approximation for the squeezing parameter.

For the current setup, the expected values for Γeff and Neff are plotted in igures 5.7 (b) and (c)

as a function of the beam length and for diferent values of Γph and the support temperature T .

For T = 100 mK and Q = 106 the relevant thermalization rate is Γth/2π ≈ 2 kHz, which shows
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that for ℓ ≈ 30− 70µm the conditions for steady-state entanglement can be reached. Importantly,

since the fundamental limit, Neff ≃ Nc, remains small for temperatures up to T ≈ 4K, a slightly

improved coupling constant or Q-value would enable the dissipative generation of entanglement at

these more convenient temperatures.
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6
Parity-time-symmetry breaking in the steady

state

In this chapter, we consider a system of coupled mechanical oscillators (similar to the ones discussed

throughout this thesis), one with loss and the other with gain. This mechanical loss and gain could

be realised via optically-induced cooling and heating respectively. In this sense, the methods and

schemes described in chapters 3, 4 and 5 constitute prominent candidates for the realisation of such

a system. These mechanical gain-loss systems provide a playground for exploring interesting phe-

nomena, such as the breaking of patity-time (PT ) symmetry, previously investigated mainly in the

context of optical waiveguides. The fact that nano-mechanical systems are subject to nonlinearities

and they operate under the inluence of thermal and quantum noise, provides access to previously

unexplored regimes where surprising new efects come to play. The analysis of these systems were

done in collaboration with T. J. Milburn, J. Huber, K. G. Makris, S. Rotter and P. Rabl and the

theoretical results were published in New Journal of Physics [59]. For this work, I performed most

of the analytical as well as numerical calculations, while the dynamical analysis presented in section

6.4.1 was done together with T. J. Milburn.
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6.1 Introduction

In 1998 Bender and Boettcher [124] described a class of non-Hermitian ǵHamiltoniansǶ that ex-

hibit a purely real energy spectrum, a surprising fact which they attributed to the underlying PT

(parity- and time-reversal) symmetry. Their observation triggered considerable interest in discrete

and continuous systems with PT symmetry along with alternative non-Hermitian formulations of

quantum theory [125]. Such fundamental considerations remain speculative, but there exist many

classical systems in which PT -symmetric dynamics can be obtained with appropriately engineered

loss and gain. This was irst pointed out in the context of photonic waveguides [43–46], lattices, and

resonators [47–50]. Other examples include cold atoms [51–53] and optomechanical devices [54–56].

Of particular interest in such systems is the breaking of PT symmetry, i.e., when by tuning a param-

eter the energy spectrum becomes complex and the eigenvectors no longer exhibit the underlying

PT symmetry. This phenomenon was irst experimentally observed in optical waveguides [45, 46],

and is currently the subject of intense experimental and theoretical research.

Our focus in this chapter is to discuss a way to go beyond this dynamical picture and address

an interesting and still open question: what are the steady states of actual physical systems with

PT symmetry? This question is mainly motivated by the types of systems that we consider in

this work. Speciically, nano-mechanical resonators are subject to nonlinear saturation efects and

they operate under the presence of thermal and quantum noise. These features have a crucial

inluence on the systemǶs dynamics and the long-time behavior can no longer be inferred from

an eigenvalue analysis only. By focusing on the experimentally relevant example of coupled me-

chanical resonators with optically-induced gain and loss (see Fig. 6.2) we show that PT -symmetry

breaking in the steady state exhibits various unexpected features and in general occurs via addi-

tional intermediate phases with retained or ǵweaklyǶ broken PT symmetry. Most importantly, we

identify an unconventional transition from a high-noise balanced energy distribution to a parity-
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broken lasing state with strongly reduced luctuations. This transition generalizes the phenomenon

of PT -symmetry breaking—hitherto deined only for eigenstates—to steady-state distributions of

noisy systems. The mechanisms described here occur in systems of two coupled modes as well as

in multi-resonator arrays, and will thus be of relevance for a large range of PT symmetric systems

operated at low amplitudes and close to the quantum regime.

6.2 PT -symmetry breaking

We consider a simple but relevant example of two linearly-coupled mechanical oscillators. One of

these oscillators is subject to gain and the other to loss, both with the same rate Γ, as shown in

igure 6.1 a). In the frame rotating with the bare oscillation frequency ω0, such a system can be

described by a pair of coupled diferential equations of the form







α̇

β̇






= −i







iΓ g

g −iΓ













α

β






, (6.1)

where α and β correspond to the complex oscillation amplitudes for each resonator while g is the

coupling strength between them. It is easy to check that the (non-Hermitian) dynamical matrix

in the above equation is invariant under parity- and time-reversal. The parity-reversal operation

in general corresponds to the operation P : x ↔ −x, where x a position coordinate. However,

since our system is discrete in space, i.e. it can be understood as a two-site lattice, the parity-

reversal operation in this case corresponds to the position exchange of the two oscillators, i.e.

P : (α, β)T ↔ (β, α)T . The time-reversal operation is as usual T : i → −i. The eigenvalues and

(unnormalized) eigenstates of this dynamical matrix are given by [126]

λ1,2 = ±
√

g2 − Γ2. (6.2)
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a) b)

Figure 6.1 – a) Illustration of a PT-symmetric system, consisting of two coupled resonators one with gain
and the other with loss of the same magnitude. b) Real (left) and imaginary (right) part of the eigenvalues
as function of Γ/g. A transition occurs at Γ/g = 1, where the PT-symmetry is broken.

and

ψ1 =







ei
θ
2

e−i θ
2






, ψ2 =







ie−i θ
2

−iei θ2






, sin(θ) = Γ/g, (6.3)

respectively. We observe that for Γ ≤ g both eigenvalues λ± are real and the eigenvectors are also

eigenstates of the symmetry operator, i.e. PT v1,2 = v1,2. Above that point, both eigenvalues are

imaginary indicating the existence of a gain and a loss eigenmode. In this parameter regime the

angle θ is complex and v1,2 no longer posses the same symmetry as the Hamiltonian, i.e. the parity-

time symmetry. Thus one speaks of a parity-time symmetry breaking transition occurring at Γ = g

[see igure 6.1 b)]. This particular feature is related to surprising —and often counterintuitive—

efects irst observed in the context of photonic waveguides [43–46], lattices, and resonators [47–50].

Up to now, we have assumed that the gain and loss rate Γ is a constant. However, in realistic

physical systems, this cannot be true. In fact, Γ is generally expected to be a non-linear function

of the oscillation energy, due to saturation efects. In addition, the background noise to which such

classical systems are normally subject needs also to be taken into account.

6.3 PT -symmetric phonon systems

To motivate our further analysis in this chapter by a concrete physical system, we consider a setup

of two micro-mechanical resonators—similar to the systems described in chapter 2—as shown in
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igure 6.2 a). The main indings discussed below, however, are more general and can be studied in

other equivalent realizations, e.g., with coupled optical or microwave resonators. The mechanical

resonators have a bare vibrational frequency ωm and they are mutually coupled, e.g., mechanically

via the support, with strength g. In addition, optical or electrical cooling [5, 6, 8, 10, 57] and

pumping [34–38, 40, 41, 57] schemes, similar to the ones described in chapters 3, 4 and 5 are used

to induce mechanical loss for one resonator and an equal amount of mechanical gain for the other.

In a frame rotating with ωm, the semiclassical dynamics of the system is then described by the Itô

stochastic diferential equation [61, 127]







α̇

β̇






=







Γ+(α) −ig

−ig Γ−(β)













α

β






+







F+(t)

F−(t)






, (6.4)

where α and β are the dimensionless amplitudes of the pumped and cooled mode respectively.

The optically-induced gain and loss rates considered here are of the form

Γ±(α) = ± Γ

(1 + |α|2/n0)ν
− γ, (6.5)

where Γ is the maximal rate and
√
n0 is the saturation amplitude. The value of ν characterizes the

underlying heating or cooling mechanism and will be treated here as an adjustable parameter. For

the three-level scheme depicted in igure 6.2 b)—discussed in detail in chapter 4—this parameter

takes the value ν = 2 [see equation (4.33)]. Instead, for conventional laser ampliication with

inverted two-level systems we would obtain ν = 1 [see equation (3.52)]. Finally, γ is the bare

mechanical damping rate. Since we are interested in the PT -symmetric limit (deined below), we

assume γ/Γ → 0. However, in all our calculations we retain a inite γ > 0, which describes the

actual physical situation and results in a well-deined steady state for all parameter regimes.

