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Abstract

Abstract

Within this work, the quasi-binary transition metal-aluminum-nitride alloys Ta-Al-N and

Nb-Al-N were studied using ab initio methods based on density functional theory (DFT).

The aim was to clarify the influence of vacancies on the stability of various phases known

for these two systems. For the Ta-Al-N system, the hexagonal B4 (wurtzite), Bk, Bh, and

ε as well as the cubic B1 (rock salt) structures were taken into account. The study of the

Nb-Al-N system covered the hexagonal B4, Bk, and Bi and the cubic B1 structures.

Starting from fully occupied lattices, vacancy concentrations up to a maximum of 11 % (22 %

empty sites on one sublattice) were introduced on either the metal or the nitrogen sublattice,

and spanning the whole composition range of Ta1−xAlx/Nb1−xAlx on the metal sublattice.

The solid solutions were modeled using supercells with 54-72 for Ta- and 64-72 atoms for

Nb-Al-N-structures. The atom positions were determined using the special quasi-random

structure (SQS) approach.

All calculations were performed with the Vienna Ab-initio Simulation Package using a pro-

jector augmented wave function basis and GGA-PW91 exchange-correlation potentials.

The calculated energies were used to construct phase diagrams showing the stable structures

as functions of vacancy and aluminum content. Furthermore, the structures were structurally

characterized.

It is shown that cubic B1 structures containing either metal or nitrogen vacancies are more

favorable than the perfect configurations with fully occupied lattices over a wide range of

aluminum fractions. In all other phases considered in the calculations, however, vacancies

have the opposite effect and destabilize the respective structures. As a result, the stability

range of the cubic B1 phase is extended by the presence of vacancies in both the Ta-Al-N as

well as in the Nb-Al-N system.
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Abstract

Kurzfassung

In dieser Arbeit wurden die quasi-binären Übergangsmetall-Aluminium-Nitridsysteme Ta-

Al-N und Nb-Al-N mittels ab initio Methoden basierend auf der Dichtefunktionaltheorie

(DFT) untersucht. Das Ziel war, den Einfluss von Fehlstellen auf die Stabilität der ver-

schiedenen Kristallstrukturen, die für diese beiden Systeme bekannt sind, zu klären. Für das

Ta-Al-N System wurden die hexagonalen B4- (Wurtzit), Bk-, Bh-, und ε-Strukturen sowie

die kubische B1-Struktur (NaCl) berücksichtigt. Die Untersuchung des Nb-Al-N Systems

umfasste die hexagonalen B4-, Bk- und Bi-Strukturen, und die kubische B1-Struktur.

Ausgehend von voll besetzten Gittern, wurden über die gesamte Kompositionsbreite Ta1−xAlx/

Nb1−xAlx des Metallgitters, entweder auf dem Metall- oder dem Stickstoffgitter Fehlstellen

bis zu einem Ausmaß von maximal 11 % eingebracht (bis zu 22 % der Gitterplätze eines

Teilgitters unbesetzt). Die Legierungen wurden mittels Simulationszellen von 54-72 für das

Ta- und 64-72 Atomen für das Nb-Al-N-System modelliert. Die Besetzung der Gitterplätze

in den Mischkristallen wurde durch die sogenannte ,,special quasi-random structure” (SQS)

Methode bestimmt.

Alle Berechnungen erfolgten mittels ,,Vienna Ab-initio Simulation Package”. Es wurden

Basisfunktionen, die durch den ,,projector augmented wave” Ansatz erweitert wurden und

Austausch-Korrelations Potentiale vom Typ GGA-PW91 verwendet.

Mit den berechneten Energien wurden Phasendiagramme konstruiert, welche die stabilen

Phasen der Systeme in Abhängigkeit von Aluminium- und Fehlstellengehalt darstellen. Zu-

dem wurden die Phasen bezüglich ihrer Strukturparameter charakterisiert.

Es konnte gezeigt werden, dass für die kubische B1-Struktur über eine große Spanne an

Zusammensetzungen sowohl Metall- als auch Stickstofffehlstellen energetisch günstiger sind

als voll besetzte Kristallgitter. Alle anderen Strukturen reagieren mit einer Erhöhung ihrer

Gesamtenergie auf die Defekte, werden also von diesen destabilisiert. Gemeinsam führen

diese, durch die Fehlstellen hervorgerufenen Effekte, sowohl im Ta-Al-N-, als auch im Nb-

Al-N-System zu einer Erweiterung des stabilen Bereichs der kubischen Phase.
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Chapter 1

Introduction

The aim of this work is to use ab initio methods to investigate the phase stability of the

quasi-binary alloy systems Ta-Al-N and Nb-Al-N. Especially the role of vacancies in this

context should be clarified, as they have been shown to strongly affect the structure and

the properties of closely related materials [1–3]. Their explicit consideration in the den-

sity functional theory (DFT) simulations therefore promises new insights and more accurate

predictions for improved design of materials. Both alloys belong to the material class of

transition metal nitrides (TMNs), which will be shortly introduced in this chapter. Fur-

thermore, the boundary systems Al-N, Ta-N, Nb-N are presented briefly in terms of their

properties, crystallographic phases, which are important for the actual DFT calculations,

and applications.

Chapter 2 provides the theoretical background of DFT in general, and discusses approaches

to reduce computational costs of the simulations while preserving their accuracy. Addition-

ally, difficulties in modeling random alloys are explained and an approach used to deal with

them is shown.

Chapter 3 deals with technicalities of the Vienna Ab-initio Simulation Package (VASP), the

software used to carry out the DFT calculations, and describes the results of the performed

convergence tests, problems imposed by these results and their solutions.

Finally, Chapter 4 introduces the methodological concepts for the phase stability assessment

carried out in this work, and presents and discusses the actual results.

1.1 Transition metal nitrides

As the name of this rather large class of materials already indicates, it comprises the com-

pounds of nitrogen with the elements of groups IB-VIIIB of the periodic table. Based on the

dominant bonding characteristics, electronic structure and properties, they can be classified

into three groups, although this classification is rather vague for some of them. Nevertheless,
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1.1 Transition metal nitrides

it allows a rough categorization, which is helpful for a preliminary assessment of the behavior

of the individual materials.

The nitrides of the transition metals of groups IB-IIIB can be attributed to the group of

ionic or salt-like nitrides [4, 5]. Besides them the alkali and alkaline-earth metals (groups IA

and IIA) and some elements of groups IVA and VA form compounds associated with this

group. Due to a relatively large difference in electro-negativity of 1.3− 2.1 of these elements

to nitrogen, ionic bonding dominates. Their chemical stability is rather low and they are

susceptible to hydrolysis [4–6]

Nitrides of elements from groups IVB-VIB are usually called interstitial nitrides [4, 6, 7].

The atomic size of those elements is much larger than that of nitrogen. For this reason,

the nitrogen atoms can populate interstitial sites on the metal sublattice. The bonding

of these compounds includes both metal-metal and metal-nitrogen interactions resulting in

dominant metallic bonding with smaller covalent and ionic contributions [4, 8–11]. Many

properties, such as their high electrical and thermal conductivity or magnetic and optical

behavior, resemble those of the corresponding metallic parent materials, while their hardness

and oxidation resistance benefit from the covalent and ionic contributions to the inter-atomic

bonds [4, 8, 10–12]. Of the late transition metals in groups VIIB-VIIIB only Mn, Fe, Co,

Ni, Te and Re form nitrides [4, 8]. They are referred to as intermediate nitrides by some

authors [4]. Their bonding characteristics are similar to the interstitial nitrides. But the

nitrogen content in them is lower and the resulting phases have more complicated crystal

structures. Furthermore, they show lower chemical and thermal stability [4, 7, 13]. Fe4N

and FeN1−x are, however, very important for strengthening of steels by nitriding, as they

form hard precipitates [8, 14, 15].

Both Ta and Nb are group VB elements and therefore form interstitial nitrides. Interstitial

transition metal nitrides of group IVB-VIB are industrially well established materials for

various applications. They exhibit very high hardness and melting points, and are chemi-

cally very stable. Optical, magnetic and electric properties are essentially metallic, but the

temperature dependence of the electrical conductivity is very low or even zero in many of

them [8, 16].

In electronic applications, interstitial TMNs are deployed as diffusion barriers, adhesion pro-

moters and thin film resistors in semiconductor devices because of their chemical stability

and electric properties. Examples for materials in this field are TiNx, crystalline and amor-

phous phases of WN, and different TaN structures [16, 17].

Their high hardness, thermal stability and oxidation resistance also make them common

protective coating materials for machining and forming tools as well as for engine parts

[4, 7, 18, 19]. Among the first coating systems used for this purpose were TiN and CrN,

which are still commonly used nowadays in industry [19]. Extending the binary systems

by additional elements such as aluminum or carbon allowed improving their properties and
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1.1 Transition metal nitrides

thereby increasing the lifespan and performance of the coated parts [17, 20, 21]. The most

prominent example, which has been intensively studied throughout the years is Ti-Al-N

[1, 17, 22–28]. Nevertheless, the demand for even more capable thin film materials for these

applications is not exhausted yet. Present research in this area explores multi-layered coat-

ings, their architectural design, and a further expansion of the used alloy systems [10, 29–31].

For example, Koller et al. investigated coatings of the quaternary Ti-Al-Ta-N system and

Ti-Al-N/Ta-Al-N multi-layers [32, 33].

One very important feature of transition metal nitrides of groups IVB-VIB is their defect

structure. Many of their phases do not follow strict stoichiometries and very large vacancy

concentrations can be found on both, metal and nitrogen sites. The defect structure has

a significant effect on material properties and is strongly influenced by the used synthesis

[8, 16, 17].

It is therefore impossible to ignore their influence in ab inito studies [34, 35]. Yu, Stampfl,

Freeman et al. and Koutná et al. published a number of papers on the influence of different

point defects on the stability and electrical properties of the binary Ta-N system [3, 36–38].

Regarding ternary systems, Alling et al. investigated the influence of nitrogen vacancies on

the decomposition behavior of Ti-Al-N [1]. Euchner and Mayrhofer researched the effect of

vacancies on its phase stability and structural and mechanical properties [2]. They showed

that previous calculations correctly predicting the phase transition of the system despite

neglecting the influence of defects were more or less a lucky chance, since Ti-Al-N is not very

sensitive to them regarding its phase stability. Its physical properties are, however, affected

by the presence of vacancies [2].

This work aims to expand the theoretical knowledge on the influence of vacancies in TMNs

by investigating their impact on Ta-Al-N and Nb-Al-N.

1.1.1 Material systems and crystal structures

In the following, the binary boundary systems of both, Ta-Al-N and Nb-Al-N, are discussed

shortly with an emphasis on metal-to-nitrogen compositions around 1. Also a short intro-

duction into current research of the quasi-binary systems is given.

Al-N

AlN is the only compound of the Al-N system [4, 12]. It is a IIIA semiconductor and

can be classified as covalent nitride due to its dominant bonding characteristics, although

ionic bonding components are also present in the material [4, 39]. Applications are mostly

based on its high thermal conductivity and high electric resistivity which are caused by

its large band gap (> 6 eV [39]). These properties make AlN an attractive substrate for

semiconductor devices and components in power electronic applications [12, 40, 41]. But
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1.1 Transition metal nitrides

also its semiconducting nature is gaining importance for example as LED [39, 42].

The crystal structure of AlN under equilibrium conditions is the wurtzite B4 structure (space

group 186, pearson symbol hP4, Fig. 1.1b) [4, 12]. At pressures above ∼ 16 GPa, however,

the metastable cubic B1 phase (space group 225, pearson symbol cF8, Fig. 1.1a) is also

reported [43].

Ta-N

Binary Ta-N has a number of different applications due to its versatile properties [44]. It

is used in electronic components as a diffusion barrier, because of its chemical stability and

good adhesion to Cu as well as to common substrates, such as Si and InP [17, 45–48]. It

is also used as a thin-film resistor, because of its small temperature coefficient of resistivity

[7, 49–51]. Furthermore, its favorable mechanical properties make Ta-N materials interesting

as new protective coatings and the system is gaining importance especially in the context of

multi-layer arrangements and as components of ternary and quaternary alloys [52–55].

The binary Ta-N system exhibits a very large number of different stable and metastable

phases [37, 54, 56, 57]. At Ta/N= 1 the hexagonal ε-phase (space group 189, pearson

symbol hP6, Fig. 1.1d) is generally accepted to be the stable phase at ambient pressure and

temperature [9, 56, 58, 59]. But the systems shows a large number of metastable phases not

appearing in the equilibrium phase diagram and it is apparently very sensitive to the used

synthesis techniques and conditions [17, 23, 37, 49, 60, 61]. For a strict Ta/N ratio of 1, the

cubic B1 phase and the hexagonal Bh phase (space group 187, pearson symbol hP2, Fig.

1.1e) are known to be such metastable phases [9, 56, 58, 62].

Nb-N

The superconducting properties and high critical temperature for superconductivity of Nb-N

have long been the main topic of interest in research on this system [9, 12, 63–65]. Especially

the possible application in tunneling junctions received much attention [12, 66–70]. Next to

the high electrical conductivity, the high melting point and chemical inertness of Nb-N have

motivated to use them as cathode material for field emission displays [71]. Additionally, the

possible application as diffusion barrier is reported [72, 73]. Lately, more attention has been

paid to a possible application of Nb-N as protective coatings due to its high hardness, high

melting point and wear resistance [74–77].

Similarly to the Ta-N system, also the Nb-N system shows a large number of different

phases. For NbN with a Nb/N ratio ∼ 1, the hexagonal Bi structure (space group 194,

pearson symbol hP8, Fig. 1.1f) is found to be most stable at ambient conditions [9, 78–80].

But also several metastable phases have been found for the near-stoichiometric compositions

[9, 79, 80]. The cubic B1 phase is generally accepted to be a high temperature phase occurring

at T > 1230 − 1270 ◦C [9, 79, 80]. But it is commonly found in thin films deposited by

6



1.1 Transition metal nitrides

physical vapor deposition (PVD) [74, 76, 77, 81]. Another metastable phase, the hexagonal

B81 structure (space group 194, pearson symbol hP4, Fig. 1.1g), was originally found during

the transformation from the cubic B1 to the hexagonal Bi [78, 79], but can also be stabilized

with PVD methods [81–83].

Ta-Al-N

This alloy system is a subject of intensive research as a possible material for protective

hard coatings, either alone or as part of a multilayer arrangement [33]. A recent study of

Koller et al. was concerned with cathodic arc evaporated thin films with a composition

of Ta0.89Al0.11N1−1.2. In the as deposited state, the cubic B1 structure was found to be

stable [84]. Chen et al. deposited a series of four Ta-Al-N films by reactive magnetron co-

sputtering, three of which which had Ta-rich compositions up to Ta0.7Al0.3N and crystallized

in the B1 phase. The Al-rich material showed blurred XRD-patterns, which they ascribed

to a hexagonal B4 texture [85].

Zhang reported a single phase B1 structure in Ta1−xAlxN films synthesized by DC reactive

magnetron sputtering up to x = 0.36 and in a dual phase arrangement together with the

hexagonal B4 phase up to x = 0.65 [86].

These results are quite interesting, because neither of the two boundary systems Ta-N and

Al-N occurs in the cubic B1 structure at equilibrium conditions. Since this phase is only

metastable in the system it would undergo decomposition upon thermal loading. Further-

more, ab initio simulations of Holec et al. predicted the hexagonal Bh phase to be stable for

low aluminum contents up to x = 0.2 [87].

Based on the information on the binary systems Al-N and Ta-N as well as the experimental

and theoretical work on the ternary Ta-Al-N summed up above, the calculations presented

in this work considered the cubic B1 structure, and the hexagonal structures B4, ε and Bh.

In addition to them, the hexagonal Bk structure (space group 194, pearson symbol hP4,

Fig. 1.1c) was included, because of its similarity to both the cubic B1 and the hexagonal B4

structure [28, 88]. It is for this reason likely to be an intermediate phase during the transition

between the two phases and its consideration thus promises a more accurate description of

this transition [28]. The crystallographic structures included in the calculations for the

Ta-Al-N system are illustrated in Figs. 1.1a to 1.1e and listed in Table 1.1.

Nb-Al-N

The available literature on this system is rather scarce. Selinder et al. were the first to inves-

tigate the influence of the aluminum content on the crystallographic structure of Nb1−xAlxN

materials [89]. They produced a film with continuously varying composition by reactive

triode sputtering and characterized it in terms of crystal structure. A pure film of cubic B1

7



1.1 Transition metal nitrides

phase was found over a wide range of aluminum fractions x. Even for their lowest aluminum

content x ∼ 0.09, the hexagonal Bi phase did not occur. Barshila et al. also reported the

B1 structure in a Nb-Al-N material with x = 0.37, but they noted that the oxygen content

in their films was as high as 5.2 at.% [90]. The cubic phase in Nb1−xAlxN was confirmed

by experiments of Franz et al., who reported it up to x = 0.56 [91]. Zhang investigated

both binary Nb-N and quasi-binary Nb-Al-N films and found a mixture of the hexagonal Bi

and the cubic B1 phases for Nb-N films with nitrogen over-stoichiometry, but a single-phase

cubic structure in Nb1−xAlxN materials up to x = 0.44 [86]. Ab inito studies by Holec et al.,

however, predicted the hexagonal B81 phase to be the most stable one in Nb1−xAlxN alloys

up to x = 0.14, while for 0.14 ≤ x ≤ 0.7 the cubic B1 phase was the most stable one before

the B4 structure appears for x ≥ 0.7 [92].

With this compiled information it was decided to include the cubic B1 and the hexagonal

Bi, B4 and Bk structures in the present calculations regarding the Nb-Al-N system. The

structures considered for the Nb-Al-N system are shown in Figs. 1.1a to 1.1c and Fig. 1.1f

and listed in Table 1.1.

Table 1.1: Table of crystal structures considered in this work.

space pearson nr. of atoms in Ta-Al-N Nb-Al-N
structure prototype group symbol conventional cell

B1 NaCl 225 cF8 8 X X
B4 ZnS 186 hP4 4 X X
Bk BN 184 hP4 4 X X
ε TaN 189 hP6 6 X

Bh WC 187 hP2 2 X
Bi TiP 194 hP8 8 X
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1.1 Transition metal nitrides

b

c

a

(a) cubic B1

b

c

a

(b) hexagonal B4

b

c

a

(c) hexagonal Bk

b

c

a

(d) hexagonal ε

b

c

a

(e) hexagonal Bh

b

c

a

(f) hexagonal Bi

b

c

a

(g) hexagonal B81

Figure 1.1: Crystal structures considered in this thesis. The nitrogen atoms are represented
by the smaller gray spheres, while the larger colored spheres illustrate the metal atoms.
Structures with yellow metal atoms are incorporated in the Ta-Al-N system, structures with
green ones in the Nb-Al-N. The structures with blue atoms are included in both systems.
The hexagonal B81 structure, which is found in the Nb-Al-N system, is not considered in
the calculations and is therefore identified by violet spheres. The images were created with
VESTA [93].
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Chapter 2

Theoretical background

In this chapter, the background of this work from the simulation perspective will be ex-

plained. Section 2.1 deals with the approach of density functional theory (DFT) to the

quantum mechanical many-body problem and describes the basic principles used in its prac-

tical applications. Section 2.2 furthermore discusses concepts used in the treatment of crys-

talline solids with DFT as well as some important aspects and methods used to choose an

adequate model system for the calculations.

