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Abstract
Remote sensing plays an important role for mapping and monitoring of floods
and wetlands. Synthetic aperture radars (SAR) are of special importance due
to their ability to penetrate cloud cover and their high sensitivity to the occur-
rence of surface water and variations in soil moisture. During flood events this
sensitivity typically leads to deviations from backscatter behaviour that is ob-
served under non-flooded conditions. These alterations are typically mapped
using change detection techniques in which the changes between a pre- and a
post-flood SAR image are quantified and classified. However, a number of open
research questions exist with respect to automatic detection of flood-induced
backscatter changes: (i) in change detection, selection of a suitable pre-flood
reference image is often not trivial. This is especially the case when user inter-
vention should be minimised, a constraint often imposed by the requirements of
automatic processing chains. (ii) Numerous studies have demonstrated the im-
portance of seasonality in backscatter from different land-surface types, which
is typically not addressed explicitly in change detection methodologies. (iii) A
number of confounding factors exist that contribute to the overall uncertainty
of the delineated flood extents, such as ambiguous radar signatures of differ-
ent land-cover types and the contribution of speckle. Traditionally, binary
flood maps include no information on the expected uncertainty introduced by
these factors whereas more recently, flood mapping methodologies have been
proposed that result in fuzzy or probabilistic flood maps.

The overall objective of this thesis is to address these open questions by
introducing and evaluating a novel change detection framework for mapping
flood-induced deviations from long-term backscattering behaviour. For this
purpose, backscatter signatures were derived by characterising seasonality us-
ing harmonic analysis of ENVISAT Advanced SAR (ASAR) Wide Swath time
series spanning multiple years (> 50 scenes). The estimated harmonic model
parameters were analysed and discussed for complex wetland areas in the con-
text of ancillary data on hydrological and biophysical processes. The model
residuals were used as a measure of the flood-induced deviation from average
seasonal backscattering behaviour. Finally, a Bayesian approach was applied
for deriving probabilistic flood maps from the residuals.

The results show that harmonic analysis of SAR time series can be effec-
tively used for deriving seasonal signatures characteristic of different land-
surface types. Moreover, the applicability of the model parameters for classi-
fying different wetland backscattering classes is demonstrated. The use of the
model residuals for delineating areas that were inundated during non-seasonal
events indicates that seasonal harmonic model estimates can serve as a reliable



estimate of the seasonal backscattering behaviour a land surface would display
under non-flooded conditions. The probabilistic flood mapping approach is
shown to provide reliable maps and can be used for characterising uncertainty
caused by some of the aforementioned factors.

In conclusion, the proposed approach provides a framework for characteris-
ing seasonal backscattering behaviour and detecting flood-induced backscatter
changes in SAR time series. An outlook to using the proposed method in the
context of novel SAR missions such as Sentinel-1 is provided.

Keywords: SAR, Floods, Wetlands, ENVISAT ASAR Wide Swath, Time
series analysis, Hydrology
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Kurzfassung
Fernerkundung spielt eine wichtige Rolle bei der Kartierung und Überwa-
chung von Überschwemmungsereignissen und Feuchtgebieten. Radarsensoren
mit synthetischer Apertur (SAR) kommt hierbei eine besondere Bedeutung zu.
Zum einen bieten diese die Möglichkeit, auch dichte Wolkendecken zu durch-
dringen und zum anderen besitzen sie eine hohe Sensitivität gegenüber dem
Vorkommen von Oberflächenwasser sowie für Veränderungen im Bodenfeuch-
tezustand. Diese Sensitivität führt während Überschwemmungsereignissen zu
starken Abweichungen von dem Rückstreuverhalten, welches eine Landober-
fläche unter nicht-überschwemmten Bedingungen aufweisen würde. Solche Ab-
weichungen werden für gewöhnlich mittels Change Detection kartiert, wobei
Änderungen zwischen zwei SAR-Aufnahmen quantifiziert und klassifiziert wer-
den. Dabei wird eine Aufnahme verwendet, die den Zustand während der Über-
schwemmung zeigt sowie eine Referenzaufnahme, die vor oder nach dem Er-
eignis, also unter nicht-überschwemmten Bedingungen, aufgenommen wurde.

Eine Reihe offener Fragen existiert jedoch bezüglich der automatischen Er-
kennung von Änderungen im Rückstreuverhalten, die durch Überschwemmun-
gen erzeugt worden sind: (i) die Auswahl geeigneter Referenzaufnahmen für
die Verwendung in Change Detection ist oft schwierig und kann nicht objektiv
durchgeführt werden. Dies ist insbesondere dann von Bedeutung, wenn die An-
zahl der nötigen Eingriffe seitens des Benutzers minimiert werden soll, was im
Rahmen automatischer Prozessierungsketten oftmals der Fall ist. (ii) Eine An-
zahl von Studien hat gezeigt, dass die Saisonalität im Rückstreukoeffizienten
für verschiedene Landoberflächentypen von großer Bedeutung sein kann. Diese
Saisonalität wird in Change-Detection-Ansätzen im Allgemeinen nicht explizit
berücksichtigt. (iii) Eine Anzahl verschiedener Faktoren trägt zur Unsicher-
heit der abgeleiteten Überschwemmungskarten bei, so z.B. die zweideutigen
Radarsignaturen verschiedener Landoberflächentypen sowie der Einfluss von
Speckle. Traditionell enthalten binäre Überschwemmungskarten keine zusätz-
liche Information über die Unsicherheiten, welche aufgrund solcher Faktoren
zu erwarten sind. In jüngerer Zeit hingegen wurden erstmals Karten mittels
probabilistischer Methoden oder Fuzzy-Logik produziert, mittels derer einige
solcher Unsicherheiten ausgedrückt werden können.

Die Zielsetzung dieser Dissertation ist die Beschreibung und Validierung ei-
ner Methodik zur Detektion und Kartierung plötzlicher Änderungen im SAR-
Rückstreuverhalten, wie sie durch Überschwemmungen herbeigeführt werden
können. In diesem Rahmen sollen die o.g. Fragen adressiert werden. Zu die-
sem Zweck wurden Rückstreusignaturen abgeleitet, indem die Saisonalität im
Rückstreukoeffizienten auf Basis mehrjähriger SAR-Zeitreihen (> 50 Szenen)



mittels eines harmonischen Modellansatzes charakterisiert wurde. Hierzu wur-
den ENVISAT Advanced SAR (ASAR) Wide-Swath-Zeitreihen verwendet. Die
geschätzten Modellparameter wurden am Beispiel eines komplexen Feuchtge-
bietes analysiert und im Zusammenhang mit zusätzlichen Informationen zu
hydrologischen und biophysikalischen Prozessen diskutiert. Die Modellresidu-
en wurden als Maß für die Abweichung vom langjährigen mittleren Rückstreu-
verhalten genutzt. Mittels eines Bayesschen Ansatzes wurde schließlich proba-
bilistische Überschwemmungskarten abgeleitet.

Die Ergebnisse zeigen, dass harmonische Analyse einen effizienten Ansatz
darstellt, um saisonale Rückstreusignaturen verschiedener Landoberflächenty-
pen aus SAR-Zeitreihen abzuleiten. Weiterhin wurde die Anwendung der har-
monischen Modellparameter für die Klassifizierung verschiedener Rückstreu-
typen in Feuchtgebieten demonstriert. Darüber hinaus zeigt die Anwendung
der Modellresiduen für die Ableitung nicht-saisonal überschwemmter Gebie-
te, dass harmonische Modelle als eine angemessene Schätzung des mittleren
saisonalen Rückstreukoeffizienten dienen können. Es wurde außerdem gezeigt,
dass der probabilistische Ansatz zur Überschwemmungskartierung zuverlässi-
ge Karten erzeugt und zur Charakterisierung der Unsicherheit herangezogen
werden kann, die durch einige der zuvor genannten Faktoren verursacht wird.

Der vorgestellte Ansatz bietet einen Rahmen, mittels dessen die Saisonalität
im Rückstreuverhalten von Landoberflächen charakterisiert und Abweichungen
davon detektiert werden können. Weiterhin werden mögliche Perspektiven im
Hinblick auf neue SAR-Missionen wie z.B. Sentinel-1 aufgezeigt.

Schlagwörter: SAR, Überschwemmungen, Feuchtgebiete, ENVISAT ASAR
Wide Swath, Zeitreihenanalyse, Hydrologie
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Chapter 1

Introduction

1.1 Motivation
Floods are among the most frequent and devastating natural hazards. Based
on reinsurance data it has been estimated that, between 1980 and 2015, hy-
drological extreme events accounted for 14% of disaster fatalities and losses
amounting to more than 930 billion US$ (MunichRe, 2016). A recent study
places a number of almost 1 billion people in areas that are prone to river or
coastal flooding with the highest numbers located in Asia (Jongman et al.,
2012). A substantial increase in losses is to be expected due to population
growth in flood-prone areas, especially in growing economies and developing
countries, as well as climate change (Winsemius et al., 2015). In consequence,
the Sendai Framework for Disaster Risk Reduction assigns high priority to
the development and dissemination of scientific methods for disaster mapping,
monitoring and forecasting (United Nations, 2015).

As the number of in-situ runoff monitoring stations is declining in many
regions of the world (Vörösmarty, 2002), earth observation (EO) technology is
becoming increasingly important as a source of information for mapping and
monitoring of floods (Yan et al., 2015). Data acquired by airborne platforms
typically are of high spatial resolution, however, only cover relatively small
areas, are costly to acquire and systematic acquisition is often not possible.
Spaceborne sensors, on the other hand, are characterised by coarser spatial
resolution but larger footprints and often low revisit times (Di Baldassarre
et al., 2011). In addition to their use in disaster management, EO data can be
of benefit in flood forecasting, either by being used for calibrating hydraulic
models (Schumann et al., 2013; Tarpanelli et al., 2013) or for data assimilation
(García-Pintado et al., 2013; Matgen et al., 2010).

In contrast to optical systems, synthetic aperture radar (SAR) sensors can

1
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be operated during day and night times and are relatively insensitive to ex-
treme weather conditions due to their ability to penetrate clouds and heavy
rainfall (Danklmayer et al., 2009). Examples include the two-satellite Sen-
tinel-1 constellation of the European Space Agency (ESA) with a repeat cycle
of six days (Torres et al., 2012) and the four-satellite COSMO-SkyMed constel-
lation, which can provide high-resolution imagery at a revisit time as short as
six hours (Covello et al., 2010). The amount of data generated by such novel
missions makes it increasingly difficult for operators to produce flood maps us-
ing manual or semi-automated processing chains as these require a substantial
amount of user interaction. As timeliness is critical for the use of EO-derived
maps in disaster situations a central requirement for operational flood map-
ping services is the need for as little intervention by the operator as possible
(Twele et al., 2016). Moreover, automatic procedures can help to increase the
objectivity and reproducibility of the derived flooded areas (Matgen et al.,
2011). However, so far only few fully automatic flood mapping frameworks
have been proposed (e.g. Martinis et al., 2015; Twele et al., 2016; Westerhoff
et al., 2013), while others require at least some interaction with the user (e.g.
Pulvirenti et al., 2011b). In the following, the current state-of-the-art in flood
delineation from SAR imagery is reviewed.

1.2 State-of-the-art

1.2.1 Flood delineation from SAR imagery
In SAR images, calm, open water bodies appear as dark areas due to their
specular properties whereas land surfaces are typically composed of various
types of scatterers leading to higher amounts of energy being returned to the
radar antenna (Richards, 2009). As a result, SAR images often show high
contrast between flooded and non-flooded land surfaces. Not surprisingly,
numerous flood mapping approaches for medium and high-resolution SAR data
have been proposed in recent years. The list of applied methodologies ranges
from simple manual (Bartsch et al., 2012; Chini et al., 2013) and automatic
radiometric thresholding (Schumann et al., 2009) to more elaborate techniques
such as image grey-value distribution modelling and region growing (Giustarini
et al., 2013; Matgen et al., 2011; Pulvirenti et al., 2016), modelling using active
contours (Horritt et al., 2001), fuzzy set theory (Martinis and Twele, 2010;
Pierdicca et al., 2008) and probabilistic methods (D’Addabbo et al., 2016;
Giustarini et al., 2016; Refice et al., 2014; Westerhoff et al., 2013). It should
be noted that this list is by no means exhaustive. Each of these approaches
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holds its advantages and disadvantages in connection with different types of
input data. While simple thresholding approaches yield acceptable results for
medium-resolution imagery while being computationally inexpensive, context-
sensitive approaches are more suitable for high-resolution imagery where high
within-class variability might lead to noisy results using pixel-based approaches
(Martinis et al., 2009).

Despite the aforementioned high contrast in SAR imagery between calm wa-
ter surfaces and land areas, a number of factors can cause confusion between
the two classes. Dry, bare areas, for example, display similar backscatter val-
ues as open water surfaces, which can lead to a substantial overestimation of
the flood extent, e.g. in arid regions (O’Grady et al., 2011). Specular reflection
properties have been found for smooth artificial surfaces, such as tarmac roads,
airfields and parking lots (Giustarini et al., 2013). Vegetation protruding from
the water surface as well as waves caused by wind and heavy rain, on the
other hand, have the opposite effect on the classification as these factors can
lead to increases in the backscatter coefficient, σ0, by several dB depending on
incidence angle, polarisation and wavelength (Santoro and Wegmüller, 2014).
In the case of flooded vegetation, σ0 is typically elevated as a result of double-
bounce scattering between the water surface and vertical vegetation parts such
as trunks and stems. This effect is strongly influenced by the interaction be-
tween observation system parameters, such as wavelength, polarisation and
incidence angle (Henderson and Lewis, 2008), with environmental parameters,
such as vegetation structure and water level (Pulvirenti et al., 2011a). While
longer wavelengths such as L-band are typically used for mapping flooded
forests (e.g. Hess et al., 2003), C-band radar may be preferable in the presence
of herbaceous vegetation (Zhang et al., 2016). In urban areas, flood delin-
eation from SAR data is hampered by radar shadow and layover (Mason et al.,
2014). Nevertheless, high-resolution data from platforms such as TerraSAR-X
have successfully been applied to detect inundation in urban areas (Giustarini
et al., 2013; Mason et al., 2010, 2014), while the use of coarser-resolution data
typically leads to an underestimation of the flood extent, partly due to the oc-
currence of mixed pixels (Kuenzer et al., 2013b; Schumann et al., 2011). More
recently, interferometric coherence has been used as a complementary source
of information to map floods in urban settlements (Pulvirenti et al., 2016).
Another factor contributing to potential misclassification is speckle which is
a noise-like feature inherent to SAR imagery. It is a result of the coherent
combination of the contributions of individual scatterers distributed within a
resolution cell (Woodhouse, 2005). Speckle simulation studies have shown its
impact on the quality of SAR-derived flood maps (Giustarini et al., 2015). The
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influence of speckle typically is addressed during image pre-processing using
image filtering or multilooking (Richards, 2009).

These different factors lead to uncertainties in SAR-based flood maps which
can impact their subsequent use, e.g. for deriving water stages (Schumann
et al., 2008) or calibrating hydraulic models (Di Baldassarre et al., 2009). Typ-
ical producer’s accuracy values that have been reported in the literature range
between ca. 58% (Mason et al., 2010) and 81% in urban areas and between
ca. 65% (O’Grady et al., 2011) and 90% (Mason et al., 2012) in open areas.
For low-density boreal forests, producer’s accuracies > 73% have been re-
ported (Cohen et al., 2016). The variations in classification accuracies—which
rarely exceed 90% (Grimaldi et al., 2016)—are a result of different combina-
tions of image properties (e.g. spatial resolution), classification method and
study area. The characterisation of these uncertainties would add to the value
of EO-derived flood maps and may help to foster the use of remote sensing
products in flood management and increase their usefulness for decision mak-
ers (Schumann et al., 2016). Moreover, for directly assimilating EO-derived
flood maps into hydrodynamic models assimilation filters require a characteri-
sation of the uncertainties associated with the observations in order to produce
optimal estimates (Giustarini et al., 2016; Matgen et al., 2015).

The task of characterising these uncertainties has been addressed in recent
years by introducing methodologies resulting in flood maps that show uncer-
tain flood extents. In such cases, flood extents are typically coded as values in
the interval [0,1], where the extremes mark certainly non-flooded and flooded
pixels and intermediate values quantify different degrees of uncertainty. Most
of these approaches are based on fuzzy-set theory (Martinis and Twele, 2010;
Pierdicca et al., 2008) and Bayes’ theorem (D’Addabbo et al., 2016; Giustarini
et al., 2016; Westerhoff et al., 2013). For example, Pierdicca et al. (2008) ap-
plied different fuzzy membership functions to flood mapping from SAR images
and to incorporate contextual information. However, different shapes and pa-
rameterisations of membership functions are possible and selection of a suitable
set may not always be straightforward. A probabilistic approach to grey-value
histogram modelling was used by Giustarini et al. (2016). The parameters of
flooded and non-flooded probability density functions (PDFs) were estimated
from a flood image based on the assumption that the image histogram is a mix-
ture of two normally distributed populations, namely flooded and non-flooded
pixels. Additionally, the authors introduced the reliability diagram (Wilks,
2011) as a tool for evaluating the quality of probabilistic flood maps.

When estimating the distribution parameters of backscatter from flooded
and non-flooded areas based on single images, the σ0 PDF of non-flooded
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pixels typically is a mixture of different land-cover types and, therefore, may
be multimodal itself. A common approach in flood mapping to account for
backscattering behaviour of different land surface types within a scene is change
detection, i.e. by quantifying alterations in an observed variable such as inten-
sity or backscatter coefficient σ0 (Mercier et al., 2009). Additionally, change
detection makes it possible to separately classify permanent water and areas
affected by a flood event. A considerable number of techniques can be found
in the literature, some of which were reviewed by Lu et al. (2004). They can
mainly be categorised in approaches that consist of classifying a change im-
age, e.g. difference (Bruzzone and Fernández-Prieto, 2000; Long et al., 2014)
or ratio images (Nagler and Rott, 2000), and post-classification comparison
techniques (e.g. Munyati, 2000).

Simple change detection has yielded satisfying results by computing differ-
ences between a flood and a pre-flood image and applying threshold classifiers
to the obtained change image (Long et al., 2014). However, manual threshold-
ing often requires substantial intervention by the operator such as histogram
inspection and, therefore, its use within automatic processing chains is limited.
Moreover, robustness with respect to the aforementioned interfering factors
such as water surface roughness is often not given. Matgen et al. (2011) have
proposed an approach consisting of grey-value distribution modelling, region
growing and change detection for classification refinement. The approach holds
considerable potential for use in automatic processing chains and has later been
adapted to high-resolution imagery from TerraSAR-X which has facilitated the
mapping of flooding in urban areas (Giustarini et al., 2013). Approaches based
on graph theory can also increase robustness in high-resolution imagery by
taking into account contextual information (Frey et al., 2012; Martinis et al.,
2011).

Nevertheless, selection of a suitable reference image is not a straightforward
task as it should represent the best possible characterisation of the backscatter
signatures found in the area of interest. At the same time, it should share the
geometric properties of the flood image. In order to fulfil the first require-
ment the reference scene should have been acquired during the same season
as the flood image (Hostache et al., 2012), especially in regions with a pro-
nounced seasonality in soil moisture and vegetation growth, e.g. in the humid
and semi-arid tropics (Dostálová et al., 2014). In combination with the often
irregular coverage encountered with imagery from SAR sensors this can make
the selection of an appropriate reference image a difficult and time-consuming
task. So far, only few studies have addressed this problem, e.g. by proposing
semi-automatic approaches for selecting reference scenes from an image archive
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(Hostache et al., 2012).
The use of image time series spanning multiple years may offer ways to

overcome the problem of selecting a suitable reference image. Westerhoff et al.
(2013) introduced an approach that takes into account information from a
large archive of historic SAR data. Conditional histograms of water and land
backscatter intensity were built using the historic time series and a mask of per-
manent water bodies. After this training step, each σ0 observation was labelled
as either pertaining to the land or the water population using a probabilistic
approach. However, the quality of the obtained results was not evaluated with
respect to an independent benchmark dataset. Moreover, the empirical his-
tograms for the land class were trained using tiles of 1◦×1◦ size, thereby, losing
information on spatial context and mixing information from a large number
of different land-cover classes, some of which might exhibit similar backscatter
characteristics as, e.g. open water bodies. This may offer an explanation for
the observed misclassification in dry regions where water and land histograms
overlapped. The mixing of different land-cover types may be avoided by only
considering backscatter observations made at the same location and, thereby,
in the same land-cover class, assuming no land-cover change during the obser-
vation period. Furthermore, the effect of seasonality in σ0 from land, which
has been considered important for change detection by Hostache et al. (2012),
was not taken into account. It should also be noted that the approach by
Westerhoff et al. (2013) does not represent a change-detection approach per se
as no distinction between permanent and flood water surfaces is made. Never-
theless, the study by Westerhoff et al. (2013) is one of the few studies to date
in which the full amount of information contained in SAR time series has been
used for mapping flood events.

Open questions, therefore, remain with respect to how backscatter signa-
tures of non-flooded land surfaces can be reliably estimated for use as reference
data in a change detection setting. In the following section, different methods
are described for estimating land-surface backscatter signatures.

1.2.2 Backscatter temporal signatures

SAR backscatter from land surfaces is a product of the complex interactions
of sensor parameters, such as polarisation, wavelength and viewing geometry,
with different scattering mechanisms taking place at the Earth’s surface, such
as surface, sub-surface, volume or double-bounce scattering. The latter, in
turn, are a function of land-surface properties, such as soil water content,
vegetation structure and surface roughness (Richards, 2009). Backscatter σ0
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from a vegetated land surface is often partitioned using an additive model (e.g.
Attema and Ulaby, 1978)

σ0 = τ 2σ0
s + σ0

v + σ0
sv, (1.1)

where σ0
s and σ0

v are the contributions of the ground surface and the vegetation,
respectively, τ 2 is the two-way transmissivity of the vegetation and σ0

sv repre-
sents the interaction between surface and vegetation, e.g. from double-bounce
scattering. A flood event will typically affect the contributions of σ0

s and σ0
sv

as a water layer will drastically alter the reflection properties of the ground
surface (Kasischke and Bourgeau-Chavez, 1997). Under certain assumptions,
parameters for modelling these individual contributions can be estimated from
ground measurements, however, these are usually unavailable when moving
beyond the site scale (Santoro et al., 2011). For example, Pulvirenti et al.
(2011a) modelled X-band backscatter from bare soil and wheat plants at dif-
ferent growth stages (parameterised using plant height, density, biomass, stem
radius and leaf area index) under flooded and non-flooded conditions using an
electromagnetic model. The obtained backscatter signatures were compared
to COSMO-SkyMed image time series acquired during and after a flood event
and the obtained patterns were successfully related to the flood duration of
different vegetated and bare-soil plots. In a study carried out for flooded bo-
real forests, Cohen et al. (2016) modelled X-band backscatter signatures as a
function of canopy closure and tree height. Backscatter displayed relatively
high sensitivity to flooding in the low-density forests present in the study area.
In denser forests, longer wavelengths such as L-band are usually preferred for
monitoring floods due to lower attenuation by the forest canopy (e.g. Hess
et al., 2003). The significant responses to flooding resulted in high accuracy
values for the classification of inundated boreal forests (Cohen et al., 2016).

For estimating the parameters of the applied scattering models, however, the
studies made use of extensive information on vegetation and surface properties
that had to be collected on the ground (Pulvirenti et al., 2011a) or derived
from airborne laser scanning data (Cohen et al., 2016). For mapping purposes
at larger scales and in automatic processing chains such data are typically
not available. Statistical models, which are parameterised using information
from time series, on the other hand, show great potential for characterising
backscatter signatures of land surfaces in support of retrieving, e.g. soil mois-
ture (Wagner et al., 1999a), forest cover (Quegan et al., 2000) and water bodies
(Santoro and Wegmüller, 2014). During flood events, σ0 has been reported to
suddenly decrease or increase, depending on the land cover of the observed
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area (Martinis and Rieke, 2015). While different land surface types have been
reported to show varying degrees of temporal stability in their backscatter
behaviour (Wagner et al., 2008), a flood event can, therefore, be assumed to
cause deviations from backscattering behaviour that would be expected under
non-flooded conditions. In the following paragraphs, an overview of different
approaches for backscatter signature estimation based on multi-temporal SAR
imagery is provided.