In equation (6.4) the (complex) stochastic forces F±(t) represent two independent white-noise
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a) b) “loss” “gain”

Figure 6.2 – a) Setup of two coupled mechanical resonators with optically-induced gain and loss. b) Scheme
for engineering mechanical gain or loss via an optically-driven three-level defect. Depending on the detuning
of the pump (green arrow), phonon-induced transitions between the two near-degenerate excited states |x⟩
and |y⟩ lead to a net absorption or emission of phonons of frequency ωm (see chapter 4 for more details).

processes with ⟨F ∗
±(t)F±(t

′)⟩ = D±δ(t− t′). For resonators coupled to a reservoir of temperature T

the difusion rates are D+(α) = Dq(α)+2γNth and D− = 2γNth, where Nth = (eℏωm/kBT −1)−1. As

shown in section 3.2.1 in chapter 3, the contribution Dq(α→ 0) = 2Γ for the gain mode represents

the intrinsic quantum noise associated with any ampliication process and suggests that noise is a

fundamental property of PT -symmetric systems [128–130].

6.4 Steady state of PT -symmetric systems in the absence of noise

We now evaluate the stationary state ψss = (αss, βss)
T of equation (6.4), irst in the absence of

noise. Figures 6.3 a) and b) show the mode occupation numbers |αss|2 and |βss|2 as a function

of Γ/g, and for the two relevant cases ν = 2 and ν = 1. Firstly, we observe in both plots the

expected transition at Γ/g|I→II = 1. Below this point (phase I) the system dynamics is oscillatory,

as expected from the discussion of the PT -symmetric phase above.

Above this transition point (phase II) the linearized system dynamics becomes unstable and

both resonators reach a inite steady-state occupation number, determined by the saturation of

Γ±(α). However, this steady state is still an eigenstate of the symmetry operator, PT ψss ∝ ψss,

and contrary to our naïve expectation the system remains PT -symmetric beyond the conventional

transition point. The existence of a PT -symmetric steady-state with non-vanishing amplitude can
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a) c)

b) d)

Figure 6.3 – Steady state ψss = (αss, βss)
T of the PT -symmetric phonon system in the absence of noise.

The steady state occupation numbers |αss|2 and |βss|2 of the two modes are plotted for a) ν = 2 and b) ν = 1
and γ/g = 10−3. In the limit-cycle phase IIIw both modes oscillate over the range indicated by the shaded
area. c) Illustration of the relaxation dynamics of |α|2 (red) and |β|2 (blue). d) The resulting steady state
(green square) for each phase.

be traced back to the fact that in the present model the PT -symmetry is retained even in the

nonlinear regime. This means that for equal amplitudes, α = β, the gain and the loss rate are still

exactly the same, i.e., Γ+(α) = −Γ−(α), ∀α [see equation (6.5)]. This property of the nonlinear

system implies that there exists a symmetric state ψss(αss, βss)
T , with |αss| = |βss|, which satisies

ψ̇ss = 0 for all values of Γ/g. However, as one can see in igure 6.3, at larger values of Γ the system

eventually switches to a diferent, symmetry-broken state.
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6.4.1 Dynamical analysis

More speciically, by moving to polar coordinates α = reiθα and β = zeiθβ , equation (6.4) can be

rewritten as

ṙ = −[γ − Γ(r)]r − g sin(ϕ)z, (6.6)

ż = −[γ + Γ(z)]z + g sin(ϕ)r, (6.7)

ϕ̇ = g
(r

z
− z

r

)

cos(ϕ), (6.8)

where ϕ = θα − θβ . Note that the system is invariant under a combined rotation of α and β and

therefore the evolution of the total phase θα+θβ can be neglected. For the last equation we see that

there are two ixed points for the phase, ϕss = ±π/2. Due to inite γ, the stationary occupation

number of the gain mode |α|2 is always slightly larger than that of the loss mode |β|2, therefore

ϕss = π/2 is the stable. We therefore set ϕ = π/2 and study the two-dimensional dynamical

system with variables r and z. We now apply standard dynamical analysis to understand the

phases mentioned above and predict the transition points. To do so we irst evaluate the possible

stationary solutions rss and zss of equations (6.6) and (6.7), which are given by the solutions of

gzss = [Γ(rss)− γ]rss, grss = [Γ(zss) + γ]zss. (6.9)

The stability of these ixed points is then analyzed using the trace-determinant plane of the Jaco-

bian, i.e. the dynamical matrix of the system linearized about the stationary state. The Jacobian

for our system is

J =







Γ′(rss)rss + Γ(rss)− γ −g

g −Γ′(zss)zss − Γ(zss)− γ






, (6.10)
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where the prime denotes the derivative. The trace and determinant of J are

τ = TrJ = −2γ + Γ′(rss)rss − Γ′(zss)zss + Γ(rss)− Γ(zss), (6.11)

δ = detJ = g2 − [Γ′(rss)rss + Γ(rss)− γ][Γ′(zss)zss + Γ(zss) + γ] (6.12)

respectively. Since the eigenvalues of J may be written entirely in terms of τ and δ thus

λ± = 1
2(τ ±

√

τ2 − 4δ), (6.13)

evaluating τ and δ at a particular stationary state fully characterizes its stability and local dynam-

ical structure. As we shall discuss now, the details of this PT -symmetry-breaking mechanism and

the resulting state depend on the actual form of the saturable gain, which is here determined by

the parameter ν.

The state |αss|2 = |βss|2 = 0 is an obvious stationary state of equations (6.6) and (6.7) and

is guaranteed by the inclusion of a inite γ > 0, which leads to a slow overall decay towards a

well-deined steady state. Substituting this into equations (6.11) and (6.12) yields (irst order in γ)

τ = −2γ, δ = g2 − Γ2. (6.14)

This corresponds to a stable spiral for Γ < g, but for Γ > g becomes a saddle node. We thus

conclude that phase I is stable for

0 <
Γ

g
< 1, (6.15)

independently from the parameter ν.

In phase II the two occupation numbers are roughly equal, however simply assuming rss = zss

yields an inconsistency due to inite γ. Let us therefore substitute the ansatz rss = r
(0)
ss +γr

(1)
ss + . . .
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and zss = r
(0)
ss + γr

(1)
ss + . . . and equate alike-orders in γ. The result is

r
(0)
ss =

√
n0 ×

√

(Γ/g)1/ν − 1,

r
(1)
ss = −z(1)ss = r

(0)
ss [Γ′(r

(0)
ss )r

(0)
ss + Γ(r

(0)
ss ) + g]−1,

(6.16)

and in terms of occupation numbers |αss|2/n0 = |βss|2/n0 = (Γ/g)1/ν − 1 + O(γ), in accordance

with igure 6.3. We neglect terms of order γ2 and higher. Note that, this stationary state only

exists for Γ/g ≥ 1. Substituting equation (6.16) into equations (6.11) and (6.12) yields

τ = −2γ

(

1− Γ′′(r
(0)
ss )r

(0)2
ss + 2Γ′(r

(0)
ss )r

(0)
ss

Γ′(r
(0)
ss )r

(0)
ss + Γ(r

(0)
ss ) + g

)

(6.17)

= −2γ

(

1− 2ν[(Γ/g)1/ν − 1][(2ν − 1)(Γ/g)1/ν − 2(ν + 1)]

2ν(Γ/g)1/ν + 2(1− ν)(Γ/g)2/ν

)

(6.18)

and

δ = g2 − [Γ′(r
(0)
ss )r

(0)
ss + Γ(r

(0)
ss )]2 = g2 − g2[2ν − 1− 2ν(Γ/g)−1/ν ]2. (6.19)

We see that δ > 0 only for 1 < Γ/g < [ν/(ν − 1)]ν . However, unlike the previous analysis of

phase I, in this case τ can be positive while δ is positive. This is the case if [ν/(ν − 1)]ν >

[(ν + 2ν2 +
√
2ν + 3ν2)/(2ν2 − 1)]ν . As Γ/g is increased the stationary state (6.16) goes from a

stable spiral to an unstable spiral and then to a saddle node. We thus conclude that phase II is

stable for

1 <
Γ

g
< min

{(

ν + 2ν2 +
√
2ν + 3ν2

2ν2 − 1

)ν

,

(

ν

ν − 1

)ν
}

. (6.20)

Considering the case ν = 2, this gives 1 < Γ/g < 4, while for ν = 1 one obtains 1 < Γ/g < 5.2, in

consistency with igure 6.3.