2.1 Density functional theory

This section will give a brief introduction to the basics of DFT methods. The assumptions

and approximations made to tame the complicated equations describing quantum mechanics

are explained in a nutshell. Its approach to the topic is following the books by J. G. Lee

[94], S. Cottenier [95] and a course on atomistic material modeling given at Vienna UT [96].

2.1.1 The underlying problem

At the beginning of the 20th century, the great minds such as Bohr, Schrödinger, De Broglie,

and many others, have succeeded in uncovering the principles of quantum mechanics, and

have given it an accurate mathematical description. The result of this effort is the many-body

wave equation, or Schrödinger equation [97]:

Ĥψ(Ri, ri) = Eψ(Ri, ri) . (2.1)

In this equation, ψ is the unknown wave function, E is the system energy, and Ĥ is the

Hamilton operator. The variables of the function, Ri and ri, are the coordinates of the nuclei

and the electrons, respectively. Any atomic system can, in principle, be fully described by

correctly formulating its Hamiltonian, and solving the resulting partial differential equation

2.1.
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2.1 Density functional theory

The first step to simplify the problem is to confine it to the solution for the ground state

at 0 K. If, in addition to that, gravitational and relativistic effects are omitted, the defining

term of Eq. 2.1, the Hamiltonian, takes the following form [95]:

Ĥ =

T̂n︷ ︸︸ ︷
−~2

2

∑
i

∇2
Ri

Mi

−

T̂e︷ ︸︸ ︷
~2

2

∑
i

∇2
ri

me

−

− 1

4πε0

∑
i,j

e2Zi
|Ri − rj|︸ ︷︷ ︸

V̂n-e

+
1

8πε0

∑
i 6=j

e2ZiZj
|Ri −Rj|︸ ︷︷ ︸

V̂n-n

+
1

8πε0

∑
i 6=j

e2

|ri − rj|︸ ︷︷ ︸
V̂e-e

. (2.2)

T̂n and T̂e are operators giving the kinetic energies of the nuclei and the electrons, respec-

tively. V̂n-e gives the potential energy for nucleus-electron interactions, V̂n-n for nucleus-

nucleus interactions, and V̂e-e for electron-electron interactions.

Solving Eq. 2.1 with this Hamiltonian is, however, not possible even for simple di-atomic

systems because of its complexity. A further simplification of the problem is therefore needed.

Max Born and Robert Oppenheimer suggested to separate the movement of the atomic nuclei

and the electrons, and to treat the nuclear and the electronic problem successively [98]. This

is justified by the fact that the mass of the neutrons and protons forming the atomic core

is much higher than that of the electrons (mp = 1.673 · 10−27 kg, mn = 1.675 · 10−27 kg,

me = 9.11 · 10−31 kg). Thus, the electrons react much faster to forces acting upon them and

follow the motion of the nuclei immediately. In the decoupled electronic problem, the wave

equation is therefore solved with fixed coordinates of the nuclei. The kinetic energy of the

nuclei T̂n drops out of the Hamiltonian and the nucleus-nucleus interaction V̂n-n becomes a

constant. The nuclei’s influence on the electrons V̂n-e is described by an external potential

V̂ext. The terms for the kinetic energy of the electrons and their mutual interaction T̂e remain

unchanged and the effective Hamiltonian becomes [94]:

Ĥ = T̂e + V̂e-e + V̂ext . (2.3)

The solution of 2.1 with this Ĥ describes the electronic ground state for a specific configura-

tion of the nuclei’s positions. Born and Oppenheimer showed that the result of the electronic

problem acts as the potential energy for the nuclear problem, thus providing the forces acting

on the atomic cores [98].

One important feature about Eq. 2.3 is, that the terms for the kinetic energy, T̂e, and the

interaction between the electrons, V̂e-e, are universal and take the same form in different

systems. This means that all material-specific information to be gained from solving Eq. 2.1

with 2.3 comes from the external potential, V̂ext, of the nuclei [99].

Although the above described approximation reduces the complexity of the problem, a so-

lution for Eq. 2.1 is still out of reach for practically relevant systems.
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2.1 Density functional theory

2.1.2 Theorems of Hohenberg and Kohn

Picking up an approach that Llewellyn Hilleth Thomas and Enrico Fermi came up with in the

1920s, Pierre Hohenberg and Walter Kohn shifted their focus away from the electronic wave

function towards the electron density [100–103]. They were able to proof that the electron

density describes a system equally well as the wave function and can give information about

any physical property of the system related to an observable. This is nowadays known as

the (Hohenberg-Kohn) density functional theory [102]

If the wave function is already known, the electron density can be written as [95]:

n(r) =
N∑
i=1

∫
ψ∗(r1, r2, . . . , ri ≡ r, . . . , rN)·

· ψ(r1, r2, . . . , ri ≡ r, . . . , rN)dr1dr2 . . .��dri . . . drN . (2.4)

Since the wave function is determined by the external potential, the electron density is

also fully defined by Vext. The first theorem of Hohenberg and Kohn states that the external

n(r) V
ext

ψ(r) Ĥ

Figure 2.1: The first theorem of Hohenberg and Kohn states a one two one correspondence
between the external potential Vext and the ground state electron density n(r).

potential Vext is a unique functional up to a constant of the ground state electron density n(r)

of a system [102]. Vext in turn defines the Hamiltonian, and therefore ψ(r) and n(r) resulting

in a one-to-one correspondence [95]. This theorem thus warrants that no information is lost

when searching directly for the electron density instead of the wave function. All properties

of a system in a ground state can be attained from its ground state electron density. Or

more formally speaking: The ground state expectation value of any observable is a unique

functional of the ground state electron density [95, 99].

In their second theorem, Hohenberg and Kohn defined a total energy functional of a system

as [102]:

E[n] =

∫
Vext · n(r)dr + F [n] . (2.5)
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While the first term in Eq. 2.5 represents the potential energy arising from the interaction

between the electrons and the external potential, F [n] is a functional describing the kinetic

energy of the electrons and the energy due to their interaction with each other. Since this

term depends only on n(r), it is universal and valid for any external potential [102]. The

theorem further states that the electron density n, for which E[n] reaches minimum value,

is the ground state electron density and E[n] is the corresponding ground state total energy.

If F [n] can be determined, the problem of finding the ground state electron density (and

therefore the ground state energy) can be solved by minimizing E[n] using the variational

principle [102].

2.1.3 Kohn-Sham-approach

Walter Kohn and Li Sham endeavored to find such a formulation for F [n] and suggested

its approximate form, and thereby presented a way how to practically deal with DFT [104].

Hohenberg and Kohn pointed out that the electrostatic Coulomb energy of the electrons is

one part of F [n] and that it can be written as [102]:

F [n] =
1

4πε0

∫
n(r)n(r′)

|r− r′| drdr
′ +G[n] . (2.6)

G[n] is again a unique functional of n. It accounts for the kinetic energy and all energetic

terms of quantum mechanical electron-electron interactions not included in the classical

Coulomb term.

Starting from this expression, Kohn and Sham formulated G[n] as [104]:

G[n] = TS[n] + Exc[n] , (2.7)

with TS being the kinetic energy of a system of non-interacting electrons. Exc is called

exchange-correlation energy. It covers the effects of Pauli’s exclusion principle (exchange)

and of interactions between electrons of the same spin (correlation) as well as corrections for

the error made by treating a non-interacting system [94, 105]. By inserting Eqs. 2.7 and 2.6

into 2.5, and using the variational principle, a Schrödinger-like equation for non-interacting

particles, called Kohn-Sham equation, can be derived [94]:

ĤKSφm = εmφm . (2.8)

ĤKS is the Kohn-Sham Hamiltonian [95]:

ĤKS = − ~2

2me

∇2 − e2

4πε0

∫
n(r′)

|r− r′|dr
′ + V̂ext + V̂xc . (2.9)

The solutions φm of Eq. 2.8, the Kohn-Sham orbitals, cannot be used to obtain the real wave

function of a system, nor do they have any particular physical meaning. But for a general
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system of N electrons, the N solutions, φm, corresponding to the lowest energies, εm, can

be used to construct the exact ground state electron density using [95]:

n(r) =
N∑
m=1

φ∗m(r) · φm(r) . (2.10)

Since the KS Hamiltonian (Eq. 2.9) depends on the electron density, Eq. 2.8 presents a self-

consistent problem that must be solved iteratively [95]. Starting from an initially guessed

n(r), ĤKS is constructed and Eq. 2.8 is solved. Using Eq. 2.10, a better approximation

for n(r) is calculated from the KS orbitals. This procedure is repeated until the difference

between two successive iterations is sufficiently low and a convergence is reached (Fig. 3.1,

electronic loop) [95, 96]. The Kohn-Sham equation 2.8 is significantly easier to solve than

the problem for interacting electrons. For a system of N electrons, this would be a partial

differential equation (PDE) depending on 3N coordinates. Using the Kohn-Sham approach,

the problem is mapped on a single PDE of a function of coordinates. Nevertheless, the

exact ground state electron density can be calculated only, if the exact expression for the

exchange-correlation potential Vxc can be found.

2.1.4 Exchange-correlation functional

In practice, however, the exchange-correlation potential has to be approximated. This is

usually done by defining an exchange-correlation functional whose derivative with respect to

the electron density gives the potential [94, 95]:

V̂xc =
δExc[n(r)]

δn(r)
. (2.11)

The first proposal how to construct Exc was made by Kohn and Sham themselves in the very

same paper presenting their approach [104].

In a so called local density approximation (LDA), the exchange-correlation energy functional

takes a form:

ELDA
xc [n(r)] =

∫
n(r) · εxc(n(r))dr , (2.12)

where εxc is the exchange-correlation energy density (or energy per electron) approximated

by a value of a homogeneous electron gas of the density n(r). It is called local since εxc

depends only on n(r), making Eq. 2.12 a local functional.

By using an εxc depending on n(r) and ∇n(r), the exchange-correlation energy becomes a

semi-local functional. Potentials of the type:

EGGA
xc [n(r)] =

∫
n(r) · εxc(n(r),∇n(r))dr , (2.13)

belong to a class called generalized gradient approximation (GGA) [94]. Within the GGA-

family, many different variations exist. Prominent examples of the GGA-potentials are the
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ones introduced by Perdew and Wang [106] and Perdew, Burke and Ernzerhof [107]. In

addition to the above mentioned, more advanced potentials are also available, which take

more variables into account in εxc. The increased accuracy they offer comes, however, at the

cost of significantly higher computational demands.

In this work, GGA-potentials with the parametrization of Perdew and Wang are used [108,

109].

2.1.5 Finding a solution

To finally get a palpable solution to the KS-equation 2.8, a specific ansatz for the single-

particle-wave functions is made. The KS-orbitals are expressed as a linear combination using

a set of basis functions φbasis
p and they therefore have the form [95]:

φ̃m(r) =
P∑
p=1

cmp φ
basis
p (r) . (2.14)

To make this solution exact (within the previous approximations) the basis set would have

to be infinitely large, which of course is practically impossible. A sufficiently accurate basis

set of a finite size P has to be used instead [95]. The larger P is, the more accurate the

expansions 2.14 become, but at the same time the computational costs increase. Additionally,

the type of the basis set is an important factor impacting the efficiency of the calculations.

Depending on the type of functions used, the size P necessary to get an accurate result can

be significantly reduced. At the same time, the basis set must not influence the results by

its own characteristics and should be able to describe any solution accurately [95].

Once the type and the size of the basis set is chosen, problem 2.8 transforms to an eigenvalue

problem:. . . . . . . . .
...
∫

(φbasis
i )∗ · ĤKS · φbasis

j dr− εm ·
∫

(φbasis
i )∗ · φbasis

j dr
...

. . . . . . . . .


c

m
1
...

cmP

 =

0
...

0

 . (2.15)

Index m in Eqs. 2.8, 2.14 and 2.15 labels the solutions. Part of the index m is k, a reciprocal

vector. In molecules, only k = 0 is necessary to attain the system properties. The case is

more complicated for crystalline solids, and m includes a so-called band index n and a quasi-

continuous k-vector [95]. This topic will be addressed in a greater detail in Sections 2.2.1

and 3.1.1.

Vienna Ab-initio Simulation Package uses a plane wave basis set, which is very efficient for

describing the smooth behavior of valence electron wave functions far away from the atomic

nuclei. But both core and valence electrons have strongly oscillating wave functions in the

vicinity of the nuclei [94, 95]. A very large number of plane waves is needed to describe
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this behavior, resulting in a large number of equations in the system Eq. 2.15, and hence

very long calculation times and high memory demands. There are several approaches how

to overcome this problem. In VASP, the so called the pseudo-potential method (PP) is

implemented, which will be explained shortly in the next section.

2.1.6 The pseudo-potential method

Depending on their position in the atomic configuration, electrons can be classified as either

core or valence electrons. The core electrons are very localized at the positions of the atoms

and their wave functions oscillate rapidly near the nucleus, but quickly decay with increasing

distance. When using a plane wave basis set, this oscillatory behavior can only be described

if the basis set is extremely large, which is not economical in computational terms. Since

the involvement of the core electrons in the actual bonding interactions determining most

physical properties is minimal, it is possible to limit their contribution to screening the

potential of the nuclei and neglect them for the rest of the calculations. This approach is

known as the frozen-core approximation, which is the first simplification step used by the

pseudo-potential method [94].

The wave functions of the valence electrons usually oscillate heavily close to the atom cores

as well, in order to remain orthogonal to the wave functions of the core electrons. With the

frozen core approximation this is no longer necessary, since the core electrons are essentially

removed. New effective potentials are constructed that incorporate the influence of the nuclei

and the core electrons. These pseudo-potentials are designed in such a way, that beyond a

certain radius rc from the atomic cores, both the potential and the valence electron wave

functions are exactly the same as in a full-potential all electron calculation. Within the

regions around the cores defined by rc, however, they smoothen the pseudo-wave functions

and make them thereby representable with a plane wave basis set [94, 99, 110].

While the efficiency of a DFT calculation can be extremely increased by using a plane wave

basis set in combination with pseudo-potentials, their creation is rather complex. Ideally,

they should be able to describe all possible quantum-mechanical setups correctly, and reduce

the necessary basis size to a minimum [95, 99]. Also, there are different types of pseudo-

potentials. Some of them reconstruct the electron density in the spheres around the atomic

nuclei by introducing so-called augmentation charges [111, 112]. The calculations carried

out in this work are projector augmented wave method enabled potentials, described in the

next section.

2.1.7 The projector augmented wave method

The PAW method was first introduced by Peter Blöchl [113] and bases on a transformation

of the physical single-particle wave functions onto smooth pseudo-wave functions, which are
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numerically easier to describe. The following should only sketch the method briefly and is

based on two papers by Blöchl [113, 114] and one by C. Rostgaard [115], which offer a more

detailed explanation of the method.

The basic concept of the PAW method is, that the true single-particle wave function φm is

constructed from the so-called pseudo-wave function φ̃m. φ̃m is nothing but the approxima-

tion of φm by a smooth basis set (e.g., plane waves) as described by Eq. 2.14. Due to the

pseudo-potential approach, φ̃m differs from φm close to the nuclei. To reconstruct φm there

as well, a transformation is introduced, which alters the pseudo-wave function locally in a

way that it adopts the correct, oscillating characteristics. The transformation can be written

as

φm(r) = T̂ φ̃m(r) . (2.16)

T̂ only acts in the direct vicinity of the atomic nuclei leaving most of the pseudo-wave

function as it is, and can therefore be written as the unity plus a sum of local contributions,

SR:

T̂ = 1 +
∑
R

ŜR , (2.17)

where index R marks the atomic sites. Within a certain region, sometimes called an aug-

mentation region, and outlined by a certain radius rRc , the local contribution ŜR is defined

using two sets of basis functions. The first set, the so-called pseudo partial waves ϕ̃R
i , is a

complete basis of smooth functions inside the augmentation region. This is generally a dif-

ferent one than the basis set in Eq. 2.14 in the previous section. Using this the pseudo-wave

function can be expanded within rRc :

φ̃m(r) =
∑
i

am,Ri ϕ̃R
i (r) for |r−R| < rRc . (2.18)

The second set also forms a complete basis and consists only of functions orthogonal to

the core wave functions. The so-called partial waves, ϕR
i , are the target functions of the

transformation. ŜR transforms every pseudo partial wave function ϕ̃R
i of the augmentation

region R on a partial wave function ϕR
i according to:

ϕR
i (r) = (1 + ŜR)ϕ̃R

i (r) . (2.19)

It therefore can be expressed as:

ŜRϕ̃R
i (r) = ϕR

i (r)− ϕ̃R
i (r) . (2.20)

Within the augmentation region of site R, T̂ = (1 + ŜR) holds. Combining this with Eqs.

2.16, 2.18 and 2.19 shows that the true wave function can be described as an expansion of

the partial waves:

φm(r) = T̂ φ̃m(r) =
∑
i

am,Ri ϕR
i (r) for |r−R| < rRc , (2.21)
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with exactly the same coefficients am,Ri as the pseudo-wave function is described by the

pseudo partial waves. To restrict ŜR to the augmentation region, the true and the pseudo

partial waves have to be identical outside of it:

φm(r) = φ̃m(r) for |r−R| > rRc . (2.22)

The coefficients am,Ri of the expansions 2.18 and 2.21 are determined by inner products of

the pseudo-wave function with the functions p̃(r) of a third predefined set called projector

functions:

am,Ri =

∫
p̃Ri (r)φ̃m(r)dr . (2.23)

To make Eq. 2.18 hold, it must apply:∫
p̃Ri (r)ϕ̃R

j (r)dr = δi,j . (2.24)

Finally the wave function is composed of three different components:

φm(r) = φ̃m(r)︸ ︷︷ ︸
1

+
∑
R

∑
i

(ϕR
i (r)︸ ︷︷ ︸

2

− ϕ̃R
i (r)︸ ︷︷ ︸

3

) · am,Ri . (2.25)

Term 1 is the pseudo-wave function of Eq. 2.14, which describes the smooth behavior of the

true wave function correctly in regions further away from atomic nuclei. The partial wave

expansions 2 describe the oscillations of the true wave functions close to the nuclei, within

the augmentation spheres. The pseudo partial wave expansions 3 are effectively correction

terms. They are identical to the contribution of 1 inside the augmentation region and equal

to their counterpart in 2 outside their mutual augmentation region. They therefore cancel

out the inadequate terms in each region, and assure the transition between the terms that

properly describe the true wave function.

The description of the core states in PAW methods usually follows the frozen core approxi-

mation, although the method can, in principle, be modified to dismiss it [113]. For practical

aspects on the implementation of PAW-method, the reader is referred to the literature al-

ready mentioned above [113–115]. The PAW data sets of VASP used in this work were

generated by Kresse and Joubert [108].

