
Tailored Tree Decompositions for
Efficient Problem Solving

DISSERTATION

zur Erlangung des akademischen Grades

Doktor der Technischen Wissenschaften

eingereicht von

DI Michael Abseher, BSc
Matrikelnummer 0828282

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Univ.Prof. Dipl.-Ing. Dr.techn. Stefan Woltran
Co-Betreuung: Privatdoz. Dipl.-Ing. Dr.techn. Nysret Musliu

Diese Dissertation haben begutachtet:

Prof. Dr. Rolf Niedermeier Prof. Luca Di Gaspero, PhD

Wien, 5. März 2017
Michael Abseher

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Die approbierte Originalversion dieser
Dissertation ist in der Hauptbibliothek der
Technischen Universität Wien aufgestellt und
zugänglich.
http://www.ub.tuwien.ac.at

The approved original version of this thesis is
available at the main library of the Vienna
University of Technology.

http://www.ub.tuwien.ac.at/eng

Tailored Tree Decompositions for
Efficient Problem Solving

DISSERTATION

submitted in partial fulfillment of the requirements for the degree of

Doktor der Technischen Wissenschaften

by

DI Michael Abseher, BSc
Registration Number 0828282

to the Faculty of Informatics

at the TU Wien

Advisor: Univ.Prof. Dipl.-Ing. Dr.techn. Stefan Woltran
Co-Advisor: Privatdoz. Dipl.-Ing. Dr.techn. Nysret Musliu

The dissertation has been reviewed by:

Prof. Dr. Rolf Niedermeier Prof. Luca Di Gaspero, PhD

Vienna, 5th March, 2017
Michael Abseher

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Erklärung zur Verfassung der
Arbeit

DI Michael Abseher, BSc
Walpersbach 198, A-2822 Walpersbach

Hiermit erkläre ich, dass ich diese Arbeit selbstständig verfasst habe, dass ich die
verwendeten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen
der Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken
oder dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 5. März 2017
Michael Abseher

v

Danksagung

Zuallererst möchte ich meinen beiden Betreuern, Stefan Woltran und Nysret Musliu, für
ihre exzellente Unterstützung danken. Die Förderung, die ich durch sie erfahren durfte,
sowie auch ihre Expertise, waren von unschätzbarem Wert für den Fortschritt dieser
Arbeit. Es war immer eine Freude, mit ihnen zu arbeiten und ich bin sehr dankbar für
ihre hilfreichen Ratschläge und die geduldige Anleitung in den vergangenen Jahren.

Ebenfalls möchte ich meine große Dankbarkeit gegenüber allen Mitarbeiterinnen und
Mitarbeitern der Arbeitsgruppe für Datenbanken und Künstliche Intelligenz am Institut
für Informationssysteme der Technischen Universität Wien ausdrücken. Die Zusammen-
arbeit mit ihnen war großartig. An diesem Punkt möchte ich speziell Günther Charwat
danken. Durch seine vielen Ideen zur Verbesserung und Erweiterung der für diese Arbeit
entwickelten Programmbibliothek, sowie des Testens selbiger, hat er einen wichtigen
Beitrag zu deren Umsetzung geleistet.

Ich bin meinen Eltern zu tiefster Dankbarkeit verpflichtet. Sie haben mich in den letzten 28
Jahren durch alle Höhen und Tiefen des Lebens begleitet. Selbst in schweren Zeiten waren
sie immer für mich da und von meiner Kindheit an haben sie mich immer darin bestärkt,
niemals etwas aufzugeben, was einmal begonnen wurde. Ohne ihre Unterstützung und
Geduld wäre diese Arbeit nicht möglich gewesen.

Weiters möchte ich auch all meinen Freundinnen, Freunden, Kolleginnen und Kollegen
danken, die mein Leben jeden Tag aufs Neue bereichern. In diesem Zusammenhang
möchte ich speziell meine beiden besten Freundinnen, Theresa Rasinger und Nicole
Wagner, hervorheben. Die Mountainbiketouren mit Theresa waren immer lustig und
halfen mir, den Kopf frei zu bekommen für anstehende Publikationstätigkeiten. Auch
möchte ich keinen einzigen Tag mit Nicole vermissen, denn sie bringt mich immer zum
Lachen und vermutlich ist sie meine Seelenverwandte. Mit jeder meiner beiden besten
Freundinnen durfte (und darf) ich Jahre voll Freude, Abenteuern und unvergesslichen
Momenten genießen. Mögen diese Zeiten niemals enden.

Zu guter Letzt möchte ich Julia Laubender dafür danken, dass sie mich an jedem einzelnen
Tag der letzten Jahre immer mit der notwendigen Portion Motivation ausgestattet hat.
Durch ihre unvergleichliche, wundervolle Art nimmt Julia eine spezielle Position in
meinem Leben ein.

vii

Acknowledgements

First of all, I want to thank my advisors, Stefan Woltran and Nysret Musliu, for their
excellent support. Their encouragement as well as their expertise were invaluable for
the progress of this thesis. It was always a pleasure to work with them and I am very
grateful for their helpful advice and patient guidance throughout the last years.

Further, I also want to express my gratitude to all the members of the DBAI group of
the Institute of Information Systems at TU Wien. I had a great time working with them.
Many thanks, at this point, to Günther Charwat for constantly providing me with new
ideas and suggestions regarding the software library I developed for this thesis and for
carefully testing all of its features.

I am deeply grateful to my parents for their support and patience during the past 28
years. Even in hard times, the always have been there for me and, from my childhood
on, they inspired me to never give up anything I have started. Without them, this work
would not have been possible.

Furthermore, I thank all my friends and colleagues for enriching my life. In this context,
I want to pay special tribute to my two very best friends, Theresa Rasinger and Nicole
Wagner. The mountain bike tours with Theresa were always fun and they helped me to
keep my head free in order to be prepared for upcoming publication tasks. Also, I do not
want to miss a single day with Nicole because she always knows how to make me laugh
and she is probably my soul mate. With both of my best friends, I enjoy(ed) years full of
fun, adventures and unforgettable moments. May these times never end.

Last but not least, I would like to thank Julia Laubender for always providing me with
the right amount of motivation on all days in the last couple of years. Because of her
unmatched, marvelous nature, she takes a special position in my life.

ix

Kurzfassung

Zerlegungen von Graphen und Hypergraphen spielen eine wichtige Rolle im Bereich
der Forschung zum Thema “Parametrisierte Komplexität”. Baumzerlegungen stellen in
diesem Zusammenhang ein wichtiges Konzept dar, da – sofern die Probleminstanzen
gewissen Eigenschaften genügen – dynamische Programmierung basierend auf diesen
Zerlegungen eine gängige Methode zur effizienten Lösung einer Vielzahl von Problemen
ist, obwohl diese Probleme aus Sicht der grundlegenden Komplexitätstheorie oftmals als
inhärent schwer gelten.

Hierbei ist der Parameter Baumweite von entscheidender Bedeutung. Genauer gesagt
ist, aus theoretischer Sicht, die Weite der verwendeten Zerlegung einer Probleminstanz
der essenzielle Parameter für die Laufzeit eines Algorithmus, welcher das Konzept der
dynamischen Programmierung auf Baumzerlegungen implementiert. Dennoch ist es in der
Praxis oft der Fall, dass diese Algorithmen sehr sensibel auf die verwendeten Zerlegungen
reagieren. Das zeigt sich unter anderem dadurch, dass, obwohl zwei Zerlegungen von der
gleichen Probleminstanz stammen und sie die gleiche Weite aufweisen, die Laufzeit des
Algorithmus oftmals stark unterschiedlich ausfällt, abhängig davon welche der beiden
Zerlegungen schlussendlich verwendet wird.

Daher ist eindeutig erwiesen dass in der Praxis die Qualität einer Baumzerlegung nicht
allein aufgrund ihrer Weite bestimmt werden kann. Vielmehr müssen auch die weitere
Gestalt der Zerlegung und der konkrete Algorithmus, in dem diese verwendet wird, für
die Beurteilung der Qualität herangezogen werden. Daher stellen wir in dieser Arbeit
das Konzept der sogenannten Maßgeschneiderten Baumzerlegungen vor. Darunter sind
Baumzerlegungen zu verstehen, die entsprechend spezieller, benutzerdefinierter Kriterien
modifiziert und optimiert wurden.

Diese Abschlussarbeit stellt zwei Ansätze vor, um sowohl Effizienz als auch Robustheit von
Algorithmen basierend auf dynamischer Programmierung zu steigern. Der erste Ansatz
verwendet Techniken aus dem Bereich des maschinellen Lernens zur Vorhersage der
Laufzeit von Algorithmen unter Berücksichtigung der konkreten Baumzerlegung die diese
verwenden. Zu diesem Zweck identifizieren wir in dieser Arbeit eine Vielzahl an Parametern
zur Charakterisierung von Baumzerlegungen. Ausführliche Experimente, welche ebenfalls
in dieser Arbeit vorgestellt werden, zeigen, dass die Effizienz von Algorithmen, die dem
Konzept der dynamischen Programmierung auf Baumzerlegungen entsprechen, signifikant
gesteigert werden kann, wenn diese auf Baumzerlegungen, welche sich auf Basis der

xi

Analyse mittels maschinellem Lernen als vorteilhaft herausstellen, operieren. Der zweite
Ansatz verfolgt die Idee, Algorithmen direkt mit solch vorteilhaften Baumzerlegungen zu
versorgen ohne den Umweg über eine Vorselektion basierend auf maschinellem Lernen.
Daher präsentieren wir in dieser Arbeit auch ein freies, quelloffenes Softwareframework
für die effiziente Berechnung von maßgeschneiderten Baumzerlegungen. Diese flexibel
erweiterbare Programmbibliothek erlaubt die Generierung von Zerlegungen welche exakt
auf den jeweiligen Algorithmus zugeschnitten sind. Auch in den Experimenten bezüglich
dieses zweiten Ansatzes zeigt sich ein signifikanter, positiver Einfluss auf die Laufzeit
von Algorithmen wenn diese maßgeschneiderte Baumzerlegungen verwenden.

Abstract

Decompositions of graphs and hypergraphs play a central role in the field of parameterized
complexity theory. Tree decompositions are a prominent concept in this context since –
given that instances enjoy certain structural properties – dynamic programming on tree
decompositions allows to solve many computational problems efficiently although they
are intractable in the general case. This is because tree decompositions are the basis for
many fixed-parameter tractable algorithms for solving NP-hard problems.

From a theoretical point of view, the parameter treewidth is crucial for the efficiency
of such algorithms. To be more precise, the width of the tree decomposition actually
used is assumed to be a key ingredient towards performance. However, experience shows
that dynamic programming algorithms often exhibit a high runtime variance when using
different tree decompositions; in fact, given an instance of the problem at hand, even
decompositions of the same width might yield extremely diverging solving times. This
means that, besides the width there must be other features of tree decompositions which
affect the performance of dynamic programming algorithms.

Hence, in practice, the quality of a tree decomposition cannot be judged without taking
its shape and the concrete algorithm in which the decomposition is used into account.
We thus propose in this thesis the concept of what we call customized tree decompositions,
i.e., tree decompositions which reflect certain preferences with regard to custom quality
criteria.

We present in this work two approaches which allow to reliably boost both efficiency and
robustness of dynamic programming algorithms. The first approach employs techniques
from the area of machine learning. We identify a large set of tree decomposition features
and use machine learning for predicting the runtime of dynamic programming algorithms
based on these features. Extensive experiments conducted in this context underline
that customized tree decompositions obtained by selecting promising decompositions
according to this strategy are highly beneficial. The second approach then aims for the
fast computation of such beneficial tree decompositions. For this reason we present here
a flexible and efficient software framework for computing graph decompositions which
allows to easily obtain decompositions perfectly tailored towards the algorithm in which
they are used. Also in the experiments concerning this second approach, the use of
customized tree decompositions significantly improves the performance of the dynamic
programming algorithms.

xiii

Contents

Kurzfassung xi

Abstract xiii

Contents xv

1 Introduction 1
1.1 Research Questions and Methodology 3
1.2 Contribution . 4
1.3 Publications and Systems . 5
1.4 Thesis Outline . 6

2 Background 7
2.1 Computational Complexity Theory . 7
2.2 Structural Decompositions of Graphs 14
2.3 Dynamic Programming on Tree Decompositions 21
2.4 Machine Learning . 33

3 The Impact of Tree Decomposition Selection 39
3.1 Improving the Efficiency of DP Algorithms 40
3.2 Experimental Evaluation . 47
3.3 Discussion . 61

4 A Framework for (Customized) Tree Decompositions and Beyond 63
4.1 A General Framework for Custom Decompositions 64
4.2 Developer Documentation . 70
4.3 Algorithm Engineering . 86
4.4 htd at Work . 94
4.5 Performance Characteristics . 103
4.6 Discussion . 107

5 Exploiting Customized Tree Decompositions 109
5.1 Case Study: dynQBF . 109
5.2 Case Study: D-FLAT . 116

xv

5.3 Discussion . 121

6 Related Work 123

7 Conclusion 127
7.1 Summary . 127
7.2 Future Work . 128

List of Figures 131

List of Tables 133

List of Algorithms 135

Bibliography 137

CHAPTER 1
Introduction

Although they are not always recognized as such, graphs are omnipresent in everyday
life. Basically, any situation in which there exist specific connections between certain
objects can be seen and analyzed from a graph-theoretic perspective. For instance, road
and public transport networks, computer networks as well as social networks all can be
interpreted as graphs. Strictly speaking, any imaginable example of a network represents
in principle a graph.

Indeed, the fact that graphs allow to provide abstractions of real-world networks is not
an end in itself. Moreover, many tasks which occur in practical application scenarios
are reducible to computational problems defined on graphs. For this reason, graphs are
probably one of the most important concepts in computer science.

Fulfilling a specific task, like, e.g., “Given a geographical map and a list of cities, find the
shortest combination of transportation routes such that all the cities are connected!”, often
consumes a lot of time especially when the search space, i.e., the number of possibilities
to choose from, is large. A prominent approach to boost the performance of algorithms
for solving such computational problems is based on so-called graph decompositions.

Graph decompositions are an important concept in the field of parameterized complexity
theory. As the name suggests, the term refers to the decomposition of the input graph into
a number of smaller parts which are assumed to be easier to handle than the whole graph at
once. A wide variety of approaches for graph decomposition can be found in the literature
including tree decompositions [BB73, Hal76, RS84], branch decompositions [RS91], and
hypertree decompositions [GLS02] (of hypergraphs), to mention just a few.

The concept of tree decompositions gained special attention since many NP-hard search
problems become tractable when the parameter treewidth (which refers to the minimum

1

1. Introduction

width1 over all possible tree decompositions of the given problem instance) is bounded by
some constant k [AP89, Nie06, BK08]. A problem which exhibits tractability by bounding
a problem-inherent constant is also called fixed-parameter tractable (FPT) [DF99].

A promising technique for solving problems on the basis of structural graph decompositions
is the computation of a tree decomposition followed by a dynamic programming (DP)
algorithm which traverses the nodes of the decomposition and consecutively solves the
respective sub-problems [Nie06]. For problems that are FPT with respect to treewidth,
the general runtime of such algorithms for an instance of size n is f(k) · nO(1), where f is
an arbitrary function over width k of the tree decomposition used. In fact, this approach
has been used for several applications, including inference problems in probabilistic
networks [LS88], frequency assignment [KvHK99], computational biology [XJB05], logic
programming [MMP+12] as well as the Steiner Tree problem [FBN15].

From a theoretical point of view, the actual width k is the crucial parameter towards
efficiency for FPT algorithms that use tree decompositions. In general, there exists
a multitude of tree decompositions of the same width which can be obtained from a
problem instance and it is often unclear, which one to choose for highest performance.
In terms of FPT algorithms for treewidth, practical experience shows that repeated
experiments with heuristically generated tree decompositions often suffer from poor
robustness. Moreover, even selecting a different root node for exactly the same tree
decomposition can dramatically change the running time of dynamic programming
algorithms.

To overcome this issue of sometimes extremely diverging solving times for the very same
problem instance, Morak et al. [MMP+12], for instance, suggested that the consideration
of further features of tree decompositions is important for the actual runtime of dynamic
programming algorithms for answer set programming. In another paper, Jégou and
Terrioux [JT14] observed that the existence of multiple connected components in the
same tree node (bag) may have a negative impact on the efficiency of solving constraint
satisfaction problems.

A commonality of these observations is the fact that there is strong evidence that the
width of the concrete tree decomposition at hand is not the only parameter which has
influence on the actual runtime of a dynamic programming algorithm. This underlines
that the quality of a tree decomposition cannot be judged without taking its shape and
the concrete application scenario, i.e., the dynamic programming algorithm in which the
given decomposition is used, into account.

Due to the inherent complexity of a variety of computational problems, the approach of
decomposing problem instances and solving them in a divide-and-conquer manner (like
it is done in dynamic programming algorithms based on tree decompositions) becomes
important. Recently, several practical implementations of algorithms for computing tree
decompositions participated in the “First Parameterized Algorithms and Computational

1Roughly speaking, the width of a tree decomposition is defined by the size of its largest component
(bag). For more details regarding tree decompositions and related notions, see Section 2.2.

2

1.1. Research Questions and Methodology

Experiments Challenge” (PACE 2016)2. According to its organizers, the primary goal of
the PACE challenge is to unite fixed-parameter tractability and practice. Furthermore,
also an open database for the computation, storage and retrieval of tree decompositions
was initiated [vWK17] very recently.

1.1 Research Questions and Methodology
The fact that, given a problem instance and a dynamic programming algorithm, even
tree decompositions of exactly the same width often lead to a significantly different
runtime behavior, can be very problematic in practical application scenarios in which
solving time is crucial. Therefore we see a big need to gain deeper insights into the actual
structure of tree decompositions in order to increase robustness and efficiency of dynamic
programming algorithms.

This strongly calls for detailed and extensive experiments which allow to precisely analyze
the runtime behavior of dynamic programming algorithms in the presence of different tree
decompositions. Furthermore, we do not want to restrict ourselves to a passive analysis
of the effects of different tree decompositions (of the same width) on the efficiency of DP
algorithms. We also want to be able to exploit our findings to stabilize and improve the
runtime of those algorithms by providing efficient ways to customize tree decompositions
effectively so that they fit optimally to the concrete dynamic programming algorithms in
which they are used.

In some sense, the thesis at hand is therefore in line with the opinion of Gutin [Gut15],
who recently stressed that, to turn the concept of fixed-parameter tractability to practical
success, more empirical work is required.

In particular, in this thesis we want to answer the following research questions:

1. How does the shape of tree decompositions affect the performance of dynamic
programming algorithms? That is, are there features of tree decompositions other
than the plain width which allow to discriminate between different decompositions
(of the same instance) in terms of their performance impact on DP algorithms?
If there are, how can we exploit this valuable knowledge in order to improve the
efficiency and robustness of dynamic programming algorithms which rely on tree
decompositions?

2. What types of customization of tree decompositions exist and how can we make them
easily accessible and practically usable for the growing community of developers of
dynamic programming algorithms?

3. Do customized tree decompositions indeed give us a significant advantage in terms
of a reduced overall running time of dynamic programming algorithms which use
them instead of non-customized ones?

2See https://pacechallenge.wordpress.com/track-a-treewidth/ for more details.

3

https://pacechallenge.wordpress.com/track-a-treewidth/

1. Introduction

To answer Question 1, we characterize tree decompositions by means of several features
and we use well-established techniques from the area of machine learning to predict the
running time of dynamic programming algorithms based on these features. A large series
of experiments is conducted in which the prediction is exploited in such a way that the
tree decomposition of minimum predicted runtime is used by the dynamic programming
algorithm instead of an arbitrary one of similar width. Ideally, the actual solving time for
a given problem instance is then significantly lower for the “tailored” tree decomposition
than for the random one.

Question 2 requires the development of a decomposition software library which is able to
directly customize the computed tree decompositions as, to the best of our knowledge,
there does not yet exist a framework for tree decompositions which allows for a problem-
specific customization of the resulting decompositions. We will analyze the effectiveness
and efficiency of our framework by means of a thorough experimental comparison between
our system and other state-of-the-art tree decomposition frameworks.

To answer Question 3, we use our new software framework to investigate its impact on
the running time of dynamic programming algorithms. This is done by an experimental
comparison between the time needed to solve different problem instances using tree
decompositions tailored towards the concrete dynamic programming algorithms and
the time needed to solve the given problems based on “standard”, non-customized tree
decompositions.

1.2 Contribution

Our main contributions can be summarized as follows:

1. We identify a large set of tree decomposition features which allow to characterize the
structure of a given tree decomposition. The proposed features include properties
related to the decomposition size, features specific to node types as well as several
structural parameters.

2. We show that, on the basis of well-established machine learning algorithms, one can
achieve significant improvements in terms of the runtime of dynamic programming
algorithms when choosing a tree decomposition from a pool of heuristically generated
ones based on the identified features.

3. We provide a powerful, free and open-source software framework, called htd, which
allows to efficiently compute and fully customize tree decompositions while still
retaining the desired property of low width. The framework is developed with the
goal of utmost flexibility and extensibility. For this reason, it is not only designed
for easy usage, it also allows to integrate own implementations of algorithms so
that developers can contribute to the framework and share their implementations
while still benefiting from the huge variety of built-in utility functionality.

4

1.3. Publications and Systems

4. We underline the importance of tree decomposition customization by means of
two case studies in which tree decompositions reflecting certain preferences of the
developer of the dynamic programming algorithm lead to a significantly better and
much more robust runtime behavior. The case studies are based on the problems
Quantified Boolean Satisfiability (QSAT) and Steiner Tree.

1.3 Publications and Systems
The following publications serve as the basis for this thesis:

[ADMW15] Michael Abseher, Frederico Dusberger, Nysret Musliu, and Stefan Woltran.
Improving the Efficiency of Dynamic Programming on Tree Decompositions via Machine
Learning. In Proceedings of the 24th International Joint Conference on Artificial
Intelligence (IJCAI 2015), pages 275–282. AAAI Press, 2015.

[AMW17b] Michael Abseher, Nysret Musliu, and Stefan Woltran. Improving the
Efficiency of Dynamic Programming on Tree Decompositions via Machine Learning.
Journal of Artificial Intelligence Research, 2017. To appear.

[AMW17a] Michael Abseher, Nysret Musliu, and Stefan Woltran. htd – A Free, Open-
Source Framework for (Customized) Tree Decompositions and Beyond. In Proceedings of
the 14th International Conference on Integration of Artificial Intelligence and Operations
Research Techniques in Constraint Programming (CPAIOR 2017), 2017. To appear.

An extended version of the publication [AMW17a] is provided in the report [AMW16b].

The following software artifacts were developed in the context of this thesis:

• htd – A free, open-source software framework for computing (customized) tree
decompositions. It offers several efficient implementations of tree decomposition
algorithms and it provides a rich set of built-in manipulation and customization
operations which can be used to directly compute tree decomposition which adhere
to a custom quality criterion.
Apart from its built-in functionality for computing tree decompositions, htd also
supports other kinds of graph and hypergraph decompositions, like, e.g., hypertree
decompositions. Furthermore, htd offers well-documented interfaces so that the
framework can be flexibly adapted to the actual needs. htd is available for download
at http://dbai.tuwien.ac.at/research/project/decodyn/htd/.

The author is a coauthor of the following publications which are not part of this thesis:

[ABC+14b] Michael Abseher, Bernhard Bliem, Günther Charwat, Frederico Dusberger,
Markus Hecher, and Stefan Woltran. The D-FLAT System for Dynamic Programming
on Tree Decompositions. In Proceedings of the 14th European Conference On Logics In
Artificial Intelligence (JELIA 2014), volume 8761 of LNCS, pages 558–572. Springer,
2014.

5

http://dbai.tuwien.ac.at/research/project/decodyn/htd/

1. Introduction

[ABC+15] Michael Abseher, Bernhard Bliem, Günther Charwat, Frederico Dusberger,
and Stefan Woltran. Computing Secure Sets in Graphs using Answer Set Programming.
Journal of Logic and Computation, 2015. Available at https://doi.org/10.1093/
logcom/exv060.

[AMW16a] Michael Abseher, Marius Moldovan, and Stefan Woltran. Providing Built-In
Counters in a Declarative Dynamic Programming Environment. In Proceedings of the
39th German Conference on Artificial Intelligence (KI 2016), volume 9904 of LNCS,
pages 3–16. Springer, 2016.

[AGM+16] Michael Abseher, Martin Gebser, Nysret Musliu, Torsten Schaub, and Stefan
Woltran. Shift Design with Answer Set Programming. Fundamenta Informaticae,
147(1):1–25, 2016.

1.4 Thesis Outline
The remainder of this thesis is structured as follows: In Chapter 2 we give details regarding
important concepts and notions which are used in the thesis at hand. Afterwards, in
Chapter 3 we answer our first research question by investigating the impact of tree
decompositions on the performance of dynamic programming algorithms. Then, in
Chapter 4 we introduce the htd software framework for the computation of customized
tree decompositions. In Chapter 5 we utilize the capabilities of the htd framework to
boost the efficiency and robustness of dynamic programming algorithms. Thereafter, in
Chapter 6 we present an overview of related work and Chapter 7 finally concludes our
work.

6

https://doi.org/10.1093/logcom/exv060
https://doi.org/10.1093/logcom/exv060

CHAPTER 2
Background

This chapter provides the background information for the thesis at hand by introducing
the basic concepts which will follow us throughout the remainder of this work. Apart
from facts regarding the definition and application areas of tree decompositions, this
chapter also comprises a short introduction to the topic of machine learning because
techniques from this area are a vital ingredient for one of our two approaches for tree
decomposition customization.

The chapter is structured as follows: At first, we give an overview of important topics
in the area of computational complexity theory in Section 2.1. Then, in Section 2.2 we
present the concept of structural graph decomposition (to which tree decompositions
belong) and afterwards, in Section 2.3, we illustrate the approach of dynamic programming
on tree decompositions. Finally, in Section 2.4 we introduce machine learning due to the
fact that algorithms from this area are needed in Chapter 3.

2.1 Computational Complexity Theory
Complexity theory is one of the most prominent areas of research in theoretical computer
science. The aim of this research discipline is to gain a deeper understanding of the
complexity of given problems by classifying them into groups, so-called complexity
classes, according to their “hardness”. The term problem in the context of computational
complexity theory refers to a specific task which is to be carried out following a strict,
mathematical scheme, like, for instance, a (computer) algorithm. A manifestation of a
problem by means of a concrete example is called an instance of the problem.

To give an exemplification of the two concepts problem and (problem) instance, let us
consider the problem “Given a map or a globe, find the shortest connection between two
cities A and B!”. A concrete instance of the problem is then given by “Find the shortest
connection between Berlin, Germany and Vienna, Austria!”.

7

2. Background

A long time, the definition of what it means that a problem is computationally harder to
solve than another was rather vague and the rating was often based solely on intuition
due to the lack of formal theory. This changed once Turing in the late 1930s laid the
foundations of huge parts of complexity theory. In his seminal work [Tur36, Tur37] he
developed a rigorous theory of computing machines. These abstract computing machines
became known as Turing machines.

Turing machines are a vital concept in theoretical computer science as they represent
a mathematical abstraction of “real” computers which allows for a thorough, formal
investigation of the behavior of algorithms due to their mathematical nature. Basically,
a Turing machine consists of a so-called working tape which is manipulated according
to a table of rules (instructions) and a controllable read/write head which is moved
over the working tape depending on the given rules. The working tape consists of an,
in general, infinite number of cells where each cell can hold exactly one symbol of the
machine’s alphabet and the table of rules corresponds to the algorithm which is to be
executed. The rules define transitions from the states of the Turing machine to the
permitted successor states and so they define the algorithm the machine encodes. When
a given Turing machine for each state has at most one successor state for each symbol
of the machine’s alphabet, we call the Turing machine deterministic. If for any state
there is a symbol which leads to two or more distinct successor states, we call the Turing
machine non-deterministic. If at least one computation path of a Turing machine leads
to an accepting state in presence of an input instance, the machine accepts the given
instance. Although there are several types of Turing machines, like deterministic and
non-deterministic ones and also Turing machines with multiple tapes, it is a well-known
fact they all have the same expressive power. However, the efficiency of computation
can vary depending on the actual type of Turing machine at hand. A famous conjecture,
the so-called Church-Turing thesis, states that every intuitively computable function is
computable by a Turing machine.

The concept of Turing machines allowed for an alternative proof showing that there is no
general solution to the Entscheidungsproblem (German for Decision Problem).
The Entscheidungsproblem was introduced by Hilbert and Ackermann [HA28, HA38,
HA50] and it asks, roughly speaking, whether there exists an algorithm which decides
for any possible statement in first-order (predicate) logic whether this statement is valid.

While the proof showing the undecidability of the Entscheidungsproblem by Turing
is based on Turing machines, Church [Chu36] presented a proof with the same result
based on lambda calculus a few months before Turing. An important thing to note at
this point is the fact that most of the modern programming languages like Java, C#
or C++ are Turing-complete, i.e., their expressive power is identical to that of Turing
machines. This means that the theoretical complexity of problems indeed carries over to
practical implementations.

The observations made by Church and Turing immediately lead to the fact that there are
problems which are undecidable in general. Hence, there is a strong separation between
problems which are effectively calculable (Church [Chu36]) or computable (Turing [Tur36,

8

2.1. Computational Complexity Theory

Tur37]) and those which are not. Once this border is drawn, there soon arise questions
concerning the representatives of the large group of decidable problems how hard it
actually is to solve them. The search for answers to these questions led to the foundation
of the research area of (classical) complexity theory.

The complexity of a given problem is often measured in terms of the asymptotic worst-
case runtime of an optimal1 algorithm for the problem at hand with respect to the
input size. If the dimension of interest in the process of complexity analysis is time, we
refer to that dimension by the term time complexity. Another possible dimension of
complexity analysis is memory consumption. In such a case we speak of space complexity.
Throughout the remainder of this thesis, we will refer to time complexity unless stated
otherwise. In classical complexity theory (see Section 2.1.1), the other dimension of the
complexity analysis is the size of the input instance whereas in parameterized complexity
theory (see Section 2.1.2) also additional parameters are considered.

It is important to note that computational complexity is also highly relevant in practice as
the theoretical tools in many cases allow to judge whether there is potential for efficiency
improvements beyond optimizations which are not relevant from a theoretical point of
view. That is, complexity theory allows us, for instance, to investigate whether a problem
can be solved in polynomial time or if (most likely) no such algorithm exists. If one can
proof that no such algorithm exists under the assumption that P 6= NP (see Section 2.1.1
for more details regarding these complexity classes), the problem is called intractable2

and there is no need to waste time on trying to find a polynomial algorithm.

A detailed introduction to complexity theory can be found in [GJ79] as well as in [Pap94].
In the remainder of this chapter we will subsequently give an overview of important
concepts in both classical and parameterized complexity theory in order to introduce the
necessary preliminaries for this thesis.

2.1.1 Classical Complexity Theory

As mentioned earlier, classical complexity theory investigates computational problems
of different kind with the goal to determine their complexity in terms of time or space
requirements with respect to the input size.

The basic category of problems in the context of complexity theory is the category of
decision problems. A decision problem simply asks whether there is a solution for a given
problem instance. The formal definition of problems of such kind is given in Definition 1.

1In this context, an algorithm is considered optimal if the growth in terms of the runtime of the
algorithm at hand in response to growing instance sizes is not higher than for any other algorithm for the
same problem.

2The group of decidable problems can be roughly separated into tractable and intractable problems
by investigating the growth in terms of the solving time any potential algorithm for a problem needs
dependent on the size of the input instance. Informally speaking, a problem is called intractable if for
each possible algorithm a small increase of the input size causes an exponential increase in terms of
solving time (often referred to as “exponential explosion”). In case that there exists at least one algorithm
for the problem whose runtime is polynomially bounded by the input size, the problem is called tractable.

9

2. Background

Definition 1 (Decision Problem). Given a finite alphabet Σ, let Σ∗ be the set of all finite
strings over Σ. A decision problem is a language L ⊆ Σ∗. Any x ∈ Σ∗ is an instance of
the problem, that is, any x ∈ Σ∗ can act as input to the problem. If and only if x ∈ L,
x is called a positive instance of the problem, otherwise x is a negative instance of the
problem.

A solution to a problem in general is a special manifestation of a data object which acts
as witness for the fact that the given problem instance is indeed a positive one. In the
literature, the term certificate is often used as a synonym for a witness.

One possible way to obtain a decision variant of our example problem of finding the
shortest route between two cities is to ask whether one can go by car, i.e., by using the
road network, from one city to the other. A potential witness for a positive instance of
this problem is then a sequence of roads that indeed connect the given cities.

Defining computational problems and, accordingly, the corresponding problem instances
in terms of a formal language specification, like required by Definition 1, soon becomes
rather complex and impractical. Therefore, problems are usually defined by means of
the following two parts: A specification of the expected input instances followed by a
problem statement asking a question about an input instance. This, in general, enhances
readability significantly. The decision variant of our example problem could be, for
instance, be defined simply as follows:

Input: A road network G = (V,E) and two cities c1, c2 ∈ V

Question: Is there a sequence of street sections ri ∈ E connecting c1 and c2?

The answer we obtain when solving a decision problem is either “yes” or “no”. Hence,
when we are interested in the actual solution for the problem at hand in terms of a witness
we need a different problem category. For this reason, although decision problems are
the most prominent kind of problems in complexity theory, there are several additional
categories of problems. Among them we find search problems, where one is interested
in finding a certificate for the problem at hand, counting problems, where one wants to
know the total number of solutions, as well as enumeration problems, where one wants to
enumerate all possible solutions for a given problem instance.

Another very important type of problems is the one of optimization problems. For each of
the aforementioned categories, except for decision problems (where such a refinement, in
general, is not meaningful), we can define a variant where we ask for an optimal solution
with respect to a given quality measure. Unless stated otherwise, in the remainder of
this work we refer to the complexity of the decision variant of a given problem whenever
we talk about complexity-theoretic facts.

A complexity class is, roughly speaking, a collection of problems with related complexity
which contains all problems that are solvable by means of a given formal model of

10

2.1. Computational Complexity Theory

computation (like Turing machines) using a bounded amount of resources. The most
prominent and possibly most well-studied complexity classes are P and NP. Subsequently
we provide the definitions for these important complexity classes.

Definition 2. A problem is in P if it can be decided by a deterministic Turing machine
in polynomial time with respect to the size of the input instance.

Definition 3. A problem is in NP if it can be decided by a non-deterministic Turing
machine in polynomial time with respect to the size of the input instance.

A problem is called tractable if the runtime of an algorithm solving the problem is
bounded by a polynomial of the input size. Conversely, any problem where no algorithm
with polynomial bound on the runtime with respect to the input size can be established
is called intractable. Hence, all problems in P are tractable by definition. Based on the
fact that a non-deterministic Turing machine can simultaneously reach multiple successor
states from a given state when observing a symbol while a deterministic Turing machine
can only reach a single successor state, it is obvious that P ⊆ NP. Currently, it is one
of the biggest open questions in computer science whether the inclusion is proper, i.e.,
whether P ⊂ NP. It is widely believed that P 6= NP which would on the one hand imply
that the inclusion is indeed proper and on the other hand this also implies that there
must exist problems in NP which are intractable in their nature. These problems then
must have the property that any algorithm solving them requires (at least) exponential
time with respect to the input size.

For any decision problem there is also its complement which inverts the question the
decision problem asks, e.g., when the original decision problem asks whether a certain
property holds for a given input instance, the complement problem would be the one
of whether the property does not hold. Therefore, we can for each complexity class
define its complement class. To indicate that a given complexity class is a complement of
another, the prefix co- is used, e.g., the complement class of NP is named co-NP. The
requirement for accepting an instance of a problem in the complexity class co-NP is that
all computation paths of the corresponding non-deterministic Turing machine must lead
to an accepting state in presence of the problem instance at hand. While it is obvious
that P = co-P, the question whether the complexity classes NP and co-NP coincide is
still open.

So-called reductions are the most prominent tool in computational complexity theory to
show the actual relationship between two different problems in terms of their associated
complexity classes.

Definition 4. Given two problems A and B over the alphabets ΣA and ΣB, a function
R : Σ∗A → Σ∗B is called a polynomial-time many-to-one reduction from the problem A
to the problem B if and only if for any finite string i ∈ Σ∗A the following conditions
hold: i ∈ A⇔ R(i) ∈ B and R(i) is computable in polynomial time by a deterministic
algorithm.

11

2. Background

The definition of many-to-one reductions allows us to show that, from a complexity-
theoretical viewpoint, a given problem A is at least as hard to solve as a problem B by
imposing a reduction from B to A. Note at this point that there are also other types
of reductions than the one from Definition 4. For a detailed overview, see for instance
[Pap94]. Apart from membership of a problem P in a complexity class C, subsequently
denoted by P ∈ C, two other very important notions in the context of complexity classes
are the terms hardness and completeness.

Definition 5. Given a problem P and a complexity class C, P is called C-hard if, for
any problem P ′ ∈ C, a reduction from P ′ to P exists. Whenever it is the case that P is
C-hard and, additionally, P ∈ C, P is called complete for the complexity class C and we
say that P is C-complete.

The prototypical example of a computational problem which is complete for the complexity
class NP is the problem of Boolean Satisfiability (SAT). The definition of this
problem is given as follows:

Input: A propositional formula φ

Question: Is φ satisfiable?

More precisely, the SAT problem asks, given a propositional formula φ, whether there
exists an interpretation I over the boolean variables in φ under which the formula at
hand evaluates to True. If this is the case, we call φ satisfiable. To the contrary, if there
is no such interpretation, φ is called unsatisfiable.

Apart from P, NP and co-NP, there also exists a wide range of further complexity classes.
For instance, the generalization of the aforementioned classes to so-called oracle (Turing)
machines3 allows to define the polynomial hierarchy. For further details and an overview
of the variety of complexity classes, we refer to [GJ79, Pap94].

Although the polynomial hierarchy is assumed to be infinite (unless P = NP), it is rather
coarse-grained due to the fact that the complexity is measured only with respect to the
input size. To get deeper insights into the actual complexity of problems, one probably
wants to consider also further parameters of a problem instance.

2.1.2 Parameterized Complexity Theory

In practical application scenarios it turns out that sometimes even very large instances
of NP-hard problems can be solved relatively efficiently although the classical complexity
theory tells us the contrary under the assumption that NP-hard problems are indeed

3By the term oracle (Turing) machines we refer to Turing machines which may call an oracle in order
to solve a sub-problem of a given problem instance. An oracle is assumed to provide an answer to a given
sub-problem in constant time, regardless of its actual complexity.

12

2.1. Computational Complexity Theory

intractable, i.e., no polynomial-time algorithm exists for them. Therefore, in order to
better understand the complexity of computational problems, it seems to be a worthwhile
investment to search for further influence factors on the runtime (or space-consumption)
of algorithms for solving the given problems instead of focusing merely on the input size.

For this reason, the research area of parameterized complexity theory [DF99, FG06, Nie06]
was initiated. The goal of this relatively new field of research is to describe the actual
complexity of computation problems not only by the input size but also by additional,
problem-inherent parameters.

The incentive to do so is to capture those parameters which are relevant for actual real-
world performance of algorithms. This motivation is based on the hopeful assumption
that when a problem instance has small values for the parameters having crucial influence
on the efficiency of the algorithm at hand, the problem instance is probably easy to
solve although its size might be large. In this way, parameters can help to determine the
properties of a problem instance which are responsible for the intractability.

Based on Definition 1 we define a parameterized decision problem as follows:

Definition 6 (Parameterized Decision Problem). Given a finite alphabet Σ, let Σ∗ be
the set of all finite strings over Σ. A parameterized decision problem is a language
L ⊆ Σ∗ × N. Any (x, k) ∈ L ⊆ Σ∗ × N is an instance of the problem with x being the
main part of the instance and the parameter k.

The main part of an instance of a parameterized decision problem correlates to the
instance of the corresponding decision problem. The associated parameter is always a
property of the main part of a given problem instance, like the size of a solution or the
treewidth of a graph underlying the instance (see Section 2.2).

In general, there are various parameters of a problem instance which can be considered
in order to potentially isolate the parts which are relevant for the complexity. Note that
a problem can also be parameterized by a combination of multiple parameters derived
from the main part, i.e., sometimes not a single parameter captures the intractable core
of the problem, but a combination of them may do so.

A very important concept from the area of parameterized complexity theory which will
follow us throughout the remainder of the thesis is the one of fixed-parameter tractability.
This notion is defined as follows:

Definition 7 (Fixed-Parameter Tractability). Given a finite alphabet Σ, let Σ∗ be the
set of all finite strings over Σ. A parameterized decision problem L ⊆ Σ∗ × N is called
fixed-parameter tractable if there exists a deterministic Turing machine that is able to
decide for all instances (x, k) ∈ Σ∗ × N whether (x, k) ∈ L in a time frame bounded by
the formula f(k) ∗ |x|O(1), where f is an arbitrary, computable function solely dependent
on the instance parameter k.

13

2. Background

When showing the fixed-parameter tractability of a problem, it is crucial to state for
which parameter (or combination thereof) the tractability of the problem at hand is
given. This is due to the fact that a problem might be fixed-parameter tractable with
respect to some parameter but this may not be valid for other parameters.

Another important thing to note is the fact that it is possible that from two different
problems being complete for a complexity class, like NP, one of them is fixed-parameter
tractable whereas the other is not. Therefore, parameterized complexity theory allows for
a much more fine-grained investigation of the complexity of problems than it is possible
in classical complexity theory.

