
A framework for dynamic
configuration of IoT nodes based

on events

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Software Engineering & Internet Computing

eingereicht von

Manuel Filz, B.Sc.
Matrikelnummer 1228549

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Univ.Prof. Dr. Schahram Dustdar
Mitwirkung: Dr. Michael Vögler

Wien, 20. Februar 2017
Manuel Filz Schahram Dustdar

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

A framework for dynamic
configuration of IoT nodes based

on events

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Software Engineering & Internet Computing

by

Manuel Filz, B.Sc.
Registration Number 1228549

to the Faculty of Informatics

at the Vienna University of Technology

Advisor: Univ.Prof. Dr. Schahram Dustdar
Assistance: Dr. Michael Vögler

Vienna, 20th February, 2017
Manuel Filz Schahram Dustdar

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Erklärung zur Verfassung der
Arbeit

Manuel Filz, B.Sc.
Meidlinger Hauptstraße 11, 1120 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 20. Februar 2017
Manuel Filz

v

Danksagung

Ein großer Dank gilt meinen Betreuern Schahram Dustdar und Michael Vögler für die
umfassende Unterstützung während der Entstehung meiner Diplomarbeit. Besonders
möchte ich mich bei Michael für seine großartige Betreuung, sein wertvolles Feedback
sowie seine fortlaufenden Bemühungen auch während der Zeit, in der er nicht mehr an
der Technischen Universität Wien tätig war, bedanken. Das flexible Umfeld und der
drucklose Umgang ermöglichte es mir, das Entstehen der Diplomarbeit mühelos mit
meinen beruflichen Tätigkeiten in Einklang zu bringen.
Ebenfalls möchte ich mich bei Franziska Kellner für die Unterstützung beim Korrekturle-
sen bedanken.
Ein großer Dank gebührt außerdem meiner gesamten Familie und meinen Freunden, die
mich stets in meinen Vorhaben unterstützt und motiviert haben. Insbesondere möchte
ich meine Schwester und meine Eltern hervorheben, die immer für mich da waren.
Zu guter Letzt möchte ich mich bei meiner Freundin Christine Kellner für das liebevolle
Verständnis und die entgegengebrachte Geduld bedanken.

vii

Kurzfassung

Das Internet der Dinge (IoT) ist ein Konzept, das derzeit zunehmend an Bedeutung
gewinnt, da es sowohl von technischer, sozialer, als auch ökonomischer Relevanz ist. Im
Wesentlichen bezeichnet es die Vernetzung einer Vielzahl an Geräten, die mit Hilfe ihrer
eingebauten Sensoren in der Lage sind, ihr Umfeld zu erfassen und diese Daten über
das Internet auszutauschen. Die enormen Datenmengen, die dadurch erzeugt werden,
bieten aus technischer Sicht sowohl Chancen als auch Herausforderungen. Während
es innovativen Applikationen die Möglichkeit eröffnet, Zusammenhänge aus unserem
täglichen Leben für neue Anwendungen zu nützen, bedarf es für die richtige Verarbeitung
passende Werkzeuge. Complex Event Processing (CEP) ist ein solches Werkzeug, das
im Stande ist, relevante Strukturen durch die Analyse von Datenströme in Echtzeit
zu erkennen. Der Einsatz im IoT Umfeld bietet Applikationen ein adäquates Mittel,
ihre Konfigurationen an wechselnde Umgebungsbedingungen wie Standort, Wetter, und
andere Faktoren anzupassen.
Im herkömmlichen Sinne wird CEP in einer zentralen Architektur eingesetzt, bei der
eine einzige Verarbeitungseinheit aus unterschiedlichen Datenquellen gespeist wird. Um
jedoch den hohen Anforderungen an Performanz und Skalierbarkeit im IoT Umfeld
gerecht zu werden, benötigt es hier den Einsatz von verteilten Verarbeitungsmodellen,
die Komponenten je nach Bedarf hinzufügen können. Unglücklicherweise bedeutet die
Implementierung von verteilten Systemen mehr Aufwand und höhere Komplexität.
Das Ziel dieser Arbeit besteht daher darin, ein Framework umzusetzen, das die Entwick-
lung von CEP-basierten IoT Applikationen unterstützt. Durch ein modulares Design der
Zielanwendung sowie klar definierten Kommunikationsstrukturen werden die genannten
Anforderungen erfüllt. Zusätzlich übernimmt das Framework Basisaufgaben wie die Koor-
dination von Komponenten, die Verteilung von Abfrageregeln, und die Bereitstellung von
Fehlertoleranz. Ein weiterer Bestandteil der Arbeit ist eine eigene Abfragesprache. Die
Sprache ist für den Gebrauch im IoT Umfeld optimiert und ermöglicht es den Benutzern,
Abfragen und Regeln möglichst prägnant und intuitiv zu formulieren.
Ebenfalls Teil dieser Arbeit ist eine prototypische Implementierung, die als Grundlage
für Evaluierungen dient. Neben funktionalen Anwendungsfällen im Bereich von Smart
Buildings werden ebenfalls quantitative Messungen durchgeführt, um die Nützlichkeit
und die Anwendbarkeit des Frameworks zu demonstrieren.

ix

Abstract

The Internet of Things (IoT) represents an evolving field of technical, social, and economic
significance. At its core, it connects a plethora of devices able to collect and sense their
environment by using embedded sensors and exchange gathered information via the
Internet. The enormous amount of data generated by these devices produces both new
possibilities and new challenges. Opening up an endless array of new opportunities for
innovative applications, the high volume of data demands the development of new tools
and technologies. One such technology is Complex Event Processing (CEP), designed
to detect patterns by analyzing streams of data in real-time. Applied to the IoT, it
allows applications to make decisions tailored to their specific environment. As a result,
applications can change their configuration depending on different requirements such as
location, weather, and many other factors.
However, CEP in the traditional sense of a central processing unit does hardly scale
across thousands of nodes. This limitation can be overcome by applying a distributed
processing model, allowing to add components as required. Yet while distribution allows
such applications to meet their requirements, it comes at a cost: the effort necessary for
implementation of distributed systems are very high due to their increased complexity.
Therefore, this thesis proposes a framework for supporting and facilitating the construc-
tion of CEP based IoT applications. By design, the framework leverages a modular
design of the concrete application and employs well-defined communication structures to
satisfy aforementioned requirements. It also cares about low-level tasks of distributed
systems such as the coordination of different components, the distribution of rules, and
measures for improving fault tolerance. Moreover, this thesis proposes a custom language
for defining queries and rules. The proposed language is optimized for the IoT context
and enables users to express patterns in an intuitive and succinct way.
Additionally, this thesis presents a prototype implementation of the framework. This
prototype implementation is consequently used to carry out evaluations. Besides func-
tional use cases in the field of smart buildings, the evaluation focuses on quantitative
measurements. By discussing and analyzing multiple test cases, the thesis discusses the
feasibility and applicability of the proposed framework.

xi

Contents

Kurzfassung ix

Abstract xi

Contents xiii

1 Introduction 1
1.1 Problem Statement . 1
1.2 Aim of the Work . 2
1.3 Methodological Approach . 3
1.4 Structure . 4

2 Background 5
2.1 Internet of Things . 5
2.2 Event Processing . 9

3 State of Art & Related Work 19

4 Use Case Definition 23
4.1 Saving Energy . 24
4.2 Increasing comfort . 26
4.3 Improving safety and security . 26

5 Design 29
5.1 Conceptual Overview . 29
5.2 Pathways of interactions . 31
5.3 Data & Event Model . 36
5.4 Rule Language . 38

6 Implementation 47
6.1 Frameworks and implementation patterns 47
6.2 Prototype implementation . 54

7 Evaluation 69

xiii

7.1 Use case evaluation . 69
7.2 Quantitative evaluation . 77

8 Conclusion & future work 91
8.1 Conclusion . 91
8.2 Future work . 93

List of Figures 97

List of Tables 98

Listings 99

Acronyms 101

Bibliography 103

CHAPTER 1
Introduction

1.1 Problem Statement
The world has entered a new era of computing, a digital transformation, which is com-
monly linked with the term Internet of Things (IoT). It describes how devices embedded
with sensors and network connectivity, are collecting and exchanging data with the
existing Internet infrastructure. This transformation had started with the advent of
smartphones more than a decade ago, and someday will have us surrounded by smart,
connected devices that anticipate our every need and desire. Possible areas of applications
range from an automobile that uses its embedded sensors to alert the driver when tire
pressure is critically low or techniques to increase food production by optimizing water
and fertilizer consumption, based on recorded data like temperature, soil moisture, and
content of nutrients.
Experts forecast that by the year 2020, IoT will include more than 26 billion units and
will generate incremental revenue exceeding $300 billion, mostly in maintenance activities
and services. Another impressive figure predicts that more than 5 billion people will be
connected by 2020. To sum this up in one sentence, the development of IoT is looking
into a promising future1.
The IoT has also given rise to new technologies that alter established concepts and
approaches. In the last decade, devices have been connected to back-end systems through
various networks, but they have often operated in isolation from one another. As more
complex use cases evolve in the future, new connection models with greater cooperative
interaction between devices are expected to emerge.
In order to address this issue companies started creating initiatives to come up with
standardizations. Such developments have the big advantage that whole communi-
ties can collaboratively work on new products, because ideas are better exchanged.
MQTT [MQT16] is one example for a lightweight messaging protocol that has emerged

1http://www.gartner.com/newsroom/id/3165317

1

http://www.gartner.com/newsroom/id/3165317

1. Introduction

for the specific requirements of the IoT world. Similar to standardizations at the protocol
layer, frameworks do the job of promoting and simplifying new development processes at
the software layer. Using them, developers can devote more time on the requirements,
instead of developing lower level details that have been solved already. Many applications
of the same type have great similarities, and frameworks provide a common code basis
and reduce the effort to write the code all over again.
A further challenge are the avalanches of data that are flowing from every device in the
Internet of Things. While on the one hand this wealth of data provides new opportunities
to derive insights that can help to better understand customers, it makes it also harder
to interpret data properly. If use cases additionally require the data to be processed in
real time, the challenges become even more difficult.
To address the aforementioned problems Complex Event Processing (CEP) can be used.
CEP has become one of the most important fields in data processing. The core idea is
that huge amounts of data are correlated and analyzed in real-time or near real-time, for
example, to detect fraud patterns or monitor stock prices. Key considerations for these
types of applications are latency, throughput, and the capability of detecting complex
patterns in a high volume of events. CEP works a bit like a database turned upside-down.
Instead of storing data and executing queries against stored data, the CEP engine holds
queries and runs the data against these queries [Inc16a].
Generally, applications in the IoT environment should guarantee good scalability, to
continue to function well when the number of nodes is changed in size or volume. However,
CEP in the traditional sense of a single central processing unit could be a bottleneck. To
ensure good performance and scalability characteristics even if the number of nodes is
high and the environment is considerable dynamic, a distributed processing model could
be applied, which distributes computation tasks to multiple CEP nodes.
Bass et al. [BCK12a] recommend the tactic “Manage Sample Rate“ as another approach
to satisfy performance and scalability attributes. The idea is that by reducing the sample
rates of data streams, the overall volume of data could be deliberately minimized. In
terms of nodes in the IoT, this means that they must be dynamically configurable, to
minimize transmission data based on the current utilization of an application.
The aim of this work is to provide a framework for applications in the IoT world, especially
enriched by CEP capabilities. Applications implemented on top of the framework can
jump right into the use cases of their own project. All the groundwork and special
challenges discussed before are shielded by the framework. To be more precise, the
framework aims to build a distributed network of CEP nodes, taking care of equally
distributing queries to ensure scalability in the context of IoT.

1.2 Aim of the Work

Applying CEP to the IoT domain enables new possibilities to build sophisticated ap-
plications, which help to better understand customers. Consequently, a framework
that facilitates the implementation of these applications, would be a convenient tool

2

1.3. Methodological Approach

for developers. Hence, the expected result of this thesis is a framework, which will
support the development of distributed CEP solutions, designed for horizontal scalability,
reliability, and easy management of IoT applications. Thereby, the framework will use
the power of CEP to detect patterns among the vast amounts of data generated by
IoT sensors. To ensure scalability, the framework will leverage a modular design of
the implemented applications, by subdividing the scope of functions into independent
components such as sensor nodes, CEP nodes, and configuration nodes. By adding and
removing these components dynamically, applications build on top of the framework will
have the possibility to adapt the number of components to their current needs.
Furthermore, users will be able to express use cases via a sophisticated and user-friendly
language that is largely simplified and optimized for the proposed framework. The
language will consist of two parts: queries and rules. While queries will describe patterns,
which should be detected by the system, rules will define how to respond. Consequently,
rules will demonstrate high potential towards self-reconfigurable IoT.
Queries registered at the framework, will be spread automatically among all CEP nodes.
The distribution itself will be based on criteria such as CPU utilization and number
of running queries. If the framework detects that a node is not working correctly, an
intelligent redistribution will be carried out. All affected queries will be redistributed to
other, healthy nodes, ensuring fault-tolerance.
Another design goal is that the framework should be extendable and not limited to
any specific CEP technology. Expandability will be achieved by a clean and structured
communication model between all components.
To show that the proposed mechanism of the framework works in practice, a proof-of-
concept implementation will be developed and tested. For evaluation purposes, a use
case scenario from the IoT domain will be defined and used.

1.3 Methodological Approach

The methodological approach consists of the following steps:

(i) Literature review.
In the first step, relevant literature is gathered and reviewed. The results serve as
theoretical basis of the thesis.

(ii) Design of the framework.
In the second step, the design and architecture of the framework is created. The
main goals of the framework are defined in Section 1.2.

(iii) Design of the query/rule language.
Next, the syntax of the query/rule language is designed. The goal of this language is
to provide an interface that is on the one hand largely simplified and optimized for
the needs of the framework, and on the other hand independent of any technology.

3

1. Introduction

(iv) Proof-of-concept implementation
To prove the feasibility of the proposed architecture a prototype implementation
will be developed. Technologies which might be used for implementation are part
of the Java ecosystem.

(v) Evaluation
Finally, the implemented framework will be evaluated by using IoT use cases.
It must be shown that the framework can support CEP applications in the IoT
environment.

1.4 Structure
The remainder of this thesis is structured as follows. Chapter 2 discusses the two concepts
of IoT and CEP. Moreover, it outlines relevant challenges, issues, and common patterns,
followed by Chapter 3, which provides an overview on related work. For example, it
references and explains various IoT applications that utilize CEP in order to build
advanced IoT applications.
Chapter 4 then builds upon these theoretical considerations and elaborates on a use
case definition that reflects the framework’s function range and serves as evaluation
foundation. From the broad area of possible IoT applications, a scenario in the context
of smart buildings is chosen.
In Chapter 5 the framework is designed. Design decisions are discussed in great detail,
especially ones that influence features of the framework. The definition of the custom
language is done in an iterative approach in realizing the total scope of the language step
by step. Expressiveness is added to the language with every additional requirement.
In Chapter 6 the prototype based on Java and Spring is implemented. In particular, it
focuses on an effective implementation using design patterns proved over the last years.
Every design pattern in use is shortly introduced to promote its benefits.
The prototype is then used in Chapter 7 to evaluate its feasibility. The evaluation
is separated into two major parts. The first one concentrates on use cases defined in
Chapter 4, and addresses the question, whether the requirements can be realized with the
help of the framework. The second part measures properties that describe the distributed
nature of the application. By conducting a quantitative evaluation, the performance of
the framework is demonstrated.
Finally, Chapter 8 concludes this thesis, summarizes the key aspects of the design as well
as results found during the evaluation of the prototype. At the end details on remaining
open questions and possible extensions are discussed, which are issues for future work.

4

CHAPTER 2
Background

In this chapter, background information necessary for reading this thesis are discussed.
Due to the fact that the thesis is placed around the two concepts IoT and CEP, these
concepts are investigated in greater detail.

2.1 Internet of Things

The term Internet of Things was first used in the late 1990s by entrepreneur Kevin
Ashton who was one the founders of the Auto-ID department at the Massachusetts
Institute of Technology (MIT) [Ash09]. The department coined the term to illustrate
the power of Radio Frequency IDentification (RFID) tags used in the context of supply
chain management. In their research work, the group connected goods to the Internet in
order to track them without the need for human intervention. Nowadays, the IoT has
become a popular keyword for covering various aspects related to the extension of the
Web and the Internet into the physical domain.
While the term IoT is relatively new, the vision of combining physical devices with
networks or computers is not new at all. By the late 1970s, electrical grids were remotely
monitored via telephone lines and with the advance of wireless technology in the 1990s,
machine-to-machine (M2M) solutions for monitoring were used at large scale. Many of
these M2M products, however, were built on closed networks and proprietary standards,
rather than on widely adopted Internet standards as we know it today.
The first Internet compatible device, a toaster that could be turned on and off over the
Internet, was presented at the Interop conference in 1990. The toaster was connected
to the Internet with the TCP/IP protocol, and controlled with a Simple Networking
Management Protocol Management Information Base (SNMP MIB) [Ste16]. Over the
next several years, universities and companies launched multiple IP enabled products,
including a refrigerator invented by LG Electronics [Wik16] and a soft drink machine
featured by Carnegie Mellon University [Sci16]. While these products did not become

5

2. Background

a commercial success, a broad field of research started and created the foundation for
today’s Internet of Things.
Atzori et. al. [AIM10] state that the name “Internet of Things“ is ambiguous itself. It is
syntactically composed of two terms: While the first one emphasizes an Internet-oriented
perspective, the second one prefers a Things-oriented view. Additionally, the authors
identify a third perspective, the Semantic-oriented one. Figure 2.1 shows the claim of
the paper that the IoT paradigm is the result of the convergence of these visions.

Figure 2.1: Convergence of different visions [AIM10]

The “Things“-oriented view focuses on the physical items and their identification. Simple
items for that purpose are RFID tags, but they comprise just a small set in the overall
vision. Further technologies that will connect the real and digital world are Near-Field
Communication (NFC) and Wireless Sensor & Actuator Networks (WSAN) combined
with so called smart devices. These are sensors not only equipped with usual wireless
communication and memory, but also with new capabilities. Proactive behavior, context
awareness, and collaborative communications are just a few required capacities.
The “Internet“-oriented vision addresses how the things can be integrated into today’s
and future Internet. It promotes the Internet Protocol (IP) as the “middleware“ and the
central network technology for connecting smart objects around the world. IP over Small
Objects (IPSO), Constrained Application Protocol (CoAP), and IPv6 over Low Power
Wireless Personal Areas Network (6LoWPAN) are technologies relevant to this vision.
Finally, the “Semantic“-oriented vision focuses on technologies for accessing and reasoning
about the data generated by the IoT. It is supposed that the number of items involved

6

2.1. Internet of Things

in the future Internet is extremely high. Therefore, subjects related to how to present,
store, search, and organize information will become a key success factor. In this context,
the authors expect semantics technologies are playing an important role.
An alternative way of outlining the IoT paradigm, but identifying the same requirements
is proposed by [MSPC12]. Four pillars serve as basis for their arguments. While the
first three perspectives -- conceptual, system-level, and service-level -- leverage the same
challenges as identified in [AIM10], the last perspective involves the user itself as an
important success factor. From a user perspective, the IoT will enable a large amount of
new services, which shall support them in everyday activities. When a user has specific
needs, he will make a request and an ad hoc application will satisfy them. The application
itself will be automatically composed and deployed at run-time and tailored to the specific
context of the user.
Enabling properties for IoT on system level are identified as following: [AIM10] [MSPC12]

• Device heterogeneity. IoT is characterized by a vast number of different devices, each
equipped with different capabilities from the computational and communication
standpoints. A high level of heterogeneity is tremendously important on protocol
and architectural level. IP has become the dominant global standard for networking,
and a broad incorporation into a range of devices is required.

• Scalability. The capability to handle a growing number of devices, affects IoT
on different levels, including: naming and addressing, data communication and
networking, knowledge management, and service provisioning.

• Ubiquitous data exchange. Wireless communication technologies play a prominent
role to make almost everything “connectable“. The ubiquitous use of the wireless
medium for exchanging data will encourage its further development in terms of
spectrum availability.

• Self-organization capabilities. Following the user perspective, devices in IoT organize
themselves autonomously in order to satisfy requested tasks. This includes strategies
to perform device and service discovery without the need of an additional input.

• Semantic interoperability. Exchanging and analyzing massive amounts of data en-
able new opportunities for extracting information and knowledge. As a prerequisite,
data with adequate standards, models and semantic description of their content,
and well-defined formats must be provided.

• Security and privacy-preserving mechanisms. The IoT is immensely vulnerable
to attacks for several reasons. First, devices are located in the public realm and
therefore it requires little effort to physically attack them. Second, secretly listening
to the conversation is due the wireless communication possible. Finally, most of
the IoT devices are characterized by low energy and computing resources and thus,
they are limited in supporting complex security mechanisms and algorithms. As a
consequence, security and privacy should be an important part of the design and
architecture of IoT solutions.

7

2. Background

It cannot be overlooked that the main theoretical premises behind the above listed
enabling properties are based on the traditional research line of distributed systems,
where a distributed system is defined as a system driven by separate components, which
are executed on different, interconnected, nodes. The design of architectures and protocols
for distributed systems is therefore a key issue for the IoT.
While a commonly accepted full layered architecture for the IoT is missing due the vast
number of different fields of application, Atzori et al. [AIM10] propose a SOA-based
architecture for the IoT middleware as depicted in Figure 2.2. Thereby, the middleware is
understood as a layer, connecting different, often complex and already existing applications
that were not originally designed to be connected. Its feature of hiding the details of
different technologies supports tremendously the work of programmers. Instead of
spending a significant amount of time with recurring tasks not directly pertinent to their
focus, they are able to concentrate entirely on the specific requirements of their business
when developing individual solutions for the IoT.

Figure 2.2: Architecture for the IoT middleware [AIM10]

A Service Oriented Architecture (SOA) is essentially a collection of services, decomposing
complex and monolithic systems into well-defined components, which communicate with
each other via standard protocols. Currently, many SOA deployments exploit Web-
based protocols for enabling interoperability. In the context of IoT, SOA may be too
heavyweight for being deployed on resources-constrained devices. Nonetheless, the idea
itself in terms of abstracting functionality from the specific software implementation
as well as for guaranteeing integration and compatibility of IoT technologies into the
future Internet is very promising. Further key concepts of SOA, such as late binding and
dynamic service composition, are expected to be inherited in IoT [MSPC12].
Trust, privacy, and security are considered as cross-cutting topics, which affect all layers:

• Objects/Devices. Devices occur in various types and at a minimum they are
equipped with communication capabilities that either indirectly or directly con-

8

2.2. Event Processing

nected to the Internet. An example of direct connection is a RaspberryPi connected
via Ethernet or Wi-Fi.

• Object abstraction. This layer enables the connectivity of the devices. Besides
the well-known HTTP protocol, lighter-weight protocols on top of the IP/TCP
stack play a prominent role. The two best known protocols in this area are MQTT
and CoAP, which support resource constraints by the mean of small message sizes,
message management, and lightweight message overhead.

• Service Management. This layer provides all functions necessary for the management
of devices in the IoT scenario. A basic set encompasses: dynamic discovering, status
monitoring, and service configuration.

• Service Composition. This is a common layer on top of a SOA-based middleware.
Multiple services offered by devices are summed up to build one specific application.
On this layer there is no notion about objects, the only rated assets are services.

• Applications. Applications are on the top of the architecture, supplying all the
system’s functionalities to the user.