2.2 Structural models of crystalline solids

A crucial part to every simulation is the design of the model system. One of the big ad-

vantages of the ab initio methods is, that they explicitly consider the very basic principles

of physics and chemistry, and therefore only very few assumptions and simplifications are

needed to describe the system behavior accurately. Moreover, the largest part of this task

is already covered by the steps described in Section 2.1 and by choosing density functional
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theory to solve the quantum-mechanical problem. But since the computational cost of the

method is very high, the size of systems that can be treated with it is rather limited. This fact

makes it necessary to find a seizable representation of setups that do not exceed the available

resources. The following section describes some common techniques used for DFT calcula-

tions of crystalline solids and the the difficulties they impose. Also modeling approaches

adapted in this work to overcome these difficulties and to give an adequate representation

of the alloy-systems treated are explained.

2.2.1 Supercell approach and Bloch’s theorem

Like any other differential equation, also the Kohn-Sham problem needs boundary conditions

to be well defined. The most commonly applied ones within the density functional theory are

periodic boundary conditions (PBCs). For crystalline materials, which have per definition

recurrently arranged components, the periodic continuation of the model does reflect the

reality extremely well. Thus, the PBCs make it possible to simulate bulk materials by

considering only a handful of atoms that lead to the same result as millions of atoms that

form up a real solid [94]. The periodically repeated simulation cell, called supercell, needs

to be chosen sufficiently large to adequately reflect the studied material within the PBCs

framework, but kept as small as possible to reduce computational costs. This approach has

some important consequences to the solution of the quantum mechanical problem and the

methods used to attain it.

From the idealized problem of a single electron in a potential well, it is known that the

allowed k-vectors of the wave function depend on the dimensions of the well:

kx =
2πnx
Lx

, ky =
2πny
Ly

, kz =
2πnz
Lz

, nx,y,z = 0,±1,±2, . . . . (2.26)

For macroscopic crystals, the effective dimensions of the system Lx, Ly and Lz become

extremely large and for the repeated arrangement of the supercell in all directions infinite.

Thus, the allowed k-vectors become quasi-continuous. In the discrete case, the electron

density, the total energy and other properties of a system are calculated as a sum of the

respective values over all k-vectors. In the limit of quasi-continuous k-vectors, this sum

becomes an integral [116].

Moreover, Felix Bloch showed in 1928 that the wave functions of electrons in a periodic

potential of a crystal lattice:

Vext(r) = Vext(r + R) , (2.27)

where R is a crystal lattice vector, can be described as a periodic modulation of plane waves

[116, 117]. They can therefore be expressed as a product of a plane wave and a function u(r)

with the same periodicity as the lattice [95, 96]:

ψnk(r) = unk(r)eik·r . (2.28)
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The same applies to the Kohn-Sham orbitals φnk(r) [96]. k in Eq. 2.28 is a wave vector

spanning the reciprocal space, where φnk(r) solves the eigenvalue problem Eq. 2.15 and is

therefore one part of the index m in Eq. 2.14.

Bloch’s theorem reduces the unknown part of φnk(r) (or ψnk(r)) to a periodic function unk(r).

The expansion in the basis set of Eq. 2.14 is now limited to this function [95]:

unk(r) =
P∑
p=1

cn,kp φbasis
p (r) . (2.29)

Because of the periodic nature of unk(r), a plane wave basis set is a very convenient choice,

as it makes the expansion 2.29 equivalent to a Fourier series.

Solving the eigenvalue problem Eq. 2.15 with this ansatz for a given k yields P eigenvalues,

εnk, and P sets of coefficients, cn,kp , defining the corresponding eigenvectors. This P solutions

differ in general in energy and are distinguished by the so-called band index n, the second

part of the original index m in 2.15 [95].

As mentioned above, getting the system properties requires solving Eq. 2.15 continuously in

the k-space and calculating the integral, which is computationally not possible. Fortunately

φnk(r) and εnk usually vary smoothly in the k-space. Therefore, the system properties can be

found by solving the Kohn-Sham equation on a discrete grid of k-points, and the integral is

determined numerically as a weighted sum over those points. The density of this grid must

be high enough to capture the k-dependence of the solutions, and is thus another factor

influencing the accuracy of the calculations.

2.2.2 Special quasi-random structures

Many material properties sensitively depend on a specific arrangement of its constituting

elements on the atomic scale. When doing ab initio calculations for disordered systems,

it is therefore important to carefully consider how to occupy the limited number of sites

available in the supercell to fully capture the features of electronic interactions in a real

material. There are two principle approaches to tackle this problem. The so-called non-

structural theories rely on “average occupations” of the atomic sites in the cell to reproduce

these interactions [87, 118]. In contrast to them, structural methods approach the issue by

considering specific atom configurations. In order to deduce a physical property from the

calculations of a certain system state, the ensemble average of that property over all possible

configurations of that state has to be used. If Ω is the set of all possible configurations of

the state m, the total energy, for example, is obtained as:

E = 〈E〉 =
∑
σ∈Ωm

ρ(σ)E(σ) , (2.30)

with ρ(σ) being the probability of the system being in configuration σ [87]. The problem with

this procedure is, that usually it is impossible to do calculations on all possible configurations.
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The so-called special quasi-random structures (SQS) approach, proposed by A. Zunger et

al., tries to overcome this obstacle by constructing a single supercell that is representative

for a given state [118, 119]. By introducing geometrical correlation functions, the conditions

of an average neighborhood for a given arrangement can be quantified. These correlation

functions correspond to different “figures” (pairs, triplets, etc.) into which the vicinity of

a site can be discretized. Thereby, the configuration of a supercell can be compared to a

statistical ensemble. Instead of evaluating the properties of a system by statistical methods,

special structures can be designed which reproduce the ensemble characteristics as good as

possible [118]. If the considered neighborhood interactions are kept confined to pairs, the

assessment procedure of the atom configuration can be realized by using Warren-Cowley

short-range order parameters as shown in the following adopted after Holec et al [87, 120].

In a supercell of a binary alloy of A and B atoms with N atom sites, the number of A-B

pairs separated by the jth distance lj is referred to as N j
AB. Every site in the cell has M j

neighboring sites at distance j. The composition of the alloy is given by the concentrations

xA and xB = 1−xA. In an arrangement with statistically random occupation, xAN sites are

populated by A-atoms and every A atom is neighbored by an average of xBM
j B-atoms. The

total number of A-B pairs in the random alloy is therefore xANxBM
j. The Warren-Cowley

short-range order parameter is defined as [87]:

αj = 1− N j
AB

xAxBNM j
. (2.31)

It is a measure of the ordering characteristics of the supercell. For a statistically random

arrangement on distance lj, αj = 0, while a trend to ordering results in αj > 0, and clustering

produces αj < 0 [87].

If the alloy is altered to three components A, B, and C, one short-range order parameter for

each type of mixed pairs A-B, B-C and C-A is needed to evaluate the supercell configuration.

In analogy to Eq. 2.31, they are expressed for as:

αjAB = 1− N j
AB

xAxBNM j
,

αjBC = 1− N j
BC

xBxCNM j
,

αjCA = 1− N j
CA

xCxANM j
,

(2.32)

with N j
AB, N j

BC , and N j
CA being the respective number of neighbor-pairs separated by a

distance lj [87].

The cases treated in this thesis, are statistically random solid solutions. Therefore, all SROs

should ideally be 0. Unfortunately, this is not achievable for all combinations of supercell

sizes and concentrations. Instead the weighted sum of all |αj| was minimized. A more

detailed account on the supercell creation procedure is given in the next section.
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2.2.3 System setup

In both of the treated alloy systems, Ta-Al-N and Nb-Al-N, the metallic components con-

stitute a solid solution with statistically random arrangement on one sublattice while the

second sublattice is fully populated by nitrogen atoms. Supercells with dimensions listed in

table 2.1 were used to model the two pseudo-binary alloys. To capture the system behavior

Table 2.1: Dimensions of the supercells used for the calculations in this work.

structure supercell size max. nr. of atoms

Ta-Al-N

B1 3× 3× 3 64
B4 3× 3× 2 72
Bh 3× 3× 3 54
Bk 3× 3× 2 72

SG189 2× 2× 3 72

Nb-Al-N

B1 3× 3× 3 64
Bi 3× 3× 1 72
B4 3× 3× 2 72
Bk 3× 3× 2 72

as a function of the aluminum fractions x on the metal sublattice, calculations for different

metallic compositions were conducted. The aimed compositional step was ∆x = 0.125. Due

to the limited atom numbers in the supercells, the specific concentrations of the different

setups deviate slightly from this rule, and thus the discrete compositions were distributed

around the individual target values.

The investigation of the influence of vacancies requires construction of supercells contain-

ing defects. For this purpose, supercells with 1,2,4, and 6 vacancies on either the metal or

the nitrogen sublattice were created for every crystal structure, again aiming for the same

values in aluminum concentrations as in the perfect cases. The figures 2.2 and 2.3 give

an overview of the configurations for which calculations were performed. For the perfect

compositions without any vacancies, the atom configurations on the metal sublattice were

optimized following the SQS-approach for binary alloys using pair-figures (Eq. 2.31) up to

the 7th coordination shell. The structure generation was done using a self written python

script (a more general version of which for ternary systems can be found in Appendix A) and

was carried out as follows: In the first step, parameters controlling the creation procedure

were read in from several input files, including the supercell dimensions and the lattice sites.

Sticking to the notation of Section 2.2.2 and Eq. 2.31, these parameters are the maximum

number J of distances j to be considered for the pair figures, and a tolerance range ltol for

the distances. All neighbors at distances lj ± ltol are attributed to distance lj, i.e., the jth

coordination shell of each site. Next are the number of atoms of type A in the supercell, and
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2.2 Structural models of crystalline solids

0.0 0.2 0.4 0.6 0.8 1.0

x (-)

B1
perfect

(0, 32, 32) (4, 28, 32) (8, 24, 32) (12, 20, 32) (16, 16, 32) (20, 12, 32) (24, 8, 32) (28, 4, 32) (32, 0, 32)
metal vacancies

(0, 31, 32) (4, 27, 32) (8, 23, 32) (12, 19, 32) (15, 16, 32) (19, 12, 32) (23, 8, 32) (27, 4, 32) (31, 0, 32)
(0, 30, 32) (4, 26, 32) (7, 23, 32) (11, 19, 32) (15, 15, 32) (19, 11, 32) (23, 7, 32) (26, 4, 32) (30, 0, 32)
(0, 28, 32) (3, 25, 32) (7, 21, 32) (11, 17, 32) (14, 14, 32) (17, 11, 32) (21, 7, 32) (25, 3, 32) (28, 0, 32)
(0, 26, 32) (3, 23, 32) (7, 19, 32) (10, 16, 32) (13, 13, 32) (16, 10, 32) (19, 7, 32) (23, 3, 32) (26, 0, 32)

nitrogen vacancies
(0, 32, 31) (4, 28, 31) (8, 24, 31) (12, 20, 31) (16, 16, 31) (20, 12, 31) (24, 8, 31) (28, 4, 31) (32, 0, 31)
(0, 32, 30) (4, 28, 30) (8, 24, 30) (12, 20, 30) (16, 16, 30) (20, 12, 30) (24, 8, 30) (28, 4, 30) (32, 0, 30)
(0, 32, 28) (4, 28, 28) (8, 24, 28) (12, 20, 28) (16, 16, 28) (20, 12, 28) (24, 8, 28) (28, 4, 28) (32, 0, 28)
(0, 32, 26) (4, 28, 26) (8, 24, 26) (12, 20, 26) (16, 16, 26) (20, 12, 26) (24, 8, 26) (28, 4, 26) (32, 0, 26)

B4
perfect

(0, 36, 36) (5, 31, 36) (9, 27, 36) (14, 22, 36) (18, 18, 36) (22, 14, 36) (27, 9, 36) (31, 5, 36) (36, 0, 36)
metal vacancies

(0, 35, 36) (9, 26, 36) (13, 22, 36) (17, 18, 36) (22, 13, 36) (26, 9, 36) (31, 4, 36) (35, 0, 36)
(17, 17, 36) (21, 13, 36) (25, 9, 36) (30, 4, 36) (34, 0, 36)
(16, 16, 36) (20, 12, 36) (24, 8, 36) (28, 4, 36) (32, 0, 36)
(15, 15, 36) (19, 11, 36) (22, 8, 36) (26, 4, 36) (30, 0, 36)

nitrogen vacancies
(18, 18, 35) (22, 14, 35) (27, 9, 35) (31, 5, 35) (36, 0, 35)

(14, 22, 34) (18, 18, 34) (22, 14, 34) (27, 9, 34) (31, 5, 34) (36, 0, 34)
(18, 18, 32) (22, 14, 32) (27, 9, 32) (31, 5, 32) (36, 0, 32)
(18, 18, 30) (22, 14, 30) (27, 9, 30) (31, 5, 30) (36, 0, 30)

Bk
perfect

(0, 36, 36) (5, 31, 36) (9, 27, 36) (14, 22, 36) (18, 18, 36) (22, 14, 36) (27, 9, 36) (31, 5, 36) (36, 0, 36)
metal vacancies

(0, 35, 36) (4, 31, 36) (9, 26, 36) (13, 22, 36) (17, 18, 36) (22, 13, 36) (26, 9, 36) (31, 4, 36) (35, 0, 36)
(0, 34, 36) (4, 30, 36) (9, 25, 36) (13, 21, 36) (17, 17, 36) (21, 13, 36) (30, 4, 36) (34, 0, 36)
(0, 32, 36) (4, 28, 36) (8, 24, 36) (12, 20, 36) (16, 16, 36) (20, 12, 36) (24, 8, 36) (28, 4, 36)
(0, 30, 36) (4, 26, 36) (8, 22, 36) (11, 19, 36) (15, 15, 36) (19, 11, 36) (22, 8, 36)

ε
perfect

(0, 36, 36) (5, 31, 36) (9, 27, 36) (14, 22, 36) (18, 18, 36)
metal vacancies

(0, 35, 36) (4, 31, 36) (9, 26, 36) (13, 22, 36) (17, 18, 36)
(0, 34, 36) (4, 30, 36) (9, 25, 36) (13, 21, 36) (17, 17, 36)
(0, 32, 36) (4, 28, 36) (8, 24, 36) (12, 20, 36) (16, 16, 36)
(0, 30, 36) (4, 26, 36) (8, 22, 36) (11, 19, 36) (15, 15, 36)

nitrogen vacancies
(0, 36, 35) (5, 31, 35) (9, 27, 35) (14, 22, 35)
(0, 36, 34) (5, 31, 34) (9, 27, 34) (14, 22, 34) (18, 18, 34)
(0, 36, 32) (5, 31, 32) (9, 27, 32) (14, 22, 32) (18, 18, 32)
(0, 36, 30) (5, 31, 30) (9, 27, 30) (14, 22, 30) (18, 18, 30)

Bh
perfect

(0, 27, 27) (3, 24, 27) (7, 20, 27) (10, 17, 27) (13, 14, 27) (17, 10, 27) (24, 3, 27) (27, 0, 27)
metal vacancies

(0, 26, 27) (3, 23, 27) (7, 19, 27) (10, 16, 27) (13, 13, 27)
(0, 25, 27) (3, 22, 27) (6, 19, 27) (9, 16, 27) (12, 13, 27)
(0, 23, 27) (3, 20, 27) (6, 17, 27) (9, 14, 27) (11, 12, 27) (17, 6, 27)
(0, 21, 27) (3, 18, 27) (5, 16, 27) (8, 13, 27) (11, 10, 27)

nitrogen vacancies
(0, 27, 26) (3, 24, 26) (7, 20, 26) (10, 17, 26) (13, 14, 26)
(0, 27, 25) (3, 24, 25) (7, 20, 25) (10, 17, 25) (13, 14, 25)
(0, 27, 23) (3, 24, 23) (7, 20, 23) (10, 17, 23) (13, 14, 23)
(0, 27, 21) (3, 24, 21) (7, 20, 21) (13, 14, 21)

Figure 2.2: Supercell configurations of the various phases over aluminum concentration x in
the Ta-Al-N system. The parentheses give the number of atoms in the supercell (Al, Ta, N).

how many different SQS-supercells should be generated. The last parameter determines the

maximum number of configurations produced and evaluated. After reading the input infor-

mation, and evaluating some parameters needed for the further process, the script produces

a supercell with randomly arranged atoms on the available sites. Subsequently the binary

Warren-Crowley SROs of the cell are evaluated according to Eq. 2.31 for all distances lj

taking into account the periodic boundary conditions. Finally both the supercell setup and

its SROs are stored. This is repeated until the maximum number of configurations defined
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2.2 Structural models of crystalline solids

0.0 0.2 0.4 0.6 0.8 1.0

x (-)

B1
perfect

(0, 32, 32) (4, 28, 32) (8, 24, 32) (12, 20, 32) (16, 16, 32) (20, 12, 32) (24, 8, 32) (28, 4, 32) (32, 0, 32)
metal vacancies

(0, 31, 32) (4, 27, 32) (8, 23, 32) (12, 19, 32) (15, 16, 32) (19, 12, 32) (23, 8, 32) (27, 4, 32) (31, 0, 32)
(0, 30, 32) (4, 26, 32) (7, 23, 32) (11, 19, 32) (15, 15, 32) (19, 11, 32) (23, 7, 32) (26, 4, 32) (30, 0, 32)
(0, 28, 32) (3, 25, 32) (7, 21, 32) (11, 17, 32) (14, 14, 32) (17, 11, 32) (21, 7, 32) (25, 3, 32) (28, 0, 32)
(0, 26, 32) (3, 23, 32) (7, 19, 32) (10, 16, 32) (13, 13, 32) (16, 10, 32) (19, 7, 32) (23, 3, 32) (26, 0, 32)

nitrogen vacancies
(0, 32, 31) (4, 28, 31) (8, 24, 31) (12, 20, 31) (16, 16, 31) (20, 12, 31) (24, 8, 31) (28, 4, 31) (32, 0, 31)
(0, 32, 30) (4, 28, 30) (8, 24, 30) (12, 20, 30) (16, 16, 30) (20, 12, 30) (24, 8, 30) (28, 4, 30) (32, 0, 30)
(0, 32, 28) (4, 28, 28) (8, 24, 28) (12, 20, 28) (16, 16, 28) (20, 12, 28) (24, 8, 28) (28, 4, 28) (32, 0, 28)
(0, 32, 26) (4, 28, 26) (8, 24, 26) (12, 20, 26) (16, 16, 26) (20, 12, 26) (24, 8, 26) (28, 4, 26) (32, 0, 26)

B4
perfect

(18, 18, 36) (22, 14, 36) (27, 9, 36) (31, 5, 36) (36, 0, 36)
metal vacancies

(22, 13, 36) (26, 9, 36) (31, 4, 36) (35, 0, 36)
(21, 13, 36) (25, 9, 36) (30, 4, 36) (34, 0, 36)

(16, 16, 36) (24, 8, 36) (28, 4, 36) (32, 0, 36)
(15, 15, 36) (19, 11, 36) (22, 8, 36) (26, 4, 36) (30, 0, 36)

nitrogen vacancies
(22, 14, 35) (27, 9, 35) (31, 5, 35) (36, 0, 35)

(18, 18, 34) (27, 9, 34) (31, 5, 34) (36, 0, 34)
(22, 14, 32) (27, 9, 32) (31, 5, 32) (36, 0, 32)

(18, 18, 30) (22, 14, 30) (27, 9, 30) (31, 5, 30) (36, 0, 30)

Bk
perfect

(0, 36, 36) (5, 31, 36) (9, 27, 36) (14, 22, 36) (18, 18, 36) (22, 14, 36) (27, 9, 36)
metal vacancies

(0, 35, 36) (4, 31, 36) (9, 26, 36) (13, 22, 36) (17, 18, 36) (22, 13, 36) (26, 9, 36)
(0, 34, 36) (4, 30, 36) (9, 25, 36) (13, 21, 36) (17, 17, 36) (21, 13, 36) (25, 9, 36)
(0, 32, 36) (4, 28, 36) (8, 24, 36) (12, 20, 36) (16, 16, 36) (20, 12, 36) (24, 8, 36)
(0, 30, 36) (4, 26, 36) (8, 22, 36) (11, 19, 36) (15, 15, 36) (19, 11, 36) (22, 8, 36)

Bi
perfect

(0, 36, 36) (5, 31, 36) (9, 27, 36) (18, 18, 36)
metal vacancies

(0, 35, 36) (5, 30, 36) (9, 26, 36) (14, 21, 36) (18, 17, 36)
(0, 34, 36) (4, 30, 36) (9, 25, 36) (13, 21, 36)
(0, 32, 36) (4, 28, 36) (8, 24, 36) (12, 20, 36) (16, 16, 36)
(0, 30, 36) (4, 26, 36) (8, 22, 36) (15, 15, 36)

nitrogen vacancies
(0, 36, 35) (5, 31, 35) (9, 27, 35) (18, 18, 35)
(0, 36, 34) (5, 31, 34) (9, 27, 34) (14, 22, 34) (18, 18, 34)
(0, 36, 32) (5, 31, 32) (9, 27, 32) (14, 22, 32) (18, 18, 32)
(0, 36, 30) (5, 31, 30) (18, 18, 30)

Figure 2.3: Supercell configurations of the various phases over aluminum concentration x in
the Nb-Al-N system. The number of atoms in the supercell is given in the parentheses (Al,
Nb, N).

in the input files is reached.