In the remainder of this thesis we will focus on problems which are fixed-parameter
tractable with respect to the parameter treewidth. In the following sections of this
chapter we will first introduce this important parameter as well as the related concepts
from the area of structural decomposition and afterwards we will illustrate how fixed-
parameter tractability with respect to treewidth can be exploited in order to obtain
efficient algorithms.

2.2 Structural Decompositions of Graphs

Graphs, i.e., collections of vertices (respectively, nodes) which are connected via edges, are
an important concept to represent arbitrary items and their relationships in an abstract,
computer-processable format. The following list gives a few real-world examples whose
graph nature is more or less obvious:

• Road networks:
In road networks, cities, villages or junctions can act as the vertices of the graph
while the roads connecting the aforementioned concepts are forming the edges.
Depending on the actual problem at hand, the distances between two vertices are
often used as edge weights. Weights in this context help to discriminate between
two alternatives. In this way, they allow to solve optimization tasks like finding the
shortest connection between two endpoints.

• Public transport networks:
Not only road networks, but also train, metro and bus networks are real-world
examples for graphs. In these cases, the respective terminal stations act as the
vertices of the graph and the underlying track system determines the edges. One
common possibility for assigning edge weights is by measuring the travel time
between the different stations.

• Social networks:
The intention of social networks is to connect people all over the world to their fans,
friends and colleagues. Based on this fact, the graph nature of social networks is

14

2.2. Structural Decompositions of Graphs

obvious when we consider the individuals as vertices and the relationships between
them as the edges of a graph. One possibility to define edge weights is by considering
the frequency of interactions between two individuals.

• Computer networks:

Another omnipresent example for graphs in everyday life are computer networks in
which computers and network components (like, for example, routers, switches or
hubs) act as vertices and the wired or wireless connections between those endpoints
act as edges. In the case of computer networks, the weight of an edge is often
determined by the speed of the underlying physical connection.

While there are many other real-world examples for graphs, also many problems in the
area of computer science whose graph nature is not obvious can be reduced to graphs. In
order to provide the preliminaries for the remainder of this work, let us first define all
concepts of graphs which are relevant in context of the thesis at hand.

Definition 8 (Graph). A graph (in the context of graph theory) is an abstract structure
depicting arbitrary objects and their relations. Formally, a graph G is an ordered pair
(V,E) where E ⊆ V × V . The set V corresponds to the well-defined objects of which the
graph consists. The elements v ∈ V are called the vertices or, synonymously, the nodes
of the graph. The set of vertex pairs denoted by E refers to the edge set of the graph G,
where an edge is an abstract relation between two vertices.

If a graph G = (V,E) potentially contains duplicate edges we call G a multi-graph.
Whenever the order of vertices within an edge of a graph matters, we call the given graph
directed whereas in the opposite case, i.e., when the order does not matter, we call the
graph undirected. In the remainder of this work we will always refer to undirected graphs
unless stated otherwise.

Given a graph G = (V,E), a walk is a sequence v0, e0, v1, . . . , vn−1, en−1, vn of vertices
vi ∈ V and edges ei ∈ E where the edges ei are exactly those edges which connect the
vertices vi and vi+1, i.e., ei = (vi, vi+1). The length of a walk is given by the number of
contributing edges. A path is a walk where all vertices, except for its endpoints v0 and vn,
are distinct and where no edge is used twice4. A cycle is a path of length greater than 1
whose endpoints v0 and vn refer to the same vertex. A graph is called cyclic if it contains
at least one cycle, otherwise it is called acyclic. A tree is an undirected, acyclic graph.

Given a graph G = (V,E) and a vertex set X ⊆ V , the (unique) graph G′ = (V ′, E′) with
V ′ = X and E′ = {(vi, vj) | (vi, vj) ∈ E, {vi, vj} ⊆ X} is called the induced subgraph of G
with respect to X and the edges E′ are called the induced edges of G with respect to X.

4Note that in the context of an undirected graph G = (V, E) containing the vertices vi and vj , the
edges (vi, vj) and (vj , vi) refer to the very same instance of an edge. Hence, a path must not contain
both representations simultaneously.

15

2. Background

A generalization of the concept of graphs is the notion of hypergraphs. Hypergraphs
are different to graphs in the way the define the edge relation. While for the case of a
graph, an edge always connects exactly two vertices, a hypergraph allows for so-called
hyperedges.

Definition 9 (Hypergraph). A hypergraph (in the context of graph theory) is an abstract
structure depicting arbitrary objects and their relations. Formally, a hypergraph H is an
ordered pair (V,H) consisting of a set of vertices V and a set of hyperedges H ⊆ P(V),
where P(V) denotes the power set over V .

According to Definition 9, a hyperedge allows to connect an arbitrary number of vertices.
If we allow duplicates of hyperedges in a given hypergraph, we refer to such a hypergraph
by the term multi-hypergraph. The induced subgraph H′ = (V ′, H ′) of a hypergraph
H = (V,H) with respect to a vertex set X is defined analogously to the induced subgraph
of a graph, i.e., it must hold that V ′ = X and H ′ = {h | h ∈ H,h ⊆ X}.

After we introduced the concepts of graphs and hypergraphs, let us now come back to
computational problems in order to draw the connection between them and graphs so that
we can subsequently show how to solve them efficiently using structural decompositions of
their instances. One of the most well-known representatives for a problem which can be
represented by means of its underlying graph is the problem of Boolean Satisfiability,
often abbreviated as SAT. To illustrate the relationship between SAT and graphs, recall
the definition of the satisfiability problem of propositional formulae provided in Section 2.1:

Input: A propositional formula φ

Question: Is φ satisfiable?

To better understand the relationship between the SAT problem and graphs, let us
consider the propositional formula provided in Example 1. We can see that the φ is
given in conjunctive normal form (CNF), i.e., the formula is a conjunction of disjunctions
(clauses). The separate parts of a clause, the so-called literals, are given by atomic
formulae (atoms) or their negation. In this simple case, the formula consists of only three
clauses and it uses only three distinct atoms, namely, a, b and c.

Example 1. φ = (¬a)︸ ︷︷ ︸
Clause c1

∧ (¬b ∨ c)︸ ︷︷ ︸
Clause c2

∧ (a ∨ b ∨ ¬c)︸ ︷︷ ︸
Clause c3

The formula φ has exactly two solutions: {a = False, b = False, c = False} as well as
{a = False, b = True, c = True}. This is caused by the fact that Clause c1 forces us
to set variable a to False and hence, Clause c3 can only be satisfied if either b is set to
True or c is set to False. Regardless of the alternative we choose, Clause c2 then forces
us to assign the same truth value to the atoms b and c. �

16

2.2. Structural Decompositions of Graphs

c1 c2

c3

a b c

Figure 2.1: Graph Representation of the Propositional Formula φ from Example 1

One possibility to obtain a graph representation of the formula φ is to consider both the
clauses and the atoms as vertices and to connect the atom vertices to the clause vertices
according to their relationship in φ. That is, we connect the atoms to the clauses in which
they occur via simple edges5. The outcome of this procedure, illustrated in Figure 2.1,
is called the variable-clause incidence graph of φ. For a better distinction between the
vertices which correspond to clauses and those which correspond to the atoms of the
propositional formula the figure uses different colors for those groups of vertices.

a b c

c1 c2c3

Figure 2.2: Hypergraph Representation of the Propositional Formula φ from Example 1

When we consider hypergraphs, i.e., graphs where the edge relation is not limited to
binary connections between vertices, we can also represent the formula φ like illustrated
in Figure 2.2. As already mentioned earlier in this section, hypergraphs generalize the
concept of graphs by allowing hyperedges which in contrast to simple edges allow us to
capture relations between multiple vertices. Exploiting this useful feature we can simply
represent each clause of the propositional formula φ by its corresponding hyperedge as
shown in Figure 2.2.

It is a well-known fact that every hypergraph H = (V,H) can be transformed to a
graph G = (V,E) without hyperedges by considering the primal graph of H. The primal
graph (also known as the 2-section, the clique graph or the Gaifman graph) of a given
hypergraph H consists of the same vertices as H, but instead of hyperedges it contains
simple edges between any pair of vertices occurring together in a hyperedge of H.

Note that the graph and hypergraph representations illustrated by Figures 2.1 and 2.2 do
not distinguish whether an atom occurs positively or negatively in a given clause. This
knowledge is indeed crucial for solving the problem at hand. Hence, the information

5By the term simple edge we refer here to binary edges, i.e., edges with exactly two distinct endpoints.

17

2. Background

whether an atom occurs in the context of a positive or negative literal within a clause
must either be maintained independently from the graph structure or, more conveniently,
one could also use dedicated vertex or (hyper-)edge labels for this purpose.

Once the scene is set, we can now focus on the topic of structural decompositions of graphs.
Basically, a decomposition of a graph G = (V,E) is an arbitrary segmentation of the input
graph G into distinct, potentially overlapping parts, the subgraphs of G. While many
different types of structural decompositions of graphs exist, like tree decomposition [BB73,
Hal76, RS84], branch decompositions [RS91], and hypertree decompositions [GLS02] (of
hypergraphs), the concept of tree decompositions is maybe the most prominent one
among them.

This is probably caused by the fact that many NP-hard search problems become tractable
when they are parameterized by the parameter treewidth, a notion defined by means
of tree decomposition (see Section 2.3 for details about the concept underlying the
corresponding algorithms). In the following we give a formal definition of the terms
tree decomposition and treewidth. An easily accessible introduction to the topic of tree
decompositions and their applications is given in [Bod93].

Tree decomposition is a technique often applied for solving NP-hard computational
problems. The underlying intuition is to obtain a tree from a (potentially cyclic) graph
by subsuming multiple vertices in one node and thereby isolating the parts responsible
for the cyclicity. Formally, the notions of tree decomposition and treewidth are defined
as follows [RS84, BK10]:

Definition 10 (Tree Decomposition). Given a graph G = (V,EG), a tree decomposition
of G is a pair (T , χ) where T = (N,ET) is a tree and function χ : N → 2V assigns to
each node a set of vertices (called the node’s bag), such that the following conditions hold:

1. For each vertex v ∈ V , there exists a node n ∈ N such that v ∈ χ(n).

2. For each edge (vi, vj) ∈ EG, there exists a node n ∈ N with {vi, vj} ⊆ χ(n).

3. For each m,n, o ∈ N : If n lies on the path between m and o then χ(m)∩χ(o) ⊆ χ(n).

The width of a given tree decomposition is defined as maxi∈N (|χ(i)|) − 1. In general,
different tree decompositions for the same graph exist. The treewidth of a graph is the
minimum width over all its tree decompositions.

Indeed, a tree decomposition can also be obtained from a given hypergraph. To define
tree decompositions for hypergraphs H = (V,H), we only have to adapt Definition 10
accordingly by replacing Criterion 2 with the following requirement: For each edge h ∈ H,
there exists a node n ∈ N with h ⊆ χ(n). In the following we consider rooted tree
decompositions, i.e., tree decompositions in which one node acts as dedicated root of the
tree. Choosing an explicit root node is of importance in many cases because the common
graph-theoretic notions child and parent are defined only on rooted trees.

18

2.2. Structural Decompositions of Graphs

Figure 2.3 shows the graph from our introductory example and one of its (non-normalized)
tree decompositions having root node n1. Again, we use different colors for the vertices
of the graph to allow for a better visual distinction between the vertices which refer to
atoms and those which refer to clauses of the SAT instance. For the tree decomposition
on the right-hand side of the figure, this distinction is given by emphasizing the atoms
by means of underlines.

c1 c2

c3

a b c

n4 : {b, c, c2} n5 : {a, c1}

n2 : {b, c, c3} n3 : {a, c3}

n1 : {c3}

Figure 2.3: Example Graph and a Possible Tree Decomposition.

In order to avoid confusion, from now on we will always use the term “node” to refer to
nodes of the tree decomposition and the term “vertex” will be used to refer to vertices of
the input graph.

Definition 11 (Normalized Tree Decomposition). Given a graph G = (V,E), a normal-
ized (sometimes also called nice) tree decomposition of G is a rooted tree decomposition
T = (N,ET) where each node n ∈ N is of one of the following types:

1. Leaf: n has no child nodes.

2. Introduce Node: n has one child o with χ(o) ⊂ χ(n) and |χ(n)| = |χ(o)|+ 1

3. Forget Node: n has one child o with χ(o) ⊃ χ(n) and |χ(n)| = |χ(o)| − 1

4. Join Node: n has two children o, p with χ(n)=χ(o)=χ(p)

A special type of tree decomposition are normalized ones (see Definition 11). Each tree
decomposition can be transformed into a normalized one in linear time without increasing
the width [Klo94] by introducing additional nodes. Analogously, one can perform various
other normalizations without affecting the width of the input tree decomposition. Two
representatives of such normalizations are what we call semi-normalized and weakly-
normalized tree decompositions. The former is a relaxed variant of the normalized tree
decomposition where no restrictions are imposed on nodes with exactly one child. The
latter additionally allows join nodes to have an arbitrary number of children whose bags
match the join nodes’ bag.

It is a well-known fact that constructing a tree decomposition of minimal width for
a given graph is intractable [ACP87]. In spite of this intractability result there exists

19

2. Background

a variety of exact methods which allow to obtain minimal-width tree decompositions
at least for small graphs, like, e.g., [SG97, GD04, BB06]. Researchers also proposed
several efficient heuristic approaches that usually construct tree decompositions of al-
most optimal width for larger graphs. Maybe the most prominent representatives of
greedy heuristic algorithms for computing tree decompositions are Maximum Cardinality
Search (MCS) [TY84], Min-Fill heuristic [Dec03], and Minimum Degree heuristic [BHS03],
to mention just a few. Metaheuristic techniques have been provided in terms of genetic
algorithms [LKPM97, MS07], ant colony optimization [HM10], and techniques based on
local search [Kjæ92, CMNC04, Mus08]. An overview as well as a detailed description of
tree decomposition techniques is given in the recent surveys [BK10, HMS15].

For a given graph G, the treewidth can be found from its triangulation. Subsequently, we
will give basic definitions, explain how the triangulation of graph can be constructed and
show the relation between the treewidth of a graph and treewidth of a corresponding,
triangulated graph.

Two vertices u and v of a graph G = (V,E) are neighbors if they are connected by an
edge e ∈ E. The neighborhood N(v) of a vertex v is defined as {w|w ∈ V, (v, w) ∈ E}.
A set of vertices is called a clique if there is an edge between each pair of vertices. An
additional edge connecting two previously non-adjacent vertices of a cycle is called chord.
A graph is called triangulated or chordal if there exists a chord in every cycle of length
larger than 3. The term triangulation is based on the fact that all cycles induced by
a triangulated graph contain exactly three vertices, i.e., all induced cycles of a chordal
graph are triangles. Note that the term “induced cycle” here refers to a sequence of
vertices in which for each pair of adjacent vertices in the sequence it holds that there
is an edge connecting the two vertices in the given graph. Further, for each pair of
non-adjacent vertices in the sequence there must not exist such an edge in the graph.

A vertex is called simplicial if its neighbors form a clique. Given a graph G = (V,E), an
ordering σ = (σ1, σ2, . . . , σn) of the vertices of V is called a perfect elimination ordering
for G if for any i ∈ {1, 2, . . . , n}, σi is a simplicial vertex in the subgraph of G induced
by the vertices σi to σn, denoted by G[σ(i), . . . , σ(n)] [CMNC04]. In [FG65] it is shown
that a graph G is triangulated if and only if it has a perfect elimination ordering. Given
an elimination ordering of vertices, the triangulation Gt of graph G can be constructed
as follows: Initially, Gt = G. Then, the next vertex which is to be eliminated according
to the given elimination order is made simplicial by adding new edges connecting all
its neighbors in current G and Gt. Afterwards, the respective vertex is eliminated from
G. These steps are repeated for all vertices in the given elimination ordering. A more
detailed description of the algorithm for constructing a graph’s triangulation for a given
elimination ordering is found in [KBvH01].

The treewidth tw(G) of a triangulated graph G can be calculated based on its cliques. For
a triangulated graph, the treewidth is known to be equal to the size of its largest clique
minus 1 [Gav72]. Determining the largest clique of a triangulated graph can be done in
polynomial time. The time complexity of calculating the largest clique for a triangulated
graphs G = (V,E) is O(|V | + |E|) [Gav72]. For every graph G = (V,E) there exists a

20

2.3. Dynamic Programming on Tree Decompositions

corresponding triangulation, Gt = (V,E ∪ Et), with tw(Gt) = tw(G). Thus, finding the
treewidth of a graph G is equivalent to finding a triangulation Gt of G with minimum
clique size (for more information see [KBvH01]).

A famous result by Courcelle [Cou90] underlines the usefulness of tree decompositions
for the solving process of a wide range of computationally hard problems which can be
reduced to a graph. The result states that any graph property expressible in monadic
second-order logic6 (MSO) is decidable in linear time in the case that the graph’s treewidth
is bounded. A similar result, developed independently of the findings made by Courcelle,
is provided by Borie et al. [BPT92].

Formulating a problem by means of MSO therefore establishes fixed-parameter tractability
of the problem with respect to the parameter treewidth. Nevertheless, although an MSO
formulation of a given problem allows us to find an algorithm for the problem at hand
according to Courcelle’s theorem, the algorithm obtained in this way is often impractical
due to huge constant factors [Nie06]. To overcome this issue, we will introduce a more
promising approach for practical application scenarios in the following section.

2.3 Dynamic Programming on Tree Decompositions

Data of almost any kind is collected in various forms in a multitude of application
scenarios in a higher and higher frequency nowadays and processing this growing haystack
efficiently in order to find the proverbial needle becomes a more and more challenging
task. This is caused on the one hand by the sheer amount of data itself which has to
be handled, but on the other hand, many reasoning problems occurring in practice are
computationally intractable in their nature.

A common approach to handle complex problems efficiently by means of computer
algorithms is the technique of divide-and-conquer. This approach works by recursively
breaking the task at hand into separate parts until they become trivially (or at least
easily) solvable. Depending on the actual application scenario, the solutions of the
sub-problems sometimes can be computed in parallel which often allows for an additional
performance gain. After solving the individual parts of the problem instance at hand,
the partial solutions are assembled according to a given (problem-specific) strategy in
order to obtain the solution(s) for the complete problem instance.

Algorithms based on the idea of divide-and-conquer come in different flavors. Tractable,
polynomial time solvable cases include for instance prominent sorting algorithms like
Quicksort or Mergesort. The former is an example for divide-and-conquer where the
“division step” is complex and the re-combination of the partial solutions is easy while
the latter one is an example where partitioning the input is easy but the re-combination
of the partial solutions is, in contrast, relatively complex.

6Monadic second-order logic extends first-order (predicate) logic by allowing quantifiers over unary
relational variables. In the case of graphs, the relational variables refer to the vertices and edges of a
graph.

21

2. Background

Another intuitive example for divide-and-conquer is the search for an element in a binary
search tree. When searching for a value x in such a tree, we divide the search space
by recursively deciding in each node whether we proceed by following the child at the
left-hand side or the child at the right-hand side, depending on the value associated with
the current node. In the last step, i.e., the step where either the value assigned to the
current tree node matches our search criterion or where there is no appropriate child
node to continue the search, we can immediately return the search result. Hence, in this
case there is no re-combination phase needed.

Closely related to the approach of divide-and-conquer is the technique of dynamic
programming (DP). As mentioned before, divide-and-conquer works by splitting the
problem instance at hand into different, independent sub-problems. Each of these sub-
problems is solved recursively and finally, the partial solutions are combined in order to
obtain the complete solution(s) to a given problem instance. One commonality between
divide-and-conquer and dynamic programming is the process of splitting the overall
problem into sub-problems, but in contrast to divide-and-conquer where the sub-problems
are independent, dynamic programming is a technique in which the sub-problems often
overlap. Therefore, strategies allowing to get an efficient handle on the recurring parts
of the sub-problems with the goal to solve each of those parts only once, play a central
role in the context of dynamic programming algorithms. The general approach to avoid
redundant computations is called memoization and it refers to the storage of solutions
to sub-problems so that they can be looked up efficiently when it comes to solving
subsequent pieces of the problem instance at hand.

One of the most prominent realizations of the dynamic programming approach is the
technique of dynamic programming on tree decompositions. For graph problems and
problems that can be formulated on a graph, tree decompositions permit a natural way
of applying dynamic programming by traversing the tree from the leaf nodes to its root.
For each node n of a given tree decomposition, the solutions for the subgraph of the
instance graph induced by the vertices in χ(n) are computed. When processing a node,
the (partial) solutions computed for its children are taken into account, such that only
consistent solutions are computed. Thus, the partial solutions computed in the root node
are consistent with the solutions for the whole instance graph.

As mentioned in the overview of parameterized complexity theory in Section 2.1.2, the
key aspect of FPT algorithms is to bound the costs to compute these solution with
respect to some parameter. In this case, the parameter of interest is the width of the
given tree decomposition. The complete solutions for a problem instance can be obtained
(with polynomial delay) in a reverse traversal from the root node to the leaves of the tree
decomposition by combining the computed partial solutions.

Subsequently, we illustrate how dynamic programming on tree decompositions can be
employed to solve the instance of the SAT problem acting as our introductory example. In
order to do so, recall its corresponding propositional formula φ = (¬a)∧(¬b∨c)∧(a∨b∨¬c)
with clauses c1 = (¬a), c2 = (¬b ∨ c) and c3 = (a ∨ b ∨ ¬c) and consider the associated
graph representation of the formula as well as the tree decomposition from Figure 2.3.

22

2.3. Dynamic Programming on Tree Decompositions

c1 c2

c3

a b c

n4 : {b, c, c2} n5 : {a, c1}

n2 : {b, c, c3} n3 : {a, c3}

n1 : {c3}

Figure 2.3: Graph Representation and a Tree Decomposition of φ (See also Page 19)

Figure 2.4 shows the dynamic programming tables for each of the tree decomposition
nodes. The first column gives the ID of the partial solution candidates and the central
columns of each table list the possible values for the vertices in the node constituting
the partial solutions. Here, the value T (F) for a atom vertex stands for the respective
atom being set to True (False). Analogously, the value S stands for the fact that the
respective clause is satisfied. Unless a clause is known to be already satisfied – which is
the case if at least one of its literals evaluates to True – its truth value is undetermined,
denoted by the letter U.

The last column of the DP tables stores the possible partial solutions associated with
the child node(s) that can be consistently extended to the given truth values. We call
these links to child solutions extension pointers. Note that infeasibilities in the partial
solutions can already lead to an early removal of solution candidates. The partial solution
for Node 5 where {a = T} can, for instance, already be discarded when Clause c1 is
forgotten during the traversal to the next node n3. This is because, due to Criterion 3
(connectedness) of Definition 10 (tree decompositions), c1 cannot appear again in any
node of the decomposition visited in later steps of the post-order traversal and, thus,
Clause c1 cannot become satisfied anymore.

The solution for the example graph can then be simply extracted by starting at the root
of the tree decomposition and following the extension pointers down to the leaves. Indeed,
in order to obtain only the valid solutions of the problem instance at hand, we may only
start from the partial solution n1|0 in our example because the solution n1|1 does not
satisfy Clause c3. A common approach to make such side notes superfluous is to use a
root node with empty bag in the tree decomposition and this modification is often also
beneficial for the design of dynamic programming algorithms: To add a new root node to
a given tree decomposition as parent of the old one is of low, constant effort, but having
a root node with empty bag in many cases avoids the need for a special treatment of the
tree decomposition’s root node in the context of the corresponding dynamic programming
table.

As expected with regard to the exemplification in Section 2.2, one possible solution
for the SAT instance φ is given by the interpretation {a = F, b = F, c = F} over the
atoms a, b and c. This solution is represented in the dynamic programming tables by

23

2. Background

id b c c2 ext.
n4|0 F F S -
n4|1 F T S -
n4|2 T F U -
n4|3 T T S -

id a c1 ext.
n5|0 F S -
n5|1 T U -

id b c c3 ext.
n2|0 F F S {n4|0}
n2|1 F T U {n4|1}
n2|2 T T S {n4|3}

id a c3 ext.
n3|0 F U {n5|0}

id c3 ext.
n1|0 S {(n2|0, n3|0), (n2|2, n3|0)}
n1|1 U {(n2|1, n3|0)}

Figure 2.4: Solving SAT via DP on Tree Decompositions for the Problem Instance φ

the partial solutions n1|0, n2|0, n3|0, n4|0 as well as n5|0. Analogously, we derive the
second interpretation over the atoms which satisfies φ, namely {a = F, b = T, c = T}, by
considering the partial solutions n1|0, n2|2, n3|0, n4|3 as well as n5|0.

Note that in the dynamic programming table associated with the join node named n1 we
derive that Clause c3 is satisfied if we combine the partial solutions n2|0 or n2|2 with the
partial solution for Node n3. This is a valid conclusion due to the fact that the literals in
a clause are connected by disjunctions and so there is no way that a previously satisfied
clause can become unsatisfied. Hence, in our scenario of a propositional formula in CNF
we can safely derive that a clause cx is satisfied in the context of a join node with children
ni and nj if there are two partial solutions ni|sl and nj |sm that agree on the truth values
of all atoms and at least one of them sets cx to satisfied.

While our example is quite small, so that without any problem one could carry out the
computation of the solutions by means of simpler techniques than dynamic programming
on tree decompositions, real-world instances of the SAT problem can contain millions
of clauses over several hundreds of thousands of variables. Due to the fact that for n
boolean variables there are 2n possible interpretations – each variable can be set either
to True or to False – it can indeed pay off to consider structural decomposition in those
cases.7 Because many large instances of the SAT problem have high treewidth, it is
hard to beat dedicated, well-established SAT solvers by means of dynamic programming
on tree decompositions. For this reason, we want to clarify that the exemplification of
the dynamic programming approach by means of the SAT problem is given just for
illustration purposes as it shows the connection between the probably most prominent
problem from complexity theory and dynamic programming on tree decompositions.

7Solving SAT via DP on tree decompositions has an asymptotic worst-case running time of 2w ∗ n
where n is the size of the input formula in terms of variables and clauses and w is the maximum bag size
of the tree decomposition which is used.

24

2.3. Dynamic Programming on Tree Decompositions

The D-FLAT System

In many of the experiments contributing to the thesis at hand we will use the dynamic
programming framework D-FLAT 8 [BMW12, Bli12, ABC+14a, ABC+14b]. D-FLAT
is a state-of-the-art system that applies dynamic programming on tree decompositions
and it is a general framework capable of solving any problem expressible in monadic
second-order logic (MSO) in FPT time with respect to the parameter treewidth [BPW13].

The goal of D-FLAT is to make the development of dynamic programming algorithms
for complex computational problems as easy as possible. For this reason, the D-FLAT
framework allows to specify both the problem as well as the input instances by means
of answer set programming (ASP). Two easily accessible introductions to the topic of
ASP are given by Lifschitz [Lif08] and Brewka et al. [BET11]. Subsequently, we provide
a short summary of the most important concepts in the domain of ASP.

Answer set programming allows to formulate computational problems up to the second
level of the polynomial hierarchy in a declarative way [MT99, Nie99]. The declarative
nature of ASP allows that, instead of specifying an algorithm for solving a given problem,
one defines certain rules and constraints which characterize the solutions corresponding
to a problem instance. A complete specification of a problem by means of ASP is called
logic program or encoding. Once such an encoding is constructed, the rest, including non-
determinism, is completely up to the ASP engine. This makes answer set programming a
very powerful, yet easy-to-use approach to model NP-hard search problems.

An ASP encoding supposes a language with function and predicate symbols having a
corresponding arity (possibly 0) as well as variables. Function symbols with an arity
of 0 are also called constants. By convention, variables begin with upper-case letters
while function and predicate symbols start with lower-case letters. Each variable and
each constant is a term. If f is a function symbol with arity n, and t1, . . . , tn are terms,
then f(t1, . . . , tn) is also a term. If p is an m-ary predicate symbol and t1, . . . , tm are
terms, then we call p(t1, . . . , tm) an atom. A literal is either just an atom or an atom
with the word “not” put in front of it. Roughly speaking, the word “not” here expresses
the absence of the respective atom, i.e., the literal matches when the referenced atom
is not contained in the answer set candidate. Based on these building blocks, an ASP
encoding or logic program is a set of rules of the form

a← b1, . . . , bm, not bm+1, . . . , not bn

where a and b1, . . . , bn are atoms. Let r be a rule of a program Π. We call h(r) = a the
head of r, and b(r) = {b1, . . . , bn} its body which is further divided into a positive body,
b+(r) = {b1, . . . , bm}, and a negative body, b−(r) = {bm+1, . . . , bn}. If the body of a rule
r is empty, r is called a fact, and the symbol ← can be omitted. Sometimes, the head
atom of a rule is omitted. By doing so, we obtain a special type of rule which is called
integrity constraints. An (integrity) constraint looks as follows:

← b1, . . . , bm, not bm+1, . . . , not bn
8D-FLAT is available at http://dbai.tuwien.ac.at/research/project/dflat/system/.

25

http://dbai.tuwien.ac.at/research/project/dflat/system/

2. Background

Whenever a term does not refer to any variables it is called ground. Analogously, we
also call rules and complete logic programs ground if they do not contain any variables.
A given logic program can be transformed to its ground counterpart by systematically
replacing all variable occurrences by appropriate ground terms.

The basic idea behind ground rules in the context of logic programs is that whenever the
complete positive body is contained in an answer set candidate and, at the same time,
no part of the negative body is contained in the given interpretation, then also the head
atom must occur in the answer set candidate. In contrast to ground rules which allow to
derive new atoms, integrity constraints are used to filter potential answer set candidates:
Whenever a set contains all atoms from the positive body but none of the negative body
of an integrity constraint, the respective set cannot be an answer set.

1 1 { map(A,true); map(A,false) } 1 ← atom(A).

2 sat(C) ← pos(C,A), map(A,true).
3 sat(C) ← neg(C,A), map(A,false).

4 ← clause(C), not sat(C).

Listing 2.1: ASP Encoding for Boolean Satisfiability (SAT)

In order to illustrate the declarativeness of the paradigm of answer-set programming we
provide in Listing 2.1 an exemplification of a logic program that can be used to solve
instances of the SAT problem. The encoding assumes that we are given a problem
instance in terms of the predicates atom (with arity 1), clause (with arity 1) as well
as pos and neg (both with arity 2). The argument of the predicate atom (clause)
denotes an identifier of an atom (clause) of the SAT instance, the first argument used for
the predicates pos and neg refers to the identifier of a clause and the second argument
is again an atom identifier.

The first line of Listing 2.1 depicts a so-called choice rule. Choice rules extend the
concept of basic rules by allowing to non-deterministically select a number of elements
from a pool in a convenient and intuitive way. The number of selected elements can be
restricted using a upper and lower bound. In the case at hand, both limits are set to 1
as we want to select exactly one truth value for each atom. Note that choice rules can be
transformed to basic rules using approaches like presented in [BJ13]. Lines 2 and 3 then
encode the idea that, whenever an atom occurs positively (negatively) in a clause and
the atom is set to True (False), the corresponding clause is satisfied. All that remains
in order to obtain the solutions for a SAT instance is to eliminate all solution candidates
which do not satisfy some clause. This is achieved via Line 4 of the provided encoding.
The solutions of the original problem instance can then be reconstructed by inspecting
the atoms map within the resulting answer sets.

Following the short introduction to answer set programming, let us now have a look at
the D-FLAT system itself. The general workflow of the D-FLAT framework for dynamic
programming on tree decompositions is depicted in Figure 2.5. In this illustration we can

26

2.3. Dynamic Programming on Tree Decompositions

Store
item tree ASP call

Parse
instance

Decompose Done? no

yes

Visit next
node in

post-order

Materialize
solution

Figure 2.5: The Control Flow in D-FLAT (Adapted from [ABC+14a], Page 15)

see that D-FLAT first parses the given instance. This is done with regard to the ASP
predicates that are specified to be considered for the edge relation before the invocation of
D-FLAT . In the case at hand, the predicates defining the edge relation are pos and neg.
Once the input graph is constructed, D-FLAT invokes a tree decomposition algorithm in
order to efficiently decompose the given problem instance. After these preparatory steps,
D-FLAT starts to traverse the obtained tree decomposition in a bottom-up manner.
In each step of the traversal, the partial solutions associated with the current tree
decomposition node are computed by issuing a call to the ASP engine with the provided
ASP encoding, the current node’s bag content and the children’s partial solutions as
input. Additionally, the ASP routine may access the complete input specification so
that it is also possible for the dynamic programming algorithm to work with potential
labels, e.g., denoting weights of vertices or edges. Finally, when the post-order traversal is
finished, D-FLAT takes care of materializing the solutions of the given problem instance.

The following enumeration lists the main features of the D-FLAT system:

• D-FLAT allows to specify computational problems declaratively, thus relieving
developers of dynamic programming algorithms from the effort to implement
algorithms in an imperative way which can be error-prone and the resulting system
can be hard to maintain.

• Also the input instances for the D-FLAT system can be specified fully declaratively
in the common syntax of today’s state-of-the-art ASP systems. Using this well-
defined input format together with the ability to use custom edge predicates brings
the advantage that, also in those cases where the original problem is not defined on
a graph, D-FLAT can effectively be employed to solve the instances at hand.

• The task of computing a tree decomposition of the input instance is completely
performed inside the system boundaries of D-FLAT . This means that there is no
need for a developer to provide an algorithm which computes the decompositions
underlying the dynamic programming steps.

27

2. Background

The latest versions of D-FLAT use htd (see Chapter 4), the software framework
for computing customized tree decompositions which was developed in the context
of this thesis. This allows to tune the computed decompositions according to the
actual needs.

• Maintaining the information between two steps of the dynamic programming
algorithm as well as the combination of the partial solutions is also done directly
“inside” D-FLAT . Moreover, the system also supports solving optimization problems
in a convenient way based on the notion of solution costs. When optimization
is involved, D-FLAT takes care that only optimal partial solutions, i.e., those
with minimal cost, are retained whereas suboptimal candidates are automatically
discarded.

In fact, a developer using the D-FLAT framework for dynamic programming on tree
decompositions only has to provide a proper specification of the input instance and an
ASP program which encodes the semantics of a dynamic programming algorithm, like
the one shown in Listing 2.2.

After introducing the basic concepts of ASP and the D-FLAT framework, let us now have
a look at the specifics of D-FLAT . Listing 2.2 shows one possible D-FLAT encoding for
the SAT problem. It makes intensive use of various input and output predicates defined
by D-FLAT (see [ABC+14a] for details). Those special predicates allow a developer to
“communicate” with the framework in order to populate the dynamic programming tables
(recall Figure 2.4), thus maintaining the partial solutions of the problem.

1 %d f l a t : −−t a b l e s −e pos −e neg −−no−empty−l e a v e s −n semi

2 false(R,X) ← childRow(R,N), bag(N,X), not childItem(R,X).
3 unsat(R,C) ← childRow(R,N), bag(N,C), not childItem(R,C).

4 1 { extend(R) : childRow(R,N) } 1 ← childNode(N).

5 ← extend(R), extend(S), atom(A), childItem(R,A), false(S,A).

6 ← clause(C), removed(C), extend(R), unsat(R,C).

7 item(X) ← extend(R), childItem(R,X), current(X).
8 item(C) ← extend(R), childItem(R,C), current(C).

9 { item(A) : atom(A), introduced(A) }.

10 item(C) ← current(C), current(A), pos(C,A), item(A).
11 item(C) ← current(C), current(A), neg(C,A), not item(A).

Listing 2.2: D-FLAT Encoding for Boolean Satisfiability (SAT)

In Line 1 of Listing 2.2 we inform D-FLAT about the actual configuration which shall
be used. In this case, because we deal with a problem on the first level of the polynomial
hierarchy, we use a simple table as data structure for storing the partial solutions. For
NP-complete problems which are FPT with respect to treewidth, we can always use the
so-called table mode of D-FLAT . On the one hand, this mode reduces the complexity of

28

2.3. Dynamic Programming on Tree Decompositions

the task of writing the encoding due to the fact that a simplified set of input and output
predicates is used and on the other hand, runtime performance is improved. To capture
also problems complete for higher levels of the polynomial hierarchy, D-FLAT offers the
possiblity to use a data structure called item trees. Item trees are a generalization of
dynamic programming tables allowing to mimic the behavior of so-called alternating
Turing machines [CKS81].

Apart from requesting the table mode as the data structure to use, we specify via Line 1 of
Listing 2.2 that all instantiations of the predicates pos and neg in the input are considered
for the edge relation of the graph. In this way, D-FLAT is instructed to construct
a variable-clause incidence graph of the input instance which is then automatically
decomposed. Per default, the leaves and the root of the computed tree decomposition are
defined to be empty by D-FLAT . In this case, we do not need empty leaves. To reduce
the cases which one has to distinguish during the traversal, we additional specify that
we want the algorithm to operate on semi-normalized tree decompositions. Note that
all configuration parameters of D-FLAT can also be specified via its rich command-line
interface.

In the following explanation we will use so-called item sets to represent the partial
solutions which are stored in the table data structure. Whenever we want to propagate
information in D-FLAT from one step of the dynamic programming process to the next
one, we have to store the respective pieces of information in the item set corresponding
to an answer set. By accessing the child item sets we can access the partial solutions
of the dynamic programming tables of a tree node’s child. In the given encoding of the
SAT problem we only store those atoms and clauses in the item set which are set to
True or which are already satisfied, respectively. Accordingly, all atoms (clauses) which
are not stored in the item set are considered to be False (unsatisfied).

In Lines 2 and 3 of Listing 2.2 we make this intuition explicit by stating that all bag
elements which already existed in a child bag but which are not selected, are considered
to be set to False or unsatisfied, respectively. In Line 4 we specify a non-deterministic
guess which selects for each child node a table row, representing a partial solution, which
shall be extended. Via Line 5 we prevent the case that in a join node the two extended
child rows do not agree on the truth value of an atom. In Line 6 we get rid of all solution
candidates where a clause is unsatisfied upon its removal. This constraint is crucial
because a removed clause is never introduced again due to Criterion 3 (connectedness) of
Definition 10 (tree decompositions) and so it can never become satisfied after its removal.
Lines 7 and 8 are used to propagate relevant information about atoms set to True and
the satisfied clauses from the child node(s) to the current node. In Line 9 we use a
non-deterministic guess to select which of the introduced atoms is set to True and in
the last two lines of Listing 2.2 we update the information which of the clauses in the
current bag is already satisfied, analogously to Listing 2.1.

Note that D-FLAT is not limited to search problems. It can also handle optimization
problems. To exemplify the convenience of using D-FLAT to solve this kind of problems

29

2. Background

by means of dynamic programming on tree decompositions, consider, for instance, the
enumeration variant of the problem Minimum Dominating Set defined as follows:

Input: An undirected graph G = (V,E)

Task: Find all cardinality-minimal sets of vertices S ⊆ V where for each
v ∈ V it holds that v ∈ S or where there is an edge (v, w) ∈ E such
that w ∈ S!

Informally speaking, the Minimum Dominating Set problem asks for the smallest
subsets of the graph’s vertices such that each vertex of the graph is either contained in
the set of selected vertices or adjacent to at least one vertex inside this set. The vertices
which are not contained in S but adjacent to a vertex which is part of the set S are
called dominated. It is a well-known fact that the decision variant of the problem, asking
whether there exists a dominating set of size less than or equal to a limit k, is complete for
the complexity class NP and that it is fixed-parameter tractable with respect to treewidth.
Therefore, dynamic programming on tree decompositions is indeed a promising approach
to solve the problem at hand.

1 %d f l a t : −−t a b l e s −e ver tex −e edge −−no−empty−l e a v e s −n semi

2 1 { extend(R) : childRow(R,N) } 1 ← childNode(N).

3 ← extend(R), extend(S), childItem(R,i(X)), not childItem(S,i(X)).

4 item(i(X)) ← extend(R), childItem(R,i(X)), not removed(X).
5 item(d(X)) ← extend(R), childItem(R,d(X)), not removed(X).

6 { item(i(X)) : introduced(X) }.
7 item(d(Y)) ← item(i(X)), edge(X,Y), current(X), current(Y).
8 ← removed(X), extend(R), not childItem(R,i(X)), not childItem(R,d(X)).

9 cost(C) ← initial, C = #count{ X : item(i(X)) }.
10 cost(CC + IC) ← numChildNodes == 1, extend(R), childCost(R,CC),

↪→ IC = #count{ X : item(i(X)), introduced(X) }.
11 cost(C1 + C2 - CC) ← numChildNodes == 2, extend(R1), extend(R2),

↪→ childCost(R1,C1), childCost(R2,C2), commonCost(R1,R2,CC).
12 commonCost(R1,R2,CC) ← childRow(R1,N1), childRow(R2,N2), N1 < N2,

↪→ CC = #count { X : childItem(R1,i(X)), childItem(R2,i(X)) }.

Listing 2.3: D-FLAT Encoding for Minimum Dominating Set

Listing 2.3 shows a possible D-FLAT encoding for the problem Minimum Dominating
Set. The first line of the provided listing is similar to the configuration statement that
is used in Listing 2.2. The only difference between the two setups is the fact that in
the case at hand we use input instances where the graph’s edge relation is defined using
predicates named vertex (with arity 1) and edge (with arity 2). The semantics of each
of the two predicates follows the definition of the respective, graph-theoretic concept (see
Definition 8 (graph)).

30

2.3. Dynamic Programming on Tree Decompositions

By Line 2 of Listing 2.3 we specify a non-deterministic guess which selects for each
child node a table row, representing a partial solution, which shall be extended. In the
next line, a constraint is used to discard all combinations of rows where the respective
guesses for the vertices inside S – a vertex x ∈ S is denoted by the item i(x) – are not
consistent. In this way, we can be sure that we only extend child solutions which refer to
the same dominating set. Line 4 then just propagates the information for all vertices
which are not removed from the tree decomposition so far, i.e., those which are still in
the bag of the current vertex. Line 5 works analogously for the dominated vertices y ∈ S,
denoted by the item d(y).