In a similar fashion, we analise the phases in regimes IIIw and III. In particular, we conclude
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that phase IIIw is a limit cycle exhibited for

(

ν + 2ν2 +
√
2ν + 3ν2

2ν2 − 1

)ν

<
Γ

g
<

(

ν

ν − 1

)ν

. (6.21)

Since it is only possible that [ν/(ν−1)]ν > [(ν+2ν2+
√
2ν + 3ν2)/(2ν2−1)]ν if 1 ≤ ν < 2, this phase

cannot be observed for ν ≥ 2. The limit cycle does not admit a simple analytic form, however by

assuming that it is small and centered on stationary state (6.16), one may approximate its frequency

ωosc by the imaginary part of the eigenvalue of the Jacobian evaluated at equation (6.16). One inds

ωosc ≈ 2
√

g3(Γ− g)/Γ; this result has been numerically veriied for the case ν = 1. On the other

hand, the phase III corresponds two extra stationary states one unstable and the other stable. We

conclude that phase III is exhibited for

Γ

g
>

(

ν

ν − 1

)ν

. (6.22)

Note that this phase cannot be observed for ν = 1. For ν = 2 one may easily check that, given

Γ/g > [ν/(ν − 1)]ν = 4, the stable stationary amplitudes are

rss/
√
n0 = {[Γ +

√

Γ(Γ− 4g)]/(2g)− 1}1/2, (6.23)

zss/
√
n0 = {[Γ−

√

Γ(Γ− 4g)]/(2g)− 1}1/2, (6.24)

or in terms of occupation numbers

|αss|2

|βss|2











= n0 ×
(

Γ±
√

Γ(Γ− 4g)

2g
− 1

)

. (6.25)

While similar nonlinear phenomena are in general expected for gain-loss systems [56, 131–133], our
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speciic interest here is to understand the role of dynamical instabilities in the breaking of a steady-

state symmetry. In particular, the above analysis shows that PT -symmetry breaking occurs even in

systems where the symmetry is fully retained in the nonlinear regime and a symmetric steady-state

would be permitted in principle for all parameters.

6.5 Steady state in noisy฀PT -symmetric systems

We now show how the above picture changes in the presence of noise. For clarity we restrict

ourselves to a system which is dominated by thermal difusion, i.e. D± = D = 2γNth. For Γ = 0

thermal noise induces additional amplitude luctuations of about (∆α)2 ≈ D/(2γ) = Nth, and we

expect that as long as Nth < n0 the characteristic features shown in igure 6.3, which scale with

the saturation number n0, will only be smeared out, but not change signiicantly. This is conirmed

numerically (not shown) and means that igure 6.3 is a good representation of the steady states

of the system in the weakly nonlinear or low-noise regime. Therefore, we will now address the

opposite regime Nth ≫ n0.

Figure 6.4 a) shows the results of a numerical simulation of the stochastic equation (6.4), from

which we obtain the steady-state distribution Pss(α, β) for ν = 2 and Nth/n0 = 10. In the following

we write α = reiθα and β = zeiθβ and make use of the fact that the system dynamics is invariant

under a global phase rotation. The exact marginal distributions Pss(α) and Pss(β) are then itted

by approximate distributions of the form

P (α) ∼ re−
(r−r0)

2

∆α2 , P (β) ∼ ze
−

(z−z0)
2

∆β2 , (6.26)

which allows us to extract a radial shift r0 and z0 and the range of luctuations (∆α)2 and (∆β)2

for both modes (see Appendix A for further details on the numerical simulations). From these

values plotted in igure 6.4 a) we see that the thermal noise now completely washes out the features
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Figure 6.4 – PT -symmetry breaking in the limit of large thermal noise, Nth ≫ n0. a) Steady-state
distributions of α and β for Nth/n0 = 10 and γ/g = 10−3. The values of r0 and z0 (solid lines) represent the
radial distance of the distribution maxima from the origin and shaded areas indicate the range of luctuations.
b) Plot of the PT -symmetry parameter ∆ deined in equation (6.27). c) Steady-state distribution of α (red
dots) and β (blue dots) in the thermal (Γ/g = 2, left plot) and in the symmetry-broken (Γ/g = 10, right
plot) phases.

associated with the PT -symmetric phases I and II, and for a large range of Γ the system reaches

a steady state (phase T), which is to a good approximation thermal, i.e., r0 = z0 = 0 and (∆α)2 ≃

(∆β)2 ≃ Nth. Only after a critical value of Γ/g|T→III ≈ 7.5 are the luctuations suddenly strongly

suppressed. In this regime the system relaxes into an asymmetric coherent state with r0 > z0

approximately given by the amplitudes |αss| and |βss| given in equation (6.25) and (∆α)2, (∆β)2 ∼

γNthΓ/g
2, γNth/Γ ≪ 1.

Before we proceed, let us connect this transition to the phenomenon of PT -symmetry breaking—

hitherto deined only for individual states. To do so we introduce the PT -symmetry parameter

∆ =
⟨(|α| − |β|)2⟩ss

⟨|α|2⟩ss + ⟨|β|2⟩ss
≤ 1, (6.27)

which vanishes for a random set of states ψi = (αi, βi)
T if and only if each state satisies PT ψi =
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eiθiψi, with some real phase θi. Figure 6.4 b) shows that indeed ∆ changes at the transition point

from ∆ ≃ ∆th = 0.215 for a thermal state to ∆ → 1 in the symmetry-broken phase. Note that also

in the low-noise limit we obtain ∆ = ∆th > 0 in phase I and therefore only phase II, where ∆ ≃ 0,

has a strictly PT -symmetric steady state.

One of the most striking features visible in igures 6.4 a) and c) is that in sharp contrast to

a conventional lasing transition, the emerging coherent-state amplitudes after the PT -symmetry

breaking point are even smaller than the original level of thermal noise. This surprising efect can

be understood as follows. Although at each instant in time the amplitudes α(t) and β(t), and

therefore the gain and loss rates Γ+(α) and Γ−(β), can be quite diferent, the average dissipation

rate Γ̄ = ⟨Γ− − Γ+⟩ss when evaluated in the thermal phase vanishes, Γ̄ ∼ O(γ) ∼ 0. What

remains (on average) is the weak coupling to the high-temperature environment. In contrast,

in the symmetry-broken phase we have ⟨|α|⟩ss ≫ ⟨|β|⟩ss. Therefore, there is a strong imbalance

between loss and gain on average, i.e., Γ̄ ∼ O(Γ) > 0, and the resulting net cooling efect suppresses

luctuations. Thus, this transition in the average dissipation rate of a stationary system can be

seen as the counterpart of the transition from real to imaginary eigenvalues in the conventional

deinition of PT -symmetry breaking. What we are still missing, however, is a simple criterion,

which tells us why the system favors one or the other steady state.