Santoro et al. (2015) extracted descriptive statistics such as minimum back-
scatter and temporal variability from ENVISAT C-band SAR time series and
applied them for mapping permanent water bodies at the global scale. In the
case of pure water and land pixels, high classification accuracy was achieved
while in regions with strong seasonal variations in surface water extent, the
applied two-metric approach was found to be problematic as a simple indica-
tor of temporal variability does not distinguish between seasonal changes in
backscatter intensity and essentially random changes that occur over perma-
nent water bodies due to wind-induced waves. In another study, a land-cover
classification problem involving the classes urban areas, forests, water bod-
ies and agricultural areas could be solved by using temporal variability and
long-term interferometric coherence as input features to a neural network clas-
sifier. For the water class, the authors report confusion with agricultural fields
as both classes exhibited both low coherence and high temporal variability in
backscatter intensity (Bruzzone et al., 2004). Low coherence in agricultural ar-
eas is caused by differences in vegetation growth stage and movement of plant
parts whereas over water surfaces waves lead to low coherence (Pulvirenti et al.,
2016).

As mentioned before, the use of simple temporal variability features neglects
the seasonal patterns present in SAR time series. While σ0 time series over
water display high temporal variability, land surfaces are subject to seasonal
changes in precipitation and temperature which in turn control soil moisture
and vegetation growth and, thereby, σ0 as a result of equation 1.1. Indeed,
distinct seasonal backscatter patterns have been reported for a wide range of
different land-cover types and climates. In one of the first studies targeting the
analysis of multi-temporal SAR data, Cihlar et al. (1992) analysed airborne
C-band imagery acquired over Southern Canada during a full annual cycle and
encountered characteristic seasonal signatures for different land-cover types.
Backscatter from herbaceous vegetation showed high sensitivity with respect
to changes in biomass. Forests displayed distinctly lower annual backscat-
ter amplitude whereas urban areas had very low temporal dynamics. In a
study carried out for the United Kingdom, non-forest areas as well as young



1.2. STATE-OF-THE-ART 9

(≤ 5 years) forest stands displayed distinct seasonality in C-band σ0 as well
as sensitivity to precipitation patterns. σ0 from old-growth pine stands, on
the other hand, was more stable throughout the year. The differences were
large enough for a successful forest/non-forest mapping based on descriptive
time series statistics (Quegan et al., 2000). Blaes et al. (2007) analysed tem-
poral C-band σ0 profiles of different crop types (e.g. winter wheat, sugar beet,
maize, grassland) throughout a growing season. While some crops always
showed higher or lower average σ0, it was also possible to discern signal in-
creases due to crop growth and decreases due to harvest. Saich and Borgeaud
(2000) have reported that, while crop-characteristic temporal backscatter sig-
natures carry over across subsequent years, significant anomalies can be caused
by variations in rainfall, temperature and local incidence angle. Although sen-
sors operated in C-band are typically regarded as less suitable than L-band
for soil moisture mapping in densely forested areas Woodhouse et al. (1999)
have reported that backscatter measured by the scatterometer on board the
European Remote Sensing (ERS) satellite closely followed the seasonality in
average precipitation over tropical forest. It is, however, not known whether
this was due to variations in vegetation properties or in soil moisture. Strong
seasonal cycles in σ0 have also been reported in other climate zones, e.g. in
semi-arid and arid Africa due to wetting and drying (Dostálová et al., 2014),
and in arctic regions, where it has been attributed mainly to frost and snow
cover dynamics (Antonova et al., 2016).

In contrast to the time series analysis methods based on average backscatter
and temporal variability previously applied to SAR data (e.g. Bruzzone et al.,
2004; Quegan et al., 2000; Santoro et al., 2015), analysis in the frequency do-
main (Wilks, 2011) has the potential to provide additional information on the
contributions of periodic processes occurring on different time scales to the
overall temporal variability in σ0. In optical remote sensing, Fourier analysis
and other function fitting methods have been applied in a number of stud-
ies, for example with applications in derivation of land surface phenology (e.g.
Brooks et al., 2012; Eastman et al., 2009), land-cover and vegetation type clas-
sification based on time-series similarity (Evans and Geerken, 2006; Lhermitte
et al., 2008) and change detection (Verbesselt et al., 2010). Verbesselt et al.
(2010) applied harmonic analysis to detect phenological changes in Normalised
Difference Vegetation Index (NDVI) time series. By analysing the residuals,
breakpoints with respect to seasonality and trend were detected. In a recent
study aimed at the validation of soil moisture datasets derived from scatterom-
eter and radiometer time series, seasonality has been addressed using harmonic
function fitting (Pierdicca et al., 2015). As sinusoidal shapes have also been
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reported for SAR backscatter time series in mid-latitudes (Cihlar et al., 1992)
similar approaches may hold considerable potential for analysing backscatter
behaviour under undisturbed conditions and for application in change detec-
tion frameworks for delineating floods.

1.3 Objectives
As shown in Section 1.2, major knowledge gaps exist with respect to automatic
change detection in flood mapping which are summarised in the following:

• In change detection frameworks, backscatter behaviour under non-flooded
conditions are typically assessed using a reference image acquired before
the flood event. However, only very few studies have dealt with an ob-
jective selection of suitable reference images (e.g. Hostache et al., 2012).
Recently, first attempts have been made to estimate backscattering be-
haviour under non-flooded conditions making use of the information con-
tained in SAR time series, however, only a small number of studies has
been carried out in this context.

• Previous studies have highlighted the importance of seasonal patterns in
backscatter time series from land surfaces for deriving backscatter signa-
tures. However, only few studies have explored the benefits of harnessing
this information in comparison to the use of simpler indicators of tem-
poral variability. Harmonic functions have been applied for studies on
land-surface phenology and anomalies from average seasonal behaviour
(e.g. Verbesselt et al., 2010) but so far not in the context of flood mapping
using SAR data.

• The vast majority of flood mapping approaches yields binary maps show-
ing flooded and non-flooded areas. However, uncertain flood maps, e.g.
produced by probabilistic approaches, would add to the value of EO-
derived flood maps and their use in decision making and flood forecasting.
So far, only very few studies have been published that aim at including
information derived from SAR time series in probabilistic flood mapping
approaches (e.g. Westerhoff et al., 2013) and possible methodologies have
only marginally been explored and validated.

In the light of these open questions, the main objective of this thesis is
to introduce and evaluate a novel framework for mapping flood-induced de-
viations from SAR backscatter behaviour under non-flooded conditions. For
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this purpose, long-term backscatter behaviour is characterised by analysing
medium-resolution C-band SAR time series by means of a harmonic model. In
detail, the following objectives are addressed:

1. characterisation of backscatter signatures of different land surface types
using a harmonic model;

2. delineation of flooded areas based on deviations from long-term seasonal
backscatter behaviour;

3. derivation of probabilistic flood maps from time series in order to char-
acterise uncertainties in the classification of flooded areas.

A secondary aim is the application of the estimated time series parameters
for delineating different land-surface and wetland types. It should be noted
that only open flood water is addressed, whereas flooded vegetation or flooded
urban areas are not within the scope of this study. An outline of the thesis is
given in the following.

1.4 Structure of the thesis
As harmonic models have rarely been used for the analysis of SAR time series,
the derived model parameters are first analysed and discussed for different
land-surface types in the context of ancillary information on hydrological pro-
cesses and vegetation cover. The potential of the derived backscatter signa-
tures for discriminating different land-cover types based on their backscatter
seasonality is explored.

After the analysis of the information content of the harmonic model param-
eters, the next step consists of an assessment of the potential of the harmonic
model for modelling and delineating isolated flood events as deviations from
non-flooded backscattering behaviour. As floods typically cause a shift in scat-
tering mechanisms towards specular reflection or double-bounce scattering,
a flood event which does not occur periodically will cause significant devia-
tions from the harmonic model trained using “undisturbed” data. Therefore,
an analysis of the harmonic model residuals is carried out to assess whether
this shift in backscattering behaviour can be used for an accurate mapping of
flooded areas. In this context, the idea of using a harmonic model as pre-flood
reference image in a change detection framework is introduced. The results are
evaluated with independent reference data and compared to a more traditional
change detection approach, in which a pre-flood and a flood image are used.
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Furthermore, the potential of the harmonic model for locating flood images in
a SAR time series spanning multiple years is addressed.

Subsequently, the previously introduced change detection approach is ex-
tended using a probabilistic framework. The class-conditional probabilities
of each backscatter observation are computed based on backscatter PDFs pa-
rameterised using multi-temporal SAR imagery. Such a probabilistic approach
allows a characterisation of flood mapping uncertainties that arise due to water
surface roughness, mixed pixels, etc.

This thesis is structured as follows: Chapter 1 introduces the study and
describes the state-of-the-art in flood delineation and backscatter signature
estimation. Furthermore, the applied methodology is outlined. Chapter 2
contains an assessment of the ability of the harmonic model to characterise
seasonal backscatter variations in a river floodplain, which is characterised
by complex hydrological and vegetational processes, and presents an applica-
tion in wetland mapping. Chapter 3 introduces a change detection framework
based on a harmonic model for flood delineation. This framework is extended
in Chapter 4 by implementing a probabilistic change detection approach. Fi-
nally, Chapter 5 summarises the study and its scientific impact and identifies
limitations and perspectives for future work with respect to current satellite
missions.

1.5 Material and methods

1.5.1 Backscatter seasonality characterisation

In equation 1.1, the backscatter coefficient σ0 from a land surface is described
as a result of the combination of the contributions from ground (σ0

s) and veg-
etation (σ0

v) layers as well as the interactions between ground and vertical
structures (σ0

sv). Under non-flooded conditions, σ0
v is influenced mainly by the

vegetation growth stage, while σ0
s and σ0

sv are affected by the soil moisture
state through its influence on soil reflection and backscattering (Wang et al.,
1995). As both vegetation growth and soil moisture dynamics are governed
by climatic forcing, a series of σ0 observations along a time scale t will show a
strong periodic component and, therefore, can be written as

σ0
s(t) = σ0

s + σ0
s,per(t) + σ0

s,anom(t),
σ0

v(t) = σ0
v + σ0

v,per(t) + σ0
v,anom(t),

σ0
sv(t) = σ0

sv + σ0
sv,per(t) + σ0

sv,anom(t),
(1.2)
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where σ0
s , σ0

v and σ0
sv are the backscatter contributions from ground surface,

vegetation and ground-vegetation interactions averaged over time, respectively.
Analogously, σ0

s,per, σ0
v,per and σ0

sv,per (σ0
s,anom, σ0

v,anom and σ0
sv,anom) denote the

periodic (non-periodic) portions of the σ0 contributions of ground surface,
vegetation and ground-vegetation, respectively.

As the individual contributions of the terms in equation 1.1 are usually
unknown, σ0 measured at time t can alternatively be simplified as

σ0(t) = σ0 + σ0
s,per(t) + σ0

v,per(t) + σ0
sv,per(t) + σ0

anom(t) and (1.3)

σ0(t) = σ0 + σ0
per(t) + σ0

anom(t), (1.4)

where σ0 is the backscatter coefficient averaged over t and σ0
per (σ0

anom) de-
notes the combined periodic (non-periodic) variations from ground surface,
vegetation and ground-vegetation interaction. While σ0

per comprises variations
between different seasons in “normal” years, σ0

anom includes backscatter varia-
tions due to wetter or drier years as well as extreme events such as floods, which
cause different scattering mechanisms like specular reflection to dominate the
picture. Since the three periodic terms in equation 1.3 do not necessarily have
the same sign and magnitude, σ0

per(t) may have a shape that departs from a
strictly sinusoidal function, e.g. by being asymmetric or showing secondary
and tertiary maxima.

At this stage it should be noted that the intensity measured by the sensor,
which is directly related to σ0, also contains the multiplicative contribution of
speckle. Speckle is a noise-like phenomenon inherent to coherent measuring
techniques such as SAR and is caused by the combination of the contributions
by individual scatterers within a resolution cell. Although speckle is a de-
terministic process, it is usually modelled as stochastic noise as the individual
scatterers are unknown and can be assumed to be randomly distributed within
a cell (Woodhouse, 2005). Different filtering techniques have been developed
for restoring σ0 by filtering in the spatial (e.g. Lee, 1983; Lopes et al., 1993)
and in the temporal domain (Quegan et al., 2000). The multiplicative speckle
can be modelled as additive noise after carrying out a logarithmic transfor-
mation of the backscatter values (Dekker, 1998). SAR images are typically
transformed to the decibel (dB) scale using

σ0 [dB] = 10 log10

(
σ0

lin

)
. (1.5)

This conversion also strongly affects the distribution of speckle. While speckle
on the linear scale is assumed to follow a Gamma distribution (Ulaby et al.,
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1986), on the logarithmic scale it approaches a normal distribution as the
number of looks increases (Xie et al., 2002). For simpler notation, σ0 will be
assumed to be scaled in dB in the remainder of this text. As the non-periodic
component σ0

anom can also be assumed to be normally distributed, equation 1.4
can be written as an additive linear model:

σ0(t) [dB] = σ0 + σ0
per(t) + ε(t), (1.6)

where ε comprises both logarithmically transformed speckle as well as non-
periodic variations σ0

anom.

Periodic cycles can be mathematically expressed using a series of k trigono-
metric functions, each with a sine and a cosine term (Bloomfield, 2000), which
means that equation 1.6 can be written as

σ0(t) = σ0 +
k∑

i=1

[
ci cos

(2πit
n

)
+ si sin

(2πit
n

)]
+ ε(t) = σ̂0(t) + ε(t), (1.7)

where ci, si are the cosine and sine coefficients, respectively, of the i-th har-
monic term and n is the number of time steps per year. The k sinusoids
represent cycles occurring with a frequency fi = 1, 2, 3, . . . , k yr−1. The maxi-
mum which is possible for k is set by the Nyquist frequency, which is half the
sampling rate of a signal, i.e. n/2. Below that number, k should be chosen
high enough to reproduce the seasonality caused by the underlying climatic
and vegetation growth processes. In a study on harmonic modelling of NDVI
time series, a number of k = 3 was used to resolve processes occurring at
four-monthly cycles (Verbesselt et al., 2012). Moreover, higher-order harmon-
ics can be used to model departures from sinusoidal behaviour such as the
ones mentioned earlier in this section (Bloomfield, 2000). Since flood events
typically occur at a much shorter time scale (< 1 month), this number was
also adopted here in order to minimise their effect on the parameter fitting.
Equation 1.7 essentially represents a multiple linear regression model with off-
set σ0 and predictors cos (2πit/n) and sin (2πit/n) (Wilks, 2011). The 2k + 1
parameters—namely σ0, ci and si—can be estimated using least-squares ap-
proximation since it was shown earlier that ε can be regarded as an additive,
normally distributed residual term. In order to minimise the effect of unequal
sampling on the parameter estimation, equation 1.7 was fitted to 10-day com-
posites computed from the σ0 observations. It should also be noted that σ̂0

represents a non-speckled estimate of the seasonal mean backscatter coefficient,
as the averaging of many σ0 observations taken over time effectively removes
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the contribution of speckle.
It should be noted that the described approach assumes that the time series

is not affected by any changes that would alter its mean and variance, e.g. land-
cover changes. For example, a change from agricultural land to urban area
would likely result in a higher mean σ0 and lower temporal variability. In that
case, two harmonic models would have to be fitted, one before and one for the
period after the breakpoint.

1.5.2 Flood extent classification

As the proposed flood mapping approach is targeted to be used in automatic
processing chains, one fundamental requirement for the classification of pixels
as either flooded or non-flooded is a minimum of intervention by the operator.
In the past, a considerable number of flood classification methods has been
proposed for assigning class labels to pixels in SAR images. Most of them rely
on the images displaying a multimodal histogram. The larger mode is typically
composed of the contributions of different non-flooded land surfaces while the
second (and possibly third etc.) mode is caused by the occurrence of flooded
areas (Bartsch et al., 2008). In the simplest case, a threshold grey value is
used as decision boundary for separating flooded from non-flooded pixels. As
manual thresholding is often not practicable due to the requirement of minimal
user interaction, automatic thresholding methods, such as the algorithms by
Otsu (Otsu, 1979) and Kittler-Illingworth (Martinis et al., 2009), have been
applied. If the multimodality of the flood or change image is not distinct—
mainly because the flooded area is small in comparison to the image extent—
different split-based approaches can be applied (Chini et al., 2016; Martinis
et al., 2009).

As in this study the non-flood reference was estimated using a harmonic
model (equation 1.7), the change in σ0 induced by the flood event is expressed
by the residual term ε computed as

ε(t) = σ0(t)− σ̂0(t), (1.8)

where σ̂0(t) is the harmonic model estimate of σ0(t). When an agricultural
land surface is flooded, it is assumed that σ0 will undergo a sudden drop
as the dominant scattering mechanism changes from volume and/or surface
scattering towards specular reflection, i.e. ε will become strongly negative for
flooded areas while non-flooded pixels will assume values distributed around
zero. As σ̂0 is computed separately for each pixel, an image showing ε is
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available for every time step t.

For classifying flooded areas, two principal ways are in general possible,
which are explored in the framework of this study. In the first case, the image
showing ε(t) can be treated like an image showing the difference between two
dates. In this case, any of the methods mentioned in Section 1.2 suitable for
change detection can be used for classification. In the presented work, Otsu’s
algorithm (Otsu, 1979) is applied as it represents a well-known and straightfor-
ward approach for finding an optimal threshold. It it based on the objective to
maximise between-class variability while at the same time minimising within-
class variance. Before this, the ε image is standardised by computing for each
pixel p the ratio εstd(p) = ε(p) / sε(p), where sε(p) is the standard deviation
of the ε time series at point p. This approach typically still suffers from the
aforementioned limitation of missing bimodality of the εstd image histogram if
the flooded area is small in comparison to the full extent of the image. There-
fore, areas of the εstd image which could be regarded as being highly unlikely
to be flooded due to their high elevation above the river are masked using a
topography-derived mask. The Hand Above Nearest Drainage (HAND) in-
dex (Nobre et al., 2011; Rennó et al., 2008) is chosen for this purpose as it
consists of a drainage-normalised and flowpath-coherent topographical map
(Nobre et al., 2016) and retains the elevation units of the input digital eleva-
tion model. If large areas have a high elevation above the drainage network, the
masking of such areas will lead to an increasingly bimodal εstd histogram. In
this study, HAND is derived from hydrologically consistent DEMs provided by
the HYDROSHEDS project (Lehner et al., 2008). Details of the computation
are given in Chapter 3.2 and by Rennó et al. (2008).

In the second case, statistical properties of flooded and non-flooded classes
are estimated based on historic SAR data. For the classification, a probabilistic
approach is applied, in which the flood probability of each backscatter value
is computed based on Bayes’ theorem. Under the assumption that a pixel
at a certain point in time can have either state s = F (flooded) or s = nF

(non-flooded) the posterior probability of the pixel belonging to class F given
an observation x is defined as

p(F |x) = p(x|F ) p(F )
p(x) , (1.9)

where
p(x) = p(x|F ) p(F ) + p(x|nF ) p(nF ), (1.10)

and p(x|F ), p(x|nF ) are the conditional PDFs of making the observation x
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when the pixel is flooded and non-flooded, respectively. p(x) is the probability
density of x when the pixel is either flooded or non-flooded and p(F ) represents
our prior knowledge about the probability of the pixel being flooded. If no
prior information is available, a so-called non-informative prior can be used,
i.e. p(F ) = p(nF ) = 0.5. This has been done by several authors in the past
(Giustarini et al., 2016; Westerhoff et al., 2013). The idea is illustrated in
Figure 1.1 for two classes with normally distributed features x with different
class means (mF , mnF ) and equal variances (s2

F = s2
nF ). The optimal decision

boundary is located at the intersection of the class conditional PDFs. For
SAR, the place of the observable x can be filled by σ0 or, for example, ∆σ0

if a difference image is used. In this case, as harmonic model residuals ε are
used, equation 1.9 can be written for each pixel P and time step t as

p(F |ε[P, t]) = p(ε[P, t]) p(F )
p(ε[P, t]|F ) p(F ) + p(ε[P, t]|nF ) p(nF ) . (1.11)

As a result, a probabilistic flood map is obtained. In order to convert
the probabilistic map into a binary (flooded/non-flooded) map the pixels are
typically labelled with the more probable flooding state by applying a threshold
p(F |ε) = 0.5 (Duda et al., 2001).

1.5.3 Data and pre-processing

In Section 1.5.1, a harmonic model approach has been introduced for charac-
terising periodic variations in SAR time series. However, a time series com-
prising at least one full annual cycle is needed for estimating the parameters
in equation 1.7. For mapping non-periodic flood events, where the influence
of floods on the harmonic model is to be minimised, even longer time series
are required. As SAR sensors are typically capable of different acquisition
modes and their application is often user-request driven, the number of SAR
missions suitable for constructing such time series is limited. The two-satellite
Sentinel-1 constellation, whose satellites were launched by ESA in 2014 and
2016, is a prime candidate for acquiring such time series. Its SAR sensor op-
erates in C-band with a wavelength λ ≈ 5.5 cm and is acquiring mainly in
its Interferometric Wide Swath (IWS) mode over land surfaces. The swath
width of 250 km along with the short revisit cycles of the two satellites leads
to a worst-case sampling interval of 6 days while maintaining a relatively high
spatial resolution of ca. 20 m (Torres et al., 2012).

However, due to the very recent launch of the Sentinel-1 constellation, time
series of sufficient length are not yet fully available. Moreover, historic SAR
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Figure 1.1: Conditional probability density functions of two normally dis-
tributed populations F and nF with means mF = −1.5, mnF = 1.5 and vari-
ances s2

F = s2
nF = 1. The vertical dotted line represents the optimal decision

boundary.

data offer the possibility of testing new approaches for past flood events and
validating the obtained results with high-resolution observations. The Ad-
vanced SAR (ASAR) sensor on-board ENVISAT was operated between 2002
and 2012 in C-band and is seen as the predecessor of Sentinel-1 with lower ra-
diometric, temporal and spatial resolutions. Imagery acquired in Wide Swath
(WS) mode has a spatial resolution of ca. 150 m and a large swath width of
400 km. In terms of radiometric resolution, the equivalent number of looks
(ENL) is estimated to be > 15 (ESA, 2012). Available polarisation configura-
tions are predominantly VV and HH while Sentinel-1 mostly uses VV polarisa-
tion for land surfaces. Additional characteristics of ASAR WS data are shown
in Table 1.1. Data for the period 2005 to 2012 was available for download from
ESA’s Grid Processing On Demand (GPOD) facility. For each of the study
areas described in Chapters 2 to 4, the full time series of level 1b datasets was
downloaded from GPOD.
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Table 1.1: Characteristics of ENVISAT ASAR WS medium resolution imagery
(after Desnos et al., 2000; ESA, 2012).