Line 6 of Listing 2.3 implements a non-deterministic guess whether an introduced vertex
is in the dominating set or outside. Once it choice is made, via Line 7 we derive that all
its neighbors which are occurring in the current bag are dominated. Line 8 discards all
partial solutions where a removed vertex is neither inside the set acting as candidate for
a dominating set nor dominated.

Lines 9 to 12 then define the costs of the solution. For each partial solution in a leaf
node, the costs are determined simply by the number of vertices which are inside the
dominating set. For exchange nodes, i.e., nodes with a single child, the costs of a solution
are given by the sum of the corresponding solution for the child node and the number of
introduced vertices which are assumed to be in the dominating set. For semi-normalized
join nodes, i.e., nodes with two children having exactly the same bag content as the node
under focus, the costs can be determined by simply following the inclusion-exclusion
principle. That is, we have to add the costs for the partial solution from the first child
to the costs for the partial solution of the second child and then we subtract the costs
which they have in common regarding the current bag content. Note that the predicate
cost (with arity 1) is interpreted by D-FLAT as the cost of a partial solutions and the
framework automatically takes care that only solutions of minimal cost are retained.

By using the variable-clause incidence graph from Figure 2.1 we obtain a possible input
instance for the D-FLAT encoding in Listing 2.3. The ASP encoding corresponding to
the instance is given in Listing 2.4.

vertex(a). vertex(b). vertex(c). vertex(c1). vertex(c2). vertex(c3).
edge(a,c1). edge(a,c3). edge(b,c2). edge(b,c3). edge(c,c2). edge(c,c3).

Listing 2.4: An Instance of Minimum Dominating Set based on Figure 2.1

Because D-FLAT was instructed to consider the predicates vertex and edge as edge
relation, the framework internally constructs the graph depicted in Figure 2.6 when
called with the problem encoding from Listing 2.3 and the given input instance. For the
reader’s convenience, the only minimum dominating set (a and c2) is highlighted in green
and with thick border. In Figure 2.7 we provide a semi-normalized tree decomposition
for the given instance of the Minimum Dominating Set problem.

The dynamic programming tables resulting from using the problem encoding from

31

2. Background

c1 c2

c3

a b c

Figure 2.6: An Example Instance of Minimum Dominating Set

n7 : {b, c, c2} n8 : {a, c1}

n5 : {b, c, c3} n6 : {a, c3}

n3 : {c3} n4 : {c3}

n2 : {c3}

n1 : ∅

Figure 2.7: A Semi-Normalized Tree Decomposition with Empty Root n1

Listing 2.3 together with the graph instance from Listing 2.4 and the corresponding,
semi-normalized tree decomposition are shown in Figure 2.7. The tables are constructed
similarly to those in the exemplification of dynamic programming on tree decompositions
earlier in this chapter. The only difference is that we now use D-FLAT ’s capabilities of
handling solution costs in order to minimize the size of the dominating set. This time,
the domain of values for each of the vertices is given by the assignments o, d and i, where
i denotes that the corresponding vertex is part of the set of selected vertices. The value
d means that the vertex is dominated and o stands for the fact that the vertex is outside
the set of selected vertices and (currently) not dominated.

When we look at the tables shown in Figure 2.8, depicting the partial solutions for the
Minimum Dominating Set problem we can see that in the step between the nodes
n7 and n5, some solution candidates are not extended. For candidates n7|0 this is not
surprising as vertex c2 is neither selected nor dominated. The explanation for discarding
candidates n7|3, n7|5 as well as n7|7 is given by the fact that those candidates are sub-
optimal with regard to the solution size, i.e., we can always find a valid, smaller set which
still fulfills the criteria for a cardinality-minimal dominating set. Note that D-FLAT
automatically takes care that only those partial solutions are retained for which there
is no counterpart with identical items but of smaller cost. In this way, when we finally
reach the empty root node, we observe that there is only a single, optimal solution for

32

2.4. Machine Learning

id b c c2 cost ext.
n7|0 o o o 0 -
n7|1 d d i 1 -
n7|2 o i d 1 -
n7|3 d i i 2 -
n7|4 i o d 1 -
n7|5 i d i 2 -
n7|6 i i d 2 -
n7|7 i i i 3 -

id a c1 ext.
n8|0 o o 0 -
n8|1 d i 1 -
n8|2 i d 1 -
n8|3 i i 2 -

id b c c3 cost ext.
n5|0 d d o 1 {n7|1}
n5|1 d d i 2 {n7|1}
n5|2 o i d 1 {n7|2}
n5|3 d i i 2 {n7|2}
n5|4 i o d 1 {n7|4}
n5|5 i d i 2 {n7|4}
n5|6 i i d 2 {n7|6}
n5|7 i i i 3 {n7|6}

id a c3 ext.
n6|0 d o 1 {n7|1}
n6|1 d i 2 {n7|1}
n6|2 i d 1 {n7|2}
n6|3 i i 2 {n7|2}

id c3 cost ext.
n3|0 o 1 {n5|0}
n3|1 d 2 {n5|6}
n3|2 i 2 {n5|1, n5|3, n5|5}

id c3 cost ext.
n4|0 o 1 {n6|0}
n4|1 d 1 {n6|2}
n4|2 i 2 {n6|1, n6|3}

id c3 cost ext.
n2|0 o 2 {(n3|0, n4|0)}
n2|1 d 2 {(n3|0, n4|1)}
n2|2 i 3 {(n3|2, n4|2)}

id cost ext.
n1|0 2 {n2|1}

Figure 2.8: Solving Minimum Dominating Set using D-FLAT

the given instance of the Minimum Dominating Set problem, namely the dominating
set {a, c2}. The optimal solution can be reproduced by following the partial solutions
n1|0, n2|1, n3|0, n4|1, n5|0, n6|2, n7|1, n8|2 and by observing that in these partial solutions
the only vertices with value i are a and c2.

As already mentioned in the introduction of this work, dynamic programming algorithms
which operate on tree decompositions often suffer from poor robustness regarding their
runtime behavior. In the next section we will therefore introduce an area of computer
science which can help to get a handle on this issue.

2.4 Machine Learning
Machine learning is among the most prominent areas of research within the computer
science discipline of artificial intelligence (AI). The foundations of this field of study were

33

2. Background

laid in the 1950’s based on seminal work by Samuel [Sam59]. This important article by
Samuel – which is seen by many researchers as the publication that coined the term
machine learning – is presenting a computer program which is able to play the game of
Checkers. While, on the first glance, implementing the required software routines seems
to be a straight-forward task for experienced programmers, the novelty of this program
is the fact that it is able to learn. This means, Samuel’s software is able to adapt itself
according to the current situation without influence from the outside in terms of human
input which enforces a re-configuration. Thus, the computer program by Samuel which
uses machine learning techniques to increase its chance of winning the game of Checkers
probably is the first piece of software capable of self-guided learning.

Since its origin, the area of machine learning research quickly gained attention in many
fields of application. Such fields include medical diagnosis (e.g., detection of potential
diseases), finance (e.g., predicting trends of stocks as well as of stock markets), behavioral
advertising, text/image/video categorization, text and speech recognition, detection of
viruses and spam e-mails, weather forecasts, computer games, search engines as well as
autonomous cars/robots. Indeed, this list is not exhaustive because machine learning
nowadays is finding its way into more and more areas of life. For instance, in a growing
number of cities, machine learning algorithms help the police to better coordinate the
officers on duty by predicting those areas of the city having an increased probability of
crime being committed.

Typically, the umbrella term “machine learning” comprises the following forms of learning:

• Supervised learning:
In tasks assigned to the area of supervised learning, the learning algorithm (or
learner for short), in general, receives a set of labeled training examples, usually
consisting of a vector of input values and the desired output value (representing
the label of the training example at hand). Based on these ingredients, the goal of
the learner is to infer a function, the so-called model, from the provided training
data which allows to predict the outcome for unseen examples for which only the
vector of input values is known.

• Reinforcement learning:
Especially in the context of autonomous systems, techniques from the area of
reinforcement learning are used. The idea behind this approach is that a machine,
robot or software agent shall learn and improve its behavior based on the feedback
it receives from its environment in terms of so-called reinforcement signals. For
instance, a robot can learn how to navigate efficiently through a room by receiving
negative feedback when a collision with an obstacle (e.g., a chair standing the
robot’s way) is detected.
Note that the distinction between supervised and reinforcement learning is given
by the different assessment of solution quality: In the case of a supervised learning
task, the quality of the learned model can be quantified in a relatively easy way by

34

2.4. Machine Learning

measuring the deviation between the predicted and the actual labels. In contrast, in
the context of reinforcement learning, the quality of a model is measured by means
of the collective reward or penalty which is achieved using the learned behavioral
rules.

• Unsupervised learning:

Sometimes, the data which is given to a learner is completely unlabeled and also
there is no environmental feedback available. In these cases, techniques from the
area of unsupervised learning come into play. The goal of such techniques is to
unveil hidden structure in the provided input data and to describe it by means of
functions. Probably the most prominent representative of unsupervised learning
techniques is cluster analysis (or clustering for short) [And73, ELLS11].

In the remainder of this introduction to machine learning we will focus on supervised
learning by means of so-called regression algorithms. For surveys and more details on
the wide range of other topics from the area of machine learning, see, e.g., [Mit97, Bis06,
MRT12].

Regression is a prominent technique from the area of supervised learning. Informally
speaking, regression represents a generalization of classification. Given a list of allowed
classes (potential labels) and an unlabeled example consisting of a set of input values, a
classification task asks for the actual class the measurement belongs to. While the classes
used in the context classification tasks are always discrete values, the domain of the
output value of a regression task is continuous. In the context of regression algorithms,
the different input values associated with a given example are often called explanatory
variables (or features) and the value which is to be predicted is often referred to by the
term response variable.

Body Height (cm) Body Mass (kg)
170 80.0
180 90.0
190 100.0
176 ?
194 ?

Table 2.1: Example of a Regression Task

To illustrate the idea behind the technique of regression by means of a small example,
have a look at Table 2.1. The table shows in the first column the body height of a person
and in the second column the body mass of the respective person is provided. Hence, in
our simple example, an individual has just two features, namely its body height and the
mass. For our example, assume that the only explanatory variable is the body height
and the body mass acts as the response variable which is to be predicted.

35

2. Background

The group of three persons at the top of Table 2.1 is called the training set. This term is
based on the fact that this is the group of individuals upon which the actual learning
takes place. The so-called evaluation set in our example consists of the remaining two
rows where the body mass is currently not known. Often, the evaluation set is also called
test set. The goal of regression is to compute a model which can be used to predict the
body mass of each of the individuals in the test set with highest possible accuracy based
on the given explanatory variables. Here, the term model refers to the materialization of
the learned relationship between the explanatory variables and the response variable.

For our running example, it is not hard to see that the body masses in the training
set can be perfectly explained by the formula h− 90 where h denotes the individual’s
body height. While this seems trivial in our minimalist example, in almost all real-world
application scenarios finding a function which allows to predict the response variable
with high accuracy is far from easy.

When we follow the simple function we learned from the training set of our example
regression task, we can assume that the body masses of the remaining two persons are
86.0 and 104.0 kilograms. As long as the coincidence between prediction and actual value
is given, everything is fine, but especially when there are more features involved (like, for
instance, the sex or age of the investigated persons) or when there are more individuals
to consider, a regression task can relatively soon become very complex. For instance,
assume that we add an additional individual having body height 160cm and a body
mass of 67kg to the training set from Table 2.1. In this case, it is clear that the perfect
conformity of the body mass to our formula h − 90 is no longer given, even when we
consider only the training set, and that we observe a certain degree of deviation between
our prediction and the actual measurement. This deviation is also called the error.

Often, the prediction quality of a regression model with respect to a certain training set
is quantified in terms of the Pearson correlation coefficient (also called Pearson’s r or
Pearson product-moment correlation coefficient) [KK62]. Furthermore, common notions
of error in the context of regression tasks are, for instance, the mean (absolute) deviation
or the root mean squared error (see, e.g., [KK62] for details on these measures).

In order to minimize the undesired error and to increase correlation between prediction
and actual observation, researchers proposed a multitude of different regression algorithms.
Among the most prominent representatives of these algorithms we find, for instance, linear
regression [KK62], regression trees [Qui92], nearest-neighbor algorithm [AKA91], least
median of squares [RL05] as well as support-vector machines for regression [SKBM00,
SS04], to name just a few. The no-free-lunch theorem [Wol96] states that there is no
algorithm which performs best in every possible situation. Accordingly, it strongly
depends on the actual application scenario which of the available regression algorithms
delivers the highest accuracy. We also observe that sometimes even relatively simple
approaches provide good prediction quality while in other cases, more sophisticated
algorithms have to be employed in order to allow for reliable predictions.

To evaluate the quality of a given model, the technique of 10-fold cross validation is

36

2.4. Machine Learning

common in the area of machine learning as it allows to estimate the expected error
for unseen examples without manual separation of the input data set into training and
evaluation set. Instead, 10-fold cross validation works by quantifying the error of the
learned model with respect to the very same input data set which is split into ten distinct
sets of examples. After dividing the input data set into ten parts, each of these subsets
is taken once as evaluation set whereas the remainder with respect to the complete data
set is considered as the training set for the so-called fold at hand. In this way, ten
separate evaluations of the Pearson correlation coefficient and/or different error measures
are performed. Hence, the estimation of the quality of a model is likely to be more
accurate than in those cases where just a single split of the input data set into training
and evaluation set is considered.

Once a regression model is trained and the error is acceptably small, we can use it to
predict the response variable for unclassified examples, i.e., examples for which the actual
value of the response variable is currently unknown. Note that although many regression
algorithms perform very well concerning their prediction quality, they are always bound
to the training data. Therefore, it is often crucial to prepare the input data for machine
learning algorithms in order to achieve best results.

Furthermore, due to the decisive impact of the features which are considered on the
learning tasks, an important step on the way towards optimal prediction quality is feature
engineering. Roughly speaking, the term “feature engineering” refers to the process of
defining the variables which are used in a machine learning task like classification or
regression. A specific example from an input data set in the context of a machine learning
task, often also called an individual, is identified by a combination of features and the
corresponding class value. In our example scenario from before, the only two features of
a human being are its body height and the mass where the latter acts as class variable.
Indeed, it is apparent that there is much more to consider if we aim for good prediction
quality in a real-world setting. For instance, other promising features could be the sex,
age, the home country as well as the wealth of the investigated individuals. In practice,
finding an appropriate set of features for a given problem statement is often far from
trivial.

In Section 3 we employ regression models to predict the expected runtime of dynamic
programming algorithms based on characteristic, problem-independent features of the
underlying tree decomposition on which these algorithms operate. Using machine learning
techniques for runtime prediction gained a lot of attention due to its wide-ranging
applicability in many scenarios. Recently, researchers have successfully applied machine
learning for runtime prediction and algorithm selection to several problem domains. Such
problems include, among a variety of others, SAT [XHHL08, HXHL14], combinatorial
auctions [LNS09], the traveling salesperson problem [SMvHL10, KCHS11, MBT+13,
PM14, HXHL14] as well as Graph Coloring [SWLI13, MS13].

The aim of runtime prediction is to make accurate predictions of the actual running time
of a given algorithm based on features of the input instance. Going one step further, tools
from the domain of algorithm selection are used to select the most promising algorithm

37

2. Background

(i.e., the one with lowest predicted time consumption) from a pool of available ones based
on the problem instance at hand. For surveys on the domain of runtime prediction and
algorithm selection, see, e.g., [Smi08, HXHL14, Kot14].

We note at this point that the goal we pursue in our application scenarios presented in
the thesis at hand is not primarily to achieve a perfect correspondence between actual
and predicted solving time for a given problem instance (the basic intention of runtime
prediction). Also, we do not follow the idea to select the optimal algorithm to process a
given task like it is done in the domain of algorithm selection. Instead, our approach
needs only a single dynamic programming algorithm capable of solving the problem at
hand. Once such an algorithm exists, we use machine learning techniques to select the
most promising tree decomposition from a pool of generated ones for a given problem
instance before actually running the dynamic programming algorithm on it. In general,
the most promising decomposition in this context is the one for which the predicted
time consumption for the given problem instance is minimal. Hence, although there are
the aforementioned differences, what is common between our approach, general runtime
prediction and algorithm selection is the overall goal, namely to save valuable time in
practical scenarios.

38

CHAPTER 3
The Impact of Tree

Decomposition Selection

As mentioned in the previous chapter, from a theoretical point of view, the actual
width k of a tree decomposition is the crucial parameter towards efficiency for FPT
algorithms that use those decompositions. Unfortunately, experience shows that there
is more to consider than just the plain width in order to achieve highest efficiency in
practical application scenarios. Morak et al. [MMP+12], for instance, suggested that the
consideration of further properties of tree decompositions is important for the runtime of
dynamic programming algorithms for answer set programming. In another paper, Jégou
and Terrioux [JT14] observed that the existence of multiple connected components in the
same tree node (bag) may have a negative impact on the efficiency of solving constraint
satisfaction problems.

In this chapter we now go one step further by considering a much richer set of tree
decomposition features for the estimation function of the runtime of dynamic programming
algorithms. More precisely, in this chapter we want to gain a deeper understanding of
the impact of the shape of tree decompositions on the actual runtime of DP algorithms
by employing techniques from the area of machine learning.

In Section 2.4, we already referred to some success stories in which machine learning was
used for runtime prediction and algorithm selection. Our research gives new contributions
in this area as, to the best of our knowledge, this is the first application of machine
learning techniques towards the optimization of tree decompositions in DP algorithms. To
this aim we propose new original features for tree decompositions that allow for a reliable
prediction of the influence of a given tree decomposition on the performance of dynamic
programming algorithms. Further, to select the most promising tree decomposition from a
pool of generated ones using those features we propose an approach that applies machine
learning techniques. We create the appropriate training sets by conducting extensive

39

3. The Impact of Tree Decomposition Selection

experiments on different problem domains, instances and tree decompositions. Moreover,
we run our experiments on a state-of-the-art system that applies dynamic programming
algorithms on tree decompositions, namely D-FLAT [ABC+14b]. D-FLAT is a problem-
independent general-purpose framework designed for (relatively) easy prototyping of DP
algorithms (see also Section 2.3).

The complete picture of our evaluation shows a significant benefit of selecting a tree
decomposition that is promising according to the prediction in contrast to simply choosing
an arbitrary one. The results also confirm that our approach is generally applicable and
independent from the particular problem domain. Hence, relying only on the width as a
measure for the quality of a tree decomposition appears to be a too narrow approach, and
we see the strong need for new, enhanced notions which allow for a better discrimination
between different tree decompositions of the same instance. In our experimental evaluation
we show that our proposed features are indeed promising candidates for these new quality
measures. Finally, the results provide valuable insights for laying the foundation to
construct customized decompositions optimizing the relevant features.

An additional evaluation conducted with another tree-decomposition based system,
namely SEQUOIA [KLR11], can be found in an accompanying technical report [AMW16c].
The results for the SEQUOIA system are very similar to those we observe in the chapter
at hand. Although in the case of SEQUOIA, the variation in terms of solving time
between different random seeds (and hence, different tree decompositions) for the same
problem instance is relatively small, predicting the runtime of DP algorithms based on
tree decomposition features works very well. Because the prediction seems to be more
involved in the case of D-FLAT and also due to the fact that the edge weights used in the
context of the Steiner Tree problem (see Section 3.2.1) are not handled by SEQUOIA,
we focus in this chapter on D-FLAT .

The remainder of this chapter is organized as follows. In Section 3.1 we propose a novel
approach on how to improve the performance and robustness of dynamic programming on
tree decompositions and in Section 3.2 we provide an extensive experimental evaluation
on random input data and real-world instances. Section 3.3 finally concludes this chapter.

3.1 Improving the Efficiency of DP Algorithms
Systems such as D-FLAT follow a straight-forward approach for using tree decompositions:
A single decomposition is generated heuristically and then fed into the DP algorithm used
by the system (see Figure 3.1a). However, experiments have shown that the “quality” of
such tree decompositions varies, leading to significantly differing runtimes for the same
problem instance. Most interestingly, “quality” in this context does not necessarily mean
low width. Even tree decompositions of exactly the same width lead to huge differences
in the observed solving times. For instance, in our experiments for the Steiner Tree
problem on real-world instances (see Section 3.2.3) we observe runtimes between 67 seconds
and around two hours for the problem instance vienna/metro_10terminals_46 for
which all the tree decompositions used in our evaluation are of width 5.

40

3.1. Improving the Efficiency of DP Algorithms

Heuristic
Instance
Graph Decomposition

Solver SolutionsProblem Specification

(a) Standard Approach

Heuristic
Instance
Graph Decompositions

Selection

Optimal Decomposition

SolverProblem Specification Solutions

Model Features

(b) Improved Approach

Figure 3.1: Comparison of Approaches

3.1.1 Automated Selection of Tree Decompositions

The approach we propose in this work is illustrated in Figure 3.1b. The main idea is to
generate a pool of tree decompositions for the given input instance and then to select,
based on features of the decomposition, the one which promises best performance. The
key aspects of the approach are as follows:

• Generating a number of tree decompositions for a given input graph can be usually
done very efficiently by employing sophisticated heuristics for tree decompositions
like, e.g., Min-Fill heuristic [Dec03]. Thus, the runtime overhead for computing a
pool of them will be negligible in most cases compared to the overall runtime of
the dynamic programming algorithm.

• Models allowing to predict the influence of a tree decomposition on the runtime
behavior of a given DP algorithm are required. These models can be obtained in an
off-line training-phase by running several instances with different tree decomposi-
tions and by storing the runtime and the feature values which are then processed by
machine learning algorithms. For our purposes, machine learning techniques need
to predict a good ranking of tree decompositions based on the predicted runtime
for these decompositions. We note that a very accurate prediction of runtime is
not crucial in our case, but rather predicting a correct order of tree decompositions.
For example, if running a DP algorithm using tree decomposition TD1 is faster
than with TD2 , it is important that machine learning algorithms predict that the
runtime for TD1 is shorter than the runtime for TD2 .

• The main challenge and novel aspect of the approach is given by the fact that the
features used to obtain these rankings need to be defined on the tree decomposition,

41

3. The Impact of Tree Decomposition Selection

not on the given problem instance. This is because instance features only help to
distinguish instances but they do not help us to choose a proper decomposition as
they are the same for each of the generated decompositions. To successfully apply
learning techniques we need powerful features that characterize tree decompositions.
Moreover, the computation of these features needs to be done efficiently.

In other words, our approach works as follows. First, a number (which can be arbitrarily
large) of tree decompositions of the given problem instance is computed and stored in
a pool. Second, the features (acting as explanatory variables) of these decompositions
are extracted and used to predict the runtime as the response variable. This gives us a
ranking from which we select the decomposition with minimal predicted runtime (in case
of ties, we choose randomly one of the decompositions having minimal predicted runtime).
We apply several regression algorithms to generate the models for prediction. Finally,
the selected decomposition is handed over to the system which runs the DP algorithm.

Note at this point that the model(s) as well as the features are crucial ingredients for the
applicability of our approach in practice. Indeed, it should be possible to compute each
feature efficiently. Furthermore, it can be a time-consuming task to train a regression
model. Fortunately, as we will show in Section 3.2.5, it seems that models which were
trained for some specific problem domain can often be re-used in different application
scenarios. In the following section we will propose a set of several tree decomposition
features which are all computable in polynomial time. In many cases, this is possible
even in linear time.

3.1.2 Tree Decomposition Features

In what follows we address one of the main contributions of the work, namely the
identification of new tree decomposition features. As it is common practice to define
dynamic programming algorithms on normalized tree decompositions (see, e.g., [BK08,
KLR11]), we restrict ourselves here to this type of decomposition. That this restriction
does not affect the generality of the proposed approach is shown implicitly in Chapter 5.
There, also features of semi-normalized and non-normalized tree decompositions are
considered for the selection of promising decompositions. Subsequently we will give for
each feature a short description and formal specification. Providing multiple statistical
key figures like minimum, maximum, mean and median leads us to a total of 144 features.

Before we present the collection of tree decomposition features, let us fix the formal
notation we will use in the corresponding formulae. We assume a given (normalized) tree
decomposition TD (T , χ) with T = (N,ET) of a graph G = (V,E). One of the nodes
in N thereby acts as the root of the decomposition. Each node i ∈ N has associated a
type ti ∈ {Leaf , Introduce,Forget, Join}. Furthermore, we define the sets Leaf , Introduce,
Forget and Join to contain exactly the nodes from TD where ti matches the name of
the set. The bag content of a node i is denoted by χ(i). The set NonLeaf is defined as
N \ Leaf and the set NonEmpty covers all nodes i ∈ N where |χ(i)| > 0. The distance
between two nodes i and j (in T) is given by the function distance(i, j). By li we denote

42

3.1. Improving the Efficiency of DP Algorithms

the level (also called depth) of a node i, given by the distance between the root and i.
The level of the root r is thus 0. The set of children of node i is denoted by Childreni.
The set Nv associated with a vertex v ∈ V is the set of decomposition nodes i ∈ N
such that v ∈ χ(i). Some of the more elaborate features require information about
the neighborhood and the reachability relation. For this reason we define the following
functions:

• neighbors(v) returns the set of neighbors of vertex v (excluding v) in G;.

• adjacent(u, v) returns 1 whenever vertices u and v are adjacent in G and 0 otherwise;

• reachable(u, v) returns 1 whenever v can be reached from u in G and 0 otherwise.

Most of the features we present and utilize in this chapter rely on the use of aggregates.
In order to avoid redundancies we employ two slightly different sets of aggregates in the
actual formulae shown subsequently. Note that we give here just the simple enumeration
of the aggregates we use for our experiments. When implementing our approach one can
use (almost) all possible subsets and every superset of the following sets.

• Agg1 = {count,min,max,mean,median, sd (Standard Deviation) }

• Agg2 = Agg1 \ {count}

The proposed features are described below.

BagSize, NonLeafNodeBagSize, NonEmptyNodeBagSize These feature shall
capture the complexity of the tree decomposition by recording the size of the bags. We
have for each α ∈ Agg1

BagSizeα = α({|χ(i)| : i ∈ N})
BagSizeαt = α({|χ(i)| : i ∈ t}) for t ∈ {Leaf , Introduce,Forget, Join}

BagSizeαNonLeaf = α({|χ(i)| : i ∈ NonLeaf })
BagSizeαNonEmpty = α({|χ(i)| : i ∈ NonEmpty})

(3.1)

Additionally, to cover the overall size of the decomposition, we have

CumulativeBagSize =
∑
i∈N
|χ(i)|

CumulativeBagSizet =
∑
i∈t
|χ(i)| for t ∈ {Leaf , Introduce,Forget, Join}

DecompositionOverheadRatio =
(∑
i∈N
|χ(i)|

)
/|V |

(3.2)

43

3. The Impact of Tree Decomposition Selection

ContainerCount By the container count of a vertex v we refer to the number of bags
a vertex v of the original graph appears in. For each α ∈ Agg2 we have

ContainerCountα = α(
⋃
v∈V
{|{i : i ∈ N, v ∈ χ(i)}|}) (3.3)

Note that ContainerCountmean = DecompositionOverheadRatio. In this special case, the
features are indeed equivalent. In practice, one can avoid redundancy by using only a
single one of these two measures.

ItemLifetime This feature is very similar to ContainerCount, but this time we only
count the number of distinct levels of the tree decomposition the vertex appears in. For
each α ∈ Agg2 we have

ItemLifetimeα = α(
⋃
v∈V
{|{li : i ∈ N, v ∈ χ(i)}|}) (3.4)

NodeDepth, NonLeafNodeDepth, NonEmptyNodeDepth These features of a
given tree decomposition aggregate the distance from the root node to the respective
nodes under focus. For each α ∈ Agg2 we have

NodeDepthα = α({li : i ∈ N})
NodeDepthαt = α({li : i ∈ t}) for t ∈ {Leaf , Introduce,Forget, Join}

NodeDepthαNonLeaf = α({li : i ∈ NonLeaf })
NodeDepthαNonEmpty = α({li : i ∈ NonEmpty})

(3.5)

Percentage This feature records the overall percentage of the respective node type in
the tree decomposition at hand.

Percentaget = |{i : i ∈ t}|/|N | for t ∈ {Leaf , Introduce,Forget, Join} (3.6)

JoinNodeDistance Join nodes often have a strong influence on the runtime of DP
algorithms as they have the potential to increase (or decrease) the number of valid
solution candidates drastically. This feature keeps track of the distance between join
nodes and it is 0 in the case that not more than a single join node is present in the
decomposition. In case that two or more join nodes are present, the distance is measured
for each pair i and j of join nodes separately by taking the length of the path between i
and j in the decomposition. In case that not more than one join node is present, the
following features are set to 0. Otherwise, for each α ∈ Agg2 we have

JoinNodeDistanceα = α({distance(i, j) : i, j ∈ Join, i 6= j}) (3.7)

BranchingFactor This feature measures the number of children for each node within
the tree decomposition. For each α ∈ Agg2 we have

BranchingFactorα = α({Childreni : i ∈ N}) (3.8)

44

3.1. Improving the Efficiency of DP Algorithms

BagAdjacencyFactor This feature measures the ratio of the number of pairs of
vertices in the bag that are adjacent in the original graph G and the total number of
vertex pairs in the bag. For each α ∈ Agg2 we have

BAFα = α

({ |{(u, v) : u, v ∈ χ(i), u 6= v, adjacent(u, v)}|
max(1, |χ(i)| ∗ (|χ(i)| − 1)) : i ∈ N

})
(3.9)

BagConnectednessFactor This feature relates the number of pairs of vertices in the
bag that are connected in the original graph G to the total number of vertex pairs in the
bag. For each α ∈ Agg2 we have

BCFα = α

({ |{(u, v) : u, v ∈ χ(i), u 6= v, reachable(u, v)}|
max(1, |χ(i)| ∗ (|χ(i)| − 1)) : i ∈ N

})
(3.10)

BagNeighborhoodCoverageFactor For each vertex in the bag the ratio between
the number of neighbors in the bag to the number of neighbors in the original graph is
computed. The value for a single bag i is computed by averaging over all values for the
vertices in χ(i). For each α ∈ Agg2 we have

BNCFα = α

({
mean

({ |neighbors(v) ∩ χ(i)|
|neighbors(v)| : v ∈ χ(i)

})
: i ∈ N

})
(3.11)

[Introduced | Forgotten]VertexNeighborCount Experience shows that the simple
propagation of information is in many cases not the bottleneck for DP algorithms. In fact,
most of the “real” work has to be done when vertices are introduced or forgotten and
the algorithm has to evaluate rules and check constraints concerning the new (forgotten)
vertices and their neighbors in the current bag. These two features are dedicated exactly
to this issue. For each α ∈ Agg2 we have, based on the introduced (forgotten) vertices
Xi for bags i

NCα = α ({|neighbors(v) ∩ χ(j)| : i ∈ N, v ∈ Xi, j ∈ Nv}) (3.12)

[Introduced | Forgotten]VertexConnectednessFactor Closely related to the count
of neighbors for introduced and forgotten vertices is the connectedness factor. For the last
two features used in this chapter we measure the ratio between the number of vertices
in the bag connected to a introduced (forgotten) vertex v in the original graph and the
total number of all possible connections between all nodes in the bag. For each α ∈ Agg2
we have, based on the introduced (forgotten) vertices Xi for bags i

CFα = α

({ |{(u, v) : u, v ∈ χ(j), u 6= v, reachable(u, v)}|
max(1, |χ(j)| ∗ (|χ(j)| − 1)) : i ∈ N, v ∈ Xi, j ∈ Nv

})
(3.13)

45

3. The Impact of Tree Decomposition Selection

Example 2. To demonstrate how the proposed features help to distinguish different tree
decompositions of a given input graph consider Figure 3.2 which shows a graph G together
with two corresponding, normalized tree decompositions. A selection of their features is
provided in Table 3.1.

a
b

c
d

e

(a) Example Graph G

n1: {c, e}

n2: {c}

n3: {c, d}

n4: {c}

n5: {b, c}

n6: {a, b, c}

(b) TD1

n1: {c}

n2: {c} n3: {c}

n4: {b, c} n5: {c} n6: {c}

n7: {a, b, c} n8: {c, d} n9: {c, e}

n10: {a, b}

(c) TD2

Figure 3.2: Graph G with Normalized Tree Decompositions TD1 and TD2

Feature TD1 TD2
BagSizemedian 2 1.5
CumulativeBagSize 11 16
DecompositionOverheadRatio 2.2 3.2
ContainerCountmedian 1 2
ItemLifetimemedian 1 2
NodeDepthmedian 2.5 2
JoinNodeDistancemedian 0 1
BagAdjacencyFactormedian 1 1
BagConnectednessFactormedian 1 1
BagNeighborhoodCoverageFactormedian 0.5 0.19
IntroducedVertexNeighborCountmedian 1 2
ForgottenVertexNeighborCountmedian 1 1
IntroducedVertexConnectednessFactormedian 1 1
ForgottenVertexConnectednessFactormedian 1 1

Table 3.1: Subset of Extracted Features for Decompositions TD1 and TD2 of Graph G

46

3.2. Experimental Evaluation

We can see that both decompositions TD1 and TD2 have a maximum bag size of 3;
hence they have exactly the same width – namely 2 – but their actual difference is clearly
reflected by the proposed features (see Table 3.1). For brevity we only provide the median
for those features where multiple aggregates are applied. �

Note that the set of tree decomposition features we present here shall act as a starting
point. It contains various features which quantify the structural parameters of a given
(normalized) tree decomposition, but it also includes several measurements which are
related to the general runtime behavior of dynamic programming algorithms, like, e.g., the
neighborhood-related features. Although we focus solely on tree decomposition features
in this chapter, considering also problem-specific features may improve prediction quality
in concrete scenarios. In the following experiments we will use the complete set of
our proposed features, but one can also try to drop some of them, e.g., by using well-
established feature selection techniques from the area of machine learning (see, e.g.,
[GE03, CS14] for an overview of feature selection approaches).

3.2 Experimental Evaluation

In this section, we experimentally evaluate the proposed method. All our experiments
were performed on a single core of an Intel Xeon E5-2637@3.5GHz processor running
Debian GNU/Linux 8.3 and each test run was limited to a runtime of at most six hours
and 64 GB of main memory.

We evaluate our approach based on the state-of-the-art dynamic programming framework
D-FLAT 1.0.1. The machine learning tasks were carried out withWEKA 3.6.13 [HFH+09].
The full benchmark setup (including instance files, programs, configurations, problem
encodings and all results) is, together with a short description on how to reproduce
the results of the experiments, available at: http://dbai.tuwien.ac.at/research/
project/dflat/features_2016_03.zip

3.2.1 Methodology

Problems In our analysis we consider the following set of problems defined on an
undirected graph G = (V,E). Note that we use enumeration problems here as D-FLAT
per default always computes all solutions for a given problem instance.

1. Minimum Dominating Set (MDS): Find all sets S ⊆ V of minimal cardinality,
such that for all vertices u ∈ V either u ∈ S or there is an edge (u, v) ∈ E with
v ∈ S!

2. 3-Colorability (Col): Find all valid 3-colorings of G, i.e., all mappings of the
vertices v ∈ V to colors r, g and b such that no two adjacent vertices have assigned
the same color!

47

http://dbai.tuwien.ac.at/research/project/dflat/features_2016_03.zip
http://dbai.tuwien.ac.at/research/project/dflat/features_2016_03.zip

3. The Impact of Tree Decomposition Selection

3. Perfect Dominating Set (PDS): Find all sets S ⊆ V of minimum size meeting
the following requirements:

• S is a dominating set of G.
• ∀x ∈ S : x dominates at most one y ∈ (V \ S).
• ∀y ∈ (V \ S) : y is dominated by exactly one x ∈ S.

4. Connected Vertex Cover (CVC): Find all sets S ⊆ V , such that for all
(u, v) ∈ E, u ∈ S or v ∈ S, and such that the vertices in S form a connected
subgraph of G!

Furthermore, we consider the following problem defined on undirected graphs G = (V,E)
with edge weights E → N:

5. Steiner Tree (ST): Given a set of terminal vertices T ⊆ V , find all sets of edges
X ⊆ E of minimum total weight which meet the following requirements:

• For every t ∈ T there is an e ∈ X containing t.
• The graph formed by the edges in X is connected.

We note that the goal of this work is not to outperform existing, specialized state-of-
the-art solvers for the respective problem domains but to improve the performance and
robustness of dynamic programming algorithms on tree decompositions. Indeed the
methods based on tree decomposition are exact techniques and currently can usually
solve only problems of limited size.

Machine Learning Algorithms In our experiments we apply 16 models which are
computed using WEKA’s regression algorithms which have been used successfully in
different application domains. For each of the five problems and for each solver for the
respective problem at hand, the following machine learning algorithms were considered.

1. GaussianProcesses (weka.classifiers.functions.GaussianProcesses) [Mac98]

2. IsotonicRegression (weka.classifiers.functions.IsotonicRegression) [BB72]

3. LeastMedSq (weka.classifiers.functions.LeastMedSq) [RL05]

4. LinearRegression (weka.classifiers.functions.LinearRegression) [KK62]

5. MultilayerPerceptron (weka.classifiers.functions.MultilayerPerceptron) [PBPPM09]

6. PaceRegression (weka.classifiers.functions.PaceRegression) [Wan00, WW02]

7. PLSClassifier (weka.classifiers.functions.PLSClassifier) [HK04]

48

3.2. Experimental Evaluation

8. SMOreg (weka.classifiers.functions.SMOreg) [SKBM00, SS04]

9. IBk (weka.classifiers.lazy.IBk) [AKA91]

10. KStar (weka.classifiers.lazy.KStar) [CT95]

11. LWL (weka.classifiers.lazy.LWL) [AMS97, FHP02]

12. AdditiveRegression (weka.classifiers.meta.AdditiveRegression) [Fri02]

13. Bagging (weka.classifiers.meta.Bagging) [Bre96]

14. CVParameterSelection (weka.classifiers.meta.CVParameterSelection) [Koh96]

15. M5Rules (weka.classifiers.rules.M5Rules) [HHF99]

16. M5P (weka.classifiers.trees.M5P) [Qui92]

The initial evaluation which was used to find the exact configuration for the regression
algorithms considers all parameters provided by WEKA and was done on a separate
benchmark set consisting of 500 tree decompositions (50 instances of 3-Colorability
with 10 decompositions for each instance). For each parameter available in WEKA
we experimented with different values and used 10-fold cross validation to determine
the performance of each configuration. The fixed parameters, which can be found in
[AMW16c], were used for all problem domains investigated in this chapter.

Training Set All aforementioned machine learning algorithms were trained separately
for each problem using a training set consisting of 800 independent benchmark runs.
These runs are obtained by investigating 20 satisfiable1 instances and by considering 40
different tree decompositions (generated using the Min-Fill heuristic [Dec03]) for each of
the problem instances. In addition to restricting the training set to satisfiable instances,
we also ensured that the training set contains no benchmark runs which exceeded the
allowed time or the memory limit to definitively rule out biased results.

The problem instances we used in our experiments are of different size and also the
probability of whether an edge exists between two vertices of the input graph varies for
different instances. While these variations are automatically present in the real-world
instances we investigated, we applied the Erdős-Rényi random graph model to achieve
an appropriate level of randomness for the constructed instances. For these random
instances, we used three graph sizes and three different edge probabilities per problem to
construct the corresponding training set.

1Not all generated instances are satisfiable for 3-Col or CVC. In our experiments for these problems,
we consider only those that are, because for unsatisfiable instances, a large part of the tree decomposition
might not even be visited by a DP algorithm. This is due to the fact that the algorithm terminates as
soon as it is evident that no solution exists for the instance at hand. Therefore, unsatisfiable problem
instances do not allow us to investigate the effect of decomposition selection on the actual runtime of DP
algorithms and we thus omit them in our comparisons.

49

3. The Impact of Tree Decomposition Selection

After the termination of a test run we extracted all of our proposed tree decomposition
features (in our experiments, this took at most two seconds even for the largest instances)
and stored the outcome together with the runtime achieved by the dynamic programming
algorithm. When all test runs for a problem instance were finished, we had to normalize
the results in order to make sure that each instance contributes equally to the computation
of the machine learning models. This normalization step is done by standardizing these
values X feature-wise based on the formula (X−µ)/σ. An example for this normalization
is the following: Assume that 2, 4 and 6 are three evaluations for a feature X, obtained
from three different tree decompositions of a problem instance. Obviously, the mean µ
of these values is 4 and the standard deviation σ is 2. Hence, after standardization, we
obtain the values −1, 0 and 1. When we consider another problem instance where feature
X takes the values 1, 2 and 3 (when given three tree decompositions of the instance),
we again end up with the normalized values −1, 0 and 1. In this way, the previously
different domains of the feature values for the two instances become comparable.

Evaluation Set The evaluation set for the computed models consists of 2000 benchmark
runs per problem domain. These runs are obtained by running 50 problem instances
with 40 different tree decompositions. Again, we ensured that unsatisfiable instances and
such that violate the limits are excluded.

For a given instance, the actual evaluation is done by predicting the normalized runtime
the problem-specific DP algorithm will need to solve the problem. We do this for each
model and for each of the 40 tree decompositions. Afterwards, we select for each model the
tree decomposition with the minimum runtime predicted by the respective model (ties are
broken randomly). All that remains is to simply lookup the real, non-normalized runtime
and compare it with the median runtime (the runtime the “average” decomposition would
lead to) over all the tree decomposition for the given problem instance.