2.2 Event Processing

A closer look at the literature reveals that there exist multiple different understandings
about the concept of event processing. The term itself is used to describe several things,
depending on the purpose and the structure of the actual use case. That is the reason
why this thesis briefly outlines the evolution of event processing in order to create a
common understanding.
The first concept of event processing started with discrete event simulation in the 1950s.
The basic idea was to simulate the behavior of systems like factory production lines
or control systems. Based on input data, the program generated events to mimic the
interactions of the components of the system. A clock was used to simulate the real
time by increasing its value by discrete “ticks“. Such models were called discrete event
simulations [Luc07]. The events had the forms of messages, which signals significant
changes in the state of the application at a given point in time. This definition of an
event is still valid today.
While in the following decades, similar systems were given different names, a more
focused work started at the end of the 1990s. During this period the term Event Driven
Architecture (EDA) was coined to define a design paradigm that is built around the
concept of events. A steady development began, in which existing systems were adopted
and new systems applied this paradigm. Subsequently, three fundamental types of event
processing were born under the names simple, stream, and complex [Mic06].
In Stream Event Processing (SEP), notable events are considered as an important change
in state. They initiate downstream actions and are commonly used to control real-time
flow of business aiming to take out lag time. A well-known specification following the

9

2. Background

principle of SEP is the Java Messaging Service (JMS) [SLW10].
The second type, Event Stream Processing (ESP), involves processing streams of notable
and ordinary events. Typical ESP systems receive a large number of events, and use
filters and other processing mechanism to decide, which ones are considered remarkable.
Compared to SEP, individual events are less important, and instead the focus is on the
variety of events. ESP is typically used to control the real-time flow of information,
enabling real-time decision making around enterprise applications.
The third type of event processing is Complex Event Processing (CEP), which stresses
the main focus on the correlation and composition of ordinary events into complex events.
The event correlation may be casual or temporal. A common use case is to detect and
respond to business anomalies, threats, and opportunities. Over the years, all three
types converged to a common understanding and the distinction between them have been
weakened, so that, today a lot of these systems are referred to as CEP systems [jbo16].

2.2.1 Complex Event Processing

CEP is a technique in which incoming low-level events are analyzed more or less as they
arrive to predict higher-level, more valuable, summary information (complex events) that
would go otherwise unnoticed, so the definition from the web portal [SL16]. The portal
is supervised by Dr. David Luckham who originally conceived the paradigm at Stanford
University. His book “The Power of Events“ was an important milestone and describes
CEP software as any computer program that allows users to perform calculations on
complex events.
Figure 2.3 shows the schematic representation of a CEP system. In general, it consists of
event observers, the CEP engine and event consumers. Event observers are the source of
events and have only limited knowledge about the whole system. They only know that
events occur and broadcast a signal to indicate that information. The CEP engine fulfills
a range of tasks like filtering, transforming, and routing. Its functionality is normally
controlled and defined by rules. The final receivers of events are event consumers, which
provide a self-contained reaction consisting typically of numerous downstream activities.
As mentioned above, an event itself is an arbitrary activity in the system. A complex

Figure 2.3: High-level view [CM12]

event further is an abstraction of one or more base events, related to each other by the

10

2.2. Event Processing

properties time, causality, and aggregation [Luc01].

• Time. The property time describes the order of events based on timestamps. An
event can have one, two, or several timestamps according to the application. A
typical timestamp is the start or stop time of the event.

• Causality. The property causality expresses the dependencies between specific
events. The notation of A → B means that A must occur before B, or B depends
on A. The Cause-Time Axiom stated by Luckham implies that if event A caused
event B in system S, then no clock in S gives B an earlier timestamp than it gives
A. In contrast, if A and B are causally independent, their arrival must not fit in
any order.

• Aggregation. The property aggregation describes the one-to-many relationship.
Rather to be the result of a single event, a complex event is the result of a series or
set of events.

All three properties have some simple mathematical characteristics:

• Transitive. Whenever an event A is related to an event B, and B is in turn related
to an event C, then A is also related to C. That means: A before B before C implies
that A before C.

• Asymmetric. For all events applies, if A is related to B, then B is not related to A.
That means: A caused B implies that B did not cause A.

• Partially ordered. Not the exact order of every event is specified. Only certain
events depend on each other. The same property is prominent in the literature on
distributed system [Lam78]. That means: If there are three events (A, B, C), then
they are totally ordered, if and only if A → B → C happen in that order. However,
if the requirement is that only A happens before C, then they are partially ordered.
Under this circumstances multiple sequences satisfy the partial ordering: A → B
→ C; A → C → B; B → A → C.

Rules

Rules define how incoming events have to be processed within the CEP engine. There are
different approaches existing to represent rules, which mainly depend on the adopted rule
language. A widely applied approach is the declarative way via declarative languages.
Instead of specifying the desired execution flow, the expected results are expressed. The
syntax is usually derived from relational languages, in particular, Structured Query
Language (SQL) and relational algebra, extended by additional ad hoc operators to
better support timing requirements.

11

2. Background

Delimitation

In contrast to traditional Database Management Systems (DSBMSs), CEP systems
process information as a flow according to a set of preinstalled rules. As a consequence,
CEP systems store only data that are relevant for the detection of the rules installed.
Whereas, traditional DBMSs require data to be stored before it could be processed.
Furthermore, queries are only executed when explicitly asked, quasi, asynchronously to its
arrival. Both aspects are inconsistent with the requirements of CEP applications [CM12].

2.2.2 Design Patterns

There are many different design patterns that arise in CEP solutions [Cor16a]. The
following presented design patterns include the basic functionalities of every non-trivial
CEP.

Filtering

The most basic design pattern for event processing is the principle of event filtering as
shown in Figure 2.4. In this case, a specified logical condition is evaluated based on the
attributes of one or more events. If the evaluation returns true, the event is published to
the destination stream. The filtering is not limited to a procedure, where an event after
the other is evaluated and only the attributes of one event is involved. It is also possible
to construct more complex filters that compare events to other events or compare events
against computed metrics.

Figure 2.4: Filtering [Cor16a]

Aggregation over Windows

This design pattern combines several events to a single composite event. It is used in
different flavors as depicted in Figure 2.5, differing along the following categories:

• Type of aggregation function.
The typical set of aggregation functions encompasses sums, counts, minimum,
maximum, standard deviation, and averages. Additionally, numerous CEP engines
allow to implement custom aggregators.

• Type of window function: Time-based or count-based.
Recent events are typically cached in so-called windows. A window is something

12

2.2. Event Processing

similar to an in-memory database, keeping and evicting certain events according
to its strategy. In the case of a time-based window, events that arrived within a
certain amount of time are kept, meanwhile a count-based window maintains a
fixed number of events without any time restriction.

• Output frequency: Continuous or periodic.
In the case of continuous output each incoming event updates the calculated
expression, and an output event is created. In contrast, the periodic output publishes
only periodically, for example, every minute, while the calculated expression is also
updated continuously.

Figure 2.5: Aggregation [Cor16a]

Correlation (Joins)

More sophisticated CEP applications require that events are correlated across multiple
streams. A join in a CEP application is similar with a join in SQL. As depicted in
Figure 2.6, a join involves always one or more windows.
Joins arise in different flavors:

• Stream to window join
Events arriving in a stream are joined with events stored in a window.

• Window to window join
Events from multiple windows are retained and joined incrementally.

• Outer join
Similar to SQL a distinction is made between left outer joins, right outer joins, and
full outer joins. In a full outer join, each time an event arrives to one of the event
streams, an output is produced.

Figure 2.6: Correlation [Cor16a]

13

2. Background

In general, joins are very CPU-intensive operations. Thus, CEP engines employ extensive
indexing for optimizing.

Event Pattern Matching

While joins are pretty powerful regarding their functionality, the use of multiple joins
can become relatively cumbersome. It is often desirable to have an intuitive syntax for
expressing time-based relationships. For example, Figure 2.7 shows an example that
should detect a pattern, in which four events in three streams occur in a specific sequence.

Figure 2.7: Event Pattern Matching [Cor16a]

The most common event patterns are the following:

• Event A followed by event B.
Event B happens after event A.

• Event A and/or B.
Both respective one event happens.

• Not event A.
Event A does not happen.

2.2.3 Esper

All the above mentioned requirements have led to the development of specific systems
designed to process complex events. One of the leading open-source CEP provider is
Esper [Inc16a]. It uses a rich declarative language for rule specification, called Event
Processing Language (EPL). The syntax is inspired by SQL to express querying, filtering,
aggregation, and joins, from one or more streams of events. The main difference is that
EPL replaces tables as the source of data by event streams and a concept called views,
which are made of events instead of rows. In its use of the “select“, “from“, and “where“
clause the similarities are most striking: “select“ clauses specify event properties to
retrieve, “from“ clauses define the view to use, and “where“ clauses express constraints:

14

2.2. Event Processing

1 select symbol, avg(price) as averagePrice
2 from StockTickEvent.win:length(100)
3 group by symbol

Listing 2.1: A sample EPL that returns the average price per symbol for the last 100
stock ticks [Inc16b].

Furthermore, the concepts of filtering, aggregation through grouping, and correlation
through joins can be effectively leveraged. As long as no special time requirements are
requested, equivalence between EPL and SQL is given.
The improved expressiveness becomes visible if the concept of time is required. As
mentioned above the views define the data available for querying and filtering, but that
is not all. Another fundamental task of views is to represent windows over streams. It
enables the limitation of events considered by a rule and is commonly defined either by a
specific time interval or by a specific number of elements into the past.
EPL embeds two different syntaxes for the definition of patterns. The common way is
via so-called EPL patterns, which are defined as nested constraints, including logical
operations, set operations, and iterations (Listing 2.2).

1 every StockTickEvent(symbol= "IBM", price > 80) where timer:within(60 seconds)

Listing 2.2: A sample pattern that alerts on each IBM stock tick with a price greater
then 80 and within the next 60 seconds [Inc16b].

The alternative way exploits the well-known syntax of regular expressions for pattern
detection (Listing 2.3). The expressiveness of both syntaxes reveal no differences.

1 select * from TemperatureSensorEvent
2
3 match_recognize (
4 partition by device
5
6 measures A.id as a_id, B.id as b_id, A.temp as a_temp, B.temp as b_temp
7
8 pattern (A B)
9
10 define
11
12 B as Math.abs(B.temp - A.temp) >= 10
13)

Listing 2.3: A sample pattern that looks for two TemperatureSensorEvent events from
the same device directly following each other [Inc16b].

Multiple event streams can be merged by using the insert clause. As a result, views get
staggered onto each other in order to build a chain of views. For reasons of efficiency,

15

2. Background

the Esper engine makes sure that views are reused among EPL statements.
As it is stated in the documentation, the main purpose of Esper is the facilitation of the
development process of applications that compute large volumes of incoming messages or
events. Therefore, the Esper CEP processing engine is available as component for the
Java and .Net (Nesper) programming language. The data model of the implementation
supports several ways for representing events. The most convenient way is via any
standard Java/.Net object as depicted in Listing 2.4. The only requirement is that all
event properties are accessible through getter and setter methods.

1 package at.model;
2
3 public class Event implements Serializable {
4
5 private String name;
6 private String value;
7
8 public Even(String name, int value) {
9 this.name = name;

10 this.value = value;
11 }
12
13 public String getName() {
14 return name;
15 }
16
17 public void setName() {
18 this.name = name;
19 }
20
21 public String getValue() {
22 return value;
23 }
24
25 public void setValue() {
26 this.value = value;
27 }
28 }

Listing 2.4: POJO as Event. All properties are acessible through getter and setter
methods.

Additionally, the documentation recommends to use immutable objects since events
represent states that occurred in the past and should therefore not be changed. XML
Nodes are another way to represent events with the advantage that event properties can
be evaluated by XPath expressions.
Applications making use of the Esper CEP engine, register rules via a set of methods at
the engine. Typically, the output is received through listeners that are bound to exactly

16

2.2. Event Processing

one rule and implements a special interface. That interface gets invoked in the case if the
associated rule is triggered. Listing 2.5 shows the wrapper construction for implementing
a custom listener.

1 public static class CEPListener implements UpdateListener {
2 public void update(EventBean[] newData, EventBean[] oldData) {
3 // INSERT CUSTOM CODE HERE
4 }
5 }

Listing 2.5: Implementation of UpdateListener. The method update is invoked in the
case if the associated rule is triggered.

17

CHAPTER 3
State of Art & Related Work

Today, there are many full CEP systems available and most of these systems use some
variant of a Nondeterministic Finite Automaton (NFA). NFA is considered as a special
case of a finite state machine without the limitation that its transitions are uniquely
determined by its input symbols and source states. In the context of CEP, rules are con-
verted into NFA models, whereby vertices define different states and edges are predicates
of the corresponding rule. A rule is said to be matched when the NFA reaches the final
state. Cugola et al. [CM12] provide a detailed discussion and a comprehensive overview
of a substantial number of event processing implementations. The authors put forward
the claim that traditional DBMSs can hardly fulfill the requirements of timeliness, which
is precisely why during the last fifteen years, different research communities developed
a number of new tools to support applications with strict timing requirements. They
are called collectively Information Flow Processing (IFP) systems and their survey per-
forms an exhaustive investigation of these tools regarding several aspects like system
architecture, data model, rule model, and rule language. In their work, they outline
the various stages of developments so far, which include active databases, Data Stream
Management System (DSMS), and CEP systems. Prominent examples for DSMSs are
STREAM [ABB+03] and TelegraphCQ [CCD+03].
Apart from Esper, multiple event engines have been proposed over the last years. Sid-
dhi [SGLN+11], Cayuga [BDG+07], and SASE [WDR06] are research prototype systems
equipped with special features in order to achieve high performance and scalability. For
example, Cayuga employs several index structures and memory management techniques
enriched with garbage collectors to improve the performance and to guarantee a small
memory footprint. SASE is specialized in the processing of large sliding windows and
reducing intermediate result sizes. Amongst others features, this is achieved through an
auxiliary data structure, the so called Active Instance Stack (AIS). Siddhi tries to bring
in stream processing aspects like multi-threading into the architecture of CEP engines.
Furthermore, Siddhi proposes a pipelining architecture to handle temporal conditions

19

3. State of Art & Related Work

and keeps the runtime state of windows within event streams. As a result, many queries
can use the same window, which leads to an improvement of the overall performance.
In addition to these research engines, there are also several commercial CEP engines
available in the market, such as Oracle CEP 10g [Ora16a] and TIBCO BusinessEv-
ents [TIB16]. Oracle CEP 10g is a fully Java-based CEP tool, which provides many
built-in applications for supporting event processing within enterprises. The rule language
illustrates similarities to the EPL from Esper, whereas TIBCO BusinessEvents uses an
UML-based modeling approach for describing rules.
All the above mentioned CEP engine implementations, provide a custom grammar for
specifying rules, however, literature contains few examples of generic rule languages as
basis for integrating multiple engines. The paper [MCT14] proposes an approach to
generate rules automatically. The authors put forward the claim that the complexity of
rules is a limiting factor for the diffusion of CEP. Their framework learns from hidden
causalities between the received events and the situations to detect, and as a result
recommend CEP rules to the user.
There is a rapidly growing amount of literature on CEP utilized in the IoT environment.
One such example is found in [Lee14], where CEP is used for traffic monitoring. The
paper aims to detect complex events such as congestion or accidents. For that purpose,
the authors implemented a prototype application and verified the usefulness of the archi-
tecture on the basis of a real-world dataset. They collected data from over four thousand
vehicles, which transmitted up to fifteen thousand events at peak times. The evaluation
of this use case scenario showed that the centralized CEP engine performed without
loss in performance. Bottlenecks appeared as the number of vehicles was increased to a
number of over ten thousand. Another example is given in [YCL11] where the authors
propose a RFID-enabled framework for managing hospital data from different sources.
They apply CEP to detect medically significant events to improve patient safety while
reducing operational costs. Within the paper, a prototype system was developed to verify
the feasibility of their approach. The results show that the processing delay and detection
accuracy is acceptable, if only a small number of rules are installed. However, the authors
state that the number of event rules have significant impact on the processing time,
especially if they involve complex temporal and casual reasoning. In the particularly
study, a doubling of rules led to a hundredfold increased processing time.
The last two examples demonstrate that the requirements of IoT can hardly be satisfied
by applications based on standard architectures running on commodity hardware. In the
first case the rate of incoming events was eventually too high for one CEP node, and
in the second case the number of rules was beyond the processing capacity of a single
instance. As a result, much of the current debate in the scientific literature revolves
around the need for distributed solutions. For example, Govindarajan et al. [GSJM14]
build a hierarchy of CEP nodes by implementing two kinds of CEP systems: A lightweight
version primarily for the Android smartphone, complemented by a full-featured CEP
engine installed on network nodes. The processing capabilities of the lightweight version
are limited regarding filtering, sequencing, windows functionality, and simple aggregation.
In the use case scenario presented by the authors, Android smartphones are the only

20

event generators. The events are categorized based on their sensor types and consequently
put into distinct publish-subscribe queues. The lightweight version acts as subscriber
and gets asynchronously notified as soon as an event arrives. If the lightweight engine
produces an output, the engine forwards the result to the next CEP node, which can be
either a lightweight or a full-featured CEP node. The next node is defined by a graph,
which is in turn the result of a submitted rule. This graph is created at the moment the
user submits a rule. The advantage of this approach is that not all events are processed
centralized, but rather the computation load is distributed over a network of CEP nodes
with distinct capabilities. Chen at al. [CFS+14] follow a similar approach by employing
a distributed CEP architecture. The paper separates the detecting procedure into two
parts: preprocessing and reasoning. The aim is to extract and filter useful information
locally, and to transmit only useful information. As an example the authors mention
the detection of an abnormal condition like: “The air condition system still turned on
during the off-work time.“ [CFS+14]. In this case, the transmission of the exact power
consumption by the air conditioner is not relevant. In fact, it is sufficient to send a
warning message that the device is turned on. Following the approach outlined by the
paper, this extraction is performed by the so called client-side CEP node. In contrast,
the server-side CEP node compares the received warning message to data received by
other nodes to make sure that the warning message is not just a false positive. Saleh et
al. [SS13] avoid the transmission of unnecessary low-level data between nodes by applying
a distributed solution on rule level. The main idea of this paper is that a large NFA
expression resulting from a CEP rule can be split into smaller ones according to some
criterion. After splitting, each subexpression contains a part of the CEP statement, that
can be executed independently on distributed nodes. In case of dependencies between
subexpressions, the possibility exists that affected nodes exchange intermediate events.
The approach is primarily intended for sensor networks and the authors state that much
research is still needed for a system that fully applies this approach.
What is evident, however, is that CEP in a single architecture is well established among
all kinds of IoT domains. CEP in a distributed system for the IoT, remains still on a
research level. Although examples of such approaches are evident in the literature they
are not fully implemented or accepted.
Gaunitz et al. [GRF15] propose an idea for processing and analyzing enormous amounts
of data. They use Apache Storm1 in combination with CEP to provide a scalable event-
driven architecture. Apache Storm was originally developed, to analyze the click behavior
of users in real time and became soon a top level project of Apache. Apache Storm is
based on the Map-Reduce algorithm to distribute work between a cluster of nodes. The
authors put forward the view that the combination of Apache Storm and CEP bypasses
the disadvantage of Apache Storm to change the topology dynamically. Meanwhile, it
enables the exploitation of horizontal scaling features. Finally, the authors state that this
proposal needs further research, because each CEP node works in its own context and is
not visible to other nodes. As a result, only rules with limited expressiveness could be
used in this configuration.

1http://storm.apache.org/

21

http://storm.apache.org/

3. State of Art & Related Work

Akbar et al. [ACMZ15] choose a different approach and demonstrate that machine learn-
ing methods can be used in conjunction with CEP in order to provide a proactive solution
for IoT applications. Data from multiple sources is gathered and processed with an
adaptive prediction algorithm called Adaptive Moving Window Regression (AMWR).
The moving window refers to the way in which the prediction model is trained. Instead
of training the prediction model once using large historical data, a moving window of
data is utilized for training the model. Every time new data arrives, the algorithm
calculates an error value and retrains the model accordingly. Thereby, the degradation
of the prediction model should be simulated. Afterwards, predicted data is published
on an event bus where the downstream CEP system can access the data. According to
the authors, the proposed method is adaptive in nature and therefore can cope with
dynamic environments. In recent years, several other research efforts were conducted
with the objective of combining predictive analytics methods like machine learning with
CEP. A recent example is given by the paper [DZJ02], which addresses applications for
predicting traffic flows.
IoT in general is a broad concept for which no uniform architecture exists. Abdmeziem et
al. [ATR16] present a summary of different IoT architectures proposed in the literature.
These are either the result of academic research or business projects. Examples are
the EU project SENSEI [PBEV09] and the Electronic Product Code (EPC) based IoT
Architecture [HM11]. Additionally, Abdmeziem et al. summarize a commonly accepted
high-level architecture that comprises three layers: Perception Layer, Network Layer, and
Application Layer. As the name suggests, the focus of the Perception Layer lies on the
perception of things around us. The second part of the layered architecture, the Network
Layer, acts as mediator between the outer layers. In this context, it is in charge of process-
ing the received data from the Perception Layer and transmitting data to the Application
Layer through various network technologies. The Application Layer constitutes the front
end of the IoT and exploits the possibilities offered by the IoT. Ilapakurti et al. [IV15] and
Qin et al. [QSF+14] are two examples, which also survey the main techniques and spe-
cific requirements for applications in the environment of IoT with particular focus on CEP.

22

CHAPTER 4
Use Case Definition

Thousand of years ago, the first buildings ever constructed were primitive shelters made
from stones, sticks, and other natural materials. While the discipline of house construction
passed many worthy stages to reach the current level of modernization, the basic idea
has remained the same - to provide a comfortable space for the people inside.
Today, there are several emerging trends, which will have significant impact on how
buildings will be constructed in the future. One influencing factor is the ongoing
urbanization. Studies show that today about 54% of the world’s population lives in urban
areas, a rate that is expected to grow by more than ten per cent till 20501. Combined
with the overall growth of the world’s population, cities will in the future be confronted
with a set of new challenges emerging from these developments. Amongst other things,
satisfying the increased demand for energy in urban regions will be a main challenge for
city planners. They will have to define strategies regarding the use of new technologies,
establish optimized energy consumption mechanisms and realize energy saving initiatives
to meet this ambitious challenge. One concrete strategy in terms of IoT will be to make
buildings “intelligent“. Those so called smart buildings have the ability to adjust and
adapt facilities to the needs of its occupants. As a positive side effect, smart buildings
can reduce unnecessary energy consumption by operating devices in the most efficient
way. In the best case energy waste will vanish completely in the future.
When various tasks in a building are controlled based on real time data, the result is
an intelligent building that is not only functionally efficient, but simultaneously also
increases the comfort level. Occupants can benefit in several respects: Doors open and
close automatically, waiting time for elevators is reduced or window blinds are controlled
automatically. There are countless possibilities that are increasing the comfort level and
will become standard in the future.
Another key factor for future-oriented buildings is the compliance with safety and security
requirements. A building that monitors the arrival or departure of people, using bio-

1http://esa.un.org/unpd/wup/highlights/wup2014-highlights.pdf

23

http://esa.un.org/unpd/wup/highlights/wup2014-highlights.pdf

4. Use Case Definition

metric identifications, making it possible to know who was in the building and at what
time will become the norm. This in combination with smoke detectors and fire alarms
placed strategically, alert occupants and inform the fire department personnel about the
location of the fire, will increase safety standards.
Three key factor influencing how smart buildings will be constructed in the future are:
Saving energy, increasing comfort, enlarging safety and security requirements. Before
concrete use cases are worked out, which are satisfying these key factors by means of
the proposed framework, this work briefly outlines a huge office building as a reference
model. The assumption is that our reference model has several floors or type of rooms,
which all serve a certain purpose that is common to most public buildings (hospitals,
universities, etc.). According to their utilization, different properties are identified:

(i) Technical floor/room
is a space dedicated to mechanical and electronic equipment. Typically, server
rooms are part of such floors, which require special treatment. For example,
server rooms have to be air conditioned below 20 degree Celsius and need special
regulations concerning fire protections.