To clarify the mechanism behind the symmetry-breaking transition we focus on the symmetry-

broken regime Γ/g ≫ 1, where we can assume that the amplitude of the gain mode |α(t)| ≈ |αss|

and the relative phase ϕ ≃ π/2 are approximately constant. We then obtain the equation of motion

for the amplitude of the loss mode, z = |β| (an equivalent analysis predicts a single stable minimum

for the gain mode and much lower thermal activation rates for the relative phase ϕ),

∂tz = −∂zU(z) +
√

γNthηz(t), (6.28)
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Figure 6.5 – a) Efective potential for the amplitude z = |β| of the loss mode for Γ/g = 12. b) Dependence
of the symmetry breaking point Γ/g|T→III on Nth. The solid line represents the prediction from our ana-
lytic model and the squares show the transition points obtained from the condition ∆ = 0.5 in numerical
simulations.

where ⟨ηz(t)ηz(t′)⟩ = δ(t− t′) and (for γ → 0)

U(z) = − n0Γ

2(1 + z2/n0)
− g|αss|z sin(ϕ)−

γNth

2
log(z). (6.29)

The function U(z) is an efective potential for z, which is sketched in Fig. 6.5 a). This potential has a

local minimum at z0 = |βss| (corresponding to the steady state given in equation (6.25) forNth → 0),

which is separated by a inite barrier ∆U from the unstable region z > zmax. In the presence of noise,

a system initially located at z ≈ z0 can escape over this barrier via thermally activated processes

with a characteristic rate Resc ≃ R0e
− 2∆U

γNth , where R0 =
√

−U ′′(zmin)U ′′(zmax)/(4π2) [127]. This

rate increases as Γ is reduced and once Resc exceeds the bare damping γ, any coniguration with

ixed α and β is rapidly destabilized and the transition to a quasi-thermal state with strongly

luctuating amplitudes occurs. In igure 6.5 b) we compare the transition point Γ/g|T→III obtained

from the condition γ = Resc with the numerically evaluated values for various Nth/n0 ≫ 1. The

plot shows that PT -symmetry breaking in the large-noise regime is very well described by this

thermal activation model.
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6.6 Arrays

Finally, the above analysis can be generalized to the case of a coupled resonator array, illustrated

in igure 6.6 a). In such a system, the resonator amplitudes αn and βn —where n is the number of

the unit cell (resonator pair)— obey coupled equations of the form







α̇n

β̇n






=







Γ −ig

−ig −Γ













αn

βn






− ig′







βn−1

αn+1






, (6.30)

where now we have included a diferent coupling g′ between the unit cells. By assuming periodic

boundary conditions and inserting plain-wave solutions of the form

αn = Aeikn−iωt, βn = Beikn−iωt, (6.31)

where k = 2πj/N , with N being the number of resonator pairs in the system, we obtain the

eigenvalues

ω±(k) = ±
√

|gk|2 − Γ2, gk = g + g′eik. (6.32)

This is similar as above, but for each mode the transition point is now determined by the coupling

gk. The transition occurs at diferent point for each quasi-momentum as illustrated in Figs. 6.6 b)

and c). Note that for g = g′ and N/2 even, we have gk=π = 0. In this case the transition occurs

for arbitrarily small values of Γ.

Similarly to the case of a pair of coupled resonators, we now show that PT -symmetry breaking

in the steady state exists also for extended systems. In particular, we generalize the analysis and
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b) c)

Figure 6.6 – a) Schematic representation of an array of coupled resonators with a parity-time-symmetric
unit cell. b) Phase portrait showing the irst and the last momenta that go unstable as we increase Γ/g,
for various values of the coupling ratio g′/g. c) Real (blue) and imaginary (red) part of the eigenvalues, for
various values of Γ/g.

consider coupled equations for each unit cell of the form







α̇n

β̇n






=







Γ+(αn) −ig

−ig Γ−(βn)













αn

βn






− ig′







βn−1

αn+1






+







Fn,+(t)

Fn,−(t)






, (6.33)

where g′ is the coupling between the unit cells and Fn,±(t) are independent thermal noise processes.

Figure 6.7 summarizes the numerical results for the steady state of an array of N = 12 resonators

with periodic boundary conditions and ν = 2. The observed features can be understood from the

plane wave ansatz [134, 135] αn = Ake
ikn, βn = Bke

ikn, where k = 4πj/N . This ansatz maps

equation (6.33) onto a two-mode problem for Ak and Bk, which is equivalent to equation (6.4), but

with the replacement g 7→ gk = |g + g′eik|. By considering now each of the modes separately, we

see that all the transition points identiied above occur irst for the mode with the largest value of

ratio Γ/|gk|, or equivalently, the smallest value of |gk|. Since in our model g and g′ are assumed to
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Figure 6.7 – Steady state of a PT -symmetric array of N = 12 resonators. a) The diferent phases are
characterized by the symmetry parameter ∆ of a single unit cell and the white-dashed lines indicate the
phase boundaries obtained from a plane wave ansatz. b) The solid line shows the analytic prediction for the
phase boundary between the thermal and symmetry-broken phase and the green squares are the transition
points obtained numerically. For both plots γ/g = 10−3 and ν = 2, such that the line g′ = 0 corresponds to
the setting considered in igures 6.3 a) and 6.4.

be real and positive, this minimal coupling is alway achieved for the k = π mode, which therefore

determines the symmetry-breaking properties of the array [136, 137]. For an even number of unit

cells and the special case g = g′, i.e., gk = 0, the gain and the loss modes completely decouple, and

the PT -symmetry breaking transitions, both in the linear and nonlinear regime, already occur at

Γ|I→II ≃ Γ|II→III ≃ Γ|T→III ≃ 0. For linear PT -symmetry chains this instability at Γ = 0 has

already been pointed in previous works [49, 136, 137]. For all intermediate parameters the phase

boundaries in igure 6.7 are obtained from the analytic results for the two-mode problem, but with

g replaced by g − g′. We see that the single-mode ansatz captures well the relevant physics both

in the low- and high-noise regime. Note that, however, in the ǵthermalǶ phase the behavior of the

array can actually be much more complicated, since the system may undergo noise-induced jumps

between multiple metastable conigurations.
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7
Summary and outlook

In this doctoral thesis, we have described the strain-induced coupling of nitrogen-vacancy centers

to individual vibrational modes of diamond nano-mechanical resonators. We have analyzed cooling

and ampliication schemes for manipulating the state of these mechanical modes and have shown

that it is possible to eiciently achieve ground-state cooling as well as to drive the resonator into

a large-amplitude coherent state, a state commonly known as a phonon laser. In addition, we

have presented a new approach for realizing mechanical ground-state cooling and schemes for ma-

nipulating the state of mechanical beams, by making use of the intrinsic reservoir consisting of

the continuum of longitudinal compression modes. We have shown that a single silicon-vacancy

center in a diamond nano-scale beam can be used to efectively engineer a mechanical reservoir.

This reservoir can be used to perform ground-state cooling, or to prepare squeezed and entangled

states of low-freqeuncy bending modes. This can be advantageous in cases where optical dissipation

channels are not available or need to be avoided. Finally, we have shown that the combination of
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cooling and lasing schemes can lead to interesting new efects. In particular, we have analyzed the

breaking of parity-time symmetry in the steady state of coupled mechanical systems with loss and

gain. We have shown how nonlinearities due to saturation efects and the inluence of thermal or

quantum noise lead to surprising new phenomena. These new phenomena are not expected from

the conventional eigenvalue analysis of idealized parity-time-symmetric systems. This result opens

up a whole new discussion on realising and investigating further microscopic systems that possess

parity-time symmetry.

This dissertation has answered timely questions in the ields of nano-mechanical systems and

parity-time-symmetric systems. Several experimental groups are currently working on the imple-

mentation of the proposed cooling schemes [for a recent review see [65]]. However, it has also raised

new questions and opened up relevant discussions. In particular, in the case of diamond beams

further investigations are necessary in the direction of obtaining eicient schemes for strain-induced

coupling between two diamond impurities. Achieving this, can lead to new schemes for quantum

information processing with solid state spin qubits. Also, the realisation that already very simple

systems with balanced loss and gain are proven to be more complex than previously known, pro-

vides an important incentive for further research. Towards this direction, the next step would be

to further investigate quantum systems possessing this symmetry as well as parity-time-symmetric

arrays.
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A
Appendix

A.1 Numerical simulations

For the numerical results presented in igures. 6.4 and 6.5 in the main text we have simulated the

stochastic equations (6.4) (and the corresponding extended set of equations for the array) using the

Euler-Maruyama method (see section 15 of [127]). Since we are interested in the steady state of the

system, we collect data (complex numbers α(t) and β(t)) after a time of 5× τ0 where τ0 = 1/γ is

approximately the time scale in which the steady state is approached. Over a period of 45× τ0 we

select 4000 random data points. We repeat the procedure 80 times with random initial conditions.