The value for the runtime improvement is computed by subtracting the quotient of the
selected decomposition’s actual runtime and the median runtime from 1. This means
that a result of 0 implies that no improvement could be made. For the utopistic case that
we are able to save 100% of the runtime, i.e., when the dynamic programming algorithm
needs no time to solve the problem instance using the selected decomposition, we would
obtain a result of 1. Every value less than 0 means that we observe a deterioration of the
performance using the respective model as runtime predictor.

As the runtime improvement is strongly dependent on the shape of the problem instance
at hand, we also investigate the predicted rank. This measurement refers to the rank
the tree decomposition predicted as the optimal one achieves within the pool of 40
decompositions. The tree decomposition which led to the fastest solving time is ranked
first. Hence, the closer the predicted rank is to 1, the better. One can expect a runtime
improvement whenever the predicted rank is less than the median rank, which is for
our pool of 40 tree decompositions between 20 and 21. In this context, it is important
to mention that although rank 1 is not achieved one can still significantly improve the
performance if the selected tree decomposition is ranked better than the “average” one.

50

3.2. Experimental Evaluation

Evaluation Process Indeed, the strict separation of the input data set into training
and evaluation set makes the experiments prone to potential bias. To overcome this
issue, we use random sub-sampling with 10 splits throughout our whole experimental
evaluation. This approach constitutes a randomized adaption of the well-established
technique of 10-fold cross-validation. The complete experimental setup for a problem
therefore consists of 2800 benchmark runs based on different tree decompositions (70
problem instances with 40 tree decompositions for each of the instances).

For each of the ten iterations we select randomly 20 problem instances (leading to 800
tree decompositions) for the training set and the remainder of the pool is put into the
evaluation set. The analysis then proceeds as described in the paragraph dedicated to the
evaluation set. This process is repeated ten times to rule out bias as good as possible. By
doing so, we obtain for each problem and model a total of 500 measurements from which
we can draw precise conclusions about the runtime improvement achieved by using the
tree decomposition predicted as the optimal one and the same holds also for conclusions
about the predicted rank.

3.2.2 Experiments on Random Instances

Subsequently we provide a thorough investigation of experiments on random instances to
show the potential of our approach. For every problem domain and each of the sixteen
machine learning algorithms in our experimental setup we will present the predicted
rank and the runtime improvement via box-plots. We also give aggregated performance
measurements based on all computed models to underline the advantages our approach
of selecting the optimal decomposition from a pool provides compared to the standard
way of computing only one decomposition for a given problem instance.

Minimum Dominating Set

The results we obtained for this problem domain in our experiments are summarized
in Figure 3.3. Before we go into the details of the figure, we first want to introduce its
structure as it is crucial for interpreting the expected performance gain and therefore it
will follow us throughout the remainder of this chapter.

In the header of the figure the problem name as well as information about the minimum
and maximum runtime variation for the given instances are provided. These two ranges
refer to the span between minimum and maximum solving time for a given problem
instance when considering all random seeds which were used. In the case at hand we
observe that the instance of Minimum Dominating Set with minimal runtime variation
needed a solving time between 2.0 and 5.2 seconds (leading to a variation of 3.2 seconds)
and that the instance with maximum variation requires solving times between 41.1 and
2877.6 seconds. The second pair of values, indicating a runtime variation of more than
half an hour for the very same instance, impressively illustrates that there are huge
differences in terms of runtime and so there is a significant potential for improvements
which we try to exploit.

51

3. The Impact of Tree Decomposition Selection

Minimum Dominating Set
Minimum Runtime Variation: 2.0 s – 5.2 s
Maximum Runtime Variation: 41.1 s – 2877.6 s

Minimum Improvement: 7.39 % Average Improvement: 21.80 %
Maximum Improvement: 31.15 % Median Improvement: 24.25 %

Statistical Significance: ≥ 99.95 %

1
1

5

10

15

20

25

30

35

40

P
re

di
ct

ed
 R

an
k

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Model

1

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

R
un

tim
e

Im
pr

ov
em

en
t

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Model

Figure 3.3: Performance Characteristics for Minimum Dominating Set

The aggregated measurements for the performance improvements achieved by using our
approach are given in the subsequent rows of the header. The values are computed based
on the median improvement obtained by using each Model 1–16. Furthermore, in the last
row of the header we provide the results of our analysis for statistical significance. The
value gives the probability that our approach leads to an improvement and is computed
by taking the median significance of the one-sided t-test with the null-hypothesis that
the observed performance improvement for a given model is 0. In other words, this last
value in the header gives the probability that the average model, i.e., the hypothetical
model ranked at the median position 8.5 among the 16 models, will indeed lead to a
statistically significant performance improvement.

After this short introduction, let’s have a look at the concrete values for the problem at
hand. The figure headers for Minimum Dominating Set tell us that the improvement
for any of the sixteen models is between 7.39% and 31.15% for D-FLAT while both
median and average improvement are relatively close to the maximum. Please note that
this is the net runtime improvement we would achieve in practice, hence we immediately
see that the approach indeed pays off and that we can easily save a large portion of the
total runtime. The very high statistical significance of not less than 99.95 percent – quite
close to absolute certainty – for our benchmark setup finally tells us that the results
are not a lucky strike and that we can also expect performance improvements in future
experiments, at least in the same problem domain.

The two box-plots in Figure 3.3 are constructed on the basis of the 500 evaluations (50
instances with 10 iterations each) for each computed Model 1–16 (see Section 3.2.1).

52

3.2. Experimental Evaluation

On the left-hand side the predicted rank is illustrated and on the right-hand side we
provide the box-plot of the distribution of the runtime improvement. Due to the fact
that box-plots show the statistical distribution of values we gain even more insights
into the capabilities of our proposed approach: By looking at the quartiles and outliers
we can directly reason about the potential of our approach depending on the actual
problem instances. To allow for a uniform presentation and because models leading to
performance deteriorations would probably never be selected in practice, the box-plot for
the performance improvement only shows the interesting range between 0 and 1.

3-Colorability

We will now present our experiments on 3-Colorability, depicted in Figure 3.4.
Compared to the first problem we investigated in this chapter, this one is less “complex”
because one does not have to keep track of additional, global information like the size of
the dominating set in order to minimize it.

3-Colorability
Minimum Runtime Variation: 1.7 s – 3.1 s
Maximum Runtime Variation: 3.2 s – 1351.7 s

Minimum Improvement: 16.90 % Average Improvement: 29.74 %
Maximum Improvement: 36.67 % Median Improvement: 30.99 %

Statistical Significance: ≥ 99.95 %

●

●

1
1

5

10

15

20

25

30

35

40

P
re

di
ct

ed
 R

an
k

●

●

●

●

●

●

●

●

●

2

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

3

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

4

●

●

5 6 7

●

●●

●●●

●

●

●

●

●

●

8

●●●

●

9

●●●

●

●

●

●

●

●

●●

●

●

●

●

●

10

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

11

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

12 13

●●●●

●

●

●

●

●●

●

●

●

●

●

●

14

●

●●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

15

●

●

●●

●

●

●

●

●

●

16
Model

1

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

R
un

tim
e

Im
pr

ov
em

en
t

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Model

Figure 3.4: Performance Characteristics for 3-Colorability

For solving the problem at hand by means of dynamic programming on tree decompositions
it is sufficient to look at each vertex in the input graph separately and simply check
for each introduced neighbor if it is assigned the same color as the vertex under focus.
Hence, there is almost no propagation of information needed, except for keeping track of
the vertex color within the current tree decomposition node. Therefore, we could expect
that machine learning for this second problem is somewhat easier than for Minimum
Dominating Set and that the performance improvement is higher. Indeed these
assumptions are confirmed in this case when we compare the figures for the two problems.
Again, we observe a remarkable difference between the minimum and maximum solving

53

3. The Impact of Tree Decomposition Selection

time for the very same problem instance, especially when we look at the maximum runtime
variation depicted in the header of Figure 3.4. In our experiments with 3-Colorability,
selecting a “good” tree decomposition can make the difference between solving an instance
within seconds or having to wait more than twenty minutes.

Apart from this small side remark, we have for this problem domain the situation that
each of the computed models has a good selection quality (compared to selecting a
decomposition randomly) in most of the cases, as we can see in both figures for the
problem at hand. An interesting fact visualized in the figures is that many models select
in average a rank less than 10 out of 40 available tree decompositions for a problem
instance while Models 7 and 13 (PLSClassifier and Bagging) are still performing good
but significantly worse than the others.

Perfect Dominating Set

An extension to the problem of finding minimum dominating sets in a given input graph is
the problem of finding minimum perfect dominating sets in a graph. The only difference
between the two problems is the fact that in the latter, a dominated vertex must have
exactly one dominator. This allows for much fewer solutions and so we expect a higher
impact of the tree decomposition features on the solving time and therefore a better
predicted rank than in the case of Minimum Dominating Set.

Perfect Dominating Set
Minimum Runtime Variation: 2.3 s – 4.3 s
Maximum Runtime Variation: 47.3 s – 6470.8 s

Minimum Improvement: 46.22 % Average Improvement: 58.91 %
Maximum Improvement: 64.72 % Median Improvement: 60.69 %

Statistical Significance: ≥ 99.95 %

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

1
1

5

10

15

20

25

30

35

40

P
re

di
ct

ed
 R

an
k

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

2

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

3

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

4

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

5

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

6

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

7

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

8

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

9

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

10

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

11

●

●

●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

12

●

●

●

●

●

●●

●

●

●●

●

●●

●

●

●●

●

●

●

●

●

●●

●

●

●

13

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

14

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●●●

15

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●

●

16
Model

1

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

R
un

tim
e

Im
pr

ov
em

en
t

2 3

●

●●●●●●

4 5 6 7

●

8

●

●●●●●

9 10 11 12 13 14 15 16
Model

Figure 3.5: Performance Characteristics for Perfect Dominating Set

Figure 3.5 shows that the predicted rank is almost perfect for most of the models and
also the runtime is cut in half in almost any of the investigated cases. Interestingly, most
of the models predict rank 5 or better for the majority of the input instances. Again, we

54

3.2. Experimental Evaluation

observe that Models 7 and 13 (PLSClassifier and Bagging) show a worse outcome than
the remaining models, but they still lead to an optimized runtime behavior.

Also in this case, the extremely diverging runtimes become apparent when interpreting
the minimum and maximum runtime depicted in Figure 3.5. Solving a problem instance
in less than a minute or waiting for the same result more than 1.5 hours can make a huge
difference and also for the easiest instances the runtime needed to solve the respective
instance is approximately cut in half.

Connected Vertex Cover

The next problem we want to focus on is Connected Vertex Cover. In practical
situations, the connectedness of a solution is often a crucial requirement and so it is
important to show that our proposed approach also works in these scenarios. The demand
for connectedness makes the runtime prediction even harder because before solving the
problem at hand there is no chance to maintain the solution’s property of connectedness
and to keep track of it by looking solely at tree decomposition features.

Connected Vertex Cover
Minimum Runtime Variation: 4.0 s – 10.0 s
Maximum Runtime Variation: 111.7 s – 2417.6 s

Minimum Improvement: 22.38 % Average Improvement: 32.91 %
Maximum Improvement: 42.78 % Median Improvement: 34.49 %

Statistical Significance: ≥ 99.95 %

1
1

5

10

15

20

25

30

35

40

P
re

di
ct

ed
 R

an
k

2

●●

3

●

●●

●

●

●

●

●

4

●

●

●

●

●

●

●

●

●●

●

5

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

6 7 8

●

9

●

●

●

●

●

●

●

●

●●●

●

●

10

●●

11 12 13

●

●

●

●

●

●●

●

●

14

●●

15 16
Model

1

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

R
un

tim
e

Im
pr

ov
em

en
t

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Model

Figure 3.6: Performance Characteristics for Connected Vertex Cover

Figure 3.6 shows that also scenarios of this kind can be handled by our approach.
Although the prediction is less accurate than in the case of Perfect Dominating Set
– a fact that was expected, as mentioned above – we save one third of the overall runtime
in the median case. Even the Models 7 and 13 (PLSClassifier and Bagging) which again
are performing worst allow us to save a significant portion of the runtime in most of
the cases. This time, we also have with model number 6 (PaceRegression) a dedicated

55

3. The Impact of Tree Decomposition Selection

“winner” of the comparison as it is able to predict a rank between 1 and 10 in 75% of the
cases and it selects rank 4 out of 40 in the majority of the cases.

Steiner Tree

The final problem domain we investigate in this chapter is the problem of Steiner Tree.
Given an undirected graph with positive edge weights and a subset of the graph’s vertices
– the so-called terminals – the goal is to determine a minimum-weight, cycle-free subgraph
of the input graph which connects all terminals.

We will have a look at the performance characteristics on real-world instances in the
subsequent section. At this point, we first want to analyze the impact of our approach
based on randomly generated instances. We fix the number of terminals for each of the
instances to ten randomly chosen ones and we use the same terminal vertices in each
tree decomposition generated for an instance.

Steiner Tree - 10 Terminals
Minimum Runtime Variation: 1.8 s – 8.1 s
Maximum Runtime Variation: 191.3 s – 10618.6 s

Minimum Improvement: 31.56 % Average Improvement: 59.05 %
Maximum Improvement: 66.33 % Median Improvement: 62.02 %

Statistical Significance: ≥ 99.95 %

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

1
1

5

10

15

20

25

30

35

40

P
re

di
ct

ed
 R

an
k

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

2

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

3

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

4

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

5

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

6 7

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

8

●

●●●

●

●

●

●

●

●

●

●●●

●

●●

●

●

●

●

9

●

●

●

●

●

●

●

●

●

●

●

●

●

10

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

11

●

●

●

●

●

●

●●

●

●

12 13

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

14

●

●

●

●

●

●

●

●

●

●

●

●

15

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

16
Model

1

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

R
un

tim
e

Im
pr

ov
em

en
t

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Model

Figure 3.7: Performance Characteristics for Steiner Tree
The predicted rank and the runtime savings achieved during our experiments indicate
that our approach works well also for “hidden” information like the actual terminals which
are in no way distinguished from the other vertices in the generated tree decompositions.
Hence, the tree decomposition features are completely unaffected by this information.
Still, as shown in Figure 3.7, even the worst models – again Model 7 (PLSClassifier) holds
the red lantern, while Model 13 (Bagging) is only slightly better – lead to runtime savings
of about a third. The fact that even the models performing worst achieve significant
savings of around a third of the total runtime becomes even more important when we
look at the fact that these savings can be in the magnitude of hours when considering
the maximum runtime variation depicted in Figure 3.7.

56

3.2. Experimental Evaluation

3.2.3 Experiments on Real-World Instances

Until now we only considered random instances in our experiments. With the goal of
strengthening our findings, we additionally conducted a series of tests for Steiner Tree
on real-world graphs.

The problem has many real-world applications like minimizing the effort (distance, time,
etc.) to connect different terminals. While in some contexts the terminals are fixed for
an input graph – one could for instance think of train stations – there are also situations
where the set of terminal vertices changes frequently for the same input graph. One
such example can be found in the area of predictive policing: In many cases the regions
where crime is occurring more frequently are known but, depending on the daytime and
events taking place in the city, these problematic regions can change rapidly. This is no
problem as long as we can send officers to all the places, but often not enough personnel is
available to do so. Therefore, there is a tendency to split the available officers into groups.
One of the crucial problems to prepare for the case of an emergency is to maintain the
ability to combine the forces with the least possible effort and this is exactly the point
where the Steiner Tree problem comes into play.

The graphs chosen for these experiments are shown in Table 3.2 and represent the metro
systems of some cities around the world. Compared to the random instances we have
seen before, metro systems are much more structured. Often they have a more or less
complex central region (covering the city center) and the remainder of the network is
formed by simple paths (which are of width 1).

City # Vertices # Edges Tree Decomposition Width
Min. Max. Avg. Med.

Tokyo (JPN) 143 162 4 5 4.010 4
Osaka (JPN)* 145 160 4 5 4.334 4
Singapore (SGP) 101 114 4 5 4.487 4
Santiago (CHL) 127 138 4 6 4.218 4
Vienna (AUT)* 138 160 5 6 5.073 5

Table 3.2: Investigated Metro Systems (* ... Metro and Interurban Train)

Apart from the name of the selected cities, Table 3.2 also shows the size of the corre-
sponding network in terms of vertices and edges. Furthermore, the last four columns
contain the minimum, maximum, mean and median value for the width over the 2800
benchmark runs for each of the cities. Note that the metro networks contain a higher
number of vertices than the random graphs investigated in the previous section. Therefore
a different configuration of D-FLAT is used at this point in order to avoid problems due
to main memory limitations. We will see in Section 3.2.5 that this modified configuration
does no harm to the generality of our proposed approach.

Finally, note that Table 3.2 also highlights the fact that most tree decompositions for
the cities are of the same width and hence, the huge runtime differences we observe on
the different metro systems cannot be explained by considering the width only.

57

3. The Impact of Tree Decomposition Selection

Steiner Tree - 10 Terminals
Minimum Runtime Variation: 3.7 s – 8.4 s
Maximum Runtime Variation: 35.9 s – 21528.0 s

Minimum Improvement: 1.55 % Average Improvement: 27.33 %
Maximum Improvement: 35.61 % Median Improvement: 29.66 %

Statistical Significance: ≥ 99.95 %

1
1

5

10

15

20

25

30

35

40

P
re

di
ct

ed
 R

an
k

●

●

●

●

●

●●●

●

●●●

●●

●

●

●

●

●

●

●

2 3

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

4

●●●

●

●

●

●●

●

●

●

●

●

●●●

●

●

●●

●●

●

●

●●

5 6

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●●●

●

●

●

●

●●●

●

●●

●

●●

●●●●

7

●

●

●●

●

●

●

●●

●

●

●

●

●

●●

8

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●

●●

●●●●●●

●

●●

●

●●

●

●

●●

●●

●●●●●●●●●●●

●

●

●

●●●

●

●●●●●●●●

●

●●

●

●●●●

●

●●●●●●●

●

●●

●

●●

●

●●●●●●●●●●

●

●

●●

●

●●

●●●●●●●

●

●

●

●

●

●

●●

●

●●●●●●

●

●●

●

●●●

●●

●●●●●●●●

●

●

●

●●

●

●●●●●●●●●

●

●

●

●

●

●●

●●

●●●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

9

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

10 11 12 13

●●

●

●

●

●

●

●●●

●

●●●

●

●●

●

●

14

●

15

●

●

●

●●●

●

●

●

●

●●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

16
Model

1

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

R
un

tim
e

Im
pr

ov
em

en
t

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Model

Figure 3.8: Performance Characteristics for Steiner Tree (Real-World)

Figure 3.8 shows the aggregated outcome for our experiments on the metro systems,
hence each box-plot is constructed from 14000 benchmark runs. A separate discussion for
each of the cities is given in [AMW16c]. In the figure we can see that each model leads to
runtime savings and that the majority of the models helps us saving more than a quarter
of the total runtime in average. For the metro system of Tokyo this saves us “only” a
few seconds while in the case of Vienna we sometimes save hours using our approach.

3.2.4 Model Evaluation

After we presented the thorough investigation of our approach on random and real-world
instances, we also want to present the results of our performance analysis separately for
each model. Table 3.3 summarizes these outcomes. The table shows for each of the 16
models under investigation the median predicted rank over all evaluation runs for each
of the problems. The column “ST (Real)” contains the median predicted rank over 2500
evaluations as we merge the results from the five cities under investigation. For all other
problems, the cell content is computed by taking the median over 500 evaluations. The
numbers in boldface highlight the best-performing models.

The last two rows (columns) then provide the mean and median of all preceding rows
(columns). Note that the three cells in the bottom right corner are left empty because
in these cases, the results will differ depending on whether one computes the median of
means or the mean of medians. The same applies for the median of the medians, which
also differs depending on whether we start with the column-wise or the row-wise median.
What we can compute easily is the average predicted rank over the average model and

58

3.2. Experimental Evaluation

Model Col MDS PDS CVC ST ST Avg. Med.
(Real)

1 (Gauss.-Proc.) 9 15 4 9 7 13 9.50 9.00
2 (IsotonicReg.) 7 12 3 8 6 8 7.33 7.50
3 (LeastMedSq) 6 7 2.5 7 5 10 6.25 6.50
4 (LinearReg.) 5 6 2 6 5.5 6 5.08 5.75
5 (ML-Perc.) 11 14 3 8 7 8 8.50 8.00
6 (PaceReg.) 9 10 3 4 7 11 7.33 8.00
7 (PLSClassifier) 14 16 5 10.5 12 11 11.42 11.50
8 (SMOreg) 7 11 3 8 6 9 7.33 7.50
9 (IBk) 7 7 2 6 5 6 5.50 6.00
10 (KStar) 7 7 3 6 6 7 6.00 6.50
11 (LWL) 6 7 3 7 5 10 6.33 6.50
12 (AdditiveReg.) 6 8 3 8 5 10 6.67 7.00
13 (Bagging) 12 11 5 11 9 20 11.33 11.00
14 (CVPSel.) 6 7 2 6 5 7 5.50 6.00
15 (M5Rules) 6 8 3 7 6 7 6.17 6.50
16 (M5P) 7 11 3 8 6 8 7.17 7.50

Average 7.81 9.81 3.09 7.47 6.41 9.44 7.34 —
Median 7.00 9.00 3.00 7.50 6.00 8.50 — —

Table 3.3: Predicted Ranks (Median) for Computed Models

all problems and this value is shown in the highlighted cell in the bottom right corner.

We can see that in the average case we predict rank 7 out of 40, which is much better
than the median rank of 20.5 and hence we can expect an important gain in terms of
performance. Even the machine learning algorithms holding the red lantern, Models 7
and 13 (PLSClassifier and Bagging), predict well in most cases. In fact, the only case in
our whole experimental evaluation where our approach does not lead to an improvement
in the average case is Model 13 (Bagging) on the real-world Steiner Tree Problem. In all
other cases we actually achieve quite impressive prediction results. Especially noteworthy
is Model 4 (LinearRegression) which is able to select a Top-5 rank in the average case of
our experiments.

3.2.5 Inter-Domain Evaluation

Until this point of the chapter it was the case that we investigated the applicability of
our approach for each problem domain separately. For practical application scenarios
it might be of importance (or at least of interest) to be able to adapt algorithms or to
change the application domain without having to re-train the models one has already
computed because this can be a time-consuming task.

Therefore we now want to have a deeper look at the inter-domain applicability of our
approach. All the results are summarized in Table 3.4. The rows refer to the problem

59

3. The Impact of Tree Decomposition Selection

that was used to generate the training data for the models and the columns stand for the
evaluation dataset. The respective datasets are the same as for the domain-dependent
experiments. The cells of the table then show the median value of the predicted rank over
all 16 models. Cases in which we do not observe improvements are enclosed by brackets.
The rightmost two columns and the last two rows illustrate the mean and median over
all problem domains, analogous to Table 3.3. The only difference is the fact that this
time we give two results: The number on the top of the cells is the respective outcome
over all domains while the second number represents the outcome computed with the
diagonal excluded. This means that the first number gives the overall performance over
all domains while the second one is the performance we observe on average in our setting
when we switch the problem domain.

Col MDS PDS CVC ST ST Avg. Med.
(Real)

Col 7 11.75 12 11 19 11.5 12.04 11.63
13.05 11.75

MDS 12.5 9 7 8 14 9.5 10.00 9.25
10.20 9.50

PDS (20) 10.75 3 6 6 12 9.63 8.38
10.95 10.75

CVC 16 8 5 7.5 8 11 9.25 8.00
9.60 8.00

ST (23.75) 17.25 5 9.5 6 16 12.92 12.75
14.30 16.00

ST 16.5 15.5 10 13.5 16 8.5 13.33 14.25
(Real) 14.30 15.5

Average 15.96 12.04 7.00 9.25 11.50 11.42 11.19 —
17.75 12.65 7.80 9.60 12.60 12.00 12.07

Median 16.25 11.25 6.00 8.75 11.00 11.25 — —
16.50 11.75 7.00 9.50 14.00 11.50

Table 3.4: Predicted Ranks (Median) for Computed Models (Inter-Domain Evaluation)

We can see that in almost all cases (34 out of 36) we observe improved results and
that there is only one problematic situation, namely the case where we use the dataset
obtained from solving Steiner Tree on random instances to predict the outcomes
for 3-Colorability. In this case we observed a slight deterioration of the predicted
rank – on average, our models predicted rank 23.75 compared to the median rank 20.5. –
compared to a random selection of the tree decomposition. As mentioned before, in all
other cases we observed improvements which are statistically highly significant with a
confidence level of over 99.95% and we have to keep in mind that these are the values for
the average model, not for the best one. In the complete picture, summarizing all the
positive impact of our approach, we have the fact that we were able to select rank 11
out of 40 on average (result shown in the highlighted cell in the bottom right corner of

60

3.3. Discussion

the table) which gives us important performance improvements compared to a random
selection of the tree decomposition.

3.2.6 Discussion of Experiments

The provided evaluation underlines that our machine learning approach shows great
potential for improving the performance of dynamic programming algorithms. Because,
in our experiments, the width of the tree decompositions is the same for almost all
decompositions of a given instance, just minimizing the width of the tree decompositions
is obviously not always sufficient and one needs a better way to select and/or to customize
tree decompositions in order to improve the overall performance and especially the
robustness of dynamic programming algorithms.

We can see that in general there is no “perfect” model which performs best in every case
and that there exist differences between the problems. In our experimental evaluation it
was the case that Model 4 (Linear Regression) performed best and that the Models 7
(PLSClassifier) and 13 (Bagging) showed the worst – but in many cases still relatively
good – performance characteristics. We assume that the rather poor performance of
PLSClassifier originates from an overly restrictive filter being used. In the case of Bagging,
the underlying regression algorithm (the algorithm which is used in our experiments
employs support-vector machines for regression) may be too strong and choosing a weaker
base classifier may help to improve the prediction quality, as suggested in [Bre96].

Our experiments show that it is hard to predict the very best rank, but in many cases
this is not needed. In general, every rank better than the median rank will increase
the performance and the advantage grows with the runtime variance. Furthermore, in
Section 3.2.5 we showed that one does not need to train models for each new problem
and that one can achieve good results also by applying models trained in a completely
different setting. This makes our approach even more applicable in real-world application
scenarios as one does not necessarily have to re-train the model(s) when the problem
domain changes or new constraints are added.

3.3 Discussion

In this chapter we studied the applicability of machine learning techniques to improve the
runtime behavior of dynamic programming algorithms which rely on tree decompositions.
To this end, we identified a variety of tree decomposition features, beside the width, that
strongly influence the runtime behavior of DP algorithms. Machine learning models
using those features for the selection of the optimal decomposition have been validated
by means of an extensive experimental analysis including real-world instances. In our
experiments, we considered five different problem domains and our approach showed a
remarkable, positive effect on the performance with a high statistical significance. We
thus conclude that turning the huge body of theoretical work on tree decompositions
and dynamic programing into efficient systems highly depends on the quality of the

61

3. The Impact of Tree Decomposition Selection

chosen tree decomposition and that advanced selection mechanisms for finding good
decompositions are crucial.

The presented work, however, is only a first step of a larger research project. In a next
step, we have to investigate whether the models we obtained will give further insights
about those features of tree decompositions that are most influential in order to reduce
the runtime of DP algorithms. Such insights then will be used to design and implement
new heuristics for constructing tree decompositions that optimize the relevant features.
Therefore, the ultimate goal of this research perspective is to achieve the potential
speed-up we have observed in our experiments by directly obtaining tree decompositions
of higher quality and thus without the initial training step.

Indeed, due to the fact that algorithms based on tree decompositions are an area of
intensive research, there also arise performance improvements for specialized algorithms,
as studied, e.g., by Fafianie et al. [FBN15], who showed that solving the Steiner Tree
problem can be significantly accelerated by combining tree decompositions with methods
from linear algebra. It may be an interesting task in future work to investigate the
impact of tree decomposition selection also in this context. Furthermore, we expect
that problem-specific features are a promising enhancement of our approach. In the
chapter at hand, we only used features of the tree decomposition in order to establish the
problem-independent, general applicability of our approach. In practical situations where
efficiency is crucial, it may be worth trying to find some kind of problem-specific tuning.
For instance, one could aim to develop a good approximation function that estimates
the time of filling the dynamic programming tables, similar to the idea of the f -cost in
[BF05], and then use this function to obtain a new feature.

62

CHAPTER 4
A Framework for (Customized)

Tree Decompositions and Beyond

In the previous chapter we have seen that there is often more to consider than just the
plain width of tree decompositions in order to be able to reliably predict their influence
on the efficiency of given dynamic programming algorithms.

However, the approach presented in the previous chapter uses a post-processing phase
based on machine learning to determine “good” tree decompositions and training the
required models can be a time-consuming task. Therefore we see a strong need to offer a
specialized decomposition framework that allows for directly constructing customized
decompositions, i.e., decompositions which reflect certain preferences of the developer, in
order to optimally fit to the dynamic programming algorithm in which they are used.

For this reason, in this chapter we present a free, open-source solution which supports
a vast amount of graphs and different types of decompositions. Our framework can be
easily extended as we provide programming interfaces for (almost) all classes and so one
does not need to re-invent the wheel at any place. In detail, the design goals for our
framework are as follows:

• Clean, easy-to-use interfaces

• Runtime and memory efficiency

• Utmost flexibility and extensibility

• Support for a variety of graph and decomposition types

• Support for a wide range of convenience features like various normalization strategies
and automated modifications of decompositions directly in the context of the library
in order to keep the code clean and structured

63

4. A Framework for (Customized) Tree Decompositions and Beyond

The software library is called htd. We consider htd as a potential starting point for
researchers to contribute their algorithms in order to provide a new framework for all
different types of (customized) graph decompositions.

Currently, htd is used successfully in several projects, like the D-FLAT framework for
dynamic programming on tree decompositions (see Section 2.3), dynASP [MPRW10,
FHMW16], an answer-set programming solver based on dynamic programming on tree
decompositions, or dynQBF [CW16b], a solver for quantified boolean formulae based on
dynamic programming and binary decision diagrams.

In the remainder of this chapter, we provide a detailed description of the features of
htd, shed some light at crucial algorithm decisions, illustrate its usage in some example
scenarios, and we also give an experimental evaluation comparing the tree decomposition
heuristics currently offered by the htd framework to other state-of-the-art implementations
of tree decomposition algorithms.

To find out how htd compares to other approaches for computing tree decompositions,
htd is one of the participants of the “First Parameterized Algorithms and Computational
Experiments Challenge” (PACE 2016)1 and it was ranked at the third place in the
sequential heuristics track. The results of htd are very close to those of the heuristic
approaches ranked at the first two places. This underlines not only that htd is rich in
features helping to make the development of dynamic programming algorithms more
comfortable, but also that it is very competitive when compared to other approaches.

4.1 A General Framework for Custom Decompositions
In this section we want to have an in-depth look at some important properties of the
new framework. During our work with D-FLAT [ABC+14b], a framework for easy
prototyping of dynamic programming on tree decompositions, we faced the problem that
existing implementations for graph decomposition algorithms often only minimize the
width. That is, they deliver a tree decomposition without possibility to transparently
customize the result. Hence, post-processing outside the decomposition library is needed
in order to obtain a decomposition which reflects certain preferences of a developer
and which fits well to given dynamic programming algorithms (e.g., by following the
approach presented in Chapter 3). Furthermore, existing algorithms are often hard
to adapt because, at design time, certain capabilities and mechanisms (like assigning
arbitrary labels to the resulting decompositions automatically) were not considered and
so extensions of functionality often require rewriting huge portions of the old code.

To circumvent all these problems, the proposed library, called htd, is free, open-source soft-
ware and it is available at http://dbai.tuwien.ac.at/research/project/decodyn/
htd/. The software was developed with the goal to serve the needs of virtually any
algorithm related to graph decompositions. In the following we will highlight the library’s
main characteristics.

1See https://pacechallenge.wordpress.com/track-a-treewidth/ for more information.

64

http://dbai.tuwien.ac.at/research/project/decodyn/htd/
http://dbai.tuwien.ac.at/research/project/decodyn/htd/
https://pacechallenge.wordpress.com/track-a-treewidth/

4.1. A General Framework for Custom Decompositions

4.1.1 Support for a Variety of Input Graph Types

Since the library shall be able to decompose any given graph type, htd supports by
default a variety of them to fit like a glove to the actual application domain where our
library is applied. Indeed, all input graphs can be stored in a data structure which is able
to handle multi-hypergraphs, i.e., hypergraphs with potentially duplicated hyperedges.
E.g., we could also store a directed graph in a data structure for multi-hypergraphs, but
multi-hypergraphs are, for instance, not aware of the concept of incoming or outgoing
neighbors and also reachability is defined differently for hypergraphs than in the case of
directed graphs. In order to enhance functionality, to enforce semantic coherence and
to shift programming effort from the developer using the library to our framework, htd
offers separate data types and programming interfaces for storing (multi-)hypergraphs,
directed and undirected (multi-)graphs, trees and paths.

For each graph type, htd also offers an implementation which is able to deal with custom
names so that, instead of working with plain vertex and edge identifiers in terms of
numeric integers, one can additionally address a specific vertex or edge by its name. To
fit the needs of dynamic programming algorithms in a general and convenient way, one
can use any equality-comparable data type which provides functionality for returning its
hash code (like character strings) as an alias for the name of a vertex or an edge.

Furthermore, htd allows to add custom labels of any data type to the vertices as well as
the (hyper-)edges of a given graph by providing appropriate wrappers for each graph
type. These labels can, for instance, be used to store polarities for the endpoints of an
hyperedge in case that hyperedges represent clauses of the SAT problem (see Figure 4.3
for an example).

One big advantage of having a built-in support for labeled graph types is the fact that
with this functionality one can keep the productive code clean and simple because one
only needs a single graph representation in memory and no conversion or mapping of the
graph structure between internal library code and the developed algorithm is necessary.

4.1.2 Support for a Variety of Decomposition Types

Clearly, from a graph decomposition library we expect the ability to decompose graphs.
To serve this purpose, htd offers several decomposition methods by default and a wide
range of interfaces allows to extend htd’s functionality easily and without even having
to re-compile the library. Each decomposition algorithm in the context of htd takes an
(potentially disconnected) input (hyper-)graph G in any supported representation and
constructs a decomposition of the requested type. The library distinguishes between four
types of decomposition algorithms:

• Graph Decomposition Algorithms
... return a new, labeled multi-hypergraph GD where the bag of each vertex in
GD is a subset of the vertices in G. This is the most general decomposition type
currently supported by htd.

65

4. A Framework for (Customized) Tree Decompositions and Beyond

• Tree Decomposition Algorithms
... return a new, labeled tree TD where the bag of each vertex in TD is a subset of
the vertices in G such that all criteria for tree decompositions are satisfied. In the
first step, the default implementation of a tree decomposition algorithm in htd uses
Bucket Elimination [Dec99, DGG+08] based on a generated eliminating ordering
to obtain a tree decomposition for each connected component of the input graph.
Afterwards, it connects the trees in the forest to a single tree by adding additional
edges where appropriate. The vertex ordering, required for Bucket Elimination, is
obtained via the library’s default ordering algorithm which the developer can select
before the decomposition algorithm is invoked.2

• Path Decomposition Algorithms
... return a new path decomposition, i.e., a tree decomposition without join nodes,
where the bag of each node is a subset of the vertices in G such that all criteria
for tree decompositions are satisfied. The default implementation constructs a tree
decomposition of the input graph and then manipulates it by rearranging the join
node’s children in order to obtain a path structure.

• Hypertree Decomposition Algorithms
... return a new, labeled tree TD where the bag of each vertex in TD is a subset
of the vertices in G. Additionally, each vertex of TD has assigned a second label,
consisting of a subset of hyperedges of the input graph such that the corresponding
bag content is a subset of the set union of the endpoints of these hyperedges.
In other words, htd’s default implementation computes a generalized hypertree
decomposition [GMS09].
The current implementation starts by first generating a tree decomposition and
then we solve the Set Cover problem for each of its bags. That is, we compute
for each bag the minimum-cardinality set of all hyperedges such that each vertex
in the bag has at least one hyperedge in which it is contained.

We can see that basically every algorithm is constructed in a very modular way, i.e., we
only require the input graph which shall be decomposed and afterwards everything is up
to the concrete implementations. This leads to light-weight interfaces and high flexibility
for both developers “just” using the library and those who want to contribute to the
library. For instance, although the default implementations of the algorithms rely on the
simple Bucket Elimination procedure, there is absolutely no need for a developer to use
Bucket Elimination or vertex elimination orderings at all.

Finally, before we have a deeper look at flexibility and extensibility of htd, we should have
a glance at an additional feature concerning decomposition algorithms which can be very

2Apart from employing a custom algorithm given by the developer, htd currently provides default
implementations for Min-Fill, Minimum Degree and Maximum Cardinality Search vertex elimination
orderings. If the developer does not specify the ordering algorithm to use, the default setting is Min-Fill.

66

4.1. A General Framework for Custom Decompositions

helpful in practice: For reduced post-processing effort on the developer-side, htd offers the
concept of manipulations which can be applied to a computed decomposition. The term
“manipulation” in the context of htd refers to operations which manipulate the structure of
the decomposition, like making a tree decomposition nice, or adding/removing/changing
certain labels.

Manipulations can always be applied to a given decomposition but one can also specify
the list of desired manipulations in the call of the decomposition algorithm. In the
latter case, the computed decomposition will be returned with the desired operations
automatically applied. This helps to keep the code at developer-side clean because one
does not have to do any post-processing in order to get the manipulations applied.

4.1.3 Automated Optimization of Decompositions

One of the main novelties of htd compared to existing implementations of decomposition
algorithms is the support for automated optimization.3 In order to support the special
needs of certain dynamic programming algorithms, like minimizing the number of join
nodes, or even to allow complex optimizations, like the prioritization of selected vertices
with respect to their average position in the decomposition, htd supports two optimization
strategies.

The first strategy implemented by the library is an iterative approach which computes
a (user-definable) number of decompositions and finally returns the decomposition for
which the fitness evaluation (the result of the provided fitness function), is maximal.
This strategy allows to mimic the approach which proved successfully in [ADMW15,
AMW16c, AMW17b], namely computing a pool of tree decompositions and then selecting
the optimal one among them via machine learning, by only writing a few lines of code.

The second strategy relies on the fact that one can select any vertex of a tree as its
root and the outcome of this reallocation will still be a tree. Based on this observation,
the second optimization strategy allows to automatically select the node as root of the
tree decomposition for which the fitness evaluation for the tree decomposition rooted at
the respective node is maximal. In htd, one can select from different (custom) criteria
which aim at narrowing down the subset of vertices of a decomposition which shall be
considered as new root node. This is important especially for large graphs as exhaustively
trying out all possible choices might be expensive.

Note that the two approaches can, of course, be combined in order to improve the result
of the optimization step. Additionally, one can assign also priorities to each level of a
fitness evaluation in case that multi-criteria optimization is needed.

3Note that in the context of htd, the term “optimization” is used to refer to all operations which
improve certain properties of a decomposition. Via optimization the decomposition returned by an
algorithm adheres to certain preferences, but in general the implemented algorithms do not guarantee
global optimality of the resulting decomposition with respect to the quality criterion used.

67

4. A Framework for (Customized) Tree Decompositions and Beyond

4.1.4 High Level of Flexibility and Extensibility

One of the main limitations of many software libraries is the fact that they are often
developed as a by-product of some application and so the complete functionality is,
in many cases, tailored towards a specialized application domain and extensions or
adaptations are hard to implement. htd is different in that sense as it is developed
independently from a concrete application domain4. Moreover, it is designed to be easily
extensible and highly flexible. Currently, the library provides around 80 interfaces for
almost all parts of the library, allowing to easily replace, improve and extend functionality.
Furthermore, htd provides explicit factory classes for most interfaces so that one can set
new default implementations without even having to re-compile the library.

4.1.5 Working with the Library

After sketching some important characteristics of htd, in this section we now want to
give an overview of the general workflow of how to compute decompositions via htd and
we also provide an example of an application scenario to illustrate how the library can
be used in practice.

Input
Specification

Optional Conversion

Instance
Graph

Decomposition Algorithm

(Customized)
Decomposition

Desired
Manipulations

Additional
Information

Figure 4.1: Workflow for Computing Customized Decompositions using htd

Figure 4.1 depicts the concept behind htd. At first, one clearly needs to parse the input
and maybe do some conversion or preprocessing in order to obtain a graph representation
of the input instance which we can directly feed into the decomposition algorithm. The
decomposition algorithm may be either one of the built-ins of htd or a custom one
specified by the developer. Optionally, the developer can provide additional information
to the decomposition algorithm, like a custom vertex ordering as needed by Bucket
Elimination. Further, it is possible to request different manipulations of the resulting
decomposition, like computing additional labels or making a tree decomposition nice.

4Note that htd also provides a command-line application, named htd_main which is a small, light-
weight front-end for the library that allows to trigger the main functions of htd. The front-end is fully
configurable in order to easily investigate the effects of modifications to htd.

68

4.1. A General Framework for Custom Decompositions

Note that the library supports a developer in any of the depicted steps, that is, it defines
interfaces allowing the parsing of input files and it provides implementations for various
graph types, decomposition algorithms and manipulation operations. Furthermore, the
large collection of algorithms in htd contains lots of convenience functions.

For instance, probably a very helpful “bonus” functionality of our library is the following:
All built-in decomposition algorithms of htd automatically provide for each bag the set
of induced edges, i.e., the set of all edges which form a subset of the bag content. This
means that in a dynamic programming algorithm there is no need anymore to filter the
full set of edges of the input graph for each bag in order to find out which of them are
affected by the respective bag. This can be a very time-consuming task for large graphs.
htd provides this important information (almost) for free, significantly accelerating the
given applications.