(ii) Office floor/room
is a space equipped with offices and work spaces. These are typically used for
conventional office activities like reading, writing, and computer work. Occupants
should feel comfortable regarding temperature and lighting. In case of emergency,
occupants should be informed immediately and the nearest safe emergency exit
should be indicated.

(iii) Storage floor/room
is a space used for storing all kinds of items. Here less attention has to be paid to
room temperature control while instead particularity attention must be given to
the access control.

(iv) Entrance floor/room
is usually a large, specially designed hall or space. The very first access control is
normally done in this area. The number of people entering or leaving the building
through these areas are the basis of all further activities.

A picture of the reference building is depicted in Figure 4.1. In the following the key
factors discussed are applied to our reference model in order to present in detail possible
use cases.

4.1 Saving Energy
Building operators have different choices to reduce energy consumption of their facilities.
Selecting walls, roofs and other assemblies based on long-term insulation, air-barrier per-
formance and durability requirements, is only one opportunity. An alternative approach

24

4.1. Saving Energy

Figure 4.1: Reference model

is to avoid the waste of energy. Without appropriate measures, energy consumption units
in buildings are often needlessly turned on. These so called "energy guzzlers" are often
in a direct relation to the size of a building. Huge facilities such as the reference model
offer multiple approaches for improvement. Some of them are exemplified and discussed
in detail in the following:

(i) Optimized heating, ventilation and air conditioning (HVAC)
HVAC is responsible for a large proportion of the total energy consumption in
buildings. Analyzing the building usage, allows to make reasonable decisions for the
optimized usage of HVAC. Reasoning about room occupation is thereby a challenge.
HVAC may for example only be activated for a specific room, if room usage exceeds
thirty minutes. The task is to identify a causal connection between multiple single
events.

(ii) Proactive maintenance of equipment
Proactive maintenance is a preventive strategy to maintain reliability of machines
and equipment. Abnormal and inefficient operational modes should be detected as
early as possible. For example, when an air conditioning equipment permanently
blasts at full speed for a defined time period, maintenance personnel should be
notified to inspect as early identification of minor issues may prevent serious damage.

(iii) Optimized lightning
Countless studies indicate that office staff does not care if light is turned off at
the time they leave office2. As a result lights continue to shine during the whole

2http://aceee.org/files/proceedings/1996/data/papers/SS96_Panel8_Paper18.
pdf

25

http://aceee.org/files/proceedings/1996/data/papers/SS96_Panel8_Paper18.pdf
http://aceee.org/files/proceedings/1996/data/papers/SS96_Panel8_Paper18.pdf

4. Use Case Definition

night or throughout the weekend. The most simple solution for this problem are of
course motion sensors. Yet such a solution fails to react to more complex situations
or even a whole sequence of events.
The described scenario is not only applicable for lighting. All kind of devices,
which are controlled depending on their environment can be treated equally. As an
example window blinds can be mentioned. Depending if the sun is shining or not,
what the current season is and which workspaces are occupied, they can be opened
or closed automatically.

4.2 Increasing comfort
A common way of achieving comfort is to use labor-saving devices. Their purpose is to
make a task easier to perform than a traditional method. This effect can be intensified
by feeding devices with real-time data. The aim is to anticipate the needs of occupants
and provide a pleasant environment for everyone in the facility. Examples are given in
two separate scenario:

(i) Elevator
This scenario outlines a predictive elevator system for the reference office building.
As a precondition all employees are equipped with RFID tags on which their
primary floor is stored. Once an employee enters the building, a reader activates
the RFID tag. It gets supplied with power and transmit its data. This interaction
happens without the individual concerned being aware of it. While the employee
is approaching further to the elevator, the system prepares itself to the expected
ride. If multiple passengers are arriving, it can sort them into groups of similar
destinations and assigns specific elevators to each passenger.
The ability to change settings for specific passengers is a further feature. For
example, passengers in wheelchairs can benefit from elevators that keep their doors
open longer.

(ii) Flow meters
In this scenario flow meters gather data in real-time and provide not just water
data, but information on outages, malfunction and quality criteria. The benefits
of monitoring and managing water systems in buildings are for example: Water
leaks can be quickly detected, maintenance costs are reduced and water is saved.
From the comfort perspective, a rapid identification of leaks minimizes damages,
while constant water quality monitoring is essential for specialized industries such
as biotechnology companies.

4.3 Improving safety and security
Providing safety and security to occupants is a key requirement of every building. Failure
to provide sufficient safety and security is usually not accepted.

26

4.3. Improving safety and security

(i) Fire protection
The key requirement for a fire protection system is obvious: Fire alerts have to be
processed as fast as possible. A special characteristic is the real-time processing of
the measured data. There is no need to store data permanently.
The evaluation itself could combine multiple sensor data in order to minimize
measurement errors. The use of temperature and smoke sensors has often been
proven to be useful for detecting fire in buildings [LST02]. The most important
task after detecting is to provide information and warning without delay. Alerting
and updating operational dashboards helps to evacuate people.

(ii) Video surveillance systems
A customary video surveillance system can be increased in value by integrating it
into the framework of the reference building. Video recordings can be triggered
based on detected motion, which on one hand simplifies the storage process and
on the other makes it easier to browse through recordings. Additionally, video
cameras can be connected with one another and automatically hand off recording
to adjacent cameras. In case of emergency, the system can provide real-time feed
to local law enforcement.

(iii) Advanced intrusion detection systems
There is a far-reaching consensus in the literature that security will shape the future
developments of IoT in general, and in particular for smart buildings [XWP14].
The transition from closed networks to the public Internet at an alarming pace,
raises all kind of security issues. If attackers for example could gain control of
devices that regulate technical floors, they could turn off fans and cause overheating
of servers. Much of the current debate revolves around the question of how do we
protect billions of devices from intrusions and interference that could compromise
personal privacy or threaten public safety.

With the development of smart building, services from the physical space are blurred
with technologies from the information technology. Vast numbers of situation-aware
sensors and devices are embedded in the reference building, which produce huge amounts
of data.
Using the example of a standard office building, different use cases in order to achieve each
key factor are presented. A closer look at the use cases shows that temporal constraints
are required in nearly every scenario.

27

CHAPTER 5
Design

The term “Design“ refers to the description of high level structures and main conceptual
elements of a software system and how they relate to each other. Thereby the structures
and elements can be described in several different views to capture specific properties of
interest.
For describing the design of the proposed framework a schematic view, a component &
connector (C&C) view, and various sequence diagrams are used. The schematic view
introduces the different components of the framework, including a description of the core
tasks. The C&C places emphasis on the pathways of interaction, such as communication
links and information flows of the system. Choosing the appropriate forms of interaction
between computational elements is considered as an essential part of the design. These
interactions represent complex forms of communication that must take place in a defined
sequence, and therefore require nontrivial implementation mechanisms. For describing
communication scenarios, sequence diagrams are used.

5.1 Conceptual Overview

The application is composed of three main components: Device Node (DN), Event Process-
ing Node (EPN), and Configuration Management Unit (CMU) (depicted in Figure 5.1).
Modularity is the key feature that has been kept in mind while developing this structure.
Each component represents an autonomous unit, which can be deployed independently.

• The Device Node (DN) acts as data supplier and monitors the environment around
it. DNs can be of various types with the minimum requirement that the interface
for communication is implemented. The exact specification of the API is discussed
in Chapter 6. In general, these devices are distributed at will and can connect
dynamically to the system over the Internet. After a successful handshake with the

29

5. Design

Monitoring Webapp

Figure 5.1: Schematic view

CMU, they are part of the system and fulfill specific observation tasks according
their possibilities.

• The Event Processing Node (EPN) incorporates the CEP in a way that it allows a
loosely coupled implementation of the concrete CEP engine in use. It follows the
adapter approach to integrate existing implementations without modifying their
source code. Similar to DNs, EPNs can be spread over the Internet randomly and
join the system as required. The underlying assumption is that the system contains
a vast number of DNs, which deliver data in an even larger amount. In order to
guarantee software qualities like performance and scalability, multiple EPNs are
deployed. The concept of horizontal scalability is applied here [VBD01]. More
resources are added to the system in the form of logical units (EPNs) to handle
a growing amount of work. In contrast, vertical scalability refers to adding more
resources to a physical unit, for example by adding more memory to a single EPN.

• The Configuration Management Unit (CMU) acts as central registry and agent
between the two other components. It holds crucial information about registered
components and is responsible for distributing rules, supply requests, and notification
changes. As previously mentioned, rules define actions for given conditions. Supply

30

5.2. Pathways of interactions

requests denote special messages sent between CMU and DNs. Their purpose is to
instruct EPNs either to start or to stop supplying data. During the registration
process, DNs inform the CMU about the kind of data each of them is able to supply.
For example, a temperature sensor located in the first floor of a building would
disclose that it is able to supply the measured value “temperature“ in the domain
“first floor“. Another type of messages exchanged between CMU and DNs are
notification changes. As soon as a rule is triggered, the corresponding action can
lead to a change in the configuration. For example, if the temperature exceeds a
certain limit, the temperature sensor could be instructed to increase the resolution
and to send measured values in shorter intervals.
The Monitoring Webapp serves as management tool for end users. On the one hand
it offers an overview of all involved components, while at the same time it enables
the user to install and uninstall rules. At the moment the user commits a new rule
to the application, a basic rule validator examines the syntax of the rule. If the
rule does not follow the specified syntax, the Monitoring Webapp informs the user
by displaying an error message. This validation ensures that committed rules can
be converted to workable CEP statements.

5.2 Pathways of interactions

The C&C view depicted in Figure 5.2 provides a picture of potential interactions of the
framework. Additionally, a summary of all used connectors is given in Table 5.1. The
rule for naming the interfaces is that the prefix is derived from the providing component.
Two kinds of communication types are identified: the client-server pattern and the
publish-subscribe pattern. The client-server pattern is build around the components
client and server, and uses the request/reply connector type. Clients initiate interactions
with servers by requesting services and wait for the results of those requests. The client
must know the identity of the server, in order to be able to invoke services. In contrast,
servers do not know the identity of clients in advance, they simple respond to the initiated
client requests.
Based upon the client-server pattern, a predominant part of the communication flow of
the framework complies to the Representational State Transfer (REST) architectural style.
Additionally to the client-server constraint, it is build around non-blocking HTTP requests.
These requests rely on the four basic HTTP verbs (POST, GET, PUT, DELETE) to tell
the service to create, retrieve, update, or delete a resource. Thereby, any information is
represented as a resource, which is accessible through a single addressing scheme based on
Uniform Resource Identifier (URI). Another formal constraint of REST is statelessness.
The communication between client and server must be stateless between requests. This
means that each request from a client must contain all necessary information for the
server that is needed for understanding the content of the request [BCK12b].
In comparison with the other off-the-shelf technology for web-based applications today,
WS* and Simple Object Access Protocol (SOAP), REST has somewhat fewer characters
than a message exchanged in SOAP. Therefore, REST has to be favoured in systems

31

5. Design

Figure 5.2: Pathways of interactions

exchanging a large number of messages. Another reason for choosing this style is
interoperability, which was identified as an enabling factor in the IoT. REST has the
advantage that only a HTTP stack is needed for message exchange. An alternative way

Component Component Connector Interface Purpose
(Provided Port (Required Port Type(s)
- Source) - Target)

DN CMU Client-server,
REST

DSNodeManageConfiguration Source re-
ceives supply
requests, and
notification
changes.

EPN DN Publish-
subscribe

EPNodeManageData Source receives
sensor data.

EPN CMU Client-server,
REST

EPNodeManageRules Source receives
rules.

CMU DN Client-server,
REST

CMUnitManageDSNs Source receives
registrations.

CMU EPN Client-server,
REST

CMUnitManageEPNs Source receives
registrations.

Table 5.1: List of connectors

to exchange messages is the publish-subscribe pattern, in which clients and servers are
decoupled. Instead of directly exchanging messages, a client (called publisher) sends a
message to a third component, called message broker. The broker filters all incoming
messages and distributes them accordingly to one or more clients (called subscriber), who

32

5.2. Pathways of interactions

are receiving the messages. As a result, the publisher and the subscriber do not know
about the existence of one another. The central meeting point is the message broker,
which is known by both the publisher and the subscriber.
The decoupling of components can be differentiated in the dimensions space, time, and
synchronization [EFGK03]. While space decoupling describes the condition in which
publishers and subscribers do not need to know each other physically (either by a network
address or a domain name), time decoupling states that the interacting parties do not
need to run at the same time. The third dimension, synchronization decoupling, stresses
the fact that publishers are not blocked while producing events and subscribers get
asynchronously notified about events.
The publish-subscribe pattern provides better scalability compared to the traditional
client-server approach [FJL+01]. One of the reasons for this is that the message broker
can be highly optimized and parallelized for processing events. Caching and intelligent
routing are further mechanisms, which improve scalability. However, to deal with millions
of devices, clustered broker nodes with load balancers are needed.

5.2.1 Communication Scenarios

In the following three main use cases are discussed and how they influence the communi-
cation flow.

Registration of nodes

As already mentioned, nodes are in line with the vitality of the IoT nature and therefore
join and leave the system as currently needed. In order to become part of the system, nodes
perform a three-way registration handshake as depicted in Figure 5.3. The handshake
starts with a request by the client sending a message with its own URL to the CMU. In
response, the server replies an ID to the client. If the URL is not already known by the
server, a new ID is generated, otherwise the corresponding ID is replied. The last part of
the handshake differs between the types of nodes. While EPNs simply acknowledge the
reception of the ID, DNs use the acknowledgment message to disclose information about
the kind of events they are able to provide. After the three-way handshake, both the
client and receiver have obtained an acknowledgment of the connection.
So far, it has been assumed that the CMU is up and running and the handshake works
successfully the first time. Should this not be the case, the client initiates the registration
process after a configurable delay again. The time interval is consequently increased
with every unsuccessfully attempt. This approach guarantees that a first failed attempt
will be tried again in a reasonable short time, while a fundamental problem burdens the
system minimally.
For terminating the connection no explicit handshake is used. As long as heartbeat
messages are send, nodes are considered as part of the system. System properties are an
integral part of the heartbeat messages. The current CPU and memory utilization are
examples for system properties, making it possible for the CMU to reason about current
capacities.

33

5. Design

Figure 5.3: Registration of nodes

Rule submission

Figure 5.4 shows the communication flow within the framework triggered through a rule
submission. After the user has entered a rule, the CMU determines which EPN should
take over the processing. For the purpose of selection, distribution policies are used. They
define the distribution behavior based on monitoring metrics. Policies can range from
very simple and domain-independent (e.g., select the EPN with the lowest average CPU
utilization) to application-specific solutions, such as policies that incorporate priorities
of certain events. By default, the framework offers three domain-independent policies.
All three follow the basic principle of selecting the lowest average value. The evaluated
metrics are average CPU utilization, average memory utilization, and number of running
rules.
Distribution policies are a well-suited tool for system engineers to influence how the
application should handle a growing number of rules. The engineer steers the scalability
of the application and may positively influence infrastructure costs and utilization via
sophisticated distribution policies.
Whenever a new rule is submitted, the CMU executes the defined distribution policy and
assigns the rule to an EPN. The EPN receives the rule and triggers multiple preparation
steps sequentially. The first is to validate the syntactic correctness and to parse the
declarative defined rule. The outcome of the parsing process is further transformed into
one or more equivalent CEP engine statements. After preprocessing successfully, the
statements will be installed at the CEP engine.
The free choice of CEP engines was identified as one of the main objectives of the
proposed framework, which is precisely one reason why all these preprocessing tasks are

34

5.2. Pathways of interactions

not executed at the CMU centrally. If that were the case, the CMU would be required,
to care about all the individual preprocessing tasks for all the different CEP engines.
This would clearly limit the interoperability of the framework. A pleasant side effect is
that the load of the CMU is reduced.
Another outcome of the rule transformation are so called event data sources. They are
used for identifying events by two dimensions (type, domain). The concept of event data
sources is discussed in more detail in Section 5.3. For describing the communication flow
it is sufficient to know that the identified event data sources are the basic ingredients for
the message broker. Hence, the next step of the communication flow is the subscription
of the EPN at the message broker by the mean of event data sources.
In order to meet the more challenging requirements in respect of constraint devices and to
avoid unnecessary data transmission, DNs should emit events only if explicitly requested.
For that purpose the event data sources are also send to the CMU, which in turn informs
all potential data suppliers. It searches the database for registered DNs that comply to
the event data sources and sends them so called supply requests.
After completing all these steps, the rule is successfully installed, which means the rule is
registered at the CEP engine and the DNs supply the system with data.

Figure 5.4: Rule submission

5.2.2 CEP triggers rule

Whenever a CEP statement is triggered, the EPN retrieves the associated rule from
an in-memory repository and creates a so called notification change. This message is

35

5. Design

transmitted to the CMU, in order to instruct affected nodes. Notification changes are
intended to adopt the configuration of nodes. This principle is the foundation that enables
developers to generate proactive applications. Figure 5.5 shows how the framework reacts
to a triggered rule.

Figure 5.5: CEP triggers rule.

5.3 Data & Event Model

As outlined in Chapter 2 a primary goal of the IoT is to create situation awareness
and enable applications, machines, and users to better understand their surrounding
environments. The perceptiveness enables applications to take rational decisions and to
respond to the dynamics of their environments. The basis for decisions is the correct
interpretation of the observation and measurement data. That is precisely the point why
the framework proposes a data & event model. Measured values like temperature, air
pressure, light, and sound are just a few examples of different measured quantities the
framework has to deal with. In addition to the diversity of measured values, mostly, their
occurrences strongly vary in their quality, which makes the task of processing, integrating,
and interpreting a non-trivial challenge.
To address this challenges, the framework proposes a data & event model that incorporates
the basic characteristics of IoT data. The distinctive attributes are identified by Barnaghi
et al. [BWDW13] and summarized in Table 5.2. As shown, the data model should for
example take time and location information into account when reporting a measured
value such as temperature thereby adding temporal and spatial information to simple
values.
Another aspect that should be kept in mind during the process of defining a data &
event model, is the dependency of the rule language. The rules must be able to evaluate

36

5.3. Data & Event Model

the same attributes, such as type (temperature, air pressure, etc.), location (location
information), time (timestamps, freshness of data), and value (measurement value).

Attribute IoT Data
Size IoT data is often very small. Meta-data

(e.g., measuring unit) can be significantly
larger than the data itself.

Location dependency IoT data is most of the time location depen-
dent. Rather, location information improve
the informative value of device and sensor
data.

Time dependency IoT data is time critical. Timestamps are
needed to support requirements with time
constraints.

Life span IoT data is usually short lived or transient.
Number The quantity of data is often very large.

Table 5.2: Characteristics of IoT data [BWDW13]

Based on these considerations, the data model is build upon three core data types:
EventType, Domain, and ModificationAdvice.
By design these data types incorporate the main attributes for events, namely type,
value, location, and time, which are identified as main properties for CEP in the context
of IoT. Figure 5.6 depicts the hierarchy of the data model and how the core data types
influence the model. The core data types are denoted as abstract classes, which points to
the fact that they are not used directly, but serve as basis for further implementations.
Developers and system architects can extend these types, and consequently customize
their applications.

Figure 5.6: Data & Event Model containing the three core data types: EventType,
Domain, and ModificationAdvice

37

5. Design

The core data types are discussed in more detail in the enumeration below. Special
attention is paid to their intended usage.

• EventType contains values, either measured, calculated or detected by the compo-
nent DN. Different instances are used to deal with the multi-modal characteristic of
sensors, whereby each instance defines exactly one measured type. For example, the
physical units temperature and air pressure would represent two distinct instances.
Using the framework, applications have the free choice of defining instances of
EventType and extend them with custom meta-information. Sometimes it may be
necessary to extend them with meta-information like measuring unit. For example,
regarding temperature it makes a difference whether the measurement unit is degree
Celsius or degree Fahrenheit.
Within an application, developers should ensure that all nodes share a common
understanding about the EventType in use.

• Domain contains origination information to precisely determine the provenance
of items. One possible use case is the classification of event types according their
geographical location. Conceivably they are only of interest if they belong to a
specific domain.
Similar to EventType, applications can define arbitrarily instances of Domain in
order to customize the system. For example, if an application is written to observe
a building, individual floors could be designed as single instances.

• ModificationAdvice contains instructions to change the configuration and behavior
of the system. The delivery advice for DNs send by the CMU is an example of an
built-in ModificationAdvice. It instructs sensors to start delivering the requested
data.

• Event is composed of the two data types EventType and Domain, hereby serves as
a wrapper. The significant attributes (value, type, location, time) are included in
this envelope. While value and type are provided by EventType, Domain caries the
location information. The attribute time is included in both of them.

5.4 Rule Language
The object of this section is to define a rule language, which is largely simplified and
optimized for the needs of the proposed framework in particular and for the requirements
of IoT in general. An important aspect is to reduce the complexity and administrative
effort of writing rules. End users should benefit from a clear and intuitive grammar in
terms of punctuation. It supports natural and domain specific notions that allow the
language to morph to a concrete application domain. Another objective is to provide
interoperability between various event processing engines. It is not surprising that in
return the rule language will cover only a subset of all possibilities provided by other
event processing engines discussed in Chapter 2. Nevertheless, the framework is designed

38

5.4. Rule Language

to accept “native“ grammars, in the sense that rules can also be written in the definite
grammar of the event processing engine in use.
The definition of the rule language is divided into two parts. The first part concerns the
ability to describe a pattern of events that is of interest. It should describe precisely not
only the events, but also their causal and timing dependencies. This part is denoted as
“query“ part. The second part, the “rule“ part, considers possibilities to specify actions
that have to be taken whenever one or multiple queries are matched. This separation
increases the reusability of queries by using them in multiple rules. This will be discussed
in detail in Section 5.4.2.
Altogether, the Backus Naur Form (BNF) like notation is used to provide an approx-
imation of the grammar. John Backus and Peter Naur introduced a formal notation
to describe the syntax of a given language in the 1960s. It is used to formally define
the grammar of languages, so that there is no disagreement or ambiguity as to what
is allowed and what is not. The fundamental principle is that so called “productions“
transform non-terminal sequences into a sequence of terminals. As the name suggests,
terminals are valid words of the language, whereas non-terminals are part of the speech
and only allowed on intermediate stages. In this work, BNF is not only important to
describe the syntax theoretically, but it is also used in combination with libraries to
construct a parser for the prototype implementation mechanically.
The definition of both parts is done in an iterative approach in realizing the total scope of
the language step by step. It starts with a simple requirement and increase expressiveness
with every further requirement. The final aim is to obtain a grammar, in which both
the syntax and the semantic is well defined and all assumed requirements can be expressed.

5.4.1 Query Part

Queries are templates that match the occurrence of certain events. From the grammar
perspective, they are subdivided into several elements, including the Condition, the
Domain, and the Window clause. The Condition clause is a portion of a query that
restricts the events matched by specific conditions. The Domain clause indicates the
origin of events, and the Window clause steers the time-oriented framing conditions.
The basic structure of a query in BNF notation reads as follows (The question mark (?)
denotes zero or one occurrence):

<query> ::== ’CONDITION’ <condition> <domain>? <window>?

The keyword “CONDITION“ is used to advise about the beginning of the CONDITION
clause.

39

5. Design

Requirement Q1

The simplest requirement covers the matching of single events. It also includes the task
of evaluating values sent from DNs. An example is the following textual description:

• All events of type “temperature“ should be detected. As additional constraint, only
events should be taken into account where the temperature value is greater than
30 degrees Celsius.