From the numerical data we obtain the marginal steady-state distributions Pss(α) and Pss(β) for

the two modes. Since the system is invariant under a combined rotation of α and β in phase space,

also the marginal distributions are radially symmetric. Figure A.1 shows examples of the resulting

radial distribution Pss(r = |α|) for the gain mode, before, close to, and after the transition.
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Figure A.1 – Histograms of the real amplitude r = |α| of the resonator with gain and the itting distribution
(red line)—described by equation (A.1)—for three diferent values of the ratio Γ/g. a) Fitting distribution in
the thermal regime, for Γ/g = 3. b) Fitting distribution in the vicinity of the thermally-activated transition,
for Γ/g = 6.3. c) Fitting distribution in the lasing regime, for Γ/g = 8.6. Note that the y-axis of the last
plot has been scaled by 1/3.

To obtain a simple characterization of the systemǶs steady state, we it the radial distribution

Pss(r = |α|) by a distribution of the form

Pr0,σ(r) = N × r × e−
(r−r0)

2

σ2 , (A.1)

where N is a normalization constant. It corresponds to a thermal state for r0 = 0 and σ =
√
Nth

and approaches the distribution of a coherent state with random phase in the limit σ ≪ r0. The

optimal values for r0 and σ are obtained by minimization of the squared diference

χ2(r0, σ) =

N
∑

i=1

(Hi − Pr0,σ(ri))
2 , (A.2)

where Hi represents the hight of the iǶth bar of the histogram.

While this itting procedure yields accurate values for the radial displacement of the distribution

maximum, r0, we ind that the corresponding values for the width σ do not very well capture the

broad thermal background in the vicinity of the transition [see igure A.1 b)]. Therefore, we use
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instead the quantity

(∆α)2 = ⟨|α|2⟩ − r20, (A.3)

where the average ⟨|α|2⟩ is calculated directly from the data set, to represent the range of luctua-

tions.

117



Bibliography

[1] M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt. Cavity optomechanics. Rev. Mod.

Phys., 86:1391, 2014.

[2] Andrew N. Cleland. Foundations of Nanomechanics: From Solid-State Theory to Device

Applications. Advanced Texts in Physics. Springer-Verlag Berlin Heidelberg., 2003.

[3] J. Chan. Laser cooling of a nanomechanical oscillator into its quantum ground state. Nature,

478:89, 2011.

[4] J. D. Teufel and et al. Sideband cooling of micromechanical motion to the quantum ground

state. Nature (London), 475:359, 2011.

[5] I. Wilson-Rae, N. Nooshi, W. Zwerger, and T. J. Kippenberg. Theory of ground state cooling

of a mechanical oscillator using dynamical backaction. Phys. Rev. Lett., 99:093901, 2007.

[6] F. Marquardt, J. P. Chen, A. A. Clerk, and S. M. Girvin. Quantum theory of cavity-assisted

sideband cooling of mechanical motion. Phys. Rev. Lett., 99:093902, 2007.

[7] C. Genes, D. Vitali, P. Tombesi, S. Gigan, and M. Aspelmeyer. Ground-state cooling of a

micromechanical oscillator: Comparing cold damping and cavity-assisted cooling schemes.

Phys. Rev. A, 77:033804, 2008.

[8] I. Wilson-Rae, P. Zoller, and A. Imamoglu. Laser cooling of a nanomechanical resonator

mode to its quantum ground state. Phys. Rev. Lett., 92:075507, 2004.

[9] S. Zippilli, G. Morigi, and A. Bachtold. Cooling carbon nanotubes to the phononic ground

state with a constant electron current. Phys. Rev. Lett., 102:096804, 2009.

[10] I. Martin, A. Shnirman, L. Tian, and P. Zoller. Ground-state cooling of mechanical resonators.

Phys. Rev. B, 69:125339, 2004.

[11] P. Zhang, Y. D. Wang, and C. P. Sun. Cooling mechanism for a nanomechanical resonator

by periodic coupling to a cooper pair box. Phys. Rev. Lett., 95:097204, 2005.

[12] K. Jaehne, K. Hammerer, and M. Wallquist. Ground-state cooling of a nanomechanical

resonator via a cooper-pair box qubit. New J. Phys., 10:095019, 2009.

118



[13] J. Wrachtrup and F. Jelezko. Quantum information processing in diamond. J. Phys.: Con-

dens. Matter, 18:S807, 2006.

[14] M. W. Dohertya, N. B. Mansonb, P. Delaneyc, F. Jelezko, J. Wrachtrupe, and L. C. L.

Hollenberga. The nitrogen-vacancy colour centre in diamond. Phys. Rep., 528:1, 2013.

[15] G. Balasubramanian and et al. Ultralong spin coherence time in isotopically engineered

diamond. Nat. Mater., 8:383, 2009.

[16] F. Jelezko, T. Gaebel, I. Popa, A. Gruber, and J. Wrachtrup. Observation of coherent

oscillations in a single electron spin. Phys. Rev. Lett., 92:076401, 2004.

[17] P. Ovartchaiyapong, L. M. A. Pascal, B. A. Myers, P. Lauria, and A. C. Bleszyn-

ski Jayich. High quality factor single-crystal diamond mechanical resonators. Appl. Phys.

Lett., 101:163505, 2012.

[18] Y. Tao, J. M. Boss, B. A. Moores, and C. L. Degen. Single-crystal diamond nanomechanical

resonators with quality factors exceeding one million. Nat. Commun., 5(3638), 2014.

[19] P. Rabl, S. J. Kolkowitz, F. H. L. Koppens, J. G. E. Harris, P. Zoller, and M. D. Lukin.

A quantum spin transducer based on nanoelectromechanical resonator arrays. Nat. Phys.,

6:602, 2010.

[20] S. J. M. Habraken, K. Stannigel, M. D. Lukin, P. Zoller, and P. Rabl. Continuous mode

cooling and phonon routers for phononic quantum networks. New J. Phys., 14:115004, 2012.

[21] A. Albrecht, A. Retzker, F. Jelezko, and M. B. Plenio. Coupling of nitrogen vacancy centres

in nanodiamonds by means of phonons. New J. Phys., 15:083014, 2013.

[22] S. D. Bennett, N. Y. Yao, J. Otterbach, P. Zoller, P. Rabl, and M. D. Lukin. Phonon-induced

spin-spin interactions in diamond nanostructures: Application to spin squeezing. Phys. Rev.

Lett., 110:156402, 2013.

[23] C. D. Clark, H. Kanda, I. Kiawi, and G. Sittas. Silicon defects in diamond. Phys. Rev. B,

51:16681, 1995.

[24] A. Sipahigil and et al. Quantum interference of single photons from remote nitrogen-vacancy

centers in diamond. Phys. Rev. Lett., 108:143601, 2012.

119



[25] E. Neu and et al. Low-temperature investigations of single silicon vacancy colour centres in

diamond. New J. Phys., 15:043005, 2013.

[26] A. Dietrich and et al. Isotopically varying spectral features of siliconvacancy in diamond.

New J. Phys., 16:113019, 2014.

[27] L. G. Remus, M. P. Blencowe, and Y. Tanaka. Damping and decoherence of a nanomechanical

resonator due to a few two-level systems. Phys. Rev. B, 80:174103, 2009.

[28] Ö. O. Soykal, R. Ruskov, and C. Tahan. Sound-based analogue of cavity quantum electro-

dynamics in silicon. Phys. Rev. Lett., 107:235502, 2011.

[29] R. Ruskov and C. Tahan. On-chip cavity quantum phonodynamics with an acceptor qubit

in silicon. Phys. Rev. B, 88:064308, 2013.

[30] T. Ramos, V. Sudhir, K. Stannigel, P. Zoller, and T. J. Kippenberg. Nonlinear quantum

optomechanics via individual intrinsic two-level defects. Phys. Rev. Lett., 110:193602, 2013.

[31] M. J. Burek. Free-standing mechanical and photonic nanostructures in single-crystal dia-

mond. Nano Lett., 12:6084, 2012.