1 // Create a new management i n s t a n c e (with ID 1) f o r the cur rent thread .
2 htd : : L ib ra ry Ins tance ∗ manager = htd : : createManagementInstance (1) ;

3 // Import some graph in the format o f the PACE c h a l l e n g e from s t d i n .
4 htd_main : : GrFormatImporter importer (manager) ;
5 htd : : IMultiGraph ∗ graph = importer . import (std : : c in) ;

6 // Get d e f a u l t decomposit ion a lgor i thm .
7 htd : : ITreeDecomposit ionAlgorithm ∗ a lgor i thm =
8 manager−>treeDecompos it ionAlgor ithmFactory () . c r e a t e I n s t anc e () ;

9 // Set d e s i r e d manipulat ions f o r a lgor i thm .
10 a lgor i thm . addManipulationOperation
11 (new htd : : Normal izat ionOperat ion (manager)) ;

12 // Decompose the provided graph .
13 htd : : ITreeDecomposit ion ∗ td =
14 algor ithm−>computeDecomposition (∗ graph) ;

15 // Output the width o f the obtained t r e e decomposit ion .
16 std : : cout << "Width : " << (td−>maximumBagSize () − 1) << std : : endl ;

Listing 4.1: Example Source Code (C++) How to Use htd in Practice

To underline how easy htd can be applied in practice, in Listing 4.1 we give a short
working example in terms of the only six lines long C++ source code sufficient to compute
a nice tree decomposition of a given input graph in the format of the PACE challenge
20165. The first line initializes a central management instance of the htd library which
can be used to set and access the default implementations for all algorithms. The next
two lines of the provided source code take care of importing the input graph. The fourth
line then gets the default tree decomposition algorithm of htd. All what remains is to set
the desired manipulation operation for normalized tree decompositions and to decompose
the graph. The last line of our example then outputs the width of the decomposition,
but one may also proceed with a dynamic programming algorithm.

5The specification of the graph format is provided at https://pacechallenge.wordpress.com/
track-a-treewidth/

69

https://pacechallenge.wordpress.com/track-a-treewidth/
https://pacechallenge.wordpress.com/track-a-treewidth/

4. A Framework for (Customized) Tree Decompositions and Beyond

Note that the above source code is more or less a minimal working example, but one is
free to implement any algorithm one can think of and it will work with the library as
long as it implements the interfaces of htd properly. In the following list we give some
examples for important interfaces of htd:

• htd::IMultiHypergraph

All (custom) graph classes must implement the interface for hypergraphs with
potentially duplicated edges. It provides the functionality which is common to
all graph types, like accessing its vertices and edges or, for instance, to get the
neighbors of a vertex.

• htd::ITreeDecomposition

A tree decomposition in htd is a special case of a htd::IMultiHypergraph in
which each vertex has a bag label and where the underlying graph is a tree.
Like mentioned before, apart from the basic functionality one would expect from
a tree decomposition data structure, the htd::ITreeDecomposition interface
additionally defines a function to retrieve the hyperedges of the input graph which
are induced by a bag.

• htd::ITreeDecompositionAlgorithm

This interface must be implemented by all tree decomposition algorithms in the
context of htd. It defines functionality to compute a htd::ITreeDecomposition

of some htd::IMultiHypergraph. Apart from decomposing a given input graph,
htd’s tree decomposition algorithms automatically apply provided manipulation
operations.

• htd::IDecompositionManipulationOperation

As mentioned in Section 4.1.2, manipulation operations are an important part
of the library and cover all modifications which are applied to a decomposition’s
structure or its labels. For each type of decomposition, htd provides a separate
interface in order to ensure that only compatible operations are performed during
the computation of a decomposition.

4.2 Developer Documentation

htd is a relatively small piece of software for efficiently computing decomposition of large
graphs and hypergraphs. The library is developed with the goal to optimally fit the needs
of a wide range of dynamic programming algorithms. Although its code base is small,
the library is able to efficiently decompose graphs containing millions of vertices and it
offers various interfaces to provide the developers of dynamic programming algorithms
exactly with those features they need without having to pay the price for functionality
they don’t need.

70

4.2. Developer Documentation

To employ htd for one’s purposes and to fully exploit its potential it is important to
know about its interface structure, the functionality each of the interfaces offers and how
the underlying algorithms interact. In this section we therefore want to give a detailed
introduction to htd’s application programming interface.

4.2.1 Introduction

Before we dig into the details of the htd software library, in this section we want to give an
introduction to its macrostructure in order to make the remainder of the documentation
easier to follow. htd is structured roughly as follows:

• Input graphs

• Graph decompositions

• Decomposition algorithms

• Manipulation operations

• Normalization operations

• Utility functions

Before using any of these features, the first thing to start with when developing a new
application based on htd is creating a so-called library instance of htd. A library instance
acts as a central point of management allowing to configure the default settings for any
algorithm within the library. Therefore we will use the term “manager” as a synonym for
the term “library instance” for the remainder of this work.

An example of how to properly initialize the manager is given in Listing 4.2. Note that
one can use more than one manager per application, for example, in situations where it
is desired to have different configurations per thread. After creating the new manager, it
may be used by algorithms to incorporate the developer’s preferences. This is ensured by
the fact that the manager contains a collection of factory classes (one for each interface
available in htd) and so each algorithm can use exactly the desired settings.

1 // Create a new management i n s t a n c e (with ID 1) f o r the cur rent thread .
2 htd : : L ib ra ry Ins tance ∗ manager = htd : : createManagementInstance (1) ;

Listing 4.2: Example Source Code (C++) How to Initialize a Library Instance of htd

For a minimal working example, the code shown in Listing 4.2 suffices due to the fact
that htd provides efficient default implementations for each of the interface classes.
Nevertheless, one may decide to use a different algorithm provided by htd or one can
even use a custom implementation. A toy example how to set and retrieve the default
implementation of the graph class is given in Listing 4.3.

71

4. A Framework for (Customized) Tree Decompositions and Beyond

1 // Create a new management i n s t a n c e (with ID 1) f o r the cur rent thread .
2 htd : : L ib ra ry Ins tance ∗ manager = htd : : createManagementInstance (1) ;

3 // Change the d e f a u l t implementation f o r graphs .
4 manager−>graphFactory () . setConstruct ionTemplate (new MyFancyGraphClass ()) ;

5 // Get a new i n s t a n c e o f the graph c l a s s .
6 htd : : IMutableGraph ∗ g = manager−>graphFactory () . c r e a t e I n s t an c e () ;

Listing 4.3: Example Source Code (C++) How to Change the Default Graph Type

Note that, in htd, factory classes always take control over the memory region pointed to
by the argument of the function setConstructionTemplate in order to avoid copying
the instance. Therefore, one must not free the pointed-to memory manually because this
is done automatically by the factory class.

In the remainder of this chapter we present the functionality for each group of data
structures and each algorithm category. All subsequent sections will rely on the fact that
a properly initialized and configured library instance named “manager” already exists.

4.2.2 Graph Types

htd distinguishes five different graph types, namely hypergraphs (graphs with hyperedges),
(undirected) graphs, directed graphs, trees and paths. According to this distinction, htd
provides the following interface classes:

• htd::IHypergraph, htd::IMultiHypergraph
Hypergraphs are the most general graph type in htd as they allow using hyperedges,
i.e., edges with an arbitrary number of endpoints. Self-loops, induced by hyperedges
containing the same vertex multiple times, are allowed.
Inheritance:
Each htd::IHypergraph is a htd::IMultiHypergraph.

• htd::IGraph, htd::IMultiGraph
Graphs in the context of htd are hypergraphs where each hyperedge has exactly
two endpoints. Again, self-loops are allowed.
Inheritance:
Each htd::IGraph is a htd::IHypergraph.
Each htd::IMultiGraph is a htd::IMultiHypergraph.

• htd::IDirectedGraph, htd::IDirectedMultiGraph
Directed graphs in the context of htd are graphs where the order of endpoints
matters. In addition to the functionality of graphs, the corresponding interface
classes for directed graphs allow to easily retrieve the incoming and outgoing
neighbors of a vertex. Self-loops are allowed.

72

4.2. Developer Documentation

Inheritance:
Each htd::IDirectedGraph is a htd::IGraph.
Each htd::IDirectedMultiGraph is a htd::IMultiGraph.

• htd::ITree

This interface is implemented by all tree classes and it allows to access the tree.
Inheritance:
Each htd::ITree is a htd::IGraph.

• htd::IPath

This interface is implemented by all path classes and it allows to access the path.
Inheritance:
Each htd::IPath is a htd::ITree.

The graph classes above only provide read-only methods in order to maintain a proper
inheritance hierarchy. To illustrate the problem, think about the common statement
that any tree is a graph. On the one hand, when looking at the aforementioned sentence
from the read-only perspective, there is no doubt that it is true. On the other hand,
when looking at it from the write-perspective, i.e. when we want to modify the graph,
the statement is no longer valid as we cannot add arbitrary edges to a tree without
potentially violating the acyclicity requirement. To circumvent this problem, each read-
only graph class has its mutable counterpart which is denoted by adding the character
sequence “Mutable” between the capital letter ‘I’ and the remainder of the graph class
name. For instance, the mutable interface for the interface class htd::IHypergraph is
htd::IMutableHypergraph.

The read-only graph classes support the aforementioned inheritance hierarchy (each path
is a tree, each tree is a graph ...) while the mutable graph classes, which extend the
immutable ones by adding the specialized functionality to modify the underlying graph,
are not subject to inheritance.

All graph types which contain the character sequence “Multi” in their names, that
are htd::IMultiHypergraph, htd::IMultiGraph and htd::IDirectedMultiGraph,
allow edge duplicates while all other graph types assume that edges with exactly the
same endpoints (in identical order) refer to the very same edge instance.

Labeled Graph Types

Furthermore, for each graph type there is also a labeled counterpart which allows to
assign custom labels to the vertices and edges of the graph. One example for a labeled
graph type is for instance the interface class htd::ILabeledTree (with its mutable
version htd::IMutableLabeledTree). Using these two interfaces one can, in addition
to the basic functionality provided by the tree classes, assign arbitrary, customizable

73

4. A Framework for (Customized) Tree Decompositions and Beyond

labels to the vertices and edges of the tree. The labeled versions of the other graph types
provide analogous functionality for the respective basic type.

Named Graph Types

While standard graph types implemented in htd take integers as identifiers for vertices and
edges in order to save resources, input graphs often use different data types for referencing
vertices and edges. To provide the developer with enough flexibility to use arbitrary data
types as identifiers, htd offers for each graph type a template class which automatically
takes care of the efficient one-to-one mapping between the identifier used in the context
of the input graph and the integer identifiers used by htd. We will subsequently refer to
those template wrappers for graph by the term “named graph types”.

One example instantiation of such a C++ template class representing a named graph type
is the class htd::NamedGraph<std::string,std::string> which wraps an instance
of htd::MutableLabeledGraph in such a way that instead of using an automatically
assigned integer to reference vertices and edges, one can now use a (unique) std::string.
Similarly, the class htd::NamedGraph<int, std::string> uses integers to address
vertices and strings to identify edges. Generally, one can use any data type as identifier
which provides a hash code and which is equality-comparable. The named versions of
the other graph types work in an identical manner for the respective basic type.

4.2.3 Decomposition Types

Initially, the focus of htd was the efficient computation of tree decompositions only. Nev-
ertheless, in order to perfectly fit the special needs of developers of dynamic programming
algorithms, htd at the current stage of development offers support for four basic types of
decompositions:

• htd::IGraphDecomposition

Graph decompositions are the most general type of decompositions in the context of
htd. The interface offers all possibilities of htd::IMultiHypergraph and extends
it by providing functionality to add a bag information as well as assigning vertex
and edge labels. The bag information in the context of htd is always a sorted vector
of vertices from the original graph from which the decomposition was computed.
Graph decompositions allow for duplicate edges as well as for disconnected graphs.
Inheritance:
Each htd::IGraphDecomposition is a htd::ILabeledMultiHypergraph.

• htd::ITreeDecomposition

While plain graph decompositions represented by the decomposition interface
htd::IGraphDecomposition are basically nothing more than arbitrary graphs
which can take the information about the bag content assigned to a vertex as well as

74

4.2. Developer Documentation

custom additional labels for all vertices and edges, tree decompositions represented
by the interface htd::ITreeDecomposition offer much more functionality.

For instance, each tree decomposition offers functions to efficiently access its join,
introduce and forget nodes. Furthermore, one can use the write-capable extension
interface htd::IMutableTreeDecomposition to manipulate the tree not only by
adding children to nodes but also by adding parents (useful for creating intermediate
nodes), deleting whole subtrees as well as by re-attaching nodes to totally different
parents, thus allowing almost any tree manipulation one can think of.

Inheritance:

Each htd::ITreeDecomposition is a htd::IGraphDecomposition.

• htd::IPathDecomposition

Path decompositions are tree decompositions without join nodes. In order to
support this type of decompositions optimally, htd provides a special interface
for path decompositions. By checking inheritance from this interface, algorithms
sometimes can take shortcuts as they can rely on the fact that each vertex has at
most one child.

Inheritance:

Each htd::IPathDecomposition is a htd::ITreeDecomposition.

• htd::IHypertreeDecomposition

The most involved type of graph decompositions currently supported by htd are
hypertree decompositions [GLS02]. Hypertree decompositions extend the properties
of tree decompositions by additionally adding functionality to retrieve the subsets
of hyperedges from the input graph which are needed to cover the bag content of
the node under focus.

Note that, generally, one could also implement this functionality by adding a custom
label to each vertex of a tree decomposition, but by implementing this interface,
efficiency can be increased.

Inheritance:

Each htd::IHypertreeDecomposition is a htd::ITreeDecomposition.

Analogous to the interfaces specific to the graph types, we again distinguish between read-
only and write-capable decomposition interfaces. In the same way as before, the name of
the write-capable interface for the four read-only decomposition interfaces is constructed
by adding the character sequence “Mutable” between the letter ‘I’ and the remainder
of the graph class name. As one example, htd::IMutableTreeDecomposition is the
mutable counterpart of the interface class htd::ITreeDecomposition.

75

4. A Framework for (Customized) Tree Decompositions and Beyond

4.2.4 Decomposition Algorithms

In order to support the aforementioned decomposition types it is necessary for a good
code design to distinguish different types of decomposition algorithms. The following
algorithms take an input graph of type htd::IMultiHypergraph, that is, they can be
fed with any graph type htd supports, and they return a pointer to a decomposition of
the corresponding type.

• htd::IGraphDecompositionAlgorithm

This type of algorithm provides the base interface for all decomposition algorithms
in the context of htd. Algorithms implementing this interface partition the input
graph and return a labeled multi-hypergraph of type htd::IGraphDecomposition.
Note that there is, in general, neither a guarantee nor a need that the vertices in
the decomposition, representing the partitions of the input graph, form a single
connected component. Therefore, one can implement any decomposition algorithm
one can think of using this basic interface class.

• htd::ITreeDecompositionAlgorithm

The purpose of algorithms implementing this specialized interface is to optimally
serve the needs of dynamic programming algorithms which rely on the use of tree
decompositions. In contrast to htd::IGraphDecompositionAlgorithm, the basic
type for all decomposition algorithms, algorithms which implement the interface
htd::ITreeDecompositionAlgorithm are somewhat more involved. This is be-
cause they return labeled trees of type htd::ITreeDecomposition, thus requiring
that the output graph to consist of a single connected, but cycle-free, component.
Extends:
htd::IGraphDecompositionAlgorithm.

• htd::IPathDecompositionAlgorithm

When we request that the resulting decomposition is cycle-free and that it must
not contain vertices with more than two neighbors, one is perfectly served using
decomposition algorithms of type htd::IPathDecompositionAlgorithm as they
return labeled paths of type htd::IPathDecomposition.
Extends:
htd::ITreeDecompositionAlgorithm.

• htd::IHypertreeDecompositionAlgorithm

In cases where the output of the decomposition algorithm shall be a labeled tree of
type htd::IHypertreeDecomposition, one can use the designated algorithms of
type htd::IHypertreeDecompositionAlgorithm.
Extends:
htd::ITreeDecompositionAlgorithm

76

4.2. Developer Documentation

Note that each interface mentioned above can also be called with additional parameters
dedicated to desired manipulations. In cases where these additional parameters are
provided, the decomposition algorithm is required to return a decomposition which
fulfills all criteria requested via the provided manipulation operations. This feature
often dramatically reduces implementation effort and it significantly improves readability
and maintainability of the code to be written by the developer. More details about the
built-in manipulation operations follow subsequently and examples how to use (custom)
manipulation operations can be found in Section 4.4.

4.2.5 Decomposition Manipulation Algorithms

During the design stage of htd, one of the main goals was the ability to customize the
resulting decomposition without requiring tedious post-processing work at developer side.
For this reason, htd provides various, built-in manipulation operations and also allows
to extend their functionality easily by implementing the corresponding interface classes
which are of type htd::IDecompositionManipulationOperation.

For each of the decomposition types which htd distinguishes there exists a corresponding,
specialized interface for tailored manipulation operations. The distinction into these
specialized interface classes allows to take advantage of shortcuts potentially originating
from the features of the graph types on which the operations can be applied, e.g., there
are no join nodes in path decompositions, hence we do not have to handle them.

The manipulation operations can be applied directly by the decomposition algorithms
or also in a post-processing step. In the latter case it is required to cast the read-
only decomposition returned by the decomposition algorithm to the corresponding
write-capable one as the manipulation clearly involves updating information of the
decomposition. Supporting the development process and maintainability of the code, htd
currently provides the following built-in manipulation operations:

• htd::AddEmptyLeavesOperation

It often reduces the effort needed to implement dynamic programming algorithms
when it is guaranteed that leaf nodes always have an empty bag. This is primarily
because, then, one does not need to treat leaves as a special case.

To ensure that a tree or path decomposition has only leaves with empty bags,
htd provides the manipulation operation htd::AddEmptyLeavesOperation which
simply adds a new child with empty bag to each leaf node which does not already
have an empty bag.

Implements the following interfaces:

– htd::ITreeDecompositionManipulationOperation

– htd::IPathDecompositionManipulationOperation

77

4. A Framework for (Customized) Tree Decompositions and Beyond

• htd::AddEmptyRootOperation

This operation ensures that the root node of a tree or path decomposition has
an empty bag. Similar to the operation htd::AddEmptyLeavesOperation, the
manipulation operation htd::AddEmptyRootOperation often helps to reduce the
amount of special cases which one has to think about during development of
dynamic programming algorithms.
This becomes apparent when we look at the fact that without empty root one still
has to check correctness of partial solutions by taking into account that the vertices
in the root still have to be forgotten. With empty root, this final check can often
be done exactly by the same procedure as for all other forget nodes.
Implements the following interfaces:

– htd::ITreeDecompositionManipulationOperation

– htd::IPathDecompositionManipulationOperation

• htd::AddIdenticalJoinNodeParentOperation

Sometimes it is needed to do some complex post-processing of join nodes which
cannot be done directly in the dynamic programming step belonging to the respective
join node, like it was needed in [AMW16a]. For this purpose, htd offers the class
htd::AddIdenticalJoinNodeParentOperation which ensures that each join
node has a parent node with identical bag content. With this guarantee, one can
easily implement the desired post-processing functionality without having to handle
various special cases.
Implements the following interfaces:

– htd::ITreeDecompositionManipulationOperation

• htd::CompressionOperation

All built-in implementations of decomposition algorithm in htd guarantee that the
resulting decomposition is minimal in the sense that all bags in the decomposition
are subset-maximal, hence no subsumed bags are contained. Clearly, this guarantee
only holds as long as one does not apply manipulation operations which add nodes
with bags subsumed by other nodes’ bags or which manipulate existing bag contents.
Especially for undoing manipulations applied beforehand or in order to compress
tree and path decompositions computed by custom decomposition algorithms,
htd provides the class htd::CompressionOperation which efficiently removes all
vertices from the given decomposition which are not subset-maximal.
Implements the following interfaces:

– htd::ITreeDecompositionManipulationOperation

– htd::IPathDecompositionManipulationOperation

78

4.2. Developer Documentation

• htd::ExchangeNodeReplacementOperation

Exchange nodes are inner nodes of decompositions where some vertices are forgotten
and, at the same time, some vertices are introduced. Sometimes one wants to avoid
these situations and wants to deal with introduce and forget nodes separately in the
dynamic programming algorithm. For this purpose, one can employ the operation
htd::ExchangeNodeReplacementOperation which replaces each exchange node
with one forget node and one introduce node. In order to keep the decomposition
width unchanged, the forget node will be the child node of the introduce node.
Implements the following interfaces:

– htd::ITreeDecompositionManipulationOperation

– htd::IPathDecompositionManipulationOperation

• htd::InducedSubgraphLabelingOperation

Although the bag content of a vertex is very important, dynamic programming
algorithms also need the information about the subgraph of the original graph
which is induced by the vertices contained in a bag as this information is the actual
part of input data on which the algorithm operates. Especially for large graphs
finding the (hyper-)edges which are induced by the bag content can be extremely
expensive.
As we will observe later (see Section 4.2.7), all built-in decomposition algorithms of
htd already compute this information very efficiently and store the outcome directly
in the resulting decomposition from which it can be accessed easily. Nevertheless,
the class htd::InducedSubgraphLabelingOperation allows to automatically
add an additional label to each decomposition node containing the set of induced
edges. This is especially useful to efficiently compute the set of induced edges when
a custom decomposition algorithm does not expose this information directly.
Implements the following interfaces:

– htd::ITreeDecompositionManipulationOperation

– htd::IPathDecompositionManipulationOperation

• htd::JoinNodeNormalizationOperation

Join nodes can be very complex to handle in dynamic programming algorithms
when the children’s bags differ from the respective parent node’s bag. Especially
in the early stages of the development of dynamic programming algorithms, but
also later on, it can be very useful to have the guarantee that join nodes and
their children share the same bag content. For this purpose, htd offers the class
htd::JoinNodeNormalizationOperation.
Implements the following interfaces:

– htd::ITreeDecompositionManipulationOperation

79

4. A Framework for (Customized) Tree Decompositions and Beyond

• htd::JoinNodeReplacementOperation

It is assumed that path decompositions, i.e., tree decompositions without join
nodes, are to be preferred over tree decompositions with join nodes if the width is
equal, but also when it is only slightly worse, it can pay off to avoid join nodes. For
this purpose, htd offers htd::JoinNodeReplacementOperation. This operation
takes a tree decomposition as input and replaces join nodes by re-arranging their
children and combining their bags so that the result is a path decomposition.
Note that, currently, this operation is experimental. It proceeds recursively starting
from the root node of the given tree decomposition. As long as the visited nodes do
not have more than one child, the algorithm simply moves on to the next unvisited
node and it returns when it reaches a leaf. Whenever the algorithm observes a
join node, it takes one of the join node’s children as the so-called attachment point.
Then, one of the remaining children is re-attached as intermediate node between
the attachment point and the join node currently under focus. In this way, the
join node looses a child, namely exactly the one which is moved in order to act as
new parent of the attachment point. To avoid breaking the connectedness criterion,
the bag content of this moved child must be expanded by the vertices which are
in the set intersection of the current attachment point’s bag and the current join
node’s bag. If the current child is a join node itself, we enter the recursion. After a
child is fully processed, it is set as the new attachment point and the procedure
continues until all children of the current join node are processed. In this way, the
connectedness condition is never violated and we finally obtain a tree decomposition
without join nodes because all children of former join nodes are re-arranged in such
a way that each node of the decomposition has at most one child.
Implements the following interfaces:

– htd::ITreeDecompositionManipulationOperation

• htd::LimitChildCountOperation

Due to the fact that joins, in many cases, can be carried out more efficiently when
the number of children per join node is bounded, htd offers the manipulation
operation htd::LimitChildCountOperation which limits the number of children
per node to a pre-definable upper bound. This is achieved by adding intermediate
nodes with bag content identical to the join node under focus and distributing the
supernumerous children properly among these additional intermediate nodes.
Implements the following interfaces:

– htd::ITreeDecompositionManipulationOperation

• htd::LimitMaximumForgottenVertexCountOperation

Depending on the actual implementation of the dynamic programming algorithm, it
can be beneficial to have a known upper bound for forgotten vertices in order to carry

80

4.2. Developer Documentation

out some algorithmic steps more efficiently. Also for debugging purposes it is often
useful to have only small changes between neighboring nodes of the decomposition
and so it would be nice to have a built-in manipulation to actually enforce such a limit
efficiently. The class htd::LimitMaximumForgottenVertexCountOperation is
developed exactly for this purpose.

Implements the following interfaces:

– htd::ITreeDecompositionManipulationOperation

– htd::IPathDecompositionManipulationOperation

• htd::LimitMaximumIntroducedVertexCountOperation

Analogous to the aforementioned manipulation operation which allows to limit
the maximum number of forgotten vertices for each decomposition node, the class
htd::LimitMaximumIntroducedVertexCountOperation can be used to limit
the maximum number of introduced vertices for each node of the decomposition.

Implements the following interfaces:

– htd::ITreeDecompositionManipulationOperation

– htd::IPathDecompositionManipulationOperation

• htd::TreeDecompositionOptimizationOperation

This is probably the most involved manipulation operation currently implemented
in htd. It allows to automatically change the root of a given tree so that the outcome
of a provided fitness function is maximized. Using this operation, one can easily get
a customized decomposition in a few lines of code without having to touch other
portions of the code.

Although the operation at hand is a rather complex and powerful one, it is geared
towards performance and it is fully compatible with other manipulations, that is,
the algorithms behind htd::TreeDecompositionOptimizationOperation will
optimize the tree decomposition considering all desired manipulation operations.

For even better controllability of the optimization operation one can use different
vertex selection strategies to filter the vertices which shall be considered as new
root node. This allows to improve performance especially for large decompositions
as there is no need to exhaustively check for all vertices in the tree decomposition
if they are the optimal root node. Clearly, the built-in collection of vertex selection
strategies can be easily extended by developers by implementing the corresponding,
simple interface. A detailed explanation of this operation is given in Section 4.4.

Implements the following interfaces:

– htd::ITreeDecompositionManipulationOperation

81

4. A Framework for (Customized) Tree Decompositions and Beyond

• htd::ILabelingFunction

This interface is used by decomposition manipulation operations which generate
labels for a corresponding bag. Labeling functions take an input graph of type
htd::IMultiHypergraph and a sorted set of vertices, representing the bag content
of a decomposition node, and they return a new label of type htd::ILabel.
The actual data type of the value of the returned label is dependent on the
implementation of the respective labeling function class. Generally, one can use
any data type supported in C++.
For convenience, one can access the concrete label value via the template function
htd::accessLabel which takes a template argument representing the data type
of the label value as well as a reference to the label and it returns the concrete
label value in the given data type.
Note that, if a labeling function is provided to a decomposition algorithm, the
labeling function will be applied automatically to each vertex of the resulting
decomposition. This makes using custom labels on the one hand very easy and on
the other hand it ensures highest efficiency and maintainability of the code.
Implements the following interfaces:

– htd::IDecompositionManipulationOperation

Also here, the list can be extended easily with own algorithms by implementing the
desired interface(s) mentioned above. One only has to take care that the manipulation
operation does not violate the properties of the decomposition on which it is applied, i.e.,
the decomposition must stay valid after the manipulation is applied, otherwise it will
break the functionality of the algorithms which use the modified decomposition.

4.2.6 Decomposition Normalization Algorithms

While the manipulation operations described in Section 4.2.5 are dedicated to exactly
one task per operation class, one sometimes requires more complex manipulations. One
example is making a given tree decomposition nice. This would involve the combination
of many of the aforementioned basic manipulation operations. We refer to such complex
manipulations which are generated by combining simpler manipulation operations by the
term “normalizations”. For convenience, htd offers the following built-in normalizations:

• htd::WeakNormalizationOperation

When each join node of a tree decomposition only has children with a bag content
identical to the bag content of the respective join node under focus, we call such
decompositions weakly normalized.
When we want to obtain a decomposition which fulfills this criterion, one can
use the manipulation operation of type htd::WeakNormalizationOperation.

82

4.2. Developer Documentation

Additionally, one can specify that the root node and/or all leaf nodes of the
decomposition shall be empty. The manipulation operation at hand efficiently
combines the manipulation operations htd::JoinNodeNormalizationOperation,
htd::AddEmptyRootOperation and htd::AddEmptyLeavesOperation, the last
two of them being optional.

Implements the following interfaces:

– htd::ITreeDecompositionManipulationOperation

– htd::IPathDecompositionManipulationOperation

• htd::SemiNormalizationOperation

Semi-normalized tree decompositions in the context of htd are tree decompositions
where each join node has exactly two children with the same bag content as the
respective join node. Hence, the operation htd::SemiNormalizationOperation

extends the class htd::WeakNormalizationOperation by combining it with the
manipulation operation htd::LimitChildCountOperation where the child limit
is set to 2.

Implements the following interfaces:

– htd::ITreeDecompositionManipulationOperation

– htd::IPathDecompositionManipulationOperation

• htd::NormalizationOperation

Sometimes one wants to work in the dynamic programming algorithm with a fully
normalized (nice) decomposition, i.e., a tree (or path) decomposition where join
nodes and their children have the same bag content and the bag contents between
adjacent non-join nodes differ in at most one element.

Specifically for this purpose, htd offers the class htd::NormalizationOperation
which extends the class htd::SemiNormalizationOperation by combining it
with the manipulation operations htd::ExchangeNodeReplacementOperation,
htd::LimitMaximumForgottenVertexCountOperation (with a vertex limit of
1) as well as htd::LimitMaximumIntroducedVertexCountOperation (with a
vertex limit of 1).

Implements the following interfaces:

– htd::ITreeDecompositionManipulationOperation

– htd::IPathDecompositionManipulationOperation

83

4. A Framework for (Customized) Tree Decompositions and Beyond

4.2.7 Useful Additional Functionality

An efficient way to compute tree decompositions is a very important ingredient of an
application based on dynamic programming. While this is a widely accepted statement, a
tree decomposition alone often is rather worthless as long as there is no way to efficiently
retrieve the information stored in it. For this reason, htd offers a wide range of utility
functions. A small selection of them is given in the following list:

• Easy Retrieval of Induced Subgraph Information
Maybe one of the most unique features of htd in contrast to other tree decomposition
frameworks is the fact that all implementations of graph decomposition algorithms
implemented in htd automatically compute for each bag of the decomposition the
subgraph of the input graph which is induced by the respective bag content. By
using the function called “inducedHyperedges” one can easily and with almost no
cost obtain the hyperedges which are induced by the bag with the given ID. This
can lead to a significant performance boost as input graphs can have millions of
edges and doing a subset check for each of them in each bag in the context of a
dynamic programming algorithm can be expensive.

• Tree and Graph Traversal Algorithms
Due to the fact that they are in many cases easier to develop, describe and to
implement, graph traversal algorithms often use recursion. A big issue with recursion
is the fact that as soon as the graphs reach a certain size, the proper operation of
practical implementations is no longer guaranteed as the program stack is no longer
capable of holding the information needed by the recursive function calls. Therefore,
we provide the following interfaces and their non-recursive implementations in htd:
Built-In Implementations of htd::IGraphTraversal:
The following two algorithms, the first one implementing breadth-first and the
second one depth-first traversal, traverse a graph beginning from a custom starting
vertex and take a lambda expression which is called for each visited vertex with
the information about the vertex at hand, its predecessor during the traversal and
its distance from the starting vertex. In this way, one can easily determine even
complex characteristic numbers (like the diameter) of the graph which is traversed.

– htd::BreadthFirstGraphTraversal

– htd::DepthFirstGraphTraversal

Built-In Implementations of htd::ITreeTraversal:
The interface htd::ITreeTraversal extends htd::IGraphTraversal and, as
the name suggests, it is dedicated to trees. Here, the predecessor of a vertex is
always identical to its parent. Hence, there is no need to spend time for looking up
the parent of the vertex currently visited as it is provided for free to the lambda

84

4.2. Developer Documentation

expression. Note at this point that the parent of the root node in the context of htd
is the “undefined vertex“ referenced by the ID 0. The following three tree traversal
algorithms are currently implemented in htd:

– htd::InOrderTreeTraversal

– htd::PreOrderTreeTraversal

– htd::PostOrderTreeTraversal

• Connected Component Algorithms
Sometimes it can be beneficial to preprocess a given input graph before decomposing
it. Depending on the actual application scenario, one possibility of preprocessing a
graph is by investigation of its (strongly) connected components. The following
interfaces and their implementations help to implement such a preprocessing step
effectively and efficiently:
Built-In Implementations of htd::IConnectedComponentAlgorithm:

– htd::DepthFirstConnectedComponentAlgorithm

This algorithm for determining connected components is based on depth-first
search and internally uses the class htd::DepthFirstGraphTraversal.

Built-In Implementations of htd::IStronglyConnectedComponentAlgorithm:

– htd::TarjanStronglyConnectedComponentAlgorithm

This class implements Tarjan’s algorithm for determining strongly connected
components of direct graphs which is described in [Tar72].

4.2.8 Implementation Guidelines

The following section is a short guide to the most important design rules to which the
interfaces and algorithms in htd conform. Especially before developing own algorithms
one should read and follow the provided guidelines in order to avoid breaking functionality.

Class Names Due to the fact that C++ does not use a special keyword which allow
to discriminate interfaces from (abstract) classes we define that each class name starting
with the the capital letter “I” followed by another capital letter is considered an interface,
i.e., a class with pure virtual functions only.

Function Arguments and Return Types Whenever a function receives a reference
which is not modified this reference is marked as “const”. Conversely, when a reference
is not marked as “const” one can assume that the object will be modified inside the
function and one should be careful in cases where it is desired to keep an unmodified
variant of the input object. Similarly, when a function returns a non-const reference, one
is free to modify the underlying object.

85

4. A Framework for (Customized) Tree Decompositions and Beyond

A crucial point is the memory management in cases where functions receive and/or return
pointers to objects. In cases where the function argument is a non-const pointer, the
function is required to take over control over the memory region. That is, the function
must take care that the memory region is properly freed. This also applies to functions
which take collections of non-const pointers. When a function returns a non-const pointer,
one must free the resources after using them. Note that functions receiving a const-pointer
will not free the pointer, so one must take care of freeing the resources.

WARNING: You must not free the memory of const-pointers returned by functions, you
must not provide the same non-const pointer multiple times as a function argument and
you must not free objects which were given to a function via a non-const pointer outside
the respective function boundaries as this will probably lead to memory corruptions.

To be on the safe side, don’t access or modify to object to which the non-const pointer
points after it was used as a function argument. In order to re-use it, one can easily
create a deep copy of almost all classes in htd via their appropriate clone method.

Type Conversions and Casts Note that its a safe operation to up-cast from a
read-only graph or decomposition type to the corresponding write-capable one. That
is, one can use the dynamic_cast function provided in the C++ language specification
to convert, for instance, a pointer or reference to htd::IGraph to a valid pointer or
reference to htd::IMutableGraph. This convertibility must also be guaranteed by
custom implementations in order to avoid breaking the functionality of algorithms.

WARNING: It is important to note that casts of the aforementioned kind are only a safe
and permitted operation for directly related interfaces. For instance, although each object
of type htd::ITreeDecomposition is also an object of type htd::IMultiHypergraph
one cannot cast htd::ITreeDecomposition to htd::IMutableMultiHypergraph. A
type cast between these two interfaces is neither possible nor permitted as hypergraphs
allow cycles and trees do not.

4.3 Algorithm Engineering

During the development of htd, a lot of time was spent on implementing, extending and
optimizing the algorithms which contribute to the library. The extension of (existing)
algorithms was needed to be able to incorporate all customization capabilities of htd and
the optimization is needed to be able to efficiently deal with large input graphs.

Subsequently, we will discuss in detail our approach how to accelerate the most-crucial
parts for computing tree decompositions in the context of htd, namely the algorithm for
computing the Min-Fill vertex elimination ordering and the algorithm for computing
the actual tree decomposition via Bucket Elimination [Dec99, McM04, Sch06]. We chose
these two algorithms for presentation here as they represent well-established techniques
and we want to share our findings in order to speed up development of implementations
of Min-Fill and Bucket Elimination in future projects.

86

4.3. Algorithm Engineering

4.3.1 Accelerating Min-Fill

Min-Fill is a prominent heuristic for computing vertex elimination orderings which often
produces good results, i.e., tree decompositions of low width, in practice [KBvH01]. Like
any greedy triangulation algorithm, Min-Fill follows the schema that, given an input
graph G = (V,E), in each iteration a vertex v ∈ V is chosen based on a given criterion
and then a clique incorporating all of v’s neighbors is formed in G by adding the so-called
fill edges. The vertex v is then removed from G and stored in the next position of the
resulting ordering. These simple steps are repeated until G finally is empty.

In the case of Min-Fill, the criterion for selecting the vertex to be removed is the following:
In each iteration, we select and eliminate the vertex which requires the least amount
of fill edges to be added in order to form a clique of all its neighbors. As, in general,
there are multiple vertices with the same amount of required fill edges, ties are broken
randomly.

Figure 4.2 shows an example input graph for the Min-Fill graph triangulation algorithm.
The vertex labels denote the fill value of the corresponding vertex. For instance, Vertex
a has a fill value of 2 as we need two additional edges, namely (b, d) and (b, e), in order
to create a clique containing all of a’s neighbors which are given by the vertices named b,
d and e.

a

2
b

3
c

1

d1 e 1

f

2
g

3
h

1

Figure 4.2: Example Input Graph for Min-Fill

The pseudo-code of the Min-Fill heuristic is shown in Algorithm 4.1. Note that, although
our definition of triangulation algorithms given before refers to graphs, the pseudo-code
in Algorithm 4.1 takes an arbitrary (constraint) hypergraph as input. This is a valid
move because we can easily transform any (constraint) hypergraph to its corresponding
primal graph (containing the same vertices as the input hypergraph) by introducing an
edge between each pair of vertices in a hyperedge.

Basically, the pseudo-code does not tell us how to efficiently determine the fill value
of a vertex. By the term “fill value” we refer to the amount of fill edges that need to
be added in order to form a clique incorporating all neighbors of the respective vertex.
Subsequently, we will give detailed insights on how to accelerate the computation of a
Min-Fill vertex elimination ordering.

87

4. A Framework for (Customized) Tree Decompositions and Beyond

Algorithm 4.1: Min-Fill (Simple Pseudo-Code)
Input: A (constraint) hypergraph H = (V,H)
Result: A vertex elimination ordering σ = {σ1 . . . σn} of the vertices in V

1 Let G = (V,E) be the primal graph of H.

2 σ ← []; // List σ is initially empty.

3 while G is not empty do
/* Ties are broken randomly! */

4 Select a vertex vx ∈ V whose elimination requires the least amount of edges to
be added;

/* Add necessary fill-in edges. */
5 neighbors ← ({v | (vx, v) ∈ E} ∪ {v | (v, vx) ∈ E}) \ {vx};
6 for v1 ∈ neighbors do
7 for v2 ∈ neighbors do
8 if v1 6= v2 and (v1, v2) /∈ E then
9 E ← E ∪ {(v1, v2)};

10 end
11 end
12 end

/* Remove vx from G. */
13 V ← V \ {vx};
14 E ← E \ {(vx, v) | (vx, v) ∈ E} ;
15 E ← E \ {(v, vx) | (v, vx) ∈ E} ;

16 Append vx to σ;
17 end

18 return σ;

First, let us define the data structures which the algorithm will rely on and fix the notation
we will use throughout the following explanation: As underlying data structure for storing
the graph we use a simple adjacency list. Additionally we use a dictionary which holds the
current fill value for each vertex which is not yet removed and we maintain a set of vertices
which we refer to as the pool and which contains all vertices with minimum fill value.
We define that, given a graph G = (V,E), the (one-hop) neighborhood N1(v) of a vertex
v ∈ V is represented by the set {vx|(vx, v) ∈ E}∪{vx|(v, vx) ∈ E}∪{v} and the two-hop
neighborhood N2(v) of a vertex v ∈ V is given by the set N1(v)∪ (

⋃
vx∈N1(v)(vy|(vy, vx) ∈

E} ∪ {vy|(vx, vy) ∈ E})). That is, N1(v) contains all vertices which are reachable from v
in at most one hop and N2(v) contains all vertices which are reachable from v within not
more than two hops. Based on these definitions, we define the following notions with
respect to a removed vertex vr ∈ V :

88

4.3. Algorithm Engineering

Definition 12. For a vertex v ∈ N2(vr), we call the set Ne(v) = (N1(v)∩N1(vr)) \ {vr}
the existing neighbors of v. Furthermore, we call the set Nu(v) = N1(v) \ N1(vr) the
unaffected neighbors of v and we refer to Na(v) = (N1(vr)\N1(v))\{vr} as the additional
neighbors of v. Note that Ne(v) ∪Nu(v) ∪Na(v) ≡ N(v) \ {vr} holds and that the sets
are disjoint, i.e., existing, unaffected and additional neighbors of v form a partition of
v’s neighborhood with vr removed.

The intuition behind the terms existing, unaffected and additional vertex is the following:
The existing vertices of a vertex v are those vertices which are directly manipulated,
i.e., the vertices whose neighborhood will be updated. The additional vertices are those
vertices which are to be added to the neighborhood of v in order to create a clique
between the neighbors of vr and the unaffected vertices are those neighbors of v which
are not adjacent to vr. Note that Na(v) = ∅ holds for all vertices v ∈ N2(vr) \N1(vr)
where vr is the vertex eliminated in the current iteration. This is because of the fact that
only vertices which are direct neighbors of the eliminated vertex vr will potentially get
additional neighbors due to the creation of the clique.