Property Value

Frequency 5.331 GHz (λ ≈ 5.6 cm)
Polarisation VV or HH
Processing level Level 1b, ground-range detected
Spatial resolution ca. 150 m
Pixel spacing 75 m
Swath width 400 km
Temporal frequency irregular, ca. 7 days
ENL > 15
Radiometric resolution < 1 dB
Incidence angle range 15◦–45◦

Before the time series analysis described in Section 1.5.1 can be carried out,
the downloaded scenes are pre-processed. A flowchart of the pre-processing
chain used throughout this thesis is shown in Figure 1.2. Most of the pre-
processing steps are carried out using the Next ESA SAR Toolbox (NEST).
The level 1b datasets are first geocoded and terrain-corrected using the Range-
Doppler method (Small and Schubert, 2008). As this approach requires precise
knowledge about the position of the satellite at the time of image acquisition,
verified DORIS orbit vectors (ESA, 2008) are used whenever available. Af-
ter this step, the obtained terrain-corrected σ0 images are co-registered to a
common grid with a spatial sampling interval of 2.3“ (Sabel et al., 2012), cor-
responding to approximately 75 m at the equator. The co-registration consists
of two main steps, a cross-correlation and a image warping step. During the
first step, the cross-correlation between each image and a master image is com-
puted for windows of 64× 64 pixels around a number of ground control points
(GCPs). The number of selected GCPs depends on the size of the area of
interest. During the second step, a linear warping function is calibrated based
on the displacement between the GCPs.

As ASAR WS scenes are characterised by a large swath width of 400 km
scenes from different tracks are used to construct a time series of sufficiently
dense sampling steps. Due to these different viewing geometries σ0 has been
acquired from a range of local incidence angles θ for each pixel in the co-
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Figure 1.2: Pre-processing chain applied to ENVISAT ASAR WS Level 1b
data.

registered stack. The effect of differences in θ on σ0 has been described by
different authors (Sabel et al., 2012; Van doninck et al., 2014; Wagner et al.,
1999c) and is corrected for using the linear relationship

σ0(θref) = σ0 − β (θ − θref), (1.12)

where θref is a reference local incidence angle to which the backscatter coeffi-
cient is normalised, typically in the range 30◦ ≤ θref ≤ 40◦, and β = dσ0 / dθ
(Pathe et al., 2009; Wagner et al., 1999c). β is calibrated separately for the
time series of each pixel in the stack using linear regression over the σ0-θ pairs.
As a result of the pre-processing chain shown in Figure 1.2, a stack of σ0 images
normalised to θref is obtained which is used as input dataset for the analysis
described in Section 1.5.1.

1.6 Summary of the publications

This cumulative thesis is largely based on three publications that were pro-
duced while carrying out the work on this thesis. All of them have been
published in peer-reviewed journals. The applied methods and key findings
are summarised in the following.

1.6.1 Mapping wetlands in Zambia using seasonal back-
scatter signatures derived from ENVISAT ASAR
time series

The first publication (Schlaffer et al., 2016, Chapter 2) establishes harmonic
modelling as a means for characterising σ0 behaviour of different land-cover
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types based on SAR image time series. As SAR time series have so far mainly
been analysed in terms of average annual backscatter and temporal variability
there is still a need for formalised methodologies for analysing σ0 time series
and interpreting the derived parameters.

An archive consisting of > 100 ENVISAT ASAR WS scenes acquired in
HH polarisation over the course of ca. two years over a complex landscape in
central Zambia was used as input data. The study area is characterised by
semi-arid climate and comprises a wide range of ecosystems such as savannah,
forests, agricultural areas and several seasonally and permanently flooded wet-
lands. The time series were analysed using the methodology describes in Sec-
tion 1.5.1 and the derived harmonic model coefficients (amplitudes and phases)
were discussed in the context of vegetation cover and hydrological processes.
Vegetation cover was estimated based on dry-season MODIS NDVI while the
runoff regime was characterised using water heights derived from radar al-
timetry time series. Furthermore, information on soil moisture seasonality
was available from the ERA-Interim reanalysis dataset. As local incidence
angle θ has been reported to affect the sensitivity of σ0 towards variations
in soil moisture (e.g. Van doninck et al., 2014) and flooding in the presence
of vegetation (Lang et al., 2008; Pulvirenti et al., 2011a) as well as towards
variations in water surface roughness (Töyrä et al., 2001), harmonic model
estimates were derived for different θ ranges. As the last step of the analysis,
the separability of different wetland from non-wetland classes was tested using
an unsupervised classification approach.

Distinct seasonal signatures were derived for permanent water bodies, sea-
sonal open water, persistently flooded vegetation and seasonally flooded vege-
tation. Moreover, non-flooded forest and non-forest areas showed notable dif-
ferences in their corresponding annual σ0 amplitudes. The results, on the one
hand, confirmed previous studies that the use of multi-temporal indices derived
from SAR imagery covering full seasonal cycles results in a high separability of
different land-surface types based on their seasonal signatures. On the other
hand, the harmonic model parameters derived for different θ ranges showed
that in most cases the influence of θ was reduced to a linear offset in average
annual backscatter whereas it had been hypothesised that the changes in the
dominant scattering mechanism typically encountered in wetlands—e.g. be-
tween volume scattering, specular reflection and double-bounce scattering—
would lead to non-linear relationships. Therefore, it is concluded that, in most
cases, a linear correction such as defined in equation 1.12 would suffice for fus-
ing imagery acquired with different viewing geometries. This holds important
implications for the analysis carried out in the subsequent Chapters.
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1.6.2 Flood detection from multi-temporal SAR data
using harmonic analysis and change detection

In the second publication (Schlaffer et al., 2015, Chapter 3), a change detection
framework for detecting and delineating floods as outliers from backscattering
behaviour under non-flooded conditions is introduced. Backscatter signatures
were estimated using a harmonic model which was fitted to a time series of
518 ASAR WS scenes acquired in VV polarisation over the lower River Severn
catchment in the south-western United Kingdom. As the images were acquired
from different viewing geometries backscatter values had been normalised with
respect to the influence of θ using equation 1.12. The study then focused on
the analysis of the model residuals whose magnitudes were used as a proxy
for the occurrence of floods. The image time series covered the time period
between 2005 and 2012. During this period, the study area experienced several
large-scale flood events which were recognisable in the time series of residuals
as outliers with negative sign. Exclusion of the flood images identified using
this method further showed that the impact of the outliers on the harmonic
model fitting is negligible as long as only a small proportion of the images was
acquired during flood events.

The delineation of flooded areas was carried out by first standardising the
model residuals and then applying an automatic thresholding algorithm. As
the performance of histogram-based thresholding methods strongly depends on
the bimodality of the grey-value distribution (Martinis et al., 2009; Nakmuen-
wai et al., 2017), and, therefore, the size of the flood extent relative to the
image size, a masking approach was applied. Areas which were assumed to be
unlikely to be flooded due to their topographical location were masked based on
the Height Above Nearest Drainage (HAND) index. Moreover, masking areas
with high HAND values visibly increased the bimodality of the image and im-
proved the estimation of the optimal threshold. In addition, change detection
is carried out using a more traditional approach by computing the difference
between a pre-flood and a flood image. The pre-flood image was identified
using a semi-automatic approach (Hostache et al., 2012). The HAND-based
masking of non-flood-prone areas had a similar effect on the threshold estima-
tion as in the approach using the harmonic model. Nevertheless, the harmonic
model-based change image showed higher contrast resulting in consistently
higher producer’s and user’s accuracies. This is likely to be a result of the fact
that the harmonic model estimate σ̂0(t) represents an non-speckled estimate
of σ0

per(t) due to the averaging of many backscatter measurements in the time
series. The traditional change image produced by differencing between two
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images, on the other hand, includes the speckle contributions of both images
resulting in a higher overall noise.

The results highlight the applicability of harmonic model-based backscatter
analysis for being used in change detection frameworks. Nevertheless, the final
classification of flooded pixels was strongly affected by the number of non-
flooded pixels that were masked based on HAND. Notably different results
with lower accuracy may, therefore, be obtained in areas with less pronounced
topography. This lesson is addressed in the subsequent Chapter of the thesis.

1.6.3 Probabilistic mapping of flood-induced backscat-
ter changes in SAR time series

The third publication (Schlaffer et al., 2017, Chapter 4) generalises the change
detection framework introduced in the previous chapter. Whereas in Chap-
ter 3, flooded pixels were classified using an automatic thresholding algorithm
applied to the residual image a pixel-wise probabilistic approach is used here.
The advantages of a probabilistic approach include a classification based on
the statistical properties of the classes and the characterisation of uncertain-
ties with respect to the obtained flood extents. As input dataset, an extended
version of the SAR dataset described in Chapter 3 was used. The PDFs of the
flooded and non-flooded classes were parameterised separately for each pixel
using the information contained in the corresponding σ0 time series. Seasonal
backscatter behaviour in non-flooded pixels was accounted for using the previ-
ously introduced harmonic model approach. The PDF of σ0 for flooded areas
was approximated using σ0 acquired over permanent water bodies as for a
per-pixel estimation the number of flood events and flood pixels was too low.

The obtained performance measures indicate both high reliability and con-
fidence although there was a slight underestimation of the flood extent, which
may in part be attributed to topographically induced radar shadows along the
edges of the floodplain. Furthermore, flood probability was underestimated
along the shorelines of the flooded areas, most likely due to the occurrence
of mixed pixels as well as topographically induced radar shadows along the
edges of the inundated area. The results also highlight the importance of lo-
cal incidence angle for the separability between flooded and non-flooded areas
as specular reflection properties of open water surfaces increase with a more
oblique viewing geometry. In this case, in contrast to the previous chapter,
the decision boundary for deciding if a pixel was flooded or not has been de-
termined separately for each pixel rather than for the whole study area. This
means that the threshold optimisation is independent of the relative size of the
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flooded area with respect to the image size. Furthermore, no topography-based
masking had to be carried out in this case.

1.6.4 Author contributions
The publications were written in collaboration with different co-authors. In
detail, the contributions of the author of this thesis as lead author to the
publications were as following:

• Mapping wetlands in Zambia using seasonal backscatter signa-
tures derived from ENVISAT ASAR time series.
Design of the study; collection and processing of SAR data; collection
and processing of ancillary data (with the exception of radar altimetry
data); analysis of SAR, ERA-Interim, water stage and NDVI time series;
writing of the final article.

• Flood detection from multi-temporal SAR data using harmonic
analysis and change detection. Design of the study; collection and
processing of SAR data; time series analysis; flood mapping; validation;
writing of the final article.

• Probabilistic mapping of flood-induced backscatter changes in
SAR time series. Design of the study; collection and processing of
SAR data; time series analysis; flood mapping; validation; writing of the
final article.



Chapter 2

Mapping wetlands in Zambia
using seasonal backscatter
signatures derived from
ENVISAT ASAR time series

This chapter is an edited version of: Schlaffer, S., Chini, M., Dettmering, D.,
Wagner, W. (2016) Mapping Wetlands in Zambia Using Seasonal Backscatter
Signatures Derived from ENVISAT ASAR Time Series. Remote Sensing, 8(5):
402. For the original see http://dx.doi.org/10.3390/rs8050402 . The article
is an open access article distributed under the terms and conditions of the
Creative Commons Attribution (CC-BY) license1.

2.1 Introduction

Wetlands are of significant importance for hydrological and ecological pro-
cesses. They constitute vital habitats for specialised flora and fauna and con-
tribute to the livelihoods of the local human population. Within the hydro-
logical cycle, they behave as water storage, thereby alleviating extreme events
like floods and droughts. They also play a vital role in biogeochemical cycles,
acting both as sources and sinks of carbon and nitrogen emissions. However,
wetlands are vulnerable to threats like climate change, land-use conversion—

1http://creativecommons.org/licenses/by/4.0/
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mainly to agricultural areas—and construction of reservoirs (Junk et al., 2012).
Recent studies have reported a decrease of about 40% in the area covered by
wetlands at the global level, albeit strongly varying between regions (Ramsar,
2015). In Sub-Saharan Africa, wetlands cover ca. 9% of the landmass. Since
the second half of the 20th century, wetlands there have come under increasing
pressure due to the construction of dams for the production of hydroelectricity.
The function of the Zambezi River Delta as a natural ecosystem, for example,
has been heavily altered after the construction of the Kariba and Cahora Bassa
Dams (Mitchell, 2012). In other cases, efforts have been made to restore en-
vironmental flows by adapting dam operations. For example, the Kafue Flats
in Zambia are now largely dependent on the operation of dams for annual
flooding during the wet season (Schelle and Pittock, 2005). Due to the high
vulnerability of wetlands to the aforementioned factors there is a strong need
for monitoring their current state and projecting future trends (Ramsar, 2015).

In many regions of the world, wetlands can only be monitored using earth
observation technology, either due to their remoteness or their vast size. In
general, both optical and microwave sensors are suitable for this purpose, each
with their own advantages and disadvantages (Ozesmi and Bauer, 2002). For
global monitoring purposes, multi-sensor fusion techniques have yielded re-
liable results, like in the case of the Global Inundation Extent from Multi-
Satellites (GIEMS) product providing monthly surface inundation extent at
a spatial resolution of ca. 25 × 25 km2 based on data from passive and ac-
tive microwave as well as optical sensors (Prigent et al., 2007). For more
detailed regional and local assessments, Synthetic Aperture Radars (SAR) are
an appropriate source of information: they are largely unaffected by cloud
cover, offer a moderate to high spatial resolution and are very sensitive to the
presence of surface water and—under certain circumstances—even to water
underneath vegetation (Klemas, 2013). Since wetlands are often formed as a
complex mosaic of different vegetation types and hydraulic conditions a variety
of scattering mechanisms can contribute to the signal measured by the sensor.
In combination with different sensor configurations in terms of frequency, po-
larisation and observation geometry this often leads to very diverse backscatter
signatures in wetlands. In the most straightforward case, calm open water sur-
faces act as specular reflectors, which cause water bodies to be represented as
dark objects in SAR imagery. Wind and heavy rainfall, on the other hand,
often roughen the water surface and complicate the retrieval (Bartsch et al.,
2012). If flooding occurs below vegetation, the signal is reflected between the
water surface and the trunks and stems of vegetation emerging from the wa-
ter surface. This so-called “double-bounce” scattering usually results in very
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high values of the backscatter coefficient σ0. Nevertheless, depending on the
density and structure of the vegetation, the energy can be attenuated by the
canopy to a substantial degree, especially at higher incidence angles. Apart
from vegetation structure and density, this attenuation mostly depends on po-
larisation, frequency and local incidence angle (Schumann and Moller, 2015).
Compared to vertically polarised waves, horizontally polarised waves inter-
act less with vertical vegetation structures and are therefore considered better
suited for the purpose of mapping flooded vegetation (Henderson and Lewis,
2008). Moreover, the use of smaller local incidence angles reduces the distance
incident radiation has to travel through the canopy, in general leading to a
higher amount of energy received by the sensor (Lang et al., 2008). Atten-
uation by the vegetation also decreases with longer wavelengths like L-band
(Schumann and Moller, 2015), which is why a considerable number of stud-
ies has been carried out using data acquired at that wavelength (e.g. Aires
et al., 2013; Hess et al., 2003; Kim et al., 2014; Yuan et al., 2015; Zhang et al.,
2016). It should be noted that we consider only techniques for single-polarised
data here although, more recently, specialised algorithms for wetland detec-
tion from polarimetric SAR data have become available (e.g. Morandeira et al.,
2016; Schmitt and Brisco, 2013; White et al., 2015).

A prominent example of the application of L-band SAR data for wetland
mapping is the exercise undertaken by Hess et al. (2003) who discriminated
different sparsely and densely vegetated wetland types in a large part of the
central Amazon basin using mosaics of scenes acquired by the Japan Earth
Resource Satellite (JERS-1) during low and high water stages. They con-
cluded that 17% of the study area of 1.77 million km2 were covered by one
of the mapped wetland types. The study also highlighted the importance
of seasonality in wetland water stage as it influences which of the afore-
mentioned scattering mechanisms—specular reflection, volume scattering or
double-bounce scattering—is dominant. At low water stages, stems may be
protruding through the surface while they may be completely submerged dur-
ing the flood peak. Yuan et al. (2015) used multi-temporal SAR acquisitions
and water heights estimated from radar altimeter data to infer sensitivity of
L-band backscatter towards changes in flood water level. The increase in σ0

with rising water level was significantly lower in areas which were characterised
by a high amount of woody vegetation.

Despite the fact that L-band data are seen as the most suited wavelength
for studies related to surface water and wetlands encouraging results have
also been obtained using C-band data (Bartsch et al., 2009; Kasischke et al.,
2003; Kuenzer et al., 2013a; Reschke et al., 2012) especially where herbaceous
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vegetation is dominant (Henderson and Lewis, 2008), or even using X-band
interferometric SAR (InSAR) in the case of flooded vineyards (Pulvirenti et al.,
2016). For example, in a study on coastal wetlands, L-band, HH-polarised data
was found to be best suited or monitoring water levels using InSAR techniques
but good results could also be obtained using C-band depending on the growth
stage of the vegetation (Zhang et al., 2016). Kasischke et al. (2003) reported
an evident decrease of C-band backscatter with increasing water levels at sites
with low to moderate vegetation cover such as prairie and woodland whereas
in non-flooded areas there was a positive correlation with in-situ soil moisture.

Past studies have also suggested that information aggregated from multi-
temporal data can help to compensate some of the shortcomings of C-band
data for wetland mapping as observations are made at different stages of wa-
ter level and vegetation growth. Indicators extracted from multi-temporal
ENVISAT Advanced SAR (ASAR) data were used by Reschke et al. (2012)
to map peatlands and maximum inundation extent over Northern Eurasia. In
this case, statistical estimates of high and low backscatter for the spring and
summer seasons were used as inputs to a decision tree classifier. Areas with
high maximum backscatter were assumed to be associated with saturated soil.
On the other hand, the maximum annual inundation extent, which is typically
reached after snowmelt in spring, could be related to the lower quantiles of
the per-pixel backscatter time series. For mapping permanent open water,
Santoro and Wegmüller (2014) extracted statistics from ASAR time series and
applied threshold classifiers to extract permanent water masks. High accuracy
values could be achieved for pure pixels using minimum backscatter and vari-
ance over time as indicators. However, minimum backscatter was not robust
to confounding factors such as temporary flooding and wet snow so that a low
percentile of the time series histograms was used instead. When applying the
approach at the global scale, a simple two-metric approach was found to be
problematic, e.g. in regions where strong seasonal variations in surface water
extent occurred (Santoro et al., 2015).

The approaches by Reschke et al. (2012) and Santoro and Wegmüller (2014)
have in common that they rely on seasonal or global time series statistics to
estimate the backscatter signatures for each pixel of a multi-temporal im-
age stack without explicitly accounting for periodic cycles in σ0 induced by
dynamic environmental variables like soil moisture, vegetation density and
inundation extent. More objective methodologies to explicitly characterise
seasonality in satellite-derived time series have been explored mainly in the
field of optical remote sensing, typically in order to derive land surface phe-
nology from parameters such as the Normalised Vegetation Difference Index
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(NDVI) (e.g. Brooks et al., 2012; Eastman et al., 2009; Jonsson and Eklundh,
2002). Recently, Schlaffer et al. (2015) applied harmonic analysis to detect
flood events in multi-temporal ASAR time series as deviations from backscat-
tering behavior under non-flooded conditions. In this context, a 3rd-order
harmonic model efficiently reproduced the seasonal patterns encountered in
the backscatter time series from non-flooded land surfaces. Such an approach
should also be suitable for modelling seasonal backscatter patterns caused by
vegetation, soil moisture and inundation dynamics in a wetland, especially if
a strong seasonality in the climatic forcing is present. One of the advantages
of a harmonic model is that the majority of the annual variability in a time
series can be explained by only a few terms (Brooks et al., 2012) and therefore
it should be more suitable than using descriptive statistics for characterising
seasonality.

The goal of the presented study is to assess the potential of harmonic anal-
ysis for reproducing ASAR backscatter seasonality in a tropical wetland. For
this purpose, ASAR time series are compared to water heights derived from
radar altimeter and soil moisture output from a land-surface model. Then, the
suitability of the derived time series parameters for discriminating between dif-
ferent wetland types such as permanent water, seasonally flooded areas and
inundated vegetation is investigated using cluster analysis. The paper is struc-
tured as follows: in Section 2.2, the study area, the available data and the
methodology used for data analysis and wetland mapping are described. The
suitability of the area of interest as a test bed for this assessment is justi-
fied. The obtained results are reported and discussed in Section 2.3. Finally,
Section 2.4 concludes the study.

2.2 Material and Methods

2.2.1 Study Area
The Kafue River basin is located in Northern Zambia and covers an area of
ca. 155,000 km2 (Figure 2.1(a)). Three large wetlands are located within the
basin: the Lukanga Swamps and the Kafue Flats in Zambia’s Central Province
and the Busanga Swamps in Northwestern Province (Figure 2.1(c)). All three
of them are listed as wetlands of international importance by the Ramsar
Organisation Ramsar (2017). Elevation of the study area ranges between
ca. 1000 m and 1300 m whereas downstream of the Kafue Flats terrain height
drops significantly (Figure 2.1(b)). Annual rainfall decreases from 1400 mm
in the Northern part of the basin, where most of the runoff of the Kafue River
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is produced, to ca. 800 mm in the south. The climate is characterised by
a pronounced rainy season which lasts approximately from October to April
(Figure 2.2). October is, therefore, regarded as the start of the hydrological
year in the region (Ellenbroek, 1987).

Figure 2.1: (a) Location of the study area within the Zambezi (violet) and
the Kafue River (green) basins; (b) digital elevation model of the study area,
source: Shuttle Radar Topography Mission (Jarvis et al., 2008); (c) land cover,
c© ESA Climate Change Initiative—Land Cover project 2014, version 1.4 (Bon-
temps et al., 2015).

The long, persistent flooding of the wetlands along with the diverse mosaic
of vegetation and open water make the area an interesting test bed for this
study. While sparsely vegetated wetland soil should have a strong radar return
due to elevated soil moisture levels, denser vegetation can be expected to show
intermediate backscatter coefficients due to attenuation by the canopy. During
flooding, signatures should become more distinct as specular reflection from
open water surfaces leads to low σ0 values while in flooded vegetation, double-
bounce effects between the water surface and emerging vegetation parts lead
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Figure 2.2: Mean monthly rainfall from WorldClim (Hijmans et al., 2005) for
the Kafue River basin and mean monthly runoff at Itezhi-Tezhi for the period
1978–1991 (source: GRDC).
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Figure 2.3: Mean Aqua MODIS NDVI with 250 m resolution (MYD13Q1)
for September in the (a) Kafue Flats and (b) Lukanga Swamps along with
location of AOIs. Red lines show ENVISAT altimeter tracks.

to bright areas in the resulting SAR images.

2.2.2 Datasets and Pre-Processing

ENVISAT ASAR Wide Swath

Since seasonality in backscattering behaviour plays an important role in trop-
ical wetlands, a suitable remote sensing dataset should provide sampling in-
tervals dense enough in order to be able to capture these seasonal variations.
108 scenes acquired in C-band by the ASAR sensor on board ENVISAT were
available for the Kafue Flats (Figure 2.1(c)) for the time between October 2005
to September 2007 corresponding to two hydrological years. The images were
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acquired from a total number of 10 different swaths (see Figure A.1 in Supple-
mentary Material). For the entire study region the number of scenes amounted
to 227. ASAR’s Wide Swath (WS) mode offered a moderate spatial resolu-
tion of 150 m and a large swath width of 400 km leading to overlaps between
adjacent swaths and therefore an overall revisit time that was lower than the
satellite’s repeat cycle of 35 days. All the images that were used here were
acquired in HH polarisation. Precise orbit state vectors were used to improve
information about platform position (ESA, 2008). The scenes were radio-
metrically calibrated and terrain-corrected using the Range-Doppler algorithm
(Small and Schubert, 2008) with the help of elevation data from the Shuttle
Radar Topography Mission (SRTM) with a resolution of 3 arc-seconds (Jarvis
et al., 2008). The images were then co-registered to a common grid definition
with a pixel spacing of ca. 75 m at the Equator.