As a precondition, the grammar must allow the usage of event types in order to write
expressions. For that reason, the data type EventType was introduced in the previous
Section 5.3. On the one hand, the data type is needed by sensors and devices to distribute
their measured values, on the other hand it establishes the connection to the syntax of
the grammar. The name of the corresponding EventType is used, to specify placeholders
in expressions for values sent from DNs.
For evaluation, the language supports basic arithmetic and comparison operators. Obvi-
ously, the operators =, <, >, <=, >= are used to reason about “is equal“, “is less than“,
“is bigger than“, “is less or equal than“ respectively “is bigger or equal than“. These
operators are defined between literal values and variables. Literal values represent con-
stants which may be integers or strings. The preliminary syntax is depicted in Table 5.3.

<query> ::== ’CONDITION’ <condition>
<condition> ::== <expression>
<expression>::== <property> <operator> <property>
<property> ::== (<variable> | <string> | <integer>)
<operator> ::== (’=’ | ’<’ | ’>’ | ’<=’ | ’>=’)
<variable> ::== (’A’..’Z’ | ’a’..’z’) (’A’..’Z’ | ’a’..’z’ | ’0’..’9’ | ’-’ | ’_’)+
<string> ::== (’A’..’Z’ | ’a’..’z’ | ’0’..’9’)+
<integer> ::== (’0’..’9’)+

Table 5.3: Query grammar covering requirement Q1.

Requirement Q2

Next, the Condition clause is extended by logic operators. Logic operators are used to
connect two or more Condition clauses in a way, such that the result forms a valid query.
A textual description of an example could read as follows:

• All events of type “temperature“ should be detected for which the temperature
value is greater than 30 degrees Celsius or less than 10 degrees Celsius.

The grammar supports three kinds of operations:

40

5.4. Rule Language

• NOT A negation of an item is satisfied when it is not detected.

• AND A conjunction of items is satisfied when all the items have been detected.

• OR A disjunction of items is satisfied when at least one item has been detected.

Thereby a specific ordering relation between clauses is not important. In a more formal
shape, this means that the used logic operators are associative. The extended grammar is
outlined in Table 5.4. What appears is the distinction between unary (NOT) and binary
(AND, OR) operators, and the productions regarding composite and single conditions.
Single conditions are directly translated into expressions as discussed in the previous
requirement, whereas composite conditions are build upon logical operators and eventually
are also dissolved by expressions.

<query> ::== ’CONDITION’ <condition>
<condition> ::== (<singleCondition> | <compositeCondition>)
<singleCondition> ::== <expression>
<compositeCondition> ::== (<compositeOpUnary> | <compositeOpBinary> | <singleCon-

dition>)
<compositeOpUnary> ::== <compositeFuncUnary> <compositeCondition>
<compositeOpBinary> ::== <singleCondition> <compositeFuncBinary> <compositeCondi-

tion>
<compositeFuncUnary> ::== (’NOT’)
<compositeFuncBinary> ::== (’AND’ | ’OR’)
<expression> ::== <property> <operator> <property>
<property> ::== (<variable> | <string> | <integer>)
<operator> ::== (’=’ | ’<’ | ’>’ | ’<=’ | ’>=’)
<variable> ::== (’A’..’Z’ | ’a’..’z’) (’A’..’Z’ | ’a’..’z’ | ’0’..’9’ | ’-’ | ’_’)+
<string> ::== (’A’..’Z’ | ’a’..’z’ | ’0’..’9’)+
<integer> ::== (’0’..’9’)+

Table 5.4: Query grammar covering requirement Q1 and Q2.

Requirement Q3

In the next step, the grammar of the query language is extended by the ability to evaluate
from which spatial scope an event originates. In view of this requirement in Section 5.3
the data type Domain was introduced. To recap, the data type is an autonomous entity
due to the importance of spatial information in the IoT context. By way of illustration,
the following requirement could be requested:

• All events in which the value of the type “temperature“ exceeds 25 degrees Celsius
in the premises of a building should be detected. Particular attention is given

41

5. Design

to office spaces, so the air conditioning system can provide cooling exactly where
needed.

The temporary result of the extended grammar by domain information is depicted in
Table 5.5. The keyword “FROM“ is used to advise about the beginning of the clause
Domain. Similar to event types, the name of the corresponding Domain is used to specify
placeholders for requested domains.

<query> ::== ’CONDITION’ <condition> <domain>?
<domain> ::== ’FROM’ (<variable> | <variable> ’,’ <variable>)
<condition> ::== (<singleCondition> | <compositeCondition>)
<singleCondition> ::== <expression>
<compositeCondition> ::== (<compositeOpUnary> | <compositeOpBinary> | <singleCon-

dition>)
<compositeOpUnary> ::== <compositeFuncUnary> <compositeCondition>
<compositeOpBinary> ::== <singleCondition> <compositeFuncBinary> <compositeCon-

dition>
<compositeFuncUnary> ::== (’NOT’)
<compositeFuncBinary> ::== (’AND’ | ’OR’)
<expression> ::== <property> <operator> <property>
<property> ::== (<variable> | <string> | <integer>)
<operator> ::== (’=’ | ’<’ | ’>’ | ’<=’ | ’>=’)
<variable> ::== (’A’..’Z’ | ’a’..’z’) (’A’..’Z’ | ’a’..’z’ | ’0’..’9’ | ’-’ | ’_’)+
<string> ::== (’A’..’Z’ | ’a’..’z’ | ’0’..’9’)+
<integer> ::== (’0’..’9’)+

Table 5.5: Query grammar covering requirement Q1, Q2, and Q3.

Requirement Q4

Another common use case is aggregate functions, where multiple events are grouped
together as input on certain criteria to form a single value of more significant meaning.
The definition of time windows is closely connected, in order to provide a time frame for
the aggregate function. For instance, a request including an aggregate function over a
time window could be:

• All events of type “temperature“ should be detected, where the average value
exceeds 50 degree Celsius in a time window over the last 10 minutes.

The grammar supports following aggregate functions:

• SUM The summation is the addition of a sequence of values.

42

5.4. Rule Language

• AVG The average is the sum of a list of values divided by the number of values.

• COUNT The counting finds the number of events.

• MAX The maxima finds the event with the highest value.

• MIN The minima finds the event with the lowest value.

The final grammar of the query part is depicted in Table 5.6. It is noteworthy that
both time-based and count-based window types are supported. Aggregate operators are
integrated as extra option for dissolving a single condition.

<query> ::== ’CONDITION’ <condition> <domain>? <window>?
<domain> ::== ’FROM’ (<variable> | <variable> ’,’ <variable>)
<window> ::== <windowType> ’(’ <integer> ’)’
<windowType> ::== (’WIN:TIME’ | ’WIN:LENGTH’)
<condition> ::== (<singleCondition> | <compositeCondition>)
<singleCondition> ::== (<expression> | <aggregateCondition>)
<compositeCondition> ::== (<compositeOpUnary> | <compositeOpBinary> | <singleCon-

dition>)
<compositeOpUnary> ::== <compositeFuncUnary> <compositeCondition>
<compositeOpBinary> ::== <singleCondition> <compositeFuncBinary> <compositeCon-

dition>
<compositeFuncUnary> ::== (’NOT’)
<compositeFuncBinary> ::== (’AND’ | ’OR’)
<aggregateCondition> ::== <aggregateFunc> ’(’ variable ’)’ <operator> <integer>
<aggregateFunc> ::== (’SUM’ | ’AVG’ | ’COUNT’ | ’MAX’ | ’MIN’)
<expression> ::== <property> <operator> <property>
<property> ::== (<variable> | <string> | <integer>)
<operator> ::== (’=’ | ’<’ | ’>’ | ’<=’ | ’>=’)
<variable> ::== (’A’..’Z’ | ’a’..’z’) (’A’..’Z’ | ’a’..’z’ | ’0’..’9’ | ’-’ | ’_’)+
<string> ::== (’A’..’Z’ | ’a’..’z’ | ’0’..’9’)+
<integer> ::== (’0’..’9’)+

Table 5.6: Query grammar covering requirement Q1, Q2, Q3, and Q4.

5.4.2 Rule Part

By the means of queries, it is possible to express patterns of interest. Towards a reactive
system, the gap between pattern matching and taking actions is closed. Therefore, rules
are introduced, which imply a causal relationship between the queries that trigger an
action and the task to be done. Generally, rules allow the system to respond in the case
a query is striking. The principal skeleton of a rule in BNF notation is depicted below:

Rules are subdivided into several language elements, including Query, Window and
Reaction clauses. Their names are largely self-explanatory and refer to the queries that

43

5. Design

<rule> ::== <queries> <window>? (’TRIGGERS’) <reaction>

should be matched according to the window that should be considered. Furthermore, the
keyword “TRIGGERS“ serves as introduction of the Reaction element, which in turn
servers as placeholder for the definition of reaction advices.

Requirement R1

A basic use case is the modification of configuration settings. For instance, if the
temperature in a room exceeds a certain limit, all temperature sensors could be instructed
to increase the resolution and send current values in shorter intervals. Therefore, reactions
should express which modification should be applied, not forgetting, in which domains
and to which devices. Logically, reactions are triples consisting of EventType (which type
of device), Domain (which spatial area), and ModificationAdvice (what kind of change)
as shown in Table 5.7. It should be noted that queries are determined via additional

<rule> ::== <queries> (’TRIGGERS’) <reaction>
<queries> :== <variable>
<reaction> ::== <eventType> ’,’ <domainInfo> ’,’ <modificationAdvice>
<eventType> ::== <variable>
<domain> ::== <variable>
<modificationAdvice> ::== <variable>
<variable> ::== (’A’..’Z’ | ’a’..’z’) (’A’..’Z’ | ’a’..’z’ | ’0’..’9’ | ’-’ | ’_’)+
<string> ::== (’A’..’Z’ | ’a’..’z’ | ’0’..’9’)+
<integer> ::== (’0’..’9’)+

Table 5.7: Rule grammar covering requirement R1.

names, which are issued during registration time. These names serve as unique identifiers
in the rule grammar. As a positive consequence of this concept, queries could be reused
in multiple rules.

Requirement R2

In addition to the current expressiveness, the rule grammar is further extended to handle
timing requirements between queries. Of interest here is how to express “followed by“
relationships.
In order to implement this requirement, the production “query“ is extended by the symbol
"->". It says that the query noted on the left-hand side must occur temporal before the
query stated on the right-hand side. If this is the case the extended query is matched
and triggers the reaction of the rule. Our target is therefore achieved by specifying an

44

5.4. Rule Language

ordering of the queries. The time frame is once again defined by the window concept as
it has been already discussed before. The final rule grammar is shown in Table 5.8.

<rule> ::== <query> <window>? (’TRIGGERS’) <reaction>
<query> ::== (<variable> ’->’ <query>) | <variable>
<reactions> ::== (<reaction> ’;’ <reactions> | <reaction>)
<reaction> ::== <eventType> ’,’ <domainInfo> ’,’ <modificationAdvice>
<eventType> ::== <variable>
<domain> ::== <variable>
<modificationAdvice> ::== <variable>
<window> ::== <windowType> ’(’ <integer> ’)’
<windowType> ::== (’WIN:TIME’ | ’WIN:LENGTH’)
<variable> ::== (’A’..’Z’ | ’a’..’z’) (’A’..’Z’ | ’a’..’z’ | ’0’..’9’ | ’-’ | ’_’)+
<string> ::== (’A’..’Z’ | ’a’..’z’ | ’0’..’9’)+
<integer> ::== (’0’..’9’)+

Table 5.8: Rule grammar covering requirement R1 and R2.

45

CHAPTER 6
Implementation

This chapter discusses the prototypical implementation of the design described in Chap-
ter 5. First, a closer look at the development environment is taken, including frameworks
and common design patterns. Second, low-level implementation details are discussed in
order to gain deeper insights into various aspects of the prototype and its realization.

6.1 Frameworks and implementation patterns
The technological foundation of the prototype is the programming language Java that
looks back on a history of more than twenty years. The long history and wide adoption
have created a comprehensive ecosystem of frameworks, libraries, and documentations,
for supporting and accelerating the development process. Tools of this ecosystem are
Spring and Vaadin, which are intensively used for the prototype implementation.

6.1.1 Spring framework

The Spring framework is an application framework and Inversion Of Control (IoC) con-
tainer for the Java platform. It was initially created as an alternative to Enterprise
JavaBeans (EJB), which is a server-side component framework taking care of common chal-
lenges, developers encounter when implementing an enterprise application. According to
official sources from Oracle1, EJB enables rapid and simplified development of distributed,
transactional, secure, and portable applications based on Java technology [Cor16b]. In
general, Spring pursues the same intention.
The second basic concept of Spring, the IoC mechanism, is a design principle in which
classes of a program receive dependencies (other classes) from a generic framework.
This process is essentially the opposite of traditionally procedural approaches, where
classes and methods are explicitly responsible for their dependencies. Fowler [Fow16]

1https://www.oracle.com/index.html

47

https://www.oracle.com/index.html

6. Implementation

suggests renaming the principle to Dependency Injection (DI) due to the fact that the
term IoC is not sufficiently specific for object-oriented programming. Hence, DI is a
form of IoC, where object B is passed into object A either through constructors, setters,
or service look-ups, which the object A will “depend on“ in order to behave correctly.
The advantage is that it helps to decouple components and to foster the effective reuse
of software items (classes, modules, etc.). During development, an interface, which is
implemented by object B, ensures that functionality in form of methods is available. The
definition of which object (B, C, D, ...) is injected, is done externally. For example, if it
is needed to change the properties of object B or the object B itself, no changes on the
code are required, all adjustments are done via an external configuration file.
The Spring framework comes in a modular approach, which allows developers to choose
parts they are interested in. Presently, the Spring framework consists of features that
are split into about twenty modules satisfying all kinds of requirements. The downside is
that these modules make the process of finding the appropriate configuration quite time
consuming for unexperienced developers. In order to address this issue, the Spring team
provides a solution under the name Spring Boot. It is an add-on to Spring framework
and facilitates the development process of stand-alone, production-grade applications.
Thereby, Spring Boot bundles modules, known as starters, which possess well-known
interoperability.
Another advantage of Spring is that it does not need an application server. Instead, the
application is deployed in a web container such as Tomcat or Jetty.
As a consequence, Spring Boot is preferred over EJB for the prototype implementation,
complemented by Maven2 as build and dependency management tool. Working with
Spring Boot makes the set up of the project rather simple and clear. A handful of starters
is added to the project descriptor and all parent dependencies with configured versions
are resolved automatically. Since Maven is used, the file pom.xml represents the project
descriptor. It acts as recipe to build the project [Sof16a].
In the following common Spring Boot issues are presented and discussed, which occur in
slightly different forms more than once. Instead of repeating the same concept multiple
times, a general description is presented, which serves as reference during the detailed
discussion of the prototype.

6.1.2 Entry-Point

Out of the box, Spring Boot uses a public static void main entry-point that launches
an embedded web server. By using the annotation @SpringBootApplication, Spring
Boot attempts to configure the application based on information largely derived in a
convention-over-configuration manner. The framework scans the classpath and draws
the appropriate conclusion regarding the configuration. For example, if the framework
detects the implementation of an in-memory database on the classpath, and no database
connection has been configured manually, then it auto-configures an in-memory database.
Listing 6.1 depicts the entry-point in a Spring Boot application.

2https://maven.apache.org/

48

https://maven.apache.org/

6.1. Frameworks and implementation patterns

1 import org.springframework.boot.SpringApplication;
2 import org.springframework.boot.autoconfigure.SpringBootApplication;
3 @SpringBootApplication
4 public class Application {
5
6 public static void main(String[] args) {
7 SpringApplication.run(Application.class, args);
8 }
9 }

Listing 6.1: Implementation of a Spring Boot entry-point to launch an embedded web
server.

Persisting Data

For data management, Spring Boot provides an extensive support for working with
SQL databases. The functional range stretches from direct Java Database Connectivity
(JDBC) access to complete object-relational mapping (Object-relational mapping (ORM))
technologies. Boot is leveraging the module Spring Data for ORM and offers the
convenient concept of Repository, which generates database queries directly from the
method names. Convention-over-configuration is once again the key factor. The query
builder mechanism parses method names and searches for specific phrases like find. . . By,
read. . .By, and so on. Thereby, the first By acts as delimiter and indicates the criteria.
For example, the declaration of the method findByLastname(@Param("lastname")String
lastname) in the entity Person generates the implementation of a query to retrieve all
persons with an specific name. The entire implementation is automatically provided by
the Spring framework.
Subsequently, it is sufficient to extend the entity class by CrudRepository instead of
Repository, to become a full-fledged Data Access Object (DAO). It provides sophisticated
CRUD (create, read, update, delete) functionality for the class that is being managed, all
possible without writing a single line of code. Listing 6.2 shows a class in its specialized
role as DAO. The interface is extended by the @CRUDRepository interface to instruct
the framework about its role.

1 import org.springframework.data.jpa.repository.Query;
2 import org.springframework.data.repository.CrudRepository;
3 import org.springframework.data.repository.query.Param;
4 import configuration.management.model.DeviceDLO;
5
6 public interface DeviceNodeRepository extends CrudRepository<DeviceDLO, Long> {
7
8 public DeviceDLO findByName(@Param("name") String name);
9
10 public DeviceDLO findByAuthority(@Param("authority") String authority);
11 }

Listing 6.2: Example of Spring Boot repository interface

49

6. Implementation

Implementing the API

The majority of the prototype’s communication follows the REST architectural style. It
is a set of constraints, such as the utilization of a client server architecture, a uniform
interface structure, and the principle of being stateless. REST does not make the use of
HTTP compulsory, but it is most commonly and it is also the choice for the prototype.
All three types of components (DNs, EPNs, CMUs) expose their functionality via an
API. The implementation of the APIs is done by means of controllers, which Spring
maps to HTTP resources. The mapping including data serialization and binding is
done by Spring as soon as it detects the annotation @RestController. Many annotations
which help developers to refine the HTTP resource exist. For example, @RequestBody
annotated parameters access the HTTP request body with the convenience that Spring
creates the object automatically. Another essential setting is stated by the annotation
@RequestMapping. It defines the HTTP verb and the HTTP path to access the resource
properly.
Regarding serialization, Spring offers built-in data converters to serialize objects to
JavaScript Object Notation (JSON) for consumer of the API. Listing 6.3 depicts all the
functionalities described in the lines above.

1 @RestController
2 public class CMUManageDeviceImpl implements CMUManageDevice {
3
4 @Autowired
5 private DeviceNodeTransformer transformer;
6
7 @Autowired
8 private DeviceNodeRepository repository;
9

10 @Override
11 @RequestMapping(value = "/registrations/devices", method = RequestMethod.GET)
12 public @ResponseBody ResponseEntity<List<Address>> getAll() {
13
14 List<Connection> dns = transformer.toRemote(Transformer.makeCollection(

repository.findAll()));
15
16 return new ResponseEntity<List<Connection>>(devices, HttpStatus.OK);
17 }
18 }

Listing 6.3: Implementation of an API using various Spring Boot annotations for
refinement.

The business logic behind the methods of the APIs is structured in so called Action tasks,
which exhaust the Chain of Responsibility (CoR) design pattern. The CoR belongs to
the group of behavioral patterns. Gamma et al. [GHJV95] describe these patterns as
complex communication patterns, which are difficult to follow at run-time. CoR processes
a request through a series of activity objects to decouple sender and receiver of a request.

50

6.1. Frameworks and implementation patterns

The activities participating in the chain decide if they serve the request, otherwise they
forward the request to the next in the chain. The most valuable asset for our scenario
is the capability to construct the set of activities dynamically. By reusing activities in
different chains, reusability, a great mantra of software engineering, is achieved. Figure 6.1
depicts the core structure of the CoR pattern as it is used in the prototype. The abstract
class Activity acts as chain link between concrete activities.

Figure 6.1: Structure of the design pattern Chain Of Responsibility. The class Activity
acts as chain link between concrete implementations.

A list of Activity tasks used throughout the prototype including a description is depicted
in Table 6.1.

Packaging

Spring Boot pursues a build mechanism that creates executable jars with an embedded
container (Tomcat or Jetty) during build time. It aims to package a project into a
lightweight, runnable artifact that is ready for distribution, straightaway. As already
mentioned, Maven is used as build tool for the prototype. By executing the command mvn
clean install, Spring Boot intercepts the jar build task and includes all the dependencies
and objects like the web server into the resulting archive. This one archive file runs the
entire Spring application with no fuss: no build tool required, no setup, and no web-server
configuration [Lon16].

6.1.3 Vaadin

Vaadin enables developers to build user interfaces in a way that facilitates a component
based approach. It provides a library of ready-to-use components, supplemented with a
framework to create own components. Vaadin runs a servlet in a Java web server, serving
HTTP requests. Additionally, Google Web Toolkit (GWT) is used for low-level rendering
tasks at the browser. GWT is largely invisible for applications that do not require any
custom GWT components.
While conventional HTML pages receive content with page updates, Vaadin employs

51

6. Implementation

Label Activity Task description
A1 ValidateAddress Activity validates addresses. It ensures that IP addresses

(x.x.x.x, whereby x is between 0 and 255) and port
number (x, whereby x is between 1024 and 65535) is in
a valid range.

A2 ValidateDatasource Activity validates event data sources regarding syntax
and existence.

A3 StartDelivery Activity starts delivery procedure. First, it monitors if
the maximum number of delivery tasks is not exceeded.
Second, it determines, if a new delivery task has to be
started and stores relevant information.

A4 StopDelivery Activity stops delivery procedure. It stops the thread of
the delivery task and removes relevant information from
the database.

A5 SetConfiguration Activity sets configuration attributes, whereby existing
attributes are overwritten.

A6 StatementValidation Activity validates syntax of statement (query or rule)
against our defined grammar.

A7 StatementTransformation Activity transforms statement (query or rule) into an
EPL representation.

A8 StatementPersistence Activity stores statement (query or rule) into the
database.

A9 StatementDeletion Activity deletes statement (query or rule) from a
database. Deletion is only possible, if statement is not
active.

A10 StatementActivation Activity activates statement (query or rule). EPLs are
registered on the event processing engine.

A11 StatementDeactivation Activity deactivates statement (query or rule). EPLs
are unregistered from the event processing engine.

A12 SubscribeTopic Activity subscribes to topic hosted by message broker.
A13 UnsubscribeTopic Activity unsubscribes from topic hosted by message

broker.
A14 NodePersistence Activity persistence component (EPN or DN) into the

database.
A15 DataSourcePersistence Activity persistence data source of EPN into the

database.
A16 Heartbeat Activity processes heartbeat sent by a node. Message

contains workload information regarding the node.

Table 6.1: List of concrete Activity tasks

extensively AJAX. AJAX stands for Asynchronous JavaScript and XML and enables
pages to send requests to the server using an asynchronous mechanism. This way, only
small parts of the page can be updated as needed [Grö11].
The Model-View-Presenter (MVP) is a pattern, which is inextricable linked to the process
of developing applications with Vaadin. In contrast to the similar Model-View-Controller

52

6.1. Frameworks and implementation patterns

(MVC) pattern, the view does not interact directly with the model. All invocations
from the view are delegated to the presenter. The inverse communication takes place
through an interface, which helps to simplify the mocking of the view for testing purposes.
In general, the MVP isolates the view implementation better than in MVC, which is
beneficial in unit testing of both presenter and model [Grö16]. Figure 6.2 illustrates the
basic structure of the MVP pattern.

Figure 6.2: MVP structure (adapted from [Grö16]). View and model do not interact
with each other directly.