As mentioned before, in order to perform the selection step in Line 4 of Algorithm 4.1
efficiently, we decide to keep track of the fill value of each vertex by storing it in a
dictionary data structure which allows for fast lookup. That is, instead of computing
the fill value of a vertex from scratch in each iteration, we just update the fill value
accordingly. In this way, we can easily manage a pool of vertices which currently have
the lowest fill values without having to re-compute the same information over and over
for vertices which were not affected in a previous iteration. From this pool of vertices
with minimum fill value we can then simply select a vertex at random in order to perform
the next iteration.

To illustrate how to efficiently compute the necessary fill value changes, we refine the
pseudo-code provided in Algorithm 4.1. The enhanced version of the pseudo-code is
given in Algorithm 4.2. While the procedures of eliminating a vertex and adding it to the
ordering stay unchanged, the extended algorithm now shows how one can easily update
the fill value of those vertices (and only of those vertices) which are affected by a vertex
elimination step.

In the first iteration of the algorithm, we need to compute the actual fill value for each
vertex. With this information we can initialize the variables fill, minfill and pool (see
Line 6 of Algorithm 4.2). After doing so we never need to compute the full fill value of a
vertex again. We completely rely on updating the fill values as this significantly improves
performance in practice. This is based on the fact that for updating the fill value it often
suffices to consider at most two out of the three partitions – Ne(v), Nu(v) and Na(v) –
of the neighborhood relation.

In Lines 8–10 of Algorithm 4.2 we update the pool if it is empty. This can occur whenever
the last vertex with fill value equal to minfill was eliminated in the iteration before or
when all vertices which were in the pool in the iteration before got updated to a fill value

89

4. A Framework for (Customized) Tree Decompositions and Beyond

Algorithm 4.2: Min-Fill (Verbose Pseudo-Code)
Input: A (constraint) hypergraph H = (V,H)
Result: A vertex elimination ordering σ = {σ1 . . . σn} of the vertices in V

1 Let G = (V,E) be the primal graph of H.

2 σ ← []; // List σ is initially empty.
3 fill ← []; // The dictionary for the fill value of each vertex.
4 pool ← ∅; // The set of vertices with minimum fill value.
5 minfill ←∞; // The minimum fill value.

6 Initialize fill, minfill and pool based on G.

7 while G is not empty do
8 if pool == ∅ then
9 Initialize minfill and pool based on fill.

10 end
11 Select randomly a vertex vx ∈ pool;

12 if fill[vx] == 0 then
13 for v ∈ N1(vx) \ {vx} where fill[v] > 0 do
14 fill[v]← fill[v]− |N1(v) \N1(vx)|;
15 end
16 else
17 for v ∈ N1(vx) \ {vx} do
18 fill[v]← updateNeighbor(G, vx, v,fill[v]);
19 end
20 for v ∈ N2(vx) \ ({vx} ∪ {u|u ∈ N1(vx), Nu(u) == ∅ || Na(u) == ∅}) do
21 for u ∈ Ne(v) do
22 fill[v]← fill[v]− |{t|t ∈ Ne(v), t > u} ∩Na(u)|;
23 end
24 end
25 end

26 Add necessary fill-in edges;
27 Remove vx from G;
28 Append vx to σ;
29 end
30 return σ;

90

4.3. Algorithm Engineering

which is higher than minfill. Note that we omit in Algorithm 4.2 the code for updating
the pool content and the value of minfill for better readability. Basically, whenever the
fill value of a vertex is updated, also the pool and, potentially, also the value minfill need
to be updated. For instance, if the new fill value of a vertex v is less than minfill, minfill
is set to the new lower bound for the fill value and the pool of vertices with minimal fill
value is reset to contain only v. Similarly, if the new fill value of a vertex v is equal to
minfill and v is not already contained in pool, v is added to pool. If the new fill value of
a vertex v is greater than minfill, v has to be removed from the pool of vertices with
minimal fill value.

In Lines 12–15 of Algorithm 4.2 the case is handled in which the eliminated vertex vx
has a fill value of 0, that is, all its neighbors already form a clique. In this case, we
can simply subtract the amount of unaffected neighbors Nu(v) from the fill value of
each neighbor v of vx. This update is sufficient because v does not have any additional
neighbors (because the neighbors of vx already form a clique) and the existing neighbors
of v do not contribute to its fill value (for the same reason). Hence, a change of the fill
value of v can be only be caused by the fact that now all missing edges between vx and
v’s neighbors are no longer relevant after the elimination of vx.

Perhaps more interestingly is the case in which the fill value of the eliminated vertex is
greater than 0. In those cases we first enter the loop at Lines 17–19 of Algorithm 4.2
for each neighbor of the eliminated vertex vx. To update the fill value of these vertices,
we use Algorithm 4.3. This helper algorithm takes as input an undirected graph, the
eliminated vertex vx, the vertex v whose fill value shall be updated and the old fill value
of v. The result of the algorithm is the new fill value of v after eliminating vx.

In the case where there are no unaffected neighbors of v, Algorithm 4.3 will simply
return 0 as the new fill value because after the elimination of vx all of v’s neighbors will
be together in a clique. When there exists at least one unaffected neighbor of v, we
distinguish two cases: If there exist additional neighbors of v, we update the fill value of
v according to the formula shown in Line 3 of Algorithm 4.3. That is, we first increase
its fill value by the maximum amount of edges that can exist between the additional and
the unaffected vertices and then we subtract the amount of existing edges between the
additional and unaffected vertices.

In the second case, i.e., when v has some unaffected but no additional vertices, we first
subtract the amount of unaffected neighbors from v’s fill value because vx is a neighbor of
v and the missing edges between vx and the unaffected neighbors no longer matter. Then
we iterate over all u ∈ Ne(v) and subtract the size of the set intersection of all additional
vertices of u and of all existing neighbors of v greater than u. By considering only vertices
greater than u we do not count any edge twice. In this way, we can efficiently compute
the amount of edges between the existing neighbors of v which were missing but which
are added during the construction of the clique between the neighbors of vx.

This brings us back to Lines 20–23 of Algorithm 4.2. In this loop, we iterate over all
two-hop neighbors of the eliminated vertex vx (excluding vx) which are either not directly

91

4. A Framework for (Customized) Tree Decompositions and Beyond

Algorithm 4.3: Procedure updateNeighbor for Algorithm 4.2
Input: An undirected graph G = (V,E)

A vertex vr ∈ V which is eliminated in the current iteration
A vertex v ∈ V whose fill value shall be updated
The old fill value f of v

Result: The new fill value of v

1 if |Nu(v)| > 0 then
2 if |Na(v)| > 0 then
3 f ← f + (|Na(v)| − 1) ∗ |Nu(v)| −

∑
u∈Na(v) |Nu(u) ∩Nu(v)|;

4 else
5 f ← f − |Nu(v)|;
6 for u ∈ Ne(v) do
7 f ← f − |{t|t ∈ Ne(v), t > u} ∩Na(u)|;
8 end
9 end

10 else
11 f ← 0;
12 end

13 return f ;

adjacent to vx or which have both unaffected and additional neighbors. That is, we
consider again those two-hop neighbors vx which are also direct neighbors and which
were handled by Line 3 of Algorithm 4.3. Line 22 of Algorithm 4.2 follows the same idea
as Line 7 of Algorithm 4.3. All what remains is to add the necessary fill-in edges, remove
vx from the graph and append it to the ordering.

Note that one can achieve additional improvements by keeping track of the total fill
value – the sum of all fill values – and abort the main loop of the algorithm earlier when
this counter reaches 0. This is possible because a total fill value of 0 implies that the
remaining graph is a clique. The ordering can then be completed by appending the
vertices in the remaining graph in arbitrary order.

4.3.2 Extending Bucket Elimination

Bucket Elimination [Dec99] was originally presented as a unifying framework for reasoning.
Based on this concept, we can easily compute a tree decomposition of a given input
hypergraph as shown in Algorithm 4.4. The pseudo-code in Algorithm 4.4 was presented
in [McM04, Sch06] and it illustrates the process of computing a tree decomposition
when given an input hypergraph and a corresponding vertex elimination ordering. The
algorithm first creates an empty bucket for each vertex of the input graph (Line 2) and
then it proceeds by initializing the bags based on the (hyper-)edges which are contained
in the graph (Lines 3–6). This happens by assigning the vertices of a given hyperedge h

92

4.3. Algorithm Engineering

to the bucket which corresponds to the lowest ranked vertex in h with respect to the
given elimination ordering σ. Afterwards we have to iterate over the vertex elimination
ordering σ in order to obtain the complete content of each bucket and the edges between
the buckets by which the final tree is constructed (Lines 7–12).

Algorithm 4.4: Bucket Elimination
Input: A (constraint) hypergraph H = (V,H)

A vertex elimination ordering σ = {σ1 . . . σn} of the vertices in V
Result: A tree decomposition (T , χ) of H

1 E = ∅;

2 Create an empty bucket Bσi for each vertex σi ∈ σ: χ(Bσi)← ∅.

3 for h ∈ H do
4 Let v be the vertex in h which is ranked at lowest position in σ among all

vertices in h;
5 χ(Bv)← χ(Bv) ∪ vertices(h);
6 end

7 for i ∈ {1..n} do
/* Create temporary vertex set A based on bucket Bvi. */

8 Let A = χ(Bvi) \ {vi};
/* Determine lowest ranked vertex in A based on σ. */

9 Let vj ∈ A be the next in A following vi in σ;
10 χ(Bvj) = χ(Bvj) ∪A;
11 E = E ∪ {(Bvi , Bvj)};
12 end

13 return ((B,E), χ) where B = {B1 . . . Bn};

Subsequently, we propose an extension of Algorithm 4.4 which can be extremely helpful
for the development of dynamic programming algorithms. For dynamic programming on
tree decompositions we always need the information about the (hyper-)edges which are
induced by a bag. A naive approach where we check in each bag of the tree decomposition
the induced edges soon becomes a bottleneck when the input graph contains thousands
of edges. To overcome this issue, we use the following trick in htd, so that all the work is
done directly by the Bucket Elimination procedure:

In fact, at Line 5 of Algorithm 4.4 we can store the target bucket of a (hyper-)edge, that
is, we can use a dictionary which for each (hyper-)edge holds the bucket in which it is
fully contained. The speedup comes from the fact that while finding the first bucket in a
given tree decomposition in which an edge is contained can be tedious, internally, during
execution of the Bucket Elimination algorithm, we get this valuable information for free.

After implementing this small change, all that remains in order to find the induced edges
for each bag is to start, for each edge in the input graph, a kind of depth limited search

93

4. A Framework for (Customized) Tree Decompositions and Beyond

in the tree decomposition starting from the target bag of the respective edge. The limit
in this case is given by the bucket where the edge is no longer fully contained. That
is, we follow a branch until we reach a bag which does not contain the edge as a whole
anymore and then we backtrack.

4.4 htd at Work
In this section we will have an in-depth look at how to use htd optimally in different
situations and how to adapt it according to the actual needs. The focus of this explanation
is not only to introduce the developer to the concrete classes and interfaces which can be
useful for implementing dynamic programming algorithms but also to shed some light at
the interplay between them. This section will first cover details on loading input data
and then we will have a look at how to customize tree decompositions. Finally we will
make use of htd’s utility functions to show how the information stored in the resulting
decomposition can be incorporated in a given dynamic programming algorithm.

4.4.1 The Dynamic Programming Algorithm

For the remainder of this section, let’s assume that we want to solve the Minimum
Dominating Set problem via dynamic programming on tree decompositions. That is,
we try to find cardinality-minimal subsets S ⊆ V of a graph G = (V,E) such that each
vertex v ∈ V is either contained in S or adjacent to at least one vertex in S. Furthermore,
assume that we are interested in determining the complete set of all such solutions and
that the dynamic programming algorithm we want to implement follows exactly the
schema we presented in Section 2.3.

4.4.2 Loading the Input Data

In general, there are many ways to parse input data and even the origin of the data stream
from which to read may vary between different scenarios. For the following example code
we assume that the input is stored in files conforming to the following variant of the
DIMACS graph format which is also used as the official input format of Track A of the
“First Parameterized Algorithms and Computational Experiments Challenge” (PACE
2016, see https://pacechallenge.wordpress.com/track-a-treewidth/):

• The file starts with a header matching the pattern “p tw Vertices Edges”, where
the placeholder Vertices represents the number of vertices of the input graph and
Edges is a placeholder for the number of edges which are contained in the input
graph. The vertices are numbered between 1 and Vertices.

• All lines starting with the letter ‘c’ are treated as comments.

• Each remaining line (there must be exactly Edges such lines) represents an edge.
An edge information consists of exactly two vertex identifiers (numbers between 1
and Vertices) separated by a single space.

94

https://pacechallenge.wordpress.com/track-a-treewidth/

4.4. htd at Work

Subsequently we will sketch how one can simply and effectively create a new instance
of htd::IMultiGraph which contains all relevant information of a given input graph.
Note that the following C++ code snippets are not optimized and that we omit error
handling here for brevity. An efficient implementation for parsing input files of the
aforementioned format, also containing error handling routines, is provided via the
class htd_main::GrFormatImporter which can be found in the folder “src/htd_main”
located in the main folder of the htd project.

The project htd_main, which is providing a command-line executable for the htd project,
also contains a collection of other useful classes allowing to import additional, often-used
graph types. These classes can act also as a starting point for the development of custom
importers.

To come back to our example, let’s assume that there exists a pointer to an object of
type htd::LibraryInstance called “manager” and assume furthermore that we already
parsed the first non-comment line of an input file in the aforementioned format. At this
point, we already know the total amount of vertices the new graph will contain and we
can store it in the variable Vertices. With this information we can then create a new
instance of the desired graph type using the code shown in Listing 4.4.

1 // Get a new i n s t a n c e o f the d e f a u l t multi−graph implementation .
2 htd : : IMutableMultiGraph ∗ g =
3 manager−>multiGraphFactory () . c r e a t e I n s t an c e (V e r t i c e s) ;

Listing 4.4: Creating a New Instance of htd::IMutableMultiGraph (Variant 1)

Another way of achieving the same result, i.e., creating a new graph instance of non-zero
size, is shown in Listing 4.5. While the code in Listing 4.4 automatically initializes the
graph to the requested size, the second variant first creates an empty graph and afterwards
adds the desired number of vertices to it via a bulk operation. In both cases, the created
vertices are numbered between 1 and Vertices. When the method addVertices is called
repeatedly, the range of the newly inserted vertices starts from the identifier of the vertex
added last, incremented by 1. Alternatively, if it is needed to add a single vertex to a
graph, one can use the method addVertex. To add a vertex to a tree or path, htd offers
the methods insertRoot (for creating the first vertex of the tree or path), addChild
and addParent. Note that the creation and initialization of all other (labeled) graph
types and decomposition types works analogously.

1 // Get a new , empty i n s t a n c e o f the d e f a u l t multi−graph implementation .
2 htd : : IMutableMultiGraph ∗ g =
3 manager−>multiGraphFactory () . c r e a t e I n s t an c e () ;

4 // Add a l l v e r t i c e s to the graph
5 g−>addVert i ces (V e r t i c e s)

Listing 4.5: Creating a New Instance of htd::IMutableMultiGraph (Variant 2)

In our example, after the graph is properly initialized to the right size, one can simply
go ahead and for each edge with endpoints V1 and V2 which is read from the input file

95

4. A Framework for (Customized) Tree Decompositions and Beyond

we call the code shown in Listing 4.6.
1 // Add a new edge with the two endpoints V1 and V2 .
2 htd : : id_t edgeId = g−>addEdge (V1 , V2) ;

Listing 4.6: Creating a New Edge

Note that for adding hyperedges, one can also use the method addEdge and call it with
a vector (or any other collection) of vertices. The function always returns the ID of the
corresponding edge. For graph types which do not allow duplicate edges, the function
returns the ID of the unique edge with the same endpoints.

4.4.3 Decomposing the Input Graph

After the input file is parsed successfully, we can now decompose the graph. As already
mentioned earlier, htd supports a variety of decomposition types together with their
corresponding decomposition algorithms. Because the general schema for obtaining a
decomposition of a given graph in htd is very similar for all decomposition types, we pick
here the example of a “plain” tree decomposition of type htd::ITreeDecomposition.

If we just need a simple tree decomposition, we can use the code from Listing 4.7 and we
will obtain a non-normalized tree decomposition where each bag is subset-maximal with
respect to the other bags in the same decomposition. The algorithms in htd are required
to be able to deal with empty and disconnected input graphs. This means that one can
feed them any graph and the result will be a valid decomposition of the requested type.

1 // Obtain a new i n s t a n c e o f the d e f a u l t t r e e decomposit ion a lgor i thm .
2 htd : : ITreeDecomposit ionAlgorithm ∗ a lgor i thm =
3 manager−>treeDecompos it ionAlgor ithmFactory () . c r e a t e I n s t anc e () ;

4 // Compute a new t r e e decompos it ion o f the g iven graph .
5 htd : : ITreeDecomposit ion ∗ decomposit ion =
6 a lgor i thm . computeDecomposition (∗ g) ;

Listing 4.7: Computing a Tree Decomposition

We can see that obtaining a plain tree decomposition of a graph for the use in a dynamic
programming algorithm is a very simple task using htd. This is a nice observation, but
often an arbitrary tree decomposition is not good enough as the absence of structural
guarantees makes the design of the dynamic programming algorithms much more complex
and often this increased code complexity has negative effects on the performance.

To illustrate that htd also makes applying modifications to tree decompositions very
convenient, let’s have a look at Listing 4.8. The code snippet is to be placed before
computeDecomposition is called. In the given example, we ensure that each join node
only has children for which the bag content is equal to the bag content of the respective
join node. Having this guarantee is often very useful as it makes join operations much
easier to implement. For instance, when we recall the dynamic programming tables
from Figure 2.4, we can see that, in the context of join nodes of non-normalized tree

96

4.4. htd at Work

decompositions, we have to check for introduced and removed vertices and handle them
appropriately. This is not necessary in those cases where it is guaranteed that the bags
of join nodes and their children coincide.

1 // Ensure that each c h i l d bag o f a j o i n node matches the j o i n node ’ s bag .
2 algor ithm−>addManipulationOperation
3 (new htd : : JoinNodeNormal izat ionOperat ion (manager)) ;

Listing 4.8: Applying a Manipulation Operation

Clearly, one can also request multiple manipulation operations to be applied automatically
by a decomposition algorithm. In this case, the manipulations are applied in the
order they were provided. For convenience, in addition to the possibility to apply
manipulations globally to all decompositions computed by an algorithm instance, one
can also request manipulations directly in the call to computeDecomposition. In this
case, all manipulation operations provided in the call to computeDecomposition are
applied after all operations provided directly to the decomposition algorithm.

4.4.4 Decomposing the Input Graph with Optimization

Sometimes, the manipulation of a tree decomposition like shown before is not enough and
we want to obtain an optimized decomposition with respect to a custom fitness function.
Also for scenarios of this kind, htd offers an easy-to-use workflow.

To illustrate this workflow by means of our working example, let’s assume that we want
to obtain a tree decomposition which is of low width and whose height is minimized.
Furthermore, let’s assume that minimizing the width is more important than minimizing
the height of the tree decomposition. To achieve this goal, we first have to define the
simple fitness function shown in Listing 4.9.

1 c l a s s FitnessFunct ion : p u b l i c htd : : ITreeDecompos i t ionFitnessFunct ion
2 {
3 p u b l i c :
4 htd : : F i tne s sEva luat i on ∗ f i t n e s s
5 (c o n s t htd : : IMultiHypergraph &,
6 c o n s t htd : : ITreeDecomposit ion & decompos it ion) c o n s t
7 {
8 return new htd : : F i tne s sEva luat i on (2 ,
9 −(double) (decomposit ion . maximumBagSize ()) ,

10 −(double) (decomposit ion . he ight ())) ;
11 }

12 FitnessFunct ion ∗ c l one (void) c o n s t
13 {
14 return new FitnessFunct ion () ;
15 }
16 } ;

Listing 4.9: Fitness Function for Minimizing Width and Height of a Tree Decomposition

97

4. A Framework for (Customized) Tree Decompositions and Beyond

Basically, a fitness function is a class with a method fitness which takes two parameters,
the input graph and a tree decomposition, and which returns a fitness evaluation consisting
of an arbitrary number of levels (corresponding to the priorities) each represented by a
value of type double.

The constructor of htd::FitnessEvaluation takes a (non-empty) parameter list where
the first argument of the constructor is an integer value determining the number of levels
the evaluation will contain. A decomposition A is considered better than a decomposition
B if the fitness evaluation of A is lexicographically greater than B’s fitness evaluation.
In our example, as we want to minimize the width and height of the tree decomposition,
we have to negate the corresponding values before we create the fitness evaluation object.
In Listing 4.9 we can also see that there is a method clone. This function is required by
almost all classes in htd as we often need deep copies of an object and this is exactly the
purpose of the clone function.

1 // Obtain a new i n s t a n c e o f the d e f a u l t t r e e decomposit ion a lgor i thm .
2 htd : : ITreeDecomposit ionAlgorithm ∗ baseAlgorithm =
3 manager−>treeDecompos it ionAlgor ithmFactory () . c r e a t e I n s t anc e () ;

4 // Create a new f i t n e s s f u n c t i o n o b j e c t .
5 FitnessFunct ion func t i on ;

6 // Create a new opt imiza t i on opera t i on f o r s e l e c t i n g the optimal root .
7 htd : : TreeDecomposit ionOptimizat ionOperat ion ∗ operat i on =
8 new htd : : TreeDecomposit ionOptimizat ionOperat ion
9 (manager . get () , f unc t i on) ;

10 // Consider at most ten randomly s e l e c t e d v e r t i c e s as new root node .
11 operat ion−>se tVe r t exSe l e c t i onS t r a t e gy
12 (new htd : : RandomVertexSelect ionStrategy (10)) ;

13 // Ensure that each c h i l d bag o f a j o i n node matches the j o i n node ’ s bag .
14 operat ion−>addManipulationOperation
15 (new htd : : JoinNodeNormal izat ionOperat ion (manager)) ;

16 // Compute a new t r e e decompos it ion o f the g iven graph .
17 htd : : ITreeDecomposit ion ∗ td = algor i thm . computeDecomposition (∗ g) ;

18 // Apply the opt imiza t i on opera t i on to the t r e e decomposit ion a lgor i thm .
19 baseAlgorithm−>addManipulationOperation (operat i on) ;

20 // Create a new i n s t a n c e o f a t r e e decomposit ion a lgor i thm
21 // which i t e r a t i v e l y c a l l s the base a lgor i thm and r e t u r n s
22 // the decomposit ion with optimal f i t n e s s .
23 htd : : Iterat iveImprovementTreeDecomposit ionAlgor ithm algor i thm
24 (manager . get () , baseAlgorithm , func t i on) ;

25 // Compute at most ten decompos it ion o f the input graph .
26 a lgor i thm . s e t I t e r a t i onCount (10) ;

27 // Abort the opt imiza t i on p r o c e s s b e f o r e the i t e r a t i o n l i m i t i s
28 // reached i f no improvement was found in the l a s t f i v e i t e r a t i o n s .
29 a lgor i thm . setNonImprovementLimit (5) ;

Listing 4.10: Computing a Customized Tree Decomposition

98

4.4. htd at Work

After implementing the fitness function, the few lines of code presented in Listing 4.10
suffice to enhance the code from Listing 4.7 in such a way that the fitness function will be
maximized. This happens in two steps: The tree decomposition optimization operation
takes a tree decomposition and tries to change its root in such a way that the fitness
function is maximized and the iterative improvement algorithm calls the base algorithm
(which automatically applies the optimization operation) repeatedly and returns the
decomposition having optimal fitness. Indeed, one can also use different fitness functions
in the two algorithms or nest the algorithms.

For the use in own implementations, one can freely customize the set of vertices which
shall be considered in the search for the optimal root by choosing a different vertex
selection strategy which is used by the tree decomposition optimization operation. htd
offers a set of built-in selection strategies but one can also define custom strategies
depending on the actual needs of the dynamic programming algorithm.

Note that in the listing above, the optimization algorithm takes care of applying the join
node normalization operation which is also shown in Listing 4.8. Moving the responsibility
for applying the manipulations from the base algorithm towards the optimization operation
is necessary because we want the fitness function to be evaluated based on the resulting
decomposition. Applying the normalization operation after the optimization operation
likely would destroy the property of (local) optimality of the decomposition as the height
could change when normalizing the join nodes.

To track the optimization progress, an interesting aspect of the iterative improvement
algorithm is the fact that we can call the function computeDecomposition with an
additional lambda expression, like shown in Listing 4.11. In this example, the code
outputs the width and height of each new decomposition computed by the algorithm.

1 htd : : ITreeDecomposit ion ∗ decomposit ion =
2 a lgor i thm . computeDecomposition (∗g ,
3 [&] (c o n s t htd : : IMultiHypergraph &,
4 c o n s t htd : : ITreeDecomposit ion &,
5 c o n s t htd : : F i tne s sEva luat i on & f i t n e s s)
6 {
7 std : : s i z e_t w = − f i t n e s s . at (0) − 1 ;
8 std : : s i z e_t h = − f i t n e s s . at (1) ;

9 std : : cout << "Width : " << w << " Height : " << h << std : : endl ;
10 }
11 }) ;

Listing 4.11: Tracking the Optimization Progress

Finally, it is important to notice that the iterative improvement tree decomposition
algorithm is safely interruptible. That is, one can call the terminate method of the
corresponding manager and the iterative improvement algorithm will immediately return
the best tree decomposition found so far or a nullptr in case that no decomposition
was computed so far.

99

4. A Framework for (Customized) Tree Decompositions and Beyond

During the experiments we made in the context of the publication [ADMW15] it turned
out that D-FLAT often benefits from a reduction of the bag size of join nodes. This is
most probably caused by the fact that then the number of possible solution candidates
which have to be joined is potentially reduced. Due to the fact that the bag size of join
nodes is not affected by changing the root of a normalized tree decomposition, in this
case we can even omit the class htd::TreeDecompositionOptimizationOperation
or leave away the fitness function in its constructor in order to make it a transparent
“non-operation”. Because the join node bag sizes in a decomposition with normalized
join nodes are potentially not influenced when selecting a different vertex as root node,
we decided to present the reduction of the decomposition height in the example code
in Listing 4.10. The height of a tree decomposition is highly dependent on the actual
node which acts as its root and so it is a better suited application of the decomposition
optimization operation of htd for the illustrative scenario at hand.

4.4.5 Working with the Decomposition

After the tree decomposition is computed, we still have to execute the DP algorithm on
it. Due to the fact that there are various ways to implement a dynamic programming
algorithm for a given problem, we do not go into details of the concrete algorithm for
Minimum Dominating Set at this point. Instead, we provide in Listing 4.12 a short
example how a computed tree decomposition together with the induced edges for the
bags can be printed in a human-readable form as this code can act as a general starting
point to get an idea how htd supports the implementation of dynamic programming
algorithms also beyond the plain decomposition of input graphs.

1 htd : : PreOrderTreeTraversal t r a v e r s a l ;

2 t r a v e r s a l . t r a v e r s e (∗ decomposit ion ,
3 [&] (htd : : vertex_t vertex , htd : : vertex_t parent , s td : : s i z e_t depth)
4 {
5 f o r (htd : : index_t index = 0 ; index < distanceToRoot ; ++index)
6 {
7 outputStream << " " ;
8 }

9 std : : cout << "NODE " << vertex << " : " <<
10 decomposit ion . bagContent (ver tex) << std : : endl ;

11 f o r (c o n s t htd : : Hyperedge & e :
↪→ decomposit ion . inducedHyperedges (ver tex))

12 {
13 f o r (htd : : index_t index = 0 ; index < distanceToRoot + 1 ; ++index)
14 {
15 outputStream << " " ;
16 }

17 std : : cout << e . id () << " : " << e . e lements () << std : : endl ;
18 }
19 }) ;

Listing 4.12: Printing a Tree Decomposition

100

4.4. htd at Work

The code above traverses the tree decomposition in preorder and outputs for each node
its ID together with its corresponding bag content. The very helpful and powerful feature
for easily deriving the (hyper-)edges induced by a bag is also illustrated in the example
source code shown in Listing 4.12. With this feature one automatically has direct access
to all hyperedges whose endpoints are a subset of the current bag content. In this way,
one can save significant portions of the total runtime compared to tree decomposition
libraries which do not provide this feature as in the latter case one has to do a subset
check for each (hyper-)edge in each node’s bag in the worst case.

4.4.6 Upgrading the Dynamic Programming Algorithm

At this point, we presented all aspects of htd which are needed to solve the Minimum
Dominating Set problem. Subsequently, we will have a glance at how to utilize htd’s
support for custom vertex labels in order to solve the problem of Minimum Weighted
Dominating Set. Afterwards we will also illustrate how exploiting the full potential of
htd makes developing dynamic programming algorithms much more convenient.

First, let’s recall the definition of Minimum Weighted Dominating Set: The problem
is defined on a graph G = (V,E) with vertex weights W : V → R and we want to find
all sets S ⊆ V of minimum cost such that each vertex in V is either contained in S or
adjacent to at least one vertex inside S. The cost of a dominating set S is defined as the
sum of all vertex weights of the vertices in S.

To adapt the basic algorithm for Minimum Dominating Set so that it is able to deal
with vertex weights, we just have to sum up the proper weight instead of the value
1 for each selected vertex. Clearly, we can achieve this modification of the dynamic
programming algorithm presented previously by maintaining a mapping between the
vertices and the corresponding weights in the algorithm, but this would involve using a
global mapping variable or passing the mapping variable as a parameter to the function
which computes the dynamic programming tables, probably causing high maintenance
effort. As a workaround and in order to keep the code clean and highly maintainable,
one can use htd’s functionality to add, remove and access vertex and edge labels in the
context of any available decomposition and labeled graph type. An example is given in
Listing 4.13 where we add a vertex label to Vertex 1 of type double, representing its
weight.

1 // Get a new i n s t a n c e o f the d e f a u l t multi−graph implementation .
2 htd : : IMutableLabeledMultiGraph ∗ g =
3 manager−>labeledMult iGraphFactory () . c r e a t e In s t an c e (Ve r t i c e s) ;

4 // Add a ver tex l a b e l " Weight " to the ver tex with ID 1 .
5 g−>setVertexLabe l ("Weight " , 1 , new htd : : Label<double >(3.14159)) ;

6 // Access the ver tex l a b e l " Weight " a s s i gned to the ver tex with ID 1 .
7 double weight = htd : : accessLabe l<double >(g−>vertexLabe l ("Weight " , 1)) ;

8 // Remove the ver tex l a b e l " Weight " from the ver tex with ID 1 .
9 g−>removeVertexLabel ("Weight " , 1) ;

Listing 4.13: Using htd’s Support for Custom Labels

101

4. A Framework for (Customized) Tree Decompositions and Beyond

Following this example, all what remains to do in the context of the dynamic programming
algorithm is to cast the reference to htd::IMultiHypergraph which is used by the
algorithms of htd as the basic graph interface to the labeled graph type at hand (which is
clearly a valid and permitted up-cast) and call the desired access methods of the graph
for the vertex and edge labels that are needed by the dynamic programming algorithm.
We can see that the extension of the algorithm just involves changing a few lines of code
while fully maintaining the readability and maintainability of the original code.

Actually, for solving the problem of Minimum Weighted Dominating Set, there
is no requirement for using custom edge labels. To illustrate how a customized tree
decomposition may look like, we now want to recall the SAT problem (see Section 2.1.1) as
dynamic programming algorithms for this problem can benefit from such domain-specific
edge labels.

Consider the following propositional formula φ.

φ = (¬a)︸ ︷︷ ︸
Clause c1

∧ (¬b ∨ c)︸ ︷︷ ︸
Clause c2

∧ (a ∨ b ∨ ¬c)︸ ︷︷ ︸
Clause c3

From Section 2.2 we know that the given formula φ has exactly two solutions, namely
{a = False, b = False, c = False} and {a = False, b = True, c = True}. In Section 2.3
it is shown how to obtain them based on the concept of dynamic programming on tree
decompositions. For human beings, following the steps of the dynamic programming
algorithm is relatively easy because we, in general, do not decompose the formula in
our heads exactly like a fixed-parameter tractable algorithm. When we strictly follow
the idea of such algorithms, we are in principle only allowed to access those edges in a
dynamic programming step whose endpoints are a subset of the current node’s bag. If
this information is not provided directly by the tree decomposition, in the worst case, the
whole edge set of the input graph would have to be checked to find the relevant edges.
Furthermore, for the SAT problem it is also required to know the polarity of the atoms
within a clause.

When using htd’s customized tree decompositions which always carry the information of
the edges induced by a given bag we obtain the decomposition depicted at the bottom of
Figure 4.3. The variable-clause incidence graph from which the given tree decomposition is
obtained is shown at the top of Figure 4.3. We can see that tree decompositions computed
by htd can be utilized to carry, apart from the induced edges, also the information about
polarities.6 Indeed, this observation also applies to other kinds of vertex and edge
labels. In this way, the requested information is directly accessible within the dynamic
programming algorithm and in many cases even the complete supplemental information
required to solve a given problem instance can be handed over to the htd framework in
order to enjoy automated propagation.

6Note that the clauses in our example do not have polarities. Therefore, the labels for the endpoints
of the corresponding edges are set to N/A in Figure 4.3. This is done solely for illustrative purposes. In
practice, one will probably use labels for the polarities of atoms only.

102

4.5. Performance Characteristics

c1 c2

c3

a b c

n4 : {b, c, c2} n5 : {a, c1}

n2 : {b, c, c3} n3 : {a, c3}

n1 : {c3}

edge polarities
(b, c2) (−,N/A)
(c, c2) (+,N/A)

edge polarities
(a, c1) (−,N/A)

edge polarities
(b, c3) (+,N/A)
(c, c3) (−,N/A)

edge polarities
(a, c3) (+,N/A)

edge polarities

Figure 4.3: Example Graph and a Possible Customized Tree Decomposition.

4.5 Performance Characteristics

In this section we give first results regarding the performance characteristics of our
decomposition framework. In order to have an indication for the actual efficiency of htd,
we compare htd 1.0.1 [Abs16] to the other participants of Track A (“Treewidth”) of the
“First Parameterized Algorithms and Computational Experiments Challenge” (PACE
2016, see https://pacechallenge.wordpress.com/track-a-treewidth/).

The experiments are based on the following algorithms submitted to PACE 2016:

• 1: “tw-heuristic”

Available at https://github.com/mrprajesh/pacechallenge.

GitHub-Commit-ID: 6c29c143d72856f649de99846e91de185f78c15f

• 5 (htd): “htd_gr2td_exhaustive.sh”

Available at https://github.com/mabseher/htd

GitHub-Commit-ID: fc8df04fc433f22f49d15900ac139b22754458fe

103

 https://pacechallenge.wordpress.com/track-a-treewidth/
https://github.com/mrprajesh/pacechallenge
https://github.com/mabseher/htd

4. A Framework for (Customized) Tree Decompositions and Beyond

• 6: “tw-heuristic”
Available at https://github.com/maxbannach/Jdrasil
GitHub-Commit-ID: fa7855e4c9f33163606a0677485a9e51d26d7b0a

• 9: “tw-heuristic”
Available at https://github.com/elitheeli/2016-pace-challenge
GitHub-Commit-ID: 2f4acb30b5c48608859ff27b5f4e217ee8346ca5

• 10: “tw-heuristic” [GGJ+16]
Available at https://github.com/mfjones/pace2016
GitHub-Commit-ID: 2b7f289e4d182799803a014d0ee1d76a4de70c1f

• 12: “flow_cutter_pace16” [HS16]
Available at https://github.com/ben-strasser/flow-cutter-pace16
GitHub-Commit-ID: 73df7b545f694922dcb873609ae2759568b36f9f

The list of algorithms contains all participants of the sequential heuristics track of
the PACE treewidth challenge in the variant in which they were submitted to the
challenge plus the most recent release of htd. For each of the algorithms we provide
its ID that was used in the challenge (and also in our experiments), the name of
the binary, the location of its source code and the exact identifier of the program
version in the GitHub repository. Note that for htd (ID 5), four different configurations
exist. In our experiments here we only consider the best-performing variant, namely
“htd_gr2td_exhaustive.sh”. Its implementation first computes an upper bound for the
width using the Minimum Degree heuristic [BHS03] and then iteratively calls the Min-Fill
algorithm [Dec03] to improve the width of the obtained tree decomposition using the
class htd::WidthMinimizingTreeDecompositionAlgorithm which is a specialization
of the class htd::IterativeImprovementTreeDecompositionAlgorithm.

The first evaluation is done based on the public data set of the PACE challenge 2017
which is available for download at https://people.mmci.uni-saarland.de/~hdell/
pace17/he-instances-PACE2017-public-2016-12-02.tar.bz2. It contains 100
graph instances originating from real-world scenarios.

The second evaluation uses the first data set of the QBFEval 2016 competition of solvers
for quantified boolean formulae (QBF), available at http://www.qbflib.org/TS2016/
Dataset_1.tar.gz. We note that the 825 instances of this second data set had to be
converted in order to comply to the input format of the PACE competition. This was
done in the following way: For each QBF we ignore the quantifier information and we
introduce a clique between the vertices of each clause. That is, we consider the clauses in
the QBF as hyperedges and work on the primal graph of the given QBF.

All our experiments were performed on a single core of an Intel Xeon E5-2637@3.5GHz
processor running Debian GNU/Linux 8.7 and each test run was limited to a runtime

104

https://github.com/maxbannach/Jdrasil
https://github.com/elitheeli/2016-pace-challenge
https://github.com/mfjones/pace2016
https://github.com/ben-strasser/flow-cutter-pace16
https://people.mmci.uni-saarland.de/~hdell/pace17/he-instances-PACE2017-public-2016-12-02.tar.bz2
https://people.mmci.uni-saarland.de/~hdell/pace17/he-instances-PACE2017-public-2016-12-02.tar.bz2
http://www.qbflib.org/TS2016/Dataset_1.tar.gz
http://www.qbflib.org/TS2016/Dataset_1.tar.gz

4.5. Performance Characteristics

1 10 100 1000 10000

0
20

40
60

80
10

0

as.numeric(as.vector(values.htd.1$Var1))

va
lu

es
.h

td
.1

$F
re

q

htd 1.0.1
1
6
9
10
12

C
um

ul
at

iv
e

F
re

qu
en

cy

Width

Figure 4.4: Comparison of Tree Decomposition Algorithms (Data Set “PACE 2017”)

of at most 100 seconds and 32 gigabyte of main memory. For the actual evaluation
we use the testbed of the PACE challenge which is available at https://github.com/
holgerdell/PACE-treewidth-testbed. For the repeatability of the experiments we
provide the complete testbed and the results for each data set and each algorithm under
the following link: http://dbai.tuwien.ac.at/research/project/decodyn/htd/

evaluation_htd101.zip

Figure 4.4 summarizes the outcome of our first evaluation. The plot is constructed by
running htd and each of the five other algorithms of the competition on each instance
contained in the public data set of the PACE challenge 2017. Afterwards, we plot the
cumulative frequency of the obtained width after 100 seconds.

The solid gray line indicates the quality in terms of the width of the decompositions
computed by htd and the dotted as well as the dashed lines illustrate the width achieved
by its competitors. A point p = (x, y) on a line in the figures represents the fact that
y instances could be successfully decomposed within the time limit of 100 seconds and
each decomposition had a width not higher than x. Hence, it is good to minimize x with
respect to y, that is, the optimal algorithm reaches a certain point on the y-axis not
exceeding the widths of its competitors on the x-axis.

In Figure 4.4, we can see that htd 1.0.1 is among the best two algorithms to decompose
the graphs from the public data set of the PACE challenge 2017 when considering the
width only. This indicates that htd is well suited for computing decompositions of small
width on the given instances. We can also see that currently no algorithm manages to

105

https://github.com/holgerdell/PACE-treewidth-testbed
https://github.com/holgerdell/PACE-treewidth-testbed
http://dbai.tuwien.ac.at/research/project/decodyn/htd/evaluation_htd101.zip
http://dbai.tuwien.ac.at/research/project/decodyn/htd/evaluation_htd101.zip

4. A Framework for (Customized) Tree Decompositions and Beyond

1 10 100 1000 10000

0
20

0
40

0
60

0
80

0

as.numeric(as.vector(values.htd.1$Var1))

va
lu

es
.h

td
.1

$F
re

q

htd 1.0.1
1
6
9
10
12

C
um

ul
at

iv
e

F
re

qu
en

cy

Width

Figure 4.5: Comparison of Tree Decomposition Algorithms (Data Set “QBFEval 2016”)

decompose all of the hundred instances as they are much larger than those used in the
PACE challenge 2016. Obtaining a decomposition for an instance of the first PACE
challenge was in almost all cases just a matter of a few seconds when htd is employed as
the decomposition library of choice.

When we look at the QBF data set, illustrated in Figure 4.5, we can see that about 100
instances cannot be decomposed by any of the algorithms and that two algorithms (9
and 12) are actually able to decompose slightly more instances than htd. In the fragment
of the figure around width 1000 we observe that htd performs significantly better than
the other algorithms. When the width gets closer to 5000 and also in the case of higher
widths, two competitors (9 and 12) can decompose slightly more instances.

At this point, it has to be noted that htd per default delivers tree decompositions in
which only subset maximal bags are retained. Enforcing this constraint can deteriorate
the performance in cases in which tree decompositions have a high width because this
involves checking for subset inclusion and this check is clearly more expensive for large
bags than for small ones. Nevertheless, performing this cleaning-up operation can help to
improve the efficiency of the dynamic programming algorithm which uses the resulting
decomposition. Furthermore, the system which could solve the most instances according
to our benchmark results employs several preprocessing steps in order to significantly
improve the efficiency of the employed algorithm (see [HS16]). In contrast to this, the
htd framework currently does not perform any preprocessing of the input instance so
that there is still room for “cheap” improvements in terms of both decomposition width
and performance in future releases of the htd framework.