Due to the fact that the scenes were acquired using ScanSAR technology
they cover a large swath width meaning that images of the same point on the
ground have been acquired from different sensor positions leading to differences
in viewing geometry. Local incidence angle θ has an important influence on
σ0 which is often corrected for using the linear relationship

σ0(θref) = σ0(θ)− β(θ − θref) (2.1)

where θref is a reference local incidence angle (usually 30◦ to 40◦) and β =
dσ0/dθ (e.g. Pathe et al., 2009; Wagner et al., 1999b). However, a central
assumption to a time-invariant linear dependency is that the residual variance
in σ0 is caused mainly by variations in soil moisture (Pathe et al., 2009). This
implies that no major change in scattering mechanism should take place dur-
ing the observation period as this would affect the sensitivity of σ0 towards
changes in θ. For example, it has been reported that β is substantially steeper
over open water than over land surfaces (O’Grady et al., 2014). In a wet-
land, however, the assumption of β being time-invariant would not hold if a
target area is flooded during substantial periods of the year so that the dom-
inant scattering mechanism may change from bare-soil or volume scattering
to specular reflection or double-bounce scattering and back. Seasonal varia-
tions in β caused by seasonality in vegetation coverage have been reported,
e.g. for Southern Italy (Van doninck et al., 2014). For this reason, we chose
to carry out the analysis separately for different ranges of θ. Figure A.1 in
Supplementary Material shows θ averaged over the Kafue Flats (Figure 2.1(c)
for each scene. While it would have been preferable to analyse the data sepa-
rately for each track the number of images available for each track would have
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been rather low. Therefore, the images were separated into different classes
based on θ averaged over the Kafue Flats: 15◦ < θ ≤ 25◦, 25◦ < θ ≤ 35◦ and
35◦ < θ ≤ 45◦. The resulting average sampling interval in each of the θ classes
was between 10 and 17 days. The sampling should therefore be dense enough
to represent the underlying seasonality in the backscatter time series induced
by rainfall and runoff.
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Figure 2.4: ENVISAT ASARWide Swath scenes acquired on (a) 10 November
2006 (dry season) and (b) 30 March 2007 (wet season).

Figure 2.4 shows examples of pre-processed scenes acquired over the Kafue
Flats along the same track at the end of the dry season and approximately at
the time of peak flood extent, respectively. During the dry season, a few water
bodies can be seen while in general the contrast between water and land is
low. In March, however, large parts of the wetland are clearly recognisable as
being flooded based on the very low σ0 values encountered mainly along the
borders of the Kafue Flats. Furthermore, the contrast between the wetland
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and its surroundings is enhanced due to high soil moisture values.

ENVISAT Radar Altimeter Water Heights

In order to investigate the relationship between SAR backscatter and water
level as reported by e.g. Kasischke et al. (2003) information on water stage
is necessary. In many cases, however, water level measurements from in-situ
gauges are sparse, especially in remote areas. In the case of the Kafue Flats,
runoff measured at the outlet of the Itezhi-Tezhi Dam is available from GRDC
only until 1991 and was therefore not suitable for direct comparison with ASAR
σ0. Alternatively, satellite-based radar altimeters can provide high-accuracy
water levels of inland water bodies such as lakes and rivers (e.g. Crétaux et al.,
2011; Michailovsky et al., 2012). Altimeter data have also been used to in-
fer wetland water heights and to relate their variations to changes in SAR
backscatter intensity (e.g. Lee et al., 2015; Zhang et al., 2016). Although the
altimeter footprint can measure up to several kilometers, the signal is highly
sensitive to the occurrence of water within the footprint (Birkett, 2000). How-
ever, since satellite altimetry was designed for ocean applications, dedicated
data processing for inland water is mandatory in order to extract reliable and
highly accurate water levels from the observed radar returns.

The RA-2 radar altimeter on board ENVISAT provided accurate water level
heights between 2002 and 2010. ENVISAT’s pass 85 crossed the Kafue Flats
every 35 days along the same ground track (Figure 2.3(a)). The sampling
rate of the altimeter was 18 Hz leading to an along-track sampling distance
of ca. 374 m. Radar echoes (so-called waveforms) were extracted from the
Sensor Geophysical Data Records and processed according to the methodol-
ogy described by Schwatke et al. (2015). The approach is based on retracked
waveforms and rigorous outlier detection and applies Kalman filtering to pro-
duce consistent and highly accurate water heights from data acquired along
different tracks. The approach provides normal heights with respect to the
EIGEN-6c3stat geoid (Förste et al., 2012). Moreover, a time series for the
Lukanga Swamps was computed based on data from ENVISAT tracks 543
and 156 (Figure 2.3(b)). The latter time series and its formal errors are freely
available from the Database for Hydrological Time Series of Inland Waters
(DAHITI) via http://www.dahiti.tum.de (Schwatke et al., 2015).

ERA-Interim/Land Volumetric Soil Water

Information on soil moisture dynamics in the study area are necessary in order
to characterise the climatically induced seasonality in the backscatter signal.

http://www.dahiti.tum.de
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However, as there are no data from in-situ monitoring networks available and
products from both passive and active microwave sensors are affected by the
prolonged and extensive floods data from the ERA-Interim/Land reanalysis
were used. The ERA-Interim/Land variables are produced at the European
Centre for Medium-range Weather Forecasts (ECMWF) by forcing the HTES-
SEL land-surface model with ERA-Interim reanalysis fields (Balsamo et al.,
2015). The resulting volumetric soil water fields share the native resolution
of the HTESSEL model of ca. 75 × 75 km2 but versions downscaled to up to
0.125◦ are available on the website of ECMWF. Due to the low resolution of
this product it does not represent the true soil moisture dynamics in the Kafue
Flats but in this context it is used to get information about the likely start
and end of the wet season.

2.2.3 Data Analysis

The ASAR σ0 time series analysis was carried out in three steps: first, time se-
ries were extracted for a number of small areas of interest (AOIs). In the second
step, a per-pixel analysis was carried out. Then, different wetland backscat-
tering classes were derived from the time series based on their characteristic
signatures using unsupervised classification.

Extraction of Time Series

Visual interpretation of σ0 time series is often made difficult by the occur-
rence of speckle which is a characteristic feature of SAR data. The influence of
speckle can be decreased by averaging samples over homogeneous areas (Ulaby
et al., 1986). Therefore, averaged time series were extracted from seven AOIs
pertaining to different land-cover units located within and outside the Kafue
Flats and Lukanga Swamps (Table 2.1). Their locations are shown in Fig-
ure 2.3. AOIs A–C and G are located below ENVISAT ground tracks so that
the extracted σ0 time series could be compared to water height. In addition,
one AOI was selected over the Chunga Lagoon (F) and two further AOIs in
non-wetland areas north of the Kafue Flats (D and E). It can be seen that they
differ considerably in terms of size and vegetation as estimated by NDVI. Due
to the fact that there is much small-scale variability present within the Kafue
Flats no larger AOIs with presumably homogeneous backscattering behaviour
could be delineated in cases A–C. However, these AOIs are still large enough
to minimise the speckle effect in the averaged time series. The land-cover in-
formation for AOIs D and E was extracted from the ESA Land Cover CCI
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dataset (Figure 2.1(c)). AOIs A and B are located in areas which show low σ0

indicative of open water during the flood season and intermediate backscat-
ter during the dry season (Figure 2.4(a)). AOI C is located in the vegetated
floodplain close to the Kafue River where no negative change in σ0 due to
flooding is visible (Figure 2.4(b)). AOI G is situated in the Lukanga Swamps
(Figure 2.3(b)).

Table 2.1: Characteristics of selected AOIs.
AOI Land Cover Avg. Dry-Season NDVI (–) Size (no. of Pixels)

A Seasonally flooded 0.42 371
B Seasonally flooded 0.40 152
C Vegetated floodplain 0.59 170
D Tree cover, open 0.33 755
E Rainfed cropland 0.27 1098
F Permanent water −0.13 1776
G Lukanga Swamps 0.50 4537

Seasonality Analysis Using Harmonic Model

The Kafue Flats are subject to strongly seasonal rainfall and runoff (Fig-
ure 2.2). Radar backscatter dynamics are closely linked to hydrological pro-
cesses occurring on the land surface due to the high sensitivity of microwave
radiation to changes in dielectric constant. Moreover, in the case of flooding,
processes such as specular reflection at open water surfaces exert a drastic in-
fluence on the energy amounts backscattered from affected surfaces. Therefore,
σ0 time series of the region are likewise expected to display a strong season-
ality. It can also be assumed that the series will not show a single annual
cycle but a more complex pattern produced at multiple frequencies due to the
overlaying effects of different scattering mechanisms.

The seasonal patterns of wetting, flooding and drying of the land surface
within and around the Kafue Flats were analysed using harmonic modelling
of the ASAR σ0 image time series obtained using the pre-processing workflow
described in Section 2.2.2. Seasonality in remotely sensed time series has been
analyzed before using similar approaches, mostly in order to derive land surface
phenology based on NDVI (e.g. Brooks et al., 2012; Verbesselt et al., 2010)
but rarely for SAR-derived time series. A requirement for the application of
a harmonic model is that valid data points have to be present at key points
of the curve (Brooks et al., 2012). This in turn requires a sufficiently dense
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series which was generated as described earlier. The applied methodology is
described in greater detail by Schlaffer et al. (2015). The σ0 time series were
averaged over slices of ten days in order to regularise the sampling intervals.

A harmonic model represents a time series as a combination of k ∈ N sinu-
soids, each with an amplitude A and a phase angle φ. φ can be interpreted as
the time of the maximum of the respective sinusoid (Wilks, 2011). A backscat-
ter time series can therefore be expressed as

σ0(t) = σ0 +
k∑

i=1

[
Ai cos

(2πit
n
− φi

)]
+ ε(t) (2.2)

where σ0 is the backscatter coefficient averaged over time t, n is the num-
ber of measurements and ε a residual term. The k sinusoids represent cycles
occurring with a frequency fi = 1, 2, 3, ..., k yr−1. The choice of an appro-
priate value for k was determined by the motive to reproduce the seasonality
caused by the underlying climatic and flooding processes. According to our
prior considerations that water level can have positive or negative effects on
radar backscatter depending on the occurrence of flooded vegetation or open
water, respectively, we expect that some of the affected time series will display
strongly asymmetric shapes. Such deviations from a purely sinusoidal shape
with a frequency fi can be represented by overlaying a second sinusoid with a
frequency fi+1 = 2fi (Bloomfield, 2000). We therefore chose to represent the
series by a number of k = 3 sinusoids. The number of harmonic terms is lim-
ited by the Nyquist frequency which is half of the sampling rate of a signal. In
the present case, the lowest number of samples is 25 over the two-year study
period for θ between 15◦ and 25◦ (see Figure A.1). The maximum possible
value of k is therefore 25/4 ≈ 6 which is twice as high as the selected value.

The parameters of the sinusoids were estimated using least-squares optimi-
sation as missing values occurred in the time series due to the user-request-
driven acquisition policy for ASAR WS data. Using the transformations

Ai =
√
c2

i + s2
i (2.3)

and
φi = tan−1

(
si

ci

)
(2.4)

equation (2.2) can be rewritten as

σ0(t) = σ0 +
k∑

i=1

[
ci cos

(2πit
n

)
+ si sin

(2πit
n

)]
+ ε(t) (2.5)
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which was treated like a multiple linear regression with predictors cos (2πit/n)
and sin (2πit/n) (Schlaffer et al., 2015).

We first estimated the parameters σ0, ci and si for time series averaged
from samples taken from the homogeneous areas selected as described in Sec-
tion 2.2.3 to demonstrate the seasonality encountered in the area of interest.
Then, the harmonic model was derived for each point X in space in the multi-
temporal image stack created during pre-processing (cf. Section 2.2.2), which
means that the harmonic model parameters can be visualised as raster maps
with the same spatial dimensions as the input data.

Regional Wetland Mapping

After the harmonic model parameters were estimated as described in Sec-
tion 2.2.3 we tested whether the parameters contained enough information to
classify different wetland classes such as permanent and seasonal open water.
If the harmonic model is fitted to the σ0 time series of each pixel of a multi-
temporal image stack the parameters of the model, namely mean backscatter,
ci and si, are available as spatially distributed variables. Therefore, using a har-
monic model, a large portion of the variability in a time series can be expressed
through a combination of 2k+1 parameters. These variables can then be used
to compare the seasonal behaviour of different pixels against each other. When
no prior information about the seasonality of different wetland classes is avail-
able cluster analysis represents an efficient way to explore the relationships of
the different parameters with respect to each other. Moreover, as the cosine
and sine functions in equation 2.5 are approximately orthogonal to each other,
Euclidean distance can be used as a measure of dissimilarity between the time
series (Lhermitte et al., 2008). AK-medoids partitioning approach was applied
here which is outlined below. Details are given by Kaufman and Rousseeuw
(1990). Due to the size of the dataset (> 22 ·106 pixels) smaller sub-samples of
20,000 pixels were drawn at random. The sub-samples were grouped around
K representative objects, the so-called medoids. Subsequently, the samples
not included in the initial sub-samples were assigned to the closest represen-
tative object. The use of medoids instead of centroids assigns lower weights
to outliers as the sum of absolute deviations is minimised instead of the sum
of squared deviations as in the widely-used K-means method. This makes the
approach more robust to the occurrence of outlying observations (Kaufman
and Rousseeuw, 1990). The number of target clusters was estimated by the
number of land-cover classes that the CCI Land-Cover dataset reported for
the study region. All clusters related to non-water or non-wetland were com-
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bined into a single “Land” class. The remaining clusters were labelled using
the gathered information about hydrological and backscattering behavior from
the analysis of the time series from selected AOIs (Table 2.1).

In the post-processing step, the resulting map showing the aggregated and
labelled clusters was regularised using a majority filter with a square kernel
of 5 × 5 pixels. We further made the assumption that wetlands and periodic
inundation only occur in areas which are not highly elevated above the river
network. Similar assumptions have been made by e.g. Fluet-Chouinard et al.
(2015). This assumption was implemented by using a mask based on the
Height Above Nearest Drainage (HAND) index which essentially consists of
the elevation difference between a pixel of a digital elevation model and the
nearest pixel that is part of the drainage network. Details of the derivation
are given by Rennó et al. (2008) and Schlaffer et al. (2015) for the masking.
The digital elevation model (DEM) and the flow direction rasters available at
a resolution of 3 arc-seconds from the HYDROSHEDS website (Lehner et al.,
2008) were used as input for the HAND algorithm.

2.3 Results and Discussion

2.3.1 Wetland Backscatter Signatures

In this section, the results of the backscatter time series analysis are described.
Since one goal of the study is to discuss the backscatter signatures in context
with flood dynamics, we first focus on time series sampled from the AOIs
described in Section 2.2.3. Then, the derived harmonic model parameters are
discussed in a spatial context.

Analysis of Time Series from AOIs

ASAR σ0 time series were sampled from AOIs at different locations along
ENVISAT ground track 85 in the Kafue Flats and track 543 in the Lukanga
Swamps to compare backscatter and water level dynamics. Additional AOIs
were selected in a permanent water body and non-wetland areas for compari-
son. Seasonality was estimated for different local incidence angle classes using
the harmonic model approach (Figures 2.5 and 2.6).

Figure 2.5 shows the time series of six AOIs in and around the Kafue Flats.
In the lower panel, altimeter-derived water height and soil moisture from the
large-scale ERA-Interim/Land reanalysis are displayed. Although reanalysis
soil moisture fields cannot realistically reproduce actual soil moisture dynamics
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inside the wetland they can be used to gain information about its general
seasonality based on atmospheric forcing (Albergel et al., 2013). Indeed, soil
moisture shows distinct wet and dry seasons as could be expected from the
monthly rainfall statistics (Figure 2.2). Water height follows the soil moisture
dynamics with a time shift of some months. The annual amplitude in water
height along track 85 is ca. 2 m which is similar to numbers based on in-situ
gauges reported in the literature (Zurbrügg et al., 2012).

In the top panel of Figure 2.5, the time series of a moderately vegetated
AOI (A) with a dry-season NDVI of ca. 0.42 is shown. For all three local
incidence angle classes similar seasonal σ0 patterns can be observed. The
maximum occurs around January which roughly coincides with the peak of
the rainy season (cf. Figure 2.2) when soil moisture is high and vegetation
should be fully developed. After this maximum, σ0 drops within three months
to levels usually considered indicative of flooding (< −15 dB). Water height
reaches its annual maximum around the same time. Water level then decreases
while at the same time there is a gradual increase of σ0 to about −10 dB in
September. This rather fast decrease in backscatter during the second half of
the wet season and the subsequent slow increase can be attributed to flooding
followed by comparatively slow flood recession due to the flat terrain. The
strong negative relationship between σ0 and water height provides additional
evidence for this hypothesis. Between October and November there is again
a decrease in backscatter as the dry season progresses, most likely due to
lower soil moisture levels. Approximately in December, σ0, water height and
soil moisture start increasing again. During this time of the year, there is a
positive relationship between σ0 and water height.

A similar pattern can be observed for another moderately vegetated AOI
(B) in the southern part of the Kafue Flats. The main difference here is that
the flooding seems to be more persistent as indicated by the more stable low
backscatter between March and July. The second maximum in September
is also by a few dB lower than in AOI A. A possible explanation for these
dynamics could be lower vegetation which remains submerged longer while
in the first case gradually more and more vegetation emerges from the water
surface when the flooding slowly recedes and contributes to higher backscatter.
However, this cannot be fully answered given the available data as NDVI is
very similar among the two AOIs and it is also does not provide an indication
of vegetation height.

Very different dynamics are found for the third AOI (C ) which is located
closer to the river and more densely vegetated than the first two AOIs (NDVI = 0.59).
Here, an overall positive relationship between σ0 and water height (irrespective
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Figure 2.5: ASAR σ0 time series for different local incidence angle ranges
in AOIs A–F as well as soil moisture from ERA-Interim/Land and altimeter
water heights in the Kafue Flats (bottom). Dashed lines show fitted harmonic
models.
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Figure 2.6: ASAR σ0 time series for different local incidence angle ranges in
AOI G (top) as well as soil moisture from ERA-Interim/Land and altimeter
water heights in the Lukanga Swamps (bottom). Dashed lines show fitted
harmonic models.

of θ class) can be noticed. Both variables increase between November and May
and then decrease during the dry season. The high σ0 values that are reached
during peak flood water height are indicative of double-bounce backscatter-
ing reaching values between −6 dB and −4 dB, depending on θ. According
to Ellenbroek (1987), the area along the river is characterised by tall grasses
growing on levees along the river which may lead to only partial submersion
during the flood season.

According to the reference land-cover dataset (Bontemps et al., 2015), the
two non-wetland AOIs D and E are covered by trees and rainfed cropland,
respectively. Both show similar seasonal patterns with a steep increase in σ0

at the onset of the rainy season and a slow gradual decline reaching a minimum
around October. The main difference between the two AOIs is that AOI D has
a higher annual minimum and a smaller annual variation than E, presumably
due to the denser vegetation and therefore higher volume scattering during the
dry season. The time series corresponding to AOI F, located over a permanent
water body, shows high noise at low local incidence angles resulting in a rel-
atively poor harmonic model fit with standard errors between 1.2 and 1.4 for
the coefficients ci and si while for higher θ they lie typically around 0.5. This
is most likely owed to the higher susceptibility of steep local incidence angles
to water surface roughness. For the other θ ranges, the fitted curve resembles
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almost a straight line reflecting the stability of specular reflection throughout
the year.

Backscatter, altimeter water height and surface soil moisture time series for
the Lukanga Swamps (AOI G) are shown in Figure 2.6. The annual amplitude
in water height was ca. 1 m, i.e. half the value found for the Kafue Flats.
Backscatter throughout the year was high reflecting the high moisture content.
For steep incidence angles, σ0 during the wet season is even > 0 dB suggesting a
strong double-bounce contribution from the partially submerged reed stands.
It is worth mentioning that no further increase in σ0 is visible when water
height increases above 1115 m. Rather, there seems to be a small decrease
during the height of the flood season between April and June (Figure 2.6).
This behaviour can possibly be explained by the decreasing length of the stems
and leaves of reeds emerging above the water surface and therefore the smaller
area available for the production of double-bounce scattering. Similar findings
have been reported based on backscatter modelling Pulvirenti et al. (2011a).
In comparison with AOI C, which is also characterised by seasonally flooded
vegetation in the Kafue Flats, double-bounce scattering is more persistent here
meaning that the vegetation is likely to be longer partially submerged in this
case. According to Ellenbroek (1987), the Lukanga Swamps’ main water loss is
by evaporation whereas drainage towards the Kafue River is low. This offers an
explanation for the sustained high backscatter values encountered in this area.
In relation to the fitted harmonic models it can be noted that in the case of
low incidence angles (black dashed line in Figure 2.6) the annual dynamics are
probably underestimated because there is only one σ0 measurement available
at the lowest point of the time series in November 2006.

Overall, very similar harmonic models were fitted for all three value ranges
of θ. Steep local incidence angles (15◦–25◦) are sampled with the lowest den-
sity but the strong similarity between the estimated models suggests that the
sample size was high enough for the parameter optimisation. In general, time
series taken at a high local incidence angle are consistently lower than those
from low θ ranges. A more detailed discussion of the differences between the
estimated harmonic model parameters is given in the following paragraphs.

The differences between the harmonic models can also be illustrated in
terms of the differences in the estimated coefficients ci and si, corresponding
to the amplitudes and phases estimated for the respective frequencies. A suit-
able way to visualise these differences is obtained by plotting the point pairs
(ci, si) for a single frequency fi in Cartesian coordinates and to connect the
points to the origin. As result, a radial plot is obtained as shown in Fig-
ure 2.7 for the seven AOIs. The length of the lines is equal to the amplitude



44 CHAPTER 2. MAPPING WETLANDS USING ASAR TIME SERIES

Ai and the angle between the abscissa and the lines represents the phase angle
φi according to equations 2.3 and 2.4 (Lhermitte et al., 2008). For the first
harmonic with an annual frequency, both AOIs with seasonal open water (A
and B) have phase angles placing their lines in the lower right quadrant of
Figure 2.7(a)). Also, their lines are longer than the other AOIs reflecting the
large annual amplitude of the corresponding backscatter time series (cf. Fig-
ure 2.5). Since no significant seasonal variations in the backscatter time series
of the permanently water-covered AOI F could be identified for intermediate
and high θ (i.e. A1 ≈ 0) only a line for steep θ is visible which points in the
almost opposite direction of the coefficients for seasonally inundated areas.
This suggests a certain potential of the harmonic model parameters for being
used to discriminate between permanent and seasonal water bodies even if the
differences in average backscatter σ0 are minor. The coefficients corresponding
to AOI C, which is located close to the river, are displayed as lines in the upper
left quadrant echoing the very different dynamics already shown in Figure 2.5.
Moreover, the amplitude is much smaller than in the case of AOIs A and B.
The coefficients related to AOIs D and E, which are not located inside the
wetland areas, have similar phase angles φ1. A1 for the tree-covered area D,
however, is smaller than for the cropland area E. AOI G which is located in
the Lukanga Swamps is characterised by comparatively small A1 values for all
three θ ranges. In contrast to the other AOIs, φ1 varies strongly between the
θ classes. This behaviour can be explained by the fact that, in Figure 2.6, two
peaks can be recognised in the σ0 time series, the first one in January and
the second one around August to September. For high local incidence angles
(green dashed line in Figure 2.6), the second peak is higher than the first one
which is likely to be the reason that the corresponding line is situated in the
upper left quadrant of Figure 2.7(a).