6.1.4 JMS

Java Messaging Service (JMS) is a Java-based interface that was developed to provide a
means for Java programs to access messaging systems. Messaging allows to integrate
applications in a loosely couped and scalable manner. A component sends a message to
a destination, and the recipient can receive the message from the destination without
knowing anything about the receiver.
Messaging systems are classified into different models that specify which client receives
a message. The publish-subscribe messaging model is used for the exchange of events
(messages) between the components EPNs and DNs. This model is preferred, because
it is very likely that multiple EPNs have to receive the same event (message). In other
words, a message has multiple consumers. The central point in the publish-subscribe
model is the topic, which operates somewhat like a bulletin board [Ora16b].
JMS applications are portable across different JMS providers, because the JMS architec-
ture abstracts provider-specific information. The core elements of the JMS architecture
are depicted in Figure 6.3. The Connection Factory is the object a client uses to create a
connection to a provider. It encapsulates a set of connection configurations. Destinations
represent the abstract object a client uses to specify the target of messages it produces
and the source of messages it consumes. The topic in the publish-subscribe messaging

53

6. Implementation

model is an example for a Destination. While the Connection represents the physical
connection between a client and a provider, the Session is a single-threaded context for
producing and consuming messages [Ora16c].

Figure 6.3: JMS API Architecture [Ora16c]

6.2 Prototype implementation

The project layout (Figure 6.4) of the prototype follows the component separation defined
in Chapter 5, with the addition that a common module is applied in order to share code.
For the sake of convenience, the prototype also provides a web-application mainly for
management purposes. The classes for the web-application are outsourced in a separate
module. The module functionality of Maven is applied to leverage project inheritance.
In the following each module is discussed in detail.

6.2.1 Common Module

The common module encapsulates all functions that lay the foundation for the remaining
components. In principle, all listed classes here provide some sort of utility functionality.

Prototype
Common-module
DN-module
EPN-module
CMU-module
Monitoring-Webapp

Figure 6.4: Project structure. Each item represents a Maven module with Prototype as
parent.

54

6.2. Prototype implementation

The main objective of this module is to become more agile in case of changes and
extensions.
Apart from the data model (Data, EventType, Domain, and ModificationAdvice), the
module consists a list of enumerations for different purposes. The most significant of these
is the enumeration RESOURCE_NAMING, which serves as helper item to simplify the
management of exposed methods via resource paths. The predefined constants combine
HTTP path and HTTP verb in order to access the underlying method. An extract from
the enumeration is depicted in Listing 6.4.

1 CM_REGISTER_DEVICE("/registrations/devices", RequestMethod.POST),
2
3 CM_HEART_BEAT_DEVICE("/registrations/devices/{id}", RequestMethod.PUT)

Listing 6.4: Extract from the enumeration RESOURCE_NAMING

Another noteworthy aspect of the common module is the abstract class Transformer that
supports the efficient transformation of objects. Transformation is needed in different
scenarios, such as, converting between communication and persistent objects. The
corresponding abstract class is illustrated in Listing 6.5.

1 public abstract class Transformer<LOCAL, REMOTE> {
2 public abstract LOCAL toLocal(REMOTE remote);
3
4 public abstract REMOTE toRemote(LOCAL local);
5
6 public Collection<LOCAL> toLocal(List<REMOTE> remotes) {
7 return remotes.stream().map(r -> toLocal(r)).collect(Collectors.toList());
8 }
9 public List<REMOTE> toRemote(List<LOCAL> locals) {
10 return locals.stream().map(l -> toRemote(l)).collect(Collectors.toList());
11 }
12 }

Listing 6.5: Abstract class Transfomer

The module also contains the class XMLParser that implements methods for marshalling
and unmarshalling of Extensible Markup Language (XML) files. Marshalling means that
the state and the codebase of an object is recorded in such a way that when unmarshalling
is applied, a copy of the object is obtained [RSL99]. The Java API for XML Processing
(JAXP) is used for parsing. Thereby, the document is converted into a tree of nodes that
represent the full content of the file. Once the tree of the document is created, a program
can examine and manipulate the nodes at will [Fla05].
The parser is especially needed to read and write the bootstrapping file. As the name
suggests, it plays an important role in the bootstrapping process by containing basic
details. According to the design of the prototype, all nodes (DNs, EPNs) need to
register at the CMU. The information required for registration, are obtained via the
bootstrapping file, which is stored locally. The structure of the configuration file is

55

6. Implementation

defined via a XML Schema Definition (XSD). Extracts from the file are depicted in
Listings 6.6, 6.7, and 6.8. The root element bootstrapping contains two main ingredients
events and addresses. Both elements are basically wrappers to surround a list of elements
respectively (Listing 6.6).

1 <xs:element name="bootstrapping">
2 <xs:complexType>
3 <xs:all>
4 <xs:element ref="events" />
5 <xs:element ref="addresses" />
6 </xs:all>
7 </xs:complexType>
8 </xs:element>

Listing 6.6: Extract from bootstrapping file: Core element

The element addresses holds crucial connection information (host, port), for the com-
munication setup to other components of the system. Especially, address information
regarding the CMU and the location of the message broker are essential to perform basic
tasks such as the registration handshake (Listing 6.7).

1 <xs:element name="addresses">
2 <xs:complexType>
3 <xs:sequence maxOccurs="unbounded" minOccurs="0">
4 <xs:element ref="address" />
5 </xs:sequence>
6 </xs:complexType>
7 </xs:element>
8 <xs:element name="connection" >
9 <xs:complexType>

10 <xs:sequence>
11 <xs:element type="xs:string" name="name"/>
12 <xs:element type="xs:string" name="host"/>
13 <xs:element type="xs:string" name="port"/>
14 </xs:sequence>
15 <xs:attribute type="Component" name="component" />
16 </xs:complexType>
17 </xs:element>

Listing 6.7: Extract from bootstrapping file: Addresses

The structure of the second wrapper element (events) is largely self-explanatory as it
represents the data model. The bootstrapping file contains all events that the respective
node supports (Listing 6.8).

1 <xs:element name="events">
2 <xs:complexType>
3 <xs:sequence minOccurs="0" maxOccurs="unbounded">
4 <xs:element ref="event" />

56

6.2. Prototype implementation

5 </xs:sequence>
6 </xs:complexType>
7 </xs:element>
8 <xs:element name="event">
9 <xs:complexType>
10 <xs:sequence>
11 <xs:element ref="deviceType" />
12 <xs:element ref="domain" />
13 </xs:sequence>
14 </xs:complexType>
15 </xs:element>

Listing 6.8: Extract from bootstrapping file: Events

6.2.2 DN Module

The class diagram (Figure 6.5) illustrates the structure of the module by showing the
module’s main classes, their attributes, operations, and the relationships among them.
It is important to note that classes marked with yellow background, originate from
the Spring framework, whereas transparent classes are part of the prototype. For the

Figure 6.5: Class diagram of the DN module

57

6. Implementation

registration process, the IP address and the port number of the corresponding node is
needed. It makes sense for convenient reasons to determine this information on the fly in
order to keep configuration effort as small as possible. To this end, the module polls its
own connection information (IP address and port number) as soon as the application
is started. The class ApplicationStartUp represents a listener, which is registered as an
instance of the ApplicationListener in the Spring context. After Spring has started up and
has finished its initializing, it signals that state to all instances of the ApplicationListener.
In response, code is executed to retrieve IP address and port number of the running
application.
For the remaining time-dependent activities, the class ApplicationScheduler is imple-
mented. During start up, it schedules the registration procedure in all its variations from
a seamless registration till a procedure at which the duration between two retries will
be increased continuously. Afterwards, it ensures that heartbeat messages are sent to
the CMU during normal operation. The interval at which the scheduler carries out the
activities can be modified via the fixedRate attribute.
The annotation @EnableScheduling plays an important role, because it enables Spring’s
scheduled task execution capabilities. By default, all bean methods annotated with
@Scheduler are delegated to a thread pool executor with pool size ten [Sof16b].
The interface SchedulingConfigurer offers an entry-point to obtain more control over
specific scheduling settings. By using a custom implementation of the Trigger interface,
the calculation of the next execution time is done on the fly, which enables variation. In
order to keep an overview of the activities the enumeration STATUS_TYPE serves as
helper. Listing 6.9 shows an excerpt of the class ApplicationConfiguration, showing the
definition of a custom Trigger.

1 @Override
2 public void configureTasks(ScheduledTaskRegistrar taskRegistrar) {
3
4 taskRegistrar.setScheduler(applicationExcutor());
5 taskRegistrar.addTriggerTask(new Runnable() {
6 @Override
7 public void run() {
8 lastExecution.setTime(execution.getTime());
9 lastStatus.setCurrent(status.getCurrent());

10 applicationScheduler.carryOutActivity();
11 }
12 }, new Trigger() {
13 @Override
14 public Date nextExecutionTime(TriggerContext triggerContext) {
15 return calculateNextExecutionTime(lastExecution, lastStatus);
16 }
17 });
18 }

Listing 6.9: Extract from the class ApplicationConfiguration

58

6.2. Prototype implementation

Furthermore, class diagram 6.5 shows the provided interface DSNodeManageConfiguration.
The module receives all kind of modification advices via this interface. The individual
methods and their mapping to the associated HTTP verb and HTTP resource are
summarized in Table 6.2. As stated at the beginning of this section, the business
logic behind these methods are realized by a chain of Activity tasks. If the node gets
instructed to supply an EPN instance with data (via modification advice), the device
stores the instruction as DeliveryTask. Accessing the stored instructions is done via
DeliveryTaskRespository. Concurrently, the delivery task is executed in an extra thread
as long as the stop delivering advice is received.

Method HTTP path Action(s) Description
HTTP verb

startDelivery /delivery/start
POST A1 A2 A3

Instruction to start delivery process.
HTTP body contains the Modification-
Advice.

stopDelivery /delivery/stop
POST A1 A2 A4

Instruction to stop delivery process.
HTTP body contains the Modification-
Advice.

setConfiguration /configurations
POST A1 A5

Instruction to set configuration. HTTP
body contains ModificationAdvice.

Table 6.2: Overview of all supported HTTP paths and HTTP verbs of the DN module.
Every combination of path and verb is associated with a respective Java method in the
DSNodeManageConfiguration.

6.2.3 EPN Module

Figure 6.6 shows the class diagram of the EPN module, emphasizing the core elements of
the implementation. Once again, classes with yellow background are associated with the
Spring framework.
One design goal of the framework is the openness towards different event processing
engines. The system should be independent on how its engines are initialized and
employed. This specifically means, that the implementations of the event processing
engines and all related classes are encapsulated, using the design pattern abstract factory.
The pattern guarantees that only families of related objects work together [GHJV95].
Every participating event processing engine is plugged into the system by a concrete
implementation of the interface EngineFactory. The prototype uses Esper as the event
processing engine and the class EsperEngineFactory creates the family of Esper relevant
classes. The family compromises the classes EsperEngine, EsperEngineListener, and
EsperLanguageTransformer, which are concrete implementations of the corresponding

59

6. Implementation

Figure 6.6: Class diagram of the EPN module

abstract classes Engine, EngineListener, and LanguageTransformer. The module deals
only with the abstract classes and without any information on the implementation. The
actual implementation of EngineFactory that the module applies is determined at runtime
and can therefore vary from node to node.
The class Engine conducts the communication with the actual event processing engine.
The communication content is primarily focused on statement registering and event
passing.
In general, rules are passed to the system through the API EPNodeManageRules. Ta-
ble 6.3 lists the methods of the API EPNodeManageRules, once again with the familiar
pattern of representing the business logic as a chain of Activity tasks. Once a query or
rule is received, the syntactic correctness is validated by the LanguageFactory. In case of
success, it instantiates objects of the types Query and Rule, which encapsulate all parts
of the fragmented statement. For this purpose the library ANother Tool for Language
Recognition (ANTLR) [Par16] is engaged, which takes as input the grammar and gener-
ates a parser that can build and walk parse trees. The aforementioned objects Query

60

6.2. Prototype implementation

and Rule are the output of the tree traversal. Afterwards, the LanguageTransformer
transforms the relevant statement parts of these objects into an interpretable statement
of the concrete event engine in use. The next part (Transformation process) discusses in
detail, how the EsperLanguageTransformer performs the translation to a EPL.
Rules instruct the event processing engine to find notable events. If such a condition is
detected, the class EngineListener fires and initiates associated downstream activities.
Depending on the action part of the rule, the next steps are started. Typically, the CMU
is contacted in order to distribute modification advices. The event processing engine is

Method HTTP path Action(s) Description
HTTP verb

registerRule /registrations/rule/{name} Registration of rule.
POST A6 A7 A8 HTTP body contains

rule.
registerQuery /registrations/query/{name} Registration of query.

POST A6 A7 A8 HTTP body contains
query.

withdrawRule /deregistrations/rule/{name}
DELETE A9 Deregistration of rule.

withdrawQuery /deregistrations/query/{name}
DELETE A9 Deregistration of query.

activateRule /activations/rule/{name}
GET A12 A10 Activation of rule.

deactivateRule /activations/rule/{name}
GET A13 A11 Deactivation of rule.

Table 6.3: Overview of all supported HTTP paths and HTTP verbs of the EPN module.
Every combination of path and verb is associated with a respective Java method in the
EPNodeManageRules.

fed by the second API ENodeManageData. The message broker with its topics acts as
data supplier.
For persisting rules and queries the repository StatementRepository is employed. The
underlying database is realized as in-memory database (HyperSQL DataBase). The time
critical parts share a lot of commonalities with the DN module discussed above. The
ApplicationScheduler in combination with STATUS_TYPE are once again responsible
for the start up and the heartbeat procedure (Figure 6.5).

61

6. Implementation

Transformation process

The basis for the transformation process is the result produced by the ANTLR tree parser.
The declarative string representation of rules are converted into structured objects. In
the first place, these objects are not suitable for the Esper event processing engine. The
remaining gap consists of transforming the query and rule objects back into a declarative
representation, which complies to the syntax of EPL. An conceptual overview is depicted
in Figure 6.7. The syntactical correctness of the transformation is verified by registering

Figure 6.7: Conceptual overview of the transformation process between rule/query
grammar and EPL

the output at the Esper engine. If the statement does not comply to the grammar,
the statement is rejected immediately. However, the guarantee that the transformation
preserves the semantically meaning of the expression is much more challenging. The
formal proof that rules and queries of our rule language are semantically equivalent to
the result of the transformation is not part of this thesis. Nonetheless, more details of
the transformation process are presented. The pattern depicted in Listing 6.10 is used as
a basic structure for the query transformation.

1 insert into QueryEvent select ’[query_name]’ as name from Event [window] as e where
[where_condition] [where_domain]

Listing 6.10: Basic structure of an EPL statement for transforming a basic query.

The basic structure contains an insert into clause, which specifies the result of the select
clause as an event in a further stream. A new event is inserted into the stream called
QueryEvent as soon as the select clause is matched. The insertion into a further stream
is needed in order to reflect the statement hierarchy consisting of queries and rules. The
placeholders used in the pattern and the special case, where two patterns (statements)
for the transformation are used, are discussed in the following.
The pattern contains four placeholders, which are filled during the transformation process.
The first one, query_name, is used as query identifier in the stream QueryEvent. While
window is one-to-one taken from the input, where_condition represents restrictions
regarding properties of events we are interested in and how these properties are logical
combined. Restrictions regarding Domain are reflected by the placeholder where_domain.
In general, they are AND-linked at the end of the EPL statement.
If the rule is equipped with an aggregate function, a single EPL is not enough for mapping
the requirement. In such a case, two streams of events are used. The pattern structure
for the two EPLs is depicted in Listing 6.11.

62

6.2. Prototype implementation

1 insert into AggregatedValue select [aggregated_value] as value from Event as e
where [where_condition] [where_domain]

2
3 insert into QueryEvent select ’[queryName]’ as name from AggregatedValue [window]

where [aggregated_operation]

Listing 6.11: Basic structure of an EPL statement for transforming an advanced query.

The first EPL inserts new events in the stream AggregatedValue as soon as the placeholders
for where_condition and where_domain are fulfilled. The placeholder aggregated_value
holds the values, which are the ingredients for the aggregation function.
The second EPL announces Esper to perform the desired aggregate function on a time
window defined in the placeholder window, once again, one-to-one mapped from the
query. The result is also inserted into the stream called QueryEvent.
So far, a way was found to transform queries of the grammar into EPL statements
of the Esper event processing language. It serves as basis for the remaining step, the
transformation of rules. To recap, the transformation of queries is done by creating new
events and inserting them into different streams. In doing so, the EventListener is never
informed about a triggered statement, a fact that corresponds fully with the expected
behavior. Only if the superordinate rule is matched, the EventListener should receive
a notification. For this purpose, an EPL pattern is used that looks disparate to the
previous structure (Figure 6.12).

1 select * from pattern [every (a=QueryEvent(name = ’[query_name1]’) -> b=QueryEvent(
name = ’[query_name2]’)) where [window]]

Listing 6.12: Basic structure of an EPL statement for transforming a rule.

The pattern uses the two important operators followedBy (→) and every for pattern
matching in Esper. The followedBy operator specifies that first the left hand expression
must turn true and only then the right hand expression is evaluated, ensuring that event
a (query_name1) “causes“ event b (query_name2). In addition, the pattern evaluation
should be restarted when it evaluates to true or false. To this effect, the every operator
is used. In the syntax of EPL the parentheses around the every subexpression are crucial.
It guarantees that the pattern matcher is restarted as expected, namely, at the time
event b occurs and matches the pattern. Additionally, it fires the EventListener only
once independently how often event a occurred before. In contrast, if the parenthesis are
omitted, it would fire for every single event a.

6.2.4 CMU Module

The CMU glues the system together. For that reason, it primarily stores several relevant
information, including:

• Registered DNs, which are managed by the DeviceNodeRepository:

63

6. Implementation

– Information regarding connection address: IP address and port number.

– Information regarding last activity: Timestamp of last heartbeat message.

– Information regarding event data sources able to provide: Combinations of
EventType and Domain transmitted as part of the handshake procedure.

• Registered EPNs, which are maintained by the CRUDRepository called
EventProcessingRepository:

– Information regarding connection address: IP address and port number.

– Information about last activity: Timestamp of last heartbeat message.

– Information about system utilization received as payload of the heartbeat
message.

– Information regarding installed rules: CMU tracks the deployment of rules to
know at any time, which rule runs on which node.

• Committed Queries: Information about committed queries by users
(StatementRepository).

• Committed Rules: Information about committed rules by users
(StatementRepository).

All these information are stored by the mean of CRUDRepository enhancements. Besides
persisting all these information, the CMU is mainly engaged in the interaction between
system and users.
If the user wants to detect a pattern, he expresses his needs via queries and rules, and
passes them to the CMU via the APIs CMUnitManageDNs and CMUnitManageEPs. In
order to finally activate a rule on an EPN, the activation commando must be executed.
During the activation process, the CMU selects an EPN based on strategies defined by
the user. The implementation of strategies follows the structure depicted in Listing 6.8,
whereby the three built-in strategies named MinCPUUtilization, MinRAMUtilization,
and MinNumberOfActiveRules implement the interface Selector. For harmonisation,
the SelectionFacade wraps the implementation of the Selectors and makes the usage
for developers more intuitive. Besides rule load balancing, the framework’s capability
to handle failovers is an important feature. If the framework detects a faulty node, it
initiates the redistribution of the rules running on the faulty node, thereby considering
only healthy nodes. A node is assumed to be erroneous, if the timestamp of the last
received heartbeat message exceeds a certain threshold. Both, the threshold and the time
interval nodes sending heartbeat messages are configurable.
Table 6.4 represents the APIs CMUnitManageDSNs and CMUnitManageEPNs in the
way already seen for the nodes EPN and DN. Business logic is implemented by a chain
of Action tasks.

64

6.2. Prototype implementation

Figure 6.8: Selection pattern

Method HTTP path Action(s) Description
HTTP verb
/registrations/devices/ Registration of DN.

register POST A1 A14 HTTP body contains
address information.

/registrations/devices/sources/ Registration of data
registerDataSource {id} A1 A15 sources (HTTP body)

POST identified by id.
/registrations/devices/ Heartbeat message

heartbeat {id} A1 A16 identified
PUT by path variable id.
/registrations/eventprocessing/ Registration of EPN

register POST A1 A14 HTTP body contains
address information.

/registrations/eventprocessing/ Heartbeat message
heartbeat {id}/{value1}/{value2} A1 A16 identified by id inclusive

PUT measurement data
(value1 and value2).

Table 6.4: Overview of all supported HTTP paths and HTTP verbs of the CMU module.
Every combination of path and verb is associated with a respective Java method in the
CMUnitManageDSNs and CMUnitManageEPNs.

6.2.5 Monitoring Webapp

The Monitoring Webapp enables the user to manage the framework. It is a graphical
user interface implemented with help of Vaadin. The Monitoring Webapp utilizes the
APIs provided by the CMU for data exchange and supports the following operations:

• Installing and uninstalling of queries. During installation query syntax is checked.
If it does not conform, user is immediately informed (Figure 6.9a).

65

6. Implementation

• Installing and uninstalling of rules. During installation rule syntax is validated. If
it does not conform, user is immediately informed (Figure 6.9a).

• Activation and deactivation of rules. The user can choose distribution strategies
for selecting an EPN on which the rule is deployed (Figure 6.9a).

• Monitoring of registered DNs, including performance capacities, last heartbeat
message, and event data sources (Figure 6.9b).

• Monitoring of registered EPNs, including performance capacities, last heartbeat
message, registered queries and rules (Figure 6.9b).

(a) Monitoring Webapp: Page for query and rule management

(b) Monitoring Webapp: Page for browsing components

Figure 6.9: Pages of the Monitoring Webapp

6.2.6 Message broker

The message broker provides the JMS topics for exchanging messages (events) between
instances of DNs and EPNs. A fully compliant JMS provider used for the prototype
is Apache ActiveMQ [Fou16a], which offers many advanced features. The capability to
deploy a broker within the Java Virtual Machine (JVM) is just one example leveraged
in our implementation. The following Listing 6.13 starts the message broker within the

66

6.2. Prototype implementation

Monitoring Webapp [Fou16b]. The examples briefly outlines the interaction between
framework and message broker.

1 BrokerService broker = new BrokerService();
2 broker.addConnector("tcp://localhost:61616");
3 broker.start();

Listing 6.13: Starting an embedded message broker.

Listing 6.14 shows how a connection with the JMS provider is established. It is noteworthy
that besides of the class AcitveMQConnectionFactory nothing is revealed about the JMS
provider. After receiving a ConnectionFactory all custom interaction is done on behalf of
the JMS API.

1 @Override
2 public synchronized void start() {
3 ConnectionFactory connectionFactory = new ActiveMQConnectionFactory("tcp://

localhost:61616");
4
5 Connection connection = connectionFactory.createConnection();
6 connection.start();
7 }

Listing 6.14: Start method establishes a connection with the JMS provider.

Listing 6.15 reflects the structure of the JMS architecture. Starting with an existing
Connection, the object Session is created. The Session in turn creates the Topic, which
is identified by a name. With the help of the MessageProducer events are put into the
Topic.
The propertyValue serves as selector for events and is determined by the names of a data
source.

1 @Override
2 public synchronized void produce(Event event) {
3 Session session = connection.createSession(false, Session.AUTO_ACKNOWLEDGE);
4
5 Topic topic = session.createTopic(MESSAGE_TOPIC);
6 MessageProducer producer = session.createProducer(topic);
7
8 String propertyValue = event.getEventType() + ":" + event.getDomain();
9 ObjectMessage message = session.createObjectMessage(event);
10 message.setStringProperty(PROPERTY, propertyValue);
11
12 producer.send(message);
13 }

Listing 6.15: Produce method writes an event into the topic.

67

6. Implementation

Listing 6.16 depicts the way how listeners are registered in order to consume events from
the JMS provider, once again reflecting all elements of the JMS architecture. The selector
parameter acts as filter to specify events of interest.

1 @Override
2 public synchronized void consume(String selector, MessageListener

messageListener) {
3
4 Session session = connection.createSession(false, Session.AUTO_ACKNOWLEDGE);
5
6 Topic topic = session.createTopic(MESSAGE_TOPIC);
7
8 MessageConsumer consumer = session.createConsumer(topic, selector);
9 consumer.setMessageListener(messageListener);

10 }

Listing 6.16: Consume methods installs a message listener.