[32] B. J. M. Hausmann, J. T. Choy, T. M. Babinec, B. J. Shields, I. Bulu, M. D. Lukin, and

M. Loncar. Diamond nanophotonics and applications in quantum science and technology.

Phys. Status Solidi A, 209:1619, 2012.

[33] D. Leibfried, R. Blatt, C. Monroe, and D. Wineland. Quantum dynamics of single trapped

ions. Rev. Mod. Phys., 75:281, 2003.

[34] S. D. Bennett and A. A. Clerk. Laser-like instabilities in quantum nano-electromechanical

systems. Phys. Rev. B, 74:201301, 2006.

[35] D. A. Rodrigues, J. Imbers, and A. D. Armour. Quantum dynamics of a resonator driven by

a superconducting single-electron transistor: A solid-state analogue of the micromaser. Phys.

Rev. Lett., 98:067204, 2007.

[36] J. Hauss, A. Fedorov, C. Hutter, A. Shnirman, and G. Schön. Single-qubit lasing and cooling

at the rabi frequency. Phys. Rev. Lett., 100:037003, 2008.

[37] K. Vahala, M. Herrmann, S. Knünz, V. Batteiger, G. Saathif, T. W. Hänsch, and Th. Udem.

A phonon laser. Nat. Phys., 5:682, 2009.

120



[38] I. S. Grudinin, H. Lee, O. Painter, and K. J. Vahala. Phonon laser action in a tunable

two-level system. Phys. Rev. Lett., 104:083901, 2010.

[39] S. André and et al. Single-qubit lasing in the strong-coupling regime. Phys. Rev. A, 82:053802,

2010.

[40] I. Mahboob, K. Nishiguchi, A. Fujiwara, and H. Yamaguchi. Phonon lasing in an electrome-

chanical resonator. Phys. Rev. Lett., 110:127202, 2013.

[41] J. Kabuss, A. Carmele, T. Brandes, and A. Knorr. Optically driven quantum dots as source of

coherent cavity phonons: A proposal for a phonon laser scheme. Phys. Rev. Lett., 109:054301,

2012.

[42] N. Lörch, J. Qian, A. A. Clerk, F. Marquardt, and K. Hammerer. Laser theory for optome-

chanics: limit cycles in the quantum regime. Phys. Rev. X, 4:011015, 2014.

[43] K. G. Makris, R. El-Ganainy, D. N. Christodoulides, and Z. H. Musslimani. Beam dynamics

in pt symmetric optical lattices. Phys. Rev. Lett., 100:103904, 2008.

[44] Z. H. Musslimani, K. G. Makris, R. El-Ganainy, and D. N. Christodoulides. Optical solitons

in pt periodic potentials. Phys. Rev. Lett., 100:030402, 2008.

[45] A. Guo and et al. Observation of pt-symmetry breaking in complex optical potentials. Phys.

Rev. Lett., 103:093902, 2009.

[46] C. E. Rüter, K. G. Makris, R. El-Ganainy, D. N. Christodoulides, M. Segev, and D. Kip.

Observation of parity–time symmetry in optics. Nat. Phys., 6:192, 2010.

[47] A. Regensburger, C. Bersch, M.-A. Miri, G. Onishchukov, D. N. Christodoulides, and

U. Peschel. Parity–time synthetic photonic lattices. Nature (London), 488:167, 2012.

[48] B. Peng and et al. Parity–time-symmetric whispering-gallery microcavities. Nat. Phys.,

10:394, 2014.

[49] L. Feng, Z. J. Wong, R.-M. Ma, Y. Wang, and X. Zhang. Single-mode laser by parity-time

symmetry breaking. Science, 346:972, 2014.

[50] H. Hodaei, M.-A. Miri, M. Heinrich, D. N. Christodoulides, and M. Khajavikhan. Parity-

time–symmetric microring lasers. Science, 346:975, 2014.

121



[51] C. Hang, G. Huang, and V. V. Konotop. Pt symmetry with a system of three-level atoms.

Phys. Rev. Lett., 110:083604, 2013.

[52] D. Haag, D. Dast, A. Löhle, H. Cartarius, J. Main, and G. Wunner. Nonlinear quantum

dynamics in a pt-symmetric double well. Phys. Rev. A, 89:023601, 2014.

[53] T. E. Lee and C.-K. Chan. Heralded magnetism in non-hermitian atomic systems. Phys.

Rev. X, 4:041001, 2014.

[54] H. Jing, S.฀K. Özdemir, X.-Y. Lü, J. Zhang, L. Yang, and F. Nori. Pt-symmetric phonon

laser. Phys. Rev. Lett., 113:053604, 2014.

[55] X.-W. Xu, Y.-X. Liu, C. P. Sun, and Y. Li. Mechanical pt symmetry in coupled optome-

chanical systems. Phys. Rev. A, 92:013852, 2015.

[56] X.-Y. Lü, H. Jing, J.-Y. Ma, and Y. Wu. Pt-symmetry-breaking chaos in optomechanics.

Phys. Rev. Lett., 114:253601, 2015.

[57] K. V. Kepesidis, S. D. Bennett, S. Portolan, M. D. Lukin, and P. Rabl. Phonon cooling and

lasing with nitrogen-vacancy centers in diamond. Phys. Rev. B, 88:064105, 2013.

[58] K. V. Kepesidis, M.-A. Lemonde, A. Norambuena, J. R. Maze, and P. Rabl. Cooling phonons

with phonons: acoustic reservoir-engineering with silicon-vacancy centers in diamond. Phys.

Rev. B, 94:214115, 2016.

[59] K. V. Kepesidis, T. J. Milburn, J. Huber, K. G. Makris, S. Rotter, and P. Rabl. Pt-symmetry

breaking in the steady state of microscopic gain–loss systems. New J. Phys., 18:095003, 2016.

[60] L. D. Landau, L. P. Pitaevskii, A. M. Kosevich, and E. M. Lifshitz. Theory of Elasticity

(Third Edition). Butterworth-Heinemann, Oxford, third edition edition, 1986.

[61] D. F. Walls and G. J. Milburn. Quantum Optics. Springer-Verlag, Berlin Heidelberg, 2nd

edition, 1994 2008.

[62] P. Lambropoulos and D. Petrosyan. Fundamentals of Quantum Optics and Quantum Infor-

mation. Springer, Berlin, 2007.

[63] M. Schlosshauer. Decoherence and the quantum-to-classical transition. Springer-Verlag Berlin

Heidelberg, 2007, Corrected Second Printing 2008.

122



[64] T. J. Milburn and P. Rabl. Advanced quantum optics. Lecture notes: 132.501 - TU Wien,

2013/2014.

[65] D. Lee, K. W. Lee, J. V. Cady, P. Ovartchaiyapong, and A. C. Bleszynski Jayich. Topical

review: Spins and mechanics in diamond. arXiv:1609.00418, 2016.

[66] J. R. Maze, A. Gali, E. Togan, Y. Chu, A. Trifonov, E. Kaxiras, and M. D. Lukin. Properties of

nitrogen-vacancy centers in diamond: the group theoretic approach. New J. Phys., 13:025025,

2011.

[67] M. W. Doherty, N. B. Manson, P. Delaney, and L. C. L. Hollenberg. The negatively charged

nitrogen-vacancy centre in diamond: the electronic solution. New J. Phys., 13:025019, 2011.

[68] J. P. Goss, P. R. Briddon, and M. J. Shaw. Density functional simulations of silicon-containing

point defects in diamond. Phys. Rev. B, 76:075204, 2007.

[69] C. Hepp, T. Müller, V. Waselowski, J. N. Becker, B. Pingault, H. Sternschulte, D. Steinmüller-

Nethl, A. Gali, J. R. Maze, M. Atatüre, and C. Becher. Electronic structure of the silicon

vacancy color center in diamond. Phys. Rev. Lett., 112:036405, 2014.

[70] T. A. Abtew, Y. Y. Sun, Bi-Ching Shih, P. Dev, S. B. Zhang, and P. Zhang. Dynamic

jahn-teller efect in the nv-center in diamond. Phys. Rev. Lett., 107:146403, 2011.