In contrast, land and seasonal water bodies show a much higher similarity
in terms of the parameters obtained for the second harmonic term as demon-
strated by the corresponding point pairs located in the upper-right quadrant
of Figure 2.7(b). Amplitudes A2 also tend to be lower than A1. A3 estimates
are of similar magnitude as A2. Additionally, there is even less variation in φ3

than in φ2 between the AOIs (Figure 2.7(c)).
It is noteworthy that only minor differences in the estimated amplitudes

between the different local incidence angle classes for the same AOIs can be
found which is illustrated by the similarity of the solid, dashed and dotted lines
in Figure 2.7. Viewing geometry expressed as θ, however, seems to affect σ0

estimates for the different AOIs (Table 2.2). In general, σ0 is higher at steep
θ which is in line with our expectations. In dry-land AOIs (D and E) as well
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as in AOIs with seasonally flooded vegetation (C and G) σ0 decreases in an
almost linear manner with higher θ. In case of permanent water (AOI F), the
difference in σ0 is very strong between steep to intermediate θ values whereas
between intermediate and high θ the gradient flattens. The comparatively
high σ0 for low θ is probably due to the higher sensitivity to water surface
roughness at these incidence angles (Töyrä et al., 2001). In case of the AOIs
with seasonal open water (A and B) the gradient seems to be marginally
steeper at low θ, however, not enough to assume a strong non-linearity. It
can be concluded that, based on the data from the selected AOIs, the periodic
changes between different scattering mechanisms like specular reflection and
double-bounce scattering were not found to cause substantial deviations from
a linear relationship between σ0 and θ which is often reported in the literature
(e.g. Pathe et al., 2009; Wagner et al., 1999b). Concerning the separability
between wetland and dry-land classes differences between AOIs were more
pronounced at higher angles.

Spatial Analysis of Harmonic Model Coefficients

In the next step of the analysis, harmonic models were fitted separately to the
time series of each pixel of the multi-temporal image stack. For each pixel, the
harmonic model coefficients, mean backscatter σ0, amplitudes Ai and phases
φi were estimated and evaluated with respect to spatial patterns of backscat-
ter seasonality. As it was demonstrated in Section 2.3.1 there should be a
high potential to distinguish seasonal and permanent water bodies as well as
regions with double-bounce backscattering using the coefficients correspond-
ing to the first harmonic term in equation 2.2 corresponding to a frequency
f1 = 1 yr−1. The differences between AOIs were less pronounced in the coef-
ficients corresponding to the 2nd and 3rd harmonic terms. RGB composites

Table 2.2: Estimated σ0 in dB for each AOI and different ranges of θ.
AOI 15◦ − 25◦ 25◦ − 35◦ 35◦ − 45◦

A −11.6 −14.0 −15.1
B −10.9 −13.1 −14.3
C −6.4 −7.6 −8.6
D −8.3 −8.8 −9.3
E −8.4 −9.8 −10.5
F −10.5 −17.0 −20.4
G −1.1 −3.7 −5.2
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Figure 2.7: Fitted parameters ci, si of harmonic model terms (a) i = 1, (b)
i = 2 and (c) i = 3 for the different AOIs A–F and θ ranges. Line lengths
represent amplitudes (a) A1, (b) A2 and (c) A3; angles between the x axis and
the lines represent phase angles (a) φ1, (b) φ2 and (c) φ3.

of σ0, A1 and φ1 are shown in Figure 2.8 for different θ ranges. Phase angle
φ1 is given as Day of Year (DoY) and rescaled between 0 and 364. Visual
inspection shows large differences between the wetland and surrounding areas
but also within the Kafue Flats themselves. The area along the Kafue River
appears as an orange-red ribbon in the centre of the maps. The time series
derived from AOI C (Figure 2.5) corresponds to this backscattering class. The
area is characterised by annual flooding during the wet season and high NDVI
values. This leads to high average backscatter and therefore high values in
the red band of Figure 2.8 while at the same time the intra-annual variability
caused by flooding leads to intermediate values of A1 (green band) and low φ1

(blue band). In stark contrast, the seasonally flooded areas north and south of
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the river appear as bright blue-green bands stretching along the borders of the
wetland. Comparison with the dynamics of AOI A and AOI B reveals that in
these areas the maximum occurs before or during the peak of the rainy season,
i.e., late in the year (high DoY), after which σ0 is decreased due to specular
reflection. This in turn leads to high values in the blue band of Figure 2.8 for
seasonally flooded regions. Moreover, brighter shades of blue imply that there
is also a strong green component due to a high yearly amplitude in backscat-
ter. The high A1 and φ1 values for seasonally flooded areas were also visible
in Figure 2.7(a) for AOIs A and B. In conclusion, areas with seasonal open
water are characterised by low σ0 as well as high A1 and φ1 while in seasonally
flooded vegetation high σ0, low φ1 and intermediate A1 can be found. AOIs A
and B therefore correspond to areas appearing blue-green in Figure 2.8 while
areas with a similar behaviour as AOI C appear orange to red.

In comparison, non-wetland areas are mainly shown in green and red shades.
Areas shown in green should be characterised by low average σ0 and high A1

while for areas shown in red the opposite is true reflecting differences in veg-
etation density and biomass. Indeed, green areas typically have a dry-season
NDVI of 0.25–0.30 while in red areas NDVI is much higher (cf. Figure 2.3).
According to the reference land-cover dataset red areas mostly belong to tree-
covered or even forested classes (cf. AOI D) while green areas fall inside crop-
land classes (cf. AOI E). This would partly explain the differences in σ0 and
A1 as in forests volume scattering can be expected to be comparatively high
also during the dry season while in agricultural areas a higher sensitivity to
soil moisture is usually observed. Visual inspection of the differences between
Figure 2.8a–c reveals that in some areas the harmonic model coefficients are
more sensitive to changes in θ than in others. Areas that are labelled as cov-
ered by trees in the reference land-cover dataset (Figure 2.1c), for example,
appear with a higher red value and therefore have higher average σ0 at higher
local incidence angles (Figure 2.8(c) vs. Figure 2.8(a)). This is in line with our
expectation that volume scattering is more dominant at a more oblique geom-
etry due to the longer distance the incident radiation has to travel through the
canopy.

Permanent water bodies like the Chunga Lagoon appear almost black at
θ > 25◦ while at lower angles seasonal and permanent water is more difficult
to differentiate visually based on the harmonic model components alone. Fig-
ure 2.5 shows more noise in the time series for AOI F acquired at θ < 25◦

which leads to a harmonic model which erroneously suggests a relatively high
seasonality. This is likely due to the higher σ0 from roughened surfaces at steep
incidence angles (Richards, 2009) and therefore a higher temporal variability
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which can be mistaken for seasonality by the model (cf. Figure 2.5). At higher
incidence angles, however, the harmonic model components seem to be well
suited to distinguish permanent and seasonal water bodies.

The discussion here is mainly related to the parameters corresponding to
the first harmonic. Additionally, gray-scale images of all the fitted coefficients
are included in the Supplement to this article (Figures A.2–A.4). It can be
seen that amplitudes A2 and A3 are, in general, lower than A1 and that there
is much less contrast between wetland and non-wetland areas. This confirms
the conclusion from section 2.3.1 that the AOIs can be distinguished mainly
based on σ0, A1 and φ1.

2.3.2 Regional Mapping of Wetland Backscattering Classes

Analysis of the harmonic model parameters in Section 2.3.1 showed that dif-
ferent backscattering classes in wetlands could be distinguished based on in-
dicators of their annual dynamics and mean backscatter. We therefore chose
the spatially distributed parameters σ0, c1 and s1 as well as the standard devi-
ation of the residual term sε as input parameters for the K-medoids approach
described in Section 2.2.3. The cluster analysis was run over the entire region
shown in Figure 2.1(c) to see if the approach was able to correctly detect the
three major wetlands in the study region. Only σ0 measurements acquired
at local incidence angles between 25◦ and 35◦ were used for the parameter
estimation of the harmonic model. At these intermediate θ values a higher
contrast between permanent and seasonal water bodies as well as between
forested and open areas was described in Section 2.3.1. The parameters σ0,
A1 and φ1 are shown in form of a RGB composite in Figure A.5. The num-
ber of target clusters in the cluster analysis was 16 which is the number of
land-cover classes that the ESA CCI Land-Cover dataset lists for the study
region. The clusters were then combined and labelled according to a descrip-
tion of the seasonal behaviour of the corresponding AOIs in Table 2.3. Due to
the differences in seasonal flooding that were observed between AOI C (Kafue
Flats) and AOI G (Lukanga Swamps) two classes for flooded vegetation were
created. “Persistently flooded vegetation” refers to persistent double-bounce
scattering as observed in the Lukanga Swamps while the more dynamic be-
haviour along the Kafue River was regarded as typical for class “Seasonally
flooded vegetation”. A suitable threshold value for masking areas in which
wetlands are very unlikely to occur based on the HAND index was determined
by visually assessing the distributions of HAND values for the aggregated and
labelled classes using a Box-Whisker-Plot (Figure A.6 in Supplementary Mate-
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Figure 2.8: RGB composite of harmonic terms derived for (a) 15◦ < θ ≤ 25◦;
(b) 25◦ < θ ≤ 35◦; (c) 35◦ < θ ≤ 45◦. Red: average backscatter; green:
amplitude of first harmonic term A1; blue: phase of first harmonic term φ1
given as DoY.
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rial). A threshold value of 10 m effectively separated the HAND distributions
of the wetland backscattering classes from the distribution conditioned on the
“Land” class.

The result of the classification after applying the post-processing steps de-
scribed in Section 2.2.3 is shown in Figure 2.9. A total area of almost 7800 km2

was classified as one of the four wetland backscattering classes corresponding
to 7.6% of the total study area. Of this area, 7% were permanent water bodies,
26% seasonal open water, 19% persistently flooded vegetation including most
of the Lukanga Swamps and 22% were covered by seasonally flooded vegeta-
tion. In comparison, the CCI Land Cover dataset shows an area of 4800 km2

as covered by either water bodies or flooded shrub and herbaceous vegetation.
Discrepancies are mainly visible in the Lukanga and the Busanga Swamps
where large portions are classified as shrubland in the CCI product. How-
ever, flooded vegetation seems to be more likely here as these areas, according
to topography (cf. Figure 2.1(b)), are located within the aforementioned wet-
lands. All three major wetlands in the region, the Kafue Flats in the south, the
Lukanga Swamp in the north-east and the Busanga Swamps in the north-west
were detected by our approach. Also, the Itezhi-Tezhi reservoir, the Chunga
Lagoon and a number of other permanent water bodies are well represented. In
the Kafue Flats, the main wetland units of densely vegetated floodplain along
the river and seasonal open water along their northern and southern edges are
correctly identified. In contrast to the complex mosaic found in the Kafue
Flats, the main part of the Lukanga Swamps is quite homogeneously covered
by persistently flooded vegetation. This class is also found in the Kafue Flats
in the proximity of large permanent water bodies like the Chunga Lagoon and
in the flooded areas behind the Kafue Gorge Dam at the eastern end of the
flats. The Busanga Swamp seems to be more vegetated in its northern part
while the southern part exhibits seasonal open water bodies. The Kafue River
is not continuously visible due to its rather narrow channel width of 150 m to

Table 2.3: Reclassification table.
AOI Class Labels Clusters

Permanent water 16 F
Seasonally flooded 14 A, B

Persistently flooded vegetation 15 G
Seasonally flooded vegetation 3 C

Land 1, 2, 4–13 D, E
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200 m (according to visual assessment using Google Earth imagery). This is
below the size of the majority filter which may have reclassified pixels belong-
ing to the river to the land class. However, since the focus of this study was
the mapping of wetlands we chose not to alter the filter size of 5 × 5 pixels.

The masking based on elevation difference to the nearest drainage mainly
removed forested pixels in the topographically complex south-eastern part of
the region which would otherwise have been falsely classified as open water or
flooded vegetation due to radar shadow and layover, respectively. It should
also be mentioned that larger urban areas were falsely classified as flooded
vegetation due to high σ0 and low annual variation. Nevertheless, the HAND-
based mask successfully removed such areas as in the case of Lusaka.

2.4 Conclusions

In the presented study, moderate-resolution ENVISAT ASAR data acquired
over a time period of ca. two years were compared to altimeter-derived water
height estimates and surface soil moisture from a reanalysis dataset to assess
characteristic seasonal patterns in C-band radar backscatter from tropical wet-
lands. It was hypothesised that different scattering mechanisms caused by soil
moisture and inundation dynamics along with vegetation density affected the
observed backscatter (σ0) time series. Indeed, a positive contribution of water
height to the backscatter coefficient was found under dense vegetation whereas
in more open areas, specular reflection dominated the signal as soon as most
of the vegetation had been submerged. These differences lead to typical time
series signatures, which were characterised using a harmonic model. Selected
harmonic model parameters estimated for each pixel in a multi-temporal image
stack were then used to classify wetland backscattering classes at the regional
scale by applying an unsupervised classification approach. It was possible to
clearly differentiate permanent water bodies, seasonal open water, seasonal
flooded vegetation as well as persistently flooded vegetation from dry-land
areas.

Furthermore, we addressed the question of whether periodic changes in scat-
tering mechanism (volume scattering, double-bounce scattering, specular re-
flection) affected the seasonal signatures of the σ0 time series as expressed
in terms of their amplitudes and phases. The effect of different local inci-
dence angles was found to be sufficiently well described by a linear shift in
average backscatter between the incidence angle bands. The only substantial
exception to this finding were permanent water bodies where data acquired
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at higher incidence angles seemed to be less affected by water surface rough-
ness. The effect of local incidence angle θ on σ0could, therefore, be largely
corrected for by using a linear normalisation approach as found in the litera-
ture on soil moisture retrieval from radar data. For the wetland classification,
data acquired in a θ range between 25◦ and 35◦ were selected as our analysis
had shown that, at these intermediate incidence angles, a good trade-off was
obtained between robustness to surface roughness for open water classification
and canopy attenuation for the classification of vegetated wetlands.

Typically, SAR-based wetland classification methods, some of which were
mentioned in Section 2.1, take into account imagery acquired during flood and
dry seasons. Such approaches usually require a significant amount of inter-
vention by the operator, especially for selecting suitable image acquisitions.
In contrast, in the proposed approach, magnitude and timing of backscatter
seasonality are explicitly modelled for each pixel while taking into account the
full time series of ASAR images. We believe that our method makes an impor-
tant contribution towards more automatic wetland classification approaches,
especially as more systematic acquisitions are made possible by satellite mis-
sions such as Sentinel-1. As the application of a harmonic model requires a
time series with a length of at least one seasonal cycle the proposed approach
for wetlands mapping is generally suitable for detecting changes and trends
in wetland extent and type from longer SAR time series. An important pre-
requisite is a dense enough temporal sampling. Since the conclusion of the
ENVISAT mission Sentinel-1 is a prime candidate for continuing the existing
time series of C-band SAR data. However, at the time this manuscript was
finalised only a small number of scenes had been acquired by Sentinel-1 over
the study region.
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Chapter 3

Flood detection from
multi-temporal SAR data using
harmonic analysis and change
detection

This chapter is an edited version of: Schlaffer, S., Matgen, P., Hollaus, M.,
Wagner, W., 2015. Flood detection from multi-temporal SAR data using har-
monic analysis and change detection. International Journal of Applied Earth
Observation and Geoinformation, 38: 15–24. For the original see http://dx.
doi.org/10.1016/ j.jag.2014.12.001 .

3.1 Introduction
Floods are among the most frequent natural disasters caused by meteorological
phenomena. Recent studies based on insurance data have shown that between
1980 and 2011 hydrological disasters accounted for 23% of all reported losses
and 10% of fatalities that were caused by natural disasters (MunichRe, 2012).
In addition to losses of lives and property, major flood events have led to
internal displacement and resource shortages like in the case of the 2010 Pak-
istan floods where more than 14 million people were affected (World Food
Programme, 2010). Flood monitoring and mapping using earth observation
(EO) data can help authorities and non-governmental organisations in disaster
management and coordination of humanitarian efforts. Users have described
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maps showing inundation extent as being of key value in operational settings
as well as for strategic planning of flood prevention and mitigation measures
(Zlatanova, 2013).

Data from both optical and microwave sensors can be used for flood map-
ping. Synthetic Aperture Radar (SAR) systems offer the possibility to operate
day and night and they are able to penetrate clouds and heavy rainfall, a fea-
ture which is of special importance considering the weather conditions under
which flood events usually occur. In the past, data from moderate-resolution
sensors like the Advanced SAR (ASAR) on-board ENVISAT have been exten-
sively used while more recently, high-resolution imagery from platforms such
as TerraSAR-X and Cosmo-SkyMed has become available. However, for global
applications, due to the price of high-resolution imagery, free data continue to
be important despite of their potentially lower resolution. After end-of-mission
was declared for ENVISAT in April 2012, continuity is expected to be ensured
by the Sentinel-1 constellation whose first satellite was launched in April 2014.
The ASAR sensor was, like the SAR sensor on-board Sentinel-1, operated in C
band with a wavelength of λ ≈ 5.6 cm. ASAR mapped European land surfaces
every 3 – 6 days, depending on the acquisition mode.

Detection of water bodies from SAR data typically makes use of the unique
characteristics that water exhibits in the microwave spectrum. Calm, open wa-
ter surfaces act as specular reflectors and reflect incoming radiation away from
the sensor, which in general results in low backscatter measurements. Differ-
ent environmental factors like wind-induced waves, however, increase surface
roughness while vegetation and infrastructure emerging from the water surface
can produce double-bounce effects (Woodhouse, 2005). While these lead to an
increase in the backscatter signal, other surface types like dry, bare sand can
be confused with open water due to low backscatter. For example, O’Grady
et al. (2011) report that alluvial sediment can be easily confused with flooded
areas.

Due to the aforementioned advantages of SAR sensors for flood monitor-
ing, it is not surprising that during the last decade considerable effort has
been spent on developing algorithms for flood delineation from SAR imagery.
In general, these algorithms can be divided into single-image analysis and
change detection approaches. Some of the more traditional image-processing
based approaches were compared by Schumann et al. (2009) and include vi-
sual interpretation, automatic thresholding, image texture analysis and active
contouring. The authors conclude that a multi-algorithm approach is more
promising than relying on a single algorithm and propose the use of ensembles
yielding a “probability of inundation” map based on the ensemble classifica-
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tions. However, most studies up to this day rely on a simple global threshold
to be applied to the whole scene or parts of it. A suitable threshold value can
either be found by visual inspection of the gray-scale histogram (Bartsch et al.,
2008) or by using an automatic algorithm. One of the most widely used image
thresholding techniques is Otsu’s method which aims at minimising within-
class variability while at the same time maximising between-class variability
(Otsu, 1979). A commonly encountered problem in connection with this ap-
proach is that flooded areas usually only cover a minor portion of a SAR scene.
Therefore, histograms often do not exhibit a characteristic bimodal distribu-
tion or a strong tailing indicative of an inundated area. Modifications have
been proposed to make the approach more robust towards this underrepresen-
tation of flood pixels, e.g. by splitting the scene into subsets or tiles before the
histogram analysis (Martinis et al., 2009).

Most of these approaches have in common that they are mostly based on
pure image analysis techniques. However, these methods have shortcomings as
they largely do not take into account possible confusion between flooded and
non-flooded areas in the SAR scene. Moreover, using a single SAR image, it
is not possible to distinguish permanent and transient water bodies. Another
category of classification algorithms involves the detection of changes in time
and takes into account one or more scenes which were acquired before or after
a flood event when the flooded area was dry. In its simplest form, a change
image is produced by simply subtracting the grey values of a flood scene from
those in a reference image and then applying a classification algorithm. Often,
change detection is combined with image analysis such as automatic threshold-
ing (Martinis et al., 2009) and region growing (Giustarini et al., 2013; Matgen
et al., 2011). Change detection techniques for flood delineation from SAR
data typically involve only one to very few scenes taken under non-flooded
conditions.

However, a suitable reference image should fulfil a series of requirements: it
should have the same viewing geometry and the same polarisation configura-
tion as the flood image while at the same time characterising the backscatter
signature of the area of interest. Furthermore, it should have been acquired
during the same season as the flood image, especially in regions with a pro-
nounced seasonality in moisture and vegetation growth, such as the humid
and semi-arid tropics (Hostache et al., 2012). In combination with the often
irregular coverage found with imagery from sources such as ENVISAT ASAR
this can make the selection of an appropriate reference image a difficult and
time-consuming task. Furthermore, an approach taking advantage of the full
information from a time series containing tens or hundreds of images acquired
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over an area may have additional benefits for characterising backscatter char-
acteristics of a land surface. In an approach recently presented by Westerhoff
et al. (2013), probability distributions of water and non-water backscatter
are derived from multi-temporal ASAR imagery. Using these histograms, the
probability of a ânewâ measurement belonging to either one or the other pop-
ulation can be derived. In another recent study, O’Grady et al. (2014) used
the relationship between local incidence angle and backscatter coefficient σ0 to
separate water and non-water pixels, addressing commonly encountered prob-
lems such as underdetection due to waves on water and overdetection due to
low backscatter from dry surfaces. Regardless, multi-temporal image analysis
of SAR data is still the exception and these techniques are mostly used for pa-
rameters derived from optical data. In optical image analysis, multi-temporal
approaches are more commonly found. Verbesselt et al. (2012) proposed an al-
gorithm applying harmonic analysis to Normalised Difference Vegetation Index
(NDVI) time series to detect breakpoints caused by drought events. However,
droughts are usually much longer than floods and hence easier to detect using
this breakpoint method. Also, a similar approach has not yet been used for
SAR-derived time series which are characterised by a higher degree of noise
than NDVI products.

In this study, a novel flood delineation approach using change detection in
multi-temporal SAR data is presented. For this purpose, a harmonic model
is fitted to backscatter time series on a per-pixel basis and an analysis of the
residuals is performed. As this study is meant to be seen as a precursor study
for the upcoming Sentinel-1 mission, data from ENVISAT ASAR are used. In
section 3.2, the theory and assumptions underlying the proposed method are
presented along with the processing chain, the test area and the selected data.
Special emphasis is given to the steps involved in data preprocessing because a
specific requirement of a time-series based approach is that different scenes are
registered to each other as precisely as possible. The harmonic model approach
is tested for a flood event which took place in summer 2007 in the south-western
United Kingdom (UK) and which has been the subject of a series of studies
(Giustarini et al., 2013; Martinis et al., 2009; Mason et al., 2010; Matgen
et al., 2011). In addition, we use a simple change detection involving a pre-
and a post-flood SAR image to compare the proposed approach with a more
traditional method. The results are described and discussed in Section 3.3.
An outlook for the applicability of the proposed methodology in the context of
future earth observation missions is given in Section 3.4. Finally, conclusions
of the study are drawn in Section 3.5.
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3.2 Material and Methods
In the first part of this section, the ideas underlying the proposed approach
are outlined and the applied harmonic model is defined. Subsequently, there is
a detailed explanation of the preprocessing and the flood delineation method-
ologies. Finally, the case study and the selected datasets for flood delineation
and validation are described.

3.2.1 Harmonic analysis of SAR time series

Temporal patterns in SAR time series

Microwave signals interact with the earth’s surface in many different ways.
They can be absorbed, scattered or reflected away from a surface. Which of
these mechanisms is predominant in the measurement of σ0 depends on imag-
ing geometry (e.g. local incidence angle), reflectivity (e.g. dielectric properties
of soil and vegetation) or surface roughness (Woodhouse, 2005). In addition,
the response also varies with sensor parameters such as wavelength and incom-
ing and outgoing polarisation (Kornelsen and Coulibaly, 2013). For a single
pixel, the contributing variables can be separated into two types: factors which
can be assumed to be constant in time—such as sensor-related parameters—
and factors which are variable—like soil moisture and vegetation.

The σ0 value can therefore be expected to behave according to the surface
state (dry, wet, vegetated, etc.) and to exhibit a distinct seasonality. For
example, in (sub-)tropical semi-arid climates with a single rainy season the
dielectric constant of the soil increases along with soil moisture from the start
of the wet season onwards. Furthermore, increased soil moisture facilitates the
development of a plant canopy which acts as a volume scatterer. As a result
of these processes an increase in σ0 can be expected. During the dry season,
on the other hand, soil moisture is often low and crops are harvested so less
microwave energy is returned from the land surface.