68

CHAPTER 7
Evaluation

In this chapter the performance of the framework is evaluated using the prototype
implementation presented in the previous chapter. The evaluation is divided into two
major parts. The first concentrating on the use cases defined in Chapter 4, examining
whether the requirements can be implemented on behalf of the prototype implementation.
In addition to this feasibility study, the second part concentrates on metrics that describe
the system. By conducting a quantitative evaluation, the performance and effectiveness
of the framework should be demonstrated with the help of measured figures.

7.1 Use case evaluation
In Chapter 4 a series of use cases were discussed, outlining the functional scope of
smart buildings. Three key factors were defined: saving energy, increasing comfort, and
enlarging safety and security requirements. It is very likely that these three factors will
shape the way buildings are constructed in the future. For the sake of evaluation, use
cases referring to these factors are reconsidered.
The evaluation starts with use cases connected to the key factor saving energy (Sec-
tion 4.1).

(i) Optimized heating, ventilation and air conditioning (HVAC)
Reasoning about room occupation were identified as significant important for
optimizing HVAC. HVAC may only be activated if one or more persons spend
some time in a room, while short stays for reasons of cleaning or picking up things
should be omitted. The basic task is to prove a causal connection between door
movement and movement in the room. One way of reasoning could read as follows:
Rooms are assumed to be occupied, if after the door to the room was opened or
closed, movements are recorded in the room for a certain amount of time. The
delay is needed to prevent false positives. Listing 7.1 puts the described scenario

69

7. Evaluation

into practice with the help of the proposed framework and its language. The
solution consists of two queries, which are the basic ingredients for the final rule
that is connected through a followed-by relationship. In practice, the discrete
events (“doorAction“ and “movement“) could be emitted by two simple sensors:
one, a proximity sensor to observe the door, and secondly a motion sensor to record
movements in the room. If the number of movement events exceeds a certain
threshold it is assumed that a person occupies the room for a longer period of time.

1 /* Query1 */
2 CONDITION name="doorAction" FROM OfficeRoom
3
4 /* Query2 */
5 CONDITION COUNT(movement) >= 5 FROM OfficeRoom WIN:TIME(600)
6
7 /* Rule */
8 Query1 -> Query2 TRIGGERS Heating, OfficeRoom, ON_OFF = 1 WIN:TIME(600)

Listing 7.1: Implementation of use case optimized HVAC.

The result of the transformation into EPL statements is depicted in Listing 7.2. In
total, four EPL statements are created and installed at the Esper CEP engine.

1 /* EPL1 */
2 insert into QueryEvent select ’Query1’ as name from Event as e where e.

eventType.name = ’doorAction’ and e.domain.name = ’OfficeRoom’
3
4 /* EPL2 */
5 insert into AggregatedValue select count(e) as value from Event.win:time

(600 seconds) as e where e.eventType.name = ’movement’ and e.domain.
name = ’OfficeRoom’

6
7 /* EPL3 */
8 insert into QueryEvent select ’Query2’ as name from AggregatedValue

where value >= 5
9

10 /* EPL4 */
11 select * from pattern [every (a=QueryEvent(name = ’Query1’) -> b=

QueryEvent(name = ’Query2’)) where timer:within(600 seconds)]

Listing 7.2: EPL statements for use case optimized HVAC.

Figure 7.1 shows a graphical representation of two test sequences, which were
conducted to determine if the functional requirements are met. Both sequences
evaluate room occupation as expected. While the first sequence signals that the
room is occupied, the events of the second sequence do not satisfy our definition
for occupation, and thus do not signal room occupation.

(ii) Proactive maintenance of equipment
The aim here is to detect performance problems before they cause expensive outage.
Listing 7.3 offers a generic solution, which is applicable to all kinds of machines in
the reference building. The assumption is that equipments having an average load

70

7.1. Use case evaluation

Figure 7.1: Two separate test sequences for evaluating use case optimized HVAC. Events
E1 and E2 are fired as pictured on the timeline. The symbol R shows if and when the
rule is triggered. The first sequence (upper timeline) signals room occupation, the second
one (lower timeline) does not.

over 90 percent may trigger a proactive maintenance operation. Once again, the
statements are converted into EPL statements. The result is depicted in Listing 7.4
and consists of two EPL statements.

1 /* Query */
2 CONDITION name="utilizationInPercent" AND AVG(value) >= 90 FROM

TechnicalFloor WIN:TIME(600)
3
4 /* Rule */
5 Query TRIGGERS TechnicalFLoor, Warn_Message = "Keep an eye on your

equipment"

Listing 7.3: Implementation of use case proactive maintenance of equipment.

1 /* EPL1 */
2 insert into AggregatedValue select avg(e.eventType.value) as value from

Event.win:time(600) as e where e.eventType.name = ’
utilizationInPercent’ AND e.domain.name = ’TechnicalFloor’

3
4 /* EPL2 */
5 select * from AggregatedValue where value >= 90

Listing 7.4: EPL statements for use case proactive maintenance of equipment.

Figure 7.2 shows the result of one test sequence, which was conducted for evaluation.
During the sequence, multiple events are emitted to simulate changing workloads.
As expected, every time the average value exceeds the threshold, a notification is
triggered.

(iii) Optimized lighting
For the evaluation, an office room is considered, which contains two working places
(desk A and desk B), each equipped with separated lighting. Desk A is located

71

7. Evaluation

Figure 7.2: Test sequence for evaluating use case proactive maintenance of equipment.
Event E1 is fired as pictured on the timeline. The symbol R shows if and when a rule is
triggered.

next to the door. As a consequence every person with desk B as destination, has
to pass desk A. The aim is to switch the lamp of each desk on or off corresponding
if a person occupies or vacates one of these desks. Obviously, reasoning about
occupation under these conditions is not a trivial task. Sequences of events have
to be interpreted correctly, to avoid false positives. For example, both desks are
occupied and a person leaves desk B. The task of the system is to detect that the
person starts moving at desk B, passes desk A and closes the door. In a simple
solution, every region (door, desk A, desk B) would judge their scope only based
on single events. Thus, region A would produce a false positive due the movement
in that region. Listing 7.5 offers an implementation for the framework to handle
this situation without false positives.

1 /* Query1 */
2 CONDITION name="movement" FROM OfficeRoomAreaA
3
4 /* Query2 */
5 CONDITION name="movement" FROM OfficeRoomAreaB
6
7 /* Query3 */
8 CONDITION name="doorClosed" FROM OfficeRoom
9

10 /* Rule1 */
11 Query2 -> Query1 -> Query3 TRIGGERS Lightning, OfficeRoomAreaB, Off = 1

WIN:TIME(10)
12
13 /* Rule2 */
14 Query1 -> Query3 TRIGGERS Lightning, OfficeRoomAreaA, Off = 1 WIN:TIME

(10)

Listing 7.5: Implementation of use case optimized lighting.

The proposed solution contains two issues for discussion. Firstly, it is noteworthy
that the same event for both movement queries (Query1 and Query2) is used. The
assignment and the differentiation are based entirely on the domain information,
with the addition that a domain hierarchy (OfficeRoomAreaA and OfficeRoomAreaB
are subsets of OfficeRoom) is applied. Secondly, the missing functionality to reason
about the abstinence of events adds a minor flaw to the proposed solution. It is

72

7.1. Use case evaluation

evident that Rule1 and Rule2 have some relevant commonalities. To be precise,
Rule1 is a subset of Rule2. The workaround is to overrule Rule1 if both events occur
concurrently. The possibility to specify something like NOT Query2 -> Query1
-> Query3 TRIGGERS ... would be a superior solution, but logical operators are
currently only supported on query level.
The statements are transformed into five EPL statements, which are depicted in
Listing 7.6.

1 /* EPL1 */
2 insert into QueryEvent select ’Query1’ as name from Event as e where e.

eventType.name = ’movement’ and e.domain.name = ’OfficeRoomAreaA’
3
4 /* EPL2 */
5 insert into QueryEvent select ’Query2’ as name from Event as e where e.

eventType.name = ’movement’ and e.domain.name = ’OfficeRoomAreaB’
6
7 /* EPL3 */
8 insert into QueryEvent select ’Query3’ as name from Event as e where e.

eventType.name = ’doorClosed’ and e.domain.name = ’OfficeRoom’
9

10 /* EPL4 */
11 select * from pattern [every (a=QueryEvent(name = ’Query2’) -> b=

QueryEvent(name = ’Query1’) -> c=QueryEvent(name = ’Query3’)) where
timer:within(10 seconds)]

12
13 /* EPL5 */
14 select * from pattern [every (a=QueryEvent(name = ’Query1’) -> b=

QueryEvent(name = ’Query3’)) where timer:within(10 seconds)]

Listing 7.6: EPL statements for use case optimized lighting.

The result of the practical evaluation is visualized in Figure 7.3. The rules are fired
as expected, including the minor flaw.

Figure 7.3: Test sequence for evaluating use case optimized lighting. Events E1, E2, and
E3 are fired as pictured on the timeline. The symbols R1 and R2 show if and when a
rule is triggered.

73

7. Evaluation

Increasing comfort was identified as second key factor (Section 4.2). Possible implemen-
tations of the concrete use cases are discussed in the following.

(i) Elevator
The aim is a smart elevator with the ability to anticipate near-future rides, by
predicting passengers, their destinations, and special requirements of individual
passengers. Adopting the behavior for passengers is depicted in Listing 7.7. The
information specialTreatment is a property flag within the event to encounter
persons with special needs.
The situation that a person needs special treatment is detected by the query. The
query triggers a configuration change rule to set the opening time for elevators to 5
seconds. That rule affects all elevators, which are currently in the EntranceFloor
domain.

1 /* Query */
2 CONDITION name="buildingEntered" AND specialTreatment = 1 FROM

EntranceFloor
3
4 /* Rule */
5 Query TRIGGERS Elevator, EntranceFloor, KEEP_DOOR_OPEN_IN_MS = 5000

Listing 7.7: Implementation of use case elevator.

The corresponding EPL statements are illustrated in Listing 7.8.
1 /* EPL1 */
2 insert into QueryEvent select ’Query’ as name from Event as e where e.

eventType.name = ’buildingEntered’ and e.eventType.specialtreatment
= 1 AND e.domain.name = ’EntranceFloor’

Listing 7.8: EPL statements for use case elevator.

The graphical representation 7.4 illustrates the conducted test sequence. Worthwhile
emphasizing is the demonstrated ability to extend events by custom properties.

Figure 7.4: Test sequence for evaluating use case elevator. Events E1 and E2 are fired as
pictured on the timeline. The symbol R shows if and when a rule is triggered.

(ii) Flow meters
The use case flow meters suggests to use the framework as remote control in
order to determine the status values and working conditions of water supplying

74

7.1. Use case evaluation

equipment. Based on historical experience, maintenance personal should be able
to give a rough estimation about the consumption of various consumers. This
leads to an understanding of what is normal and what are indications of system
failures. The basic statement structure of this use case is comparable to the use
case proactive maintenance of equipment (Listing 7.9). Once again, an aggregation
value is calculated over a specific event type with regard to a defined domain.

1 /* Query */
2 CONDITION AVG(waterUsageInLitre) > 100 FROM OfficeFloor WIN:TIME(3600)
3
4 /* Rule */
5 Query TRIGGERS Device, OfficeFloor, Warn_Message = "Keep an eye on your

water consumption"

Listing 7.9: Implementation of use case flow meters.

Due to the similarity, the result of the EPL transformation and the evaluation of the use
case can be looked up under the use case proactive maintenance of equipment, differing
only in variables, constants, and values.
Finally, issues about the key factor improving safety and security are discussed (Sec-
tion 4.3).

(i) Fire protection
Temperature and smoke sensors are applied to detect fires as fast as possible in
the reference building (Listing 7.10). The query triggers fire alarm for a specific
area if two conditions are satisfied within one minute: The measured temperature
must be above a certain threshold and the smoke detector must trigger alarm. The
temporal component is a one-minute long sliding window within both condition
must occur.

1 /* Query1 */
2 CONDITION name = "Temperature" AND value >= 40 FROM OfficeFloor
3
4 /*Query2 */
5 CONDITION name = "SmokeDetector" FROM OfficeFloor
6
7 /* Rule1 */
8 Query1 -> Query2 TRIGGERS FireProtectionSensors, OfficeFloor, FireAlarm

=1 WIN:TIME(60)
9

10 /* Rule2 */
11 Query2 -> Query1 TRIGGERS FireProtectionSensors, OfficeFloor, FireAlarm

=1 WIN:TIME(60)

Listing 7.10: Implementation of use case fire protection.

The EPL transformation produces four statements depicted in Listing 7.11.

75

7. Evaluation

1 /* EPL1 */
2 insert into QueryEvent select ’Query1’ as name from Event as e where e.

eventType.name = ’Temperature’ and e.eventType.value >= 40 and e.
domain.name = ’OfficeFloor’

3
4 /* EPL2 */
5 insert into QueryEvent select ’Query2’ as name from Event as e where e.

eventType.name = ’SmokeDetector’ and e.domain.name = ’OfficeFloor’
6
7 /* EPL3 */
8 select * from pattern [every (a=QueryEvent(name = ’Query1’) -> b=

QueryEvent(name = ’Query2’)) where timer:within(60 seconds)]
9

10 /* EPL4 */
11 select * from pattern [every (a=QueryEvent(name = ’Query2’) -> b=

QueryEvent(name = ’Query1’)) where timer:within(60 seconds)]

Listing 7.11: EPL statements for use case fire protection.

The interesting aspect of this use case is the demonstration that queries can be
reused in multiple rules. The evidence is given in Figure 7.5, which documents the
conducted test sequence.

Figure 7.5: Test sequence for evaluating use case fire protection. Events E1 and E2 are
fired as pictured on the timeline. The symbols R1 and R2 show if and when a rule is
triggered.

(ii) Advanced intrusion detection systems
The proposed framework could help to identify complex attack patterns in real
time. Denial of Service attacks could be prevented by defining threshold values
for the number of permitted messages. If those values are exceeded, an alert can
be triggered and the affected device can be temporarily deactivated. Listing 7.12
presents corresponding statements. From their construction and functional scope,
they resemble use cases as already discussed. In particular, calculating an aggregated
value and examining it, was a matter of discussion during use case proactive
maintenance.

76

7.2. Quantitative evaluation

1 /* Query */
2 CONDITION count(Message) > threshold FROM OfficeFloor TIME:WIN 120
3
4 /* Rule */
5 Query TRIGGERS Message, OfficeFloor, Warning="DoS warning"

Listing 7.12: Implementation of use case advanced intrusion detection systems.

7.2 Quantitative evaluation

Before proceeding with the actual evaluation test cases, the next lines serve as short
introduction. It presents the used evaluation setup and fosters a short debate about
metrics.

7.2.1 Evaluation setup

The evaluation setup consists of four devices interconnected via Ethernet to form a local
network. The devices are all different in their configuration and specification (hardware
and software), which reflect the actual scenario assumable in the IoT world. Two of the
four nodes are devices, which belong to the Raspberry Pi project [Fou16d], a series of
credit card-sized single-board computers. In comparison with the other two components,
their resources are fairly limited. The main objective of the Raspberry Pi project is
to lower entrance hurdles for people who are interested in programming. All models
of the project feature a Broadcom processor and are currently available in Model A or
B, featuring small differences in RAM size and number of I/O ports. These machines
share many restricted properties, as identified in the IoT context. For example, they
are limited regarding storage and peripheral capabilities. The setup is complemented by
two DELL devices, a desktop PC and a laptop. Table 7.1 summarizes all devices and

No OS Typ System Information
Raspberry Pi 3 BCM 2837 64bit ARMv8 Cortex A53 QCore

R1 Raspbian (Debian) Model B 1.2Ghz per core
1GB RAM

Raspberry Pi 2 BCM 2836 32bit ARMv7 Cortex A7 QCore
R2 Raspbian (Debian) Model B 900Mhz per core

1GB RAM
Dell Laptop Intel Core i7-3632QM

L1 Ubuntu 14.04.5 LTS XPS L521X 2.2Ghz per core
4GB RAM

Dell PC Intel Core Duo E4600
PC1 Windows 10 Optiplex 755 2.4Ghz per core

8 GB RAM

Table 7.1: Devices of evaluation setup

77

7. Evaluation

their characteristics. Particularly worth mentioning is the operating system Raspbian,
because it is rather unknown compared to Windows and Ubuntu. Raspbian is Raspberry’s
official supported operating system. It is a Debian-based computer operating system
with compilation settings adjusted to produce code that runs on the Raspberry Pi. The
version pays special attention to the ARM architecture of the processor.
The topology of the network is depicted in Figure 7.6. All devices belong to the subnet
192.168.0.100/24. PC1 takes over the task of the CMU and simulates events emitted
by DNs. L1, R1, and R2 are components, which host instances of EPNs. For the sake

Figure 7.6: Network topology of evaluation setup

of automation and repeatability, Apache JMeter1 is used to perform and simulate load
behavior. As the name of the product indicates, the tool is entirely written in Java. It
allows to prepare a sequence of HTTP requests and executes them multiple times with
the possibility to steer dynamic properties and control timing. For HTTP processing, it
provides a rich set of properties regarding header and cookie management. In contrast
to a web browser, it does not render HTML pages or execute Javascript code found in
HTML pages. Instead, all requests are recorded, including metrics like response time
and size of the HTTP request [Fou16c].
For hardware monitoring the Java library called Operating System and Hardware Informa-
tion (OSHI) is used. Compared to related libraries, OSHI does not require the installation
of any additional library to retrieve system information, such as CPU load, memory
usage, number of processors, and sensor data. It integrates native code through Java
Native Access (JNA) and supports multiple platforms. It provides Java programs painless

1http://jmeter.apache.org/

78

http://jmeter.apache.org/

7.2. Quantitative evaluation

access to native shared libraries without writing anything but Java code2. Listing 7.13
demonstrates the simple handling of OSHI for retrieving hardware information from
native libraries.

1 SystemInfo systemInfo = new SystemInfo();
2 HardwareAbstractionLayer hadwareAbstractionLayer = systemInfo.getHardware();
3 CentralProcessor centralProcessor = hadwareAbstractionLayer.getProcessor();
4 GlobalMemory globalMemory = hadwareAbstractionLayer.getMemory();
5 double cpuLoad = centralProcessor.getSystemLoadAverage(3)[0] * 100);
6 double memUsage = globalMemory.getAvailable() * 100 / globalMemory.getTotal();

Listing 7.13: Retrieving hardware information by using OSHI.

7.2.2 Metrics

As with any other software, the framework performance depends strongly on the machine
it is installed on. There are many different machine metrics, which are crucial for the
software that runs on it. However, CPU load and memory usage are particular important
as they give a reasonable impression of how well a machine is performing [Mol09].

System CPU Load

The CPU load of the entire system is reflected by the metric system CPU load, which is
basically a snapshot value at a particular point in time. Short-term peaks can lead to
erroneous conclusions, therefore an averaging over a period of time is preferable.
Listing 7.13 contains a method call named getSystemLoadAverage for retrieving the CPU
load. Looking more closely reveals that the method returns load average numbers, as they
are common in Unix-like systems. The values are measurements of the computational
work the system is performing. In detail, the load average numbers are the sum of
the number of runnable entities running on the available processors and the number
of runnable entities queued to the available processors averaged over a period of time.
The different periods are 1, 5, and 15 minutes, respectively. A completely idle machine
has load average of zero. Each running processor either using or waiting for the CPU
resource adds to the load average. The prototype uses the figure calculated over a period
of 15 minutes to reason about CPU load.

System Memory Usage

Because all components of the prototype run inside the JVM, JVM memory and garbage
collection are areas of special interest, when considering system memory usage. The
heap space is of particularly importance for JVM applications as the heap space is the
place, where Java objects reside in. Via the new operation heap space is consumed for
newly created objects, while unused objects may be recovered via the process of garbage
collection. The heap space is consumed at the time when the JVM starts up and may

2https://github.com/oshi/oshi

79

https://github.com/oshi/oshi

7. Evaluation

increase or decrease in size while the application runs. There are two parameters for
setting the heap size: -Xms:<size> and -Xmx:<size>. The first, -Xms:<size>, sets
the minimum heap size that is allocated during startup. The second, -Xmx:<size>,
defines the maximum heap size that is available for the JVM. If heap usage exceeds
this maximum, the JVM throws an out of memory exception and stops executing. The
prototype uses following settings:
−Xmx: 512m
−Xms: 256m

As CPU load, heap memory describes a value at a specific point in time. For the purpose
of evaluation, an adequate level of profiling is once again preferred. The JVM reserves
memory as a single continuous block from the operating system. If different parameters
for initial (-Xmx) and maximum (-Xms) heap space are defined, the allocated size of
the JVM may change dynamically over time. So, monitoring memory on system level
means that only expansions of the heap space are noticed. Minor changes induced by new
objects are neglected, making the examination more independent of how JVM internals
works (garbage collection). Finally, the values on system level for available memory and
total memory are compared with following fraction:

memory_usage = available_memory

used_memory
(7.1)

7.2.3 Rule Distribution

A core feature of the framework is the capability to distribute rules according specific
strategies. The framework offers three built-in strategies based on CPU utilization
(MinCPUUtilization), RAM utilization (MinRAMUtilization), and number of running
rules (MinNumberOfActiveRules). Always the EPN having reached the minimum value
should be selected to receive the next rule for processing. The test includes the evaluation
of these individual strategies in two respects: Firstly, the evaluation concentrates solely
on the distribution behavior without any interference with events, which may influence
the performance of the EPN instances. This mode is referred to as the distribution
without load mode. The second round is carried out under continuous flow of events and
is termed distribution with load mode. Altogether, the test case described in the following
is performed six times, once for each combination of built-in distribution strategy and
mode.
The basic test structure consists of three REST calls, performing the activities query
registration, rule registration, and rule activation (Listing 7.14). The used statements
serve only testing purposes and are not meaningful in practice. The query detects events
of type “Event“ with values over one hundred. Also for the rule a simple format was
selected. As soon as the query is matched, the rule is triggered, whereby the trigger
actions are of no importance for this particular test case, therefore the triple “Event,
Domain, Setting=1“ does not trigger any particular downstream actions and acts merely
as placeholder. The third statement activates the rule and induces the CMU to distribute

80

7.2. Quantitative evaluation

the rule according the strategy. The strategy is passed as parameter to the system. The
values 1,2, and 3 are reserved for the strategies. The placeholder counter_value is filled
by JMeter.

1 /* Query registration
2 * CONDITION name=’Event’ AND value>100
3 */
4 POST /registrations/query/Query${counter_value}
5
6 /* Rule registration
7 * Query${counter_value} TRIGGERS Event, Domain, Setting=2
8 */
9 POST /registrations/rule/Rule${counter_value}

10
11 /* Rule activation */
12 POST /activations/rule/Rule${counter_value}/1

Listing 7.14: Rest calls for test rule distribution

A test run is comprised of 90 cycles, each time carrying out the basic test structure in
roughly 100 seconds. This means that approximately every second a new rule is registered
at the system and should be distributed over all available EPNs. At the beginning of
each test run, all involved components are already started. All participating EPNs are
registered at the CMU and ready for receiving rules. The components are in a stabilized
state so that the average measurements are not affected by previous computation loads.
For load simulation, JMeter is used to generate events. Listing 7.15 depicts the structure
of the test event with which the system is constantly fed. Its value is over 100, so that
every single event fires the test query.