106

4.6. Discussion

4.6 Discussion
In this chapter we presented a free, open-source C++ framework for graph decompositions.
We showed the most important features, gave an introduction on how to use the library
and highlighted issues we faced during the implementation phase and provided insights
on how we coped with them. Furthermore, we evaluated our approach by comparing our
library to the participants of the “First Parameterized Algorithms and Computational
Experiments Challenge”. The outcome of the evaluation indicates that the performance
characteristics of the new framework are very promising.

For future work, we clearly want to further improve the built-in heuristics and algorithms
in order to enhance the capabilities for the generation of decompositions of small width.
Furthermore we are currently working on refining the algorithms allowing to automate
the process of computing customized tree decompositions.

Last, but not least, we invite researchers and software developers to contribute to the
library as we try to initiate a joint collaboration on a powerful framework for graph
decompositions and any input is highly appreciated.

107

CHAPTER 5
Exploiting Customized Tree

Decompositions

After demonstrating the usefulness of discriminating tree decompositions by additional
criteria than just the plain width in Chapter 3, in this chapter we will now investigate
how we can concretely improve the efficiency of dynamic programming algorithms by
using customized tree decompositions as provided by htd. This analysis is based on two
different case studies. The first one uses a state-of-the-art system specialized on the
evaluation of so-called quantified boolean formulae (QBF) and the second one employs
the general-purpose framework D-FLAT which is also used in the experiments presented
in Section 3.2.

For repeatability of the experiments, all results, the exact configurations of the systems
we used in the evaluation as well as protocols of all tests runs are provided together
with a copy of the system binaries at http://dbai.tuwien.ac.at/proj/decodyn/

htd/customized_decompositions.zip.

5.1 Case Study: dynQBF
The first scenario we want to have a look at is the evaluation of quantified boolean
formulae using the dynQBF system [CW16a, CW16b]. Before we move on to the details
of the evaluation, we first want to provide a formal definition of quantified boolean
formulae and introduce dynQBF.

5.1.1 Preliminaries

Basically, QBFs are a generalization of classical propositional formulae. As the name
already suggests, in the case of QBFs, one is allowed to use quantifiers in addition
to variables, boolean connectives and related concepts already known from classical

109

http://dbai.tuwien.ac.at/proj/decodyn/htd/customized_decompositions.zip
http://dbai.tuwien.ac.at/proj/decodyn/htd/customized_decompositions.zip

5. Exploiting Customized Tree Decompositions

propositional formulae. Most often, QBFs are provided in Prenex-CNF, i.e., the group of
quantifiers precedes the formula and the propositional part of it is in conjunctive normal
form.

Definition 13 (Quantified Boolean Formulae in Prenex-CNF). A quantified boolean
formula in Prenex-CNF (PCNF QBF) is a boolean formula of the form Q.φ where Q
denotes the so-called quantifier prefix and φ is a propositional formula in CNF. The
quantifier prefix Q is a sequence Q1V1, . . . , QnVn where Qi ∈ {∃, ∀} and the sets Vi
represent a partition of the atoms in φ. Furthermore, the quantifiers alternate between
different positions, i.e., Qi+1 6= Qi for all positions 1 ≤ i < n.

Note that Definition 13 actually refers to so-called closed QBFs, i.e., QBFs in which all
occurring variables are bound by a quantifier. In general, it is also allowed that certain
atoms do not occur in the context of a quantifier. In this case, the corresponding variables
are called free or unquantified.

Given that LQBF denotes the language of quantified boolean formulae and that φ[>/v]
as well as φ[⊥ /v] stand for the replacement of the variable v by a truth constant (either
> or ⊥) in the formula φ, based on the valuation function I : LQBF → {True,False}
the semantics of QBFS are defined as follows:

• I(>) = True

• I(⊥) = False

• I(¬φ) = True if and only if I(φ) = False

• I(φ ∨ ψ) = True if and only if I(φ) = True or I(ψ) = True

• I(φ ∧ ψ) = True if and only if I(φ) = True and I(ψ) = True

• I(∃vφ) = True if and only if I(φ[>/v]) = True or I(φ[⊥ /v]) = True

• I(∀vφ) = True if and only if I(φ[>/v]) = True and I(φ[⊥ /v]) = True

A closed QBF Q.φ is said to be satisfiable if its evaluation under the semantic rules from
above yields the result True. In the case of QBFs with free variables, the satisfiability
furthermore depends on the actual truth assignment to the free variables.

The decision problem corresponding to quantified boolean formulae is called Quantified
Boolean Satisfiability (QSAT). Similarly to the classical SAT problem, the QSAT
problem is defined as follows:

Input: A quantified boolean formula Q.φ

Question: Is Q.φ satisfiable?

110

5.1. Case Study: dynQBF

A trivially satisfiable QBF in Prenex-CNF is Q.φ with Q = ∃xy∀z and φ = [(x∨z)∧(y∨z)].
The satisfiability of this QBF is obvious because the formula φ is satisfied when we set
the variables x and y to True, regardless of the actual truth value we assign to the
variable z. Although the effort for showing the satisfiability of our example QBF is
negligible, the QSAT problem is known to be PSPACE-complete [SM73]. At this point,
it has to be noted that it is widely assumed that the complexity class PSPACE subsumes
the complete polynomial hierarchy.

While the general QSAT problem is PSPACE-complete, the actual complexity of a given
problem instance strongly depends on the quantifier prefix. This dependency is exploited
in complexity theory due to the fact that it allows to define a prototypical problem for
each level of the polynomial hierarchy (see, e.g., [GJ79, Pap94] for more details on the
polynomial hierarchy). For instance, in those cases where the quantifier prefix consists
only of a single existential quantifier, we basically deal with an instance of the SAT
problem, the prototypical example of an NP-complete problem.

Quantified boolean formulae are used, for instance, in model checking [DHK05], formal
verification [BM08] and synthesis [ZMMN12]. In order to stimulate the development of
efficient QBF solvers, the “Quantified Boolean Formulas Satisfiability Library” [GNPT05]
(QBFLIB) was initiated in 2004. To keep track of the advances in solver performance, in
connection to QBFLIB, also a competition of QBF solvers named QBFEval [NPT06] is
organized every few years. In the latest competition, QBFEval 2016 [Pul16], more than
20 solvers participated. Without going into the details of the other systems, among the
competitors of QBFEval 2016 there is one candidate which is special in the sense that its
approach is based on tree decompositions. Hence, it is a promising candidate to evaluate
the impact of tree decomposition customization in a practical setting.

The name of this system is dynQBF [CW16a, CW16b] and it is available as free and
open-source software at http://dbai.tuwien.ac.at/research/project/decodyn/
dynqbf/. Due to the fact that dynQBF follows the concept of dynamic programming on
tree decompositions, its general workflow is similar to that of the D-FLAT framework we
already used in the previous chapters: At first, a QBF in Prenex-CNF is parsed and a
tree decomposition of the propositional part of the formula is computed. Afterwards, to
decide the satisfiability of the given QSAT instance, the decomposition is traversed in
a bottom-up manner while maintaining the partial solutions according to the dynamic
programming algorithm. The quantifier prefix is thereby handled internally, i.e., it is not
part of the decomposition. In order to boost performance and to circumvent problems
with extensive space consumption, dynQBF does not materialize all intermediate solutions,
like D-FLAT . Instead, so-called binary decision diagrams (BDDs) [Lee59, Ake78, DS01]
are used to succinctly represent partial solutions.

As a small side-remark, we want to highlight that the dynQBF system employs htd
as decomposition library and that it makes intensive use of many convenience features
provided by the htd framework, like custom labels or the efficient computation of induced
edges. For instance, the information about which variables occur positively or negatively
in a clause of a given QBF is stored by means of (hyper-)edge labels of the formula’s

111

http://dbai.tuwien.ac.at/research/project/decodyn/dynqbf/
http://dbai.tuwien.ac.at/research/project/decodyn/dynqbf/

5. Exploiting Customized Tree Decompositions

hypergraph representation (see Figure 4.3). In combination with the efficiently computed
set of induced edges for each bag of the tree decomposition this allows for a rapid lookup
of those pieces of information which are needed in a dynamic programming step.

5.1.2 Experimental Setup

The experiments with the dynQBF system are performed on a single core of an Intel R©
Xeon E5-2637@3.5GHz processor with Hyperthreading and Intel R© Turbo Boost being
disabled. The benchmark machine employed in the evaluation has access to 8x32 GB
of main memory (DDR4@2133MHz, ECC, registered, CL15) and as operating system
Debian GNU/Linux 8.7 (3.16.0-4-amd64) was used. Each of the test runs was limited to
a runtime of at most ten minutes and 32 GB of main memory.

For the following experiments we consider the 305 instances of the 2QBF track of the
QBFEval 2016 competition which is available at http://www.qbflib.org/TS2016/
Dataset_3.tar.gz. The actual binary of dynQBF we use in our experiments can be
downloaded at https://github.com/gcharwat/dynqbf/releases/download/v0.4.
1/dynqbf-v0.4.1-x86_64-static.zip. This archive comprises a ready-to-run version
of dynQBF 0.4.11 which internally uses htd 1.0.12.

In the QBFEval challenge, the primary goal for the participants is to solve as much
QBFs as possible within a given time limit. Usually, the time allowed for deciding the
satisfiability of a 2QBF instance is limited to ten minutes in the challenge. If two systems
are able to solve the same number of instances, the total solving time over all solved QBFs
is considered as additional performance criterion. Hence, the winner of the challenge is
not only determined by the number of solved instances, but also the total solving time is
important.

As we have seen that the robustness of dynamic programming algorithms using tree
decompositions can be problematic, it seems to be promising to find a customization
which is beneficial for the runtime behavior of those algorithms. In particular, we want to
avoid negative statistical outliers, i.e., tree decompositions which lead to extremely high
running times whereas the majority of tree decompositions for the very same instance
allows for significantly better solving times.

For this reason, in the following experiments we compare two different optimization
strategies for tree decompositions provided by dynQBF, namely width and join-child-
bag-product. The former aims for using decompositions of minimum width and the latter
tries to reduce the time the dynamic programming algorithm spends in join nodes. We
quantify this effort for a given (rooted) tree decomposition (T , χ) with T = (N,ET)
by the estimation function f(T , χ) =

∑
j∈Join(T)

∏
c∈Children(T ,j) |χ(c)| where Join(T)

represents the set of join nodes in T and Children(T , j) denotes the set of children of
node j in the rooted tree T . At this point it is important to note that dynQBF works

1Available at https://github.com/gcharwat/dynqbf/releases/v0.4.1
2Available at https://github.com/mabseher/htd/releases/1.0.1

112

http://www.qbflib.org/TS2016/Dataset_3.tar.gz
http://www.qbflib.org/TS2016/Dataset_3.tar.gz
https://github.com/gcharwat/dynqbf/releases/download/v0.4.1/dynqbf-v0.4.1-x86_64-static.zip
https://github.com/gcharwat/dynqbf/releases/download/v0.4.1/dynqbf-v0.4.1-x86_64-static.zip
https://github.com/gcharwat/dynqbf/releases/v0.4.1
https://github.com/mabseher/htd/releases/1.0.1

5.1. Case Study: dynQBF

on non-normalized tree decompositions, i.e., the bag contents of different children of the
same join node are not identical. The intuition behind the aforementioned formula f
is to capture the worst-case effort for the merging of information in join nodes as we
assume that propagating and updating information in the remaining nodes can usually
be done quite efficiently based on dynQBF ’s sophisticated algorithms based on binary
decision diagrams.

Using the width strategy can be enforced in dynQBF 0.4.1 by specifying the program
option --ds width. Analogously, dynQBF will follow the join-child-bag-product strategy
in presence of the program option --ds join-child-bag-prod. In dynQBF 0.4.1,
this second strategy is also the default, i.e., it is used in those cases where no decomposition
strategy is selected explicitly. The number of optimization iterations to be used for a
strategy are provided via the program option --dsi. A full program call for deciding
the satisfiability of an instance instance.qdimacs may look as follows:

./dynqbf --ds width --dsi 50 < instance.qdimacs

The above program call triggers dynQBF to solve the given QSAT instance based on
the width strategy. In this example, the tree decomposition of minimal width among 50
heuristically generated ones (computed via the Min-Fill heuristic) will be used for the
dynamic programming algorithm.

To rule out bias, each QBF is solved ten times using different random seeds. Based on
the fact that the implementation of the Min-Fill heuristic provided by htd breaks ties
randomly, this leads to ten different tree decompositions. Apart from ruling out bias,
repeated test runs with changing tree decompositions also allow us to investigate the
difference between “average” decompositions and “bad” ones.

5.1.3 Results

Before we move on to the actual performance evaluation, let us first investigate whether
the two strategies make a difference with respect to the width of the tree decompositions
which are used.

In Figure 5.1 we can see that this is indeed the case. This plot depicts the median of
the maximum bag sizes over 10 different random seeds for the Min-Fill heuristic. The
solid line illustrates the outcome for test runs where the first decomposition returned by
the Min-Fill heuristic is used. The dot-and-dash line represents the outcome when we
use the tree decomposition of minimum width among 50 iteratively generated ones and
the dotted line is used to show the outcome when the tree decomposition is used which
minimizes our estimation function f from above in a pool of 50 generated decompositions.
The whole figure is based on 113 QBFs which could be solved in all of the three cases
based on each of the 10 random seeds. We can see that, although the three lines are
often relatively close together, aiming for a low “complexity” of join nodes may increase
the width significantly (in extreme cases by up to 13 points in our experiments).

113

5. Exploiting Customized Tree Decompositions

Index

w
id

th
s.

w
id

th
.d

si
1

0

20

40

60

80

S
iz

e
of

 L
ar

ge
st

 B
ag

0 20 40 60 80 100
Number of Solved Instances

Figure 5.1: Maximum Bag Size of Tree Decompositions over 10 Random Seeds

From a theoretical point of view, we would assume that a lower width in general has
a positive impact on the solving time and therefore the number of solved instances
should be higher when we use a larger pool of decompositions to choose from. That
this is not necessarily the case is illustrated in Figure 5.2. This figure shows the number
of solved instances for the two strategies depending on the number of computed tree
decompositions from which the best one (with respect to the selected strategy) is chosen
for the dynamic programming algorithm. In the figure, the letter ‘W’ stands for the
width strategy and the letter ‘J’ corresponds to the join-child-bag-product strategy. Each
box-plot in the figure is constructed from ten different measurements about the number
of solved instances, one for each random seed.

1
W J

150

155

160

165

170

175

N
um

be
r

of
 S

ol
ve

d
In

st
an

ce
s

●

10
W J

25
Number of Optimization Iterations

W J
50

W J

Figure 5.2: Distribution of Solved QBF Instances over 10 Random Seeds

Figure 5.2 shows that when we prefer tree decompositions of small width, the number
of solved instances does not change much although the widths are indeed smaller in
many cases compared to just taking the first tree decomposition returned by Min-Fill. In
contrast, when we look at the box-plots which are based on tree decompositions which
are customized towards low join node complexity, we observe the trend that the more

114

5.1. Case Study: dynQBF

iterations we spend on finding a beneficial tree decomposition, the more instances we
can solve. Without optimization, dynQBF can solve 162 out of 305 QBFs in the average
case. With ten optimization iterations for the join-child-bag-product strategy this number
increases to 163.5, with 25 iterations it grows to 164.5 and with 50 iterations we can
solve 166 instances. At this point we want to highlight that the time needed to compute
the respective number of decompositions indeed is counted for the timeout limit of ten
minutes. This means that the four instances we can solve additionally using customized
tree decompositions are by no means hypothetic. Instead, they can be crucial in both
competition and practice.

Note that the same ten random seeds are used for each QBF. Therefore, the first two
box-plots in Figure 5.2, depicting the cases in which the first decomposition returned by
the Min-Fill heuristic is used regardless of the optimization strategy, are indeed based
on the very same tree decompositions. The small difference in the number of solved
instances is caused by border cases for which the solving time is close to the timeout
limit. Due to inevitable system interrupts (like, e.g., cache misses, context switches or
other kernel tasks) it can happen that the time for performing the very same operations
varies enough that one time an instance is solved whereas a repeated experiment with
the prerequisites exceeds the timeout limit by some seconds.

Index

tim
es

.w
id

th
.d

si
1

0.1

0.5

1.0

5.0

10.0

50.0

100.0

500.0

S
ol

vi
ng

 T
im

e
(s

)

60 70 80 90 100 110
Number of Solved Instances

No optimization
Width (50 Opt. Iterations)
JCBP (50 Opt. Iterations)

(a) Median Runtime

Index

tim
es

.w
id

th
.d

si
1

0.1

0.5

1.0

5.0

10.0

50.0

100.0

500.0

S
ol

vi
ng

 T
im

e
(s

)

60 70 80 90 100 110
Number of Solved Instances

No optimization
Width (50 Opt. Iterations)
JCBP (50 Opt. Iterations)

(b) Maximum Runtime

Figure 5.3: Solving Times for QBF Instances over 10 Random Seeds

What is left is to investigate the impact of the two customization strategies on runtime
behavior of dynQBF. This information is provided in Figure 5.3. The chart in Figure 5.3a
depicts the distribution of the median runtime over ten random seeds for the 113 QBFs
which were also used to construct Figure 5.1. Analogously, Figure 5.3b illustrates the
distribution of the maximum runtime over ten random seeds. For the sake of readability,
instances with a solving time under a tenth of a second are omitted in the figure. This
time, as we are solely interested in the effect of tree decomposition customization on the
net solving time, the depicted times refer to the time spent in the dynamic programming
algorithm, i.e., the time needed to compute 50 decompositions is not considered.

115

5. Exploiting Customized Tree Decompositions

An interesting observation is that both strategies do not necessarily lead to lower solving
times compared to the first decomposition when we consider the median case. For the
width strategy this can be explained by the fact that the Min-Fill algorithm often delivers
tree decomposition of rather low width and so the chances for finding a decomposition of
smaller width are reduced. Furthermore, a low width often comes along with a higher
number of nodes and this may cause increased effort in the context of the dynamic
programming algorithm. One possible reason for the circumstance that the join-child-
bag-product strategy does not show a strictly positive impact on the median runtime is
the fact that the data structures used by dynQBF are of course geared towards efficiency
and so the already relatively fast computations in the average case are not so easy to
accelerate.

Instead, the strengths of the join-child-bag-product strategy become apparent when we
look at the worst-case running times depicted in Figure 5.3b. As noted in Section 5.1.2,
it is important for dynamic programming algorithms using tree decompositions to narrow
down the gap between average and worst-case running time and this is exactly what we
achieve with a reduction of the join node complexity. While the worst-case solving time
for the width strategy, using the tree decomposition of minimum width from a pool of 50
iteratively generated ones, is rarely below the solving time using the first decomposition
delivered by Min-Fill in our experiments, the join-child-bag-product strategy increases
the robustness of dynQBF notably.

In the context of this case study we also performed additional experiments with other
decomposition strategies. dynQBF 0.4.1 offers ten different ones to choose from, including
the reduction of the total number of join nodes or minimizing the worst-case size of the
data structure employed for storing the intermediate solutions. Although all strategies
are based on natural assumptions regarding the impact of the shape of the given tree
decomposition on the runtime of dynQBF, none of them performed as good as the
join-child-bag-product strategy we present here. This underlines that finding appropriate
strategies for computing customized tree decompositions requires careful engineering
due to the fact that the final outcome has to capture all the specifics of the dynamic
programming algorithm. In that sense, the development of strategies is closely related to
the also quite complex task of feature engineering in the context of machine learning (see
Section 2.4 for a short overview of this topic).

5.2 Case Study: D-FLAT
The second scenario we want to investigate is solving the problem of Steiner Tree using
the D-FLAT framework. The following experiments are closely related to those presented
in Section 3.2.3, but this time we no longer need to perform complex and potentially
time-consuming post-processing steps. This is because we have with htd a dedicated
decomposition framework capable of delivering customized tree decompositions directly.
By providing this experimental evaluation, we want to show the effect of combining the
main ideas we formulated in Chapter 3 in a practical system.

116

5.2. Case Study: D-FLAT

At this point, we want to highlight that the goal of the following experiments is not
to outperform dedicated systems or specialized dynamic programming algorithms for
the Steiner Tree problem but to increase the efficiency and robustness of solving this
problem by means of the general-purpose framework D-FLAT .

5.2.1 Experimental Setup

The experiments with the D-FLAT framework are performed on the same system as
those from the first case study (see Section 5.1.2 for details). Only the resource limits
differ. Here, each of the test runs is limited to a runtime of at most six hours and 32 GB
of main memory.

As benchmark instances we consider the five metro and interurban train networks which
were also used in Section 3.2.3 (Tokyo, Singapore, Santiago, Osaka, Vienna) plus the
metro system of London due to the fact that the current version of D-FLAT is efficient
enough to handle also this rather complex metro network. For each city we consider 50
instances of the Steiner Tree problem which are constructed by randomly selecting ten
of the metro (or interurban train) stations as terminal vertices. Also in this case study,
each problem instance is solved ten times based on ten different tree decompositions.

The experiments contributing to this case study are performed using the software binary
available for download at https://github.com/bbliem/dflat/releases/download/
v1.2.4/dflat-1.2.4-x86_64.tar.gz. The archive comprises a ready-to-run version
of D-FLAT 1.2.43 which internally uses htd 1.0.14.

Also in this second case study we compare two different optimization strategies for tree
decompositions. Apart from width we consider this time the strategy average-join-bag-size
whose idea is the exactly same as in the first case study. Due to the fact that the dynamic
programming algorithm we use here for solving the Steiner Tree problem works on
semi-normalized tree decomposition, i.e., tree decompositions where the bags of join nodes
and their children’s bags coincide, we can now use a simpler estimation function to capture
the “complexity” of join nodes. The average-join-bag-size strategy aims for finding a
rooted tree decomposition (T , χ) which either has no join node or which minimizes the
outcome of the formula f(T , χ) =

∑
j∈Join(T) |χ(j)|/|Join(T)|, where Join(T) represents

the set of join nodes in T . Note that the formula f(T , χ) computes the mean of the bag
sizes of join nodes because a simple sum of all the bag sizes might prefer a single, huge
join node over several small ones although the latter case is probably more beneficial for
the efficiency of dynamic programming algorithms.

For choosing the decomposition strategy for an input instance, D-FLAT 1.2.4 offers
the program option --fitness. Setting the corresponding parameter value to width
(join-bag-avg) allows to select the width (average-join-bag-size) strategy. The number
of optimization iterations to be used for a strategy are provided via the program option

3Available at https://github.com/bbliem/dflat/releases/v1.2.4
4Available at https://github.com/mabseher/htd/releases/1.0.1

117

https://github.com/bbliem/dflat/releases/download/v1.2.4/dflat-1.2.4-x86_64.tar.gz
https://github.com/bbliem/dflat/releases/download/v1.2.4/dflat-1.2.4-x86_64.tar.gz
https://github.com/bbliem/dflat/releases/v1.2.4
https://github.com/mabseher/htd/releases/1.0.1

5. Exploiting Customized Tree Decompositions

--iterations. Given that the file encoding.lp contains a proper D-FLAT encoding
for the Steiner Tree problem, a full program call for enumerating all solutions of a
given problem instance instance.lp may look as follows:

./dflat -p encoding.lp --fitness join-bag-avg --iterations 50
< instance.lp

The above program call forces D-FLAT to solve the given instance based on the average-
join-bag-size strategy. In this example, the dynamic programming algorithm will utilize
the tree decomposition for which the average bag size of join nodes (defaulting to 0
for tree decomposition without join nodes) is minimal among a pool of 50 heuristically
generated ones based on the Min-Fill heuristic.

5.2.2 Results

The first thing we want to have a look at in the experiments belonging to this case study
is the actual distribution of solving times for each of the cities. To that end, we provide
in Figure 5.4 a box-plot of the solving times for each of the six cities and both strategies,
width (W) and average-join-bag-size (J), over the complete set of 50 problem instances
and all 10 random seeds. Hence, each box-plot is constructed from 500 measurements of
the total solving time (including the time for computing the decompositions). Here, a
measurement for a given problem instance, seed and strategy is obtained by running the
dynamic programming algorithm on the best tree decomposition found with respect to
the given strategy after 50 optimization iterations.

●●●●
●
●●●
●●●●
●

Tokyo
W J

1

10

100

1000

10000

S
ol

vi
ng

 T
im

e
(s

)

●
●●

●

●

●

●
●

●

●
●●●●●
●●●

●

●

●

●●●●●

●

●●

●

●●●●●
●
●

●
●●●●
●
●
●

Santiago
W J

●

●
●●
●

●●
●
●
●

●
●

●●●

●

●

●●●●●●

●
●

●●
●

●

●●
●
●
●
●

●
●
●

●

●

●

●

●

●●

●

●
●●

●
●

●

●

●

●●●

●●

Singapore
W J

City

●●●●●●●●

●

●●●●●●
●

●

●●●●

●

●●

●

●●●●●●●●

●

●●●●

●

●● ●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●
●●
●

●●●●

Osaka
W J

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●●●●●●●●

●
●●

●

●

●

●
●

●

●

●
●●

●

●
●
●

●

●
●
●

●

●

●

●
●

●
●

●

●

●

●

●●
●
●
●
●
●

●●
●
●

●
●

●

●

Vienna
W J

●●

●
●●●

●

●

●

●●

●

●●
●

●

●

●

●

●
●

●

●
●●

●●

●

●

●

●
●

●●●
●

●

●

●

●

●

●●
●

●●

●

●

●
●
●
●
●

●

●●
●
●●●
●●●●
●●

●●
●

●
●●

●

●

●

London
W J

Figure 5.4: Distribution of Solving Times for Steiner Tree

Note at this point that the box-plots depicted in Figure 5.4 mix the measurements from
different instances although some of them are probably harder than others. For instance,

118

5.2. Case Study: D-FLAT

when the terminals are far apart, then connecting these stations is likely more involved
than in the case where the terminals are close together. Nevertheless, Figure 5.4 allows
us to get an idea of the performance characteristics of D-FLAT in relation to the actual
strategy used.

For the cities Tokyo, Santiago, Singapore and Osaka the picture is not significant due to
the very low time consumption of the current version of D-FLAT in these cases. When
we look at the metro and interurban train network of Vienna or the metro network
of London, the positive effect of the average-join-bag-size strategy on the solving time
becomes obvious. Especially the worst-case running times achieved on the basis of the
average-join-bag-size strategy are by magnitudes lower than what we observe when we
solely aim for a low width. But not only the worst-case solving times are significantly
reduced, also the efficiency in the average case (depicted in the box-plots by the median
line) improves notably.

In the rest of the evaluation we will concentrate on the two “interesting” public transport
networks Vienna and London, because in these cases the difference between the two
strategies in terms of solving time is significant and the savings one can achieve are
practically relevant.

Index

tim
es

.w
id

th

20

50

100

200

S
ol

vi
ng

 T
im

e
(s

)

0 10 20 30 40 50
Number of Solved Instances

Width (50 Opt. Iterations)
JCBP (50 Opt. Iterations)

(a) Median Runtime

Index

tim
es

.w
id

th

50

100

200

500

1000

2000

5000

10000

S
ol

vi
ng

 T
im

e
(s

)

0 10 20 30 40 50
Number of Solved Instances

Width (50 Opt. Iterations)
JCBP (50 Opt. Iterations)

(b) Maximum Runtime

Figure 5.5: Solving Times for Steiner Tree (Vienna) over 10 Random Seeds

Figure 5.5 illustrates the detailed distribution of solving times depending on the actual
strategy being used. Note that, in this case study, we omit a separate investigation of
the efficiency without optimization, because, for the instances used here, the width of
the first decomposition delivered by the Min-Fill heuristic is in most cases not worse
than the width after 50 optimization operations with strategy width (see also comparison
of minimum and median width in Table 3.2). Therefore, the solving times between no
optimization and optimizing towards low width in almost any case coincide due to the
fact that htd 1.0.1 sticks with the first decomposition as long as no strictly better one
with respect to the selected strategy is found. In contrast to the previous case study,
this time the solving times on which Figure 5.5 is based include the time needed to

119

5. Exploiting Customized Tree Decompositions

compute 50 decompositions of a given instance. This is possible without influencing the
interpretation because all problem instances contributing to the figure are based on the
very same public transport network and so we can expect similar decomposition times
for each of these instances.

Figure 5.5a confirms the observations we already made in context of Figure 5.4. We
can see that there are several instances which can be solved by either strategy in less
than a minute in the average case. Nevertheless, even for the “easy” instances, the
strategy average-join-bag-size is highly favorable compared to just relying on the width.
Moreover, considering the optimization towards low join node complexity becomes even
more important when we look at the maximum runtime over 10 random seeds, depicted
in Figure 5.5b. Here, the avoidance of join nodes with large bags can make a difference of
hours. Furthermore, we can see that both the median and the maximum solving time are
much better in this case and so we are approaching our goal to improve both efficiency
and robustness of the D-FLAT system.

Index

tim
es

.w
id

th

20

50

100

200

S
ol

vi
ng

 T
im

e
(s

)

0 10 20 30 40 50
Number of Solved Instances

Width (50 Opt. Iterations)
JCBP (50 Opt. Iterations)

(a) Median Runtime

Index

tim
es

.w
id

th

50

100

200

500

1000

2000

5000

10000
S

ol
vi

ng
 T

im
e

(s
)

0 10 20 30 40 50
Number of Solved Instances

Width (50 Opt. Iterations)
JCBP (50 Opt. Iterations)

(b) Maximum Runtime

Figure 5.6: Solving Times for Steiner Tree (London) over 10 Random Seeds

Finally, let us have a look at Figure 5.6. Also here, the picture is rather clear as we
observe a significant positive effect of the average-join-bag-size strategy on the total
solving time. When comparing Figures 5.5 and 5.6, we can see that solving the problem
of Steiner Tree seems to be more involved for the metro network of London than in
the case of Vienna although the decompositions have the same width in almost all cases,
namely 5. This observation is not only apparent for the median runtime over ten random
seeds but also in the worst case over ten different decompositions. A possible explanation
for the difference in the solving times is the different number of stations (Vienna: 137,
London: 285). Nevertheless, the average-join-bag-size strategy allows us to keep the
solving time around a minute in the median case over ten decompositions while when we
concentrate solely on the width we have to spend much more time. Again, in the worst
case, the solving times using the average-join-bag-size strategy are by magnitudes lower
than when we just use a decomposition of low width.

120

5.3. Discussion

Also in the context of this case study, other decomposition strategies were considered.
In addition to width and average-join-bag-size, D-FLAT 1.2.4 also offers the following
two strategies. The first one, num-joins, prefers decompositions in which the number of
join nodes is low and the second alternative is the median-join-bag-size strategy which
tries to minimize the median over all join bag sizes. While the num-joins strategy on
average performs as good (or as bad) as choosing an arbitrary decomposition of low
width, the picture of the median-join-bag-size strategy is more interesting. Here, we
observed that in some situations the solving times are relatively close to those we achieve
based on average-join-bag-size. Unfortunately, sometimes we also observe a significant
deteriorations of D-FLAT ’s performance when using the median-join-bag-size strategy.
An in-depth investigation of these cases confirmed the assumption that the performance
characteristics of the median-join-bag-size strategy heavily depend on how close the
median of the join node bag sizes is to the mean of these bag sizes. In particular, the
positive effect of using the median-join-bag-size strategy vanishes (or even turns into a
negative effect) if the tree decomposition which is selected by the strategy contains a
join node of large bag size whereas the “average” tree decomposition delivered by the
Min-Fill heuristic may contain a higher number of join nodes of moderate bag size (thus
potentially increasing the median) but no join node with large bags. This is by no means
surprising when we recall the fact that D-FLAT per default always computes all solutions
for a given problem instance and so it is natural that especially join nodes with large
bags are often harmful for the overall performance.

5.3 Discussion
In the previous sections we presented two cases studies in which we compared the solving
times we obtained following two strategies offered by htd. The first approach was based
on the assumption that minimizing the width of a tree decomposition is enough to obtain
good performance and it acted as benchmark for the other strategy. This second approach
was based on our experience that join nodes with large bags or many children are often
harmful for the performance of dynamic programming algorithms.

Our experiments show that using the “complexity” of join nodes as an additional criterion
to judge the quality of tree decompositions can have a remarkably positive effect on the
general runtime behavior of dynamic programming algorithms. This underlines that it
may well pay off in practice to consider using customized tree decompositions as provided
by the htd framework.

Nevertheless, we note that the width is still a very important criterion as it gives us an
upper bound for the bag sizes of a given tree decomposition and these bag sizes indeed
have a crucial impact on the efficiency of dynamic programming algorithms. Therefore,
it is probably a bad idea to completely ignore the width as a feature. In our experiments,
we used the Min-Fill heuristic which is known to give good results with respect to the
width as base decomposition algorithm. Hence, the tree decompositions we used here
always have a rather low width, independently of the selected optimization strategy.

121

CHAPTER 6
Related Work

As mentioned already in the introduction of this thesis, there are various scenarios in
which tree decompositions are applied with great success. Apart from their extensive use
in different dynamic programming algorithms for solving computationally hard problems,
tree decompositions play an important role in the area of machine learning. In particular,
tree decompositions are a vital ingredient of so-called junction tree algorithms1 which are
heavily employed in the context of probabilistic inference in Bayesian (belief) networks
(see, e.g., [HD96] for an overview of this topic). The application areas of Bayesian networks
are manifold and they are used in a variety of expert systems (see, e.g., [PNM08] for more
details). Among the different realizations of junction tree algorithms we find, for instance,
approaches by Lauritzen and Spiegelhalter [LS88], by Shenoy and Shafer [SS08] and by
Jensen et al. [JOA90, JLO90]. The latter is also known in the literature as the HUGIN
architecture due to its use in the HUGIN framework [AOJJ89]. A detailed comparison
of these three approaches for probabilistic inference is provided in [LS98].

Apart from tree decompositions, also the closely related concept of so-called hypertree
decompositions [GLS02] is used successfully in several application scenarios. Basically, a
hypertree decomposition of a hypergraph H = (V,H) is a tree decomposition of H where
each node of the tree has assigned a subset of the hypergraph’s hyperedges in addition to
the set of vertices constituting the node’s bag. The hyperedges associated with a node are
selected in such a way that the set union of the endpoints of these hyperedges is a superset
of the node’s bag. Analogously to the width of a tree decomposition (see Definition 10),
the width of a hypertree decomposition is defined as the maximum cardinality across all
hyperedge sets associated to the nodes of the respective decomposition. Based on this
notion, the hypertree-width of a hypergraph is the minimum width over all its possible
tree decompositions.

1In the machine learning literature, tree decompositions are often also called join trees, clique trees or
junction trees.

123

6. Related Work

A very recent publication which gives a detailed overview of hypertree decompositions
and their applications in the context of conjunctive query answering is by Gottlob et
al. [GGLS16]. Conjunctive queries represent a restricted form of first-order queries and
they are a central concept in database theory because of the fact that many queries
to relational database management systems can be expressed by means of this type of
queries. A special case of conjunctive queries are boolean conjunctive queries. Their result
is either True or False, depending on whether the relations in the given database satisfy
the provided conjunction. In general, evaluating a conjunctive query is NP-complete
(when considering both the query and the database as input) and this also holds for the
boolean case [CM77]. Hypertree decomposition come into play in this context as it can
be shown that, given a boolean conjunctive query Q, a database DB and a hypertree
decomposition of Q of bounded width, deciding whether the query Q evaluates to True on
the database DB is LOGCFL-complete [GLS02], i.e., it can be done efficiently. Moreover,
Gottlob et al. [GLS02] proved the following statement which shows the relevance of
hypertree decompositions also for general conjunctive query answering: The result of
a non-boolean conjunctive query of bounded hypertree-width can be computed in time
polynomial in the combined size of the input instance and of the output relation.

While the tractability results for conjunctive query answering strongly suggest that
hypertree decompositions can be used to speed-up database queries (an assumption which
is confirmed by, e.g., [GGGS07] and [SGL07]), there is also another important domain in
which hypertree decompositions have beneficial effects on the performance, namely in
the area of constraint satisfaction problems. Such problems arise especially in the area of
operations research, a field of artificial intelligence, and they ask for concrete assignments
of values to sets of variables such that all the given constraints are satisfied. Extensive
surveys on the topic of constraint satisfaction are given, for instance, by Apt [Apt03] and
Dechter [Dec03]. In [GLS01], Gottlob et al. highlight that constraint satisfaction is not
only closely related to the evaluation problem of boolean conjunctive queries, but that
the two problems are essentially the same under certain assumptions (see also [GJC94]
and [KV00]). Hence, hypertree decomposition cannot only be used for the design of
efficient query plans but also to speed-up the solving process of constraint satisfaction
problems. At this point, we want to remind the reader of the fact that the htd framework
has built-in support for computing hypertree decompositions.

Indeed, apart from the numerous participants of the PACE challenge (see Section 4.5)
as well as https://pacechallenge.wordpress.com) there also exist other tools and
software frameworks for decomposing graphs and hypergraphs. Prominent examples
include QuickBB [GD04], libTW [vDvdHS06] or htdecomp [DGG+08]. Unfortunately,
these three projects seem to be abandoned in the meantime as the last update to these
software artifacts was made years ago. A potential alternative to the aforementioned
tools is the dlib software library (see http://www.dlib.net) whose focus is on machine
learning algorithms and which also provides functionality to compute join trees of graphs.
According to its developers, dlib is a “modern C++ toolkit containing machine learning
algorithms and tools for creating complex software in C++ to solve real world problems”.

124

https://pacechallenge.wordpress.com
http://www.dlib.net

The dlib software library is still maintained and updated regularly. Furthermore, probably
one of the most prominent software collections for general graph partitioning is the
METIS [KK98] family. Among this family of software tools we also find a powerful
library for hypergraph partitioning called hMETIS [KAKS99].

What is common to all the tools listed above is that their primary goal is to deliver
decompositions of small width. Customization of the input and output of the algorithms
or optimization towards more involved criteria is therefore in most cases up to the
developer of the algorithm which uses the computed decompositions.

Indeed, we are not the first ones who try to get a better handle on the efficiency of
dynamic programming algorithms. Due to the fact that algorithms based on dynamic
programming on tree decompositions are often very sensitive to the shape of the actually
used tree decomposition, Bodlaender and Fomin [BF05] introduced the concept of tree
decompositions of small cost. In this context, the cost associated to a node of the tree
decomposition is defined based on a function f which maps the bag size of the given
node to a real number according to the assumed time (or memory) complexity of the
problem at hand. The total f -cost of a tree decomposition is then the sum over all
evaluations of the formula f for the nodes of the given tree decomposition. Hence, the
work by Bodlaender and Fomin allows to distinguish tree decompositions in a more
fine-grained way than just by the width and in their article an extensive theoretical
analysis of the problem of finding tree decompositions of minimum f -cost is provided. In
the considerations made by Bodlaender and Fomin, the bag size is the only input for
a function that estimates the costs of a given tree decomposition node in the context
of a DP algorithm. Although no experimental evaluation is provided in the paper by
Bodlaender and Fomin, it is assumed that considering all bags (and not just the largest
one, i.e., the bag from which the width is derived) allows to better estimate the actual
runtime of DP algorithms.

While large parts of the literature concerning dynamic programming algorithms focus
on minimizing the solving time for a given problem instance, Betzler, Niedermeier and
Uhlmann [BNU06] propose a heuristic which helps to significantly reduce the memory
consumption of dynamic programming algorithms for solving optimization problems based
on tree decompositions. In particular, the authors report on impressive memory savings
between 60% and 98% in case of nice tree decompositions and path decompositions being
used.

125

CHAPTER 7
Conclusion

The aim of this thesis was to provide valuable insights regarding the practical impact of
customized tree decompositions on the average-case performance of dynamic programming
algorithms. While a lot of (primarily theoretic) work on the worst-case complexity of
computational problems exists, empirical evaluations are still relatively underrepresented.

7.1 Summary
With this thesis we significantly extended the body of empirical work regarding the
performance analysis of dynamic programming algorithms which use tree decompositions.
In the first part of the thesis at hand, we proposed a large set of features which allow
to characterize tree decompositions in a much more fine-grained way than just by the
plain width. Furthermore, we showed that based on the proposed features, given a
pool of decompositions of a problem instance, techniques from the area of machine
learning allow to reliably predict a decomposition which leads to a significantly reduced
solving time compared to an arbitrary decomposition of the same width. This result was
established on the basis of thousands of independent test runs on five different problem
domains (Minimum Dominating Set, 3-Colorability, Perfect Dominating Set,
Connected Vertex Cover and Steiner Tree). In these numerous test runs, we
observed statistically significant improvements in terms of the overall solving time when
following our approach to select a promising tree decomposition from a pool of heuristically
generated ones using machine learning algorithms.

Although the investigation of the relative importance of features based on well-established
feature selection techniques from the area of machine learning delivered no clear picture,
a detailed inter-domain evaluation of the trained machine learning models presented in
the first part of this thesis indicates that there must be features which are of general
importance. This becomes apparent as the models which are trained for a specific problem
domain often allow for a good prediction quality also in the context of other domains.

127

7. Conclusion

Independently from the attempt to unveil important tree decomposition features by means
of feature selection techniques, our experience in the design of dynamic programming
algorithms told us that the shape of join nodes probably has a significant impact on the
performance of algorithms which internally use tree decompositions. Unfortunately, to
the best of our knowledge, before initializing the work on this thesis, there was no software
framework allowing to easily obtain tailored tree decompositions, i.e., tree decomposition
which reflect certain preferences of the developer of dynamic programming algorithms.