In contrast to land surfaces which act more or less as scatterers, calm open
water surfaces are nearly perfect specular reflectors from which only a very low
amount of energy is returned to the sensor (Woodhouse, 2005). This means
that σ0 will undergo a sudden drop when an otherwise dry land surface is
flooded. The effect will only last as long as the area is submerged under water.
In the following chapters, a change detection method is proposed in which
the σ0 signature of dry land is estimated for each pixel using a commonly
applied time series analysis technique. Here we use harmonic analysis whose
fundamentals are outlined in the following section.
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Harmonic analysis

The aforementioned seasonality of σ0 can be mimicked in different ways. Given
the availability of meteorological data and information about soil, land use, etc.
soil moisture dynamics can be simulated using a soil water balance model. σ0

can then be modelled using a backscatter model such as the widely used semi-
empirical model by Oh et al. (1992). However, critical parameters of these
models like surface roughness are often hard to measure and meteorological
and land-use information may not be readily available.

Inverse time series analysis techniques can instead be used when a large
amount of multi-temporal backscatter images are available. In the presented
approach, a harmonic model is fitted to time series of measurements spanning
several seasonal cycles. Such a harmonic model can also include a trend com-
ponent in addition to the seasonal term. The trend term usually consists of a
linear or polynomial model while the seasonal component includes of a series
of k sine and cosine components. In theory, k = n/2 cycles are possible for
a time series with a sampling frequency of 1/n. However, in practice a value
of k = 3 has been found to be sufficient to represent processes which occur
on a time scale of ca. four months (Verbesselt et al., 2012). By selecting this
value of k it was ensured that individual flood events, which are usually only
covered in 1–2 scenes, have minimal impact on the fit of the harmonic model.

The harmonic model formulation used in this study is similar to the one used
by Verbesselt et al. (2012) for breakpoint detection in time series. However,
as no overall change of σ0 in time was to be expected a trend term was not
included. The harmonic model is defined as

σ̂0(t) = σ0 +
k∑

i=1

{
cicos

(2πit
n

)
+ sisin

(2πit
n

)}
, (3.1)

where σ̂0(t) is the estimated radar backscatter at time t, σ0 is the average radar
backscatter, and ci and si are the i-th sine and cosine coefficients, respectively.
These coefficients can be approximated using standard linear regression tech-
niques (Wilks, 2011). If the harmonic model is applied to each pixel time
series in a co-registered image time series, each of the 2k + 1 coefficients will
be available as a map.

3.2.2 Preprocessing

One of the key requirements of time-series-based remote sensing methods is
that the scenes form an image stack in which the pixels are superposed as
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accurately as possible. Any errors in collocation would introduce additional
variance which would influence the subsequent calibration of the harmonic
model. Furthermore, the large swath width offered by the ScanSAR technology
applied in the selected ASAR acquisition mode makes it necessary to combine
scenes acquired with different viewing geometries. A wide range of studies has
reported on the effect of local incidence angle θ on σ0 (Dellepiane and Angiati,
2012; O’Grady et al., 2013; Sabel et al., 2012). This effect has to be accounted
for when using data acquired from different orbits. The data preprocessing
scheme described in this section aims at producing such a co-registered time
series.

After collecting the ASAR Level 1b scenes for the test case described in
Section 3.2.4 the datasets were orthorectified and geocoded using the Range-
Doppler approach (Cumming and Wong, 2004). The void-filled digital eleva-
tion model (DEM) from the Shuttle Radar Topography Mission (SRTM) with
a resolution of ca. 90 m (Jarvis et al., 2008) was used for terrain correction.
The location information of the sensor was refined using DORIS verified orbit
information (ESA, 2008). After this step, the geocoded scenes had a pixel
spacing of 2.3“, corresponding to ca. 75 m.

For coarse resolution data and applications for which the detection of fea-
tures such as waterlines is not critical, simple bilinear resampling yields good
results (Pathe et al., 2009; Sabel et al., 2012). However, for flood detection
precise co-registration of images is of high importance. A two-step procedure
was adopted consisting of image resampling and the actual co-registration. In
the first step, the scenes were collocated to a common global grid definition
using bilinear resampling. During co-registration, all images were registered
to a common reference image. To produce such a reference image, the scenes
were stacked and an average image was computed. Then, 200 ground control
points (GCPs) were uniformly distributed across each image. For each GCP,
the cross-correlation between the reference image and each ASAR scene was
computed over a window with an extent of 64 pixels. Each scene was warped to
the global grid using a linear warp function which was derived from the spatial
shift between the GCPs and the reference pixel for which the cross-correlation
was maximised. After two iterations the root mean squared spatial shift was
less than 0.4 pixels for all scenes.

In order to account for the influence of θ on the σ0 measurements they were
normalised to a reference projected local incidence angle θref = 30◦ using a
linear relationship between the two variables:

σ0(θref) = σ0(θ)− β · [θ − θref ], (3.2)
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where β is the slope parameter of the linear regression between σ0 and θ. This
relationship was calibrated separately for each pixel. According to Pathe et al.
(2009), problems using this approach may arise when using only a small num-
ber of measurements due to the fact that variations in soil moisture may affect
the calibration of β. Hence, it was made sure that a sufficient number of ASAR
scenes was available. Details of the normalisation approach are described by
Pathe et al. (2009).

Another peculiarity of ASAR data is the strongly irregular sampling inter-
val. Irregularly spaced time series are unsuitable for harmonic analysis (Wilks,
2011). Therefore, before fitting the coefficients of the harmonic model, com-
posites were produced by averaging σ0(30◦) over discrete 10-day slices.

3.2.3 Flood delineation

The harmonic model (equation 3.1) was fitted to the 10-daily time series of
each pixel using the statistical software package R (R Core Team, 2014). This
resulted in a number of N maps each of which contain P pixels showing the
residuals

εpj = σ0(θref)pj − σ̂0
pj, (3.3)

with 1 ≤ p ≤ P and 1 ≤ j ≤ N . σ̂0
pj denotes the normalised backscatter

estimated using the harmonic model in eq. 3.1 at point p and time step j.
For the purpose of flood delineation we are mostly interested in the size of

ε. Our assumption is that if a σ0 measurement is significantly lower than the
value that is predicted by the harmonic model it is likely that the measurement
was acquired during a flood. Since ε denotes the absolute divergence from the
harmonic model in units of dB for each backscatter measurement, a form of
standardisation is necessary in order to facilitate comparisons between pixels
and to create a map for a certain time step. The distances from the fitted
line were therefore converted from an absolute to a relative measure. For each
pixel, the standard deviation sε,p was computed from all εpj in the time series.
The standardised residuals εstd

pj were then derived as the ratio between εpj and
sε,p.

For the final evaluation of the methodology, a binary map of flooded and
dry areas has to be produced from the map of εstd

pj for the time step of inter-
est j. This is most commonly done by applying a threshold value. An optimal
threshold value was derived using the widely used Otsu method (Otsu, 1979)
which estimates a suitable threshold value from a bimodal image histogram.
The Otsu method relies on the image having a bi-modal histogram for proper
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separation which means that the contrast in grey values between flooded and
non-flooded pixels should be as high as possible. Following the approach ad-
vocated here, the contrast is increased by masking out areas which are known
a-priori to be very unlikely to be inundated.

For this purpose, the Height Above Nearest Drainage (HAND) index was
used which is defined as the height difference between a DEM cell and the
nearest cell which is part of the drainage network. The distance between the
cells is measured by choosing a path determined by the flow direction in each
DEM pixel (Rennó et al., 2008). The HAND index was derived from the HY-
DROSHEDS database which contains flow directions derived from SRTM at a
resolution of 3” (Lehner et al., 2008). The stream network was derived by com-
puting the accumulated flow for each pixel and classifying all cells as drainage
cells which had a number of contributing pixels of 1000 and higher. The result-
ing drainage network was further thinned by only retaining segments with a
Strahler stream order of at least 3. The height differences were computed from
the void-filled DEM included in HYDROSHEDS. We chose a threshold height
of 10 m above the drainage network to mask out areas which are not prone to
flooding. While the actual flood-prone areas may lie lower this threshold value
was chosen to be as conservative as possible while still increasing the contrast
between flooded and dry areas in the image. In regions with a less pronounced
topography a lower threshold can be chosen to attain a similar effect. A second
effect of the masking is the removal of pixels that would be falsely classified
as flooded due to radar shadows induced by steep topography. Such pixels
usually have high HAND values and can therefore be easily masked using this
approach.

In order to compare our method with a more traditional change detection
approach, an image pair was created from the flood scene and a corresponding
non-flood scene. A change image was computed by subtracting the non-flood
and the flood image. As the resulting change image is in units of dB and the
standardised residuals in units of sε both results were scaled to fit the interval
[0, 1] for better comparability. Again, the Otsu algorithm was applied to the
change image to determine a threshold value after non-flood-prone areas were
masked as described previously. In the following sections, the change detection
approach is referred to as method CD and the harmonic model approach as
method HM.
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3.2.4 Study area and datasets

The south-western UK experienced a large-scale flood event in the second
half of July 2007. Especially the area around Tewkesbury at the confluence
of the Rivers Severn and Avon was affected. Between May and July of that
year, England and Wales on average received 414 mm of rain while mean
annual precipitation in the area is ca. 850 mm. The exceptionally high summer
rainfalls of 2007 can be clearly seen in the monthly precipitation time series
measured at Pershore College (Figure 3.1). Between 19 and 20 July, rainfall at
this station was 157 mm, more than half of the total rainfall recorded during
that month (Environment Agency, 2007). At Saxons Lode on the River Severn,
a peak water level of 5.9 m was reached on 22 July (Marsh and Hannaford,
2007).

For the lower Severn and Avon Rivers, a dataset comprising N = 518 scenes
acquired by ENVISAT ASAR in Wide Swath (WS) mode between 2005 and
2012 is available. WWS mode offers a moderate spatial resolution of about
150 m. All imagery available for this case study is in vertical transmit-vertical
receive (VV) polarisation. Although horizontal transmit–horizontal receive
(HH) polarisation is generally preferable for flood mapping (Henry et al.,
2003). VV-polarised data have been successfully used for flood mapping in
previous studies (e.g. Matgen et al., 2011; Schumann et al., 2009). During the
inundation event itself, a scene was acquired in the morning of 23 July 2007
(Figure 3.2(a)). For the CD method a reference image acquired during non-
flood conditions is required. The reference scene (Figure 3.2(b)) was acquired
on 22 August 2005 in vertical polarisation and along the same track as the
flood image (track 94). The scene was selected according to the methodology
proposed by Hostache et al. (2012). All scenes acquired in WS mode over the
area along track 94 were considered as candidates for a non-flood scene. The
selection methodology consists of deriving three indices describing the distri-
bution of σ0 values. The chosen scene is characterised by relatively low spatial
variability of backscatter which indicates non-flood conditions and a backscat-
ter close to the median of all candidate acquisitions. Moreover, the image
was—like the flood scene—acquired during summer and should therefore show
backscattering characteristics that are similar in terms of vegetation influence.
Intense rain is also known to be able to affect C-band backscatter. However,
according to hourly rain gauge data from the region measured around the same
time as the ASAR scenes this can be ruled out in this case. The location of
the rain gauge at Pershore College is shown in Figure 3.2(b)).

The flood extent was derived using the HM and CD approaches as described
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before. The HAND index derived from the HYDROSHEDS database was used
for masking and is shown in Figure 3.2(c)).
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Figure 3.1: Monthly rainfall at Pershore College.

3.2.5 Validation approach

The produced flood maps were compared with a high-resolution flood map
which was manually derived from airborne imagery. The aerial image acquisi-
tion was organised by the Environmental Systems Science Centre, University
of Reading, in the morning of 24 July 2007. The images have a spatial res-
olution of 0.2 m (Mason et al., 2010). This reference dataset was also used
for validation of a TerraSAR-X-derived flood map by Giustarini et al. (2013).
The digitised flood extent is shown in Figure 3.2a). When aggregating this in-
formation to the ASAR grid, grid cells were considered as flooded if they were
at least covered half by the high-resolution flood extent. Also, for the com-
parison, only the areas contained in the orthophotos was taken into account.
Contingency matrices were built between the ASAR-derived flood maps and
the reference flood extent. To further analyse the performance of the method
for land-cover classes for which flood mapping has proven difficult in the past
—such as urban areas—we additionally computed the accuracy measures for
open and urban areas. These were derived from the CORINE land cover 2006
database (Büttner et al., 2010) The CORINE classes were aggregated into
open and urban classes as shown in Table 3.1.

3.3 Results and Discussion

In this section, we first present the results of the time-series analysis. Then,
the flood extents derived from the harmonic-model-based approach and the
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Figure 3.2: (a) ASAR scene acquired 23 July 2007 over the Severn River.
The flood extent digitised from aerial imagery is shown in red. The map inset
shows the position of the study area in the UK. (b) Non-flood ASAR scene
acquired 22 August 2005. All backscatter units are in dB. Point (a) and (b)
mark the locations for which time series are shown in Figure 3.3. The location
of the rain gauge at Pershore College is given. (c) HAND index.

alternative change detection are compared with the reference dataset described
in Section 3.2.5.
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3.3.1 Time-series analysis

Figure 3.3 shows the σ0(30◦) time series acquired between summer 2005 and
spring 2012 over two sites in the study area which are used for agriculture
according to the CORINE land cover 2006 database. The locations of the two
sites are shown in Figure 3.2(b). Both sites were inundated during the floods
of summer 2007. The two time series differ considerably from each other in
terms of their backscatter dynamics: in the case of Figure 3.3(a), values range
between ca. –13 dB and 0 dB while the time series shown in Figure 3.3(b) is
less dynamic with consistently lower values ranging between –13 dB and –8 dB.
Both time series have their annual minima in late spring and early summer.
A similar seasonality can be found in rainfall measured at Pershore College
(Figure 3.1) suggesting that σ0 dynamics in this area are mainly governed by
moisture supply.

Patterns similar to those in Figure 3.3(a) were found by Blaes et al. (2007)
for winter cereals when comparing ASAR time series simulated from VV-
polarised ERS measurements over Belgium although σ0(30◦) encountered here
is higher during winter. The lower dynamics of the second time series resemble

Table 3.1: Aggregation scheme of CORINE land-cover classes into urban and
open terrain.

CORINE Code Description Aggregated class

111 Continuous urban fabric

Urban

112 Discontinuous urban fabric
121 Industrial or commercial units
122 Road and rail networks and associated land
124 Airports
131 Mineral extraction sites
133 Construction sites

141 Green urban areas
142 Sport and leisure facilities

Open
211 Non-irrigated arable land
231 Pastures
243 Land principally occupied

by agriculture with signifi-
cant areas of natural vege-
tation
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Figure 3.3: Time series of σ0(30◦) (blue), harmonic model fitted to all ob-
servations (solid, red) and harmonic model after excluding flood observations
(dashed, red) for two different points located in agricultural areas. The dashed
green line marks the estimated model fit ± 1 standard deviation. Short grey
ticks at the bottom of the figure represent the times of ASAR acquisitions.
See Figure 3.2(b) for the locations of the two sampled points.

the seasonal pattern reported by the authors of that study for grassland. The
large discrepancy between the two time series also shows that general informa-
tion on land cover as it is contained in land cover databases such as CORINE,
which is mainly based on optical EO data (Büttner et al., 2010), cannot be
used to make assumptions about backscatter dynamics from agricultural areas.

A harmonic model was fitted to the time series to characterise backscatter
behaviour under non-flooded conditions. Figure 3.3 shows that the harmonic
models reproduce the overall dynamics well, especially the annual maxima in
winter and minima in early summer. An important question is how single wet
or dry years can influence the model fit. In Figure 3.3(a) it can be seen that
higher σ0(30◦) measurements were obtained during the winter of 2008/2009.
With a total of 268 mm, precipitation in the preceding autumn season was
higher than the 2005–2012 average of 197 mm. The year of 2011, on the other
hand, had less rainfall than the average. This coincides with σ0(30◦) measure-
ments lying mostly below the fitted harmonic model. The overall impression is
that the harmonic model represents the average seasonal behaviour of σ0 and
that single wet or dry years exert a relatively low influence on the model fit.
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Figure 3.4: σ0(30◦) in dB measured by ENVISAT ASAR on (a) 3 March
2007, (b) 17 January 2008 and (c) 18 January 2010 over the study area.

It can be observed that σ0(30◦) < σ̂0 − 2 · sε during March 2007, July
2007 and January 2008. The second time series (Figure 3.3) also shows an
incidence for which this condition is true in January 2010. Visual inspection
of the respective ASAR scenes reveals that a large fraction of the study area
was flooded on these dates (Figure 3.4). This result indicates that the proposed
method also has the potential to be used for detecting flood events in large
databases of image time series. This property could be helpful for building
databases of historic floods, especially in poorly equipped regions where no
in-situ runoff data are available.

However, if the dates of the flood events are not known a-priori, the low
σ0 measurements taken during a flood may influence the harmonic model fit.
To characterise the impact of the flood events, the scenes acquired during the
previously mentioned dates were excluded before fitting the harmonic model.
The result is shown as dashed red lines in Figure 3.3. It can be seen that the
solid and dashed lines almost coincide. There are small deviations between the
models mostly in summer when the model fitted to the whole dataset predicts
marginally lower values than the adjusted version. Nevertheless, the deviations
are small enough that it can be concluded that the flood observations do not
influence the harmonic model calibration when the number of non-flood scenes
greatly outweigh the flood scenes as it is the case here.

3.3.2 Flood extent classification

For any given date it is possible to create a map of the obtained residuals.
Figure 3.5(a) shows the standardised HM residuals εstd for the flood event on
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23 July 2007. The change in σ0(30◦) between the flood and non-flood image
from August 2005 is shown in Figure 3.5(b)). Both images were scaled between
0 and 1 to make them comparable to each other by accounting for the difference
in units between the two maps (times sε in case of HM, dB in case of CD).
Visual inspection shows that the HM residuals have a higher contrast between
water and dry areas than the CD image. This impression is supported by the
histogram densities. In the HM histogram (Figure 3.5(c)), a second smaller
peak is clearly visible with a maximum at a grey value of ca. 0.2. The CD
distribution, on the other hand, only has a long left tail without pronounced
bimodal characteristics (Figure 3.5(d)). Masking the residuals with the HAND
index in both cases reinforced this overall impression by lowering the relative
frequency of dry pixels and therefore increasing the water peak. The difference
in contrast also has an effect on threshold optimisation. The obtained Otsu
value for the HM residuals is almost at the location of the local minimum
between the two modes of the histogram, which is where a human operator
would typically set the threshold after visual inspection (e.g. Bartsch et al.,
2008). Meanwhile, the automatic threshold for the CD image lies closer to
the image median and is therefore set too high. Figure 3.5 also illustrates the
impact of masking non-flood-prone areas on the optimisation of the threshold
value. Without masking, the estimated value is again shifted towards the
median of the distribution for both HM and CD approaches (dashed red lines
in Figure 3.5(c) and (d)).

As a result of the increased contrast, the binary flood map derived using
the HM approach seems less noisy than the corresponding CD map with less
isolated pixels located far away from the main channel and a more contiguous
flood extent along the main channel. Also the flood boundaries are smoother
in the first case. The topography-derived mask covers about 61% of the area
of interest (Figure 3.6).

The different consistencies of the derived flood extents are also represented
in Table 3.2 which shows the results of the comparison between the classified
inundated area with the flood extent that was manually digitised from high-
resolution aerial imagery. For both techniques, producer’s and user’s accuracies
for the class flooded were higher than 75% except in urban areas. It can
be seen that the accuracies for method HM are consistently higher than for
method CD. It is noteworthy that although result CD contains many falsely
classified flood pixels far away from the reference extent user’s accuracies are
still relatively high. This is related to the fact that only a rather narrow strip
along the floodplain was mapped in the orthophotos so that a large part of the
area of interest was not included in the analysis. The relatively low producer’s
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Figure 3.5: In the top panel, figure (a) shows standardised residuals of the
harmonic model for the scene acquired over the Severn River on 23 July 2007.
Plot (b) shows the change in backscatter between 22 August 2005 and 23 July
2007. At the bottom, figure (c) shows the kernel densities for figure (a) and
figure (d) the densities of figure (b). The dashed line represents the distribution
before and the solid line after masking. The vertical red lines mark the Otsu
threshold value estimated before (dashed) and after masking (solid). The
images were rescaled from change in dB/times sε to [0, 1] for better visual
comparability.
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Figure 3.6: Extracted flood extents for 23 July 2007 using (a) the harmonic
model approach and (b) change detection. The red rectangle shows the extent
of the maps in figure 3.7.

accuracies found for both methods point towards an underestimation of the
reference flood extent, most likely due to the much lower spatial resolution of
the ASAR WS imagery with respect to the airborne data.

For urban areas all accuracies are below 50%. This large misclassification
is consistent with the expectation that large portions of floods within urban
areas remain unseen by coarse-resolution ASAR data due to layover and radar
shadow. A previous study comparing water levels derived from the same ASAR
scene for the area of Tewkesbury with simulated water levels from a hydraulic
model reports an underestimation of almost 1 m on average (Schumann et al.,
2011). It is furthermore noteworthy that in urban areas the difference in ac-
curacies between the two methods is higher than in open areas. However,
considering the comparatively small number of aggregated reference flood pix-
els that were found within urban areas (ca. 500) it is not possible to make
any conclusive statements about whether the HM consistently outperforms
the alternative method in this respect. Nevertheless, it can be seen that in the
vicinity of urban areas the proposed approach shows a more consistent water-
line which borders directly the urban areas (Figure 3.7(a)) while for method
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Figure 3.7: Detail of extracted flood extents around Tewkesbury for 23 July
2007 using the (a) harmonic model approach (b) and change detection. Addi-
tionally, the reference flood extent from airborne photos and urban areas are
shown.

CD there exists usually a gap (Figure 3.7(b)). This is most probably a result
of the use of multi-temporal and multi-angular data within the HM approach
leading to lower noise levels in the residual image.

The approach only classifies pixels as flooded if they are not usually covered
by water. This means that permanent water bodies would not be correctly
identified using the proposed approach. However, in the presented case study
this was not relevant due to the fact that no larger permanent water bodies are
present in the study area according to the CORINE land cover database. For
water bodies to be reliably classified from ASAR WS data they should cover
an area of at least 2 ha (Bartsch et al., 2008). In other cases, where permanent
water is detectable it could be classified by using a similar approach as proposed
by O’Grady et al. (2013) who used the angular dependency of σ0, β, which
was defined in equation 3.2.

Table 3.2: Producer’s and user’s accuracies for the water class across all land-
cover classes and for urban and open areas separately. N is the number of
pixels used for each comparison. All values are expressed in %.

Overall Urban Open
N Producer’s User’s N Producer’s User’s N Producer’s User’s

Harmonic model 88626 82.5 86.9 8792 36.3 47.8 79089 83.6 87.7
Change detection 76.8 81.3 24.2 39.3 78.1 82.0
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When interpreting the results of the validation it should be kept in mind
that the airborne imagery was acquired about 23 h after the ASAR scene and
that the flood extent could have changed in the meantime. Both the ASAR
and airborne images were acquired after the flood peak had been reached on
22 July which means that the water level was declining at the time. Ac-
cording to Zwenzner and Voigt (2009), the difference in water height between
23 and 24 July measured at Mythe Bridge in Tewkesbury was ca. 0.5 m. A
high-resolution LiDAR digital terrain model is available from the Environ-
ment Agency of England and Wales for the floodplain of the Severn which
shows steep slopes around most of the floodplain. Around Mythe Bridge, the
difference in water level corresponds to a recession of the water line by ca. 10 m
which is well below the pixel size of ASAR and can therefore be neglected in
this study using medium-resolution data.

3.4 Perspectives

While in the presented study the method was applied to a well-researched sin-
gle flood event the obtained results suggest that harmonic analysis can also
be used to detect flood events in historic multi-temporal image datasets. This
could open interesting perspectives for the application of the algorithm in un-
gauged basins where flood records are missing and to complement existing
runoff records which have been deteriorating since the early 1990s (Vörös-
marty, 2002).