The generated supercells are then compared using the weighted sum of the SROs:

αtotal =
J=7∑
j=1

wj|αj| , (2.33)

with each weight wj depending on the coordination distance nummer j and the maximum

number of distances to be considered J :

wj = 1 + 2
J − j
J − 1

. (2.34)

Since ideally all SROs αj should be zero for a totally random configuration, the supercell

with the lowest αtotal is the most suitable model of a solid solution for the given composition,

and is therefore used for the ab initio calculations.
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2.2 Structural models of crystalline solids

As already pointed out, this procedure was used for all perfect structures to determine the

arrangement of the different metal atoms on the corresponding sublattice. The very same

idea was applied to choose the positions of the vacancies on the nitrogen sublattice for the

various structures, treating the point defects like an alloying element.

To create supercells with defects on the metal sublattice, the procedure was adapted for

ternary alloys. Again the population of the supercell sites is randomly generated and their

SROs are evaluated according to Eq. 2.32. The criteria for the overall assessment of the

cells is now the sum of the weighted sums of Eq. 2.33:

αtotal =
∑
i

J=7∑
j=1

wj|αji | , i = AB,BC,CA . (2.35)

Usually, more than one equally good configurations could be found, in which case the even-

tually used one was chosen randomly from the best identified structures. The script used to

create, assess and select the supercells for ternary compositions is attached in Appendix A.

It should be noted that the quantification procedure of the supercells using SROs described

above does not consider any possible influence of higher order geometrical correlations, and

therefore possible effects resulting from them cannot be reproduced by calculations using

such supercells. Also the random search applied does not guarantee to produce the overall

optimum supercell for the SRO-approach. Finally, it is noted that the SRO-based generation

described above is a purely geometrical procedure. A more physical approach would consider

weights wj based on the system’s chemistry.
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Chapter 3

Computational Setup

This section gives insight into the technicalities of the calculations. Section 3.1 contains

remarks on VASP and deals with some of the many parameters it offers to control numerical

precision and algorithmic details of the computations. The performed convergence tests and

the problems arising from them are discussed in section 3.2. Section 3.3 addresses these

problems and depicts the way chosen to resort them as well as the findings which justify this

alternative approach.

3.1 Software and numerical parameters

As mentioned earlier, the calculations presented in this work were carried out using the

Vienna Ab-Initio Simulation Package (VASP) in version 5.12. VASP bases on a program

created by Mike Payne at the MIT and was developed by Georg Kresse, Jürgen Hafner

and Jürgen Furthmüller. It is a commercial program for density functional theory and

ab initio molecular dynamics computations which uses a plane wave basis set together with

pseudo-potentials and the projector augmented wave method [108, 121–123]. While the main

parameters determining the accuracy of these methods were already described in sections

2.1 and 2.2, this section discusses how they can be controlled in the context of VASP and

it is therefore mainly based on the official user guide [121], the workshop lectures [124] and

chapters 6 and 7 of Lee’s book [94].

VASP, however, is a rather extensive software package, which allows its users to adjust many

more settings which in turn influence the calculated predictions. A detailed account of all

of them can be found in the official user guide [121].

3.1.1 k-Points

In Sections 2.1.5 and 2.2.1 it was pointed out, that a solution of the Kohn-Sham eigenvalue-

problem depends on the wave vector k of the reciprocal space. In crystalline solids the
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3.1 Software and numerical parameters

allowed k-vectors are quasi-continuous, and their unique values span the first Brillouin zone.

To capture the k-dependence of the solution, the reciprocal space has to be discretized using

a mesh of fixed k-points. This so-called k-point sampling is important, since it directly

influences the accuracy of a numerical integration needed for estimation of various system

properties.

In VASP, the k-mesh generation can be done either by hand or automatically. The pro-

cess is controlled through an input file called KPOINTS. For the present calculations, the

fully automatic k-point sampling method was chosen. This method produces a Γ-centered

Monkhorst-Pack grid, the density of which is defined by a parameter l in the KPOINTS file

[125]. l controls the number of subdivisions N of the Brillouin zone along the three reciprocal

vectors b1, b2 and b3 according to:

Ni = max(1, l · |bi|+ 0.5) , i = 1, 2, 3 . (3.1)

The corresponding mesh consists of k-points with coordinates:

k =
∑
i=1,2,3

ni
Ni

bi , ni = 0, . . . , Ni − 1 . (3.2)

The value of the parameter l has to be determined by a convergence test for a representative

quantity, typically the total energy [121].

3.1.2 Basis Set

The importance of the type and size of the basis set used to construct the KS-orbitals was

discussed in Section 2.1.5. VASP uses a plane wave basis set. Thus, the only remaining

parameter related to this topic concerns the size P in Eq. 2.14.

Using Bloch’s theorem (Eq. 2.28) and a plane wave basis set, Eq. 2.14 is written as [95]:

φ̃nk(r) =
∑
K

cn,kK ei(k+K)·r . (3.3)

As mentioned in Section 2.2.1, index m of a KS-orbital in Eq. 2.14 includes a vector k and a

band index n, with k being a point of the k-mesh, at which the orbital φ̃nk(r) is an eigenstate,

and n labels the solutions at the same k. The effectively used basis functions are therefore

the plane waves:

φbasis
K (r) = ei(k+K)·r . (3.4)

The size P of the basis set is controlled by limiting the maximum kinetic energy of the plane

waves. With a so-called plane wave cut-off energy, Ecut, the basis consists of plane waves

(Eq. 3.4) satisfying a condition [121]:

|k + K| < Gcut with Ecut =
~2G2

cut

2me

. (3.5)
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3.1 Software and numerical parameters

Consequently, the basis set is different at every k-point. Ecut is usually set by the user in an

input file called INCAR using the so-called ENCUT-tag.

Similarly to the k-mesh density, the cut-off energy has to be determined by convergence

tests. More details on the convergence tests for both, k-points and energy cut-off are given

in Section 3.2.

3.1.3 Additional Settings

This section shortly describes some other parameters of VASP that can be controlled by the

user through the INCAR file, and which influence the course of the calculations. Giving a

full account on those parameters goes beyond the scope of this work and often even the user

guide, from which most of the following information originates [121].

PREC

PREC is a master parameter controlling the overall accuracy and computational demands

by setting automatically energy cut-off, FFT-grid and real space projector optimization

accuracy, unless they are explicitly defined by the user in the INCAR file. While the energy

cut-off has already been discussed in Section 3.1.2, the other two matters will be shortly

addressed in the following. In this work, PREC was set to Medium. Other available options

are Low, Hight, Single, Normal and Accurate and their exact effects on the calculations can

be found in the user guide [121].

Since in all calculations concerning this work the ENCUT tags were set manually, the basis

set was not affected by the PREC tag.

In every cycle of the electronic loop, the individual terms of the KS-Hamiltonian in Eq. 2.9

have to be evaluated using the actual charge density. While some of the terms, such as the

Coulomb interactions between the electrons or the kinetic energy, are easier to calculate in

the reciprocal space, others such as the exchange-correlation term and the external potentials

are evaluated in real space. Hence, the electron density n(r) has to be accessible in both

spaces, i.e., it must be Fourier transformed, which is done using fast Fourier transformation

(FFT). However, since n(r) is calculated as a sum of the squared KS-orbitals (Eq. 2.10), to

be complete this transformation requires even more plane waves than included in the basis

set for expansion of the orbitals (Eq. 3.3) [94]. To be exact, the transformation must include

all plane waves with wave vectors up to 2 ·Gcut. For this reason, an additional FFT-grid is

introduced, defining the plane waves used for the transformation. The number of the grid

points is controlled manually by the parameters NGX, NGY and NGZ. Their default values

are determined by the chosen PREC-tag. For PREC=Medium, the FFT uses plane waves

up to 3
2
Gcut introducing so called wrap-around errors [121].

For pseudo-potentials which require augmentation charges, another FFT-grid is used to
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3.1 Software and numerical parameters

expand them, which has even more grid points than the one transforming the charge density.

Also here, the number of the grid points can be controlled manually via the tags NGXF,

NGFY and NGFZ, or automatically using the PREC-tag. This FFT-basis is defined in terms

of a cut-off value Gaug related to a parameter ENAUG according to:

~2

2me

G2
aug = ENAUG , (3.6)

where ENAUG is usually read from the used pseudo-potential input files, but can also be

specified manually. For PREC=Medium, the FFT-basis uses all plane waves with wave

vectors up to 4 ·Gaug [121].

The last parameter influenced by the PREC-tag is the so-called ROPT-value. The impact

of the pseudo-potentials on an electron, described in section 2.1.6, depends on the angular

momentum of its wave function. This so-called non-locality of the pseudo-potentials make

it necessary to project the orbitals onto different angular momentum states, so that the

respective parts of the pseudo-potential can act on each of them [110, 126]. To do so,

special projector operators have to be evaluated, which can be either done in real or in

reciprocal space [121]. For large systems, it is more efficient to perform this projection in

the real space, but in this case the projector operators have to be optimized to prevent

errors [121, 126]. The ROPT parameter can be used to influence the accuracy of such

optimization. For the calculations presented here, the projection was carried out in the real

space and the optimization scheme used is proprietary to VASP (LREAL=Auto) [121]. In

the context of PREC=Medium and this optimization scheme, the parameter ROPT is set to

a value of 2 · 10−3, meaning that the real-space operators will be optimized for an accuracy

of approximately 2 · 10−3 eV/atom [121].

ALGO

The ALGO-tag determines the algorithm used for the iterative solution of the KS-equations

2.8 in the electronic optimization loop. It determines the numerical details on how the eigen-

value problem is preconditioned and subsequently solved. Despite their internal differences,

all of the algorithms implemented in VASP minimize the same residual vector, using the

same subroutines. They therefore should yield the same result and only differ in their con-

vergence behavior, although it the outcome can actually differ due to numerics [121].

Within this work, the ALGO-tags Fast and Normal were used. When ALGO is set to Fast,

the first few cycles of the electronic loop use the blocked Davidson (DAV) algorithm to solve

the KS-equations [127, 128]. DAV is always stable and is therefore more suitable for orbitals

far from the solution. It is thus used at the beginning of the loop, to pre-converge the or-

bitals [121, 129]. In the subsequent cycles, a variant of the “residual minimization scheme,

direct inversion in the iterative subspace” (RMM-DIIS) is used [123, 130, 131]. This algo-

rithm is up to two times faster than DAV but its convergence is sensitive to the initial guess
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3.1 Software and numerical parameters

[121, 129]. The default of ALGO, Normal, uses of the blocked Davidson iteration scheme for

all electronic updates within the loop.

For the calculations of the Ta-Al-N system, ALGO=Fast was applied. In the Nb-Al-N

system, however, the RMM-DIIS algorithm repeatedly failed, which led to longer overall

calculation times. To prevent this, many of the cases in this system were treated using only

the Davidson algorithm by setting ALGO=Normal.

IBRION and ISIF

Sections 2.1.1 to 2.1.5 introduced the Born-Oppenheimer theorem, implying that the KS-

equations are solved for fixed positions of the nuclei by a minimization of the total energy

with respect to the electron density. In order to find the absolute minimum of a system, the

total energy has to be optimized also with respect to the nuclear positions. This involves

repeatedly solving the electronic problem, extracting forces acting upon the atomic nuclei,

and updating their positions according to them (see Fig. 3.1). The forces are attained

using the Hellmann-Feynman theorem, by calculating the derivative of the total energy with

respect to the ion positions [121, 132, 133]. Based on these forces the positions of the nuclei

can be subsequently updated in different ways.

In VASP, there are three algorithms implemented for the ionic optimization procedure in the

context of the pure density functional theory, namely, a quasi-Newton-Raphson algorithm

originally suggested by Peter Pulay (RMM-DIIS, a variant of which is also used for the

electronic minimization), a conjugate-gradient algorithm, and a damped molecular dynamics

algorithm [121, 123, 130, 131]. A particular method is chosen using the IBRION-tag in the

INCAR file. For all calculations performed for this work, the conjugate gradient method was

used which corresponds to IBRION=2.

The ISIF-tag restricts the nuclear movement and the degrees of freedom involved in the

optimization process. Depending on the purpose of a calculation, the ionic relaxation is

conducted allowing additionally for a change of the supercell’s shape and/or volume [121].

Since the main objective of this work is the investigation of the phase stability in the Ta-Al-N

and the Nb-Al-N systems, the goal of the calculations is to fully optimize the ion positions,

which is achieved by setting the ISIF-tag to 3.

EDIFF and EDIFFG

As mentioned in the previous subsection a DFT-calculation usually includes two optimiza-

tion loops. On the one hand, the inner cycle determines the self consistent solution of the

KS-eigenvalue problem sketched in Section 2.1.3, and leads to the electron density that gives

the lowest total energy for a set of given fixed ion positions. The outer loop, on the other

hand, involves the relaxation of the ion positions by calculating forces on the nuclei from the
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charge density and updating their positions according to the algorithm used. The overall

solve  ĤKSϕm  = ε
m
ϕ
m

evaluate  ĤKS

calculate n(r)

update atom positions
calculate forces on atoms

initial atom positions
inital n0(r) 

end

start

electronic loop
ionic loop

converged ?noyes
converged ?noyes

Figure 3.1: Flowchart of the overall relaxation process.

flow of these actions is visualized in Fig. 3.1. Both loops are executed until convergence is

reached. Whether a loop has converged or not is assessed by break conditions.

VASP allows the user to manipulate these conditions within certain limits. For the elec-

tronic system, the stop criterion of the self consistent optimization involves the change in

total energy in two succeeding steps. If this change lies below a certain threshold value,

convergence is reached and the loop is left [121]. This is controlled by the EDIFF-tag in the

INCAR file, with a default value of 10−4 eV.

On the contrary there are two options for the stopping condition of the ionic relaxation loop

(EDIFFG tag in the INCAR file). It can either also be that the change of the total energy
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3.2 Convergence tests

in two consecutive steps is smaller than a critical value, or that the absolute value of all

forces on each individual nucleus in the system is below a certain limit. By default, the first

condition is applied and the total energy change has to be less than ten times the stopping

condition of the electronic loop (EDIFFG= 10·EDIFF).

In all of the calculations presented here, the electronic break condition of EDIFF= 10−5

was used. The ionic relaxation was stopped either at EDIFFG= 10−3 eV or EDIFFG=

−10−1 eV/Å.

It is noted at this point, that in the context of the other settings applied to the compu-

tations, the total energies calculated with EDIFFG= 10−3 eV and EDIFFG= −10−1 eV for

an otherwise identical calculation setup differed less than 0.0011 eV/atom. The differences

arising from those two criteria are therefore negligible.

ISMEAR and SIGMA

In the ground state at 0 K, the energy bands of solids are filled with electrons only up

to the Fermi energy level, EF , and no states are occupied for higher energies [116]. The

band occupation drops sharply within partly filled bands at the Fermi level. This fact,

however, imposes a problem for the numerical integration over the reciprocal space, because

to capture a sudden change of the occupation, a very dense mesh of k-points is needed

[94, 121]. Unfortunately, a higher density leads to much longer calculation times. To limit

the necessary increase in number of k-points, so-called smearing methods are applied, which

replace the exact sharp step function with some other, more smoothly decaying function. In

the Fermi-smearing method, for example, the Fermi-Dirac function is used, resulting in an

occupation profile found for finite temperatures [116, 121, 134]. Though they do qualitatively

the same, other methods do not have such underlying physical pictures, and are simply a

tool to speed up the calculations [121].

For the calculations of this work, the method of Methfessel and Paxton was applied. It

replaces the step function with the error function plus a set of Hermite polynomials multiplied

with e−x
2

[135]. The smearing methods are controlled by the ISMEAR-tag in the INCAR

file. The Methfessel and Paxton method is applied when ISMEAR=N for N > 0, where the

parameter N determines the number of Hermite polynomials employed for the approximation

of the step function. The used parameter was ISMEAR=1 and consequently polynomials up

to the first order were included in the expansion [121]. The width of the smearing procedure

is defined using the SIGMA-tag which was set to 0.1 eV.

3.2 Convergence tests

To identify the cut-off energy and k-mesh density needed for the desired accuracy of our

calculations, convergence tests with respect to these parameters have to be carried out. The
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3.2 Convergence tests

general practice is to perform multiple static calculations with increasing cut-off energies

and k-mesh densities, while leaving all other input parameters constant. As soon as the

properties of interest change only within a desired uncertainty range upon further increasing

the cut-off energy and/or the k-mesh density, the system can be considered converged.

Typically the total energy per atom is chosen for the convergence tests in DFT studies fo-

cusing on structural properties with a threshold value of 1 meV/atom. Table 3.1 lists the

structures included in this work, together with the ENCUT values and the values of the pa-

rameter l of the KPOINTS file for which this convergence criterion is met. The convergence

tests were carried out with PREC=Accurate. Based on these tests the proper parameters for

Table 3.1: Values for plane wave cut-off energy Ecut (basis set size), and l (k-mesh density)
resulting from the convergence tests.

structure Ecut (eV) l (-)

AlN B1 700 49
B4 700 33
Bh 650 57
Bi 700 25
Bk 700 33

SG189 650 49

TaN B1 650 73
B4 700 57
Bh 650 41
Bk 700 65

SG189 700 65

NbN B1 650 65
B4 700 57
Bi 650 57
Bk 700 65

the calculations would be at least a cut-off energy of 700 eV and a parameter l of 73 for the

automatic k-mesh generation. However, when running the calculations with these settings

on the Vienna Scientific Cluster 2 (VSC2), several problem arose.