For this reason, we developed the htd framework which is very competitive in real-world
scenarios and which allows to directly obtain tree decompositions that are not only of
low width but also adhere to a flexible, freely definable and potentially multi-level quality
criterion. Furthermore, htd is designed with the goal to relieve the developers of dynamic
programming algorithms from tedious tasks like designing post-processing routines for
normalizing the decomposition or manually managing problem-specific labels such as
vertex or edge weights. For all these tasks htd provides built-in functionality and, in the
case that the routines supplied with the htd framework are not perfectly fitting the actual
needs, there are well-documented interfaces for each part of the software library so that
extending it is (relatively) easy. htd is free, open-source software and it is available at
http://dbai.tuwien.ac.at/research/project/decodyn/htd/. All contributions
to its functionality by the community are welcome and highly appreciated.

On the basis of the customization capabilities of the htd framework it was possible
to investigate how we can take advantage of our knowledge in the design of dynamic
programming algorithms in order to improve their runtime behavior. This investigation,
in which we conducted experiments with two different systems for dynamic programming
algorithms in which htd is used successfully, is presented in the last part of the thesis at
hand. Our basic assumption for this empirical evaluation was that reducing the expected
worst-case workload of the given dynamic programming algorithm for processing the join
nodes of the computed decomposition is beneficial. It turned out that the customization of
tree decompositions indeed affects the performance of the algorithms in a very positive way.
Still, it has to be noted that finding a proper quality criterion to discriminate different tree
decompositions is often far from easy, but once such a criterion is found the performance
gain can be significant. For instance, in some of our experiments we observed that the
average solving time dropped by more than 50% (see, e.g., Figure 5.6 in Section 5.2).
Hence, providing a dynamic programming algorithm with a tree decomposition tailored
specifically to the actual needs indeed seems to be a very promising approach to improve
efficiency and robustness of the given algorithm and the htd framework makes the tasks
of implementing and testing such customizations very convenient.

7.2 Future Work

The thesis at hand provides detailed insights into the average-case performance of dynamic
programming algorithms based on tree decompositions and gives some suggestions on
how to cope with the lack of robustness in the presence of different tree decompositions

128

http://dbai.tuwien.ac.at/research/project/decodyn/htd/

7.2. Future Work

of the same problem instance. Although we could show that our proposed approaches
provide valuable benefits in various application scenarios, there is sufficient room for
future work. For instance, in the context of features for the characterizations of tree
decompositions, it is still unclear whether it is possible to optimize them efficiently.
More precisely, it would be interesting for a given tree decomposition feature X to
know whether is it possible to design a practical algorithm which is capable of directly
computing a decomposition which minimizes or maximizes the outcome of evaluating X
for a given problem instance. In order to be able to deal with any possible feature of
tree decompositions in the optimization phase, the htd framework currently falls back to
iteratively computing and/or modifying a heuristically generated tree decomposition of
low width, but with a direct customization it may be possible to approach global lower
or upper bounds for the value of a certain feature.

Apart from analyzing existing and proposing new tree decomposition features, we also
want to further extend and improve the htd framework. Adding exact algorithms for
computing tree decompositions of minimum width as well as providing options for the
efficient preprocessing of the input graph (without negatively affecting the width of the
resulting tree decomposition) are just two of the next steps we have on our agenda.

Finally, we want to invite researchers and software developers to contribute to the htd
framework both by providing valuable theoretic input as well as by actively extending
htd’s functionality.

129

List of Figures

2.1 Graph Representation of the Propositional Formula φ from Example 1 . . 17
2.2 Hypergraph Representation of the Propositional Formula φ from Example 1 17
2.3 Example Graph and a Possible Tree Decomposition. 19
2.4 Solving SAT via DP on Tree Decompositions for the Problem Instance φ 24
2.5 The Control Flow in D-FLAT (Adapted from [ABC+14a], Page 15) . . . 27
2.6 An Example Instance of Minimum Dominating Set 32
2.7 A Semi-Normalized Tree Decomposition with Empty Root n1 32
2.8 Solving Minimum Dominating Set using D-FLAT 33

3.1 Comparison of Approaches . 41
3.2 Graph G with Normalized Tree Decompositions TD1 and TD2 46
3.3 Performance Characteristics for Minimum Dominating Set 52
3.4 Performance Characteristics for 3-Colorability 53
3.5 Performance Characteristics for Perfect Dominating Set 54
3.6 Performance Characteristics for Connected Vertex Cover 55
3.7 Performance Characteristics for Steiner Tree 56
3.8 Performance Characteristics for Steiner Tree (Real-World) 58

4.1 Workflow for Computing Customized Decompositions using htd 68
4.2 Example Input Graph for Min-Fill . 87
4.3 Example Graph and a Possible Customized Tree Decomposition. 103
4.4 Comparison of Tree Decomposition Algorithms (Data Set “PACE 2017”) 105
4.5 Comparison of Tree Decomposition Algorithms (Data Set “QBFEval 2016”) 106

5.1 Maximum Bag Size of Tree Decompositions over 10 Random Seeds 114
5.2 Distribution of Solved QBF Instances over 10 Random Seeds 114
5.3 Solving Times for QBF Instances over 10 Random Seeds 115
5.4 Distribution of Solving Times for Steiner Tree 118
5.5 Solving Times for Steiner Tree (Vienna) over 10 Random Seeds 119
5.6 Solving Times for Steiner Tree (London) over 10 Random Seeds 120

131

List of Tables

2.1 Example of a Regression Task . 35

3.1 Subset of Extracted Features for Decompositions TD1 and TD2 of Graph G 46
3.2 Investigated Metro Systems (* ... Metro and Interurban Train) 57
3.3 Predicted Ranks (Median) for Computed Models 59
3.4 Predicted Ranks (Median) for Computed Models (Inter-Domain Evaluation) 60

133

List of Algorithms

4.1 Min-Fill (Simple Pseudo-Code) . 88

4.2 Min-Fill (Verbose Pseudo-Code) . 90

4.3 Procedure updateNeighbor for Algorithm 4.2 92

4.4 Bucket Elimination . 93

135

Bibliography

[ABC+14a] Michael Abseher, Bernhard Bliem, Günther Charwat, Frederico Dusberger,
Markus Hecher, and Stefan Woltran. D-FLAT: Progress Report. Technical
Report DBAI-TR-2014-86, DBAI, Fakultät für Informatik an der Technis-
chen Universität Wien, 2014. Available at http://www.dbai.tuwien.
ac.at/research/report/dbai-tr-2014-86.pdf.

[ABC+14b] Michael Abseher, Bernhard Bliem, Günther Charwat, Frederico Dusberger,
Markus Hecher, and Stefan Woltran. The D-FLAT System for Dynamic
Programming on Tree Decompositions. In Proceedings of the 14th European
Conference on Logics in Artificial Intelligence (JELIA 2014), volume 8761
of LNCS, pages 558–572. Springer, 2014.

[ABC+15] Michael Abseher, Bernhard Bliem, Günther Charwat, Frederico Dusberger,
and Stefan Woltran. Computing Secure Sets in Graphs using Answer Set
Programming. Journal of Logic and Computation, 2015. Available at
https://doi.org/10.1093/logcom/exv060.

[Abs16] Michael Abseher. htd 1.0.1, 2016. Available at https://github.com/
mabseher/htd/releases/tag/1.0.1.

[ACP87] Stefan Arnborg, Derek G. Corneil, and Andrzej Proskurowski. Complexity
of Finding Embeddings in a k-Tree. Journal on Algebraic Discrete Methods,
8(2):277–284, 1987.

[ADMW15] Michael Abseher, Frederico Dusberger, Nysret Musliu, and Stefan Woltran.
Improving the Efficiency of Dynamic Programming on Tree Decompositions
via Machine Learning. In Proceedings of the 24th International Joint Con-
ference on Artificial Intelligence (IJCAI 2015), pages 275–282. AAAI Press,
2015.

[AGM+16] Michael Abseher, Martin Gebser, Nysret Musliu, Torsten Schaub, and
Stefan Woltran. Shift Design with Answer Set Programming. Fundamenta
Informaticae, 147(1):1–25, 2016.

[AKA91] David W. Aha, Dennis Kibler, and Marc K. Albert. Instance-based learning
algorithms. Machine Learning, 6(1):37–66, 1991.

137

http://www.dbai.tuwien.ac.at/research/report/dbai-tr-2014-86.pdf
http://www.dbai.tuwien.ac.at/research/report/dbai-tr-2014-86.pdf
https://doi.org/10.1093/logcom/exv060
https://github.com/mabseher/htd/releases/tag/1.0.1
https://github.com/mabseher/htd/releases/tag/1.0.1

[Ake78] Sheldon B. Akers. Binary Decision Diagrams. IEEE Transactions on
Computers, 100(6):509–516, 1978.

[AMS97] Christopher G. Atkeson, Andrew W. Moore, and Stefan Schaal. Locally
Weighted Learning. Artificial Intelligence Review, 11(1):11–73, 1997.

[AMW16a] Michael Abseher, Marius Moldovan, and Stefan Woltran. Providing Built-
In Counters in a Declarative Dynamic Programming Environment. In
Proceedings of the 39th German Conference on Artificial Intelligence (KI
2016), volume 9904 of LNCS, pages 3–16. Springer, 2016.

[AMW16b] Michael Abseher, Nysret Musliu, and Stefan Woltran. htd – A Free, Open-
Source Framework for (Customized) Tree Decompositions and Beyond.
Technical Report DBAI-TR-2016-96, DBAI, Fakultät für Informatik an
der Technischen Universität Wien, 2016. Available at http://www.dbai.
tuwien.ac.at/research/report/dbai-tr-2016-96.pdf.

[AMW16c] Michael Abseher, Nysret Musliu, and Stefan Woltran. Improving the Effi-
ciency of Dynamic Programming on Tree Decompositions via Machine Learn-
ing. Technical Report DBAI-TR-2016-94, DBAI, Fakultät für Informatik an
der Technischen Universität Wien, 2016. Available at http://www.dbai.
tuwien.ac.at/research/report/dbai-tr-2016-94.pdf.

[AMW17a] Michael Abseher, Nysret Musliu, and Stefan Woltran. htd – A Free, Open-
Source Framework for (Customized) Tree Decompositions and Beyond. In
Proceedings of the 14th International Conference on Integration of Artificial
Intelligence and Operations Research Techniques in Constraint Programming
(CPAIOR 2017), 2017. To appear.

[AMW17b] Michael Abseher, Nysret Musliu, and Stefan Woltran. Improving the
Efficiency of Dynamic Programming on Tree Decompositions via Machine
Learning. Journal of Artificial Intelligence Research, 2017. To appear.

[And73] Michael R. Anderberg. Cluster Analysis for Applications. Probability and
Mathematical Statistics: A Series of Monographs and Textbooks. Academic
Press, 1973.

[AOJJ89] Stig K. Andersen, Kristian G. Olesen, Finn V. Jensen, and Frank Jensen.
HUGIN - A Shell for Building Bayesian Belief Universes for Expert Systems.
In Proceedings of the 11th International Joint Conference on Artificial
Intelligence (IJCAI 1989), pages 1080–1085. Morgan Kaufmann Publishers,
1989.

[AP89] Stefan Arnborg and Andrzej Proskurowski. Linear time algorithms for NP-
hard problems restricted to partial k-trees. Discrete Applied Mathematics,
23(1):11–24, 1989.

138

http://www.dbai.tuwien.ac.at/research/report/dbai-tr-2016-96.pdf
http://www.dbai.tuwien.ac.at/research/report/dbai-tr-2016-96.pdf
http://www.dbai.tuwien.ac.at/research/report/dbai-tr-2016-94.pdf
http://www.dbai.tuwien.ac.at/research/report/dbai-tr-2016-94.pdf

[Apt03] Krzysztof R. Apt. Principles of Constraint Programming. Cambridge
University Press, 2003.

[BB72] Richard E. Barlow and Hugh D. Brunk. The Isotonic Regression Problem
and Its Dual. Journal of the American Statistical Association, 67(337):140–
147, 1972.

[BB73] Umberto Bertelè and Francesco Brioschi. On non-serial dynamic program-
ming. Journal of Combinatorial Theory, Series A, 14(2):137–148, 1973.

[BB06] Emgad H. Bachoore and Hans L. Bodlaender. A Branch and Bound Algo-
rithm for Exact, Upper, and Lower Bounds on Treewidth. In Proceedings of
the 2nd International Conference on Algorithmic Aspects in Information and
Management (AAIM 2006), volume 4041 of LNCS, pages 255–266. Springer,
2006.

[BET11] Gerhard Brewka, Thomas Eiter, and Miroslaw Truszczyński. Answer Set
Programming at a Glance. Communications of the ACM, 54(12):92–103,
2011.

[BF05] Hans L. Bodlaender and Fedor V. Fomin. Tree decompositions with small
cost. Discrete Applied Mathematics, 145(2):143–154, 2005.

[BHS03] Anne Berry, Pinar Heggernes, and Geneviève Simonet. The Minimum
Degree Heuristic and the Minimal Triangulation Process. In Proceedings of
the 29th International Workshop on Graph-Theoretic Concepts in Computer
Science (WG 2003), volume 2880 of LNCS, pages 58–70. Springer, 2003.

[Bis06] Christopher M. Bishop. Pattern Recognition and Machine Learning. Infor-
mation Science and Statistics. Springer, 2006.

[BJ13] Jori Bomanson and Tomi Janhunen. Normalizing Cardinality Rules Using
Merging and Sorting Constructions. In Proceedings of the 12th International
Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR
2013), volume 8148 of LNCS, pages 187–199. Springer, 2013.

[BK08] Hans L. Bodlaender and Arie M. C. A. Koster. Combinatorial Optimization
on Graphs of Bounded Treewidth. The Computer Journal, 51(3):255–269,
2008.

[BK10] Hans L. Bodlaender and Arie M. C. A. Koster. Treewidth computations I.
Upper bounds. Information and Computation, 208(3):259–275, 2010.

[Bli12] Bernhard Bliem. Decompose, Guess & Check: Declarative Problem Solving
on Tree Decompositions. Master’s thesis, TU Wien, 2012.

139

[BM08] Marco Benedetti and Hratch Mangassarian. QBF-Based Formal Verification:
Experience and Perspectives. Journal on Satisfiability, Boolean Modeling
and Computation, 5(1-4):133–191, 2008.

[BMW12] Bernhard Bliem, Michael Morak, and Stefan Woltran. D-FLAT: Declarative
Problem Solving using Tree Decompositions and Answer-Set Programming.
Theory and Practice of Logic Programming, 12:445–464, 2012.

[BNU06] Nadja Betzler, Rolf Niedermeier, and Johannes Uhlmann. Tree Decom-
positions of Graphs: Saving Memory in Dynamic Programming. Discrete
Optimization, 3(3):220–229, 2006.

[Bod93] Hans L. Bodlaender. A Tourist Guide through Treewidth. Acta Cybernetica,
11:1–23, 1993.

[BPT92] Richard B. Borie, R. Gary Parker, and Craig A. Tovey. Automatic generation
of linear-time algorithms from predicate calculus descriptions of problems
on recursively constructed graph families. Algorithmica, 7(1):555–581, 1992.

[BPW13] Bernhard Bliem, Reinhard Pichler, and Stefan Woltran. Declarative Dy-
namic Programming as an Alternative Realization of Courcelle’s Theorem.
In Proceedings of the 8th International Symposium on Parameterized and Ex-
act Computation (IPEC 2013), volume 8246 of LNCS, pages 28–40. Springer,
2013.

[Bre96] Leo Breiman. Bagging Predictors. Machine Learning, 24(2):123–140, 1996.

[Chu36] Alonzo Church. An Unsolvable Problem of Elementary Number Theory.
American Journal of Mathematics, 58(2):345–363, 1936.

[CKS81] Ashok K. Chandra, Dexter C. Kozen, and Larry J. Stockmeyer. Alternation.
Journal of the ACM, 28(1):114–133, 1981.

[CM77] Ashok K. Chandra and Philip M. Merlin. Optimal Implementation of
Conjunctive Queries in Relational Data Bases. In Proceedings of the 9th
Annual ACM Symposium on Theory of Computing (STOC 1977), pages
77–90. ACM, 1977.

[CMNC04] François Clautiaux, Aziz Moukrim, Stèfane Négre, and Jaques Carlier.
Heuristic and meta-heuristic methods for computing graph treewidth.
RAIRO Operational Research, 38(1):13–26, 2004.

[Cou90] Bruno Courcelle. The monadic second-order logic of graphs. I. Recognizable
sets of finite graphs. Information and Computation, 85(1):12–75, 1990.

[CS14] Girish Chandrashekar and Ferat Sahin. A survey on feature selection
methods. Computers & Electrical Engineering, 40(1):16–28, 2014.

140

[CT95] John G. Cleary and Leonard E. Trigg. K*: An Instance-based Learner
Using an Entropic Distance Measure. In Proceedings of the 12th Interna-
tional Conference on Machine Learning, pages 108–114. Morgan Kaufmann
Publishers, 1995.

[CW16a] Günther Charwat and Stefan Woltran. BDD-based Dynamic Program-
ming on Tree Decompositions. Technical Report DBAI-TR-2016-95,
DBAI, Fakultät für Informatik an der Technischen Universität Wien, 2016.
Available at http://www.dbai.tuwien.ac.at/research/report/
dbai-tr-2016-95.pdf.

[CW16b] Günther Charwat and Stefan Woltran. Dynamic Programming-based QBF
Solving. In Proceedings of the 4th International Workshop on Quantified
Boolean Formulas (QBF 2016), volume 1719 of CEUR Workshop Proceedings,
pages 27–40. CEUR-WS.org, 2016.

[Dec99] Rina Dechter. Bucket Elimination: A Unifying Framework for Reasoning.
Artificial Intelligence, 113(1):41–85, 1999.

[Dec03] Rina Dechter. Constraint Processing. Morgan Kaufmann Publishers, 2003.

[DF99] Rodney G. Downey and Michael R. Fellows. Parameterized Complexity.
Monographs in Computer Science. Springer, 1999.

[DGG+08] Artan Dermaku, Tobias Ganzow, Georg Gottlob, Ben McMahan, Nysret
Musliu, and Marko Samer. Heuristic Methods for Hypertree Decomposition.
In Proceedings of the 7th Mexican International Conference on Artificial
Intelligence (MICAI 2008): Advances in Artificial Intelligence, volume 5317
of LNCS, pages 1–11. Springer, 2008.

[DHK05] Nachum Dershowitz, Ziyad Hanna, and Jacob Katz. Bounded Model
Checking with QBF. In Proceedings of the 8th International Conference on
Theory and Applications of Satisfiability Testing (SAT 2005), volume 3569
of LNCS, pages 408–414. Springer, 2005.

[DS01] Rolf Drechsler and Detlef Sieling. Binary Decision Diagrams in Theory and
Practice. International Journal on Software Tools for Technology Transfer,
3(2):112–136, 2001.

[ELLS11] Brian S. Everitt, Sabine Landau, Morven Leese, and Daniel Stahl. Cluster
Analysis. Wiley Series in Probability and Statistics. John Wiley & Sons,
Inc., 5th edition, 2011.

[FBN15] Stefan Fafianie, Hans L. Bodlaender, and Jesper Nederlof. Speeding Up
Dynamic Programming with Representative Sets: An Experimental Evalua-
tion of Algorithms for Steiner Tree on Tree Decompositions. Algorithmica,
71(3):636–660, 2015.

141

http://www.dbai.tuwien.ac.at/research/report/dbai-tr-2016-95.pdf
http://www.dbai.tuwien.ac.at/research/report/dbai-tr-2016-95.pdf

[FG65] Delbert R. Fulkerson and Oliver A. Gross. Incidence matrices and interval
graphs. Pacific Journal of Mathematics, 15:835–855, 1965.

[FG06] Jörg Flum and Martin Grohe. Parameterized Complexity Theory. Texts in
Theoretical Computer Science. An EATCS Series. Springer, 2006.

[FHMW16] Johannes Fichte, Markus Hecher, Michael Morak, and Stefan Woltran.
DynASP 2.0: System Specification. Technical Report DBAI-TR-2016-101,
DBAI, Fakultät für Informatik an der Technischen Universität Wien, 2016.
Available at http://www.dbai.tuwien.ac.at/research/report/
dbai-tr-2016-101.pdf.

[FHP02] Eibe Frank, Mark Hall, and Bernhard Pfahringer. Locally Weighted Naive
Bayes. In Proceedings of the 19th Conference on Uncertainty in Artificial
Intelligence (UAI 2002), pages 249–256. Morgan Kaufmann Publishers,
2002.

[Fri02] Jerome H. Friedman. Stochastic gradient boosting. Computational Statistics
& Data Analysis, 38(4):367–378, 2002.

[Gav72] Fănică Gavril. Algorithms for Minimum Coloring, Maximum Clique, Min-
imum Covering by Cliques, and Maximum Independent Set of a Chordal
Graph. SIAM Journal on Computing, 1(2):180–187, 1972.

[GD04] Vibhav Gogate and Rina Dechter. A Complete Anytime Algorithm for
Treewidth. In Proceedings of the 20th Conference on Uncertainty in Artificial
Intelligence (UAI 2004), pages 201–208. AUAI Press, 2004.

[GE03] Isabelle Guyon and André Elisseeff. An Introduction to Variable and Feature
Selection. Journal of Machine Learning Research, 3:1157–1182, 2003.

[GGGS07] Lucantonio Ghionna, Luigi Granata, Gianluigi Greco, and Francesco Scar-
cello. Hypertree decompositions for query optimization. In Proceedings of
the 23rd International Conference on Data Engineering (ICDE 2007), pages
36–45. IEEE, 2007.

[GGJ+16] Serge Gaspers, Joachim Gudmundsson, Mitchell Jones, Julian Mestre, and
Stefan Rümmele. Turbocharging Treewidth Heuristics. In Proceedings of the
11th International Symposium on Parameterized and Exact Computation
(IPEC 2016), 2016. To appear.

[GGLS16] Georg Gottlob, Gianluigi Greco, Nicola Leone, and Francesco Scarcello.
Hypertree Decompositions: Questions and Answers. In Proceedings of the
35th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database
Systems (PODS 2016), pages 57–74. ACM, 2016.

[GJ79] Michael R. Garey and David S. Johnson. Computers and Intractability: A
Guide to the Theory of NP-Completeness. W. H. Freeman, 1979.

142

http://www.dbai.tuwien.ac.at/research/report/dbai-tr-2016-101.pdf
http://www.dbai.tuwien.ac.at/research/report/dbai-tr-2016-101.pdf

[GJC94] Marc Gyssens, Peter G. Jeavons, and David A. Cohen. Decomposing
constraint satisfaction problems using database techniques. Artificial Intel-
ligence, 66(1):57–89, 1994.

[GLS01] Georg Gottlob, Nicola Leone, and Francesco Scarcello. Hypertree Decom-
positions: A Survey. In Proceedings of the 26th International Symposium
on Mathematical Foundations of Computer Science (MFCS 2001), volume
2136 of LNCS, pages 37–57. Springer, 2001.

[GLS02] Georg Gottlob, Nicola Leone, and Francesco Scarcello. Hypertree Decompo-
sitions and Tractable Queries. Journal of Computer and System Sciences,
64(3):579–627, 2002.

[GMS09] Georg Gottlob, Zoltán Miklós, and Thomas Schwentick. Generalized Hy-
pertree Decompositions: NP-hardness and Tractable Variants. Journal of
the ACM, 56(6):1–32, 2009.

[GNPT05] Enrico Giunchiglia, Massimo Narizzano, Luca Pulina, and Armando Tac-
chella. Quantified Boolean Formulas Satisfiability Library (QBFLIB).
www.qbflib.org, 2005.

[Gut15] Gregory Gutin. Should We Care about Huge Imbalance in Parameterized
Algorithmics? The Parameterized Complexity Newsletter, 11(2), 2015.

[HA28] David Hilbert and Wilhelm Ackermann. Grundzüge der Theoretischen Logik,
volume 27 of Die Grundlehren der mathematischen Wissenschaft. Springer,
1928.

[HA38] David Hilbert and Wilhelm Ackermann. Grundzüge der Theoretischen Logik,
volume 27 of Die Grundlehren der mathematischen Wissenschaft. Springer,
2nd edition, 1938.

[HA50] David Hilbert and Wilhelm Ackermann. Principles of Mathematical Logic,
volume 69. American Mathematical Society, 1950.

[Hal76] Rudolf Halin. S-functions for graphs. Journal of Geometry, 8:171–186, 1976.

[HD96] Cecil Huang and Adnan Darwiche. Inference in Belief Networks: A Procedu-
ral Guide. International Journal of Approximate Reasoning, 15(3):225–263,
1996.

[HFH+09] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reute-
mann, and Ian H. Witten. The WEKA Data Mining Software: An Update.
SIGKDD Exploration Newsletters, 11(1):10–18, 2009.

[HHF99] Geoffrey Holmes, Mark Hall, and Eibe Frank. Generating Rule Sets from
Model Trees. In Proceedings of the 12th Australian Joint Conference on
Artificial Intelligence: Advanced Topics in Artificial Intelligence (AI 1999),
volume 1747 of LNCS, pages 1–12. Springer, 1999.

143

www.qbflib.org

[HK04] Michael Haenlein and Andreas M. Kaplan. A Beginner’s Guide to Partial
Least Squares Analysis. Understanding Statistics, 3(4):283–297, 2004.

[HM10] Thomas Hammerl and Nysret Musliu. Ant Colony Optimization for Tree
Decompositions. In Proceedings of the 10th European Conference on Evo-
lutionary Computation in Combinatorial Optimization (EvoCOP 2010),
volume 6022 of LNCS, pages 95–106. Springer, 2010.

[HMS15] Thomas Hammerl, Nysret Musliu, and Werner Schafhauser. Metaheuris-
tic Algorithms and Tree Decomposition. In Handbook of Computational
Intelligence, pages 1255–1270. Springer, 2015.

[HS16] Michael Hamann and Ben Strasser. Graph Bisection with Pareto-
Optimization. In Proceedings of the 18th Workshop on Algorithm En-
gineering and Experiments (ALENEX 2016), pages 90–102. Society for
Industrial and Applied Mathematics, 2016.

[HXHL14] Frank Hutter, Lin Xu, Holger H. Hoos, and Kevin Leyton-Brown. Algorithm
runtime prediction: Methods & evaluation. Artificial Intelligence, 206:79–
111, 2014.

[JLO90] Finn V. Jensen, Steffen L. Lauritzen, and Kristian G. Olesen. Bayesian
updating in causal probabilistic networks by local computations. Computa-
tional Statistics Quarterly, 4:269–282, 1990.

[JOA90] Finn V. Jensen, Kristian G. Olesen, and Stig K. Andersen. An algebra of
Bayesian belief universes for knowledge-based systems. Networks, 20(5):637–
659, 1990.

[JT14] Philippe Jégou and Cyril Terrioux. Bag-Connected Tree-Width: A New
Parameter for Graph Decomposition. In Proceedings of the 13th International
Symposium on Artificial Intelligence and Mathematics (ISAIM 2014), pages
12–28, 2014.

[KAKS99] George Karypis, Rajat Aggarwal, Vipin Kumar, and Shashi Shekhar. Mul-
tilevel Hypergraph Partitioning: Applications in VLSI Domain. IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, 7(1):69–79,
1999.

[KBvH01] Arie M. C. A. Koster, Hans L. Bodlaender, and Stan P. M. van Hoesel.
Treewidth: Computational Experiments. Electronic Notes in Discrete
Mathematics 8, 8:54–57, 2001.

[KCHS11] Jorge Kanda, André Carvalho, Eduardo Hruschka, and Carlos Soares.
Selection of algorithms to solve traveling salesman problems using meta-
learning. International Journal of Hybrid Intelligent Systems, 8(3):117–128,
2011.

144

[Kjæ92] Uffe Kjærulff. Optimal decomposition of probabilistic networks by simulated
annealing. Statistics and Computing, 2(1):7–17, 1992.

[KK62] John F. Kenney and Ernest S. Keeping. Linear Regression and Correlation.
Mathematics of Statistics (3rd Edition), pages 252–285, 1962.

[KK98] George Karypis and Vipin Kumar. A Fast and High Quality Multilevel
Scheme for Partitioning Irregular Graphs. SIAM Journal on Scientific
Computing, 20(1):359–392, 1998.

[Klo94] Ton Kloks. Treewidth, Computations and Approximations, volume 842 of
LNCS. Springer, 1994.

[KLR11] Joachim Kneis, Alexander Langer, and Peter Rossmanith. Courcelle’s
Theorem - A Game-Theoretic Approach. Discrete Optimization, 8(4):568–
594, 2011.

[Koh96] Ron Kohavi. Wrappers for Performance Enhancement and Oblivious Deci-
sion Graphs. PhD thesis, Stanford University, 1996.

[Kot14] Lars Kotthoff. Algorithm selection for combinatorial search problems: A
survey. AI Magazine, 35(3):48–60, 2014.

[KV00] Phokion G. Kolaitis and Moshe Y. Vardi. Conjunctive-query containment
and constraint satisfaction. Journal of Computer and System Sciences,
61(2):302–332, 2000.

[KvHK99] Arie M. C. A. Koster, Stan P. M. van Hoesel, and Antoon W. J. Kolen.
Solving Frequency Assignment Problems via Tree-Decomposition. Electronic
Notes in Discrete Mathematics, 3:102–105, 1999.

[Lee59] C.Y. Lee. Representation of Switching Circuits by Binary-Decision Programs.
Bell System Technical Journal, 38(4):985–999, 1959.

[Lif08] Vladimir Lifschitz. What Is Answer Set Programming? In Proceedings
of the 23rd AAAI Conference on Artificial Intelligence, pages 1594–1597.
AAAI Press, 2008.

[LKPM97] Pedro Larrañaga, Cindy M. H. Kuijpers, Mikel Poza, and Roberto H. Murga.
Decomposing Bayesian networks: Triangulation of the moral graph with
genetic algorithms. Statistics and Computing, 7(1):19–34, 1997.

[LNS09] Kevin Leyton-Brown, Eugene Nudelman, and Yoav Shoham. Empirical
Hardness Models: Methodology and a Case Study on Combinatorial Auc-
tions. Journal of the ACM, 56(4):1–52, 2009.

[LS88] Steffen L. Lauritzen and David J. Spiegelhalter. Local computations with
probabilities on graphical structures and their application to expert systems.
Journal of the Royal Statistical Society, Series B, 50:157–224, 1988.

145

[LS98] Vasilica Lepar and Prakash P. Shenoy. A Comparison of Lauritzen-
Spiegelhalter, Hugin, and Shenoy-Shafer Architectures for Computing
Marginals of Probability Distributions. In Proceedings of the 14th Confer-
ence on Uncertainty in Artificial Intelligence (UAI 1998), pages 328–337.
Morgan Kaufmann Publishers, 1998.

[Mac98] David J.C. MacKay. Introduction to Gaussian processes. NATO ASI Series
F: Computer and Systems Sciences, 168:133–166, 1998.

[MBT+13] Olaf Mersmann, Bernd Bischl, Heike Trautmann, Markus Wagner, Jakob
Bossek, and Frank Neumann. A novel feature-based approach to characterize
algorithm performance for the traveling salesperson problem. Annals of
Mathematics and Artificial Intelligence, 69(2):151–182, 2013.

[McM04] Ben McMahan. Bucket Elimination and Hypertree Decompositions. Tech-
nical report, DBAI, Fakultät für Informatik an der Technischen Universität
Wien, 2004. Implementation Report.

[Mit97] Tom M. Mitchell. Machine Learning. McGraw Hill Series in Computer
Science. McGraw-Hill, 1997.

[MMP+12] Michael Morak, Nysret Musliu, Reinhard Pichler, Stefan Rümmele, and
Stefan Woltran. Evaluating Tree-Decomposition Based Algorithms for
Answer Set Programming. In Proceedings of the 6th International Conference
on Learning and Intelligent Optimization (LION 2012), volume 7219 of
LNCS, pages 130–144. Springer, 2012.

[MPRW10] Michael Morak, Reinhard Pichler, Stefan Rümmele, and Stefan Woltran.
A Dynamic-Programming Based ASP-Solver. In Proceedings of the 12th
European Conference on Logics in Artificial Intelligence (JELIA 2010),
volume 6341 of LNCS, pages 369–372. Springer, 2010.

[MRT12] Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations
of Machine Learning. The MIT Press, 2012.

[MS07] Nysret Musliu and Werner Schafhauser. Genetic algorithms for generalized
hypertree decompositions. European Journal of Industrial Engineering,
1(3):317–340, 2007.

[MS13] Nysret Musliu and Martin Schwengerer. Algorithm Selection for the Graph
Coloring Problem. In Proceedings of the 7th International Conference on
Learning and Intelligent Optimization (LION 2013), volume 7997 of LNCS,
pages 389–403. Springer, 2013.

[MT99] Victor W. Marek and Miroslaw Truszczyński. Stable Models and an Alter-
native Logic Programming Paradigm. In The Logic Programming Paradigm:
A 25-Year Perspective, pages 375–398. Springer, 1999.

146

[Mus08] Nysret Musliu. An Iterative Heuristic Algorithm for Tree Decomposition. In
Recent Advances in Evolutionary Computation for Combinatorial Optimiza-
tion, volume 153 of Studies in Computational Intelligence, pages 133–150.
Springer, 2008.

[Nie99] Ilkka Niemelä. Logic programs with stable model semantics as a constraint
programming paradigm. Annals of Mathematics and Artificial Intelligence,
25(3):241–273, 1999.

[Nie06] Rolf Niedermeier. Invitation to Fixed-Parameter Algorithms. Oxford Lecture
Series in Mathematics And Its Applications. Oxford University Press, 2006.

[NPT06] Massimo Narizzano, Luca Pulina, and Armando Tacchella. The QBFEVAL
Web Portal. In Proceedings of the 10th European Conference on Logics in
Artificial Intelligence (JELIA 2006), volume 4160 of LNCS, pages 494–497.
Springer, 2006.

[Pap94] Christos H. Papadimitriou. Computational Complexity. Addison-Wesley,
1994.

[PBPPM09] Marius-Constantin Popescu, Valentina E. Balas, Liliana Perescu-Popescu,
and Nikos Mastorakis. Multilayer Perceptron and Neural Networks. WSEAS
Transactions on Circuits and Systems, 8(7):579–588, 2009.

[PM14] Josef Pihera and Nysret Musliu. Application of Machine Learning to
Algorithm Selection for TSP. In Proceedings of the 26th IEEE International
Conference on Tools with Artificial Intelligence (ICTAI 2014), pages 47–54,
2014.

[PNM08] Olivier Pourret, Patrick Naïm, and Bruce Marcot. Bayesian Networks: A
Practical Guide to Applications, volume 73. John Wiley & Sons, Inc., 2008.

[Pul16] Luca Pulina. QBFEval’16 – Competitive Evaluation of QBF solvers. http:
//www.qbflib.org/qbfeval16.php, 2016. Accessed: 2017-02-05.

[Qui92] John R Quinlan. Learning with Continuous Classes. In Proceedings of the
5th Australian Joint Conference on Artificial Intelligence, volume 92, pages
343–348. World Scientific, 1992.

[RL05] Peter J. Rousseeuw and Annick M. Leroy. Robust Regression and Outlier
Detection. John Wiley & Sons, Inc., 2005.

[RS84] Neil Robertson and Paul D. Seymour. Graph minors. III. Planar tree-width.
Journal of Combinatorial Theory, Series B, 36(1):49–64, 1984.

[RS91] Neil Robertson and Paul D. Seymour. Graph minors. X. Obstructions to
tree-decomposition. Journal of Combinatorial Theory, Series B, 52(2):153 –
190, 1991.

147

http://www.qbflib.org/qbfeval16.php
http://www.qbflib.org/qbfeval16.php

[Sam59] Arthur L. Samuel. Some Studies in Machine Learning Using the Game of
Checkers. IBM Journal of Research and Development, 3(3):210–229, 1959.

[Sch06] Werner Schafhauser. New Heuristic Methods for Tree Decompositions and
Generalized Hypertree Decompositions. Master’s thesis, TU Wien, 2006.

[SG97] Kirill Shoikhet and Dan Geiger. A Practical Algorithm for Finding Optimal
Triangulations. In Proceedings of the 14th National Conference on Artificial
Intelligence and 9th Conference on Innovative Applications of Artificial
Intelligence, pages 185–190. AAAI Press / The MIT Press, 1997.

[SGL07] Francesco Scarcello, Gianluigi Greco, and Nicola Leone. Weighted Hypertree
Decompositions and Optimal Query Plans. Journal of Computer and System
Sciences, 73(3):475–506, 2007.

[SKBM00] Shirish K. Shevade, Sathiya S. Keerthi, Chiranjib Bhattacharyya, and
Karaturi R. K. Murthy. Improvements to the SMO algorithm for SVM
regression. IEEE Transactions on Neural Networks, 11(5):1188–1193, 2000.

[SM73] Larry J. Stockmeyer and Albert R. Meyer. Word problems requiring expo-
nential time: Preliminary report. In Proceedings of the 5th Annual ACM
Symposium on Theory of Computing, pages 1–9. ACM, 1973.

[Smi08] Kate Smith-Miles. Cross-disciplinary perspectives on meta-learning for
algorithm selection. ACM Computing Surveys, 41(1):6:1–6:25, 2008.

[SMvHL10] Kate Smith-Miles, Jano I. van Hemert, and Xin Yu Lim. Understanding
TSP Difficulty by Learning from Evolved Instances. In Proceedings of the 4th
International Conference on Learning and Intelligent Optimization (LION
2010), volume 6073 of LNCS, pages 266–280. Springer, 2010.

[SS04] Alex J. Smola and Bernhard Schölkopf. A tutorial on support vector
regression. Statistics and Computing, 14(3):199–222, 2004.

[SS08] Prakash P. Shenoy and Glenn Shafer. Axioms for probability and belief-
function propagation. In Classic Works of the Dempster-Shafer Theory of
Belief Functions, volume 219 of Studies in Fuzziness and Soft Computing,
pages 499–528. Springer, 2008.

[SWLI13] Kate Smith-Miles, Brendan Wreford, Leo Lopes, and Nur Insani. Predict-
ing Metaheuristic Performance on Graph Coloring Problems Using Data
Mining. In Hybrid Metaheuristics, volume 434 of Studies in Computational
Intelligence, pages 417–432. Springer, 2013.

[Tar72] Robert E. Tarjan. Depth-First Search and Linear Graph Algorithms. SIAM
Journal on Computing, 1(2):146–160, 1972.

148

[Tur36] Alan M. Turing. On Computable Numbers, with an Application to the
Entscheidungsproblem. Proceedings of the London Mathematical Society,
s2-42(1):230–265, 1936.

[Tur37] Alan M. Turing. On Computable Numbers, with an Application to the
Entscheidungsproblem. A Correction. Proceedings of the London Mathemat-
ical Society, s2-43(1):544–546, 1937.

[TY84] Robert E. Tarjan and Mihalis Yannakakis. Simple Linear-Time Algorithms
to Test Chordality of Graphs, Test Acyclicity of Hypergraphs, and Selectively
Reduce Acyclic Hypergraphs. SIAM Journal on Computing, 13(3):566–579,
1984.

[vDvdHS06] Thomas van Dijk, Jan-Pieter van den Heuvel, and Wouter Slob. Computing
Treewidth with LibTW. Technical report, Utrecht University, 2006. Available
at http://treewidth.com/treewidth/docs/LibTW.pdf.

[vWK17] Rim van Wersch and Steven Kelk. ToTo: An open database for computation,
storage and retrieval of tree decompositions. Discrete Applied Mathematics,
217 (Part 3):389–393, 2017.

[Wan00] Yong Wang. A new approach to fitting linear models in high dimensional
spaces. PhD thesis, The University of Waikato, 2000.

[Wol96] David H. Wolpert. The Lack of A Priori Distinctions Between Learning
Algorithms. Neural Computation, 8(7):1341–1390, 1996.

[WW02] Yong Wang and Ian H. Witten. Modeling for Optimal Probability Prediction.
In Proceedings of the 19th International Conference on Machine Learning
(ICML 2002), pages 650–657. Morgan Kaufmann Publishers, 2002.

[XHHL08] Lin Xu, Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. SATzilla:
Portfolio-based Algorithm Selection for SAT. Journal of Artificial Intelli-
gence Research, 32:565–606, 2008.

[XJB05] Jinbo Xu, Feng Jiao, and Bonnie Berger. A Tree-Decomposition Approach to
Protein Structure Prediction. In Proceedings of the 4th IEEE Computational
Systems Bioinformatics Conference (CSB 2005), pages 247–256, 2005.

[ZMMN12] Shuyuan Zhang, Abdulrahman Mahmoud, Sharad Malik, and Sanjai Narain.
Verification and Synthesis of Firewalls using SAT and QBF. In Proceedings
of the 20th IEEE International Conference on Network Protocols (ICNP
2012), pages 1–6, 2012.

149

http://treewidth.com/treewidth/docs/LibTW.pdf

	Kurzfassung
	Abstract
	Contents
	Introduction
	Research Questions and Methodology
	Contribution
	Publications and Systems
	Thesis Outline

	Background
	Computational Complexity Theory
	Structural Decompositions of Graphs
	Dynamic Programming on Tree Decompositions
	Machine Learning

	The Impact of Tree Decomposition Selection
	Improving the Efficiency of DP Algorithms
	Experimental Evaluation
	Discussion

	A Framework for (Customized) Tree Decompositions and Beyond
	A General Framework for Custom Decompositions
	Developer Documentation
	Algorithm Engineering
	htd at Work
	Performance Characteristics
	Discussion

	Exploiting Customized Tree Decompositions
	Case Study: dynQBF
	Case Study: D-FLAT
	Discussion

	Related Work
	Conclusion
	Summary
	Future Work

	List of Figures
	List of Tables
	List of Algorithms
	Bibliography