[71] J. C. Slonczewski. Theory of the dynamical jahn-teller efect. Phys. Rev., 131:1596, 1963.

[72] K.-M. C. Fu, C. Santori, P. E. Barclay, L. J. Rogers, N. B. Manson, and R. G. Beausoleil.

Observation of the dynamic jahn-teller efect in the excited states of nitrogen-vacancy centers

in diamond. Phys. Rev. Lett., 103:256404, 2009.

[73] I. B. Bersuker. The Jahn-Teller Efect. Cambridge University Press, Cambridge, 2006.

[74] G. Davies and M. F. Hamer. Optical studies of the 1.945 ev vibronic band in diamond. Proc.

R. Soc. A, 348:285, 1976.

[75] P. Treutlein, C. Genes, K. Hammerer, M. Poggio, and P. Rabl. Cavity Optomechanics.

Springer, Berlin, 2014.

[76] H. J. Mamin, C. T. Rettner, M. H. Sherwood, L. Gao, and D. Rugar. High ield-gradient

dysprosium tips for magnetic resonance force microscopy. Appl. Phys. Lett., 100:013102, 2012.

123



[77] Y. Tao, A. Eichler, T. Holzherr, and C. L. Degen. Ultrasensitive mechanical detection of

magnetic moment using a commercial disk drive write head. Nat. Commun., 100:12714,

2016.

[78] J. P. Goss, R. Jones, S. J. Breuer, P. R. Briddon, and S. Oberg. The twelve-line 1.682 ev

luminescence center in diamond and the vacancy-silicon complex. Phys. Rev. Lett., 77:3041,

1996.

[79] F. Tinkham. Group Theory and Quantum Mechanics. Mc-Graw Hill, New York, 2003.

[80] C. Hepp. Electronic Structure of the Silicon Vacancy Color Center in Diamond. PhD thesis,

University of Saarland, 2014.

[81] K. W. Lee, D. Lee, P. Ovartchaiyapong, J. Minguzzi, J. R. Maze, and A. C. Bleszynski Jayich.

Strain coupling of a mechanical resonator to a single quantum emitter in diamond. Phys.

Rev. Applied, 6:034005, 2016.

[82] P. Rabl. Cooling of mechanical motion with a two-level system: The high-temperature regime.

Phys. Rev. B, 82:165320, 2010.

[83] C. W. Gardiner and P. Zoller. Quantum Noise. Springer-Verlag, Berlin Heidelberg, 2nd

edition, 1991 2000.

[84] E. Togan and et al. Quantum entanglement between an optical photon and a solid-state spin

qubit. Nature (London), 466:09256, 2010.

[85] Ph. Tamarat and et al. Stark shift control of single optical centers in diamond. Phys. Rev.

Lett., 97:083002, 2006.

[86] H. Bernien, L. Childress, L. Robledo, M. Markham, D. Twitchen, and R. Hanson. Two-photon

quantum interference from separate nitrogen vacancy centers in diamond. Phys. Rev. Lett.,

108:043604, 2012.

[87] J. I. Cirac, R. Blatt, P. Zoller, and W. D. Phillips. Laser cooling of trapped ions in a standing

wave. Phys. Rev. A, 46:2668, 1992.

[88] L. Giannelli, R. Betzholz, L. Kreiner, M. Bienert, and G. Morigi. Laser and cavity cooling

of a mechanical resonator with a nitrogen-vacancy center in diamond. arXiv:1607.06656v2,

2016.

124



[89] K. Beha, A. Batalov, N. B. Manson, R. Bratschitsch, and A. Leitenstorfer. Optimum photo-

luminescence excitation and recharging cycle of single nitrogen-vacancy centers in ultrapure

diamond. Phys. Rev. Lett., 109:097404, 2012.

[90] P. Siyushev, H. Pinto, M. Vörös, A. Gali, F. Jelezko, and J. Wrachtrup. Optically controlled

switching of the charge state of a single nitrogen-vacancy center in diamond at cryogenic

temperatures. Phys. Rev. Lett., 110:167402, 2013.

[91] K. Huang and A. Rhys. Theory of light absorption and non-radiative transitions in f-centres.

Proc. R. Soc. A, 204:406, 1950.

[92] J. F. Poyatos, J. I. Cirac, and P. Zoller. Quantum reservoir engineering with laser cooled

trapped ions. Phys. Rev. Lett., 77:4728, 1996.

[93] B. Kraus, H. P. Büchler, S. Diehl, A. Kantian, A. Micheli, and P. Zoller. Preparation of

entangled states by quantum markov processes. Phys. Rev. A, 78:042307, 2008.

[94] S. G. Schirmer and X. Wang. Stabilizing open quantum systems by markovian reservoir

engineering. Phys. Rev. A, 81:062306, 2010.

[95] M. Müller, S. Diehl, G. Pupillo, and P. Zoller. Engineered open systems and quantum

simulations with atoms and ions. Adv. Atom. Mol. Opt. Phys., 61:1, 2012.

[96] J. I. Cirac, A. S. Parkins, R. Blatt, and P. Zoller. ”dark” squeezed states of the motion of a

trapped ion. Phys. Rev. Lett., 70:556, 1993.

[97] D. Kienzler and et al. Quantum harmonic oscillator state synthesis by reservoir engineering.

Science, 347:6217, 2015.

[98] A. D. Stone M. Devoret A. Roy, Z. Leghtas and M. Mirrahimi. Continuous generation and

stabilization of mesoscopic ield superposition states in a quantum circuit. Phys. Rev. A,

91:013810, 2015.

[99] S. Clark, A. Peng, M. Gu, and S. Parkins. Unconditional preparation of entanglement between

atoms in cascaded optical cavities. Phys. Rev. Lett., 91:177901, 2003.

[100] H. Krauter and et al. Entanglement generated by dissipation and steady state entanglement

of two macroscopic objects. Phys. Rev. Lett., 107:080503, 2011.

125



[101] C. A. Muschik, E. S. Polzik, and J. I. Cirac. Dissipatively driven entanglement of two

macroscopic atomic ensembles. Phys. Rev. A, 83:052312, 2011.

[102] S. Diehl, A. Micheli, A. Kantian, B. Kraus, H. P. Buchler, and P. Zoller. Quantum states

and phases in driven open quantum systems with cold atoms. Nat. Phys., 4:878, 2008.

[103] H. Weimer, M. Muller, I. Lesanovsky, P. Zoller, and H. P. Buchler. A rydberg quantum

simulator. Nat. Phys., 6:382, 2010.

[104] J. T. Barreiro and et al. An open-system quantum simulator with trapped ions. Nature

(London), 470:486, 2011.

[105] P. Rabl, A. Shnirman, and P. Zoller. Generation of squeezed states of nanomechanical res-

onators by reservoir engineering. Phys. Rev. B, 70:205304, 2004.

[106] A. Kronwald, F. Marquardt, and A. A. Clerk. Arbitrarily large steady-state bosonic squeezing

via dissipation. Phys. Rev. A, 88:063833, 2013.

[107] E. E. Wollman and et al. Quantum squeezing of motion in a mechanical resonator. Science,

349:6251, 2015.

[108] Y.-D. Wang and A. A. Clerk. Reservoir-engineered entanglement in optomechanical systems.

Phys. Rev. Lett., 110:253601, 2013.

[109] H. Tan, G. Li, and P. Meystre. Dissipation-driven two-mode mechanical squeezed states in

optomechanical systems. Phys. Rev. A, 87:033829, 2013.

[110] A. Tomadin, S. Diehl, M. D. Lukin, P. Rabl, and P. Zoller. Reservoir engineering and

dynamical phase transitions in optomechanical arrays. Phys. Rev. A, 86:033821, 2012.

[111] E. R. MacQuarrie, T. A. Gosavi, N. R. Jungwirth, S. A. Bhave, and G. D. Fuchs. Mechanical

spin control of nitrogen-vacancy centers in diamond. Phys. Rev. Lett., 111:227602, 2013.

[112] P. Ovartchaiyapong, K. W. Lee, B. A. Myers, and A. C. Bleszynski Jayich. Dynamic strain-

mediated coupling of a single diamond spin to a mechanical resonator. Nat. Commun.,

5(4429), 2014.