On the other hand, the algorithm is relevant in the light of more recent
missions which provide SAR data with denser temporal sampling than that
achieved with ENVISAT ASAR. The two-satellite Sentinel-1 constellation is
planned to cover land masses globally every six days, with almost daily cover-
age over Europe and Canada once both satellites are operational (Torres et al.,
2012). Shorter sampling intervals offer unique advantages for multi-temporal
approaches which should lead to a better characterisation of backscatter char-
acteristics of land surfaces and to higher accuracies for flood mapping. More-
over, according to the orbit specifications of the Sentinel-1 mission, every point
on earth will only be acquired from up to three different orbits and most re-
gions only from a single orbit (Hornacek et al., 2012). This means that the
range of different local incidence angles would be very limited and a change
detection using multi-temporal data such as the one proposed here would not
require a correction as the one that was applied in this case.

On the other hand, the higher spatial resolution would possibly introduce
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a further source of uncertainty due to imperfect image co-registration and
speckle or noise in the images. For operational purposes, the harmonic model
could be calibrated after averaging σ0 over several pixels. This would minimise
the effect of noise on the quality of the harmonic model.

One of the main disadvantages of the approach is the increased computa-
tional cost created by the need to preprocess a SAR time series consisting of
> 200 scenes and to calibrate the harmonic model. In an operational setting,
however, the computational load can be decreased by separating the harmonic
model calibration from the actual flood delineation. A database of harmonic
model coefficients can be created during a reprocessing step in which the avail-
able scenes are processed. New flood maps can then be produced by estimating
a reference to be expected from the coefficients and comparing it to the near-
real-time measurement. The underlying assumption that the parameters are
stable in time could be violated e.g. in case changes in land use have taken
place. For example, the backscatter characteristics would change if buildings
are constructed in a former agricultural area. Therefore, the derived parame-
ters should be updated by adding further scenes to the historical backscatter
data in regular intervals. The assumption of stationarity could also be veri-
fied by using official land-cover-change maps to make sure that no change has
occurred.

It should also be noted that the main reason for choosing the Otsu method
for the classification of flooded and non-flooded endmembers was the fact that
it is a simple, well-known thresholding method. As already mentioned in Sec-
tion 3.2.3, the presented combination of Otsu thresholding and HAND masking
could be problematic in cases where topography is less pronounced and only
a small area above the HAND threshold will be masked out. In an opera-
tional setting, other classification approaches may be used which do not suffer
from the same shortcomings. Object-based approaches often outperform pixel-
based approaches for high-resolution data such as Sentinel-1 or TerraSAR-X
(e.g. Martinis et al., 2011; Mason et al., 2012). A number of different pixel-
and object-based approaches was outlined in Section 3.1.

3.5 Conclusions

A change detection approach for flood mapping from multi-temporal SAR data
was introduced. The procedure was evaluated for a large-scale flood event that
took place in summer 2007 in the south-western UK. Harmonic analysis was
used to characterise normal backscatter behaviour in a multi-temporal ASAR
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image time series. Flood maps were derived from the harmonic model resid-
uals and validated using a reference dataset that had been manually digitised
from high-resolution airborne photographs. Furthermore, a masking approach
was presented based on the HAND index to increase the efficiency of a well-
known histogram-based optimised thresholding algorithm. The comparison
with reference data yielded very low error margins in terms of the detected
flood waterlines.

The findings suggest that the approach offers considerable advantages in
comparison to simple change detection. Noise is greatly reduced by using
multi-temporal data. Furthermore, the need for an operator to manually se-
lect a pre-flood reference scene is eliminated by assembling the reference from
available historic data. The presented approach is therefore especially suitable
for automatic flood extent retrieval since no interaction by the user is required.

It should be noted that the potential for application of the proposed ap-
proach is not limited to flood mapping. By adapting the different parameters
of the processing chain it would also be possible to detect and map other
disturbances which temporarily alter the backscattering behaviour of a land
surface such as snow cover.



Chapter 4

Probabilistic mapping of
flood-induced backscatter
changes in SAR time series

This chapter is an edited version of: Schlaffer, S., Chini, M., Giustarini, L.,
Matgen, P., 2017. Probabilistic mapping of flood-induced backscatter changes
in SAR time series. International Journal of Applied Earth Observation and
Geoinformation, 56: 77–87. For the original see http://dx.doi.org/10.1016/
j.jag.2016.12.003 .

4.1 Introduction
Floods are among the most frequent natural disasters. Recent exposure es-
timates place a number of almost 1 billion people in areas that are subject
to high degrees of river or coastal flood hazard with the highest numbers
located in Asia (Jongman et al., 2012). Losses are expected to increase sub-
stantially due to climate change and economic growth in flood-prone areas,
especially in emerging economies and developing countries (Winsemius et al.,
2015). Flood maps based on space-borne remote sensing data can provide
timely, cost-efficient synoptic overviews for disaster response (Pierdicca et al.,
2013b; Schumann et al., 2016). Moreover, these maps can help to improve
the quality of flood forecasts (Grimaldi et al., 2016), either as reference maps
for calibration and validation of hydrological and hydraulic models (Di Bal-
dassarre et al., 2009; Tarpanelli et al., 2013; Wood et al., 2016) or through
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data assimilation into hydraulic models, typically after transformation to wa-
ter levels with the help of a digital elevation model (Giustarini et al., 2011;
Matgen et al., 2010). Synthetic aperture radar (SAR) is of special importance
for flood extent mapping. In contrast to optical sensors, they can operate at
day and night times and are mostly able to penetrate cloud cover and rainfall
(Danklmayer et al., 2009; Richards, 2009), both of which are often present in
flood situations. Moreover, SAR imagery from recent missions can provide
data at low latency times of typically less than 48 hours and 12 hours in the
case of Sentinel-1 (Torres et al., 2012) and COSMO-SkyMed (Covello et al.,
2010), respectively, facilitating near-real-time operations for disaster manage-
ment (Pulvirenti et al., 2011b; Twele et al., 2016). Calm water surfaces act
as specular reflectors from which a low amount of energy is reflected back to
the sensor, usually resulting in a high contrast between water and land sur-
faces in SAR images. Not surprisingly, this principle is used by a number of
approaches for flood detection from SAR data that have been published in
recent years (Schumann and Moller, 2015). Only a few examples can be given
here, such as manual (Bartsch et al., 2012; Chini et al., 2013) and automatic
radiometric thresholding (Martinis et al., 2015), change detection (Giustarini
et al., 2013; Long et al., 2014), image grey-value distribution modelling and
region growing (Giustarini et al., 2013; Matgen et al., 2011; Pulvirenti et al.,
2016), or modelling using active contours (Horritt, 1999). However, despite
the high sensitivity of SAR sensors to the presence of surface water, uncer-
tainties in flood delineation can arise from different sources: ambiguous radar
backscatter signatures may arise due to the roughening of water surfaces by
wind or heavy rain (Pierdicca et al., 2013a) or due to partly submerged veg-
etation (Kasischke et al., 2009; Schlaffer et al., 2016). As a result of these
factors, the backscatter coefficient σ0 can increase by several dB depending on
incidence angle, polarisation and wavelength (Santoro and Wegmüller, 2014).
Dry, bare areas, on the other hand, may exhibit backscatter characteristics
similar to those of open water surfaces (O’Grady et al., 2011). These factors
can lead to a substantial over- or under-estimation of the true area covered by
flood water. In addition, speckle is a phenomenon inherent to SAR imagery
that can affect the quality of the retrieved flood extent maps through random
variations in backscatter intensity within homogeneous target areas (Giustarini
et al., 2015). Users of flood maps, not only within the scientific community
but also disaster risk managers, have expressed strong interest in estimates
of the uncertainty resulting from these and other factors (Schumann et al.,
2016). Only recently, methodologies have been proposed to produce uncertain
flood maps based on fuzzy set theory (Martinis and Twele, 2010; Pierdicca
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et al., 2008) and Bayesian statistics (D’Addabbo et al., 2016; Giustarini et al.,
2016; Refice et al., 2014; Westerhoff et al., 2013). These approaches have in
common that they yield maps showing values in the interval [0, 1], where the
extremes mark certainly flooded and non-flooded pixels and intermediate val-
ues quantify different degrees of uncertainty. If flood probability values pF are
obtained binarisation of the probabilistic maps is a straightforward task as, in
a Bayesian framework, each observation is assigned the class label which has
the highest posterior probability of all possible candidate classes (Duda et al.,
2001).

Nevertheless, a critical step in the computation of uncertain flood maps is
the estimation of the necessary function parameters, i.e. of the class member-
ship functions or the class-conditional probability density functions (PDFs).
For example, fuzzy membership functions have been estimated using the out-
put of electromagnetic scattering models by Pulvirenti et al. (2011a). How-
ever, information about soil, vegetation and land cover is typically needed for
parameterising such models and additional parameters may require calibra-
tion. Parameters of conditional PDFs can be estimated from the grey-value
histogram of a flood scene under the assumption that flooded areas cause a
multimodal distribution. The bimodality of a flood scene and, therefore, the
separability between flooded and non-flooded classes, strongly depend on the
portion of the image covered by flooded areas (Chini et al., 2016; Martinis et al.,
2009). In order to account for this problem, Giustarini et al. (2016) have used
a split-based approach and maximum likelihood estimation to model the PDFs
of σ0 values of flooded and non-flooded areas and then applied Bayes’ theo-
rem to compute flood probabilities. Additionally, the study has introduced
the reliability diagram (Wilks, 2011) as a tool for evaluating satellite-based
probabilistic flood maps. Alternatively, σ0 PDFs of flooded and non-flooded
areas can be estimated based on historic SAR data. Westerhoff et al. (2013)
trained a probabilistic flood classifier using full time series of ENVISAT Ad-
vanced SAR (ASAR) acquisitions and an ancillary permanent water mask.
Based on the estimated PDFs, the probability of a backscatter value belonging
to the water class was calculated for each pixel. However, the influence of dif-
ferent land-cover classes was not accounted for when building the backscatter
histograms for land areas based on 1◦ × 1◦ tiles. This may have contributed
to the observed misclassifications in dry regions where water and land PDFs
overlap (Westerhoff et al., 2013).

Change detection is a tool which is commonly used to account for some of
the effects introduced by the occurrence of different land-cover types within a
scene. By quantifying the change between a flood image and a reference image
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acquired before or after the flood it is possible to distinguish permanent water
bodies from areas that are affected by the flood event (Serpico et al., 2012).
However, finding a suitable reference image is not always a straightforward
task. For example, it is recommended to use a scene that was acquired during
the same season as the flood image to account for the effects of seasonally
varying soil moisture and vegetation state (Hostache et al., 2012). Finding
a scene acquired during the same season as the flood image is often further
complicated by the unequal sampling intervals that are common for many
sources of remote sensing data (Mercier et al., 2009). A harmonic model
fitted separately to each pixel of an ASAR image time series spanning several
years was used by Schlaffer et al. (2015) to estimate spatially and seasonally
varying backscatter and the corresponding residuals for an actual flood image.
However, the threshold value for deciding whether a pixel of the residual image
was flooded or not was derived using an automatic thresholding approach
(Otsu, 1979) suffering again from the aforementioned limitations in terms of
class separability due to a potential lack of a bimodal grey-value histogram.

Open questions, therefore, still exist with respect to the estimation of PDFs
conditioned on land cover and season from historic SAR data and the appropri-
ate use of change detection methods in probabilistic flood mapping approaches.
In this study, we combine the multi-temporal change detection approach of
Schlaffer et al. (2015) to estimate seasonally and spatially dependant σ0 for
non-flooded areas with the approach by Westerhoff et al. (2013) who retrieved
water backscatter PDFs from historic SAR imagery and a permanent water
layer. The objective is to compute probabilistic flood maps while taking into
account seasonal and land-cover effects which is equivalent to estimating a sea-
sonally and spatially dependent threshold value for deciding whether a SAR
image pixel is flooded or not. The results are validated using a reference flood
map obtained from high-resolution airborne imagery. The remainder of the
article is structured as follows: in Section 4.2, the study area, the datasets
and the methods for computing flood probability maps are described. The
results for the case study are reported and discussed in Section 4.3. Finally,
Section 4.4 summarises the study.

4.2 Methods

In the first part of this section, the principle behind probabilistic flood mapping
is introduced. Then, the methods used for processing the SAR time series and
estimating backscatter PDFs from flooded and non-flooded areas are presented.
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Finally, the section includes a description of the test case and the validation
approach.

4.2.1 Flood probability estimation and classification

The probability of a pixel being flooded has been calculated using Bayes’ theo-
rem by several authors (e.g. Giustarini et al., 2016; Refice et al., 2014; Wester-
hoff et al., 2013). Under the assumption that a pixel at a certain point in time
can have either state F (flooded) or nF (non-flooded) the posterior probability
of the pixel belonging to class F given an observation x is defined as

p(F |x) = p(x|F )p(F )
p(x) , (4.1)

where
p(x) = p(x|F )p(F ) + p(x|nF )p(nF ), (4.2)

and p(x|F ), p(x|nF ) are the conditional PDFs of x being observed when the
pixel is flooded and non-flooded, respectively. p(x) is the probability den-
sity of x when the pixel is either flooded or non-flooded and p(F ) represents
our prior knowledge about the probability of the pixel being flooded. If no
prior information is available a so-called non-informative prior can be used,
i.e. p(F ) = p(nF ) = 0.5. Giustarini et al. (2016) evaluated the sensitivity of
the flood mapping result towards different priors and found that the use of a
non-informative prior led to acceptable results.

If both classes F and nF are characterised by normally distributed features
with means mF ,mnF and variances s2

F , s
2
nF , respectively, the separability be-

tween the classes can be quantified using the metricM = |mF−mnF |/(sF +snF )
(Kaufman and Remer, 1994). Any increase in the differences between the pop-
ulation means or any reduction of their variances should, therefore, lead to a
better separation between flooded and non-flooded areas. This was a major
aim driving the design of the data processing chain described in the following
sections.

4.2.2 Data processing and parameter estimation

SAR image processing

The conditional PDFs for σ0 from flooded and non-flooded areas were pa-
rameterised based on a time series acquired by the ASAR sensor on board of
ENVISAT, which was operated by the European Space Agency (ESA) between
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2002 and 2012. The area of interest (AOI) used for parameterisation is located
in the south-west of the United Kingdom (UK), roughly covering the River
Severn catchment (Figure 4.1). A total number of 677 ASAR scenes for the
years 2005-2012 was available on ESA’s Grid Processing On Demand (GPOD)
facility for this study. All scenes were acquired in Wide Swath (WS) mode
and VV polarisation at a spatial resolution of 150 m. The equivalent num-
ber of looks of ASAR WS medium resolution images is estimated to be > 15
(ESA, 2012). 375 images were available in descending (around 10 a.m.) and
302 in ascending orbit (around 10 p.m.). The processing chain is described
in more detail by Schlaffer et al. (2015) and is, therefore, only outlined in
the following, highlighting the main differences. The Level 1b images were
geocoded and terrain-corrected using the Range-Doppler approach (Cumming
and Wong, 2004). The scenes were then co-registered to a common grid defi-
nition with a pixel spacing of 2.3“, corresponding to ca. 75 m at the equator.
Since the ASAR scenes were acquired from different tracks the influence of
local incidence angle θ had to be corrected using the linear relationship

σ0(θref) = σ0 − β(θ − θref), (4.3)

where θref is the reference local incidence angle to which the scenes are nor-
malised, typically in the range 30◦–40◦ (Pathe et al., 2009; Wagner et al.,
1999c). The slope parameter β = dσ0/dθ was estimated for each pixel using
linear regression over the co-registered pairs of σ0-θ observations. Further-
more, β was derived separately for ascending and descending passes to partly
account for the effects of azimuthal anisotropy that have been reported for
e.g. urban areas and topographically complex terrain (Bartalis et al., 2006),
both of which occur in the study area. As β (equation 4.3) has been shown
to be steeper for water bodies than for most land surfaces (O’Grady et al.,
2014) it is hypothesised that the difference between mF and mnF and, hence,
the separability metric M should increase when higher values of θref are used.
Therefore, σ0 was normalised to 30◦ and 40◦ to test for the impact on the qual-
ity of the flood mapping. In the following, for the sake of legibility, normalised
backscatter σ0(θref) is written simply as σ0.

Parameterisation of land and water PDFs

The parameters of the PDFs for backscatter from classes F and nF were
estimated by analysing time series of historic ENVISAT ASAR WS data.
The PDF corresponding to non-flooded pixels was estimated for each pixel
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Figure 4.1: Location of the study area. The solid rectangle shows the AOI
used for estimating the σ0 PDF for water. The dashed rectangle shows the
area used for testing the approach.

separately in order to take into account the backscatter signature that the
corresponding land surface would exhibit under ”normal“, i.e. non-flooded,
conditions. In contrast, Westerhoff et al. (2013) have used all land pixels in
a tile covering an area of 1◦ × 1◦ to estimate the parameters for computing
p(σ0|nF ) leading to a higher backscatter variance s2

nF due to the pooling of
observations from different land-cover types into a single sample. Here, s2

nF

was further reduced by assuming a seasonal dependency in the backscattering
behaviour as σ0

nF is partly governed by soil moisture and vegetation which
underlie a seasonal cycle (Schlaffer et al., 2016; Van doninck et al., 2012).
Seasonal backscatter was estimated using a harmonic model as proposed by
Schlaffer et al. (2015):

σ̂0
nF (t) = σ0

nF +
k∑

i=1

[
ci cos

(2πit
n

)
+ si sin

(2πit
n

)]
, (4.4)

where σ0
nF is σ0

nF averaged over time, k is the number of harmonic terms and n
is the number of time steps per year. A number of k = 3 harmonic terms was
used here to reproduce processing taking place on a temporal scale of ca. four
months. Further information about the rationale behind this choice are given
by Schlaffer et al. (2016). The parameters ci and si were estimated using
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least-squares optimisation. In order to account for unequal temporal sampling,
equation 4.4 was fit to 10-day σ0 composites. As a result, the harmonic model
residuals εnF , which are assumed to be independent and normally distributed,
were computed for each time step:

εnF (t) = σ0
nF (t)− σ̂0

nF (t) N(mε,nF = 0, snF ). (4.5)

The assumption of normal distribution around zero holds for backscatter ob-
servations during normal, non-flooded conditions. These normal conditions
are expressed in terms of equation 4.4, which is fit to a time series spanning
several years. The residual variance s2

nF was estimated as

s2
nF = 1

N − 2k − 1

N∑
j=1

ε2
nF,j, (4.6)

where N is the number of observations. During a flood event, it has been ob-
served that σ0(t)� σ̂0

nF (t) due to specular reflection, i.e. ε becomes strongly
negative, with typically ε(t) < −2snF (Schlaffer et al., 2015). Note that, in-
stead of backscatter σ0, ε is used to estimate flood probability p(F |ε) according
to equation 4.1. The benefit of using ε rather than σ0 for computing flood prob-
ability is that Var[ε] ≤ Var[σ0] as the portion of the total variance in the σ0

time series caused by periodic variations is explained by equation 4.4. As de-
scribed earlier for β, the parameters in equation 4.4 were estimated separately
for ascending and descending orbital nodes to limit the effects of azimuthal
anisotropy.

Backscatter from open water surfaces was also assumed to be normally
distributed as the Gaussian PDF represents a suitable approximation of the
distribution of logarithmically transformed σ0 from uniform targets with a
sufficiently high number of looks (Xie et al., 2002). Its mean and variance were
estimated based on observations over permanent open water bodies, similar to
the approach proposed by Westerhoff et al. (2013). For this purpose, reference
land-cover information from the CORINE land-cover 2006 (CLC 2006) dataset
(Büttner et al., 2010) was taken into account. In order to limit the impact
of mixed pixels on the PDF parameter estimation all pixels located along the
edges of water bodies were not taken into account. Backscatter time series
for all water bodies were extracted from the multi-temporal database and
normalised to a local incidence angle θref using equation 4.3. The backscatter
coefficient over open water, σ0

F , is mainly dependant on water surface roughness
which is difficult to determine. As no further information was available on
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seasonal variations in wind speed and direction, we assumed the moments of
the distribution, E[σ0|F ] and Var[σ0|F ], to be time-invariant:

E[σ0|F, t1] = E[σ0|F, t2] = · · · = E[σ0|F, tn] = mF ≈ σ0
F , (4.7)

Var[σ0|F, t1] = Var[σ0|F, t2] = · · · = Var[σ0|F, tn] ≈ s2
F . (4.8)

In order to make the PDF of σ0
F comparable to the PDF of harmonic model

residuals εnF , its mean value σ0
F had to be transformed by offsetting it with

the mean backscatter for the respective pixel σ0
nF :

E[ε|F ] = E(σ0|F )− E(σ0|nF ) ≈ σ0
F − σ0

nF = εF , (4.9)

whereas
Var[ε|F ] = Var[σ0|F ] ≈ s2

F . (4.10)

After having estimated the parameters for the flooded and non-flooded
PDFs, equations 4.1 and 4.2 can be rewritten as

p(F |ε) = p(ε|F )p(F )
p(ε) = p(ε|F )p(F )

p(ε|F )p(F ) + p(ε|nF )p(nF ) . (4.11)

In the following, we will write pF instead of p(F |ε) for simplicity.
In the asymmetric case, i.e. when s2

F 6= s2
nF , pF will again increase for large

positive ε (Duda et al., 2001) so that high flood probability values may be
obtained for positive outliers. However, backscatter values typical for calm,
open water are usually caused by specular reflection and, therefore, can be
expected to be lower than backscatter from land. In consequence, the second
decision boundary for high ε was not considered. This was implemented by
constraining pF to decrease monotonically with increasing ε, an approach also
used by Giustarini et al. (2016).

It should be noted that calibration of a pixel-wise harmonic model (equa-
tion 4.4) and the subsequent modelling of a conditional flood probability (equa-
tion 4.11) corresponds to calibrating a seasonally and spatially dependant
threshold classifier separately for each pixel.

4.2.3 Test case and validation approach
The approach was tested for a one-in-150-year flood event that took place in
summer 2007 along the lower Rivers Severn and Avon and led to large-scale
flooding in Worcestershire and Gloucestershire. On 22 July 2007, the River
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Figure 4.2: Calibrated ENVISAT ASAR WS scenes acquired over the River
Severn on 23 July 2007 at (a) 10:27 and (b) 21:53. Units are dB. (c) Reference
map derived from airborne imagery acquired on 24 July 2007 at 11:30.

Severn at Saxons Lode reached a peak water level of 5.9 m, exceeding the pre-
vious record level of 1947 (Marsh and Hannaford, 2007). Bankfull water levels
were not reached again before 31 July (Mason et al., 2010). Several people
in the region died during the floods, more than 100,000 homes were affected
and, by December 2007, insurance claims amounted to around 3 billion pounds
(Environment Agency, 2007). During the flood event, two ASAR scenes were
acquired on 23 July 2007, at 10:27 and 21:53, which are shown in Figure 4.2(a)
and Figure 4.2(b), respectively. In both images, large flooded areas are visible
as dark objects along the rivers Severn and Avon.

A reference dataset that was manually delineated from airborne imagery
acquired at a resolution of 0.2 m by the University of Reading (Mason et al.,
2010) showing the flood extent in the morning of 24 July 2007 (at ca. 11:30) was
available for validating the retrieved flood probability maps (Figure 4.2(c)).
Details of the delineation procedure are given by Giustarini et al. (2013). This
reference dataset has been used in a number of other studies (e.g. Giustarini
et al., 2013, 2016; Mason et al., 2014) and, therefore, can be regarded as
being well suited as a benchmark for validating SAR-based flood mapping
approaches. The area surveyed by the airplane is located within the dashed
rectangle in Figure 4.1.