The first problem encountered was that the computations of solid solutions without crystal

symmetries had memory demands that exceeded the limit of a single standard node of the

VSC2. While increasing virtual memory failed and even led to a crash of the used nodes,

the use of special nodes with higher memory succeeded in some cases. Yet the number

of these high-memory nodes is small resulting in very long queuing times, which in turn

drastically limited their use due to the large number of calculations needed for this work.

Several attempts to parallelize the processes using more than one standard node resulted in
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an increase of the time needed for the individual calculations to finish. The reason for this is

most likely the use of non-optimized parallelization parameters. VASP gives the user control

over a number of settings affecting the parallelization of the individual steps and, therefore,

the communication between the used processor cores. The efficiency of the parallelization

strongly depends on the adjustment of the settings used to the hardware and requires inten-

sive testing [121]. Our attempts to overcome the problems of the calculations’ high memory

demands using parallelization were not successful, as they lead to an unacceptable consump-

tion of the computational resources, which is why this approach was finally abandoned.

As an alternative option it was decided to overcome this problem by reducing the numerical

accuracy and, thereby, the calculational load. The cut-off energy was finally reduced to a

value of 450 eV and the parameter l determining the k-mesh density to 57. To justify these

choices and to assess the extend of the errors made, a number of tests were performed which

are discussed in the next section.

3.3 Auxiliary accuracy tests

As outlined above, the two problems that had to be solved were the long calculation times

needed for relaxing the majority of the structures on the one hand, and the high memory

demands on the other hand. Both of these problems are linked to the high values for cut-off

energy and k-mesh density needed according to the convergence tests.

To overcome them it was decided to first perform the calculations with lower values for

Ecut and l and then gradually increase them to sufficiently accurate settings. The results

(ion positions and KS-orbitals) of the calculations performed with less accurate numerical

parameters were used as inputs for the increased settings of the next step to speed up the

convergence. As for some structures and compositions calculations with numerical parame-

ters satisfying the values of the convergence tests could be successfully finished, their results

were used to assess the error introduced by the reduced values in Ecut and l. The quantity

used for this purpose was the energy of formation, Ef , defined in Eq. 4.2 (more details on

its physical meaning are given in the next chapter).

In the following Accurate refers to the settings Ecut = 750 eV, l = 73 with PREC set to

Accurate. Low denotes Ecut = 300 eV, l = 40 and PREC = Low, which were the settings

used for the first step of the constitutive computations. The results presented as Medium

were achieved by pre-converging the systems with the Low parameters and using the output

as a starting point for calculations with Ecut = 450 eV, l = 57 and PREC = Medium.

Figures 3.2 and 3.3 show a comparison between the Ef values of the phases B1, B4 and

Bh without vacancies resulting from calculations with the parameter sets Low, Medium and

Accurate. While the results from the calculations with the parameters of Low differ signifi-

cantly, the Ef values obtained with the settings of Medium are reliable. The difference in Ef
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resulting from the calculations with the Medium parameters and the Accurate settings was

at most 0.01 eV/atom. While this magnitude is non-negligible, the error is rather uniform

as the Medium and Accurate Ef -plots are almost parallel. The assessment of the stability of

the individual phases, which is based on the relative comparison of the energies of formation,

is, however, only weakly affected by this error. Figure 3.4 shows, that the crossover between

the phases B1 and B4, and B1 and Bh, respectively, is practically the same for the results

coming from the Medium and Accurate calculations. As the main goal of this work is to

predict the stability range of the individual phases as functions of aluminum- and vacancy

content, the accuracy resulting from the calculations performed with the Medium parameters

is sufficient.
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Figure 3.2: Ef against x plots from different numerical settings for the B1 and B4 phases of
the Ta1−xAlxN system without vacancies. The symbols mark the DFT data, while the solid
lines are a linear interpolation between the adjacent points.
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Figure 3.3: Ef data and linear interpolation for different numerical settings for the perfect
Bh phase of the Ta1−xAlxN.
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Figure 3.4: Comparison between the Ef against x plots resulting from Medium and Accurate
settings. The symbols mark the DFT data and the dashed and dotted lines are third order
polynomials.
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Chapter 4

Methodology and Results

The first two Sections of this chapter describe quantities used to obtain the actual results

which are then presented and discussed in Sections 4.3 and 4.4.

4.1 Energy of formation

The very basic physical principle that all systems try to minimize their overall energy, is

useful when discussing relative stability of phases. From classical thermodynamics it is

known that the equilibrium state of a system is characterized by a minimum of the Gibbs

free energy:

G = H − TS = U + pV − TS . (4.1)

H = U+pV is the enthalpy, U is the internal energy, S the entropy and p, V and T are pres-

sure, volume and temperature, respectively. For the the ground state at 0 K and no external

pressure, G reduces to the internal energy U , which is one of the system properties delivered

by the VASP computations. It is important to keep in mind that when using the pseudo-

potential method, the internal energy resulting directly from the calculations comprises only

the valence electrons not removed by the frozen-core approximation. Consequently, these

absolute energy values are hard to discuss on their own, since they can be compared neither

with experiment nor with other DFT predictions. Instead, the energy of formation, Ef , is

commonly used in DFT studies [2, 28, 87]:

Ef =
1∑
i

ni
· (Etot −

∑
i

niEi) . (4.2)

It describes the difference in energy between a system in a particular structure, Etot, and

the sum of its pure constituents in their respective equilibrium phases, Ei. In this sense, it

is nothing more than the change in internal energy ∆U upon formation of the structure. ni

are the respective numbers of atoms of species i. When one is interested in the stability of
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4.1 Energy of formation

competing phases of a system with a certain composition, Ef can therefore be used to rank

the different structures. The one yielding the lowest Ef is energetically the most favorable

and thus the most stable at 0 K. The reference states and their values, Ei, used for the

following considerations are listed in Table 4.1.

Table 4.1: Reference states and their respective energies, Ei, of species considered in this
work.

structure energy (eV/atom)

fcc Al −3.697
bcc Ta −11.735
bcc Nb −10.195

molecular N2 −8.339

In the following, the chemical compositions and vacancy concentrations will be described as

(TM1−xAlx)1−yN

for metal vacancies and

TM1−xAlxN1−z

for nitrogen vacancies. TM is a placeholder for either Ta or Nb depending on the system

discussed. x denotes the aluminum fraction of metal species, while y and z indicate the

vacancy content on the metal and the nitrogen sublattice, respectively.

The Ef values were calculated for the sets of discrete atomic compositions listed in Figures 2.2

and 2.3. To create a phase diagram mapping the stable structures in the space of aluminum

fraction, x, and vacancy contents, y and z, a relationship between these parameters and the

energy of formation, Ef , is needed for every phase. Thus, functions Ef (x, y) and Ef (x, z)

were constructed for each phase by fitting the discrete data points from the calculations in

multiple steps using the least squares method.

A function Ef (x, y) has the overall form

Ef (x, y) = a0(y) + a1(y)x+ a2(y)x2 + a3(y)x3 . (4.3)

It is therefore a third order polynomial in the aluminum fraction x with coefficients ai(y)

depending on the metal vacancy content, y. The functions Ef (x, z) capturing the influence

of nitrogen vacancies are described equivalently to Eq. 4.3 with coefficients ai(z).

In the first step, the calculated data is used to fit coefficients bi of several third order

polynomials in the aluminum concentration p(x):

p(x)
∣∣
y=const.

= b0 + b1x+ b2x
2 + b3x

3 . (4.4)
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4.2 Structural parameters

For each vacancy concentration y = const. considered in the calculations one polynomial is

created.

In the second step, these coefficients bi are used to determine functions

ai(y) = a0
i + a1

i y + a2
i y

2 (4.5)

for every term i in Eq. 4.3. The parameters a0
i are set to be identical to the coefficients bi

of the polynomial fitted to the structure data with y = 0:

a0
i = bi

∣∣
y=0

. (4.6)

The other two parameters, a1
i and a2

i , are then determined by minimizing the sum of the

squared residuals of the function in Eq. 4.5, and the coefficients of the polynomials at

vacancy contents y 6= 0.

This particular choice of the fitting procedure was motivated by maintaining the continuity

between Ef (x, y) and Ef (x, z) while preventing a distortion of the fit by data with no causal

contribution in each region. To be more specific: configurations containing metal vacancies

do not provide any information about the effect of nitrogen vacancies on the structure and

vice versa. Therefore, the terms describing the influence of y and z are separated, and are

equal for y = 0 and z = 0. Fitting the two sub-regions completely independently would

result in a discontinuous jump at y = z = 0. To prevent this, the terms a0
i are generated

using only the data of structures without vacancies. The vacancy dependent parts of the

Ef -functions, ai(y) and ai(z), are then determined separately from each other, but apart

from the constrained ai(y = 0) = ai(z = 0) = a0
i .

Once the functions Ef (x, y) and Ef (x, z) are found for every phase, the assessment of phase

stability is carried out by identifying which structure yields the lowest Ef value for each

x, y/z.

It is noted that the fitting procedure is critical for the stability assessment, since (slightly)

different compositions are used for each phase (various unit cells and supercell sizes, see Fig.

2.2 and 2.3) and hence a direct comparison of DFT values is not possible.

4.2 Structural parameters

Structural properties of the relaxed structures such as specific volume or lattice parameters

are easily accessible from the the calculations. As mentioned in Section 3.1.3, the algorithm

chosen for the computations leads to a complete structural relaxation including cell volume,

cell shape, and ion positions. The most readily available quantity is the specific volume, v0,

which is the relaxed volume V0 of the used supercell divided by the number of lattice sites,

N , it contains:

v0 =
V0

N
. (4.7)
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It can be used to compare the packing density of different phases, which is an indicator for

the stability at higher pressures.

Regarding the lattice parameters, cubic structures represent the easiest case. For a u×v×w
supercell with relaxed volume V0 and based on a conventional cubic structure, the cubic

lattice parameter is defined as:

a =
3

√
V0

u · v · w . (4.8)

4.3 Ta-Al-N

Besides the hexagonal ε phase the cubic B1 structure has been frequently found in pure TaN

produced by various synthesis methods [54, 61, 86, 136–138]. Many authors furthermore

reported the presence of vacancies in the cubic structure, which seems to influence both

phase stability and physical properties [3, 8, 36, 61, 136, 139]. The presence of the B1 phase

extends to the quasi-binary Ta1−xAlxN system, where it was found as a single phase up to

aluminum fractions x = 0.36 and in a two phase mixture with B4 up to x = 0.65 [84–86].

As mentioned in Section 1.1.1, unpublished DFT simulations by Holec et al., regarding this

alloy system predicted that the hexagonal Bh phase is stable for low aluminum fractions x

up to 0.2, followed by the cubic B1 phase up to x ∼ 0.7, where a multi-phase region of B1

and hexagonal B4 and Bk was expected [87]. In the aluminum rich regime, the simulations

predicted the B4 structure. However, these calculations were performed assuming only

perfect structures without defects. These results were reproduced in the course of this work

and Fig. 4.1 shows the energies of formation of the considered phases as a function of the

aluminum content x. The dashed lines are the third order polynomials p(x)
∣∣
y=z=0

introduced

in Eq. 4.4. It can be seen that up to x ∼ 0.27 the ε-structure is predicted to be the most

stable one, while for x larger than ∼ 0.58 the wurtzite B4 structure yields the lowest Ef

values. For 0.27 < x < 0.58, the Ef values of the B1 and Bk structures are almost the same

which suggests co-existence of both phases.

This, however, contrasts the experimental findings in two ways. On the one hand, the

hexagonal Bk structure has never been reported for this system and was included in this

study as a distorted B4 structure appearing as a transition state between B4 and B1 [28, 88].

On the other hand, the cubic B1 phase was found to be stable even for aluminum content

below 0.2 and up to values x ∼ 0.53 [84–86].

By considering vacancies in the calculations, which are always present in real structures

and particularly in physical vapor deposited materials ([8, 23, 140]), a better agreement

with experiment is expected. The resulting phase diagram including the impact of metal

vacancies is shown in Fig. 4.2. Obviously, the presence of vacancies on the metal sublattice

changes the phase stability drastically. At x = 0 the ε phase is the most stable for vacancy

contents y < 0.075. For higher y, the Bh structure becomes the most stable, which is
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Figure 4.1: Ef as a function of x for Ta1−xAlxN without vacancies. Symbols represent the
actual DFT data, while the fitted polynomials Ef (x, y = z = 0) (Eq. 4.3) are shown with
dashed lines.

substituted by cubic B1 Ta1−yN at y ∼ 0.14. The aluminum fraction at which the phase

transition from ε to B1 takes place, originally at x ∼ 0.27 for y = 0, shifts to lower x-values

with an increase in y until at x ∼ 0.1 and y ∼ 0.09 the Bh structure appears. The B1 phase

is stable at even lower x for higher metal vacancy content until Bh vanishes completely at

x = 0 for y ∼ 0.14. The switch from B1 to Bk, which is hard to determine from Fig. 4.1 due

to the small difference in Ef of the two phases, apparently takes place at x ∼ 0.48 for y = 0.

The presence of metal vacancies, however, increases the difference in energy of formation

between them in favor of the cubic phase. The B1 phase field extends at expense of the

hexagonal phases Bk and B4 for increasing y up to x ∼ 0.7 at y ∼ 0.07. But for y > 0.07

this effect is revoked and the transition from cubic to hexagonal is moved back to lower x.

In any case, the shifts of the phase transitions B1-Bk/B4 and, more importantly, ε-B1 result

in a strongly extended B1-phase field.

In contrast to Fig. 4.1, the phase diagram in Fig. 4.2 cannot illustrate the differences in Ef

between the individual phases. It was shown above, that they can be quite small for some

compositions, thus it is difficult to explicitly identify one phase as the most stable one. If

this is the case, a mixture of two or more phases is more likely than a homogeneous material
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Figure 4.2: Stable phases of (Ta1−xAlx)1−yN as a function of aluminum fraction, x, and the
content of metal vacancies, y.

consisting of a single phase.

To account for this fact, Fig. 4.3 shows an extended phase diagram which identifies regions

where two or more phases differ by less than 0.02 eV/atom. As to be expected, several

two- and three-phase fields arise from this approach near the transition regions of Fig. 4.2.

Also, the small regions where Bh and Bk have the lowest Ef , vanish completely as the

energetic difference to the first metastable phase is within 0.02 eV/atom. Consequently,

these two phases appear only in a combination with other phases and not independently. Bh

is accompanied by ε in the largest part of the original single-phase field. The Bh-ε two-phase

region is bounded by a thin three phase field including B1 at higher vacancy content. At

x = 0, the B1 single-phase field is shifted to slightly higher y-values, y ∼ 0.155, but in

combination with Bh and ε the cubic phase appears already at y ∼ 0.125.

In agreement with Fig. 4.1, Bk co-exists together with B1 for 0.27 < x < 0.58 for low y.

The two-phase field of B1 and Bk is surrounded by two three-phase fields, one additionally

including ε at lower aluminum fractions, and the other one including B4 at x ∼ 0.5 − 0.6.

With increased number of metal vacancies, however, the energetic preference of B1 over Bk
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Figure 4.3: Extended phase diagram of (Ta1−xAlx)1−yN including regions where the Ef (x, y)
values of several phases differ less than 0.02 eV/atom as multi phase fields.

increases, and B1 is found alone over a wide range of aluminum fractions x. Depending on

the vacancy content y, the B1 phase is accompanied by the hexagonal phases B4 and/or Bk

at x = 0.48− 0.58 until it finally vanishes for higher aluminum fractions x.

The large B1 single-phase fields in both Figs. 4.2 and 4.3, as well as the various multi-phase

fields containing it in Fig. 4.3, show that the region where the cubic phase is predicted to

be stable, significantly expands by increasing the metal vacancy content.

The reason for the stabilization of B1 apparently caused by the metal vacancies can be found

in Fig. 4.4. It depicts Ef of the individual phases for various metal vacancy contents. While

Bh and ε experience a considerable increase in Ef for increasing y values at low aluminum

fractions x, the formation energy of B1 is lowered, making the structure more favorable.

This is in agreement with calculations by other authors of pure TaN, which showed that the

cubic phase favors vacancies [3, 37, 141]. This decrease in Ef extends up to x ∼ 0.5 where

the metal vacancies eventually have an adverse effect. Bk, on the other hand, is affected by

the metal vacancies less than the other phases, although a very small reduction in Ef can

be observed for compositions up to x ∼ 0.9. Similar to Bh and ε, the energy of formation
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Figure 4.4: Ef against x plots at different metal vacancy contents y of all considered phases
in the Ta-Al-N system. The symbols represent the discrete Ef data points while the dashed
lines are the third order polynomials of Eq. 4.4 used to construct the coefficients ai(y) (Eq.
4.5).
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of B4 increases for increasing y. Metal vacancies are undesirable for all structures when the

aluminum content is high.

Interestingly, the curvature of the Ef (x) functions of the B1 phase changes gradually from

concave to convex with increasing y-values (Fig. 4.4). This means that the solid solution

becomes chemically stable for aluminum fractions 0 < x < 1, and loses its tendency for an

iso-structural decomposition.

Some of the B4, Bh and ε cases were extremely difficult to stabilize (i.e., to converge the

structural relaxation during the calculation) especially for higher vacancy concentrations.

This, in addition to the high Ef values, indicates, that the respective configurations are not

stable and try to change the atom position and cell dimensions during the ionic relaxation

process. It also contributes to somewhat scattered data points found in the respective plots

of Fig. 4.4.

Another factor that contributes to this scatter and the long calculation times is the procedure

chosen for the SQS creation. As pointed out in section 2.2.2, only pair interactions were taken

into account to assess the population of the supercells. This approach, however, seems to

be insufficient for some phases and compositions, as SQS that were assessed to be equally

good, yielded slightly different Ef values. If this was the case for a specific composition and

vacancy arrangement, the SQS yielding the lowest Ef was considered to be the representative

one. To reduce or, ideally, prevent this behavior completely, it is necessary to consider higher

order geometric correlation functions in addition to the pairs used here.

As already mentioned in Section 1.1.1, the thin films investigated by Koller et al. had

an overall chemical formula of Ta0.89Al0.11N1.2 [84]. If the nitrogen over-stoichiometry is

attributed to vacancies on the metal sublattice, this would translate to a vacancy content

of y = 0.167 in the notation used here. This composition lies well within the B1 phase field

according to the phase diagram in Fig. 4.3. The phase diagram also shows good agreement

with the experimental study of Zhang, which reports a single phase cubic structure for

Ta1−xAlxN films with aluminum fractions x up to 0.36, and a mixture of cubic and hexagonal

phases for x up to 0.65 [86].