1 <common.data.model.DeviceData>
2 <id>-1</id>
3 <name>default</name>
4 <sensorData>
5 <rawValue class="int">123</rawValue>
6 </sensorData>
7 <device>
8 <id>-1</id>
9 <name>event</name>

10 </device>
11 </common.data.model.DeviceData>

Listing 7.15: Test event

In the following, the results of the individual test runs are discussed. All depicted figures
follow the same structure and use linear regression to describe the measurement data.
In simple linear regression, scores are predicted on one variable from the scores on a
second variable. The predicting variable is always depicted on the y-axis and is named
criterion variable. The second variable on which the prediction is based on is called the
predictor and is located on the x-axis. The following figures use always the physical

81

7. Evaluation

unit time measured in seconds as predictor. The results are single lines defined by the
linear formula y = c + b ∗ x fitting through a cloud of data points. For purposes of
clear presentation, measured data points are pictured in a transparent manner, while the
regression is at the forefront.

MinNumberOfActiveRules - Without Load

Figure 7.7 depicts the distribution using the strategy MinNumberOfActiveRules. As

0 100 200 300 400 500 600

0
5

10
15

20
25

30

Time / Seconds

A
ct

iv
e

R
ul

es

R1
R2
PC1

(a) Active rules profile

0 100 200 300 400 500 600

0
20

40
60

80
10

0

Time / Seconds

A
ve

ra
ge

 C
P

U
 U

sa
ge

R1
R2
PC1

(b) CPU load profile

0 100 200 300 400 500 600

0
20

40
60

80
10

0

Time / Seconds

R
A

M
 U

sa
ge

 /
P

er
ce

nt

R1
R2
PC1

(c) RAM load profile

Figure 7.7: Results of distributing 90 rules using the strategy MinNumberOfActiveRules
without load.

82

7.2. Quantitative evaluation

expected, the number of rules (Figure 7.7a) is divided equally among all three EPNs
(R1, R2, PC1). The CPU utilization (Figure 7.7b) shows that the resource constrained
devices are slightly affected by the growing number of registered rules, whereas PC1
shows no conspicuities. The 30 registered rules are computed effortless and without
perceptible rise of CPU load. The figure regarding RAM utilization (Figure 7.7c) presents
a constant RAM utilization for all devices. This means that all memory resources needed
to handle the registration process are already allocated at startup time of the JVM and no
additional memory is demanded. The same behavior is determined for the remaining test
runs and therefore the figures for RAM utilization are waived in the following discussions,
because they do not provide any new information.

MinCPUUtilization - Without Load

Figure 7.7 depicts the distribution using the strategy MinCPUUtilization. The spreading
of rules (Figure 7.8a) demonstrates clearly that the evenness does no longer exist. PC1
receives approximately twice as many rules as the resource constrained devices, while
having the same CPU utilization (Figure 7.8b).

0 100 200 300 400 500 600

0
10

20
30

40

Time / Seconds

A
ct

iv
e

R
ul

es

R1
R2
PC1

(a) Active rules profile

0 100 200 300 400 500 600

0
20

40
60

80
10

0

Time / Seconds

A
ve

ra
ge

 C
P

U
 U

sa
ge

R1
R2
PC1

(b) CPU load profile

Figure 7.8: Results of distributing 90 rules using the strategy MinCPUUtilization without
load.

MinRAMUtilization - Without Load

The result of the strategy MinRAMUtilization is depicted in Figure 7.9. As already
discussed, the selected test setup does not lead to an expansion of the JVM heap space.
This is why a constant RAM utilization for all three EPNs is measured. In absolute
numbers, PC1 has the smallest percentage of RAM utilization and obtains all rules

83

7. Evaluation

exactly as expected (Figure 7.9a). The outcome for the CPU load (Figure 7.9b) is not
surprising, while R1 and R2 remain in idle state due to lacking work, PC1 processes the
rules without notable effort.

0 100 200 300 400 500 600

0
20

40
60

80

Time / Seconds

A
ct

iv
e

R
ul

es

R1
R2
PC1

(a) Active rules profile

0 100 200 300 400 500 600
0

20
40

60
80

10
0

Time / Seconds

A
ve

ra
ge

 C
P

U
 U

sa
ge

R1
R2
PC1

(b) CPU load profile

Figure 7.9: Results of distributing 90 rules using the strategy MinRAMUtilization without
load.

MinNumberOfActiveRules - With Load

Figure 7.10a exactly meets the specification by distributing all rules equally among the
three EPNs. The CPU load profile (Figure 7.10b) shows that the slope of the lines is
indirect proportional to the available means: While the resource constrained EPNs are
fully engaged, PC1 merely reaches about fifty percent of its CPU utilization.

MinCPUUtilization - With Load

The significant performance advantage of PC1 compared to R1 and R2 is clearly evident
in Figure 7.11a. It handles more than two thirds of all rules under approximately the
same CPU load (Figure 7.11a). The regression lines have approximately the same slope,
indicating that their utilization is equal according their resource proportions.

MinRAMUtilization - With Load

The distribution of rules (Figure 7.12a) corresponds exactly to the result from the test
run without load. All rules are assigned to PC1, because it retains the lowest RAM
utilization throughout the entire test run. Figure 7.12b shows also a similar picture for

84

7.2. Quantitative evaluation

0 100 200 300 400 500 600

0
5

10
15

20
25

30

Time / Seconds

A
ct

iv
e

R
ul

es

R1
R2
PC1

(a) Active rules profile

0 100 200 300 400 500 600

0
20

40
60

80
10

0
Time / Seconds

A
ve

ra
ge

 C
P

U
 U

sa
ge

R1
R2
PC1

(b) CPU load profile

Figure 7.10: Results of distributing 90 rules using the strategy MinNumberOfActiveRules
with load.

0 200 400 600

0
10

20
30

40
50

60

Time / Seconds

A
ct

iv
e

R
ul

es

R1
R2
PC1

(a) Active rules profile

0 200 400 600

0
20

40
60

80
10

0

Time / Seconds

A
ve

ra
ge

 C
P

U
 U

sa
ge

R1
R2
PC1

(b) CPU load profile

Figure 7.11: Results of distributing 90 rules using the strategy MinCPUUtilization with
load.

the CPU utilization, however due the increased computation load the line for PC1 moves
upwards.

85

7. Evaluation

0 100 200 300 400 500 600

0
20

40
60

80

Time / Seconds

A
ct

iv
e

R
ul

es

R1
R2
PC1

(a) Active rules profile

0 100 200 300 400 500 600

0
20

40
60

80
10

0

Time / Seconds

A
ve

ra
ge

 C
P

U
 U

sa
ge

R1
R2
PC1

(b) CPU load profile

Figure 7.12: Results of distributing 90 rules using the strategy MinRAMUtilization with
load.

Conclusion

The analysis above shows that the framework allows distributing rules based on different
strategies. Consequently, the framework is suited to balance system load among available
resources in a manner that improves overall system performance and maximizes equal
resource utilization.

7.2.4 Failover mechanism

The failover mechanism of the framework guarantees that activated rules are always
executed on healthy nodes. Thereby, a node is assumed to be healthy as long as it sends
heartbeat messages.
In the following this mechanism is evaluated in practice. For that reason, exactly one
rule is installed on the evaluation system. The framework selects an EPN and takes
care that the rule is installed on it. All steps performed so far comply to the normal
behavior of the framework. Subsequently to this, this test run wants to simulate the
failover process by switching off the EPN with the test rule running on it. The shutdown
is carried out without preannouncement and rather abruptly by pulling out the power
cord. The expected reaction should be that the breakdown of the EPN is detected and
eventually the failover mechanism is provoked.
Besides the fundamental assessment of the functionality, a quantitative evaluation is
conducted. It should be examined whether the failover mechanism works within reasonable
time limits. The time span between last occurrence of the rule on the faulty node and
first occurrence of the rule on the healthy is measured. The rule is periodically provoked

86

7.2. Quantitative evaluation

by emitting the test event every second. Clearly, the measurement result is significantly
influenced by the heartbeat message period. For the test run the interval is set to
5000 milliseconds. Table 7.2 sums up the result of the test runs. On average, it takes

No Faulty node Healthy node Duration in ms
1 R1 R2 6567
2 R1 R1 4352
3 R1 PC1 6874
4 R1 R1 5608
5 R1 PC1 5574
6 R1 PC1 5553
7 R1 R1 8892
8 R1 PC1 6937
9 R1 R1 6517
10 R1 PC1 7566

Table 7.2: Measurement result of failover mechanism

approximately 6.5 seconds till a rule is successfully redistributed. The concrete figure
is not particular meaningful, because it strongly depends from various configuration
properties like the delay between two heartbeat messages and the overall structure of the
corresponding rule. Nonetheless, it shows that the redistribution can be performed in
reasonable timeframes when necessary.

7.2.5 Registration process

A feature of the framework is the ability to reinitiate the registration handshake, in case it
does not succeed promptly. The nodes start the registration process after a configurable
delay again, whereby the time interval is consequently increased with every unsuccessful
attempt.
In the following a test scenario wants to quantify the advanced registration process by
analyzing the dynamic behavior. Both types of nodes (DN and EPN) share the same
implementation regarding registration, hence it does not matter which type is chosen. For
conducting the test, one instance of EPN is picked and started without running a CMU.
The recorded registration attempts are depicted in Figure 7.13. As in the specification
stated, the time interval is consequently increased with every unsuccessfully attempt.
This approach guarantees that a first failed attempt will be tried again in a reasonable
short time, while a fundamental problem burdens the system minimally.

7.2.6 Dynamic change of DN configuration

The use case discussion in the first part of this chapter generally stops at the point
the rule is matched, because further processing was not primarily in the focus of
the investigation. As reaction either some sort of notification message was specified
(“Keep an eye on your equipment“, “DoS warning“) or a general system setting was

87

7. Evaluation

0 200 400 600 800 1000

2
4

6
8

10
12

14

Time / Seconds

N
um

be
r

of
 r

eg
is

tr
at

io
n

at
te

m
pt

s

Figure 7.13: Time behavior of registration attempts

set (“KEEP_DOOR_OPEN_IN_MS = 5000“, “ON_OFF = 1“), assuming that these
reactions are processed by superordinate instances (machines or human beings).
The design of the framework enables dynamic configuration of DN instances based on
reactions. Just as other features of the framework were evaluated, this aspect should be
assessed with the help of a scenario, where the tactic “Manage Sample Rate“ [BCK12a] is
applied. The overall volume of data should be minimized in order to increase performance
and scalability. This scenario employs configurable DNs to control the frequency events
are emitted. For that reason, two different working modes are introduced, called normal
respective verbose. The main difference is the frequency at which events are transmitted.
While the normal mode reduces bandwidth consumption by using longer periods, the
verbose mode sends events with a much higher frequency to inform the system about
critical conditions in order to achieve shorter response times. The switching between the
two modes should be controlled from outside.
The evaluation setup described in Section 7.2.1 is slightly adopted for this purpose. R2
does no longer act as EPN, but instead it hosts an instance of EPN and simulates sensor
values. These values are changed every second, commuting constantly between two border
values.
The statements deployed on an arbitrary EPN node are depicted in Listing 7.16. Their
role is to monitor sensor values regarding their ranges. If they exceed (Query1) or fall
below a certain limit (Query2), they should trigger corresponding configuration changes.
In our scenario, the sensor values are temperature measurements. Above a certain limit
(25 degree Celsius), the overall system enters a critical state and sensor values should be
emitted at shorter intervals. On the other side, if sensor values fall below a certain limit
(15 degree Celsius), the frequency is reduced in order to discharge the system and cut
the overall data volume.

88

7.2. Quantitative evaluation

1 /* Query1: detectTemperatureAbove25 */
2 CONDITION name = "Temperature" AND value >= 25 FROM StorageFloor
3
4 /* Query2: detectTemperatureUnder15 */
5 CONDITION name = "Temperature" AND value <= 15 FROM StorageFloor
6
7 /* Rule1 */
8 detectTemperatureUnder15 -> detectTemperatureAbove25 TRIGGERS Temperature,

StorageFloor, TASK_INTERVAL_S = 10
9

10 /* Rule2 */
11 detectTemperatureAbove25 -> detectTemperatureUnder15 TRIGGERS Temperature,

StorageFloor, TASK_INTERVAL_S = 30

Listing 7.16: Implementation for dynamic change of DN configuration.

The results of the evaluation run are depicted in Figure 7.14. As mentioned above the
DN supplies temperature values, which oscillate between 10 and 30 degree of Celsius.
Figure 7.14a illustrates that recording, whereby the period between two values is relevant.
It can be observed a behavior exactly as expected: At the time the value exceeds the
upper limit, the DN switches to verbose mode and sends events at higher rate. On the
other side, the DN changes the mode back to normal as soon as the values are under the
lower limit. Figure 7.14b shows the course of the configuration property send delay. It
defines the delay between two event transmissions. The rising edge (10 -> 30) is exactly
the time Rule2 hits, respectively the falling edge (30 -> 10) the time Rule1 triggers.

0 500 1000 1500

15
20

25
30

Time / Seconds

Te
m

pe
ra

tu
re

 /
C

el
si

us

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

(a) Sensor values

0 500 1000 1500

10
15

20
25

30

Time / Seconds

S
en

d
de

la
y

/ C
on

fig
ur

at
io

n
pr

op
er

ty

●●●●●●●●●●●●●●●●

● ● ● ● ● ●

●●●●●●●●●●●●●●●●●●●●

● ● ● ● ● ●

●●●●●●●●●●●●●●●●●●●●

● ● ● ● ● ●

●●●●●●●●●●●●●●●●●●●●

● ● ● ● ● ●

●●●●●

(b) Profile of configuration property send delay

Figure 7.14: Dynamic change of DN configuration

89

CHAPTER 8
Conclusion & future work

8.1 Conclusion

IoT promises a fully interconnected world, where objects and people are tightly inter-
twined. While the potential of new applications and gadgets is enormous, the rise of IoT
also yields technology challenges that could stand in the way of realizing its full value.
Particularly in the areas of security, privacy, interoperability, and standards, research
works are needed to meet the challenges accompanying the vision of IoT.
This thesis has addressed the last two mentioned areas, and it has proposed a framework
that reduces the time and effort in developing IoT applications. In particular, this work
has defined a distributed solution for applications that apply CEP as their main tool for
detecting meaningful patterns. In comparison to centralized approaches, the distributed
architecture of the framework is better suited to address performance and scalability
properties appearing in scenarios, where large numbers of events are generated from
geographically widespread sources. The framework follows a modular approach and is
composed of three main components, namely Configuration Management Unit (CMU),
Event Processing Node (EPN), and Device Node (DN). Each component is entrusted with
a special task and represents an autonomous unit, which can be deployed independently.
CMU acts as data supplier, EPN incorporates the CEP, and CMU represents the central
registry and agent between the two other components. The number of nodes (EPN and
DN) may vary, depending on the requirements the application on top of the framework
is currently facing. Additional nodes are added to the system dynamically. Especially,
the expansion of EPN instances should disburden system load and facilitates scalability.
The usefulness of IoT frameworks is also based on the possibility of interconnecting
a broad number of devices belonging to a heterogeneous set of technologies. When
it comes to implementing such heterogeneous scenarios, several issues concerning the
interactions among those elements arise, which the framework has addressed with a
comprehensive communication model and well-defined APIs. For the top-level abstraction,

91

8. Conclusion & future work

a predominate part of the communication flow follows the REST architecture style in
combination with HTTP. The assumption that this choice of technology is easier to use
and more flexible compared to the WS* specification and SOAP was confirmed during
conducting the evaluation. JMeter, the test tool, could be hooked in with little expense
and effort, exactly as desired for good interoperability. The second communication type,
the publish-subscribe pattern, is applied for the exchange of events between EPNs and
DNs. A typical IoT application will comprise a large number of DN instances emitting
events at an even higher rate, such that a N-to-N approach in a sort of server-client
pattern does not scale for this communication path.
Another challenge regarding interoperability is that every event exchanged by any node,
must be interpretable and understandable by every other node within the application.
The framework addresses this issue by applying a lightweight data & event model that
incorporates the basic characteristics of IoT data. It provides a basic structure for events
and is extendable by custom properties to consider individual requirements. Experiences
during the prototype implementation show that the structure could be adapted without
great expenditure.
A prototype was implemented to demonstrate the framework’s feasibility. In this context,
Spring Boot has proved to be a very great tool for establishing a production-grade appli-
cation. A number of low level tasks (data mapping, data serialization, etc.) were only
a matter of configuration and substantially shortening realization time. In general, the
implementation of the prototype attempts to reuse structures in form of patterns, which
have been developed and proved over years. For this reason, the chain of responsibility
design pattern was applied to implement parts of the logic triggered by API calls. The
advantage of this pattern lies in the enhanced reusability. For example, components for
validation purposes are repeatedly used among multiple API methods.
The openness towards different event processing engines was another goal of the frame-
work. With the help of the design pattern abstract factory, an interface has been build
that makes the framework greatest possible independent on how its engines are initialized
and employed. For the prototype, Esper was selected as CEP engine. The integration
was straightforward, merely the transformation between our language and EPL meant
some implementation effort. However, the overall conclusion is that the integration of
further CEP engines should be possible without great problems and within a reasonable
period of time.
Besides the distributed fashion of the framework for supporting scalability and other
requirements encountered in the IoT context, the user-friendly language is a main contri-
bution of this thesis. It allows less experienced users to express uses cases in an intuitive
way. The separation of the language into a query and rule part has been proved as
useful in two respects: Firstly, it gives the user the most succinct notation for expressing
patterns of events (queries) and configuration changes (rules). The advantage of a
succinct notation is that it lets users express patterns correctly and judge instantly that
it expresses what was intended. During evaluation, statements and their corresponding
equivalences translated into EPL were presented. The comparison demonstrates that
both a qualitative (complexity) and quantitative (number of statements) improvement

92

8.2. Future work

was achieved. In conclusion, the syntax of the custom language is more straightforward
and target-oriented compared to the native language provided by Esper. For sake of
completeness, it should be mentioned that the succinct notation comes not for free and
results in limited expressiveness. Secondly, queries are reusable among different rules. In
general, reusability is a great mantra in software engineering, because it leads to greater
productivity, easier maintenance and better stability.
Another notable fact of the query language is that the domain information is treated like
a first-class citizen. That means, the basic structure of the query contains an autonomous
part for defining provenance information, syntactically reassembled by the “FROM“
clause. An alternative approach could have been to treat spatial information like any
other property. The chosen approach has been proven useful in the proposed reference
building. Different floors or types of rooms are stated within the query in an intuitive
and succinct way. Another important feature is the proficiency to reason about causal
dependencies among events. That language feature was leveraged in all use cases, which
were proposed in connection with the reference building.
The results of the evaluation part confirm the functional capabilities of the proposed
framework. Apart from one small exception, all test cases from the use case scenario
have been satisfied to the full contentment of the assignment. The exception will be
discussed in Section 8.2. Besides testing the functional scope, so called quantitative
evaluations have been conducted to underpin the feasibility of certain features. Rule
distribution, the feature distributed applications are most interested in, has been tested
most extensively. The results show that the framework is suited to balance system load
among available resources in a manner that improves overall system performance and
maximizes equal resource utilization. Another evaluation focuses on the redistribution
capabilities of the framework. Redistribution describes the capacity to detect faulty
nodes and redistribute rules running on them, so guaranteeing that installed rules always
run on healthy nodes. The outcome confirms that redistribution can be performed in
reasonable timeframes. Finally, capabilities towards a self-reconfigurable framework were
proven. For this purpose, a test scenario was created, in which devices adjust their event
emitting frequency as direct response to triggered rules.

8.2 Future work

Even though the framework’s suitability has been demonstrated by implementing use
cases in the domain of smart buildings, some new challenges can be envisaged. A list
of extensions and improvements have been identified as future work, whereby only the
topic security is a real show stopper toward practical usage.

Extension of security measures

In fact everybody who knows how to access the APIs can retrieve all relevant information.
All considerations regarding security were not part of this thesis. As stated at the

93

8. Conclusion & future work

beginning of this chapter, security is another major challenge that must be considered
in all its facets. Main topics of interest are authentication, authorization, encryption,
privacy concerns, and much more.

Extension of language expressiveness

The evaluation shows that the expression strength of the language covers a wide range of
use cases, but still leaves room for improvement. The ability to reason about the absence
of events would be a desirable feature and would increase the universal applicability
of the framework. While the query part of the language allows to define the absence
of properties, there is currently no equivalent on event level. It is presumable that in
practice the ask for the absence of events will be just as important as the detection of
the presence of events. In the particular case, a workaround was applied, but this is not
entirely satisfactory in practice. The overall goal here should be to achieve a language,
which has a good balance between simplicity and expressiveness power, and minimizes
ambiguities and misunderstandings.

Improvement of language syntax

For identification of events the language uses the specific property name. An ordinary
query therefore reads as follows:
1 CONDITION name=Event

The indention of the user is plain to see. A slight improvement of the syntax could be
achieved by omitting the property information. The result would look like as stated
below:
1 CONDITION Event

The outlined improvement is just a minor adjustment, which could be classified as syntax
sugar. It should serve as indicative value that further efforts could make the language
even more easier to read and to express.

Providing tools for rule and query management

The management of rules and queries for less technically experienced users could be
simplified by providing a visualized editor. The advantage would be that users could add
and remove statements without writing them textual. Drag and drop techniques could
further support users by creating queries and rules.

Extension of evaluation measures

Besides usability improvements, the distribution analysis discussed in Chapter 7 could
be intensified to underpin the results in a broader context. The evaluation structure
used in this thesis was suitable for proving distribution capabilities, but the setup should

94

8.2. Future work

be classified as rather simple regarding various parameters like number of participating
devices and number of exchanged events. A more comprehensive evaluation with a
broader setup consisting of a wide variety of devices could intensify the results and testify
the usefulness of the publish-subscriber pattern between DNs and EPNs under high load.

Extension of distribution strategies

Other distribution strategies that investigate metrics beyond CPU utilization, RAM
utilization, and number of active rules may be of interest. The three built-in strategies
make their decisions based on measurements captured in the past. For example, machine
learning procedures could help to predict future utilization, by analyzing the application
in more intense and classifying new rules according their complexity.

Replication of CMU

The CMU acts as central registry agent between the two other types of components.
It holds crucial information such as registered components, and provides a basis for
functionalities like rule distribution and configuration change propagation. Currently, the
framework includes no instruments for scaling out the CMU component. This is because
the CMU instance is not identified as bottleneck in the first place. From the technical
point of view, scaling out would mean to replicate all information to further instances.