Different methodologies exist for comparing probabilistic maps with bi-
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nary reference datasets. One obvious approach is to convert the probabilistic
map to a binary one as described before and then compute accuracy met-
rics based on the obtained contingency table. However, the total variability
of uncertainty information would not be reflected by the result. Giustarini
et al. (2016) adopted the reliability diagram (Wilks, 2011) for validating prob-
abilistic flood extent retrievals from satellite data against binary reference
observations. This technique had previously been used for, e.g. assessing the
reliability of uncertain inundation models (Horritt, 2006). A reliability di-
agram consists of two plots, one showing the calibration function and the
other one describing the distribution of pF values. As a first step in deriving
a reliability diagram, the flood probability values were binned into L = 10
bins Bl ∈ {0 ≤ pF < 0.1, 0.1 ≤ pF < 0.2, . . . , 0.9 ≤ pF ≤ 1}, with centres
bl = 0.05, 0.15, . . . , 0.95, l = 1, . . . , L. The calibration function consists of the
probability of making a flood observation, o, within a given bin, Bl. This
conditional probability, p(o|bl), was estimated by counting the number of ref-
erence flood pixels, nR,l, located in each bin Bl divided by the total number
of pixels in the reference map, nR. The values derived for p(o|bl) were then
plotted against bl. In a perfectly reliable flood probability map, the calibra-
tion function should coincide with the identity line. Shifts in the calibration
function with respect to the identity line, on the other hand, point towards a
biased probability map. Furthermore, reliability as a scalar measure for the
quality of the calibration function is computed as the root mean squared ver-
tical distances of the bl-p(o|bl) point pairs to the identity line, weighted by nR,l

(Giustarini et al., 2016):

Rel =

√√√√ 1
nR

L∑
l=1

nR,l[bl − p(o|bl)]2. (4.12)

In a reliable map, Rel should be close to zero (Wilks, 2011). For the second
part of the reliability diagram, the distribution of pF values was derived by
counting the relative frequencies of pF values in each of the L bins and visualis-
ing them in form of a histogram. A flood probability map is called ”confident“
if a high percentage of pixels falls either in the very low or very high ranges of
pF and only a relatively small number in the intermediate bins (Wilks, 2011).

Since the reference map has a much higher resolution than the SAR WS
images it is also possible to derive the fraction of each 75 m pixel that was
covered by water according to the high-resolution imagery. As a result, it is
feasible to visualise the spatial distribution of errors by mapping the differences
between pF and the flooded fraction fF of a pixel. In most areas, pF should be
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comparable to fF . In vegetated areas, on the other hand, where the microwave
energy of the SAR antenna does not reach the water surface, or in urban areas,
pF can be expected to be smaller than the flooded fraction. Smaller pF close
to the centre of the inundated extent, on the other hand, may indicate that
the water surface in the area has been roughened by waves.

4.3 Results and Discussion

In this section, first the retrieved parameters for classes F and nF are reported.
Then, the retrieved flood probability maps are presented and the results of the
validation are discussed.

4.3.1 Backscatter PDF for permanent water bodies and
impact of θref

In order to parameterise the distribution function p(ε|F ) backscatter values
were extracted from the image stack for pixels that were known to be covered
by water according to a reference permanent water layer (CLC 2006). The
extracted σ0 values were then normalised with respect to the influence of local
incidence angle θ using equation 4.3. It was hypothesised that the choice
of reference angle θref would impact the separability between land and water
due to the higher values of |β| over permanent water reported in the literature
(O’Grady et al., 2014). Indeed, steeper β gradients were found over permanent
water than over land pixels. Two examples for a land and a water pixel are
shown in Figure 4.3(a) and Figure 4.3(b), respectively. In general, σ0 decreases
with higher local incidence angles. However, while for the land pixel, a change
of ∆θ = 10◦ corresponds to a change of ∆σ0 = −1.4 dB, the difference amounts
to ∆σ0 = −4.1 dB for permanent water in this example. Similar findings have
been reported by O’Grady et al. (2014) and Santoro et al. (2015). Therefore,
normalisation to a higher θref is most likely to increase the separability between
flooded and non-flooded pixels.

The histograms of σ0 from all permanent water pixels in the image stack af-
ter normalisation to 30◦ and 40◦ are shown in Figure 4.4(a) and Figure 4.4(b),
respectively. Both histograms can be approximated by a normal distribution
function due to the relatively high number of looks for ASAR WS data (Xie
et al., 2002). As expected, the two PDFs differ mainly in their mean value,
which is ca. 4 dB lower in the case of σ0(40◦). In both cases, variance is high
as backscatter values measured under different wind conditions were included
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Figure 4.3: Relationship between σ0 and θ for a pixel sampled over (a) land
and (b) permanent water.

in the histograms. Wind-induced water surface roughness changes can sig-
nificantly affect C-band σ0 from water bodies, especially in VV polarisation
(Henry et al., 2006). Indeed, larger water bodies showed higher variance in
σ0, most likely due to their greater fetch. Nevertheless, the largest permanent
water bodies were still smaller than the flooded area along the River Severn in
July 2007 (cf. Figure 4.1). It should be noted that the PDFs were estimated
based on an AOI that was larger than the one used for testing our approach.
This was necessary due to the fact that no significant permanent water bodies
were present in the test AOI. The PDF parameters, however, should be rela-
tively stable for larger or smaller AOIs as they mainly depend on θref . Caution
should be used if water bodies of much larger size are present where larger
waves may occur but this was not the case here.

4.3.2 Backscatter PDF for land

For each pixel in the image stack, residuals εnF were computed from the har-
monic model as described in Section 4.2.2. These residuals form a time series
in which large outliers caused by flood events can be visually identified. An
example of a residual time series for one pixel after normalisation to θref = 40◦

is shown in Figure 4.5(a). εF values computed from the σ0
F PDFs using equa-

tion 4.9 are shown in blue. The εnF time series shows no evident seasonality
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Figure 4.5: (a) Harmonic model residuals ε (brown) from ascending (s) and
descending (t) acquisitions for a single land pixel and centred samples from
permanent water (blue); (b) corresponding density functions for ascending
(solid) and descending (dashed) acquisitions. Bayes decision boundary (pF =
0.5) is given as black dashed horizontal line, the dotted vertical line marks 23
July 2007. σ0 was normalised to θref = 40◦ before computation of ε.

after application of the harmonic model. In three occasions, March 2007, July
2007 and January 2008, large negative outliers with ε < –5 dB are visible, which
were already verified as having been caused by flood events by Schlaffer et al.
(2015). The residuals are approximately normally distributed (Figure 4.5(b))
and usually lie above the Bayes decision boundary marking a flood probabil-
ity pF = 0.5. For the two flood images on 23 July 2007, ε is closer to mε,F

than mε,nF (the latter equals zero) and, hence, high flood probabilities pF can
be expected. In this specific pixel, posterior probabilities pF (t1) = 0.93 and
pF (t2) = 0.91 are obtained, where t1 denotes the time of acquisition in the
morning and t2 in the evening.

It should be noted that the harmonic model parameters (equation 4.4) were
estimated based on the entire time series, i.e. without excluding the flood
observations as these are usually unknown a priori. For the Severn, it was,
however, shown by Schlaffer et al. (2015) that removal of the flood images
prior to model fitting only had a negligible effect on the parameter estimation.
Nevertheless, in other areas where flood events occur more frequently, removing
the flooded images could have a beneficial effect.
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4.3.3 Flood probability maps

Flood probability maps computed using two different values of θref from two
ASAR scenes acquired on 23 July 2007 (at 10:27 and 21:53) are shown in
Figure 4.6. The flood probability maps were masked with the area that was
surveyed by the overflight from which the reference flood map has been derived
(cf. Figure 4.2(c)). In all cases, high probability values (pF > 0.9) can be
observed in the centre of flooded areas where backscatter was already low in
the original imagery (cf. Figure 4.2(a) and (b)). Around the borders of the
flooded areas, intermediate values (in green colours) are visible indicating a
higher uncertainty of the flood extent retrieval. Visual differences between
flood extent in the morning and in the evening is rather small when looking
at the entire test AOI.

There is, however, a notable difference between the flood probability maps
computed using different values of θref for normalisation. For θref = 30◦, large
non-flooded portions of both maps—morning and evening—show intermediate
pF values between 0.1 and 0.4 (Figure 4.6(c) and (d)). Exceptions to this
behaviour can be found in urban areas. For θref = 40◦, however, this effect is
much smaller and the flood probabilities of non-flooded pixels are mostly in the
range 0.1–0.2 (Figure 4.6(a) and (b)). This supports our hypothesis that using
a higher value of θref for normalisation increases the contrast between flooded
and non-flooded areas and, therefore, also the separability between the two
classes. This will be further explored by comparison with the high-resolution
reference dataset in the following.

The reliability diagrams computed using the high-resolution reference map
are shown in Figure 4.7. The diagrams indicate a high degree of agreement
between the flood probability maps and the reference dataset in all four cases.
For the morning image, the diagram (Figure 4.7(a)) shows a very high relia-
bility of the obtained result as suggested by the calibration function following
very closely the identity line. Use of θref = 40◦ for normalisation led to a slight
under-estimation for intermediate flood probability values as suggested by the
point located above the identity line. When normalising to θref = 30◦, on the
other hand, flood extent is overestimated, especially for values of pF < 0.5,
whereas the difference between θref is small at higher flood probabilities. This
is also reflected in the higher Rel value that is obtained for θref = 30◦ (Ta-
ble 4.1). Figure 4.7(b) shows consistently higher errors in the flood probability
map based on the ASAR scene acquired in the evening. The location of the
bl-p(o|bl) pairs suggests a high bias at low flood probabilities and a low bias at
pF > 0.3. As a consequence, higher Rel values of ca. 0.09, regardless of θref ,
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Figure 4.6: Flood probability maps for 23 July 2007 after normalisation to
θref = 40◦ at (a) 10:27 and (b) 21:53 and after normalisation to θref = 30◦ at
(c) 10:27 and (d) 21:53.

Table 4.1: Rel values obtained for the two ASAR scenes and different values
of θref .

θref Morning Evening

30◦ 0.107 0.095
40◦ 0.035 0.092

were obtained for the evening image (Table 4.1).
For both scenes, the histograms of pF values further show relatively high

confidence of the flood probability maps expressed by the fact that most pixels
assume either very low (pF < 0.2) or very high (pF > 0.9) flood probability
values whereas intermediate flood probabilities only contribute to a small pro-
portion of the entire image. When normalising to θref = 30◦, more pixels are
located in bin B2 (centred at b2 = 0.15) than in B1 (centred at b1 = 0.05)
which is the reason for the fuzzy appearance of Figure 4.6(c) and (d). For
θref = 40◦, a higher confidence of the flood probability maps is found as most
pF values are located in the first and last bins adding further support to the
hypothesis that higher θref values lead to a better separability of flooded and
non-flooded areas.

In addition to quantifying the performance of the flood probability maps
using reliability diagrams, it can also be of benefit to visualise the spatial dis-
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Figure 4.7: Reliability diagrams referring to flood probability maps for 23
July 2007 (a) morning and (b) evening.

tribution of errors in order to characterise areas in which a low performance
of the flood maps is to be expected. Therefore, the bias computed as the dif-
ferences between the retrieved pF maps and the fraction of each 75-m pixel
covered by the reference flood extent, fF , is shown in Figure 4.8. Blue (red)
indicates that the value of the probabilistic flood map is higher (lower) than
the fraction of flooding derived from the polygons of the validation dataset.
Most areas located in the centre of the flood extent show differences close
to zero which may indicate that water surface roughness likely had a negli-
gible effect on the quality of the SAR-derived maps. As expected, flooding
is under-estimated (blue) close to urban areas such as Worcester, Tewkesbury
and Gloucester and also along the edges of the flooded areas, most likely due to
mixed pixels. Especially around Gloucester (labelled A in Figure 4.8), visual
inspection of Google Earth imagery reveals buildings and woody vegetation
leading to elevated σ0 values due to double-bounce and volume scattering and,
therefore, low flood probabilities according to the proposed approach. For the
image acquired in the evening along an ascending orbit, it can be seen that
under-estimation especially occurs along the western shoreline, particularly
after normalisation to θref = 40◦ (Figure 4.8(b)). This may indicate a system-
atic error due to radar shadow induced by the rather steep slopes along the
edges of the River Severn floodplain. Since radar shadow is recorded at all
time steps within the ASAR time series it leads to lower σ̂0

nF and, therefore,
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Figure 4.8: Differences between pF and fF in the reference map after nor-
malisation to θref = 40◦ at (a) 10:27 and (b) 21:53 and after normalisation to
θref = 30◦ at (c) 10:27 and (d) 21:53. Labels A and B label areas described in
the text.

to lower ε and pF values when a pixel is actually flooded. For the morning
image, overestimation (red) is mainly visible along the River Teme (labelled
B in Figure 4.8), a tributary of the Severn, in the northern part of the AOI
(Figure 4.8(a) and (c)). This could be due to an actual recession of the flood
in that area over the course of 23 July. The reference imagery was acquired
roughly 24 hours after the first ASAR scene while the peak water level on the
River Severn was already reached on 22 July (Zwenzner and Voigt, 2009).

4.4 Conclusions
A probabilistic change detection approach for flood mapping based on EN-
VISAT ASAR WS time series was proposed. The methodology consisted of
a parameter estimation of conditional backscatter probability density func-
tions for flooded and non-flooded classes and the subsequent computation of
posterior probabilities. Seasonal variations in σ0 over land were accounted for
using a harmonic model. Validation against a high-resolution reference dataset
showed a high reliability of the retrieved flood probability maps. Deviations
were mostly found along the edges of the floodplain due to mixed pixels, par-
tially submerged buildings and vegetation and possibly radar shadows.

As ASAR WS imagery is characterised by a large swath width with large
overlaps between tracks, scenes acquired from different viewing geometries
were used when building the time series. Therefore, σ0 was normalised to a
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common local incidence angle θref . Testing different choices for θref highlighted
the importance of the choice of θref for the separability between flooded and
non-flooded areas. In cases where flood probability was overestimated in non-
flooded areas, this led to higher reliabilities of the derived flood probability
maps.

As the time series are analysed separately for each pixel the mapping result
does not depend on the relative size of the flood extent in comparison to the
size of the scene which has been a problem for approaches which are based on
single images. The proposed method, therefore, holds considerable potential
for its inclusion in fully automatic processing chains targeted towards change
detection in SAR time series, especially in connection with recent SAR missions
such as Sentinel-1 which systematically acquire imagery at a high temporal
sampling rate.



Chapter 5

Synthesis

5.1 Scientific impact
In the previous chapters, this thesis has addressed several open research ques-
tions in automatic flood mapping by introducing a novel change detection
framework. The objectives of this thesis (cf. section 1.3) include the characteri-
sation of backscatter signatures of different land-surface types using a harmonic
model approach, the application of harmonic model estimates as pre-flood ref-
erence data in a change detection framework and, finally, the derivation of
probabilistic flood maps.

In the following paragraphs, the main scientific contributions and key find-
ings reported in this thesis are summarised. The major contribution of the
thesis beyond the current state-of-the-art with respect to flood delineation
from SAR data is the introduction of a framework for detecting changes in
SAR image time series caused by flood events. For this purpose, the thesis
has introduced a methodology for the estimation of land-surface backscatter
signatures to be used as pre-flood reference based on harmonic analysis of SAR
image time series. The main significance of the pixel-wise harmonic model es-
timate in this context is its role as a noise-free estimate of seasonal average σ0

at the respective location. In detail, the following advances are made:

SAR time series analysis. While in previous studies, time series analy-
sis of SAR images mainly encompassed the extraction of descriptive statistics
such as average backscatter or temporal variability, the presented approach ex-
plicitly addresses seasonality caused by hydrological and biophysical processes.
This results in a better characterisation of backscatter behaviour in terms of
its average amplitude and seasonality, that can be expected for a particu-
lar land-surface type. Furthermore, the information content of the harmonic

97
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model coefficients is discussed in terms of hydrological processes occurring at
the land surface. The potential of the model parameters for classifying a set of
wetland types is explored. The effect of differences in local incidence angle on
the derived parameters and its implications for the subsequent application in
change detection are discussed. This holds additional relevance for the use of
the approach for analysis of Sentinel-1 time series as imagery of most locations
will be acquired at a single local incidence angle.

Change detection. A major difference of the change detection approach
proposed in this thesis with respect to earlier work is that the need for selecting
a reference image is eliminated as backscatter signatures of non-flooded land
surfaces are estimated using a harmonic model. Furthermore, the impact of
speckle in the produced change image is decreased as the harmonic model esti-
mate of the pre-flood image represents an average of multiple SAR acquisitions
and, therefore, does not contain a speckle contribution. As a result, compar-
ison of the proposed approach with a traditional change detection between a
pre- and a post-flood image have resulted in consistently higher user’s and
producer’s accuracies, both in rural and urban areas. Finally, it is shown that,
by analysing the full time series of model residuals, it is possible to identify
flood images in an archive of historical SAR data.

Probabilistic flood mapping. The proposed approach makes three ma-
jor contributions beyond the current state-of-the-art. First, probabilistic flood
mapping approaches, with the exception of Westerhoff et al. (2013), typically
estimate the necessary parameters based on the empirical histograms of one or
few pre- and post-flood images. In the presented case, the PDFs are parame-
terised based on historical acquisitions and combined with a change detection
approach. Second, the combination of pixel-wise harmonic model fitting with
a probabilistic approach can be seen as equivalent to the estimation of an opti-
mal, seasonally and spatially dependent threshold value for classifying flooded
areas. Therefore, the threshold determination does not depend on the size
of the flooded area with respect to the total area covered by the image. Fi-
nally, the thesis makes a contribution to the characterisation of uncertainties
that arise in connection with SAR-based flood mapping by providing uncertain
flood extent maps and discussing the differences compared to a high-resolution
validation dataset.
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5.2 Limitations

While the design of the presented study has permitted insight into the season-
ality in backscattering behaviour found over land surfaces and the potential of
such information for change detection, the proposed approach has a number
of limitations which are explored in the following. Some of them have already
been pointed out in the previous chapters and are summarised here. Three of
the most important limitations are highlighted.

First, as already acknowledged in Chapter 3, the ASARWS dataset used for
estimating the harmonic model parameters included several images acquired
during flood events. While it has been shown that, in the presented test case,
the flood images exerted only a negligible influence on the estimated harmonic
model parameters, this may not be true in areas which are flooded more fre-
quently, especially in cases where seasonal flooding occurs. As demonstrated in
Chapter 2, the harmonic model parameters can be used for mapping seasonally
flooded areas due to the high sensitivity of ASAR backscatter to the occur-
rence of surface water. This implicates that the change detection approach
presented in Chapters 3 and 4 would result in an under-estimation of the flood
extent in seasonally flooded areas as the observed backscatter will be close to
the harmonic model estimates. Instead, the approach, as it is presented here,
would return the change in flood extent with respect to the period used for
training the model parameters. While this may seem problematic at the first
glance, it is not necessarily a shortcoming of the proposed approach since un-
expected, non-periodic flood events hold much higher impact than seasonally
recurring inundations. Moreover, the described characteristic holds interesting
possibilities for application in wetland change detection which are explored in
section 5.3.

Second, in Chapter 2, a technique for classifying seasonal open water and
seasonally inundated vegetation has been presented. It has, however, not been
examined whether the probabilistic change detection approach presented in
Chapter 4 can be used, not only for mapping open flood water, but also flood-
ing beneath vegetation which typically leads to double-bounce scattering. The
proposed probabilistic method relies on backscatter PDFs for known water and
non-water areas trained using ASAR time series. For double-bounce scattering,
however, these areas are usually not known a priori, but could—potentially—
be derived using the proposed approach. Nevertheless, the occurrence and
contribution of double-bounce scattering to the total backscatter coefficient
depends on a multitude of other factors such as water level, vegetation struc-
ture and density. These factors are very difficult to incorporate into a statistical



100 CHAPTER 5. SYNTHESIS

model such as the one presented in Chapter 4. An electromagnetic scattering
model such as the one proposed by Pulvirenti et al. (2011a) could be applied
but the required parameters are difficult to estimate at larger scales. Therefore,
the presented change detection method is currently limited to the delineation
of open flood water.

Finally, the pixel-wise estimation of a harmonic model leads to a higher
computational cost in comparison to more traditional change detection meth-
ods in which the ratio or difference between a pre- and a post-flood image are
computed. For near-real-time applications, however, it should be noted that
optimising the harmonic model parameters from the full time series is usually
not necessary. Instead, the model parameters could be estimated and stored
in a parameter database which should be updated regularly, typically after
completion of a full seasonal cycle. Flood imagery made available in near-real
time could then be processed using the stored parameters with a much higher
computational efficiency.

5.3 Perspectives

This thesis has focused on the analysis of data acquired by the ENVISAT
mission, which ended in 2012. Nevertheless, the proposed methodology holds
high relevance for other SAR missions, especially for the Sentinel-1 constella-
tion whose two satellites were launched in 2014 and 2016 and which provides
high-resolution imagery at a short revisit time of six days when combining
data from both satellites (Torres et al., 2012). The proposed approach can
be expected to greatly profit from the availability of high-resolution imagery
with a consistent observation scenario and a high temporal revisit frequency.
However, some modifications to the presented methodology are likely to be nec-
essary. Due to the acquisition strategy of the Sentinel-1 mission every location
on earth is imaged from a maximum number of three different orbits. In lower
latitudes, imagery is acquired at only a single local incidence angle (Hornacek
et al., 2012). This means that the normalisation with respect to local inci-
dence angle applied to ASAR WS data in this study will not be necessary—or
possible—in most cases for Sentinel-1. Nevertheless, further adaptations are
likely to be required to the proposed approach in order to account for spatially
varying local incidence angles. Moreover, the use of high-resolution data will
pose new challenges. It is likely that speckle filtering will be required as the
equivalent number of looks (ENL) of Sentinel-1 IW data at a resolution of
20 m × 22 m is estimated to be 4.4 while the ASAR WS medium-resolution
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data are characterised by an ENL > 15. Alternatively, the moderate-resolution
IW product (resolution 88 m × 87 m) could be used due to its higher ENL
of 81.8. This would also lower the computational cost of estimating harmonic
model coefficients for each pixel in a multi-temporal image stack.

As has already been pointed out in the previous section, further open per-
spectives exist for the proposed approach in terms of harmonic model be-
haviour in seasonally flooded areas. Changes in this behaviour hold potential
for detecting alterations in wetland extent with respect to a baseline period.
For example, in Chapter 2, wetland types have been mapped based on data
acquired between 2007 and 2008. If additional harmonic models can be trained
using data from subsequent years, changes in the extent of different wetland
types can be mapped. It must, however, be made sure that SAR acquisitions
are available at approximately the same points along the seasonal cycle and
that only full seasonal cycles are used for estimating the harmonic model pa-
rameters. This aim will also be easier achieved using Sentinel-1 data due to
the higher consistency in acquisition planning.

Further open questions exist with respect to the estimation of other param-
eters of the presented framework, e.g. the prior probability of a pixel being
flooded, p(F ). While in this and other studies (Giustarini et al., 2016; West-
erhoff et al., 2013) a non-informative prior has been used, other authors have
pointed out the possibility of estimating the prior based on topographical in-
formation (e.g. Refice et al., 2014). The HAND index applied here for masking
is a candidate for deriving such probabilities. However, the estimation of prior
probabilities in an objective manner without parameterising them based on
hydraulic model results is not a straightforward task.

Finally, approaches such as the one presented in this thesis may help to
represent information contained in image time series using only a small number
of parameters. Such novel representation methods have recently been called
for by Amitrano et al. (2016) and could help to condense the information in
image repositories which will be increasingly available in the future.
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Figure A.1: Local incidence angles of ASAR scenes averaged over the Ka-
fue Flats. Triangles sharing the same colour belong to the same track. s

ascending, t descending orbital node.
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Figure A.5: RGB composite of harmonic model components used for wetland
extent mapping in the Kafue River Basin (R: σ̄0; G: A1; B: φ1).
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Figure A.6: Box-Whisker-Plots showing median (line) and interquartile range
(box) of the Height Above Nearest Drainage (HAND) index for each of the
derived classes. Whiskers span up to 1.5 times the interquartile range. The
horizontal line shows the selected threshold value used for masking.
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