The result is quite different for nitrogen vacancies. The resulting phase diagram is shown in

Fig. 4.5. Similar to Fig. 4.3, it displays regions where the energy of formation of two or more

phases differ less than 0.02 eV/atom as multi-phase fields. It shall be noted that no cases

with nitrogen defects were considered for the Bk structure, and therefore it cannot appear in

the phase diagram in Fig. 4.5. The results on the impact of metal vacancies presented above

showed that the Bk phase does not occur as the single most stable structure throughout the

probed configurations and thus confirmed its role as a transition state in the transformation

between the cubic B1 and the hexagonal B4 phases. Moreover, Bk is most important in the

regions with higher x where is the direct transition from B1 to B4. It plays only a minor

role at low aluminum fractions, which are the center of interest for this work as the available
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Figure 4.5: Extended phase diagram of Ta1−xAlxN1−z explicitly disclosing regions where the
Ef (x, z) values of several phases differ less than 0.02 eV/atom as multi-phase fields.

experimental findings lie in this region.

It turns out that the impact of nitrogen vacancies on the individual phase fields is not as

strong as the impact of metal vacancies. Although the B1 phase field is slightly expanded by

an increased vacancy content z, the effect is much less pronounced than in the case of metal

vacancies. The transition from the hexagonal ε to the cubic B1 phase is shifted from x ∼ 0.27

in the perfect phases to lower aluminum fractions by increasing z. The transformation from

B1 to B4, on the other hand, appears at slightly higher x for increased vacancy contents

compared to the perfect configurations. Fig. 4.6 reveals the reason for this. The presence of

nitrogen vacancies reduces the energy of formation of the B1 structure by a small amount for

tantalum-rich compositions. This is in agreement with the findings of Koutná et al. in pure

TaN, who found a small decrease for nitrogen deficient compositions [3, 142]. Above x ∼ 0.2,

however, they have the opposite effect indicating that nitrogen vacancies are unfavorable for

those compositions. In all other structures, B4, Bh, and ε, nitrogen vacancies increase the

heat of formation to a similar extend as the metal vacancies.

Marihart et al. synthesized pure TaN films by high power impulse magnetron DC and by
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Figure 4.6: Ef over x plots at different nitrogen vacancy contents z of all considered phases
in the Ta-Al-N system. The symbols represent the discrete Ef data points while the dashed
lines are the third order polynomials (Eq. 4.4) used to construct the coefficients ai(z).

conventional DC sputtering. Materials deposited with nitrogen partial pressures pN/pT >

38.1% showed a mixture of cubic B1 and hexagonal ε phases with increased ε-fractions

for increasing nitrogen partial pressure. Furthermore, the films were found to be nitrogen

deficient and to have a high defect concentration. Comparing these findings with Fig. 4.5, it

becomes clear that the B1+ε micro-structure cannot be solely explained by the influence of

nitrogen vacancies, as the phase diagram predicts a single-phase ε material for x = 0. While

their presence is, without a doubt, one factor, it must be concluded that other parameters

such as other defects, limited diffusion kinetics, or intrinsic stresses in the coatings (all caused

by the specific deposition conditions) are needed to allow the crystallization of the cubic B1

phase in pure TaN1−z.
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Figure 4.7 presents the specific volume of the perfect structures together with quadratic poly-

nomial fits. It shows that in all structures, v0 decreases with increasing aluminum content
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Figure 4.7: Specific volume, v0, over x of the perfect phases of the Ta-Al-N system. The
symbols represent the data from the DFT calculations and the dashed lines are fitted second
order polynomials.

on the metal sublattice due to a smaller atomic radius of Al as compared to Ta. v0 of B1, B4

and Bk change almost linearly with x, suggesting that v0 of these phases follows Vergard’s

behavior [143, 144]. On the other hand, the specific volumes of Bh and ε deviate significantly

from linearity. The B1 phase is the most densely packed one. This is important because the

above considerations regarding the phase stability hold for external pressure of p = 0 GPa.

Compressive intrinsic stresses, which are generally desirable in protective coatings, further

extend the stability of structures with smaller specific volume [145, 146]. Therefore, PVD

synthesized Ta-Al-N thin films are expected to crystallize in the cubic B1 structure for even

larger compositional range than shown in Figs. 4.2, 4.3, and 4.5 for p = 0 GPa.

The impact of both, metal and nitrogen vacancies, on v0 is illustrated in Fig. 4.8. The

dashed lines are second order polynomials. Missing metal atoms result in a reduction of

specific volume in all considered structures and the extend of this effect decreases with in-

creasing aluminum content x. Nitrogen vacancies also reduce the specific volume, although

the reduction is less than for metal vacancies, which can be explained by N atoms being
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Figure 4.8: v0 against x plots for the perfect configurations and different vacancy contents
y and z of all considered phases in the Ta-Al-N system. The symbols represent the actually
calculated data points while the dashed and dotted lines are second order polynomials.
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smaller than Al and Ta. However, in some cases, such as the Ta-rich ε phase or the Al-rich

B4 structure, the effect of nitrogen defects is larger than for metallic ones.

Fig. 4.9 shows the lattice constant a of the cubic B1 structure as a function of the aluminum

content, including the influence of metal and nitrogen vacancies. The lattice constant was
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Figure 4.9: Lattice constants a(x) including the influence of metal and nitrogen vacancies
on them for the cubic B1 phase in the Ta-Al-N system. The symbols show the actual data
and the dashed and dotted lines are fitted functions according to Eq. 4.9.

calculated from the relaxed volume according to Eq. 4.8 and fitted to a quadratic polynomial

of the form:

a(x) = aAlNx+ aTaN(1− x) + bx(1− x) (4.9)

This is a quadratic modification of Vegard’s law ([143]) with aAlN and aTaN being the lattice

constants of the boundary systems AlN and TaN. b is a bowing parameter and quantifies the

deviation of a(x) from a linear, Vegard-like relation. The lattice constants and the bowing

parameters of various configurations are listed in table 4.2. It is noted that DFT calculations

using GGA exchange correlation potentials generally underestimate bonding, which leads to

lattice constants and bond lengths larger than found experimentally. It follows from Fig. 4.9

and Table 4.2 that metal vacancies reduce the lattice constants and that missing Al atoms

have a smaller impact than Ta vacancies. The same trend can be observed for nitrogen

vacancies in TaN but the reduction of aTaN is much smaller than the one resulting from

metal defects. For AlN, however, an increase in nitrogen vacancy content seems to increase

the lattice constant aAlN. The same peculiar behavior was also reported by Koutná [142]. In

all cases, positive b values are obtained describing bowing of a(x) above the linear behavior.

Also, the bowing parameters seem to be only weakly affected by the presence of vacancies
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Table 4.2: Lattice constants and bowing parameters according to Eq. 4.9 of the cubic B1
(Ta1−xAlx)1−yN and Ta1−xAlxN1−z. All parameters are given in Å.

aTaN aAlN b
perfect 4.419 4.065 0.165

metal vacancies

y

0.031 4.406 4.063 0.150
0.063 4.398 4.061 0.141
0.125 4.384 4.063 0.116
0.188 4.365 4.058 0.173

nitrogen vacancies

z

0.031 4.415 4.070 0.143
0.063 4.412 4.068 0.132
0.125 4.400 4.072 0.170
0.188 4.387 4.075 0.131

Table 4.3: Lattice constants a of the cubic B1 phase found in literature. All values in Å.

structure present experimental theoretical

LDA GGA

TaN 4.419 4.43[147], 4, 344[62] 4.353[141], 4.386[148] 4.398[141], 4.424[141],

4.37[149] 4.427[142], 4.42[149]

Ta0.969N 4.406 4.41[141], 4.417[142]

Ta0.938N 4.398 4.40[141], 4.403[142]

Ta0.875N 4.384 4.361[150] 4.380[142]

TaN0.969 4.419 4.42[141], 4.422[142]

Ta0.875Al0.125N 4.391 4.400[86](Ta0.89Al0.11N)

Ta0.750Al0.250N 4.362 4.358[86]

Ta0.625Al0.375N 4.322 4.341[86](Ta0.64Al0.36N)

AlN 4.065 4.045[151] 4.06[152], 4.03[153] 4.07[154], 4.069[142]

and no clear trend can be found.

aTaN and aAlN have been reported by a number of both, experimental and theoretical studies,

and can thus be used to assess the reliability of the present results. An example of published

lattice constants is listed in table 4.3. The lattice parameters presented here clearly agree

with the previously reported values.
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4.4 Nb-Al-N

As in the Ta-Al-N system, the cubic B1 structure has been reported by various authors in

the Nb-Al-N system. An early study of Oya and Onodera described the phase transforma-

tion in NbN1−z films from the as deposited cubic state to the hexagonal Bi phase via several

intermediate structures [79]. Also, more recent studies found NbN in B1 configuration either

as a single phase or as a part as a two-phase mixture depending particular on a deposition

technique and conditions [76, 82]. Regarding the quasi-binary Nb1−xAlxN system, Selinder

et al. reported a single-phase cubic structure in reactively triode sputtered thin films up to

aluminum fractions x ∼ 0.5 and together with the hexagonal B4 phase up to x ∼ 0.6 [89].

Experiments by Franz et al. yielded similar results for cathodic arc evaporated materials

with mainly cubic structure up to x ∼ 0.56 depending on the bias voltage [91]. Ab initio

calculations by Holec et al. on several relevant structures, however, predicted a hexagonal

B81 phase in the quasi-binary system for x < 0.14 [92].

It has to be noted that the study of Holec et al. included the B81 structure, while here the

Bi is considered instead. This is justified by their structural similarity which was already

pointed out in the mentioned paper. The reason for choosing the Bi structure over B81

was that it yielded a slightly lower Ef -value for the perfect configuration of NbN. Hence,

when comparing the Ef (x) plots for the perfect configurations shown in Fig. 4.10 with the

publication of Holec et al., the shape of the hexagonal Bi and B81 structures are qualita-

tively the same, but the phase transition from hexagonal to B1 is predicted to happen at

a slightly lower aluminum fraction of x ∼ 0.14 by Holec et al. than in the present study.

Again, the dashed lines in Fig. 4.10 are third order polynomials p(x)
∣∣
y=z=0

(Eq. 4.4) fitted

with the Ef values of each structure. This over-fits the function for the Bi phase since only

4 configurations could be successfully relaxed by the calculations. Nevertheless, this fitting

function is used in order to describe all structures in a consistent way. Using the calculated

data for defective materials, and following the procedure described in section 4.1, functions

Ef (x, y) and Ef (x, z) were fitted for all phases in the system, B1, B4, Bi, and Bk. The phase

diagram illustrating the influence of metal vacancies is shown in Fig. 4.11. It reveals that

the phase boundaries depend on the amount of metallic defects, y. The phase field of the

hexagonal Bi diminishes due to an increased metal vacancy content y. The transition from

the Bi to the B1 phase is shifted from x ∼ 0.16, at y = 0 to lower x for higher y-values.

The transformation from B1 to Bk moves to higher x for small y values and the Bk phase

quickly vanishes at increasing y. The direct transition from B1 to B4, appearing for y &

0.045, is found at x ∼ 0.72 for y ∼ 0.1 and then shifts back to lower x for even higher

y-values.

Fig. 4.12 shows the extended phase diagram including the multi-phase regions for the

(Nb1−xAlx)1−yN system. It makes clear that large parts of the original Bi region exist as a

B1+Bi two-phase field, especially for high y values. Similarly to the Ta-Al-N system, also
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Figure 4.10: Ef for the considered phases as a function of x in the Nb1−xAlxN system without
vacancies

in the Nb-Al-N system the Bk phase never appears as the single most stable phase, but only

in combination with either B1 or B4. Moreover, it does not appear for x . 0.44 even in the

perfect configuration. The transition from the cubic B1 to the hexagonal B4/Bk structure is

initiated by a two-phase field and followed by a region where the Ef values of all three phases

lie within the 0.02 eV/atom range. The edges of the two-phase regions B1+B4 and B1+Bk

denote the maximum solubility of Al in the cubic B1 phase, which changes from x ∼ 0.44

at y = 0 to x ∼ 0.66 at y ∼ 0.107. A comparison of these values with the experiments of

Selinder et al. and Franz et al. shows quite good agreement for this transition [89, 91]. At

lower x, however, the hexagonal Bi phase remains stable in Fig. 4.12 even at higher y values

and is found either alone or together with B1. The lowest aluminum fractions probed by

the above studies were x ∼ 0.09 in the case of Selinder et al., and x = 0.27 at Franz et al..

Therefore, the single-phase cubic materials reported by them for low x do also agree well

with the results of the present simulations [89, 91].

The impact of metal vacancies on the energy of formation of the individual phases is il-

lustrated in Fig. 4.13. Consistent with the results of Section 4.3, they produce a strong

increase of Ef in all structures for aluminum-rich configurations with the strongest impact

on B1. Generally, metal vacancies lead to an increase in the heat of formation compared to
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Figure 4.11: Stable phases in (Nb1−xAlx)1−yN as a function of aluminum concentration on
the metal sublattice, x, and the metal vacancy content, y.

the perfect configurations of Bk, Bi and B4 for all aluminum fractions x. On the contrary,

they lower the Ef values in the cubic B1 structure, but this effect is very sensitive to the

chemical composition. Low vacancy concentrations of y = 0.031 seem to be energetically

slightly more favorable than the perfect structure up to an aluminum fraction of x ∼ 0.875.

This effect is increased to a small amount at y = 0.063 for small x, but it then extends

only up to aluminum fractions of x ∼ 0.75. Higher amounts of metal vacancies are only

advantageous for very small aluminum content. But even in pure Nb1−yN, the maximum

stabilization (most negative Ef ) is achieved for vacancy concentrations y between 0.063 and

0.125. The curvatures of the Ef plots presented in Fig. 4.13 for the various structures are

mostly concave, with only few local exceptions. This indicates that compositions with x > 0

have positive mixing enthalpy and are therefore metastable.

A study by Benkahoul et al. on NbN1−z films prepared by reactive magnetron sputtering

reported different crystalline structures in the material, depending on the deposition condi-

tions [82]. With substrates heated to 400 ◦C, the film showed a mixed structure of cubic B1

and hexagonal B81 phases for all probed N/Nb-ratios 1−z. The B81 content in the material
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Figure 4.12: Extended phase diagram of (Nb1−xAlx)1−yN. Regions where the Ef (x, y) values
of several phases differ less than 0.02 eV are considered to be multi phase fields.

was found to be dependent on z and reached a maximum for 0.97 < (1 − z) < 1. Films

prepared without substrate heating showed a single phase cubic structure for (1− z) < 0.98

and a mixed structure of B1+B81 for 0.98 ≤ (1− z) ≤ 1.06.

In Fig. 4.12 a two-phase region of cubic B1 and hexagonal Bi phases is found at x = 0 for

y > 0.145, but a single-phase cubic structure for pure Nb1−yN cannot be stabilized by metal

vacancies. However, the energy difference between the two structures is significantly reduced

by the metal vacancies and it is only reasonable that their presence plays an important role

in the stabilization of the cubic phase found in experiment. Other factors such as the prepa-

ration conditions or intrinsic stresses, which are not considered here but affect the Gibbs free

energy in Eq. 4.1, should be taken into account and are expected to improve the agreement

of the simulations. Benkahoul et al. found the single phase cubic structure in films prepared

without heating the substrate. In materials prepared with a substrate temperature of 400 ◦C,

the hexagonal structure was present for all N/Nb ratios. It is therefore possible that the

formation of the hexagonal phase(s) is kinetically impeded if temperatures are too low, hence

leading to crystallization of single-phase cubic films. Hultman pointed out that kinetically
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Figure 4.13: Ef against x plots for different metal vacancy contents y of all considered phases
in the Nb-Al-N system. The symbols represent the Ef data points and the dashed lines are
the third order polynomials of Eq. 4.4 used to fit the coefficients ai(y) (Eq. 4.5).

limited conditions foster the stabilization of the cubic B1 phase in quasi-binary TMNs [17].

Oya and Onodera, and Skelton et al. reported a partial transformation of the cubic B1 phase

in NbN films to the hexagonal Bi one upon annealing, which supports this theory, but there

is some dispute whether this transformation happens via the B81 phase or not [78, 79, 155].

Sandu et al., on the other hand, reported the deposition of a single-phase cubic structure

(with a B81 content of less than 5%) in reactively magnetron-sputtered NbN1−z films with

substrates heated to 400 ◦C for a nitrogen partial pressure of 37% [81]. Such deposition

conditions, however, would lead to changed chemical potentials in the energy of formation

(Ei in Eq. 4.2), and are not adequately represented by the reference states listed in Table

4.1 [3, 37].
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The results of the calculations on structures with nitrogen vacancies lead to the phase dia-

gram shown in Fig. 4.14. As in the Ta-Al-N system, the Bk structure was not considered

in the calculations of nitrogen deficient cases. It can be seen that nitrogen defects affect
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Figure 4.14: Phase diagram of (Nb1−xAlx)N1−z with aluminum concentration on the metal
sublattice, x, and nitrogen vacancy content, z.

the transition from the B1 to the B4 phase only weakly. For z < 0.07, a minor shift of

the transition to lower x compared to the perfect case can be found. For 0.07 < z < 0.12,

the two-phase field expands because the cubic B1 phase is stable up to higher aluminum

fractions. The stability of the hexagonal B4 phase decreases at vacancy contents z > 0.12,

resulting in a single phase cubic field extending up to x ∼ 0.74 at z = 0.2.

The phase fields including the Bi phase are significantly reduced by the presence of nitro-

gen vacancies. The maximum aluminum fraction is steadily lowered from x ∼ 0.16 in the

perfect case to lower values with increasing z, until it completely vanishes at z ∼ 0.185. For

z > 0.185 the single phase field of the cubic B1 phase extends from x = 0 to x = 0.7.

Fig. 4.15 shows the impact of nitrogen vacancies on the energy of formation of the considered

phases in detail. Nitrogen vacancies are apparently undesired in the hexagonal phases B4

and Bi, as their Ef values increase significantly with increasing vacancy content z compared
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Figure 4.15: Ef against x for different nitrogen vacancy contents z of all considered phases
in the Nb-Al-N system. The symbols represent the Ef data points and the dashed lines are
the third order polynomials of Eq. 4.4 used to fit the coefficients ai(z) (Eq. 4.5).

to those of the perfect cases in all chemical compositions considered. But also in the cubic

phase, the nitrogen vacancies seem to be unfavorable for most compositions. Only in pure

NbN1−z, a small decrease in energy of formation is observed. Nevertheless, for aluminum

fractions below 0.3, the energy penalty of the nitrogen vacancies is less pronounced in the

B1 than in the Bi structure, effectively making the cubic phase more stable. The same

phenomena, only weaker, is seen for B1 and B4 at x ∼ 0.6.

Fig. 4.16 shows the specific volumes of the perfect structures considered for the calculations

on the Nb-Al-N system. Apparently the B1 structure is the most densely packed for x > 0.

Therefore, compressive stresses are likely to enhance the stability of the cubic phase. In pure

NbN, however, the packing densities of the cubic B1 and the hexagonal Bi phases are almost

60



4.4 Nb-Al-N

0.0 0.2 0.4 0.6 0.8 1.0

x (-)

9

10

11

12

v 0
(Å
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Figure 4.16: Specific volume, v0, against x for the perfect structures considered in the Nb-
Al-N system. The symbols represent the data from the DFT calculations and dashed lines
are fitted second order polynomials.

the same and thus no substantial influence on the relative stability between the two phases

can be expected.

The plots in Fig. 4.17 illustrate the influence of vacancies on the specific volume of the

different structures. The volume per atomic site decreases when vacancies are included.