95

List of Figures

2.1 Convergence of different visions [AIM10] . 6
2.2 Architecture for the IoT middleware [AIM10] 8
2.3 High-level view [CM12] . 10
2.4 Filtering [Cor16a] . 12
2.5 Aggregation [Cor16a] . 13
2.6 Correlation [Cor16a] . 13
2.7 Event Pattern Matching [Cor16a] . 14

4.1 Reference model . 25

5.1 Schematic view . 30
5.2 Pathways of interactions . 32
5.3 Registration of nodes . 34
5.4 Rule submission . 35
5.5 CEP triggers rule. 36
5.6 Data & Event Model containing the three core data types: EventType, Domain,

and ModificationAdvice . 37

6.1 Structure of the design pattern Chain Of Responsibility. The class Activity
acts as chain link between concrete implementations. 51

6.2 MVP structure (adapted from [Grö16]). View and model do not interact with
each other directly. 53

6.3 JMS API Architecture [Ora16c] . 54
6.4 Project structure. Each item represents a Maven module with Prototype as

parent. 54
6.5 Class diagram of the DN module . 57
6.6 Class diagram of the EPN module . 60
6.7 Conceptual overview of the transformation process between rule/query gram-

mar and EPL . 62
6.8 Selection pattern . 65
6.9 Pages of the Monitoring Webapp . 66

97

7.1 Two separate test sequences for evaluating use case optimized HVAC. Events
E1 and E2 are fired as pictured on the timeline. The symbol R shows if and
when the rule is triggered. The first sequence (upper timeline) signals room
occupation, the second one (lower timeline) does not. 71

7.2 Test sequence for evaluating use case proactive maintenance of equipment.
Event E1 is fired as pictured on the timeline. The symbol R shows if and
when a rule is triggered. 72

7.3 Test sequence for evaluating use case optimized lighting. Events E1, E2, and
E3 are fired as pictured on the timeline. The symbols R1 and R2 show if and
when a rule is triggered. 73

7.4 Test sequence for evaluating use case elevator. Events E1 and E2 are fired as
pictured on the timeline. The symbol R shows if and when a rule is triggered. 74

7.5 Test sequence for evaluating use case fire protection. Events E1 and E2 are
fired as pictured on the timeline. The symbols R1 and R2 show if and when a
rule is triggered. 76

7.6 Network topology of evaluation setup . 78
7.7 Results of distributing 90 rules using the strategy MinNumberOfActiveRules

without load. 82
7.8 Results of distributing 90 rules using the strategy MinCPUUtilization without

load. 83
7.9 Results of distributing 90 rules using the strategy MinRAMUtilization without

load. 84
7.10 Results of distributing 90 rules using the strategy MinNumberOfActiveRules

with load. 85
7.11 Results of distributing 90 rules using the strategy MinCPUUtilization with load. 85
7.12 Results of distributing 90 rules using the strategy MinRAMUtilization with

load. 86
7.13 Time behavior of registration attempts . 88
7.14 Dynamic change of DN configuration . 89

List of Tables

5.1 List of connectors . 32
5.2 Characteristics of IoT data [BWDW13] . 37
5.3 Query grammar covering requirement Q1. 40
5.4 Query grammar covering requirement Q1 and Q2. 41

98

5.5 Query grammar covering requirement Q1, Q2, and Q3. 42
5.6 Query grammar covering requirement Q1, Q2, Q3, and Q4. 43
5.7 Rule grammar covering requirement R1. 44
5.8 Rule grammar covering requirement R1 and R2. 45

6.1 List of concrete Activity tasks . 52
6.2 Overview of all supported HTTP paths and HTTP verbs of the DN module.

Every combination of path and verb is associated with a respective Java
method in the DSNodeManageConfiguration. 59

6.3 Overview of all supported HTTP paths and HTTP verbs of the EPN module.
Every combination of path and verb is associated with a respective Java
method in the EPNodeManageRules. 61

6.4 Overview of all supported HTTP paths and HTTP verbs of the CMU module.
Every combination of path and verb is associated with a respective Java
method in the CMUnitManageDSNs and CMUnitManageEPNs. 65

7.1 Devices of evaluation setup . 77
7.2 Measurement result of failover mechanism . 87

Listings

2.1 A sample EPL that returns the average price per symbol for the last 100
stock ticks [Inc16b]. 15

2.2 A sample pattern that alerts on each IBM stock tick with a price greater
then 80 and within the next 60 seconds [Inc16b]. 15

2.3 A sample pattern that looks for two TemperatureSensorEvent events from
the same device directly following each other [Inc16b]. 15

2.4 POJO as Event. All properties are acessible through getter and setter
methods. 16

2.5 Implementation of UpdateListener. The method update is invoked in the
case if the associated rule is triggered. 17

6.1 Implementation of a Spring Boot entry-point to launch an embedded web
server. 49

6.2 Example of Spring Boot repository interface. 49
6.3 Implementation of an API using various Spring Boot annotations for

refinement. 50
6.4 Extract from the enumeration RESOURCE_NAMING 55

99

6.5 Abstract class Transfomer . 55
6.6 Extract from bootstrapping file: Core element 56
6.7 Extract from bootstrapping file: Addresses 56
6.8 Extract from bootstrapping file: Events 56
6.9 Extract from the class ApplicationConfiguration 58
6.10 Basic structure of an EPL statement for transforming a basic query. . . . 62
6.11 Basic structure of an EPL statement for transforming an advanced query. 63
6.12 Basic structure of an EPL statement for transforming a rule. 63
6.13 Starting an embedded message broker. 67
6.14 Start method establishes a connection with the JMS provider. 67
6.15 Produce method writes an event into the topic. 67
6.16 Consume methods installs a message listener. 68
7.1 Implementation of use case optimized HVAC. 70
7.2 EPL statements for use case optimized HVAC. 70
7.3 Implementation of use case proactive maintenance of equipment. 71
7.4 EPL statements for use case proactive maintenance of equipment. 71
7.5 Implementation of use case optimized lighting. 72
7.6 EPL statements for use case optimized lighting. 73
7.7 Implementation of use case elevator. 74
7.8 EPL statements for use case elevator. 74
7.9 Implementation of use case flow meters. 75
7.10 Implementation of use case fire protection. 75
7.11 EPL statements for use case fire protection. 76
7.12 Implementation of use case advanced intrusion detection systems. 77
7.13 Retrieving hardware information by using OSHI. 79
7.14 Rest calls for test rule distribution . 81
7.15 Test event . 81
7.16 Implementation for dynamic change of DN configuration. 89

100

Acronyms

6LoWPAN IPv6 over Low Power Wireless Personal Areas Network. 6

AMWR Adaptive Moving Window Regression. 22

ANTLR ANother Tool for Language Recognition. 60

BNF Backus Naur Form. 39

CEP Complex Event Processing. 2, 5

CoAP Constrained Application Protocol. 6

CoR Chain of Responsibility. 50, 51

DAO Data Access Object. 49

DI Dependency Injection. 48

DSBMSs Database Management Systems. 12

DSMS Data Stream Management System. 19

EDA Event Driven Architecture. 9

EJB Enterprise JavaBeans. 47

EPC Electronic Product Code. 22

EPL Event Processing Language. 14

ESP Event Stream Processing. 10

GWT Google Web Toolkit. 51

IFP Information Flow Processing. 19

IoC Inversion Of Control. 47

101

IoT Internet of Things. 1, 5

IP Internet Protocol. 6

IPSO IP over Small Objects. 6

JDBC Java Database Connectivity. 49

JMS Java Messaging Service. 53

JNA Java Native Access. 78

JSON JavaScript Object Notation. 50

JVM Java Virtual Machine. 66

NFA Nondeterministic Finite Automaton. 19

NFC Near-Field Communication. 6

ORM Object-relational mapping. 49

OSHI Operating System and Hardware Information. 78

RFID Radio Frequency IDentification. 5, 6

SEP Stream Event Processing. 9

SNMP MIB Simple Networking Management Protocol Management Information Base.
5

SOA Service Oriented Architecture. 8

SQL Structured Query Language. 11

WSAN Wireless Sensor & Actuator Networks. 6

XML Extensible Markup Language. 55

XSD XML Schema Definition. 56

102

Bibliography

[ABB+03] Arvind Arasu, Brian Babcock, Shivnath Babu, Mayur Datar, Keith Ito,
Itaru Nishizawa, Justin Rosenstein, and Jennifer Widom. Stream: The
stanford stream data manager (demonstration description). In Proceedings
of the 2003 ACM SIGMOD International Conference on Management of
Data, SIGMOD ’03, pages 665–665, New York, NY, USA, 2003. ACM.

[ACMZ15] A. Akbar, F. Carrez, K. Moessner, and A. Zoha. Predicting complex events
for pro-active iot applications. In Internet of Things (WF-IoT), 2015 IEEE
2nd World Forum on, pages 327–332, Dec 2015.

[AIM10] Luigi Atzori, Antonio Iera, and Giacomo Morabito. The internet of things:
A survey. Comput. Netw., 54(15):2787–2805, October 2010.

[Ash09] Kevin Ashton. That ‘internet of things’ thing. RFiD Journal, 22(7):97–114,
2009.

[ATR16] Mohammed Riyadh Abdmeziem, Djamel Tandjaoui, and Imed Romdhani.
Architecting the internet of things: state of the art. In Robots and Sensor
Clouds, pages 55–75. Springer, 2016.

[BCK12a] Len Bass, Paul Clements, and Rick Kazman. Software Architecture in
Practice. Addison-Wesley Professional, 3rd edition, 2012.

[BCK12b] Len Bass, Paul Clements, and Rick Kazman. Software Architecture in
Practice. Addison-Wesley Professional, 3rd edition, 2012.

[BDG+07] Lars Brenna, Alan Demers, Johannes Gehrke, Mingsheng Hong, Joel Ossher,
Biswanath Panda, Mirek Riedewald, Mohit Thatte, and Walker White.
Cayuga: A high-performance event processing engine. In Proceedings of
the 2007 ACM SIGMOD International Conference on Management of Data,
SIGMOD ’07, pages 1100–1102, New York, NY, USA, 2007. ACM.

[BWDW13] Payam Barnaghi, Wei Wang, Lijun Dong, and Chonggang Wang. A linked-
data model for semantic sensor streams. In Green Computing and Communi-
cations (GreenCom), 2013 IEEE and Internet of Things (iThings/CPSCom),
IEEE International Conference on and IEEE Cyber, Physical and Social
Computing, pages 468–475. IEEE, 2013.

103

[CCD+03] Sirish Chandrasekaran, Owen Cooper, Amol Deshpande, Michael J. Franklin,
Joseph M. Hellerstein, Wei Hong, Sailesh Krishnamurthy, Samuel R. Mad-
den, Fred Reiss, and Mehul A. Shah. Telegraphcq: Continuous dataflow
processing. In Proceedings of the 2003 ACM SIGMOD International Con-
ference on Management of Data, SIGMOD ’03, pages 668–668, New York,
NY, USA, 2003. ACM.

[CFS+14] C. Y. Chen, J. H. Fu, T. Sung, P. F. Wang, E. Jou, and M. W. Feng.
Complex event processing for the internet of things and its applications.
In Automation Science and Engineering (CASE), 2014 IEEE International
Conference on, pages 1144–1149, Aug 2014.

[CM12] Gianpaolo Cugola and Alessandro Margara. Processing flows of information:
From data stream to complex event processing. ACM Comput. Surv.,
44(3):15:1–15:62, June 2012.

[Cor16a] Coral8. Complex event processing: Ten design patterns.
http://complexevents.com/wp-content/uploads/2007/04/
Coral8DesignPatterns.pdf, Accessed: 08/2016.

[Cor16b] Oracle Corporation. Enterprise javabeans technology. http://www.
oracle.com/technetwork/java/javaee/ejb/index.html, Ac-
cessed: 10/2016.

[DZJ02] AiLing Ding, XiangMo Zhao, and LiCheng Jiao. Traffic flow time series
prediction based on statistics learning theory. In Intelligent Transportation
Systems, 2002. Proceedings. The IEEE 5th International Conference on,
pages 727–730, 2002.

[EFGK03] Patrick Th Eugster, Pascal A Felber, Rachid Guerraoui, and Anne-Marie
Kermarrec. The many faces of publish/subscribe. ACM Computing Surveys
(CSUR), 35(2):114–131, 2003.

[FJL+01] Françoise Fabret, H. Arno Jacobsen, François Llirbat, Joăo Pereira, Ken-
neth A. Ross, and Dennis Shasha. Filtering algorithms and implementation
for very fast publish/subscribe systems. SIGMOD Rec., 30(2):115–126, May
2001.

[Fla05] David Flanagan. Java in a Nutshell. " O’Reilly Media, Inc.", 2005.

[Fou16a] Apache Software Foundation. http://activemq.apache.org/, Ac-
cessed: 10/2016.

[Fou16b] Apache Software Foundation. http://activemq.apache.org/
how-do-i-embed-a-broker-inside-a-connection.html, Ac-
cessed: 10/2016.

104

http://complexevents.com/wp-content/uploads/2007/04/Coral8DesignPatterns.pdf
http://complexevents.com/wp-content/uploads/2007/04/Coral8DesignPatterns.pdf
http://www.oracle.com/technetwork/java/javaee/ejb/index.html
http://www.oracle.com/technetwork/java/javaee/ejb/index.html
http://activemq.apache.org/
http://activemq.apache.org/how-do-i-embed-a-broker-inside-a-connection.html
http://activemq.apache.org/how-do-i-embed-a-broker-inside-a-connection.html

[Fou16c] The Apache Foundation. Apache jmeter. http://jmeter.apache.org/,
Accessed: 11/2016.

[Fou16d] The Raspberry Pi Foundation. Raspberry pi - teach, learn and make with
raspberry pi. https://www.raspberrypi.org/, Accessed: 11/2016.

[Fow16] Martin Fowler. Inversion of control containers and the dependency injection
pattern. http://www.martinfowler.com/articles/injection.
html, Accessed: 10/2016.

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design
Patterns: Elements of Reusable Object-oriented Software. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 1995.

[GRF15] B. Gaunitz, M. Roth, and B. Franczyk. Dynamic and scalable real-time
analytics in logistics combining apache storm with complex event processing
for enabling new business models in logistics. In Evaluation of Novel Ap-
proaches to Software Engineering (ENASE), 2015 International Conference
on, pages 289–294, April 2015.

[Grö11] Marko Grönroos. Book of Vaadin. Lulu.com, 2011.

[Grö16] Marko Grönroos. Model-view-presenter pattern with
vaadin. https://vaadin.com/web/magi/home/-/blogs/
model-view-presenter-pattern-with-vaadin, Accessed:
10/2016.

[GSJM14] Nithyashri Govindarajan, Yogesh Simmhan, Nitin Jamadagni, and Prasant
Misra. Event processing across edge and the cloud for internet of things
applications. In Proceedings of the 20th International Conference on Man-
agement of Data, COMAD ’14, pages 101–104, Mumbai, India, India, 2014.
Computer Society of India.

[HM11] H. Hada and J. Mitsugi. Epc based internet of things architecture. In
RFID-Technologies and Applications (RFID-TA), 2011 IEEE International
Conference on, pages 527–532, Sept 2011.

[Inc16a] EsperTech Inc. About esper and nesper. http://www.espertech.com/
esper/, Accessed: 08/2016.

[Inc16b] EsperTech Inc. Tutorial. http://www.espertech.com/esper/
tutorial.php, Accessed: 08/2016.

[IV15] A. Ilapakurti and C. Vuppalapati. Building an iot framework for connected
dairy. In Big Data Computing Service and Applications (BigDataService),
2015 IEEE First International Conference on, pages 275–285, March 2015.

105

http://jmeter.apache.org/
https://www.raspberrypi.org/
http://www.martinfowler.com/articles/injection.html
http://www.martinfowler.com/articles/injection.html
https://vaadin.com/web/magi/home/-/blogs/model-view-presenter-pattern-with-vaadin
https://vaadin.com/web/magi/home/-/blogs/model-view-presenter-pattern-with-vaadin
http://www.espertech.com/esper/
http://www.espertech.com/esper/
http://www.espertech.com/esper/tutorial.php
http://www.espertech.com/esper/tutorial.php

[jbo16] jboss.org. Chapter 8. complex event processing. https:
//docs.jboss.org/drools/release/6.2.0.CR4/drools-docs/
html/DroolsComplexEventProcessingChapter.html, Accessed:
07/2016.

[Lam78] Leslie Lamport. Time, clocks, and the ordering of events in a distributed
system. Commun. ACM, 21(7):558–565, July 1978.

[Lee14] I. J. Lee. Big data processing framework of road traffic collision using
distributed cep. In Network Operations and Management Symposium (AP-
NOMS), 2014 16th Asia-Pacific, pages 1–4, Sept 2014.

[Lon16] Josh Long. Deploying spring boot applications. https://spring.io/
blog/2014/03/07/deploying-spring-boot-applications, Ac-
cessed: 10/2016.

[LST02] R.C. Luo, K.L. Su, and K.H. Tsai. Fire detection and isolation for intelligent
building system using adaptive sensory fusion method. In Robotics and
Automation, 2002. Proceedings. ICRA ’02. IEEE International Conference
on, volume 2, pages 1777–1781 vol.2, 2002.

[Luc01] David C. Luckham. The Power of Events: An Introduction to Complex Event
Processing in Distributed Enterprise Systems. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 2001.

[Luc07] David C Luckham. A short history of complex event processing.
part 1: Beginnings. Online only (http://complexevents. com/wp-
content/uploads/2008/02/1-a-short-history-of-cep-part-1. pdf), 2007.

[MCT14] Alessandro Margara, Gianpaolo Cugola, and Giordano Tamburrelli. Learning
from the past: Automated rule generation for complex event processing.
In Proceedings of the 8th ACM International Conference on Distributed
Event-Based Systems, DEBS ’14, pages 47–58, New York, NY, USA, 2014.
ACM.

[Mic06] Brenda M Michelson. Event-driven architecture overview. Patricia Seybold
Group, 2, 2006.

[Mol09] Ian Molyneaux. The Art of Application Performance Testing: Help for
Programmers and Quality Assurance. O’Reilly Media, Inc., 1st edition, 2009.

[MQT16] MQTT. A lightweight messaging protocol for small sensors and mobile
devices, optimized for high-latency or unreliable networks. http://mqtt.
org, Accessed: 05/2016.

[MSPC12] Daniele Miorandi, Sabrina Sicari, Francesco De Pellegrini, and Imrich Chlam-
tac. Internet of things: Vision, applications and research challenges. Ad Hoc
Networks, 10(7):1497 – 1516, 2012.

106

https://docs.jboss.org/drools/release/6.2.0.CR4/drools-docs/html/DroolsComplexEventProcessingChapter.html
https://docs.jboss.org/drools/release/6.2.0.CR4/drools-docs/html/DroolsComplexEventProcessingChapter.html
https://docs.jboss.org/drools/release/6.2.0.CR4/drools-docs/html/DroolsComplexEventProcessingChapter.html
https://spring.io/blog/2014/03/07/deploying-spring-boot-applications
https://spring.io/blog/2014/03/07/deploying-spring-boot-applications
http://mqtt.org
http://mqtt.org

[Ora16a] Oracle. Oracle complex event processing (cep) 10g release 3. http://docs.
oracle.com/cd/E13157_01/wlevs/docs30/, Accessed: 08/2016.

[Ora16b] Oracle. Basic jms api concepts. http://docs.oracle.com/javaee/
6/tutorial/doc/bncdx.html, Accessed: 10/2016.

[Ora16c] Oracle. The jms api programming model. https://docs.oracle.com/
javaee/7/tutorial/jms-concepts003.htm, Accessed: 10/2016.

[Par16] Terence Parr. http://www.antlr.org/, Accessed: 09/2016.

[PBEV09] M. Presser, P. M. Barnaghi, M. Eurich, and C. Villalonga. The sensei
project: integrating the physical world with the digital world of the network
of the future. IEEE Communications Magazine, 47(4):1–4, April 2009.

[QSF+14] Yongrui Qin, Quan Z. Sheng, Nickolas J. G. Falkner, Schahram Dustdar, Hua
Wang, and Athanasios V. Vasilakos. When things matter: A data-centric
view of the internet of things. CoRR, abs/1407.2704, 2014.

[RSL99] V Ryan, S Seligman, and R Lee. Schema for representing java (tm) objects
in an ldap directory. Technical report, 1999.

[Sci16] The Carnegie Mellon University Computer Science. The "only" coke machine
on the internet. https://www.cs.cmu.edu/~coke/history_long.
txt, Accessed: 08/2016.

[SGLN+11] Sriskandarajah Suhothayan, Kasun Gajasinghe, Isuru Loku Narangoda,
Subash Chaturanga, Srinath Perera, and Vishaka Nanayakkara. Siddhi: A
second look at complex event processing architectures. In Proceedings of
the 2011 ACM Workshop on Gateway Computing Environments, GCE ’11,
pages 43–50, New York, NY, USA, 2011. ACM.

[SL16] W. Roy Schulte and David Luckham. Real-time intelligence and how it uses
complex-event processing (cep). http://complexevents.com, Accessed:
07/2016.

[SLW10] G. Schmutz, D. Liebhart, and P. Welkenbach. Service-oriented Architecture:
An Integration Blueprint : a Real-world SOA Strategy for the Integration of
Heterogeneous Enterprise Systems : Successfully Implement Your Own En-
terprise Integration Architecture Using the Trivadis Integration Architecture
Blueprint. Professional expertise distilled. Packt Pub., 2010.

[Sof16a] Pivotal Software. https://projects.spring.io/spring-boot/,
Accessed: 10/2016.

[Sof16b] Pivotal Software. Scheduling tasks. https://spring.io/guides/gs/
scheduling-tasks/, Accessed: 10/2016.

107

http://docs.oracle.com/cd/E13157_01/wlevs/docs30/
http://docs.oracle.com/cd/E13157_01/wlevs/docs30/
http://docs.oracle.com/javaee/6/tutorial/doc/bncdx.html
http://docs.oracle.com/javaee/6/tutorial/doc/bncdx.html
https://docs.oracle.com/javaee/7/tutorial/jms-concepts003.htm
https://docs.oracle.com/javaee/7/tutorial/jms-concepts003.htm
http://www.antlr.org/
https://www.cs.cmu.edu/~coke/history_long.txt
https://www.cs.cmu.edu/~coke/history_long.txt
http://complexevents.com
https://projects.spring.io/spring-boot/
https://spring.io/guides/gs/scheduling-tasks/
https://spring.io/guides/gs/scheduling-tasks/

[SS13] O. Saleh and K. U. Sattler. Distributed complex event processing in sensor
networks. In 2013 IEEE 14th International Conference on Mobile Data
Management, volume 2, pages 23–26, June 2013.

[Ste16] William Stewart. The internet toaster. http://www.livinginternet.
com/i/ia_myths_toast.htm, Accessed: 08/2016.

[TIB16] TIBCO. Tibco businessevents. http://www.tibco.com/
products/event-processing/complex-event-processing/
businessevents, Accessed: 08/2016.

[VBD01] E. Vargas, J. Bianco, and D. Deeths. Sun Cluster Environment: Sun Cluster
2.2. Sun Microsystems Press Series. Sun Microsystems Press, 2001.

[WDR06] Eugene Wu, Yanlei Diao, and Shariq Rizvi. High-performance complex
event processing over streams. In Proceedings of the 2006 ACM SIGMOD
International Conference on Management of Data, SIGMOD ’06, pages
407–418, New York, NY, USA, 2006. ACM.

[Wik16] Wikipedia. Internet digital dios. https://en.wikipedia.org/wiki/
Internet_Digital_DIOS, Accessed: 08/2016.

[XWP14] Teng Xu, J.B. Wendt, and M. Potkonjak. Security of iot systems: Design
challenges and opportunities. In Computer-Aided Design (ICCAD), 2014
IEEE/ACM International Conference on, pages 417–423, Nov 2014.

[YCL11] Wen Yao, Chao-Hsien Chu, and Zang Li. Leveraging complex event process-
ing for smart hospitals using rfid. J. Netw. Comput. Appl., 34(3):799–810,
May 2011.

108

http://www.livinginternet.com/i/ia_myths_toast.htm
http://www.livinginternet.com/i/ia_myths_toast.htm
http://www.tibco.com/products/event-processing/complex-event-processing/businessevents
http://www.tibco.com/products/event-processing/complex-event-processing/businessevents
http://www.tibco.com/products/event-processing/complex-event-processing/businessevents
https://en.wikipedia.org/wiki/Internet_Digital_DIOS
https://en.wikipedia.org/wiki/Internet_Digital_DIOS

	Kurzfassung
	Abstract
	Contents
	Introduction
	Problem Statement
	Aim of the Work
	Methodological Approach
	Structure

	Background
	Internet of Things
	Event Processing

	State of Art & Related Work
	Use Case Definition
	Saving Energy
	Increasing comfort
	Improving safety and security

	Design
	Conceptual Overview
	Pathways of interactions
	Data & Event Model
	Rule Language

	Implementation
	Frameworks and implementation patterns
	Prototype implementation

	Evaluation
	Use case evaluation
	Quantitative evaluation

	Conclusion & future work
	Conclusion
	Future work

	List of Figures
	List of Tables
	Listings
	Acronyms
	Bibliography