[113] A. Barfuss, J. Teissier, E. Neu, A. Nunnenkamp, and P. Maletinsky. Strong mechanical

driving of a single electron spin. Nat. Phys., 11:820, 2015.

126



[114] S. Meesala and et al. Enhanced strain coupling of nitrogen-vacancy spins to nanoscale dia-

mond cantilevers. Phys. Rev. Applied, 5:034010, 2016.

[115] D. A. Golter, T. Oo, M. Amezcua, K. A. Stewart, and H. Wang. Optomechanical quantum

control of a nitrogen-vacancy center in diamond. Phys. Rev. Lett., 116:143602, 2016.

[116] P. Rabl, P. Cappellaro, M. V. G. Dutt, L. Jiang, J. R. Maze, and M. D. Lukin. Strong

magnetic coupling between an electronic spin qubit and a mechanical resonator. Phys. Rev.

B, 79:041302, 2009.

[117] O. Arcizet, V. Jacques, A. Siria, P. Poncharal, P. Vincent, and S. Seidelin. A single nitrogen-

vacancy defect coupled to a nanomechanical oscillator. Nat. Phys., 7:879, 2011.

[118] S. Kolkowitz and et al. 0 0 report coherent sensing of a mechanical resonator with a single-spin

qubit. Science, 335:1603, 2012.

[119] K. D. Jahnke and et al. Electron–phonon processes of the silicon-vacancy centre in diamond.

New J. Phys., 17:043011, 2015.

[120] C. A. Klein and G. F. Cardinal. Diamond and Related Materials, 2:918, 1993.

[121] L.-M. Duan, G. Giedke, J. I. Cirac, and P. Zoller. Inseparability criterion for continuous

variable systems. Phys. Rev. Lett., 84:2722, 2000.

[122] R. Simon. Peres-horodecki separability criterion for continuous variable systems. Phys. Rev.

Lett., 84:2726, 2000.

[123] M. J. Hartmann and M. B. Plenio. Steady state entanglement in the mechanical vibrations

of two dielectric membranes. Phys. Rev. Lett., 101:200503, 2008.

[124] C. M. Bender and S. Boettcher. Real spectra in non-hermitian hamiltonians having pt sym-

metry. Phys. Rev. Lett., 80:5243, 1998.

[125] C. M. Bender. Making sense of non-hermitian hamiltonians. Rep. Prog. Phys., 70:947, 2007.

[126] H. Ramezani, T. Kottos, R. El-Ganainy, and D. N. Christodoulides. Unidirectional nonlinear

pt-symmetric optical structures. Phys. Rev. A, 82:043803, 2010.

[127] C. Gardiner. Stochastic Methods. Berlin: Springer, 4th edition, 2009.

127



[128] H. Schomerus. Quantum noise and self-sustained radiation of pt-symmetric systems. Phys.

Rev. Lett., 104:233601, 2010.

[129] G. S. Agarwal and Kenan Qu. Spontaneous generation of photons in transmission of quantum

ields in pt-symmetric optical systems. Phys. Rev. A, 85:031802, 2012.

[130] B. He, S.-B. Yan, J. Wang, and M. Xiao. Quantum noise efects with kerr-nonlinearity

enhancement in coupled gain-loss waveguides. Phys. Rev. A, 91:053832, 2015.

[131] N. V. Alexeeva, I. V. Barashenkov, K. Rayanov, and S. Flach. Actively coupled optical

waveguides. Phys. Rev. A, 89:013848, 2014.

[132] B. Peng and et al. Loss-induced suppression and revival of lasing. Science, 346:328, 2014.

[133] M. Brandstetter and et al. Reversing the pump dependence of a laser at an exceptional point.

Nat. Commun., 5:4034, 2014.

[134] N. Lazarides and G. P. Tsironis. Gain-driven discrete breathers in pt-symmetric nonlinear

metamaterials. Phys. Rev. Lett., 110:053901, 2013.

[135] M. C. Cross and P. C. Hohenberg. Pattern formation outside of equilibrium. Rev. Mod.

Phys., 65:851, 1993.

[136] O. Vazquez-Candanedo, J. C. Hernández-Herrejón, F. M. Izrailev, and D. N. Christodoulides.

Gain- or loss-induced localization in one-dimensional pt-symmetric tight-binding models.

Phys. Rev. A, 89:013832, 2014.

[137] I. V. Barashenkov, L. Baker, and N. V. Alexeeva. Pt-symmetry breaking in a necklace of

coupled optical waveguides. Phys. Rev. A, 87:033819, 2013.

128



  About the author 

 

 

PERSONAL INFORMATION Kosmas Kepesidis  
 

  

Erich-Klausener-Str. 11, 40474 Düsseldorf (Germany)  

 +4915158071941     

 cosmasquantum@gmail.com  

https://www.linkedin.com/in/kosmas-kepesidis-78697996   

 

WORK EXPERIENCE  

 

 

 

 

EDUCATION AND TRAINING  

 

 

 

 

 

ADDITIONAL INFORMATION  

 

 
 
 

1 Nov 2016–Present Professional | Forensics 
Deloitte Deutschland, Düsseldorf (Germany)  

May 2012–31 Oct 2016 Research Assistant | Physics 
Technische Universität Wien, Vienna (Austria)  

Jan 2012–Apr 2012 Research Assistant | Physics 
Technische Universität München, Munich (Germany)  

Jan 2013–Present Doctoral Degree (Dr. rer. nat.) in Technical Physics EQF level 8 

Technische Universität Wien, Vienna (Austria)  

Oct 2009–Sep 2011 Master's Degree (M.Sc.) in Physics EQF level 7 

Ludwig-Maximilians-Universität München, Munich (Germany)  

Oct 2004–Jan 2009 Bachelor's Degree (B.Sc.) in Physics EQF level 6 

University of Crete, Heraklion (Greece)  

Publications - Cooling phonons with phonons: acoustic reservoir-engineering with silicon-vacancy centers in 
diamond, K. V. Kepesidis, M.-A. Lemonde, A. Norambuena, J. R. Maze, P. Rabl, Phys. Rev. B 94, 
214115 (2016), American Physical Society 

- PT-symmetry breaking in the steady state of microscopic gain-loss systems, K. V. Kepesidis, T. J. 
Milburn, J. Huber, K. G. Makris, S. Rotter, P. Rabl, New Journal of Physics 18, 095003 (2016), IOP 
Publishing 

- Phonon cooling and lasing with nitrogen-vacancy centers in diamond, K. V. Kepesidis, S. D. Bennett, 
S. Portolan, M. D. Lukin and P. Rabl, Phys. Rev. B 88, 064105 (2013), American Physical Society   

- Bose-Hubbard model with localized particle losses, K. V. Kepesidis and M. J. Hartmann, Phys. Rev. 
A 85, 063620 (2012), American Physical Society  

https://www.linkedin.com/in/kosmas-kepesidis-78697996

	Introduction
	Optomechanics
	Impurity centers in diamond
	Defect-phonon coupling
	Cooling and phonon lasing
	Parity-time-symmetric systems
	Outline of the thesis
	Publications

	Mechanical systems and defect centers in diamond
	Quantized mechanical vibrations
	Defect centers in diamond
	Defect-phonon coupling

	Cooling of mechanical motion and phonon lasing
	Cooling of mechanical motion
	Basic laser theory

	Phonon cooling and lasing with nitrogen-vacancy centers in diamond
	Introduction
	Model
	Ground state cooling of a mechanical resonator
	Phonon lasing with nitrogen vacancy centers
	Detection

	Phonon-reservoir engineering with SiV centers
	Introduction
	Model
	Phonon reservoirs
	Cooling
	Two-mode squeezing

	Parity-time-symmetry breaking in the steady state
	Introduction
	PT-symmetry breaking
	PT-symmetric phonon systems
	Steady state of PT-symmetric systems in the absence of noise
	Steady state in noisy�PT-symmetric systems
	Arrays

	Summary and outlook
	Appendix Appendix
	Numerical simulations

	Bibliography