This effect is generally stronger for metal vacancies than for nitrogen vacancies, although in

the B4 phase, some of the cases containing metal vacancies are outliers from this trend.

The two graphs of Fig. 4.18 show the lattice constants of the B1 phase as a function of the

aluminum content x, and the impact of the different types of defects on them. The dashed

and dotted lines are the fitted Vegard-like functions of Eq. 4.9. The lattice parameters a of

NbN and AlN as well as the fitted bowing parameters b are listed in Table 4.4. Similarly to

the Ta-Al-N system, metal vacancies reduce the lattice constant, and the effect is stronger

for Nb than for Al vacancies. Nitrogen vacancies reduce aNbN too, but not as strong as

metal vacancies. Table 4.5 lists some values of the lattice parameter of the cubic NbN phase

calculated in the present study and collected from the literature.
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Figure 4.17: v0 against x plots for the perfect configurations and different vacancy contents
y and z of all considered phases in the Nb-Al-N system. The symbols represent the discrete
v0 data points while the dashed and dotted lines are the second order polynomials.
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Figure 4.18: Lattice constants a(x) of the cubic B1 phase and the influence of metal and
nitrogen vacancies on them in the Nb-Al-N system. The symbols show the actual data and
the dashed and dotted lines are fitted functions according to Eq. 4.9.

Table 4.4: Lattice constants and bowing parameters according to Eq. 4.9 of cubic B1
(Nb1−xAlx)1−yN and Nb1−xAlxN1−z. All parameters are in Å.

aNbN aAlN b
perfect 4.425 4.065 0.131

metal vacancies

y

0.031 4.408 4.060 0.129
0.063 4.397 4.061 0.131
0.125 4.382 4.059 0.122
0.188 4.357 4.054 0.183

nitrogen vacancies

z

0.031 4.416 4.069 0.134
0.063 4.408 4.064 0.145
0.125 4.398 4.069 0.140
0.188 4.386 4.075 0.111

Table 4.5: Lattice constants a of the cubic B1 phase found in literature. All values in Å.

structure present experimental theoretical

LDA GGA

NbN 4.425 4.394[156], 4.385[157], 4.392[157] 4.36[149], 4.458[92], 4.399[158],

4.429[158],4.42[149]

Nb0.938N 4.397 4.38[159](Nb0.934N)

Nb0.875Al0.125N 4.389 4.36[89](Nb0.9Al0.1N)

Nb0.750Al0.250N 4.355 4.33[89], 4.31[92](Nb0.73Al0.27N) 4.38[92](Nb0.73Al0.27N)

Nb0.5Al0.5N0.938 4.276 4.293[157](Nb0.5Al0.5N0.92)
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Chapter 5

Summary and Conclusion

Ab initio simulations on the quasi-binary transition metal nitride systems Ta-Al-N and Nb-

Al-N were carried out with the aim to investigate the influence of vacancies on the alloys.

The calculations spanned the whole compositional range of Ta1−xAlx/Nb1−xAlx on the metal

sublattice and included vacancies on either the metal or the nitrogen sublattice up to con-

centrations of 11 %. The supercells were created using the special quasi-random structure

approach (SQS) considering pair interactions up to the 7th coordination shell. From the bare

DFT results, the energy of formation, Ef , of the considered configurations was calculated

and subsequently used to fit functions Ef (x, y) and Ef (x, z) in aluminum fraction x and

metal or nitrogen vacancy content y or z, respectively.

Using these functions, phase diagrams were created by ranking the individual phases accord-

ing to their Ef -values in the x-y and x-z space.

It was shown, that the presence of metal vacancies makes the energy of formation of the cu-

bic B1 phase more negative in both systems over a wide range of aluminum fractions. Ef of

the hexagonal Bk structure is only weakly affected in the Ta-Al-N system and it increases in

the Nb-Al-N system. In all other considered structures, metal vacancies lead to an increase

in Ef . The combined effects caused by this defect type result in a strongly expanded range

of Al/Ta and Al/Nb compositions for which the cubic B1 structure is the most stable one.

A similar trend is predicted also for nitrogen vacancies. The energy of formation of the B1

phase is decreased by their presence, although to a smaller extend than by the metallic ones.

The other phases experience an increase in Ef . Again, the stability of the cubic phase is

extended, but this extension is less pronounced.

Furthermore, all phases were characterized in terms of their specific volume and the lattice

constants were calculated for the cubic phase. The obtained cubic lattice parameters agree

well with values found in literature.

Cross-checking the phase stability with experiments also shows good agreement for the quasi-

binary systems, and the accuracy of the predicted phase transitions could be increased by

taking vacancies into account. Some discrepancies remain for pure TaN1−z and NbN ma-
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5. Summary and Conclusion

terials, as the single phase cubic materials found in experiments could not be proven to

be caused solely by the influence of vacancies. While, without a doubt, they do play an

important role in the stabilization of the B1 phase, additional factors have to be considered

as well. The most important ones are diffusion kinetics and internal stresses. Future cal-

culations considering those impacts thus promise to further increase the accuracy of DFT

simulations in predicting the phase stability in the Ta-Al-N and the Nb-Al-N systems by

bringing them closer towards reality.
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Appendix A

Appendix

Python script used to create, assess and rank the supercells. The script can be used for

ternary alloys, and the assessment follows the SQS approach respecting pair interactions on

multiple coordination shells. For more details see Sections 2.2.2 and 2.2.3.

1 import numpy as np

2 import os

3 import time

4 from numpy . l i n a l g import norm

5 from numpy . random import rand int

6 from os . path import r ea lpa th

7 from sys import argv

8

9

10 def main ( ) :

11 ’ ’ ’

12 something

13 ’ ’ ’

14

15 print ’ \nThis i s a python 2 s c r i p t f o r the gene ra t i on and assessment o f SQS−s u p e r c e l l s ’

16 print ’−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−\n ’

17

18 try :

19 i f len ( argv ) == 5 :

20 task = int ( argv [ 1 ] )

21 pathSett ings , pathStructure , pa thPos i t i ons = argv [ 2 : ]

22

23 e l i f len ( argv ) == 7 :

24 task = int ( argv [ 1 ] )

25 pathSett ings , pathStructure , pathPos i t ions , pathSQSs , pathSROs = argv [ 2 : ]

26 a s s e r t pathSQSs and pathSROs in os . l i s t d i r ( r ea lpa th ( ’ ’ ) )

27 else : raise Asse r t i onErro r

28

29 a s s e r t task in [ 0 , 1 , 2 ]

30 a s s e r t pathSet t ing s and pathStructure and pathPos i t i ons in os . l i s t d i r ( r ea lpa th ( ’ ’ ) )

31

32 except Asse r t i onErro r :

33 print ”Who would use the s c r i p t o f death must answer me t h i s que s t i on s three (

a c t u a l l y four ) , e r e the SQSs he ’ l l s e e !\n”

34 task = promptOptions ( ”What i s Your quest ? :\ ngenerate SQS−s u p e r c e l l s − 0\ tana lyze

SQS−s u p e r c e l l s − 1\ tboth − 2” , [ 0 , 1 , 2 ] , strAnswerType=’ i n t ’ )
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35 pathSet t ing s = promptPath ( ’What i s the name o f Your s e t t i n g s− f i l e ? ’ )

36 pathStructure= promptPath ( ’What i s the name o f Your s u p e r c e l l s t ruc ture− f i l e ? ’ )

37 pathPos i t i ons= promptPath ( ’What i s the name o f Your atom p o s i t i o n s− f i l e ? ’ )

38

39

40 di s tTol , s h e l l s , Aatoms , Batoms , s t ru c tu r e s , nrSQS = re ad Se t t i n g s ( pathSet t ings )

41 header , bas i s , latConst , atomPos = r e a d S u p e r c e l l ( pathStructure , pa thPos i t i ons )

42

43 print ’ Distance t o l e r a n c e : %f ’ % d i s tTo l

44 print ’Nr . o f opt imized s h e l l s : %i ’ % s h e l l s

45 print ’Atom−s i t e s in the s u p e r c e l l : %i ’ % len ( atomPos )

46 print ’Nr . o f A−atoms in the s u p e r c e l l : %i ’ % Aatoms

47 print ’Nr . o f B−atoms in the s u p e r c e l l : %i ’ % Batoms

48 print ’Nr . o f C−atoms in the s u p e r c e l l : %i ’ % ( len ( atomPos )−Aatoms−Batoms )

49

50 cartAtomPos = [ np . dot ( pos , b a s i s ∗ l a tConst ) for pos in atomPos ]

51

52 i f task == 0 :

53 generateSQS ( b a s i s ∗ latConst , cartAtomPos , Aatoms , Batoms , s h e l l s , d i s tTol ,

s t r u c t u r e s )

54

55 e l i f task == 1 :

56 i f ’ SQSs ’ and ’SROs AB ’ and ’SROs AC ’ and ’SROs BC ’ in os . l i s t d i r ( r ea lpa th ( ’ ’ ) ) :

57 pathSQSs = ’SQSs ’

58 pathSROsAB = ’SROs AB ’

59 pathSROsAC = ’SROs AC ’

60 pathSROsBC = ’SROs BC ’

61 else :

62 pathSQSs = promptPath ( ’What i s the name o f Your SQS− f i l e ? ’ )

63 pathSROsAB = promptPath ( ’What i s the name o f Your SRO− f i l e f o r AB−SROs? ’ )

64 pathSROsAC = promptPath ( ’What i s the name o f Your SRO− f i l e f o r AC−SROs? ’ )

65 pathSROsBC = promptPath ( ’What i s the name o f Your SRO− f i l e f o r BC−SROs? ’ )

66

67 analyzeSQS ( pathSQSs , pathSROsAB , pathSROsAC , pathSROsBC , header , latConst , bas i s ,

atomPos , nrSQS )

68

69 else :

70 generateSQS ( b a s i s ∗ latConst , cartAtomPos , Aatoms , Batoms , s h e l l s , d i s tTol ,

s t r u c t u r e s )

71

72 i f ’ SQSs ’ and ’SROs AB ’ and ’SROs AC ’ and ’SROs BC ’ in os . l i s t d i r ( r ea lpa th ( ’ ’ ) ) :

73 pathSQSs = ’SQSs ’

74 pathSROsAB = ’SROs AB ’

75 pathSROsAC = ’SROs AC ’

76 pathSROsBC = ’SROs BC ’

77 else :

78 pathSQSs = promptPath ( ’What i s the name o f Your SQS− f i l e ? ’ )

79 pathSROsAB = promptPath ( ’What i s the name o f Your SRO− f i l e f o r AB−SROs? ’ )

80 pathSROsAC = promptPath ( ’What i s the name o f Your SRO− f i l e f o r AC−SROs? ’ )

81 pathSROsBC = promptPath ( ’What i s the name o f Your SRO− f i l e f o r BC−SROs? ’ )

82

83 analyzeSQS ( pathSQSs , pathSROsAB , pathSROsAC , pathSROsBC , header , latConst , bas i s ,

atomPos , nrSQS )

84

85

86

87

88

89
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90 ############################################################################################

91 # FUNCTIONS #

92 ############################################################################################

93

94 def generateSQS ( a rSupe r c e l lBa s i s , l i S u p e r c e l l P o s , inNRAatoms , inNRBatoms , inNRshel l s ,

f lD i s tTo l e r ance , inNRstructures = 100000 ) :

95 ’ ’ ’

96 gene ra t e s the s p e c i a l−quasirandom s t r u c t u r e through s e v e r a l s t ep s :

97

98 1) expandes the s u p e r c e l l to the s i z e 3x3x3 to mimic the p e r i o d i c boundary c o n d i t i o n s in

the DFT−s imu la t i on

99 2) a s s i n g e s the atoms to the d i f f e r e n t s h e l l s accord ing to t h e i r d i s t ance

100 3) genrea t e s random c o n f i g u r a t i o n s f o r the binary system

101 4) eva lua t e s t h e i r shor t range order parameters

102 ’ ’ ’

103 # typeca s t i ng to l i s t o f 1−D arrays in case a 2−D array i s handed over

104 l i S u p e r c e l l P o s = l i s t ( l i S u p e r c e l l P o s )

105 i n S u p e r c e l l S i t e s = len ( l i S u p e r c e l l P o s )

106

107

108 # 1) c r e a t i n g a s u p e r c e l l o f the s u p e r c e l l to mimic the p e r i o d i c BC o f the DFT−
c l c u l a t i o n

109 l i P e r i o d i c C e l l P o s = [ ]

110 l i P o s i t i o n T a g s = [ ]

111 for a in [ −1 , 0 , 1 ] :

112 for b in [ −1 , 0 , 1 ] :

113 for c in [ −1 , 0 , 1 ] :

114 # l i s t o f atom−p o s i t i o n s in the ” p e r i o d i c”− c e l l

115 l i P e r i o d i c C e l l P o s . extend ( [ pos + np . dot ( np . array ( [ a , b , c ] ) , a r S u p e r c e l l B a s i s

) for pos in l i S u p e r c e l l P o s ] )

116 # l i s t o f po s i t i on− i d e n t i f i e r s

117 l i P o s i t i o n T a g s = l i P o s i t i o n T a g s + range (0 , i n S u p e r c e l l S i t e s )

118

119

120 # c r e a t i n g a l i s t o f the e x i s t i n g d i s t a n c e s

121 l i D i s t a n c e s = [ norm( pos − l i S u p e r c e l l P o s [ 0 ] ) for pos in l i P e r i o d i c C e l l P o s ]

122

123 # s o r t

124 l i D i s t a n c e s . s o r t ( )

125

126 # remove zero−entry

127 l i D i s t a n c e s . pop (0 )

128

129 # remove e n t r i e s that d i f f e r l e s s than the needed t o l e r a n c e

130 for i in xrange ( len ( l i D i s t a n c e s )−1, 0 , −1 ) :

131 i f ( l i D i s t a n c e s [ i ]− l i D i s t a n c e s [ i −1]) <= f l D i s t T o l e r a n c e : l i D i s t a n c e s . pop ( i )

132

133 # reduce the number o f d i s t a n c e s to number o f s h e l l s

134 inNRshe l l s = min( len ( l i D i s t a n c e s ) , inNRshe l l s )

135 l i D i s t a n c e s = l i D i s t a n c e s [ : inNRshe l l s ]

136 #pr i n t l i D i s t a n c e s

137 print ’The f o l l o w i n g s h e l l s i z e s ( next neighbour d i s t a n c e s ) w i l l be used : ’

138 print l i D i s t a n c e s

139

140

141 # 2) − a s s i g n i n g the atoms to the d i f f e r e n t s h e l l s

142

143 # f o r each s h e l l

144 d i S h e l l s = {}
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145 l iNRneighbours = [ ]

146 for shel lnumber in xrange ( 0 , inNRshe l l s ) :

147 she l l a toms = [ ]

148 print ’ Creat ing s h e l l %i with rad iu s %f f o r every atom of the s u p e r c e l l ’ % (

shel lnumber +1, l i D i s t a n c e s [ shel lnumber ] )

149

150 # the d i s t ance o f every atom in the o r i g i n a l s u p e r c e l l

151 summedNRneighbours = 0 .

152 for atom in l i S u p e r c e l l P o s :

153 she l lNe i ghbour s = [ ]

154

155 # to every atom in the p e r i o d i c c e l l i s checked

156 for neighbour in xrange ( 0 , len ( l i P e r i o d i c C e l l P o s ) ) :

157

158 # i f the d i s t ance between them i s equal to the s h e l l−rad iu s ( with in the

t o l e r a n c e )

159 vec = l i P e r i o d i c C e l l P o s [ neighbour ] − atom

160 i f abs ( np . s q r t ( ( vec∗vec ) .sum( a x i s =0) ) − l i D i s t a n c e s [ she l lnumber ] ) <

f l D i s t T o l e r a n c e :

161 # the pos i t i on−tag o f the neighbour−atom i s s to r ed in a l i s t

162 she l lNe i ghbour s . append ( l i P o s i t i o n T a g s [ neighbour ] )

163

164 # a f t e r a l l p o s s i b l e ne ighbours at the cur rent s h e l l−rad iu s f o r an atom are

checked , the neighbour− l i s t i s appended to the s h e l l l i s t

165 she l l a toms . append ( she l lNe i ghbour s )

166 summedNRneighbours += len ( she l lNe i ghbour s )

167

168 # a f t e r a l l atoms in the s u p e r c e l l have a l i s t o f ne ighbours f o r the cur rent s h e l l−
s i z e they are s to r ed in a d i c t i o n a r y

169 d i S h e l l s . update ( { shel lnumber : she l l a toms } )

170 l iNRneighbours . append ( summedNRneighbours/ i n S u p e r c e l l S i t e s )

171 print ’ Average nr . o f s h e l l−neighbours : ’

172 print l iNRneighbours

173

174 # 3) ,4 ) − Generation o f the SQS and c a l c u l a t i o n o f t h e i r SRO

175

176 # l i s t s f o r s t o r i n g the data

177 SQSs = [ ]

178 SROs AB = [ ]

179 SROs AC = [ ]

180 SROs BC = [ ]

181

182 print ’ Generating s p e c i a l quasirandom s t r u c t u r e s . ’

183 s t a r t = time . time ( )

184

185 xA = f loat ( inNRAatoms) / i n S u p e r c e l l S i t e s

186 xB = f loat ( inNRBatoms) / i n S u p e r c e l l S i t e s

187 xC = 1 . − xA − xB

188

189 print ’xA = %f ’ % xA

190 print ’xB = %f ’ % xB

191 print ’xC = %f ’ % xC

192

193

194 for s t r u c t u r e in xrange (0 , inNRstructures ) :

195 i f s t r u c t u r e % 100 == 0 : print ’ p r o c e s s i n g %i o f %i ’ % ( s t r u c t u r e +1, inNRstructures )

196

197 a rS i t eSp in = np . ones ( i n S u p e r c e l l S i t e s , int )∗−1

198 Aatoms = 0
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199 Batoms = 0

200

201 # genera t ing random occupat ion

202 # whi le the number o f A−atoms in the s t r u c t u r e i s lower than the t o t a l one

203 while Aatoms < inNRAatoms :

204 # a random p o s i t i o n in the s u p e r c e l l i s chosen and i f t h i s p o s i t i o n i s not

a l r eady

205 # occupied by an A−atom another one i s added the re

206 index = randint (0 , i n S u p e r c e l l S i t e s )

207 i f a rS i t eSp in [ index ] == −1:

208 a rS i t eSp in [ index ] = 1

209 Aatoms += 1

210

211 while Batoms < inNRBatoms :

212 # a random p o s i t i o n in the s u p e r c e l l i s chosen and i f t h i s p o s i t i o n i s not

a l r eady

213 # occupied by an A−atom another one i s added the re

214 index = randint (0 , i n S u p e r c e l l S i t e s )

215 i f a rS i t eSp in [ index ] == −1:

216 a rS i t eSp in [ index ] = 0

217 Batoms += 1

218

219 SQSs . append ( a rS i t eSp in )

220

221

222 # eva lua t ing the SROs f o r every s h e l l

223 structureSROs AB = [ ]

224 structureSROs AC = [ ]

225 structureSROs BC = [ ]

226 for key in d i S h e l l s :

227 N AB = 0 .

228 N BC = 0 .

229 N AC = 0 .

230 s h e l l = d i S h e l l s [ key ]

231 # loop ing through s i t e s o f the s u p e r c e l l

232 for s i t e in xrange (0 , i n S u p e r c e l l S i t e s ) :

233 # and t h e i r ne ighbours in the cur rent s h e l l

234 for neighbour in xrange (0 , len ( s h e l l [ s i t e ] ) ) :

235 # counter f o r the bonding type with neighbour

236 i f a rS i t eSp in [ s i t e ] == 1 and a rS i t eSp in [ s h e l l [ s i t e ] [ neighbour ] ] == 0 :

N AB += 1 .

237 e l i f a rS i t eSp in [ s i t e ] == 1 and a rS i t eSp in [ s h e l l [ s i t e ] [ neighbour ] ] ==

−1 : N AC += 1 .

238 e l i f a rS i t eSp in [ s i t e ] == 0 and a rS i t eSp in [ s h e l l [ s i t e ] [ neighbour ] ] == 1

: N AB += 1 .

239 e l i f a rS i t eSp in [ s i t e ] == 0 and a rS i t eSp in [ s h e l l [ s i t e ] [ neighbour ] ] ==

−1 : N BC += 1 .

240 e l i f a rS i t eSp in [ s i t e ] == −1 and a rS i t eSp in [ s h e l l [ s i t e ] [ neighbour ] ] ==

1 : N AC += 1 .

241 e l i f a rS i t eSp in [ s i t e ] == −1 and a rS i t eSp in [ s h e l l [ s i t e ] [ neighbour ] ] ==

0 : N BC += 1 .

242

243

244 # SRO = 1 − number fo A−B bonds in SC / number o f A−B bonds in a t o t a l l y random

a l l o y | ( x i = Ni/N , f a c t o r 1/2 f o r double count ing )

245 alpha AB = 1 . − (N AB / (2 ∗ xA ∗ xB ∗ i n S u p e r c e l l S i t e s ∗ l iNRneighbours [ key ] ) )

246 alpha AC = 1 . − (N AC / (2 ∗ xA ∗ xC ∗ i n S u p e r c e l l S i t e s ∗ l iNRneighbours [ key ] ) )

247 alpha BC = 1 . − (N BC / (2 ∗ xB ∗ xC ∗ i n S u p e r c e l l S i t e s ∗ l iNRneighbours [ key ] ) )

248

71



A. Appendix

249 structureSROs AB . append ( alpha AB )

250 structureSROs AC . append ( alpha AC )

251 structureSROs BC . append ( alpha BC )

252

253 SROs AB . append ( np . array ( structureSROs AB ) )

254 SROs AC . append ( np . array ( structureSROs AC ) )

255 SROs BC . append ( np . array ( structureSROs BC ) )

256

257 # s t o r i n g

258 print ’ S to r ing data . ’

259

260 arSQSs = np . array ( SQSs )

261

262 arSROs AB = np . array ( SROs AB )

263 arSROs AC = np . array ( SROs AC )

264 arSROs BC = np . array ( SROs BC )

265

266 i f ’ SQSs ’ and ’SROs AB ’ and ’SROs AC ’ and ’SROs BC ’ in os . l i s t d i r ( r ea lpa th ( ’ ’ ) ) :

267 print ”There are a l r eady SQS− and SRO− f i l e s in t h i s d i r e c t o r y . ”

268 mode = promptOptions ( ”Do you want to append or ove rwr i t e the e x i s t i n g f i l e s ?\ nPress

:\ ta − to append\tw − to ove rwr i t e ” , [ ’ a ’ , ’w ’ ] , strAnswerType=’ s t r ’ )

269 sqs = open( ’SQSs ’ , mode )

270 s ro ab = open( ’SROs AB ’ , mode )

271 s r o a c = open( ’SROs AC ’ , mode )

272 s ro bc = open( ’SROs BC ’ , mode )

273 np . savetxt ( sqs , arSQSs , fmt = ’%1i ’ )

274 np . savetxt ( sro ab , arSROs AB , fmt = ’%5f ’ )

275 np . savetxt ( s ro ac , arSROs AC , fmt = ’%5f ’ )

276 np . savetxt ( s ro bc , arSROs BC , fmt = ’%5f ’ )

277 sqs . c l o s e ( )

278 s ro ab . c l o s e ( )

279 s r o a c . c l o s e ( )

280 s ro bc . c l o s e ( )

281 else :

282 np . savetxt ( ’SQSs ’ , arSQSs , fmt = ’%1i ’ )

283 np . savetxt ( ’SROs AB ’ , arSROs AB , fmt = ’%5f ’ )

284 np . savetxt ( ’SROs AC ’ , arSROs AC , fmt = ’%5f ’ )

285 np . savetxt ( ’SROs BC ’ , arSROs BC , fmt = ’%5f ’ )

286 end = time . time ( )

287 print ’ e l apsed time : %f ’ % ( end−s t a r t )

288

289 # − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − −#

290

291 def analyzeSQS ( stPathSQSs , stPathSROsAB , stPathSROsAC , stPathSROsBC , stOUTheader ,

f lLatConst , arOUTbasis , liOUTatompos , inNRoutputSQSs=5 ) :

292 ’ ’ ’

293 ’ ’ ’

294 try :

295 print ’ Loading data .\n ’

296 arSQSs = np . l oadtx t ( stPathSQSs , dtype = int )

297 arSROs AB = np . l oadtx t ( stPathSROsAB , dtype = f loat )

298 arSROs AC = np . l oadtx t ( stPathSROsAC , dtype = f loat )

299 arSROs BC = np . l oadtx t ( stPathSROsBC , dtype = f loat )

300

301 except :

302 print ’ Error whi l e l oad ing data . ’

303 e x i t (0 )

304

305 print ’ Analyzing SROs .\n ’
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306 inNRshe l l s = len ( arSROs AB [ 0 ] )

307

308 # array with weights o f the d i f f e r e n t SROs

309 arWeights = np . array ( [ ( 1 .+2 .∗ ( inNRshel l s−i ) /( inNRshel l s −1) ) for i in range (1 ,

inNRshe l l s +1) ] )

310 print ’SRO−weights are : ’

311 print ’%f ’ ∗ len ( arWeights ) % tuple ( arWeights ) + ’ \n ’

312 # array o f weighted SROs

313 weightedSROs = np .sum( np . abso lu t e (arSROs AB) ∗ arWeights , a x i s = 1 ) + np .sum( np .

abso lu t e (arSROs AC) ∗ arWeights , a x i s = 1 ) + np .sum( np . abso lu t e (arSROs BC) ∗
arWeights , a x i s = 1 )

314 # array conta in ing the i n d i c e s o f the lowest weighted SROs

315 a r I n d i c e s = np . a r g p a r t i t i o n ( weightedSROs , range (0 , inNRoutputSQSs+1) ) [ : inNRoutputSQSs ]

316

317 # the best va lue s

318 liMinSROs = [ weightedSROs [ index ] for index in a r I n d i c e s ]

319 liBestSROs AB= [ arSROs AB [ index ] for index in a r I n d i c e s ]

320 liBestSROs AC= [ arSROs AC [ index ] for index in a r I n d i c e s ]

321 liBestSROs BC= [ arSROs BC [ index ] for index in a r I n d i c e s ]

322 l iBestSQSs= [ arSQSs [ index ] for index in a r I n d i c e s ]

323

324 print ’ Creat ing output− f i l e s .\n ’

325 for o u t f i l e in xrange (0 , len ( l iBestSQSs ) ) :

326

327 f i l e O b j = open( r ea lpa th ( ’ SQSsuperce l l%i . vasp ’ % ( o u t f i l e +1) ) , ’w ’ )

328 f i l e O b j . wr i t e ( stOUTheader + ’ SQS%i (% f ) \n ’ % ( o u t f i l e +1, liMinSROs [ o u t f i l e ] ) )

329 f i l e O b j . wr i t e ( str ( f lLatConst )+ ’ \n ’ )

330

331 for a i in arOUTbasis :

332 f i l e O b j . wr i t e ( ’%f %f %f \n ’ % tuple ( a i ) )

333

334 indexA = [ ]

335 indexB = [ ]

336 indexC = [ ]

337 for index in xrange (0 , len ( liOUTatompos ) ) :

338 i f l iBestSQSs [ o u t f i l e ] [ index ] == 1 : indexA . append ( index )

339 e l i f l iBestSQSs [ o u t f i l e ] [ index ] == 0 : indexB . append ( index )

340 else : indexC . append ( index )

341

342 f i l e O b j . wr i t e ( ’A B C\n ’ )

343 f i l e O b j . wr i t e ( ’%i %i %i \n ’ % ( len ( indexA ) , len ( indexB ) , len ( indexC ) ) )

344 f i l e O b j . wr i t e ( ’ D i r ec t \n ’ )

345

346 for A in indexA : f i l e O b j . wr i t e ( ’ %.10 f %.10 f %.10 f ! atom A\n ’ % tuple ( liOUTatompos [

A] ) )

347 for B in indexB : f i l e O b j . wr i t e ( ’ %.10 f %.10 f %.10 f ! atom B\n ’ % tuple ( liOUTatompos [

B ] ) )

348 for C in indexC : f i l e O b j . wr i t e ( ’ %.10 f %.10 f %.10 f ! atom C\n ’ % tuple ( liOUTatompos [

C] ) )

349 f i l e O b j . c l o s e ( )

350

351 print ’Done !\n ’

352

353 # − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − −#

354

355 def promptOptions ( str InputQuest ion , l iAnswerOptions , strAnswerType=’ s t r ’ ) :

356 ’ ’ ’

357 func t i on to prompt input from the command l i n e

358
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359 Usage : input = promting ( ’ Question ’ , [ answer1 , answer2 , . . . ] , stAnswerType= type )

360 type i s e i t h e r s t r i n g or i n t e g e r .

361 To use in t ege r−type answers g ive a l i s t o f i n t ege r−answer opt ions and s p e c i f y

strAnswerType = ’ i n t ’

362 ( ’ i ’ , ’ Int ’ , ’ INT ’ and ’ I ’ a l s o r ecogn i z ed ) .

363 In any other case the answer−type i s s t r i n g and a l i s t o f cha rac t e r / s t r i n g

opt ions i s needed .

364 ’ ’ ’

365 val idAnswer = False

366 while not validAnswer :

367

368 try :

369 print s t r InputQuest ion

370

371 i f strAnswerType [ 0 ] . lower ( ) == ’ i ’ :

372 answer = raw input ( ’> ’ )

373 i f ’ holy g r a i l ’ in answer . lower ( ) :

374 print ’ \nHai l to You Arthur , king o f the b r i t a i n s !\n ’

375 else : answer = int ( answer )

376

377 else : answer = raw input ( ’> ’ )

378

379 i f answer in l iAnswerOptions :

380 val idAnswer = True

381 return answer

382

383 else : raise ValueError

384

385 except ValueError : print ’ \aNNNI ! We want a v a l i d input !\n ’

386

387 # − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − −#

388

389 def promptPath ( s t r InputQuest ion ) :

390

391

392 val idAnswer = False

393 while not validAnswer :

394 try :

395 print s t r InputQuest ion

396 answer = raw input ( ’> ’ )

397

398 i f answer in os . l i s t d i r ( r ea lpa th ( ’ ’ ) ) :

399 val idAnswer = True

400 return answer

401

402 else : raise ValueError

403

404 except ValueError : print ’ \aNNNI ! We want v a l i d input !\n ’

405

406 # − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − −#

407

408 def r e ad Se t t i ng s ( s t rPa thSe t t i ng s ) :

409 try :

410 s e t t i n g s = open( r ea lpa th ( s t rPa thSe t t i ng s ) )

411

412 d i s tTo l = f loat ( s e t t i n g s . r e a d l i n e ( ) . s p l i t ( ) [ 0 ] )

413 s h e l l s = int ( s e t t i n g s . r e a d l i n e ( ) . s p l i t ( ) [ 0 ] )

414 Aatoms = int ( s e t t i n g s . r e a d l i n e ( ) . s p l i t ( ) [ 0 ] )

415 Batoms = int ( s e t t i n g s . r e a d l i n e ( ) . s p l i t ( ) [ 0 ] )
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416 s t r u c t u r e s = int ( s e t t i n g s . r e a d l i n e ( ) . s p l i t ( ) [ 0 ] )

417 nrSQSoutput = int ( s e t t i n g s . r e a d l i n e ( ) . s p l i t ( ) [ 0 ] )

418

419 s e t t i n g s . c l o s e ( )

420

421 return dis tTol , s h e l l s , Aatoms , Batoms , s t ruc tu r e s , nrSQSoutput

422

423 except ( Exception , ValueError , IndexError ) as Error :

424 print Error

425 print Error . a rgs

426 print ’COULD NOT READ SETTINGS FILE ! ’

427 print ’You must re turn with a proper one or e l s e You w i l l never pass through t h i s

s c r i p t . . . a l i v e ! An exampe− f i l e i s p r in ted .\n ’

428 exampleInputFi le (0 )

429 e x i t (0 )

430

431

432 # − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − −#

433

434 def r e a d S u p e r c e l l ( s t rPathStructure , strPathAtomSites ) :

435 try :

436 # read s t r u c t u r e f i l e

437 f o S t r u c t u r e = open( r ea lpa th ( s t rPathSt ruc ture ) )

438 strucHeader = f o S t r u c t u r e . r e a d l i n e ( ) . s t r i p ( )

439 f lLatConst = f loat ( f o S t r u c t u r e . r e a d l i n e ( ) )

440

441 l i B a s i s = [ ]

442 for i in [ 0 , 1 , 2 ] :

443 l i B a s i s . append ( f o S t r u c t u r e . r e a d l i n e ( ) . s p l i t ( ) [ : 3 ] )

444 f o S t r u c t u r e . c l o s e ( )

445 arBas i s = np . array ( l i B a s i s , f loat )

446

447 # read atom−s i t e f i l e

448 f o P o s i t i o n s = open( r ea lpa th ( strPathAtomSites ) )

449 posHeader = f o P o s i t i o n s . r e a d l i n e ( ) . s t r i p ( )

450 nrIons = int ( f o P o s i t i o n s . r e a d l i n e ( ) )

451

452 liAtomPos = [ ]

453 for l i n e in f o P o s i t i o n s :

454 d i r e c t = np . array ( l i n e . s p l i t ( ) [ : 3 ] , f loat )

455 liAtomPos . append ( d i r e c t )

456 f o P o s i t i o n s . c l o s e ( )

457 #a r S i t e s = np . array ( l i S i t e s , f l o a t )

458

459

460 # smal l c o n s i s t e n c y checks o f the input

461 i f strucHeader != posHeader : print ’BE WARNED: the two f i l e s have d i f f e r e n t headers !

They might belong to d i f f e r e n t s t r u c t u r e s . ’

462

463 i f len ( liAtomPos ) > nrIons :

464 liAtomPos = liAtomPos [ : ( nr Ions +1) ]

465 print ’BE WARNED: number o f s i t e s and number o f coord inate−s e t s do not f i t ! Only

f i r s t %i coord ina te s e t s used ! ’ % NrS i te s

466 e l i f len ( liAtomPos ) < nrIons : raise ValueError ( ’Number o f s i t e s and number o f

coord inate−s e t s do not f i t ! ’ )

467

468 # ATTENTION: l i s t o f po s i t i on−ar rays i s returned not array

469 return strucHeader , arBas i s , f lLatConst , liAtomPos

470

75



A. Appendix

471 except ( Exception , ValueError , IndexError ) as Error :

472 print Error

473 print Error . a rgs

474 print ’COULD NOT READ SUPERCELL FILES ! ’

475 print ’We want some proper ones ! Some that look n i c e . And not too expens ive . Example

− f i l e s are pr in ted .\n ’

476 exampleInputFi le (1 )

477 e x i t (0 )

478

479 # − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − −#

480

481 def exampleInputFi le ( inType ) :

482 try :

483 i f inType == 0 :

484 ex = open( r ea lpa th ( ’ examp leSe t t ing sF i l e ’ ) , ’w ’ )

485 ex . wr i t e ( ’ t o l a r a n c e d i s t ance f o r s h e l l c l a s s i f i c a t i o n ( f l o a t ) \nnumber o f s h e l l s

to be cons ide r ed ( i n t ) \n ’ )

486 ex . wr i t e ( ’ number o f atoms o f type A ( i n t ) \nnumber o f atoms o f type B ( i n t ) \
nnumber o f s t r u c t u r e s to be generated ( i n t ) \n ’ )

487 ex . wr i t e ( ’ number o f SQS−s u p e r c e l l s to be wr i t t en out ( i n t ) ’ )

488 ex . c l o s e ( )

489

490 e l i f inType == 1 :

491 ex1 = open( r ea lpa th ( ’ examp l eSupe r c e l l S t ruc tu r eF i l e ’ ) , ’w ’ )

492 ex1 . wr i t e ( ’name/ d e s c r i p t i o n ( s t r i n g ) \ n l a t t i c e constant ( f l o a t ) \n ’ )

493 ex1 . wr i t e ( ’ a 1 a 2 a 3 ( komponents o f the bas i s−ve c t o r s separated by space ,

format f l o a t ) \n ’ )

494 ex1 . wr i t e ( ’ b 1 b 2 b 3 ( must have the r i g h t l ength accord ing to the used

s u p e r c e l l ) \n ’ )

495 ex1 . wr i t e ( ’ c 1 c 2 c 3 ( eg . 2x b a s i s v e c t o r s o f the un i t c e l l f o r a 2x2x2

s u p e r c e l l ) \n ’ )

496 ex1 . c l o s e ( )

497

498 ex2 = open( r ea lpa th ( ’ exampleSuperce l lAtompos i t ionFi l e ’ ) , ’w ’ )

499 ex2 . wr i t e ( ’name/ d e s c r i p t i o n ( s t r i n g ) \nnumber o f atoms in the s u p e r c e l l ( i n t ) \n ’

)

500 ex2 . wr i t e ( ’ x 1 y 1 z 1 ( d i r e c t coo rd ina t e s o f the f i r s t atom separated by space

, format f l o a t ) \n ’ )

501 ex2 . wr i t e ( ’ x 2 y 2 z 2 ( d i r e c t coo rd ina t e s o f the second atom ) \n . . . ’ )

502 ex2 . c l o s e ( )

503 else : raise ValueError

504 except : print ’ Could not p r i n t example−input f i l e s ’

505 # − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − −#

506

507 i f name == ’ ma in ’ :

508 ma in ( )

ternarySQS.py
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[63] G. Jouve, C. Séverac, and S. Cantacuzène, Thin Solid Films 287, 146 (1996).

[64] N. Hayashi, I. Murzin, I. Sakamoto, and M. Ohkubo, Thin Solid Films 259, 146

(1995).

[65] M. Nakanishi, Y. Tsuchiya, N. Nakayama, K. Yoshimura, K. Kosuge, S. Nagata, and

S. Yamaguchi, Physica C: Superconductivity 253, 33 (1995).

[66] A. B. Kaul, S. R. Whiteley, T. V. Duzer, L. Yu, N. Newman, and J. M. Rowell,

Applied Physics Letters 78, 99 (2001).

[67] Z. Wang, A. Kawakami, and Y. Uzawa, Physica C: Superconductivity and its Appli-

cations 282, 2465 (1997).
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